70029
Question
What is the greatest integer that will always evenly divide the sum of two consecutive odd numbers?
Worked Solution
Let 2x - 1 and 2x + 1 be the two consecutive odd numbers.
2x - 1 + 2x + 1 = 4x ⇒ {{{correctAnswer}}}
∴ The greatest integer is {{{correctAnswer}}}.
U2FsdGVkX1/ZenNq0RrZEhyi2VLeFC9SSLInNRnw92N4SL+hhoGMUUY9urm8aUltAdFsCa4btheQsEVchGP9UWDtvQVHnQk5EHCqkiXlzntTclyZ7wR5y0gJFx0k8Y9arqrD7p2itvX57WZAP2JJCn2d8ws/n6sC+NMj4asBkUHy3urRI5d/aHobLcr8yFnaPHek9JoVtDYLhZBs35NZ7cijmv1nh7aleuhmfxVFlRDTR9osswGrvVe1HWUNGlSZkTJ2+Eqapn6YwOjZdoy+B9H2SJ2dcio1bFeTaNt1Ju2u3TLRIBX/4mMrZVXhuSkSDjNDI/Jo4ryd2PVlLOLWh1Zj0e/qa/Uvl8pK5bdtVzvrWEXXstw4C/L6WwOCPcXwM0uBxnKb5T8dp9f7NMi9rZiAVtEg5c5b7fpKdgleLIXzdNLPmwPZFxPt81oVBJI9hQUcKVDksQatCMZfJ3/lIaO94CbiGOa8/l8AV3rkO/zaE5a7uSkgHrQPZJ9r1xVtJLuni1mhknYWArGtE/emSqOahC5dhTT9BT75yfjAX5f0rnwgnlW0TSkbVDEVBVl6P1ayQm3Tl7PixhduxfA8RRjL82WEYIXoP5Zp66wBnTK+rgWujLsGH0+NXwbChOFuGvuk8/dxI3iRHUAZO5gY5R/vPGPNfVYx0FeHVR+qagXhBhR6EtT0AjBnenZaGwAr8RLinGzuLtND3exbhtP6ZQ107ch+lX1Y/yRca+zzHVpnQN6+Zw6mM4FxtrJwOYeSuTP6dLhtU3+KXszjT8j3LSZsoaswTcGkttEK5QxTzRSvigIAK8TQx5tyA/IwwrTiczGwE6Z4InSD0XdNrYnoaG/R8p500O/YC6UtJLJaWKlRNvJuowZCVL604nDYhwIGDEtqPZWiU6DGB4I7C/7F+yFoCHQ0cW37kXrxDmaSoOsYf26FDdLL38CLHKrr9rwux24vs35AKc1Ij0sSabW85UtGieQ0tk02vwT8YiD2h9HsNpWIDRx5vxO7Dzb2oD8JHLQWXj/Iq5e8by/T97PavX5HuUTsxy4S6wK238CQk3V8NIKJ9RI3cARsc+UG5DrQCtrOhuDMKDHItEHpg3zOcBacjwbQqQ2r11csMuVz3KpfSWKg4jOloDFci3EaPvLHhq2G1Fl96/LvbuY5ftKZTd04bJTOwvea/xct+VrtzUn5Y5wUpX/p3a/a/14Kd3vjgjNauDSicQxDzwiPby5zo95N30XSLMhyf79D1UairKe9Y7nCp+EkbjNR9uXyaATMseT5lROcCT7p2D0k87/4mT+zt9pFnTElOCMmE3TghsyYD7ys7r+eegvcg/QV1rYjzWEV+QdO75t2MKNDGAXZz/O0zZn9xSbMmd+AcpKLDM8GNDhTSLUjCNBYRWpALTf+yEi8aUA9JBU7ipRtWGIEm9yLpN62uE1WOg3vSCmJushnf9opDtF82VX4dxm0QyRDsNMJnm4g1zaHlnWYX5GRKyL49Vw+aaTFmZfH8tjK3ipyjxVTqlTw3XUKQ2A/MIe+kPhlU+yzLoDIBgmwmgkOFjGwO5pOG8fkGBpkP1YvzdIsgj5cm5ymr0OWrPQWElZfEqV+aqjfK2EKZUGUFDQNRX6AzGNQRt8QuqNA3y7a1htTc6Qrx46hZ/VrB3yeOYeJNNJg8LDd/qhPPKQX7wXLK+0JYTFHpSrJQTlBZNv1jraj5ZbSHnWD82b92sxyeET80yphuVqKy0NDFAVGQK8/ZoeQgay5D2fqkGJhipMXu4f5E3ucv2aMcCjJJ9XGi1mEs14xEDrb9So7XSthLz1u8nhn+oLzr2zOqHPqkXK/+vfN+nlp/lULjlrOrBrZ0J2W0bc/Q+Zuk3tSWpbdabnLxtDh8nDOQSdMXPR0wm7ruHGf37Y82Q8F65NTFQIVIUWckGw46UjpeJdGSiPnr5Yr6FjU9kHVzQnOWCbUf9m4xm/PxBmPLthLEJk9cv0VO6GPZWXZqGimtrUJzvE6l2uo823/7GVJLdXOMJL9ojiw3Wfm0ZpsLPRaDiQBfkkbU1BI5r1AK0GnK44l87ClWa8k1sAq2x/fD7iAHU8o4thwJxT2LOAhOmFi8ueAzHlU/WtbcWBpknln6Dbl3sgN6RZHikDxCTDAyqidEer33fyYBbrJj6UxAXtradOfqA3n0dv77kZngGlOOQ8byJ+uTp6TjLsXuCJ//o4LFZ6iT+nML1jtAXWI6sWoss84I8/qcP5RyVhrI3DIpabcianOtA749Nzot8J4jrJiDdbiKmaiVbfF5ZXasfF+beitIqzEC5HIPigvfHRmpLL4LynZg78+dhCj66L5nEW3sKRqD7XwvhU/IZN9NnZhw4FkZPuR0G5FUIPOwBptLuZOzxLWzFVU9f+145kj3guPodxeIgoUrScpx421j0C8f7aVN/yko0ynEWUTmSwLi3uIJzXKbN7pEcpo+FLsYo1XbWR4jKm7ZDg2633XcWk8B+cvFL+RneWORYj6X6MpqNu2PYjRwJOL+LTnEzXucczwHSsXojMbevBGNzRdZ7VlfZNQr/UVVlwJmhEKzqmcqnZf0Zlt3H3pBmm0FWdcwt6Elpmdxv8ULWseuXQ8junjh/TX11SBvUJ+LTrAoCSQrB3Ag54byI14rqReFknlBTvJy12EYSBO6Nz0U02w6j9Ct7EXnC9vWDl1KJ2jJERR5l3kFlQzVGmnLLHAxi1kI6bflsRYNHa47gGY31kBQcBNEzKcKuUKA1xQXt/Alz3qcOsNYqTEdy5X5Ep+fhjVXXCoak6mu6MdL3mmTC2QHZFA5Dh/au8pdGn3FzdmcZAmIpWldQZSJK3hJQ689ap0LBwLldXEHdZBAx+iYrljOW7s6xiIMoGwvBAa1sKgZhHQI91eGYEF5tz1u4EyZOAqjVcCzwZEBlTWSgjNMbk6XALnzqrIpYBe5PqoZ07Lh6e7fQstvHd1/yPcS66cf3QlwNXdfkarPoOxp4IMbypgWA9mY/yCCdRg2tAEjBl1+9M/gGpEd2nTrlzgcXxw2gKNveA30TuOo7biciolM3mqJcNjwN8fc7WnYPkDhvK2ivo1gAjYWSJNU+ZwMS+bk8+X7QZYQyF/4puV6g/ycSfTET8ieZJjDVXom4BDyria2NRN8Cyl7L+PAT7HIglvm8rJ7b2batp496NhJ6bohXFxCF2xHAVijqOuLiA1/tiCV/3voEgrHakjQL+qq7nr+XEZ1qav6O5V1+4lOs86Ypxy9GV8ikIWOn9nQWtWH6AZ8fxfjmz6M1usjjk1mNA7bvb+qc89F1PFj5GFJz2/Uw0Nu3FVwT1gXiGan0TVSJT0IusF5AnlRbbktXG+eIxc2q19qormgfeg1ybmklhhOifsA060nDE/Ice1utYLvpBOlUVENVkFe6DgUxUW/oDqy0NEJg3qUr14yDJb8yPd3/9sI5p9/1DcTDHJgVJySHAk/JuNIbOsqj4qF4aDtM7CXQzT1GiQjhsIA2sd+DlWb8EeC6v4CVP1N50PpnAj6uZupamlp6i9yEsjypd2irQyPgxqfhC+Z1moLDOHDN+F4UftKENhJJybQhYqQOuUm3gV/xt5XsNyr6wsWvMXFr2QEyc4O/n6QklqyXbjdMyHO0PkDzTLSQiwAWGjwEwhyfsegUxkHGLg+8Wv7OJWfUOgYe5RqjZHOsR/AbHPTr6rsoF2FMUuH57V9VFVgBq2fMbnEl8juPtSsILNk3vdSNXSndyo15K2tUbofAYzu/Uux1Jn4BUi1JOIlpUriZ+Jf/VvZgGaTFoHnXLCKM7N0FRXMHXDr/x7TTbEPCJn5y6I00IMs7virLarU5l2Nqr6Cwbscrb+rT51aL6iCwvBpbkLa0BTenezK/TUV7ihXaLCLAHNjqr3Zu17MiOfx0gR9PRaM2Z0wu4zsp1cep6OQog+S1MaYbscZpczQk2gZnED5UiSBg6AmPiPz3LFegQTx+zJRStzZroyTOmGCFnS6CtR9r3/CHikvTTRNcNuM/0qQRWfJZyEmf4pc9QCTWJuxr9rFn3jP8ajS1cOsjqMghKT7tQzgWckwSItSK2pX8T63betvDg6HVJ4UdivqMrZtj+ahD4KJ5qj8qErqe8uMgqQiaZdIX6sjGoQSKZPNkKaRSZb3bW4VdLuqqtgq7uRPLmmspAkmYyZZic8pieCtJXE/9u6VoOPFHhMKJhT8S7hvvHmPcMBNt4oybL9H7jHxJ2DohwrRIy/pOsJEN0V4rIzCCJlKWEeISvVMStMEtlFJO65MKrxaufLLgLrwy9WinakS3QLjAw6Z1l/8fYjffKdDJLCftaHZnneYrZyIIlP5PLkcskEoSqvWTx52QuXLRCN1fxnr1JXU1KdqHpAgsGne7dZUq18FEBmhHwbK6YKay2rZeG7jQc3ZIen1WuqPlSAQCEv6/W1jCLp/4mfFf8Xn2VnyHvVmuQ+MQSFiW6x3Tghjy1eGtsYLfOAYn3Gj3rb2tO1RPM752VFjOPDpHVQG/dJlRuz98/lEMMZyIr8I4FDG/cC15ILNajHsxOG7gPpH2dmLxb/Em0G9jEj69p2uZ2bZw7Ve1muP0ur8qLpb3zwqO+FT26E9nI/dX7A3hy3UQZHnOyFYT3oBNxSu+phyC1DB2CUDgKc5OU2u4K0AGqi3c85io0c9/KAylSFpcmnz2qavVw1AobTJMa9i0CpRqGy2PDNoi0LT51HLATyGI1SG0+dNosgBK6FmJj+6HaL637c5w1hlH1uhH942dtgW8z8bQCqL/YhPGVmP143alXr/AIWi9YcJUh7WZq/TQqRZ7+DQLmIMXnyFn8BWaMlCbnCmgES33t4qFxmx1rF6V5IIASnA7LldLwA8ygrLrIo8S2yj3Rqy6aPL6Hp2rVqrxz++xRQXkm/GilEvUXEtX86HxrL0W7BK8UiFCS+bjTLyEdcTmCe5M4513PZwJA6BBfy1Mre/1SL4QxxvXgy7waLce7/6AShB2A7A/9/ol0DpViDC+x478fRoNX8URvWbGIUHK7PzTnVxUR4qa6oHLaNQuIzNzAYmOY3Dh2Tiu9tFGWXsUr4r6RPjpE0zWyEmylI/JumjK3ssd9TfGJQM9cAaK8PjaXQKWIxmbPnItwXczUsMXPhSeOraPKS9Q==
Variant 0
DifficultyLevel
680
Question
What is the greatest integer that will always evenly divide the sum of two consecutive odd numbers?
Worked Solution
Let 2x - 1 and 2x + 1 be the two consecutive odd numbers.
2x - 1 + 2x + 1 = 4x ⇒ 4
∴ The greatest integer is 4.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
correctAnswer | |
Answers