Number, NAPX-H4-CA06
U2FsdGVkX1+XadOkhKqrEiFEXeBWU9ilt5LYgvYzie32fzECTung/5npKjJyPw9oMo4W/6mqsjbmjsxqgI54aOlWgHqxz6DfmjccHz8+CBKlIf6Hg676P5piz9gM1dIbdBhFWRVFLOljlLXKoVTme/gG+UZlC6DE53Ld2obqVg+U5do5yjzgbo13hZsgNKe5yXRrAejDrrn3MWtdPXot/0PHfjayFFSqy7iwbpfblH06TKNb9XCSn51TK9yqAVcApvPADkievI6IgQvENxg+B56x60cLlclv0AN4NZORju7KI85LZcB0QLJfVxK5hIScQnEUIc/3nRD5AMkul5c/KkbgNVFdGkrFdYlqA4Sr0bCovPiVBYImeiDN/Vh+lk7mvE5AaMa7jriOc3NEdkjTKnPdVAMmBo67jfezC0iPXVHJjADPcFe89T0fitL7KZRaXMd/9Oj00646Voyrslx7RGk8GnrhLN0L/7s5LcDUZyH25GxJr7+2VjIuv55Bc6KW9xsG12rKfhuEtgd/J4Z+LmItJxfzxrgc2vXQQp+jdfPoATNGzjnvnEP5+xXKQ2SJbnzF4MCGfd4oAvgTuG6eHmhZGLQMFjE+q8gXIWru2i2bibuBh+qKGF9RKQFFseyPxs/hkIcR9uQOoq/DsExygRqWEeTfLKlODU2QPw8ATt7EYyOv3NfQKuAk4R6L+uFIcSm35/8T7bDVXs8K8jGDaSk+lMO2HwvOWifWM/W9KQOGzSg6nw6qCZJqCimbkKBLB9YGpXrNTlIWLNm7U2bQIpQPgNwXonrbqUSQesQ1ADO9lYsrk/0bJ+L/ZrIbCSFxbpeupyXN4bLAdU9DVu1RiQcqY8O5tM7ygyNDBBz+KQLGqJZKDRjyXnO0xXA2S7ZvAv5p2rQ4X1zIOru60kWqy4GMVF+Agy2hNQA/obIUenx0w/oEu0KWAHPl+yw7J6lZ5ci5BXQsLCwNC/5BixMfgcRrABEEgUAqVSdCDkcbFY5KjbSrWkVozXp0w0CtIEFdGoPxrxcLuQ/YUZezow/+MRd0PfLfSH/YEXd5cCpi8pvEVgJq+MAer9IQLUsoSaPbdToGdkkg3cek7c0/WuQFts5+a4Ex7MYziacOCmlXsHKycSAS8vYpZwqYVZb/n4PVcsp3WCl06Zn+BLXf2DB8nbyz+pVxCvT/V2tzd+RLXOfsLoq1YO9k/2iRFD8a1kUqkiiEQosaZzGOoCCIKM9Sv29R0n4JxFvWqmpBi2KykW3LWUSvM0AKjsgO4lZq3GgR/PVJTgcdvzREsGnux6qtYHRtM8bsIEfXnov7YJf/DOdEN9tgFRSgiEFAB7Qd8WCCbRHh6ge9DxXms6NrAbzrXkeh06+HhDGqeRcqSSHZJtKngSuUkuJlS4erKPz6uCWF17PATCy/u9vANJFjkZWYSl/DRgDElvUA/HRBgMt+44xADSBxu21NgkRN/ntOz+K/FS5tqcunOOva/eoWfT2lJzNxGsOxCg0n02AXlFxxyzIYgNkth+W+y94OWvUW4IdVjnxbmg8Rms2FJPvaab26ILaeq0z1/RtrrpfUMQHpBj6MBDYCifx+b3Kose7df61xaZLgq9os+IDG3Q69lxvIhOFVQkskJBH7+fvUhKZnFP//Hyd22FGwY6BfuIauoas6Ox0HfvBQGe+bsvKw93yEbNxcsJnCI69H+Dw8xrrtDt9/idhM6bsQvAs9R8DVXhCkfQHPt2qqqEMaXbXGOQGyFQbYfJWwyCmfcvs2Wto3QAUAEl8i7d/PCk+B+sQ3tRGqD8cNX6l0HGEZonfOi6hER0/cWYHFGuIH/blg0JaU54lMrboMdFBADT5pO3Y9oOaMuEEMdUmVGwClGiYxLTbn1TRYFqNnKqNca+I9rd8M+j15UjISziHwm8q4X6XqQEhMWI3yoYjwwFmwWWjSbWeIDmH/kZAMfr0GaUkGM6DFihJPivoD+kX/lzLGSz0ADmpbjluxKfP60ud2HXOibbUYJswiIF9Wtwc5bhO95NA3PEgA478jp6xsqcX30Kb5Y5azH5D7Ic+5vurEKRwPA8SMIQYeHOTRDNzmtL8TALFRuKsWHZFGpKjp/PFEqMFnjLi12lsxgleAzojzXskdwR9XV3KTWon7UTbKWB8oNi38YJuzdnS+UIUUJnJ0Wr+elLRKnsIrLWwfq238J/bMn3XXCM456EvREWtcPc50DJrqnHfTVEyYSfm1JQt4couChrArLhOwpEmkE95fzmKXRDG9Vj/Qw0K4GjKl7+UuBfpNHb4SYdCzoGSbaPECG9y+IfC8uCm2H/BJvtoZlvSvLeL8bqjOpBiXbpCv7xVuOUrN2Iw3HQky95YhyrMk28S4gWyxAyr7S3Z0v9JsyIOoohvXnVk8m/DyMyKvLu0KdG+cFXeLkkydRu/Xy+9tob5zHhKZR6ievwV1bMkwZpLPVtKRMXkn7W07m+FtrM+iRVz1Uq0J4Z2g0De6oDiPZSZZCw+nLWMHsSQNk+afPwnZROzeXGT50HSCb4iNCZ/nJEIijzjjEQ0Ow4zBujiTTVHPbIEh5Lis2qH/ReU4dMotQYRLffCXA/6ZfI46DNBXhsjs+LjG88AGI17V4fh0Gcv67stsHpMi70RQv3GWiOVk1L71ko1OfpCRuAAPFhN0iYC6lK1zHv2UC5FMBZKkskv+3xGNu9SR6ACVmlOONStdg3pE3ngoBXczruYS1KdtzZDboX+CaxeIaj2OLn3nLjJLEp+CpXchz3cuzI+rNjp1ItU8lAFwLftz2IH/lt1GBVkL/ddlImvfC+XtXU3kFQyMEmJDSYOT55nxGUJ9tubpwOWoKyN/vw8m/T6c4wSgR/ULpOV5oP/yWSJe8NJVtQnb+ViYSivvEVjVcRiJGvVhGSajdYxs8PV8pFeYVxEKOI9MyDghi/AEEiXr9Ok+2CpGIun7BKBivP6dcnWqEmzBoiY38+5VqGwPjSdvshYKu/XGPKIsdB0LX4LobwTWRL/bJNNshlVndBU+2AIK62RQoi0X2+xIsEx9ZMbCko6f2rlWu1uSLSXaN7rHc4kkT51hQoOWPG20ps0YNOkWbWli3mYR/QpuJKZF/7HqGQPh9/3k6TZsbrgIxoO44tEIekPYrzj6WaEsIpFI1T7HdO94DPLYYAFAZPDxUSP3S70A5Oymlox1m2mUhyHCYF+zlmD5PFKO3c2gfBjsNVYFsQW/RVMfrvTQNWK5M8zWHdxh9Eu8tD7hyfi2Ykp8m3M9w8oTqt2LP1GdlA7jZtK01SBkVMhe3MUI+H8/+zH2b151toa/Eci7jY3XFv/0/TDCYSzR7Z0oUVLz+o0aJbkkMZhFJGS409qmqb/vw+eMWp0jSkZUqeLZjxHEOKjCcmw06t7sjjOll4U2Ufb/SVrTAiZe/XVc1wTTU7RyQm9ovVtoKJfqLiP5rp+Z+vpm/D6ELYMOwPNS2kSN6IG6IXC3j9xqxapKS4t/nWMAEcagu0upHp8nbOrjBcze+bbAvgtiYbzAv5L1UBjYlYc2MOoorPiXsUx/IeXh832wqiRJKpqOh9Q5KSyqUIPawXrKBjG/iNUnOGTofJsmm70LF7hRAbl/vWqRkpf4YR9TekqzXGoEeb14vA1LBU/usqVd2hlKujUBj8u5T72WdcySXPMzL57Wbq6hpn8qoc+cpNliJ5Kl1okdnLP3WDc60JEgtuyAu1ZSXPPYBcnNUoO6Y1KLWLlRXVAnA3ain3APSDAJEeCiE4wI892Ip/g8eXGpoCQybHKsQxrFxnhhGfx7M9ruHcDCFE02P/xXxtPci/QJ7Kw4Wu7Z7L613TUUQEQmUMpM3+JhP8VZz0wszcUVHIT4DmyBXx85j61CINpSAPTCDAK8W/7NftfN0KaHoEjw0lwgbeO+aKgB3b/fGE61/2WuzpK1lhBprOMpxbWVLBhwothSw1/P334twT/stg3LlKbjcTg65oOgWPMeXdpp9BqOWBQ4537Lt8IUA3ECXY1dfjd/W4eSKw4iv6PAXfaldVW0ezXTGmmfm6X/y43wyYHLBEgWEo/bnB5PmzDvvKXpKc0IBZR/K/IsaQgA19ZQmTEaaojQ0feZQXTgLqeUCdN9LNUbYkE9AQfECRF+xuNxqpYrH93bBViVxl8w9S0wwuEH/WEDxaU12uEkjyfZFdAYcz+GB0sflC9SWBVc4qukYVlDmLxOf0/LSpNC2DMeKa4RDtzefdFIC+7aV/zrXODlaTsQ6ubLijNZLVb14F+XeTKtS5Wbg3YOV2x/gSRaWRjNQSpnK8GaW25fn9deR1BQMj57+hzQ+ZMXIM0Fx/S2e0dt1ZQ3gjMGFrzHHogEXVJROo73QH6aNSdSl/iAt6MmRTZdLbTIB35UkerKoBTjeNb1s5WlzrgcQAzZN60usrjThAZqmpCKgT72A4t3Fegy6o5Sf0H7a9DrZFqWuJZNA9nwh3XsfLzDdfoAEfRyr7jABRr2SKCoGqxEfTF4W9ZK5DnklUwhcRC5X3tBe2nh9KzxYfVpLa6FWpJ5tuwWhi/Ib5MFdpNaBJkKSbZijBju5iB+SVHFl3Ed5u1sVsggtPlfRm5HQ7AY8KX38HjlgttZ+HxfHQE5Thv7KAJ3ZxqoQJpHFcT8/FNwyXkGJXbYWeDH1otWaAncYa8tjGg31xEcFSUjrNsxcjGuJGUj4wrJBObg8SsSTeNQRoNnoSKkld+DgYoQojRYw4mKnQ9ofh8fbpognV/txqTCqjQIeurgiXfJaS10kLPJPXS8VSEMLwbLSNjZHdAQX4S7zplSKbttqgmNi9dfNOG1J2/YjYXULEuOaxMALMQD45N+NoCor2zb3ycHGWJkHZ60gvIMTyvpDaSodD6aiFooTHluFNnFlYPniq6PfleBjQl+hvn4H+X6E7CDoAJ4wpvLX5z56ItIxelK9yZTEfvJnIU4dRSjq3VRPngAUpCe+jgnWvpK09nY4E9PSAPJo0B6nWwCXuSyJl+CrAIYfAX09juyxgojadDDlgJgVTWh4RLE8TFnZLskXCg5WNzTwnCB6Umk1zsbzY8gCAS/CZ677eF6BDsHs4NBGh5H5d+5UBuCLc0aBZgKHHRlaVK9iIJaMRkZAPSbCzm4TjbeTzc/Ezh8w4g//WGz5IVpamKr36xgARCfshJslE4D6dOnfsxAFQ10t2WmEpLm2sfYz/Jxz+s0aztLjEcXq4rvSCYOf2N8kywY5ML2jHHmfkwuCX0m7uaj+4MYpxItwUlzJhxqGPf3PMx+pigy70/0DBeZJgKHXOtk5TlUqT7yzniOdO/RwcOU3Y4EcwFx8cHjQ6H54xTO3rR/ImyzBDrVDE4JsYp4L83iBOaa+o7ZV3YN8csvSwOvFAUJBvjxJdUkzQXK3tKLniBcw6BOQcRU1LAohRa44Uo1GBTUs+FXkI+1uIzijHI6JWdUuTc4Y09bA0kmXnw8FGcagIoqpx/p3JawHyphYLG3iaj9W9B6mVPNXrwh8yr9XTjKaiWBqBFooBP29O1eJAMpsy0YyjKDf8YdAZpy65+5uovO2K8Td86JlQsPDvq8D4pbrOPL/CcRvYiuQHZ6MKXDN5h4LFJ9actP52iAsweftAppyI9spcDN7G8jAZ5D7eoP2EcMNfxnGklm1WgRL2RFHu4D/jR8Dt3XoBczcPc9jKOjA2vVGB1t6XsTC6zwEWfFT4ZNuHdSGUfwuk7xOHVolD+2XdnLyNBdlvtVXtK01p5f3FS/2wS/DOPk79RunRF1Z+fxU/bH39aFU1M80vWoRKoY11oVy519AJfWEajREkOPDqnt9qoK5hyb9eRcNNuUVkOcmtaNDomPJUmzn5uOdusTlZXbnkNVx33em0fcXg7X3ptqXAJt7qel0bRWTkgLb0r3Zjhz+AtO1pz78vYx5pDyZsYPCGA0xLGrw8yLPwriEwnn1sN29SPfQEZVqJIV7XB1uzRql6y53dKWBPzXWeatWd2mkF1CO2dg3RALbt9K7tkDUi4WgzqgrXIexVYYY1m1rHH1GqGaGS4kRgcY9d+ojvT9264kMac4SK5cm/D65dOLbMA1nU5b0M7WbWd2jg0/wwgFRZ548zdMzIUHRJkZ/+ffuydQZj+FgxqvOqp3Ewy52p2XYAUSrLO3UeU5Vw19nx9NIVXwssUqplpCRz2Uadhf/mfQfr3zYUAwdJBN/9hFdnJX7OFav9QkszSip5mQ53h/C3UR15NiveQn/uLnCC626P2+4G5sPYCjKqAKR4KKPUbw75QocMSXHH/NcPfqPRpwd0JmodNLfWmT8DrYSamZlS6bIn0Yq7KFl4UeIzAbE9lPXLl3Dgwh9f+7Wf3eZNjcsn3GJbFFJBrC8287feH14Sow7JzXA8edJ8CF+2Kps26rhlAox7t6O5BUO1SfFMUjv6QP37+vZ8ML74EC8Ss7w4NXZ8w/ZYra9kpwvTwcVZMji5wmhXyb8JS93xnBdYVu4KneImAE8Aqbxd7UctwaqdB+IR1IM1vSDRjA9GTVRYxeIcrjcvolszPzIrZeKKFBKSW59vC5PWBLktcD7uiHDB7aLipxGA8VEZUhZxPD0W1yGpj+ayuSChkxSvkfFG3N8Hd8sWfRUyTTYkvKlkwOfQVEKT8Szcbx71rwE3+XJVAwQFKr5HKG1LONvMsnCtozohv5lApTzAYaMCpQQtl56r2wCNGFHKHkoYjABg0icq/B8jLGoSy5KnVp3lzTQgPfqFamYmK8/njzC1f5gZMJomYEjIaVF9Iv2cqsIpuhYjh3iQ+lYPTW3tI1wt2I3nO0sT+Wrp6xeLDTUGrL8miH1DiWod/pdrsEPgH1L9Y7AFnUiUVPSz6m4Cu3t/IRVik3TaHU+ewkZQboJpYa1mL60ujsCFII8uPAoyOwJSmo4Lu7M3EusmYsgGKSlnT5mqqDkeJZ+W9tPALsdxHb4J+JVlxvPXKMQt3Jvk9ryjdv+Ibt25u8vip8RnVuadIcGT62Mx5JT7/PTU0A2vZugxd320xPlQRvBoBocShropib6RP19X9qxtXEPCdQsCDZwB6M28jUfqBv06IRaJknotj523/fXAP+FNlZGhr7r9QzuBX5upSAPy5rBVsg8iDyyiy0ovi7xp/NzQTaj0CDm9eleProZAWeM1sx1D1zpEio1bymvZKalZWcw5zo+8QvrvT6F8P7b0jtGbfZJmfaxE/hnFIiLhR4H5nju45qTHWZP6okQXlZKirNi2HwxKM6cqbu5+jsyzpGtroUTLO2UfDYP+6w5ENdE02dXgtoROn0+zlu8H532YzcMpj1sYD0YlCciHY4pOmspyRfiHos09teb9+7EdzLJLziWmwooTTcom7kheHZKPiGSBPpAjkLz69/SL4FmYD/IN2IgQTqJUPgfuS6ANLGPiMp/zVQiKvL00SqpF1TI+kSU50HnWQNHqPBQ95yg92hFEL2c3YiYEjwCwodVvJGpkalVKMCKj/T2N9U70tfGn57FR7xi2jhlhN7MF4GVYj7mHc6XlXZaBQvDIJ7tCRHFFs69VEiMQFaAcPOY7jehraLilb/CcnVpoO23mkLqekNxgMWRXkO/reGzOavNOBl/BaEFIpwlxyj5SBfIuZZgphlHIgfHLNMxdTqT/Rolantzxrb5lNq1WRIOTYM4eN14+x4xxdsGi4qP/WJ0moGD+IzsGcrnW9b+KugtOjpEKg/D0RxNQFTgM5A6uDidWPxJs5x8QuvX0g2lRsVg2j99c1WK978dNb0tP3dpmqOQqIIMcD7a63i3VZrwZWxIfi80mwprxWnl9kldSxq8fHk1MMsy4IwKW8PNbzF9OHAfDTsEXRYc1Nu7jACv7n3CIpWjeubSwv7N1cPfgujgC/RYKDkV+4CIwIBN16Ax6hhdNkBnWNTt4sZwkzU2a4Lu7liW4ga4/uARUYGEC4/emrrmLBrO9/LSUFtkvVJqTPqYWXcvFvO7uixDceOcOEh2vYP6bABhqI0lLTVpGTKF3zoaBJ3KbHXdVx1s9kNG86z/zTiBB3GqlUVjzBDof8l+81QUEoyYPBRB7D3a9nhSgYS/L4FJ2eMO6IL9UT0b1Vmjaq+CMkvWsXDFUf1ReKNc4IYgXe9rfCBzHKwfjeVb8Kjzuu+1fr7Pp21Pyh99V4TzTyqdGUi8+zJxk0r4x1z0arQ1WszZ5DxuNrgq9lFVd16ULsbiqWdTRtb9Noka0xHPntjcnS4lsqc4tRDTUymS2aGdJvGlWwzu83OudTEHAk+1Lph9k70KKbWxdYmrgGAyfX/ZkCiZxjYL3Pr31vV88gRao5gwfghvcqp4Egxx+zvbAnIVU6u6tkf9uD6CRBM4kkke6bVwV1eZXsN1C673xR9w3UgiH1vo/7p/+qcU65MGEBBZqgmQPo0FeW6ty4bTLTvcJwuwNq5W05LMu6OTJ+U1HkYE1GnFOzWCRa7TSPdZQRHCpFlCXJXCSG39mHlIU2F+zXRdSGmeNQgpT9Jo/6Pq9LyUew0b0HKUu9mc0Nrku1UZ7/DVWXgtA7t/ltgX1NZNHz8OMgZKIoMRQ8BdGDGrgYvz4yh5EsNrZqyMMKKemhO9nPzB87clV+6H6fgbJQZVWhQQFBrHyKg34MckfVZM3a40cGBzOGv3kdgb+OMYw9qJPGlvEQI1PigXmqiTIcirItq04FmNZfo87Pt0BWgXGBaiiqqZEvJsn2zgIKdoTEUgdMTiKtS8TNZVVCde8QYsvKVfHCg2cg6r+krj4h6d0boQkwBIv4HvoYg0m6lTHsaauTLVEiVSIsaUDi5hHWMc9vZme9i32fS9vJkSJ8eBlfJA0igNqm4Ju39K8YwPhiaeLWx075K3cTZSWiFm2Td7loudgevpOre4orJHKpMzQfOC/rxVigWvIVlrcxNMrPRBEY9wiWhde50BNoN3y2J6UZMW8eAA+P8y9wsPUbtom/y4caGdji/7RDIww1xgwLj88L1z07FsCBbfOPf/+M3uQaB3QdtSxHrH73fbAQLbjEEtMpVqipkr5Q4tZ0svoTEcJaC7w4HhWdGhFTJsRi2cPdV/HF0bHjIPdoO0sL6e+/16t1a14xvAosibkLlTwCn2T+9sJ9FYQbJ7r3iHpCwfqtNgsGhlwdNQxK/wEDrJGnI6iJJPfY020GvUgEzdSPxXX/lHy2SI9maekEwd2swMjj3SI2FrhUhbkCcj+HUaLlqvdpk/bCHQssUnRKm5i4ePi/PTuCPr1B+h9705JGoPzKt1meLbvNpZGGZymqQ36AvDYVGUtRAoTGzIIKhx+4sHxeC9lrHqOpRBOh8JZNmpKBLWDrKg6jkdTkSEFHJUgqdmvuwAnjZuLg=
Variant 0
DifficultyLevel
540
Question
What is the value of
7.1×1.880.3+16.28
Worked Solution
|
|
7.1×1.880.3+16.28 |
= 12.7896.58 |
|
= 7.557... |
|
= 7.6 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | What is the value of ` ` $\dfrac{80.3 + 16.28}{7.1 \times 1.8}$
|
workedSolution |
| | |
| --------------------- | -------------- |
|$\dfrac{80.3 + 16.28}{7.1 \times 1.8}$| = $\dfrac{96.58}{12.78}$ |
| | \= 7.557... |
| | \= {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX1+hJzVoZX5iFpQWH7usiABTfw/gsIpOOqV90TntdPQdsozRJqoO3neuCjYJmggpilAP8PJaGQEA5iBNiHLm5/wB7pIqoP+vwEGRQ3sgKr3Z5IyCJHqmtJkQuDPMN13kfXeq87Y4tSnYiaWMRaYivwyGiy4WA3WQBHvySUhWWoNa9hYhxebK4nY3ZbD59zdjswc3okCeLEFJy5851J5GWTRPok1jNkGOgf5P89CrHwUl5NeMcwypF+GjF9Y3GbC0MuNvFSeBudgco2btiPg1EoaxweBmOGxWl5YPqf1f76s9bxv0sgwzjHvLqd54EjiNM6fTR0h2DJr6Uk2vRCwyX8aGqvzZVQzl5LYOM6PgT7vitZWOnMwhksTboBGtmNLdUQbBz9uu+mTGZDIxAKHa/NnNFCmCeiE32bckP8ZQ4jDOTJPGNxaVz5CSRUrv0A2rtfSuxj1cnibORxbEyqdbJ3LUt6KGhtjiKYxMuq22eTp0gYdsOKJqt8LG+wKBszHJKgURuT/pdJsTxtZ+lAIQo7K4RqeDJpKB9SSimePd7yXBDEZ9ewC9B0F2SSIgpG+j0bk+mqASZKCEXSS86zrUCkv7MbgRVPddj7CgjlMX9vhcOxxz8qPPzsJe55aWPPjMUBhQO/aSOBtckWfNYskJcpJ7SblYxNXkYeDtHPkVf6CuTmrxgHo1FfvtvUYE6PXcAucl9awV95lVfSNZ2qGsNngl4+SUFG+vWYeSS/14+HU8mrsRd1FbKtuwWGF7gWIzO2DtRMd9u17G7qSm7jFzQaf8qaaxfbFv/C1hQtOGLWT4WFZMFveCNT9X/mH26tmsaOdsrMJfEvfLDv108MV0fpugzoyGvBubPLTVkstpCJWoimm1C5YbutKbi0+aKYH7iN/3Vb4OsAQWfKSat3as+Cn1ahqwosUkVEsXEVp9KMLZ4foJDZifDjw0HZC/uZt2aTz9sz45sg0zs7GQrZeLkg257z/xPN87jI9XVwTc1jo5KXpJdKYR6TNuv6W8SRda0LEza3QfrWuOhkq1L7H1hERrmYN7g8qwdNLmU7O+5M3riId+bS+mRy0KzDfxAtDKvV8n2SHZSTdW2rc9SmvjGT2kNP3gSL0SEsjv+uNp67efxZFXZ2I+3u1MyABvU4Tz/admZ6aWQysLDmNicSGd+/4CfXyZYkKnkgV5pR0vTIMNffrMXITn2PGthx21RfPQ6Oj5P9Y2Qx+KGYf/Vt/iGgrmAFjKHf1u4eEQ74HnsrN4r3ADK9656+NSYeMORyMqincFZCyhQylEWTPY4eSaTyJdvmjgkwpAVXHCkHvPxzlEABPeFEW60QSsHT70CI+6pFeGnuV3mDbggWeSlsIOmTpI2YDknboYNQJVIAU1OXj+dUoTpRi9/RNTCcwt5D5z562cm1ATwJweHNelZKiom6JJzR5bSQqoiBDb//c6lSNlWuQPKvPH3VLpCng4KJ/OL5Kd0TXLAn4ooKvp9UufOHgpDmm/tbLO9Lu8AkN+Auf4dAcdUwXXActkCNW/VfpBTbIUTMuqqvmr1oAEciXaV2xqiZBQGe2shDWZG6yWxiy/fJ5OfgGDFR79jhrLOPda0Hk0kWVsGQF88voNBSg+G6/iao+n6NmpMbqCMkY4jWD50CixOv7HwJy1OucyCGzKKWCi5C18qjAlt+0WAlcelCzNb9xv6i4oplqVxTukspiyjy3/h2g+k3vciOgnsIb7dbfx4cR3Gp10W++Jc0llpLSBSz9lce6snbNcI7t8OSa4OO7RsLYjZR1FKLppL0q9Ymuz79XTtiP5Zno0eFdOFEN1F1H10yWP9FN3DxMuLzXMoF/8FKk9hxkWtpeSMmCihI9m4sVVWNkw0SBWsRPk6ghJZuDC5yWGv1p/ST+NtcPupMlRn1iLJNI8XTTPNKSjILMG3QFFK+R7tNopRTMzmwnWg4rqfXciqYotKngOhxJoMxrw7HGtBDjRAQEMDCx6U/LYBQRpiqNn65VozHj4zbzc8ld57u4NZ7CDSXwM9pn0ZK/UXFsEx1uQ35f01mnbGkK6Ve7eBFcOlnwWZJHMfO7M5/VtYKNmTFIRSUiK4HlOlbGlD/QoGH02ipXjpHIwsIqA2wvblV73v+3AqrBcTAwReLE8tyfjELvMr5fI/1oLOVc6y6cWzemFq8t2FmdeCldTXtCjOjq4gM3FsRt/6VfpyDjXgXoIssVmeD4FdgeLLH376Aa7GYpESwyI+AaD4ux6QXSHRXe9OM6Z1E6R79k23hOX3niHzOt0INHXbziykj4K42txpK3cDypW6OHavRc42owuH09XVFOYNakY+veliT+IFl18PVvsk8awdu9dE3+FQEgar409vKkxo5USUqQYKcDeJCiclrh3sr5qhtYxN/NTerH0BvIOf3k7Ay7qTry1pEiblCEwZXroEgeIi9oKxbtIqU8kMLKFJmUMdKdK5DDL+o068bJuTJax7B0XM2UZyyMPivszx04ZZkLAaeL25JRYujAnRUhU/OsCPs3r7NXBZrpbBtKCUHge7x8BjuLiOPt5pv43nUF4Va6U5QnP1oqA8WjQMVO1rjViLXTaGBl3UCG2rzq2DzdWmQaYB9DozNRFaVmqtQ0iMfkjSHlHu84o4EDYg4HP/mxHRmxYO7oaD4Sd/mswbSyVIgSL/4Oy3wtDA9T9a8Vd5Z5O1D5OZn3wFH/8LcI9cEVk5bM46tFVV0gp6sGKssmTVlNSEOqXZQqb6EbT9Ct4h4WRcjst5APLeKfP5RcLCl3+iBvTsqrZMj9uCYgXKuaf5G290CxBPFxIcRKsnZdmIKEAMPagFJmr4mkc8m2La/bvOyn5WGPKvwMAPZ/+6o6IdAtlSa3eYSRg4T2uzMEz08Rd2ZdomGsFTb38GEPiGPJI+NvPaCICmuO+tCE5MdLZCGc66u1S2LBJr0tTn8ZX6oRKer6ve3D2WohALfryBzrciuiUVk6zKTHgpTrVgcOyQkzYbrYE1nSoQzf+cb90n0cYxAttzfmsWbBvY+iLEX9NHPLK+IgyLnVTdSKPsSRKYlNWhQJPFcyq97QsjJrauje7ZnKYW50X93aFWVREq0WOxovwtLpk78lPrsZTxLCfb2dU3WKsc8f9jN01DiwEPRQAjVmRAHYLt2lJSXpWDcVsyHsCBBACugo0p+GZe6l/A7MOJ342eGUyVhHmEPhCv3CHVEPDS4laoX5dhAC9k4R3tIjRZtlgi6O4SCQHjcoDyQobjX1uSEwyf2se5lt0kW7Cje14NxRufBbeRzP+9EOXnFItbbe+mjgDuV8/NSQCKDiml6+03jk6Do0gUFpuNCa/ZQH3EWEpfhyauHAPUXklahrNcqTvHsJGTn8BkHVBweVH/KkpgF28dIeJu9wmQlb5QuSZng1KduepqzVTbxxPQg/yasfYGZz5NwxDOdr38M0NZ+wsRoW6ATaR1Uvz8VlAAfLLFaxdq9isZFzE7QCXa5OxUUGqgnt5lkBknOj+WMvpwWoK3WY2hBn525CrG7FKGmCUk01kekhjs+rk8eXhMbvNin9GPU4t+vfkFeeQoVAKC8B/HJxOZ4gOtps0beyWTKvymLorvOTNtbqozFeMN8kovAlrY402SPX6NrziFGYMDIDN5uaEYJUgEizVfkyd8TjHPxPhc5kJhc6BHvMVdKBSbR+ulvFCxDdOt7y/DBs87fNZAxzoc+7b55i107Nijk6h2TZeQjIk9Z9sLnQa0K+dci3Vv4GjKBee9cExMHv3Jd6IeToYCRsNFdVJLNokpNaE/memGBIW1D11UolT7/GgfELmjzvbHDRhIpB3MIU8YrGxypfNORfB0JbUy3ksDs7LjOYxJLphCb5JKkoFjoullHwKxhbu99Yd4i3xD6wCL1EVU43Fq9I823Dxs322pIP/GlK2rex9jFX6kTVOvrq/S/Jm3TlWi0aKj1D2aDPSVjsEF3F6tg8ZcOl72fyjfirHfkghtAwhq8sv9CyW4qF+05H2BoMXThUzIExcjWwBL3hQGY50qKqyJIu+Yr8GID2TZ+1c2mpXlz5wA1Fn+mHmrAEKow0C90bfTuNDF6InTJTYtdIEolEIhAGIy/dp8eWWFuKJyas8tI8OqCBp2Wih8OnjpLjN9iMxLDUzQ5bl4/AVExrxoqFZ01yOqBLBM1vybUQjNkSyBKNfYmqnitTCK3XA3ARDugDDssyxS4EorzfCia8AeCEr/VA9ZWNANv1G34VGBX6hEWX3gmjkhlF7tJ0kGAtkAkXPrqFsft8ZirwTPvQuPPKESGnB074GnMO9kTHKPcKkUSp9C273t6tWUUesZMr/C6HV7LLfZp3D3I7DP66gsZJrnA0Rx5uFnkam/vVcoNrptOJiSQKlqQdEuZSfsLIJiU4QW0hQpYQj8lZ9DEZf53KZ1Z0Rji+M7/Pclhc/GxJuU4iIBDZfW36J1c5IPiKteEXuM4Pm0Ld4pyOkwlseE4CEKD1CcxUl3u9cLPJ+IAbYRz244BoqKYbfuhnTpVwbBFVDgOdcG5JC/tB7S3acwriGkcSwwbbAMqsypF1w1dPOAGBUTO9auOLZ0uBWPgyNLrm1eVhqd5SX9WTwkojt8PIzxWp59Y8A7yMus3jxKZVTMw8nkDi7fcAzKJcyNjkZ6Sb8sSqemd5buR/umF5Ag2V30agcBqkhNSKZ7uivXfFMMQF0ub3OX5KPzg74zl2ndIqRukcljFVpV38iQreuU3UdpgJJXIfVbMATgDCt0YlSEFC84lGxPAbS+U8QF6s7lTh2H33nBzWSZw2UVlmJf/4/lo2v/EMHR9l2upb3ReYmhvJtSfBR8jIQ6en59CDta7ELzYTvrBWBtsFp44PDcrvDyjM1XPgw8GDrbDibHBkknHVcW6op67jZXXbl54ViTaYQRQDCbTRD5qmaVy9709aZH34ZrbKLAeXPrjN65tFhj04bnneZUvYXORKdK+PvKTDFcBpzJbEFGnMa4gWoJi88bXJ+9IBcv1v7c0bU/q69Zb3eb5bOREpnNdcuTUBkYGvl09XpvnAfmoYywDFHQDYfpDZJSPYGQcdJFBx9muCGBVTEk2YJiHSohVs40vP9IR6G2UbM51fh8rACuEIjMb3GvUghiiwUHWy0lx3UArBcypYYMZflvrriqCvcr+/N+AhNR5o/WEDEs0cSVM5PvWgOzcnZh6KeMdiXhgAcio7rEYNMKUKWMyYK7pFfguWoBxbU3dG+Tq/vtsF/dTCNIfLd2KKO9Y1Z+2RSrNzdc7E2RyY9P4fvT6SkYy0CONexa0XBy3rDf/DRfRwcVfsNtlxidwV/ym0evGAsQWrdVcvAY33E3gCXUrPCzK8eh6Eu9SpTfflU0zH7PEVFqHeAsZEGe3S0Ftfn80aJU3V9Q7sMzrYNCKMXotIRchWhQj0LpyFIbvy9PAfJocaKSBel2lDpExdRMD1oJsWsFLG+Wy6II+ArEBH+ytzwTW5CldwCZELiMeRntlUfCNIaZauD9ZEdyqdUOHscgxJT998dFc/N+i6RfQKzDeEoMDPQH0u3viAoWPtUMM9jadEw5u45vJxdn6Nt6s01J8Ykd6B9Ehl7oLftrey0BLAEknF6760gQYOaa9xHQljSkM4ARe+BRPYi/Z79OGhzXRJSsYbWVm351uwwNE8ncUSSnDTzwFhgFUOTHViZXFxN21BE4ZbrNJZWxbS+XoSyOWl1/ecAWLbDg3It0+6NXK0vBSpIA9HQOh/BkYpoOLWnNo07+t7bCtZ0OWP44DUArz2pqWHUWyPdKPu/8jUgzogBoPNfoqob/yPhVYwev/50i+n+fe6L9RYbEB8okp4K7+gv4O0SoWXx9/70icNoBNZ5TxPJOUGM0hIuY/MeDMjH9tZUIXc749e5nbYEe2PO+IMY8oOPJQaN695IiNQANqvAqn4vtM17+2D/eaHwXr60hqZ4jzp1IjkF68HegAesyTyvfabkcPom6VxhHnaPS/qod++q79WiQc+kAAOMRAzDJxSC2Srvpm6pwlO0+6D/BBJDq36sFWmtkh4DM3zvPLH0iti8q/vysxZVT0ClRtmZBw/COf94L2WlSjAKDX9xuDNWVCFU80Xm3bw6fXS1FEHH3LLGyK6dPDMgLM26rgmM/mWo+LVnv9nten6cSCXQJIhR40M3DRSKwWnunCtlDPYGMYTUkG/DKBm/uiEQlzGtNLB4LowV0sQ6yJ+HvM2xYml0Uh1ZSNV+DIMTKiCfMiI1kiVNO9Vw5tp6sL7bbxqiptax9WpW/hk7C7X2ijfn3dUceeASEX3/0VEepngABTifhr/5K5E1kOZIoUFxKu2mJMWmpmCknzXIlxogQ2s0QsNR+HxX1bz6AtWeUJW25gG7cXKCfv1WMhOm7WCFz23U7aDR2WKmBQMkfAfyQ3t+lQJobbzbh46POx7fHqT/tjQYftixK030CRP6mGRnKi/shuahADP3bpQORm/qIa5GWU1dGkXbs8njM3+Ur9eXczOB2ooXmht5JV/rUkPnCxCAhfJKIyOztFIEjK49zUV43ax7aKU2/qbJpGdlfV6czuZljB/zP+vlvyQwedZOfIU0rtQCIJ75f7oeRO512XoOYczF9RKb1HKVpoVzcaL2c68na4TTS2BHsKBo7s/Qvz0ciaxvIoXFxzAck5PDJkVbuVMRKGmml+Pnt7w10bynltsT22/z02SX4GD369eUQNZPoQtfPu0C1jP5+61s6M6djRkoHc9htGWnlm8hT6UBUGv8Ns281VcnU+0mjDZ/5VPv2nV5OvfFsIf9WAXT7yJvP5Am3lRZ4Oy1J+3KHTzDg+jK5oxNkwZdvdPTopMheJHZd/V5UKvw9Wjt5aN9y9QeA97QXaqMoMqKm+efBAFJRFCmDVDyddPCZRSboN8LlVUAOSXc5OzBUBhef5savgAc3XmMdSgqTgRLMzgmT7PpERF26D8Lz3QlMZm0cDkfzHhChEYjPxrSAt9KneXhmG2hDZENAM37I2AYxNMiat/qOiR5kTqrottYYybgfshiphP2Maqixh0ZBdLTIPjnpJMpVjdXOXGodZAGgQypmxWcRST7aahRmVpv9/q+yIxiSd2QDLKInCCSeUciCQeIi3ODSpftjWn9fdIEoDudiCc21aFnAEL5Pp65Gja0GIOk2ORY0aye5AX0WBVY
Variant 1
DifficultyLevel
539
Question
What is the value of
2.4×3.619.2+49.56
Worked Solution
|
|
|
2.4×3.619.2+49.56 |
|
= 7.958... |
|
= 8.0 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | What is the value of ` ` $\dfrac{19.2 + 49.56}{2.4 \times 3.6}$
|
workedSolution |
| | |
| --------------------- | -------------- |
||$\dfrac{19.2 + 49.56}{2.4 \times 3.6}$ |
| | \= 7.958... |
| | \= {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX19ERq6OwiZV357iXs8B8GyAuBd3p2eggcE8Mp7wDqlllmwECoRNfPLJ/HquJJbhddVCuhirzypaFh2Hj3kSXEG6MYIk7x0N2HpIcLfsZVdl0B8jvQgwnt1SdRl/b8ktqXtEcZYKfkdVlmXLzrxH0F1SFjhSwUNpLJ75mqQGm+h/pR9fHsnMw3juMTg8cOZpZHWiTIRd+d22ljVQFalb8e5W4MQhwj0Y6qLLiBxbDc9ebNwhcGO5zJzocEWYjqm0F+qO91jYkG1ak3SKLvwknsxiN/8lrVh5WDEJu0Ru9ks7wrQWt4T2SuLLLVxk5xfLbSV5TMXGxVl5CVTHHAwaqhzgOC8Bng5e0cqwgSjEB3RrZSiRSzpOpYrzRAFuO3zjzFukDSYUuXVZly0DNa6K6MXPnVGFe4mZDni/hGrqvZ/ovnRUQhcyrsCCx6WwR6NU8QCrf9TKOnV+52l4IHwSHzNo6exl/a1uSX6G3zopqQYV4nCLZVtYstxtGQBvHzI/+syG9Z59PcX7hepu9KmiugrjguohbrK2/iyCoVSRQNp8A+1v4hlXWgQhEiOGUQryngSO67EmCzOmUl1JT4g0tE6VTcTkK/2Lbun96z8lCTwR48TQYC/hNqblpQc0FzKBbTmT2NXtbTfd+f7vlc3BdpTLR766pZKKCFELoj6q+KRX8PCcEDFiG7LZFTFuejyxUaN0lE4MxT0ODbe9VYPJUZIyO+pSdO3oFbDS3OKaaH9jt2qz5JTmn7ium/TVqXDbnak601/HfZ+klZ/gA6l6SmByFichyfg0N6Fijtvcb/I157YMTLmfxhB+135mOBK3ai1p0GudmsgNzIs1XEvpA+i3FcOLOHQwi/KzDbWKiZqfwTBwz77PElVcFiDez71O26gpMe+9JOu1xL0DgvuoBVve70CvHzaAOv/6R2rY/OT2EOQa5T6Fepysc/IN9/8JJ6nwNIzed3jTISbpzk2GiwQBaPgzXiqRe8l1jT6gfZoyOxNyZSWZAp086roSAQCuG2ECbaPsLhPy1OHuSjVX7Fttmw173OFLmm5Gl5+YHiaWuGNCTEVimQxhDsXfRmgAAjPIM1YJvJeYar8EvC46YA7LHhEddAIfzk0Nu4QIlMAPP/Xb80k2HD66I8hq9vjz+YmCA1k8pUFbs+1td46hlZggf7fX8QfjfYowsc/+AiXZB7e55GRwCoLXe49gIjqD00qtEJy+QZhjiMhzTYVCkU0+fsP3FRZEdPYnQdxVeHq/SZEhi30V2HN3bwHJyU1Is7Ma0cRe6ae4feAuk8QmvJsz60KTrz5pK4YrQw5QksM4+sDbQJ10lonTgoGOF1BD+zDCk7kanLYw5eva1cAKciaQj6NG/BGsCmsrwtQWBcxwBKd6fiinHiH3X8P/0siUPKVPI8rBCV089NT/38NDqgT92qApgTnA0NdIKVB6PnIVvzaG1EnwxW0a0evFS1Z88hp8lq/GZP2TCItsdbC4ahCUHyrp2PRfME90OSgFMJGKurQBwnhtKK3cML5H7HwHle4prfohn8Vv0mkb894EKVZTpW+gQOLf8Mvu05vVnSOLekLbDlPDeHEDrBSESg9JUIir4Quz3T2QWWJsFI9tpsvjDpycROZoAmsLjHLvwtSYw+2NJ6HrI4Kg46sCW3Jta1x5n9+utLBlzRCAbBaek4MAe+A5UsoVVPO2g0KAxWVmXPM+IToBIxc9xJQXUCGvQCp1xfnXWBKqJ0DLHqwJT9J8P39ayXqe5EAfe0Z9yIsOIsfD8A+9Z7dmO1Yb0OskHUTPre2IKZAZ86Ii1VBtk7PT7YTOVFSHBGqUDV5hXoZ5l6buXd1tZ0T04KE4xfpF9F5GMeDFHFoQ+DmK6fZJxa2C0naxk8hhcwmH1pwXEI477HYNyYJtHgD/mmP0GSe4xb8w0znxc3ohhBc4k8CbNzUhz+UNWwwZauBJsUQ7bp5L9zQzoeNS6ccwGFCC+6ZOplAp1pm77tihrV2kncqsxR+vdHVF2qMfB3VtbHNeAPGTK+O+SwxaxzbuJVGW77XAR09yNlSHEc5rK6yzkXFfTxpRTJlHrw8R55+zKuZPY9O62k8qa2wzRcYAT+Gqu/rPNVgaZBBRQAIcrDJRkMJrle6W0F0DC+wwyVoJ48i+o7MfBdFSWHyUgrbpFxVXY4c5E+T6/J95268MScYWgM/4O5+INcvA9Rfq0Zyf70JUBkhEbThpi/+eZHLFPcAi5Z3GoGY8zKxZuZ8HiMCccEvz1dMLtgZT4ddsspWHVVKoO3/DcWNFc+plGCYU784wtftR4wOVKWxxXtoH92RsBy5dPdJhi+2PvGDbbheRYcw2eCrCrVsxLSmQUzJ5dp2dhJaRCDZSYDyDCB3yOGkFS/gyrTCmI3AaRduhHSm7yvKzlVlBZW1TVbIfeZZH/C4mZ4dB4l8W/L7LV6rs0fnsg4n7gJBrk6cK3z9w3Fqx8dBnoNFrd1wpAfRCI3sfSzpU/pCerkU5pd3bic/6jT0alKEV2+jDBNvdIacDfP/VZf2XuFns566U/vV/3IvISBAm1LEBb7IEiJs5tJWTALI7fpVyvaxdsV26QXRXH9GfwfSEtVkV8F4xQN+h1SPfx2/0WP6LGeu8aTRy5ujzZHJ9zwVOgbUO99TPMM9q+3uPOePKzIKkyZeljHNM8xEI7fr4LTS9Gyr8SRRl00zDCWmy5cBGMHhJsT4scNLfLekcRbWCwzo/5q5s/ozftkhrowaJaCavC6ddoZyp/fOWvYjBZcg2pZ+qPHRJw7f1sAkXxSvbWcJZfvZSZvuBhkntfR5AfuKlfTlBBmKh16HpmjM29Z7GmOapvgILofUFyFmrMeU68J7eS6EpgTOHUmGdTPWCW5u3PL3Rd57xK4nrCr8w2Wgcr7yfMlGI1gG/PMgNwowJCRyEE0aM9yGfAQG0nW/CCDKNhomFoXc+FEjKYnNGA2sXoRno+/46rmwybdnSJVdjvaKaWFUNRxwuB1Q1CNmeqHDRrNiRz6H8UvIDvQZJr+AdUFqv9vcimJhoVLqqwo8s5/bgUYm1QKWPrfNVtXeCOP2bKFuRU+REvnJz5UG53bxYmqP5Mu02vO1bZ8g9cS8jGPC6H293FWvEA9FeEoefEOaiTC9DtvoJMX/ojewC4z+XkGB3WX0inQr7S6B80XbPitWxntygbZM3HU+6YGiauR6L6E2hxqXPO3W6ak0mgraCdrazf+NhREu8mzwKaQ5QwWYIKqtwfR0zyuoBEYQLXOHhRJhv/zdgdbN+W1a+4G81WXdRHr5IqqcU0ISzk8jXYC5cM81LgPIFW/I843nkatCWpTGnaD5CG2UcG79nKRqu/2fLFLPj+2Ns2Nn1x5wb65m71oc18KR55bPYO2Vx2dvJNHXOk9fLWYF6vBRjIYoeLA3gcZoG0WfTrswNIGHv90Bv/uqAqIGBEo8GPZSYI6ycfd6viTN98NAJZl0Lr6Xkr7SYvkzStssD7siM4+kOpUBK32y3QuGUmagCb08oNPZQDx3VdPFF1FzVMHGguk80s+hE0imNa/fBpBTqDJCZLyN39BSjERQd3D3BQ99hQI60AAdUXARxScFWf/q3PSQInM8qR+nsCBFKpUbwMDDwblh43aadnDvWDmuzo28mwJmcD7Zib638PZ57AHg9a2UGDKovA0fjVBKucbd62s7Z57EGTdQjMYnQUIgBtChHWaTdG++RAOYRGDb4kgj9yriY1MWc5an7CiFfKoPBDFs1b61/04Ugf8iZaH+JFlQgfL4lgkD6OWcYwnFe8SD70uJoDTSLbmve5HKfTzO+yGzRv/pMfPg++llsE/ocftFT3lYNEYvNz8GzEYGGNF5cbHn+y2T3pGWrWUXlC+hf56vPlieRwj/YLKxzt7pEnCO4sa2lh+j4x5gYNzpMGFCw8PsFNaMyOzxvxP8fGiYtlqXlVCyNnEJ5KfxrJYM8aqi1e74xXy5HKaqXtnsJ5XNLwD3EsXdozyEePx889rYsJD0qI6aom+9RDa1iPrRjVCslzErJPilGSFa1MibCYt7DmFccL51KRZJWWgDG8L52PYKY0fGEcMRN5PovBdGmhmiEPau0E7LvyAdM23Qjlq7NhtXxBwAWkK0APxFrSTl4wVopuVOS1We68i27l3ks2x9WvEgBtoMnDGoe0F4GMpO9h+lUeRI/uqkV03fvEGcsomSZMKwH2ejTe+tw3X3/e+bJRu8v2g0zwtj70QBQe2B6B9u5LCHGYk8lPqFtialZRSoZmCYhd4aGcMlpaOUU5eFSabeUetelUQlxeEHjXeWuvy3uEGHsZbm2L9m9rm1VxitG466ggJ75dYuQrsDSatHbBrXw9LiOOrfeYwXdxTAepOpxXw6yKtYo4DMvFP04iR43lLv6O5se4zCB7CbRq7arTujPB8TNrhGJWNXDHB1p6j+1mrSzW+QoGADoDb/FNC17n+9KQfPiIa1v5fLcWC7Kr5iaXrg2JFrKEHdk1vVfS1yqoQeQFAH01iqJ5HGXeIQjPqq935HevXFmWqD416n7Hc2L4VLLWZGTYhgb69ZMcSkIykJ9mENgYp6Kzz5qPwNwAXpLzy8s5+Ou0jsoyVp14RM35GZ9FMfEpEBqmuzqA6T037GitEGlOrDZNtKv8x/j7ri5OkKAsE3IzZnX6jKWlAB1QbKbEJieDKokWBqOoyS6mrBoF0+Sb+hHUnZkpeGSbncegRiYkCbuw2xJcFHpezhPbAdAhsmOSLGaDtptelm0O+oDOjg+Esx4G3/PtojRBEiQGBPHLIs7Bwa29b8GHB91yNkVGz0Ilws9LaZKlMpyFvPinprYHpemzrfeFhZMzRekAUaGsjbLpf8jh/LW36kSKPoD7Xwu2H8LxdvCCgQLi1QQ/+BGLyoS2doNmk1ISpHLtpa+5MZ9l8YzHBkbhR+m07OwlRCne2Thj0VS4azGpJkybWH3z7HiiyDs8vTZw0z69pEUwVYK/SAVZWA+kDX0CriJfJQM0qhlXfqA52oPgyOLGDgWdQNAw81HFL7GVDxSvblL0fSE4tv8SQBkPGY3l9vLoFMy33+xgnkpurcJyZuQl9d2NeiGfxGWFCVcGuD+7CGamp4b6PNRkklH5QMe8RQMZB5eEw8kDpUaAYBiZbH5vT5qXdltdpMtdYYDLR/DjN7/FI4B6gfp3iTWymT4OVVaQ5CSb0U52K6LV8SYpCnh0WUWmCK8qjtt1CZsgKguPOB+zi+Nq5rC5x6CZHT9zEozYa9IaJxG8QSFVhOQMtzE21VceXFeezlSbFi0RgRn/TGJU6C7PrjJoqGJBmlciTcJVIT7GgDRsMTuMi2QOQpzl+M1zDoLUMVO9dLKfwLx7vtjIArq/j80dvtIIJm8ztd4sJlQ7rvLcMVL5zyjXXauIkDeNmkrnZ6oKVlw7VwBsRA40hPiSXFh2uRafp0rt8foVO/LB5MjugvYrrzm6J/GNrYOdq6FRaYNkDxhO7NRmHynunE29Tz7llaaF4YsEeeKXbmK8ifmk/6EROmt77SuSIMbAnTzoYTqHwRCN+YNqTvT82qVt8buKPxWBLW+YUE1MrpOgWS0IBFBwdzDMMBVttJ/iIYIy0BjTmmPw5kPNOBaq+IsNC/UraPKZjtlAJYdXkIZ6EkOGDncJvnCx+58nXG7DSNi33o8cHxhqg/WDitn19WN1+p7vqVeJCe02eShOVS6jaI1BvGSPQkpsMBnY/9JMzlBfZ+k80YoSUbLmmWcPCdG5IVyAlVq1uADt1EB4TV/34WhsxfrFKItFZ8wP91eIMN44v/IIk3MOjm6hYVTPNOn/EAeTatZTKQLMy1luHpn5HByz/VXAZMpFWFWJqo7b6OTCIMHJS3yQvmKLxMBsMThLKsmx8yexZOAiepiM9+92uYmzJuTOY7CQDf3+l6PT8FbsmJHXHfZRGAaRGhU+jsVdgz9EnWXPXzQl7Y/rqz4zQCRtQp7jjb63+WGleuhVyjOAeeBV8RyOgN73KBhlOetKYPWy0kigJueucyyvv4yLdFnzgbQksDPUnU7ejEzhWQ/RxVaBCaYh2A0RfefJ9e+Qa2+wp0va9xdbfjjIW5emR8Yq2mv/e8aW4t3FYYOgdFSLJsG7uOWx0C9ujdMShvfj3Muadz+CT36n8lLxubw2Hfkev99cQj6e9PmEjsbQ+bwoxBv6iv/2kzI0amEnxH3nU99OjJLXvVltf3tjmbGyC3cEWfomWkH92Rq0AvGMVwvPJAwCrP2D+7/qrsyAp4Gj4kPiy4NK8w7zURYa0a4G2uy3/UuZk3DcY1/C1C0UpOnKERsa+ZAeZghF0t60Qtf5gRg2WQIFG5Rn9srgrvJqLfWg+xC/YN4IoA0n/mvT93VFqFRiVomKAItjiT/Er9eGMdnVuKgV3DE+4Bz+TfkCUJ/NedcqvRMKHm6uXPCjNtAMFJVjfso7nK1kgnaDlwDfI0Dp3peFHWvpi6iYLPVKakOpg4Z5KVVq8zDL0LdlzVJFbIiZ6D03HSVOrepkW0TWp1H3MqYuJxGmZJacbYqrJuz85Mgsn74h0XhwoQCjk74a8uuihqOijmOwsLmPdmS4XXZKiuzYmQ2YB69Ju11MVgUHEonyl5GbHTvif8O/d5i+UD7yZngOYbqGmVAlzJADVtoJv9+jtRnj4PPTKz3iQJhm/yUvZwixe5kVBhYfgT9wnZKjrD5Siy1jc47faWiRPwSXCp+tLjrblL9GmbgeYaQeGb8xx387h7SY6nYYqZom34BMO8sNyR88ZumYIWRDAvqaMsIyvTIbXwjZXSl4SH2d0VIKssJlP8vWK1eerAF1jl0Ihaol/YzFBXiP4IMu3zV8CidcPQkyiXf7QX45drtXnc4FFEAk7tpIN74b/aJKdDrccPqzax+Yv+CT8I5/UkguKebYcHuZLy/vo5LSzZYxHNuLV57f+R8Aid3mPaG08jcwwSwyPJLXC0pekxKIBAraHNxPxebUZYet2DAC/hXFOWzdiDCsphWGBFjtJDUp0ibaaCtnJW+ba6mfwCveaqvZiNNYd0CI5wLWwTmCEXXvYICpVj0WKCeipdEE9nHImH1eDWCgFPNXUvpf0ntcaj6AVfUAnEQ6j1ZXOWluBLlwXHHNVjhfh3k7SVOSIEOEk9XfBLXyWkEDRaspbtg+naoWAw8T45RljCgDkqlgw/pnFLn+2G5b/qa6bYZlNd3tZFxwyj/oBgNLDWFs+s+BA91m2VDn+jqmtBx/OIAuHE8/lbdoDan1pJAPsOQk8JPDitVctuRwQjSY1c/AxrvslEB3w5jUeZXI3Inxo7Ls0SlnmsnUNXSUY+pc3SytvsLf8rPU7wVOT2nmuWFa/Zf0zUSnT28Pr1tAWlNsiZPKFMcAR2uTRfr/83KioIZ3TYWOevyBpUa/wKjGIIHt9FCcZwp58HBnrvFA75Yug4XzpDa1MQK2SzMplOSFZ5ieUhOVpBA3DKgpeC+4hKjKpd23h8Iqvzy3hOQP9Az3DmcvptagszcmZtUYBLWwOcGs1YlnC2duuvfidPHmxWFeqYrGGod6b/f+aLVblppjPT8x1mff1/NIePlONU2CdKok7cgmT/1NKdvD69590ehTbO3CWWLXgsDFGOtGK9ceBkGuRWD6c2EUZOcV9vFQHYCYriPUQk/lCt+0fH4Tjwn1QgwdduIjMOnl9VSt4LvxJ8BdYfhM7mpGCAbiohVnUVzzmRki6GozrDOiPHCcQU6buiTuDaRpk1Oa3Fc6rpSkeI9Mfy2XnFN/UQyqls0EQa7qkTVMoU8LoVdbIPU4VoQDMWjEvwATE/IaGhfBE+jSy0Y/QN+74bJQZr7QcDdLUe609jFCWSdCdRq3mjEGOXcUBo+N9wNVlOspKWiljxV3vXo8RLu/lUTUE++diEY3k3/3cjh4CwBgLx6ZImwRO/qS2xt9ORmdqgSjop1Y8KKN4u5AhWLb57p/6Tu5AAUESYh9WuKi8MYQ0hRZF1cyCQw6hJzPt3MgR1uJTmtAcN4KPLuJzmk86qi/KSVKPmbpeoLm/Jb1bPu5LRJ465YAnEaDYNMq2dYEXKBg5Lwk4ea6w+36y4YamKOy7GFTZAnmdygfexL6IWY+z7JYgg71Uy+kPwDScC/FNYNoHrtIm8Gjx1ByTNH6wtMfe1960vdGh6sxWOdP0dM/o1HSiYMlKAGkAwKs8WAfeIchfdJE+SARfjCGwLPB9G7h5+2BDAs91WckHT7MIM/5hU1EQTnHW4hNwthEYmUAHOouUsxUuHsE5bb/VfrqsdCs7tmo7TTAz+ZPC4k163HFnKhVVv2IiemXntaOhjEFQ3jx7kHmsAmLSetRX3zOF02J7Kg7MZ8kXxpNEFBDK6JuzpCS6iFsbdV6NG6j4oUQDwXlJzpivv728VwiiIryRcui+YuHztylDcLPqKAkv1FM8G69M6Z7W0/5lkLsrvLdw/OOp1xV5KnFp1fu+4ljpkxMji3+909l5MqIBfs53lOEuyy/1acYxp9CASvHn8vixMB5kBwY980qePYBmmF2haMI/XFWuDZY03Ypyrt7vhmgkOagz0UoeUxqSYtsWYTNl0IwwJfGaI158F0EnTY/06MMWle6O6DC0JVphkgzdbJzLQiEZoHfbh3tRyFSTa2wqZ9sd6YuhIlO0aGFrRCjvT+r5X2CUUCsZ8uzr4dFbWE6FHadskxMtF/vm4Pj3H+ze86cfQdsw1nQH3+Lf7wbQmA439jsUAwGXt8rqGW+KB0LdXSCd5zM9G0cvqMLDBXnKYKHRqqAF2X5Uxq8RpRWnT8CpeZ6RIUvOIbvaUK4E75L1JcNL/6Yue9iAC8GuPTfxk2FUXA+7OJEk3MX8EXlWrLZPZM5V/M5DfTrrYyjqxnEzUFJiDMVrEOtqH3m5ipFhYjHmqG58fnYem2Dj2hkF/5DH7SXe+1TyuZaaLMRmWt9OnesfQh5Gs7HOf3ui/Rv4JD5dDIhrtnqR7Ld3KeDez8JnFuhkUgXk/GlOCUrCucwthAH08/OrbH3FMsgQOhqUe8uYwaaS6xDOGccdPxF2+ou3UGhTYVq3WNdsm9B1c54YqcJQ2QvfvOAdF4zP1u8Qtm7QkKSfxZSD6wI4RBLoAWWhBA5JIuNZjH2x/Gc6pZ6zpthIALNJyuCgnxxf+KG40u+UJqxEisMiybvQ1vWQGj86nvW9ijuVHS1V4roa5RslIeAAn4UvXkbOgQGYFkk2synfnuQ0KMfKDRi6dl4ME//lpxvZ1fK7BX0Z9k467iMaZw1FvcHa1jxGwd5BiyhwvTIGHg8+uvucpWs7I5TKWZwi5+4qiHzpWD0KJqX04=
Variant 2
DifficultyLevel
537
Question
What is the value of
9.2×4.821.2+45.67
Worked Solution
|
|
9.2×4.921.2+45.67 |
= 45.0866.87 |
|
= 1.514... |
|
= 1.5 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | What is the value of ` ` $\dfrac{21.2 + 45.67}{9.2 \times 4.8}$ |
workedSolution |
| | |
| --------------------- | -------------- |
|$\dfrac{21.2 + 45.67}{9.2 \times 4.9}$| = $\dfrac{66.87}{45.08}$ |
| | \= 1.514... |
| | \= {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX19nkjUgezO1qFRXeSp83H5cIW/3TH58uQ9Yu/A/ag4tegJUz87QTj3s0xpxRkmGARi7PfjIgwQvjspJrugz4oAGDnGNMbFyhXJ7GVQah/7A6xVW97fWnKmorM1R/BRc7GF2y8KZZsmFUgghzTggONdlrISx0jhBRBBmQHtXr1PDrDBult003zz6nMQslCmEDFBh0JvzOA746w5WKKbE88tL07LLlzTavxBzaE1D3if/61dktbWr/cec9Jlc+tGUXBNgkiLdZmvAazgEnvI8NNSb03GgB58fuuBG/d5ofG3qNeq49sKTGeWWCo967P1/oYiqVzamb27M5TKapqxrpIeP4SxwJPBnyglkMD1wukG/n53KqKSnD7ncaau52L6/A/n/RJGrRaQMKlBkyQYahmAIP4joZ6xS9GJ4xOpmXli3QnCA9gqBBZmKrZXnNoGK4Oz5qV7j+6TzKuWZKmqySh5sSzFTZqwVHykuoA2QLKSX7x4xGox+k1IMxwjqATD5qjGhwhiO715Ih5wN/c5i986cfilZHNgTQcMOBFg+I5yxIxfHAmj7ciBhyXssCpqywE2l7g8u9fb8dLip2YSpQWYITlR5JojmGg14ZZRNMzT/opDKDqi12XpHerULgG0ERHjqRHjnpHmgCzIGuwMX9VSgMN9rpYG/4ECCrAXzk4TSgq2ULbAcDRuXHvkZumAJIODy6ELJjbwOe8sG6XiMvSE6W8BOTkWw5H1XJAPf3z10dvudz75DTqUlZIz2YZ4mw8IX6Id3QD5cpjoxj1uDlW1moVcdkPW+E7GcCha+jrJUZr0sxATxIKt99cAznTM4bFQrSZp0+pNOJ18r0C9v3zkHi0o1o/jK9QIU9x5wkGIpLJ+9eYKaSJnnaSPNxi/avL8nJlpulMMPOr3V/QatARcbWWugdDaeDtVNR1BF2YOYuel+26RhcLBtQnRzgh+2f/AWfmujLC603n9RuSOW6vdnD6H0kvGZTnoiIRNPRtuvgY3RGUUfb8EE4JdBeFKmM+1MY5IiNgyAdTlTVUrHgbflGkXKXz5PE3zPbezhhKkHOUbpOrVi3dnhlsw77DQzMKwhNlsN31F7xSCOwriHiYKEQAK1vzrdOCBRFpgGS5X7mXJCSsROFukJZoHqoPIbUMpGjRuiSAjmr6TICi8zLOagI/dDyadQ+TD3Ma8Idkf6PUxMD2RRR6XPtpKLSNVVkfdRpaa8rLUyvRxm6yWgpoqhvRn9kNR6aV0n3zk9BYk/Xj/2U4eAFJUaiYo/wJVuNT+xGTZkbLwochqd+brOlBuFAzcImIHDICZWO8fI0ea5TKS6lpPsi0CsbYyK/AaDDqLCG0L7+IRLSl5/NRpF/4QbDdx16iYEYbU0wHTiSHTWbOG3x7f33qLLxVgh8cuU3XzbwXX9Cwo00G8X4qCtE19JzqJ3g42s2vUjUQVcPq7o7G07srEt7DDTusNupPe/oM1/DBCz3dS+C1VeyUf/9raI24g4PRpb7JBay1h7lg6Tklh7OGXYO1P/YjZom7VAq/q8vqoWAifwXGodasYEg10dLQ3ZPixecgH1myLlas9jyysVQTPIxREZqPQa/79aUo2isz9Sj9Kc1sZFyZyreWojae5JH3/wR2vEhDHha/yZjo6mTqjJ2cC3bL5vPnarHRF+pE9NV7MbDa2DOwRdVH+fkQClzzSrCZVVrAmdYuGzG1LrL0aSXLhYYjxTjgO5il8ZBRKHS6P3OzSMQEinbdR5hPCI8XpnfViWjMm9KaIfXv3twlBGm9REPNm8GKEa6+16PDFtutEF+jQBOnjX3vlXm5hHeC3+PegL37hdJxOp4OJEOfRmOl6AHvFbFD4Eyy7Z8sH48k/9duOisXQJjlzuIVMXTUeT/l7al/SEyzKk/9dZVEex519uFICw4E9fZX72mdeIRav/lMApqPlYewGfao39KFpVQmjFDahytJgO2YUSrfk5quu7cqyxWgFilwuDZuB1lvxR2xgKw9Z7ru8z6eUScMqdz/dcnqqKlHJlXxapYotapx4j1fZb5jegvLCQ3YbzvDgC4+9U0AwX4BbrF8T2zEwfplymM0ix8WCEQ9QxskB9vOtW/NDmQRnph2g35NJN4FNe3A5yRi+xZxXKei80eS9QDm3hZLwJQBEuAY1A8F31LUTzRdz6wnvQXR6s8q98dTWv3KRu2qbL0RhAE0Ft5K/YTmNbZbqLMS+stxk7y6IhhDUdDLt5LlJq6UngXa4Oc6jRmruDTm8SR6Yib7yvX9guSvAY8h89e6rWl42sEMmQX4M70Im7vyTfWC2Rywecw4aGGT2lkvQ7jBPZHd+hk8FNLIMOKiy5QsmMbwXIFoM78T2XaHqBFPEAISvoDKnhjSftZK8x1vr3gU3/GkwqUJzbY2lmCQKdk8fE7iNpAaFKgByoSArmN4K3yg92bywAeHRLQjoHWety32oju1pGl4ipQGomKkHu3gNU7omZxZRj8aYwj2qiORnwOa0u4BrDA5RNxQDWAAcPTy0K3GaonzQp9y3D/IlQ0qYGwtykFjHUjbKVtoB9rZ6IX7SpRp6AzoQi3w/xpKxf/Pc4Q+r34WBfugR0D/hTm0pJlE/+gDbAZx1uspdOc33vqauWEASUt5SzB4I95grsY7RyTy+1630ZGzUGXIxHwFKYwu8EchWJguHwUooBzrKPZz1wmsdlM1HplM+q/qKSBP3s0SR2Rd3BuFsUjkEIDmMJm5aNTNlycfX2NkeG7DgDNA9/k6qwAisv702Cc0TN2jyYvmsZs3d7SlzC71NpcY7gOq6nMnQg9AQTPLgvbJuqPYsMyAlpZFsejrBIl5gzmxpq3KEBTVq+gIOGMGkgxEMZvGgU9lJdX2m1zxX8iOk7iPow9LgYQYu/Fobq9/JL6TnULTSYlvJDJZTMmrrfXFYhe1QIAjy7hcIUUocPCJbzE7WwV5yMCrr5BsxpAVSWKtmY+a6RDOnmrqequc5obNTmmti/eZWxvwO6eApmhtqziLoGp922B5UYkSz+ggzr927o8iivMbRBH1ZdNyH4VrbGfQ4CzO8x7VD1yJ8av/GdylCaTy3Ywr0/3A1+o2KfS7O9yRKlXh3w6VDiYPPOeb6IX8Bw36pF+7PbNF5wDVh+br/QAIAoXYnYsDZoOfKTSrTbELeyZZZNrl3e0BGMSJoeWyHDgVTPwC2m8iZNB+b/qkkDaXV7G+ZuWo9BZnnKLwSStb00FkY9jpDmgnq3IEDfqmTcH+RP1DIQLLfe/ni1BQYbWK4eVzhFWUFGjeUPxlHhO2wdz5i6iUmbjoRprLHX/qAZ9cO9QB/NIBmYaHm0spt5Od9cK8gszIqZYSR323WlFPW08esILqv4L0VaRIKNgsYtUfK6LZ/6vvL3kz9usrUjP+9sNgtmPrRP9Ev17hLsLsw11nTCWL2i+RyatqsoEmJV1cymu7VaTclGrQ9vt6qsNviMqXR9Md53wmEiAyjB+QgH+5X0F/PBfkyD7WOmZUXW3OFuelt1zeWBMUGhhRoF/wPMaIe3/AMegvkGnOxzK5nNyqhDAwzeTVh9Cu6tj5cB9oUyxnLZSSD1st0LFazNMJDiy175/OfOuTABXj54YmhIEtv5IQrfC2CnatYwE1welhtR7HSXxPmulLl5iBiEdBRojJOeR2V3uLHb5RLoKpmT7l0UKWRJ1YXGi9eKCXcMsCtcSQE1N8pMq+yolv79PcK/hY6eKQ2Lu6CdjK+ns5EFHRMyprARAW9hznUEVvH0LNtPjTheWOY9WPOm6h+Gw/iNC9x+8Xpo6TMTsHNgnu9z7NM7Vva6lfsmqIrDlgUlrDucf56TRK4Ywsu5Ez3pEGM9jAJxYGmUTd/wzezlf0UegvhOiMcmiW+MH6e8cXsCnnLPr0TVLcZcHGX8mp77MS9keIyLf4vIhGXOkz4NcCOlV8zYS62In9+KL/0Vazd/SLdpQsqCUb4lKVm53Za4KrDZM1dFAsLLJYW0XLBTn9v3yTgkTqR61ddhuF2M3iPiPNayRl0JzNjuQnGW6Q5wuxQay/35mJ76Fx5E0/DDOZX9pJI1MoIB/+Tb4G0pqnrGz62NrxS0UI8X+J7LHE0VqRaEDSCNQG04Et4QJW7dANL5/OrahODLfuVquyqDTI22s1bTSMBcymSS7DY+9fh3EYv8tcS26YM7OTSBk8lBs8LPezdyZBjGIL5AyxzRD8WlD7VwyCmS0+JSh+icD9zgAqZTlFKEaEO+hdxkFGsfwa5CrKmRCa48pkqF6G87lOporlj4KTPYLiGq6dJDy31OStpatoylV5Wcj1aaeH6kkmtCFKAZaXhW1USKC12zuWDpVbw6ZQv/y4EkeISUM56Qheim9y0En46BtRZupg/IzoNyQt8LhVoj/4fHcALjSYmsWvBBf3LFcF5jNgUoePYHR3Lt0lZvpFYqw8AZb7/6/yG6ZDLF8G6b1aPZQYafECfOMwne4KigQdS9sFwByVppTBpHW8G8985b1/TiI3g1Sn2dKdY+qZY7F7qlJqOY+9pUKrYlGOArTT1xDPfRb4i6UB8zcD6H6Losri/GvfUKYD+Z82Qmy6NiQ9gjXTJrhoDW8LIFfbiZcBFo1IeXMZQqJJki8k2NGN1NlNUMV5G0IcBj3Nla8ElCt7cYsGeQ6JJXl/clXvlSHsEVdxLMX7O1/xK45ng6RietzWUoKvZ6h9sM/gclTDBSCOwxckhBOO+Y30TzXJPQ30zbiKksFQ9VNf1znNZQ94GZGNVwd7I778hgcOWAfUV2vO0pFvPFVfHluh3+K1S8V9j1zrqtmBJKxByCCLhcTz1HEizolQZ8A6JIlTv8zVXsrOd4HbPYxdERoIp0oThlBTDq2srLWz32tDGZKzj6L3+p0Qa89pg4lmTnno+p+zNtO4bdVkvucnt9INYmCT9bKL5bTeyf6bJ5FqKa090kugGvvxWKFwgyqi5Sa1U48GYFXc6I8CtuKy+2+hdf0h4nPQgS+fTa7yasggxjzupfMtxpaX5ZLHa4R1HjqwbEdJBPkAHrXM7Zch7CGEETzpLOHjP5v5tAGVzfpvgO59Icx/mQ/4heTQ7+lggOKbITAuQsTl8Hg50EWvDBKDV0O7dNIygyZErTbJf93PKVH8u5/GE7IHc0ux+z5L06DKXTvvl1SvjLMzE08ZXbeVd/PoPlnOXa/2qB/S/2Dl1p9+OIim2ZULRyO3zVawQoEL7RVWcP86QBRsKV4ArU6LLCuWvW8qa8v6ZOyCq3ySRIr9Cdbr2eg4zEjopoqH25rbb/N0ADypAnRdAxLDC0F1nmr8+TOczbJyWeqlkYs452QTCz+G1mChRrQMMjHdIJ24D/l2w0sB7FeVsUZDv5hoBbAQBfgRNmUlXhFFS0iRgiDLMYQ9rpWZtcnGBMEtnBCKbk5XehqN6hFSDESrqrVSx/0GuuxUARg8k7ZK8jx9KvPzdegiNP6egnPzH0qyBeQX6XMXYKflTnW+gk0UIof/SfeSL9PJQ+T52oR73gtvQilMMbYdBk1v52xofqHPsSQ2DQOXFQnGfYMZCV5HF1bBP13nHZ9BSimGmX3/+oJVy1Wu4ok7JKNcPLqZUibZFB4XCvUKoMuooF+Xb91WGy5PUxHHQfxUcBSJI34mBTnUWsduyqRkCMYlObHjv0wouTVsEXerpdAW51Y7DM0LZRnk5BD1ixwi5gs14KSbslSyXG3AvPX+bCU7CZjdBaIf7z75G8GDVZTs7VAOTXgjz+fSP4mJhfNGAl8NjcKPNzKRUWK9OuNhquy6QjBBoY5RHoj5cqyX/Kd7PxPalq17BwOIoRS45zFHjLitp/4NcfWl1vbcz22T+5IG66wSiFv+6top01qJhynwHJtPFm1uIKfPZc8VMrj2FEqG2LfngrXFszFfjIUb4h7tHXbuFk1zxhgL02iMDtcpopAOkJzexavUlmh/cJzMdGL+QvVaLz3N7jXGk6MilkJfhoXef42U/G5mlyoYBwF21cJmP4BEi9/ueseha0py6S86oC0Paqk6l4qbFFLfOq9rN9MqaKtoGiZvDR52aBSVxPdqwIZVItT/H96sT8QqB50p9apjLbsOCLC8wO2+lQPv3z0x9UrWaWAq0eWcgiHmTWLO2YHnj4nQtxv+b/3jD/rnN8wBB/0fGWEGxGF6LOsA4RREeqa3XWRALdye5bI6bvWEe9ag0NOq/KtV1VoMozB7RWbDhvNbfEIw1dFCYPo1gkNq1C8dX4GUW8SfjDiyGmyYqRMTAtLqWTpEU8/ZrAP+k80LL7G8oT6561BVcBADJ1GWMJZIHd4LO8F+6qHuwKYnNuIt+90l41/PRL+SQCv3g+NXHZ1BCgRKBxSL21Z6bt3dfwKdWUF9bAarf0fWLSU0RApfDz16Jj4pB2xctx+wazVFKj2Rd0W6eUT4dCe+pZBOo/xDDqiTOYiVtwFqWUu7CS12E3XG/K413FRF4teCJAWgL/kMyyLCGgWZv+X6GwJxnkJVEDhlt8CLXYbJ7t7BGg46tUFIi3s45l2/Uwm+3mYNIpS2kekhcpx1NE6Vs8yo8OG7vtkyS8N6w1/VFhwccPqyeHZ+5QM8QQqVup9ZauYNtHPxB61bZSsk2jIBd40Fibp4Qpj1tiKUDtDZ8hTANHLN2R9aJvM+juo1svJ9/CLoGi5zW//76fg+oHPtPq0FVqBSPfmhIcLVT/d70DStBHxMZdDibNctKq8OBHhwgB/nXFaldwCCZoxIz0soNQKo+qbNZFER4wMlZODi8n0LsJOqyAj558uVnThXk3QBMicm9pQ4mDqIPwaMjkr0B9wmoNXG5Qcn2CtG7IL4qElcWJ9PR0skoSoN3WO/vSv3wUVUP29vSZwFI5VnFAqFqk7w9jwTI47oDgLnxD+/6jSFgdPfY/Aas+Cdr3VPo8vwNcIjfRPRqH1AYThjLQ5Dlv9Te77C+OWmUtjoHszJm1qa88pot8y5JxNM0j/bpw0E9L5NyWPM5n+JEqctWd5aDgJJrLEMwuEe0fkLRcHNHj5g371hN5Xy9AjcbEsOdw20ncz2XDgZi5T3jhbb8z/fKb26LzjD0QreeayoZIh2NRZ9OKfgpmbRNOlBHYszkJlMDppL/0d1x9cw9umFVYdEb5BfKKpPIYF8Uo1b8VxM0np2+K0JKctwpNf/PqsUy7rvR/xn2enEFwW25f1egXTLaMLPbaDJ9F30gTUHiBepIgUhkEUwleVDwdQ9luWAqTsgkdcqih3PqHU3UAsbNB58JudU+kUfMmpIwqalEivt5dzIcN640Wf1Heq/W+S4b/9HLPPOcisR1Vk+a6SC0L5K/IY4m4vuC1sDqz36z6Ton1gyTOxnUjvRMJKtsLLniu8TMZFUcopXy4oj5x9KM7PhvRJ2czIG0ar4xTN93BiEFlp8I4dJ/l6nuVTgfvS6OzWIVuANDhlRhBlOmOi6ni7u/SsMUL4D3kCcbH6RyeyFXVh25xHFEhcfpaX3SCp5JVWybkaxxCMFiuvUcgNnckcnFKPL9bDPrtbPuSoX31yMZU9X9kIyG6y/Ix1OLepp88w5ejE8M2Vir0ifx+ACVZmiuLL76KxwttD4E4Uj5VKyM7SC8lkoRwZEY9vvwWqIZGUbNPqeNNHXJ1NZka2+42rvlXAc/f48PcAv775sywc0h1iHka9oI5R9RQOg2W9witNJC1Qt9Zgi1vJr5pd6xCfl0DXYTKeT9n7isoNm1lZA0nGtenwmxNVA0UQdpwBM6X66HuHg4zF/iQwpX+WKHKr/HW7YtEjlOafjJjG92riu3PwkLRjsoIC4bVQ1OIH85YpvXGZJeLlHT7iC0Qogs8aw23QoI+xANtntG/Ju5rkMotZ9Y+eWa9UdAovML/mdl3U6jRBxBqHp65wmmdOwN0dgalRhSBKRRpxEOggAH+y/UpD3FkkV+bcXu4ofGBnWj8ggs7bKUsotuOJM9Zr7z0M6UEK1l0u7Hbvwu/q+fpQzptFHbbQKAE640RbJBP6L4umrpR+la8nfgdVodIf3wDTyHlmZ9M6dUfkza1gxQmPnm/66r03HZS6oBN2YD/hP88DnIoqrL6Wb4r1ZvjvipdYI4EDyp0mxFn+w2fPrVCu3LpYFIXsKTGJ7vcxNDckNF0jTFsnTT5Xs8nf2rtFd/NiYmDG8Wst2iE7p1N05mdmFxF2LEzKC/itvEuupxmhRjomfQeuOmjMfCYuIpZdV4Jz7K3nDDgCGCran4IWfwgGICYWaE9+bv3XSzj1hiQFYk7liymggjmi9bZh6PAp4y8fXc7wXiotkGeHID0P6jdGKp2F13bA7+UngKPYDLf6xk+29V5Eu4aJPV0nqqMVo6dLYsSx1GFUHNW/YX/oo6uUeh7m/GV3XuK/vU+hMh9+W32Y2xSgJDvz6nSvc5OUIOQWWeKWqxOdCVIYl4HvuWzY8FU/ahKt6vcagQD6rV85iez+rsPXLMTKpHWT1eJRBRetRhJkVC1dBmS+Z3r5UJKdj35OSvefDCgWCdIvMBSoZqXeo1fAUCqpWcUP41m+grocXROUKoJyuJUdvS5cWhknYJ4bbV4x0Cr7RwDrRUb271E5roEcOgjUcBijJcGuKolZddODbqbMbIQeu89rqOjMZM7TBsxmgkiTpl/UJyWrClCdOXamJcI8sBN5TmdMx3VCoQMhl3AkWPeUIIM3S6YTLiwbF2hfuiVR42Z00KW9le1nFDPbhJtEISspBXycZc8wdOqez46utxlMY+rTes1Zy7I8eGGXJFjeobSpwQC6cEQAvUU9z6UG/1T4ydPouKTxx+pUtNE2390lTB6zJfYf2n3X7oqafleKtoo8YOtiRKoBs08FBDuRujfXsUbKi2V2cYS5u/gUHMGGwC3XUwB2cKYDT2scTJlqY7GrcPgxrd5rkzyaNS7ltbGgj1UIjYT25olCFI5DqSUv6t5Z47AM6ZWPctRHl/mwXYo2wk8jKE5V3z8rJNK+Q8BVlpHOrtOrjrsZDtd9Bp1gB7QA3ZK+p0DX7fLbyoffYcBLm4zUekg9a/jWEUCG2Pl+OS+nivy3qTWN/hLivZDJ+oFqPLdMDlGfXi35s4o3W3UXv/Z
Variant 3
DifficultyLevel
535
Question
What is the value of
2.6×3.1112.3 − 45.6
Worked Solution
|
|
2.6×3.1112.3 − 45.6 |
= 8.0666.7 |
|
= 8.275... |
|
= 8.3 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | What is the value of ` ` $\dfrac{112.3 \ − \ 45.6}{2.6 \times 3.1}$
|
workedSolution |
| | |
| --------------------- | -------------- |
|$\dfrac{112.3 \ − \ 45.6}{2.6 \times 3.1}$| = $\dfrac{66.7}{8.06}$ |
| | \= 8.275... |
| | \= {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX1/96MP1ShwCQdwkzihps3l4L2YdRZjL3C7/bCb+j+CBWqgohEpb0VuihxmhcTG3gdYF3EXL6zOxXB58w/NrkJkYzCJFp2pAqZULiDuVO1FNt/YGtrgCaUwJkG7OXpq5STuOr+7jTvBBMJggFlw+Jh9cu/jH3dx1AwqeqPzv47KTqKD36cwEjLlMbLYq67O3ulzIj4M7FaQ7E/KcCwBIolsRDjcrndYNd/Ka1FtJykEKBxJWMFRMvERFYmqxrjWHP4Y4TT5Z7h2fqEUT2PnY1/0FsS+LekmxcMXf2/enHwaIC17ut64w8iasLluigVda6rqbyPXcVlr8Rzdm1cKTdPXCh68Tz24+1Jqr+uwDlPq2GyJ2SxVm8vi3CibezVkGeLgRLEnCfa/DLv2GJ+BcVfmMojQW9c0olHC0SUeaaAh5ShkrngFoPmxdKzQONzmOjfBmXk+N/KcvhLUAaywjUHeWiUCsguQd+XlRemcP6LP/XCnC4+zinJkmAq7rfETHmUBYnUJjxz4N0kzvkrBInN08aM+3BMLYTZaFv182J2tvEMhtXActgij0ARVDCbWghzUoMNC1UM5YMfdUPrjx2AUHp+bFrkK9xmYmGd/BTCcWAiBHJOTCtNkIlJb6ItvUXLG7UnEVIX7PBj6JPhoYOymwfZW4aNFNtJj2G9343S5ViU1gOYep/ucfb2QTPMQyzHJlu9OyDn/3RN64fYVZu07sIl+mD7DmomgVwyERs3JZbL30QhRu5FoPoAsnO1DUgfVgpJhQ6WO6SWE550c6fKGkP6saTjioYXkSA1fPN0c+FfQf8XKNmZBGCO1FvN97ok8dz/rBNzXI06EemPIBpKg+LlOgRnhcLznHA08qVASi5fM2VyIKja50gy2asYi1OjCDQd4g4eekp8ItJdMo5aCD2q3dpXp82TxsdnnXlk643h8aIf0irVAyLDqzJI4uqxAvb+CjVdZaQzzJDxQn0XKK/KUu8hloC96Jsp64u1rF8UQOFCTYimQuET34mjnIMLR7UcJrPUyCpPw0pPmMxiejd/jrXw4qe13oty8IV7Oqhuo2PWNqgKF27+p/pM4tNqhmPONGWTgTh0uTsBzzOgNEOmA+IqRbxs9D5E19ftkTENi9aqPlJHvjEWyTZwTSIovBvsjhkBP6eL/JFntUp1EuUgjS+/3BG8ON/G79tdwzXZEJ2/AOXcDfcxBRJyfLtOdqzxqRn3jukMRjKszs8GdxguKAeyDlYaUnSdy1g8BerC0FSm0n95ZeQRI0XWWnPfnv7S3LOp1nhL6bcP8b9AfhyogPQ+3JEJB/zw0IonIlYALqJU3FlK/svZmZSLVqVXn7+f0bh2GAJwKkh2VuiSoGiK7vFnaumColsAMs+imHAiu7vSXfs5UCaLxsjOt8PomA7CXZSHvlP0i5bfcV29aV4xqVhkVulGpd9eESlyoPKJLkQDh02RttRdPWY7fqLdikYRnRFztpyXPFIsHFDsTNWR3/BghcfwDdDC9/Et+msuRfSRPPCp4jNR6W/qpQzM87cH7MU5I4/6blNzPMuAWzkhJLmKJN4Xtz2OWo8W24aUZZXiwIuKtTeTx/xXp+ZHxGcyWgAX+QgOhPV3vX4CQdH01rfc5k029pzH0/TMnanRNFo4D0SoiVXR2FYfvMo59qmTB6C/vHz/XsZgB4Giuckw1ODTTdnu/7c0SRuHLwaCCDNzVIaOVfZ86lZP+YcapxIl82pYa5B7VlJ9zELbINErnD/ToYAW2s+HA/WPx8az5L6vfaZoCCQjfGlVbRPuXlLvU+X67BUXzgaYmliSR+jaGutTYmSLUGw6AY0mbivdravyDrzUBUQY2nwCAGHwS4K5EyKBb4fX4rPGlQ6pl2lPw5xI3dCksMpUiOgAu82M7jCxgdAcnBz3dsG9agisM86L/dOYKXQCIlxaPYiAhPKCA+i5e1k7KXOwbaHtfpX/rM0GZ/R3BLJ3BMXXLy7ctvMHOGvKQVZU92Eb1bXSjm3nXfbN861w4Gz2iyb4ZaKVLLO8Yo0i3nK4IdLB4+ZCqPI+923SSwO66ICvImiejrstvmkQaCj4JTRWd0Na80AUaL5sUxxQgrBtotdGFrhxijGrDpkZhuEktcGA+hzW/wH2Or2QloFsy00jgmt/U+tGXsHuBD02YNe1dbrj56JgMik7Z2HYUWgLktQOZpk7TXTC7a6INU9b539pjuaq0zIOxX2qQ7uH0AOc5Hf2rlnFWWUePEgxTxeDBESOmbUT61FJ91V6LWRipE2IxEebxZT7M8rOHUxa9w24ys/8V+LfUJqA+MA06+osf+9UcJadn/16BrwZyGQY0m2PAn/LZdJ/S31iL2TSqF+pFbYZ9da+6nmq5FJJj1jYEMJ+tjqYMAlh/KM95UXCVnGAVM5fvcV6cPr4ecoy5ypXIxPAve244UNcbbMw3/8SzdTv7dhWHMhxA7jsKK8AGOEHGbSGzOnrncT2HxNBoTyNVOejoWnNIe9fqxZIpnfUvlszHBANo15AIkedezrt9DqZwCE/dgFeQzy0LxN7zI7e7CA/73BrWNy2Fu+wJMO9yJemK5Go7Ms7/dkfVxxJ3f00G4tkkLyCt36QR04h6KRQk5gOHa85gyWx0I5D8IH/nEWk0ts22DsCunw+BY0whXegNhIDeWDDKj78fUWnewk74XOsgQIn0BlS0Ct+3OnkspgkD108icYaDXpyNam8wvaxP/EZ0pbM2E3OIecayobaA9emXcqLK9HIcb8eV+6y3rfK6UXyTmQNNdNzdh34VPKGRJZmrCDqyuIbXzbYkjBPusdFDR5y72XBAcOOuv4y0P5LYWt7ZK3CTt35IbWyGAWzW8/cq8jDaUG2UuAI8HcOKwyRux4Kzk1mcjG2I4aMhOJ5gU14giagzWvLIQIx7NqrtwZJN2hSfSFuJJyUFuxmAa+M6/TXbktCoG3mvfNUwxPI0bgMIY8K86j3FCBGExs9WxVMUd0Pzxu+paegXNO1SFyqvXXrS3Ixou84RmiyfCAQh2FIZYPnzgF2DOD2mabgNbvXFrGhcnAdgyTmIsb217S+dcJDzCZqYMuOOL2tjVZoFl7rz925ZRw7GWyhNBZwph1mU5ecKoASezsybzYWCmzYsSAFzuiF+fon6k7Q2OQH8CXT7Yb8qI/yBL4CUJ3XcsG4y3aaGAdW7kQSc6gSOt1bOaOy517YI6x+jEKXm4rdW6jil9u7mt20PMp9YMa5/a3DDwUkDITE6tum7ylL1+4zk5JUXDdT+V7Ti/372xurL+VJGro2xCQnNE6/sTawS5dO4Gz0IoYog29JA+e2opBFNLvDDc2y9TeA/Jj/tODz6yD9OR3tY+iUCcnQ62Z7nqxf01ju4ZGUdDvzJ0E1u3GFJqGhVrMenOeXPU/Nx6crqNLRdKy7BlCubKpXo56qYw2EL8tcrAqaoPrDk2X16Dua9n/YIgWB6hhIBF0azpizrqxU6PIiothPXosdOPZXgc69kWtS8Px9zSJ2NPWCC0poCDxpB3UdTyypEJq1Zki90SlzTyjj7VltHFNxA+l0X0z7bViOGpnmWTHdQ1usD6DAnY6w2nU1wQUf5NqZ4HZRwhB7B9EE4/7H76fJSQLIKMkut54LXtcZPdnVrhU9dgGE9Zhs1p6Ws4JHJOotPR45JhWAjF2QZ34Xle16c2tTS+cvd8XIT0JxS+t2NiA2m4OLAL3++5WRSRY9xA2cRPCAfldOJCooqbn3Dpf2420qdD3MNLt+5TYJJ1l59il4SmyZlzbbQfHfoUtvbzAnIl6ZjsbJblSRwvhxO4DhNoFTsCfAmCEpLDOmcHnD6kCM25Osvy5Pf9pPYk8zsCnunHPaOYRzIgcO+nwWliq/Pklj7+qfBm/SP+qL516qfgAzVHLDtQjE7Mh9idj7ho7CMQBTNe1ZOC79xDyZFUe5imwb0FKLfEWKBaYcWr5V6L4d/8LwgjlF4bOt+t6joLag9fHyPmKd0KKJkM/59/rYe188th62iHZx/oBrh/xrALxpLdIGsrB3L13Re22ad3F+x/CWGDQWsEmR41HFvZcvoeup3wRg1jwEEoW8hQc+KH8ZmRB51zyBg/hfYveMSIoqDB0vxcdqW1RKjRAR0uKIU5dPhAkrZ+KmkJknJnh3uNKsCUwwnvPdB2sNzHlbmfbLUStV3pwJhy/pcqwzWPfAW7qu+YAu9VAC0DTl3bX511wnsk7QHCR96b5OgbYRJ6tvFGL+56ri7FbMWACFlETPN4myfb9hfWqjBudjg0VL4jE75nB0Zl497JkPtjU+bP350JNuD6Ll1DuZ6vit8LQczJhUFCJ7pXN1Dnd70fLzUv/fvw//p+PDfKKlcyF2SjmS2YIqlD1vtpG0FOFWf8laaEuZ1c0SYrWbTx1uDRSLR4t70XQpFqKqPgIbyWAjtlygt3MvhpjuebabDRmf587mSC49ctye7rUBvua49SH4PROM3j9kqM0w+wGrBfP9lrDkfm6BSsQJV8CcobzQns92Dnq6gFZfnUPAQgzIk2K0IoGcZFXDz3qbO6jq4djn81H+BlR+NwZCEoA+4+pM6fPEej1g8Wxxaqqf2i7P5jrD55/QcrybMDwTfeWJpUoiYtTy5551FZ9iXtcCN/9Fq5fL3r//9jz/FEH078Ax+mKb3JKHJ1oWeQWItu02F0ozF63T9YQ3Et4EJBfAT3bQVskrViivATahbCsGLHHGvwkTSGeF0dk2pWuyVoZ/aASsED3EsltUXAlS9wPQShcJ2tWqaIqPrLT1aGFPZbbSq3p2U3R3K9+vwv9UrzVHVgkSndvLhfkqDSDXDIdC9+aka0XP5tlMc7DLerRA91fokNcq0Y0liFwL1Fzpbl55p+/iWVsCxiTLFl5OiFQkUak28v44dans/OKLZDp76GJeWYIRM0fmVadWjZcu02yKPWjFO0yAAZy3b7swVQhufPaK19kju0/178Uj282TI8r7C2K55A+mo59Rh7yfd81J5SheEiksmIZ3KP50kU8BoAE/D9EROeYpeFWdZZUg2FvuH+NwlBvaJuu8xK/xdzurxENlGsJVDr3xHbK2E18KlsaV9x8RA73KITifYhkXbNi1JgxZlNNGcN4teIDZkodsf9tRHyU6pPwKnHTd2PVR085oZ7Omt7jqw1+c85ISRIlfy512Vakz0o1luf4r5GvirgoQh/9fQ2OSSz2kVh+Ti46eYtf2kHs4T7bhj2VN2gNwno8J7MxmfsZaW1dNB8BYQ3RJOK/k12o/8Gs2iX6KCVNZbQYMTiwsXuTwmxx/yK8LBYNDd5HPrN9q8s4EroNw5294zEYFLJ7mHhIZCgV6rTp/5PSpOTRuiyXTsp0fo3TLDEySx11AF8Y2TMKnUV6lbBa3ABPqTyqSzaHn2q+plJTuqavLyQ9gCQMqBqxOvCRVvzegqywjzZjZc6GD2vOR/mVKzhG0Egfq9OVnlw6YuOqRYcmPSePi3ajVKhkHpxll7lmtfpWVyVwUHOROqfLZmL1SXoRNWSeL/XrmPqAsQyFEJ40487TGylzMsY9PQgb8a1AMwGVZk7dLrctkMKFLBcC7kzbwIccHdztmbNXtoJraGaauEEFw3xZtFW9VzIG4lpZFvNty5EZv7nuLrlA/+3/lDYUQTrWSsSpl3XaMRLzmnXw4ydj1riNw0B+F/AxNGh4c4lZmysO6rGsBNNs+4sFEo9ppzzsTwCoc7PorE1rvGRteCIMpfguF40WwoRUhfSBUy9xptj5RoL/fult7gt1ABRPYF9xz9GxknLw9elc2tEWFSimYsAHKDJ2T8c9mJ+aNKopzDzE6D2qZnV8dkY/igC0Alrpspud2fu8Ikkyf7vYKdn0wCjQJjijcfSSBmdXEYIGEhZsAPR2Wy7ssKFN56MJuWIt2tv2innfQAgbGZGDwcHYHPAUQIKWiZYSu8mgdiIUcNXh9xXZDRUbI6Zmm1DcBVCC8BX+pLM6Uvw9fzZwN+VY1lGbuckJPrTdcO9SJ8MxiGELwOJGN7IhYGgm5WOJ3fUtA8isKU8EAyFrYCdbMFveHUab3V0tNEW68ew/yqM0iDALRwN+E1/glLeCJh0nFCIXesVnStqg46f7wgdeSDdyq6cSOvIgrPi5YHoMmLrNKRuQvhIDVjevGZoSicvhOigO2hlYvsi6zGsoZGOOzXzO5j9uxlGWGkbCsM+jgnMtsNd0lcGZECbes0BY/q/MHywTteEULM5taIGlqAeEe+GH4ALqTwApIVnE4ZUCOUp1VyFNZUfb/eANZGTzX+AfkOHWBIOUVxgzBe23Jryq59ODkwhD1UewxcHxr4uhAnjOUVM7nCO6xBwakxpRvBljCczzcnRgGEmNpMLvFgB+hXjrtv6mTskXxnI34RUfUdYv5ePAb5k0Dn6M3aAZAkIjHaF+Z8UYR63hGmz/AyyNtnw5myfXkij7lUScYme9wFZ+nW/mp4Ckq7F4LnpHu/xxWAMsyiHrCjrcmbuxTDRNT6mJQFQclnEXKa0nwqjo1bFOBLWbZ7v3n9eOAmb1ny/P2MUijOkuUDbbbF+W5b6W0Nae68hpVEFL0XSMRfW3ZjqrVzmpTK+WOaPqwmuzouOLcKHNXhQ0LQBnDRwZb2wLujjoLDH+nI2aNTHOGyK3Uy2w9E8ZN5XNHZMKm0AhYbGc5Ce0MIVmBG481VPBuM96fQc0jVeSQxWn9JlzimHEdDd7fot1C9zZqMhEZn/89KUTsP6PkTAj1E690QBOdIq3LsDTdrO17o0PBpwGHM7iIEK/ekxYaSce4lbI2oinAV5WOOMGN6Nuhwitvjq/DiBv9eJCBSvklAiRwcd5sfh6QjArRj3fdFSVe586YShXXT9NK8PNNyRQs0a60spJxH+E0wkKlN6o/JOIQtnDDKoKXavPOadY3vUlSi4oVQ4m7Wm1YSO/gRDQahhGaUZreG9YH/NabvOoACs4nIfVhb7kRWRAJupQ/N4ruc6vbdbn4aQpphIPhlkHWkkHsDvqc/OEXjhz0zmU94juSd93fFGFR2awBHaVr997Dinkf/0AsfiophLUOqdTEeTIIva61JeT/vr5rOM2FXKbcdIXphR5qTHv2RvjVj5FTr8qLhWq4mfW5sfqNzQrb7cBXIUEH5jMHHihF08epoBbKzJlv3zxFvkqO8kD7ORrQnwa+JAJcjj8sgyIOXBXn5qRJUJbtDi9AG4NYHgqTZXGT4EO9DLR6BmM/Mgt/c2rdwqko3gVUxEh585TQgPviJGLhN939TCMoxeUpZkIrog5HGD/CInyNm8+C8COS/dJX/P/IFWBJu3nHog8D/CX4/F59miVbyWmXl+DFoKRdbJV1lPFV2YOMJs5q/RIDcWlpZxvDpFOPQ0ikBWSOEI5W/6Y1KtIfi/Y9mwuC3KnWz0n7TKeOCV3BlgdIfPBjON/JN7pDxeUQ34GYg8fEVLxJ3L/ZsmhHr9P08WltfhQHVSUA1JnriRj1xl35hgG6kMlmqfxckb2ZlUcxC+q3V2MB8Wn1pkNPYqaFM2I6N4xGYIMiu/v2CUlHHlpvHgDIA1cTGuKfTFnQ2/4t2CXd1U5AiaxVy38Twiz3FbBHJgtrhpTIgD25aMeKGf9NJDKxdnB/Z//voyFjOqVOnxmXtZu0Q66HkE4Sd4jqv6OIBtVgUY9TY//XM5PrelJYH4nVQ9OgAZixHv3Dwpw8ct8xcCmKJIzsTGajTYQymNbxzAZI9OWU/9BwWOfc2MYBtYN9hReL7Cf5bke5fmYz6vEW+zhHLSl4FaAdrK1tKxvdRKUrzHzihwgvAorZH5/liUy4ciIeggQLQIuUoeHiwSfZL9EFgER85BufH0WnzeoDtkH0ut+J2QUob8Yqu0MuFjJhzxVi0mLw0kFP+V537IM5CbKWoHG53ndBR4RnGmd65RfxS7O1jlZ24DjlrmTCBDJ30XOOBvxUirAm3Ff3D74WFIuqbZDlpM7E8OMbDtmURlSXZGLbKys4UbpAn+74WoPBTroIS8pWZR5fYxg8XvcJkm97yvJdRuSjWKzxiyMHR4Ir4XrWFET6nDWv5yk+Xq/OBDz9Y0aRZAbJ+1Z8aqG8FfPCrUTtGssJTH/BdN5i0CaQPPkvGLxjna0RVhe/5IbOCDJ6P02uzrXmMuRYQkm+SSzNwKczdm2o4hz5sTpb87HFUInD1F+4ELHYMLOwufnfp6QHtrH0FPYAssS3Tzy/2sOdvMmktQJgvXWAzD8YeNxYZ7ktPlOzbRuBLAOL1znGs/NWeOsLzECn0Q0QjewP0iDZOOUaF1yRpphaxRn/JvTNSOFtUt7x3d53ingjJnyZoiQ3pLnsG76PLx6A82iIaq7QJjk4p7+AaNJSbjrRfBfc9X64wB0vT5FXtWJneR9yEM/U6vZcqWp5FjBuU4LicG8PZKKyWYb+Udy7ChUjpi01l0N0STDTUD7xHTFbv6RP3Gh8o7wawUvUHHfoyzPWbJkjkt/K4ilnCac6/WqU4vd3LbyyPBiYIm2j/yTa3VVy3tleX1SgXj25JIc6TdasDWLe3tvNW0TvK4Ls5QIEaOAPavavBML19REF16g3TmfX/OVyXqSAuNpwbqnr0HC0g0FVgiU5i1uZDpyStm94Olr2Emhk73f1CrY8u+a2NYaK099WRMjpYjpR1meG+JqZwgMumeez+wfYYnQoPoyNObhw9lztaiWhXvkW3HY6odAUN60zoWxjf+Y9kU2TuG1QVMvLtbNifkyVvRtuHNp2dECXZDynEsgXusEv1jmfMLdZ/TIkCz9U8QtzceoqIPMnZI8sSoJ6UfVNsP2IPvFSv0txUHmVDWKoiiyHKc+DlACizr/WQqHH+DzoN+i4zwd1UYMJOtXwgbZTe5PrM8UvgEyNxRJy9lQ0fgMEMLztU2qHw+61CCimLeAINiIQ1aHnjZl4qlC/WVlUwXj8chgtYp2SZ39YTuZYubEZ6aXV48Zf19WXft20jr+S2n/jovMl0RrX28tk4C9mogB8w=
Variant 4
DifficultyLevel
534
Question
What is the value of
0.3×12.821.7 − 8.2
Worked Solution
|
|
0.3×12.821.7 − 8.2 |
= 3.8413.5 |
|
= 3.515... |
|
= 3.5 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | What is the value of ` ` $\dfrac{21.7 \ − \ 8.2}{0.3 \times 12.8}$
|
workedSolution |
| | |
| --------------------- | -------------- |
|$\dfrac{21.7 \ − \ 8.2}{0.3 \times 12.8}$| = $\dfrac{13.5}{3.84}$ |
| | \= 3.515... |
| | \= {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX19z6u7OQ0fLbo7dHmK0aQAW1ecR9P6HXC9Uc0PM9DtEbWmOHZVF31k0+N57o0Nwde4ZH8plg7qEj4zmX3WSc4SHmFPTfcO4U8jT+PaqFTutu/JjQ6WbcPIHMtCkQjjQomTvFFxTM1B4VBekoDvNE96s0AB5Am8yPmDoPZK2xDMoMKmSxNZHqiiEc6SclL6iughJ/BfTd7wzUlT0BHzdo2RKzbkyOhhItiGN8P/9ST7ZX+0u2WILih/+vAzHeuFlFHCiPgb7qQZkz3vnf7aZp94qI3scCeAfi8yE3BKcsRhy1+/wdyBVnCAyYBiI6y6eTcxJmoin54h/q9IzrEIOszdlW33rpGJQWSpOAKClp66B5w5agFH1rgorGK7FfLB3mF83kDdqkKExx/6gg4GNkJMXGy4HVc3pkumeGOrgfo8vZ3+VK7McG0jrDTzCkVi0CohejkX/tEUPno92Vk8XKRWgLmpNLBs6veWRHsnQ//eietYFIsmzQOvi7SJgXQ96lWTlOCBnrpi+WA+cEHGE3g2E6bgmohMDZDUlFszz8xqe+GFo5kWNec7SMXri6hoPd6r69xrgM7JQPuDCu0MCbwQFjgRR+/LT1uxjaV5m/qIiocwh8UjgLgdVLTCYh8oJOJ4Hmqta3BSgMotL3QKIMcdDbBbKpcnIvNAaz/rRJqOAk4dPlRCahGhFlt67XKPZvdUtNG3GZ/LEuAhGr1Xi8LoBT7AW5GSEk6tUcakMARyNF8/3yTDUc6M5ZTRt537cJilyS7Y/FKowte54gXE8RNgmDhfXYP1hzO9akjwO6b8IqBaRd+hGi2E5HVXxPo6HUl7prJJpGu5ws9nxIvyFMhLM+XE76ZNoXVyzOTV9Xx6z50P+yensKFwUp2ObI0J9tFbTPTX/cs4rlOAmdt13ADJQ8jGTs5je0pNqnU0ykpOT6Y9WZKnyk6UQ0oLp2uN8AhUxYN158Mm4+Tk/q4vKNkgiKb/77tnMSnnDv5uwBmt6ti8lkOICJB1CbiGbmgIilDPy+bmRK2oH+bdPeJXBxwQNVBWPzDkdDWFRu2uDbAdNABt0CTXlaEU8aSyj8Zhn2gbIgsttYKFkaKCjSSaFTUiKp/KJ3Ihpt7kiLDpdpgyS08VuSDCT9ffX2ArC1UCHQRkpMoJUf/rskr7mbeqLjyGR+hc+/0HFP7zIFgbJBUqNWLd+tUT0mxwIPzuIUYMgY2X5nMMlXwzK1R1sNK4HSj62PLw+5qRxoBRvAVZyLOaLD1VJyIf0TVYLI+iJP9OoI0VUOlxA36q9d0UHb4HOXkwcFXFoxPrN4iu97x5OgCfE/1InbPIhn3vAOY33Z47JZ3VTeemF+b1hShQ+YDr+shgxOAHeIsZxYwsQ82DG7QPiDj7hF/SVX+ckL71u7Ow9A+ZCfCQPycpjeqGQGYDUoTlwF9NMQ2iQNVy4qJgeIUgaPPCzxUY0ZrKheC7WEiPXbSMSUTwNo8MLuTvAaJnbmCMUVBB1/Dmk0D8dqCuipZa1I9tYAJoaid1U1wu6zqUy/JZJjwjKeIjnBn0KBQkikXg/vYC1Kw+IKg4MAMVDwMjUM4ptMsBLaw+y39LzeuVI4w8Zqb/+qysvIXVnNvr5zksGVpVbmSsgVqAoxd4oOYEZPMveVEuzQYvkbcIWijwFma1UxFuy/h2VqaZhx2E/s48sNBg18XiY3gDqsWuwzDOaSTRuzrq8K/NpLpgwpRS20nVBnTBtOYxUZMS9jE6M34YWIjOaaN+PyP9BZZUHb44CCbERzo7+H7ibfDky9UhukmK9QRYcFPMZvNbgiZRzaDIMA1/QJE3o6X+zf5j1xGYGDQ5lPGp7kR2OafBXH9oLq/tmkAjrXnzGQxdSiPSXxRA6uO6LNHg0SbTP8gB0mW8zqwf/WXqu0qzQTrGtYuuo2jW2YNz9vX25rJBw4zMkISG9jcaQfqqKzYGRbQ9U8mfKGyl7O8A+3fVJwkJuxaJWgkv5RvOESrf9Qz/TXJG3DcPi1wq1eyG6L1dBxMDRz5HocVdP9cHC4zbBUfQPMPCaqgauZ+tIHN3KYTcb8AymR05cdUb5tTE6M3a5xMMMHUhmWM2SVH+PDCTyz1410BBfNZAT0d9B901NZCs/rX39KdxWaQZnTWIuCyXWjbyMOt7v42yg4mYBvoVWgSPlEMLqtScMzJkIDy4rE0CJNRE9XM2ddLmFccEGYO6tK2I7MoqOUwPkJ7vnzNcwHBT2VdN2moEmVmIy3uoxHrxRC5f4xLxaYi4Ne4sFZV/j4Bfq0FoaoV6tY2c5m8Q1oQY4Odf3Yqv2evjL/9ho94pvksga+5PzGkKfCpIxBn2nnlSYsLl/1C5DKvi0d2ORlgH7ICvusiXnFqtvt+FY4weFh8unB2CB9b6ctrP+C9EJc8GUic2Flkumxqn3JsdlTEuePYfOgsIFNqkN0jk/kWYGZt6BcdmXkmlaWafelDEEcnLf+QZ8aL3pp4y76cVXFWil7eS2Axz8MCLbLmbazrRC9MbVn6pyCPcP0INf6SiXcASqTxAXMlCGWTA/vcQ9ihxB5oU/bR8BhbgDXJc3kwilaW8lLGKtHBNxrFMTvdYEn9tEfQiL8J65BS/J4YEHvetE5WiTf+ypqkhBbercVvxe6nJBkap1o0DlaTQRM0RgGih78iwZIObbA2BhdUV36o7o6tqHb0p7BXSKz86rT6iJznUeSlFq13sUwnENv+67wKG/UNSt4vN9LCKDcJklvZOOxRb2offHB2xxQBqfdF7p8Pze/tnl1I/Klc3tzfitzgT0WhsPL/NOhfzSuekUdBEGozYR00CWXXIW6UeDQUjn/AGNPENNUa92bXenex3WHNLXGYz+gxs8k28nTzi+iGGVZ38JotW+4RnWsIpxBuOTVilo2xxgrkyNLEIuwhd14BPcrF/v/hN6sl1TsnxRAfM9YgPAQ3DHQZV9v5jw0GCnNd1VAmP29J8Rvgu7i/UQbqWXJBkpUQbfxy2eRGdopim7ac4I/BXSrzMhukuHszRvsUKl5zZTkHRhPIx0YwKRH86et0qTBav5+37tAPKmd5uPmwLoIddHfMtgi+nmhCn/vixXjldo7uYF8KZa+wJCFL1BoTwWR+1g6yzi4uSt+53zoS3bpCTgbjuMaEvNC3Alb+5CqE8fqDSBjApjmIGU+de3kSq98XTzD/ufOCtxF/SCXYgLpA/jydM/hddzspLk9ltx8DGEQNIGX9a/U/HaU0rodm59tnKT4lHV7NG4ww//ryJlGspCaiv9ud4cb2zsSYp047o75/w4VnwLCjOnK/yrtQOhuUWPg7AiDXyQ+LGlB9DBxi59s0Ff4hBA5gNF1UKedeUmTAzWSofIP+/DA8YiY59+AzShK5A9SBrJJyotK5hz3vgwJ+fJEq8iXfxeOjDtC/QEKm5QiTSqDmrKnklhoFcCHDrXqd4zEP5UcHN2kxXHwD/epIDVnd+6gpOwwHO65qtR40QyZssH7xT3ztWz2nT8dFkJNGY9AFAwcwe7v25Mi6U4LOb6IJuFJ6UlE3xNRmowWdasB8SyzGTwY3usfWdh3iDIUvwqK05GDf/NOjjfkOt1ls/rIq5ZEao71mi/TDXJmtmJ2shyDH2KWFkwc9cG2sDU7ewDoW+9XK+ZktVhIRFKILvGZTMcn+DZKm24h5ggS0GSRkXKrLo9tX9JoPtVI6mInKMuf4laANplX9ltG+RDoHz69gdpgrCLPWujj97BKgtSD/c4bPKgGpMNtbdJ4J/SFkXTxZjK3fo2ZQ+NpVlFeWRx4KAiEpyrRL6l9e+GeQ7bEAgtjXfvzWaJrrmIYdcj4vrj1VWHiJSxydVTaC+Fbn5aLfzrfFWhUd9e5ZdoeymlHn9u7kdkO8dZm/46uKl9gLs133+VOqGYc5eSXWzfoFnX48BAaM7XJrnWlYS997JsVJfP73S1ZqCom1k5RWfiWqXVLVYRq0uxBtJR00jdmSxb/+i9rojIfo7IdGppx3Sr2vbpC3vI9Ex9TXzbliH6TJcJObqtZw/GVZH8mBBj5eVxiXWXDAVC8IAesnHkUZXrhvkiDx6rANI6NyD+neJr7oHh043IvgYPvMVYOq4IgoIBgtCwZLL5O6CQQrp2g/Rxfrm80geGBCj0XBuDoInNpsxEMX1jR+8rVMy2GV8Y/qnmHqt6oUsq28fmHWE4j3Wk7gHdjTFqJd0QXYJBPEpHQwAkQuEJbV+6KVbPrYNLXADSAfEjYqKtMwXA8u1k/g/uToixg/ADZrnYA+m1NZYKUPDmi0dkAiKO7h3liaElc3l4uLZrlPdMXK0Xo2BKFJhBRSiXQoPVT4IsSavPpPxsFDJ/txaf+bOkPGao3C0BZ1Dfe2+QmG7NZwHeRyJq/eaL3gWaSYcZEIv1C9yyLIcmGUA+JGD+oEFQo70CkTjDIoPgEBH52ZqcIVmRmPfrrCrqxWwIGtlp66lI/DECrfAZdU9e5cfvmUKmfhmu9ai29woupkAwRgeolIGIpg7/WL4A2ApbiTp6FqgBelpKRPOC3sLrDweyp6JBouXxZ9HRPOjt0G70W7t9flL+QzFIkc8Zd+Y4eAc4YPaDftxVbEgSaVtO6d+dwDy+lUBWOB8GQ0Sb3g3zFRIGEA/FrJ+Ph6OEHy1I4+AECDIUoeplciKu3e1Q1RZDOaCqa8MxWx80aTJ5x9vucFLjMdTl5pYhpuwc/YFaf471sjXURHrZ/9cE1hP88JvrJdi+DnbyS3FfbV/J8lHWEt/pvHNEDZTAOcjXju1IQ2+aDFQX5gYefOHU1ghydYGCGTlJM0q7V3+sce57DzEz2UDvbqlBDGV2s7WoIMCcEJLOG3VVIR+O5vOt3RRTNfGLp+flYzPLXnVF3nzXiTSSZFW74ua+apvX3i7nJJf8xbbWJnGRo5+d19pVDHfWTmLv6zsrjL2PQ9x/fu06PGdouYSsQuQmcbUj4lPemwNBnknPmenCp9Nt0P+D0Jci6sQwDJXiU0CDs3mkB9B2oddmmiZVrrBsCwi3j/zat6K77MoH+lkfJSRxP1tscVzh8j/NeH8hQyEpz0aVeN6GxAoL5bGp5VdsTEy8Bhbl8AQ7yu40wm/c3WeoZCyM5bw6SoEbgLpSQLBCEVAIWomYqXdr69ctJkrxFFdMLZdqbzlR90l7JnJdv8Eas4hsLiJqb8uC64bMyokUc1ywNExjuYquzFdeXxjbasse3O7FsbTmeLz9JXayp8Brv3Wdm0HY9vAKgSmKBnrF7US38NlyLG6AoOZkMgSnp21/UwEOKcl8XqfX9qSAY4jkrVuFGfxlqGzt7/vPW9XNud/7lUYZaWs6dw0jcO/bKVAaIr3ikhmDpuHlwzwr8wVUpQkip+GDxa7SBEpOQmHkcTVyBxpnrrxYFsvA2tcrY/qEqsk6F/ofJwq2P7rMZ48DzOfYDiLS8iyAXcY96L9+LpgzmD+55HkDbkAA/ABLtFyf6n0O/ldjvhAZUjTIJJ85jPEVM8Q0GuHlhr3lBXlBZZwsaSjfUm0YxkwpjEjtpLDvnxhJ6zwh32Mjs3wZxgFDwH0NqVRbUi7RPFmZjneI5x0KtgLMDqoPc6pIcX0fbGPdNo43YpN99sOqZExU5EKf4zFO8mFXJ8OwgH42YDr/cLdj80rFOBu8fmxK4rUjDxJk0piV9Pqw7yqiIoSqpc2LyzavGjzRkDhl7J8Mkj0tz3ht58is644M5MO8woO3cDgMKsDv6MORa1UzecJJB9DE0x1eyAJWOmX1b04NTYfQdYtfq18U6rVmMbdb7nN4USkPsT63WIAeeF+XwPHIJFnGRaeAOwNI6zCDlqng+k9JxAuZ6meWTolI+1AN6CqZiHAt6SzJsr24k1zV8bJU8546C1yMYKsDElJSTmCulAiFla5D1IZVYuHQgDDz5zf8aUgcYMOlbtwgVNbTQREU4IJj7O76qMjzZn9sGtWgSS/IGRKV+HC/90pYwoU/mXzWsypLNWqD9vMPxVab1esALYMp+Jc7Q61fXk6q4PnozLcHo0Yt6wrXFlv52gMNSIO7tKT0M19AZpsHIk7IjhX+tvIS9t/VCySh19IH+byvZXKKpz+5LUWF6HyQN2wJNyip2xqPORY7EepUi3DUw1IhzZsiPLgTI2w9mzBEO9qnbvK7wt/N+B/RK3sHF567D5EcWR+2N5411pY64uNskQt9qzJEdNYHJubbxiumHM3tZ29O31rDz8UXeVfuXuTjexlKghagvLpBfqPIvaUa6BphLhlKT0Sujf0nZgavxNg5KxLT0zm5e2/N7VnhTWPZxeu0SIEDmMr1pcqnpZJ+qS/JsYgXjfGbPZendagule+vWV5cbbqNghXMsehTCA8n0t2VuuTRMrjOC/dKu1aAdnLJ4Hc1GflO+Fx5EhaKibVQnXnxYN2SeJT53p9UAM8+bMDEggCLW5OSyPeSuj9xIcNUfNS9S8bmqFaljDRS9+DguyXiDhGeOKUh1J/vXj0pdWLJ5Yy8tnwlVpKhoWm/xtSFkBteQ0qd3DPLgHrE7ZbfSWz2HREXJlY5WhMF4crR0dFcn1no7dpwvPY9w+lOfWvVg6UqxlXTnr91jZsIeRjkq4YeGELDs8CzwyeAMnmkt7uOq/Fzz73jG+vTLG179b6d4Q9utRNPK0jF5X1QITHZaMiq9SE7txf18l8HOHvPwte1zA1dYH0QJOrWP8WTyUyo5pLfGbMgGHmrlwJFtanpj97kVkO07FH/Z+wIG8CMbi7Ue8IMCgNKgCX/addy8A/2ttdUyT/JrXXrdjmtzxby7JoLizvkq/YOrH2jQy+0x6GKmeUnoFkshu9eK9fIO6QUGZh8QNv8tFSyOpq5dfPmqnsAmeDNb4kYuoWo1jqy3cV830iMXc7PZxJ6CX8qV2IaSKZVebUKPvVcOcF2GVvo5ejvSubqI6hwGxISXmj7sHgZk08qa+Ubp90ZRcQ+UGQBrvruZGdQJtnJabJ8zHzc6ucCsRiL+VllBl0lDOsaLI5FHHoxUpYi/0tcxiZZqpOQj/JPeIOsuKqtm0TRYzirOMw6QFNFRhbD9T5nzU2uBD6RhxwPAbtT/5Ua7/I5FyGb3SnvWrx4BxMfF83ymwyms9zDGPAMUrISYccKybwFdOFw8Sth4LVxEB3F0FBtFIMw6wXv6kEERWt98TrxHxyshK0OqkFCzGs0kqd2XPz43FgJLJ7EPWY8y/A8YQ7pOVGddNJ9qNMQZnNw1kFUw4aSKgfcx4JAUh/ZC59qJ9nlqLmH39LdG2l57omOP4JAZHnAts+qmFAbZh0VQOsSVybq7OA4wQSfiKp1g2mGPGX30XjsRkh/G/Vjhk8KZjsLiPczOyMGdv0427jg4E8SRXCDKnl1PZNzUbZero2HCa/7RpEjxQIgTV4agM/IX+4LoEif7NgGnwEUdH1TEmGOcPRnryMtgNhDOZVab27Nszgkm43NccTFPNeYAJ4w+6BnxuFmR7c2UOlBWnHWvlOq6SnFF9qzISvwn6T5si+cM8s/uNzW1F9/BmE0N6/UQTXBRB//pu4XI8+63dqVvOruIJ6UVjwPOAx4a4oGUE2l+pS5PAqbeLm2o5PL54cZXvvzttDXLc1IzM19SUwbf9U1h7tCREK28kfJQLYQmYhVIzBI8qC3eF9i+QEIX/HOlqBlf7Ls+gUVxFeUwAgxv4NSAkMLatc0rt//zQXCkmjLjp0y8pjEfo8/p4ycOaKgCPLNOV85ThFeynfGVzyx4BYYCDTGn/Cek7KIUjLqzQrZNy0I4Gds2y582/wmCyRo8aY1K0vTry6sZXgEg3losxzkGefTBl4TZv+8YWeKC3u2jHJKCpTyFbcOfnkcbxFUQJJsRpY6UjSyDQgTMKRpgo+TLvGt02CGmxEG2Ra2Etqlc97mgzSNUqbJwL5E/vi7RnDTuqvRQITUXNyaTXu5QjJ67dH3BNTlT4NGfvGfNtWpTp2vrGO47WARnkzYOy67vomrH+FiugicRC7YFoY12XzLZwA1zU5hSra5i1ygcrZNIrVH0z5S8gqQRtYIDV1vJiAJnfhYL7LSi7oyxoi1J6L02Xojh7C38B4gkx5DslhbHEu/awCALRBd6ahQdSF+9vjpBFnirvQnh0vy2A/KXKaXU9JfBuueYU7nGvHRHvwgqYGuo9kfhVziYyMXkMt5nZmQykZZPk1cZCwkrjGU5NufcfdyTctf1q9y8tVS+o2Im20s3Sy+q6dmwA8+ZOr7JDqkf/zqmO80Mxq5PS3TLFzvsQ938liKEA+xz2U6UGn9MqaF0ZTyJT5dAB61Ls9Xd4MD2TB5sfbfntuWDyOZak+WlYIF5P3svq/kUEy2W54gXVhPJAXfR58xv2mA7QE329IEmOgBcLDCDLDx6VdfR9waH03uZl4zkkw5K9zeJzcafHexiREQzJ+UNnZx7alup4KQowakv2HjUA8nJHhG9tv7K9xQq/Qwkb+Ss9fJUvZGXb4RVTNGC1dW5Mdq1GCCXYLGdL94jwHGqVpUfJfueEeg/d47bieUllE8h5YE2PIFM/w7xNBucffsznFGVAQRmaPfbOr7IOec7jqg/p5cqH5YVZg0DAefsSiGP7uVLwrSWzxgN7UYNQfoLEVJO/6pNIQsQJzhq50yphneP42C+p2WYrqYTJ54a5nxX1WsH8Pu6FTUVt5ppqelohBeyhDdkWELnt4Z6C79l5o43A73sp6Ja4PUV5t/yVHaYedBULqGe0WZ8oA/EuYK2uwyey7qA5+PHG8UuIkcYfxj35Q1JwIHRz2FwQZ/KIMDU7tZ00x1/QASHPBFSYORXyvHTOiJ/SCZ+x4iMZqu1UkxlRS17KPQzqSlYpCgzNF3c8OpwHrf/THP5dhWpvnItBeM9CowEh6yxGCFwsz6gG3NScLXWcdTJCj4E0vxWG2Dsh5+wSxC0i/8ukgTsIUMyv9sNhEzFo7PP0DSXhLhpeOvoZ1QXVyA9GKtQzvMx99HVpeEesXYo1tqFBM81eum7gNWPP2D4tE=
Variant 5
DifficultyLevel
533
Question
What is the value of
0.8×4.997.4 − 28.3
Worked Solution
|
|
0.8×4.997.4 − 28.3 |
= 3.9269.1 |
|
= 17.627... |
|
= 17.6 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | What is the value of ` ` $\dfrac{97.4 \ − \ 28.3}{0.8 \times 4.9}$
|
workedSolution |
| | |
| --------------------- | -------------- |
|$\dfrac{97.4 \ − \ 28.3}{0.8 \times 4.9}$| = $\dfrac{69.1}{3.92}$ |
| | \= 17.627... |
| | \= {{{correctAnswer}}} |
|
correctAnswer | |
Answers