30251
U2FsdGVkX1/RsnOvtVCLBO1azrLn2vwmS+xzjZxKuvtf48njDqByZHDUdDbXZ1eH5CUWBCrxO5IGNeQeyxBMxAmaDltcypsJFfe0/3yFz9+WxBxU323DiObsk1CU1KKg5ElyVRlm/d1gXihlMTF01Q6h5kiBdX1gIadVkxAjjIotYlhX9kK55evbWiWs6mURSWdqxkKWhM+EZRd7yLPejsqq/OcsC8FL4yDWy4ww2hVk9v/2BZdnuMOXMNmHAEM3mqFvpUb6XGSRH+ErFQZAKFrZHxT/qZEbr8GxZS557HlAD4n+x6yBNbcZxKGeXxTjDtT2sYd51+G66tXB+MIgm3SDH35lHDaNNz7yClarXLEOT+YGqtzhzdZXD19uM1jqTNucVuDiM/fUbnB+ufz6XlULsPFBqVYbE8+yC/cocpH1kCFbeUrsPg7GeG64HKGve0ILTJRx14RwbZrzqdSa7lpjVsXCSxyGW/W/wg6gjbGRczhFbHnkxAHJk6XoiwE5+7ni/W+B1uCFdTObLvqH/u1LMEkI9KTajnG2qS9s6AyLPwm6Ai7Ha62IUjSdrhI93zs2eybjfJxtky4CzJCwZxnlXY2Dz401pW1Pq1SqDso1QK4GeQiNAEohwhQttF67QocAPxSbrV6tWXE8HDM2Bp6P7Iappuk5NuIMZMowfaqO/uIqe1ZfforWOD9kuGf73S9TplLk4ckS9ag6+LehaXzBvCyZ55xBt4yz4oo/7W7z6HBScIgo09TqEM0e7vBIg14VEYuHYiYmTiAa6xoCkiuFX4WPu/0qViKGjy5R70Lu/LRWQ3iQbOScJuFaEyhj9I4mtAGfQuJ377ChO3MB7B0KA5M0ZGmJfGlKdR1nsGJ7VyPUHpuxbgfYpvRpbJ19ZXOBgEbskNgeQcIx3LRl4z7c8CMx0AzPuQSiIPbCAzzpUEM79ibh61Hq6xOa6ndvJAQ2Nt6BB5Wzqaazlnl/M4t04GFewc7pymJy2TgTNSGbTGMScSTZOuKc5kcBVbz9e8iQaCQsERSYMQ3ThHY/PbTPGRy4DM4fzD699KpSOatwvqSLZeCBWBoTjT/X9PumUeFkwXDI2/rxvYEnqtbpeDLKdvSbn+0E1uWVIfL+h8WBIpratb1CO+DspJO8XrACtIffS6t60mXJ8IIjUAxSBoVkLUetL9RhDa7cVSLN7LtsW6OUgHyqLDt/hNDs4aobxKZ8xLOs/K7BFWZ6ML1FJWYglf24rjT/ebrMkxGlg35U7okb6EtJbcQcGp1a8JdZNXlRHFKw+wgvtNjnYhRM0A70shWtsJyb6NkcuKovIjPEnRuUJQ1kqSQKGTxHHi626wDKtboRRQrllQc3IMexuai/GR6YSvw3mfovCtdlOFsJwR8nIVTF4GBc8FlAXuS1tHQPnDpeo40xg7Y06IzMd9dEjh8KNEb/vRAndOJheBpTLwFrbXXcbSSdozH9tOaTatkugv8scaoBfCStC7EJPSAVYrsIoDJ65rZYlI38mg4gqkaFAoYtLODmnc+frJaTae3wcOBUrgt2LTQeKPXLxOR6iIJnkz7JWTO+4UjFNpkITyUBBMaXhTh/2ekkBYs7ktW8rf9Kgs7yQlIG+DVbL06sAxlZWHnQBHVVWtuqJSIEe7uDirYevzCkaLK5N+Eqyevg12Nyane0uIhdC5aRutncvXyg19qMJTR5e0pcoWJDQ3cCsBz7TrgQnZLKa7iw9mLXt9Tf5rX6HVhE0tqJpBpFT3eVA/5mBfA/X0YTphvxNWHapJs1gfQ5Quw87OvPWzE/jCHM02JLXSoJBzWG3ml5HzfYO86u0iRgmyQGGu2F3UpGej4k5Jg18ZsdWxFuqk3EGvcW6VGnn0qrJyv+3iv9wgcRC/DJNW7a7OxCjodnqgc3AzZ8IJy9gt5XUYRq3KTVtQtQr7QqRXgCsUb527BxVquWoJlriJJaRICo2RAm8DdBaQzVbB1SbNwVXKSPeYWzrPzxqgz8PCJZLW6VIbnSqyhxwdYm//zvhPYDBzxiItIZTv8p0dLL8Es10HPm4OOS6JllZaaK+iiHLr+p5kkfAUk76J0zqoLnOBp1Cei30whu3X/vn9JzOSaojRvoow0TYtit5az4VGwxHUob7AdRdvnG+9rGSDhFOThjUS0qf/HJ1IG7CK4IKI3XhiOVrRtYInX12T3hSiYZ0mZGCY3dScOZR7zS58oVFHMZ/BFcDbnn6WexlrLOPLlDIVmSL2N8miZ8YQ3n9jj538CEGtupM5slCjQB0LgCsPdH9VTX6dVKPWPZb4h5HeYxZLmhTLyYHjNmEjrd5fhvkUrysunOShkQQTafdjmgPWk0+rl0cPi0cy1ftFXo98KyyyhQasamtFr38AJkeWrtfiSsrZS5wIDKC/4wgWtcJcBStCxoL01IAPitr/roQLrHOhqSpfyKFv1YnyV1uEyvE2bRmd8OljrtdWZORRl5JBr9AB5bdiEykYaTxqkGat0aezp0gkGwY5UIDD3OTPVnXL5mg4oB+No3fPTTePKS1bWVOGnh2/yt9vlZipeBKqVhMiqr9F2+MhNshFWIamrjmzOdqcO0nzRS7ZTyzSnC0l1xDcn1zNdr6BJpVl4qOH6x0iloYiNpAxWcdKXODpV2HGK7Vn867e/ZnwP3zKajeK8/qZ8qXj/S2KwFheUwkM7rXwVIMzWi/GpP8YQYP4SAl3vVKQFYBIo5KOz7QZYdBzW/7CVdKRJ8EX5g6/3ut+dy57dtDcKnsB3KswMgxB0JLYDdSSxP3oYsgsmMldDks59GE3TDDC1LvUmbbnzNSqhdXb39iDUaGZwVsx5dmnkXhuVa+UdYo+Wofpsb5Bgy9w3u2hLPfNWlr8H60E/90WkdCbx8+jTLKlVAQerDheboJ0EEOi/wHMWv+0iQzFfJvmYW9n/eykn0jlN074Vf4XUT5Pa9/e2iMX40PnlNJClzHoRxTfqGIJvgNJDevIDgoGQ9GsOCzQagjD2optkRHpG0OEewj53LJ9mb5+knT5QF1iuZTo5CjP1fOueoCMANcuUvGG4uZtQnYSlPtYtfMJ+4KjpvhywqPWHOIxtE9uZYaK/28CIfs+AVyJvpQQPBe/lFusiw7FxwPe5Ke2moxQfp1yjk/bn+BP2ZoH06EwEr1ylBHaDjCqFb0yhwN6OOoPd8kBhrZOZMP0bgqaEA06jkmSqShTt5wp0ZrPJ6ic0uhFSehApBMdX8X6Khaj+lS3/EHuQ4axyB74SulRnsvRAo37lwWwV+4VUUBgz5GLnpyNEIUyPzGNy3fLLzLa9kPgwFGtwGlhinuMXImGNhJZHSQT8wgrqhaM5Z2xkUPPZKkJrUU9b5cPd7N4HMKH9doEoVLfvma91e1HM9e2TSbxMdpzTn/XfWUzqHehnV+YqN/hQ0iVW3CYhvoahN4qgLgaNjQC9RTOX3oww6+GIzXahevYYJ9HiPTeoS65HovIBboLarVogRT6RTA6vB36czautgf+Tp3abBk0PkTWDV5j/g43d8gMCRU7C7EpFC02BXZaFRSZsr+gUU4sfWeKvpHX/mIJern+jHTBdG+NbZmomhzhI0Ed67bKM6qorKrmd9Fwwo314brD5pl44jnEpvDL6qm1alPmbL2jaNrG6TqAyeneFLU1LknLtlnYwJu0fVMemNpCK/2xttc0PDpX3psvYUBPqaVCv2KfAfqhDozN4A50yjqHT4AhhMJ3Q1TfSuksyOb9OeSA4Vp8O7riaK1VAdhGUNXbTnilC1aAfUUKHBXtR0CmPSkR61kgCcwA4XkCl7Yzq0hsX88+mW5gvvj35+xm42K9jE5dicRKzPeOeDBWFvAG/hpvwv+bH698eqCHY8SQtMJZ44DDrQVy4Mv9Hw9z/haSBpSTGwYFtm7cBbnc5IDsvHVpobRFHl1+Y1VplhuuuiTMJeiHG9ejDXojqVOUBEkJ3zcqiSXDrmFcUM86FwTjEPKfv5bprAh2CzQioaLMLRMR0AwBLuuZVvQueZSgb0Tf8huN/w694tmfDILex57pqXyWnD9GUsArft+zdrfMbhureObUMVqveQ47zN3vjMwST8872d2O94t/sGEgXqgpEWpNo7avemHI5l0IQWj5GZDLblkow2cn+7X30s7TyncaTtqN0gBpLE8tYBev1r3hDzMinhXTCBjHRLjqUwXSknwmWgwfjPmzSTGz12N2fkg6hAuiNQv3BDl4lZ3+GTFyp0hKZ7oW2qfL47OcxMNXEq2PuL1ShuIZsfezv93hn3EJriNSBEaZTXQE2MLAHDhdjD18j41LkeIMJD5Zh25NagZ5hkq9w4cfu++dwRNEYoNxLO3cmP2Eqes9PYGRaNsWkgPhPmD6MrAJEkSv7ACPHhVF0KnB/89j+jGKrF1ESyMA0R0p77FpaAvjCLqFycAUvWknx2vd/E+/IN/iWt8WtY+FGyWnGcm2vQBE2bl9URGMH7FhdEIqUbQDWEviZMFg/bbiViNswBe+HzVGcxYRe6js0T7KLXiTkvWr3yVs5VlgQmS1SljXNb+yuh899Zmjpv4kf7f6s05ndwlLRYniVGQMXozNBC0esu+GIVpVvkiQ7oTxS3toFhiJgDRFaVn9A8S9TYPmMnNfa9dWGrSS1Rw/SHsh2kYcBNfRoD0RuIJZ9KDwEl7RG0E376bFitQr5VpOwzC2DdOVwc5Bua2z4/xQtgPrDbwfLZjO9P3zRHaTP4czoP+J7m5hEkkFoEALMK6OhlijuE0afytCdPi+W7Ehwz2Xj7cVhsg2/VoEknYb6iT7qn85yOp7OXhECW8FYWvHyQQQbkwr+XdLildn74ZnsfsokvW1LOSGODYKgjJuC6nMqGX3in+nDIjuTZce6qmySTBNb1kVUdabnaCyLymAlzTVjEm/KILCEz99bC6fIVzk/X0sTlMbTNZ6+OKtWsaCCs/D8CL5sF4LxZHPXHaLutCVs3zKySxOCj8bXeuCvJ+u9uXWeMcxAaI6VigVJ7n9lzhYo93aZDrXH+xDsCF6JSOIhH6hvJ6PH2+WGghrQW23fBNKNgSizOEIVd2PvDqRV25/39W6ZyiBw/tXjXZN8gj2JcWMYDlR5ucgONYrAomyhIE1s+2hE85T+4bvM7gOYNj3SQmH1OzRJ2o3r3J9BSQM8y3TCC1tf2687g7cSIpg6JVk8N/PJYUaRNIKMxTeN558esKpwJn2J3R48DEBe14yml8K7unBENH0zpC50et9bPV/uSYEVL7yQpRNhqmIrcri0pmSU4Q+XUyKioYUWleFf1fGjoPMKZCVvu3gjegKzgUnxOQychgBN9U5QNWTnPoRPMOzaaZH1R3NqxpMDJYeDBrKY1Yk7wPI4v8rxXc873+kyiLlh1KtaBJZdQmAnKH2LBMt5OqUwBSn3Sod7CIfXrCsUpTDhbW6gqzyMp0Ia8vgMQm6SjB1zHWpVqjrEbJT4LcihpOuHrrjSZTVH0f3zK5/63F+SD1OK8l4CfeYtSEwcgYhI3dnPnrViHiBMN1JMNz2AYSiGI/9YjO+lmEVap78zul8Qf+TD8taRI0gOKAb1lbtGL90RuuF4eFnNaXIVT1uTiKrXX7OMEHqCiLsjxYq/Z+obru8pxMJG0/QD9ucddzYPlMs9kM1H1x5N2tju2FenJEdthmxH+hYX7wy75/bGqQeCPNX1rMsCBJ0/goR5gL76WZGDfnD5yrwp6/dR0VNCQaS9aasoRlD7jnKqYRV/ZjAmcdBtnZSN7LcyqJzi4QzQzJwj2/REfXPapSUJzMcaQzWLh522qIF1ELcOd/QbPVQzryEmHG5ahe7q2cCyMvWyNSlvXMfRXHP2nwMWS9RkwnErRk2BKVXZI3Def0vcn6UTBmbOeMkQvZU1yRsLlg4gclbhxmLmqRsL4XVOS12MFlyJ5pPnQv45JlapovF43yzuthv45ZWWM7wtp59t2PTUHdCeMHwNfuj6dGeRl3G2yetuzWm8WpSh9AwEkyKOqxoxhtOcpBEkqX+st0cK/NgjeiYnbIbDCqK+jBHGgQmq9mIg/Fj4D1W2OqFG4ddMQGugtVEbFoD1QGjDJaR2QNzv3PFmf5vQ29POVYB8g/uHN2QGkYQfho5R8dm2e29ysCe7j9YXHBpz0ES9P79uq4kEYmCTSVDTmplS8jJi/Tp6G3H/RBqLKUJQ53wPYNyFijT9aQWWZTXB6rhc1DVrbJIF3NYWl5gUmRRahyydfcFDJmuzTmCUgDmWq7Aa2VL0nQ1Znw75dlwUO00Cjbp8/02O8U5uq+PpsHwVpAnShR9VKJxYDavqoym6JNZiYnxPLnmBWZglZm7n6vDmiXUEVCjYSxf96YPdr1pSkuc6cfQgA/wf8dN6tqJQL6YSwhgyM9l3Pn6BQnm9zTlfhrNWUcqdDq2v0RvV28QUidx5uPD4kbzSDCFXHs+rE4inKSAs4hoRvX1/U65FmIcCRq4O/+qjHhCOTQs1NeL7WaFknPaSSgEmAUItpp+JzSRJ32ORb/BWJ+jZM5JC8je5KHIxh7wlXCWJaTslYKeAY1I5TSFodkIWko2DaqPYWrdR5jij+xqZFXyP7oDjXDQ//yvM9lyeNmzq8GlfDy63rIiwGyUsPRiYDdi0Ju01ExRfx5j9Umxb6fXrenG14d3iJmh5Jj4DRIZY9VmKSFABsQw+r694CVhzsT/O9kKBm1uyUT4nUDGJ+PfJ6XrQEqyLlPIHHD51FbTr8DAhTZ7aYQVQhxRdQ2UI9uwG4nsDaQaFG02/LWRDkzT9Bvsw4eu9gd7LZd660gWXOsnJtKlUatH1qSRq23S7QjQS/rA1jHcPM7fte7JcMEGrQDKD9ysxJMR4I/p5ITqODs126IW9LZquDOYY1nUo1Xnem7mZIILlBkFwRQxr2cpwd6wg8gZgFmoHYE2nvCfwhPlPk9yAtv09h1vq7WY4isYjevQWnoZ2wF/XNBBB8prRMDEDHzBNIvzFZcxS9wsvJy4NqDwwl0lGcYYMxV2YiqzBVJRR6lmZnZzmEcoEdASQVvE/A0zPKq6OPKucTSzKotpasEdlhCusbDlNzKE4S4zQ1kPnhWUdrEaI1fIHaZYPcVU5trUV5Jy2X8t7Ec9if9OXmp0CUZy8rYnFhMerB6o7tNkgTPouVkSghVn1ZLtpn5VulIncvC3Wm7g9/x/wUUN7t/hCPesm/Oxankl5HoAlcRhAlWj8B/ernMT+fqY4EC3Z/pNHLCB9IDnXZTf/kcL/OJusT7gBVATJLzNVrj8V2UVqlPFQWRG54WSOQJ4qRT3DV5tdnQXIMcumuR3kq8/q/g9iSNb98avL5fEfj1FpknLoCr/xMJ5A3HxP7dL2RS6QPzsaNNH1REXWZR4XFn/123z2jT7pBLQoe2DbBZrhoJYVpFoNfYln6mEAizfZ0CIX+t2Ns2qe761vtxZX/qJDrhpSXvosh+NoLALopya9gEEet/kUn6jmNZ6WTQMx7Rv3oaRWMMb64sApqVuTKKZ2DYv/U85Ubs94yjdu+IgYkGKMQ5gCIG+rzr8EgU31X9/tK6O5LB3xwgh0G8valQ8NC8gZoeOm3K8Q6yN7oFAXA+afJ8fPKSmoglzQjsKf/WVwERgPkG6GRDURJyu/ZlTNaC/+xtUUW59YGa9m8Yv4DWYy8ERHlnxqhzyqF0PDY09OkcqGphQxzp+e69A6ZIW13kbGrDCfESnds/4DO3F7mh1ypt4RsEThUJBpQ3O8yXslorQMZxrwdGV7XY1goujfC3slsgAxzWSTQ0igEnm+U7UkgdgahrrEsJw1Zr6EnVLuH+PbpIYG5wmJ4VpLkvVrS+ab0400uu9SXxq3GMLQdTJ3WF4dllvN/jOifwJTyp8CxZXPGDUERX49PUzY2okLkpCoxVU65ZZ3DeWiIEdPHr2FRkuCQGoGxGE7J9JSmqBcE0RL6uLCPpNmKOmfDH9uNzuURUjjs07jq03jmPzqXJ7v3ZsKY4lx2ksRV1on/me00aWm83j4v8fabN1MuGy6D2Tse8/nYu8fobUVtt+v42eISNGxFufdrvRIKNQPrp33rGI7TZnw2ioF5iG5+bdpInaw7UUz2BwqABxRBmw7o50yOSMKn0AWDBjzkA/DQhLxdXiTnAAEoHUS8IAM6EjmqBmdrWxmRXmaDa1OU9lLeXN3LXOLj1oJiKVvnu6TMgGJlO7DQEkfct1JEH8WW8fVRUuoEidQ/XJnHmQtXKo2S0EI0t0fA35sVT5B+K96pdXRbw9MoOpIuFYdUNw1P2jWtgD4pT8C3ToJB+uzsRkSeASiEQedCJqAWkwNX1I3AI4AEcb8PhYZ9BaIGrcUOQ2jexkGWpBsf97VltolOPP+269ExW0FCGW2+AavIB29MyGTojCpAQ/oKo6KwAoIj+SaSURVHq52Aj0WsqSiTvvv7ZO/mefRildweGnJdAchVI/zZH1C7yQbE+HxgAFDCdDQjF0RAvq+Wt0emmSGWGpAiS5nWC+/9+mKUocFSzY6gFNiEXgJuKP9Zpo4Ywj4QVRI/UQxcVgvi1Wis93ffcHQ2li5YHdQvewMNo8U1+T6ZHoI3Nd42B671Xtfg/g29BoFneAbUjGYju0HZCPEuUW1gTRVAxG+GGy/OUc1wAUJ7TZelJyzyk3z85TDgqG0aEdULMFHXnpQy6oMggM6eavB1ft7MqZ0uelLcMtuCI6sXPTtdhftlEBgZg3HgsaGBvOepmhaJkxAZ0MDacMDkT0sO1J69Cp/W3QBrwETC3nIARtRgHP85wgDonLO6hJe4cTZR16guutdzh4dTybmbEsAhg3FYxedE0JHyfpp9DDb5QeTL9kisx+Sb5bbllokT3/EOtlNDeo2RU3P45rpSUdn7ZeJrSgQabAXBs/zF6q9IkzXlqdFTmqHK4jRW1HynchCKtFrQsKpvyGSkzYuFflUpVR6OxDvVIjAHcMjxxdrGrusHC0GuWkCDGl++H2aK9AUySO8uBb1jh04ftu86NujuYE7GbLv8FJbuZBp0EQiq+WuoKkNZP55ClJkT6iR3+4zm93vEQ4F1MMmZ6dGVpRp+rcAW2/nh3Jqe3XssSbJQVf88dOfPwde3SSe47OqPiVk1t5vp2q8YnhYbmzBw0q9RIaodP3ZY2Qem0L9ykUTaMJMawoluG3Kshuf2b/hKS04TYp/dnxcSmgp23oBNRDw6Ja9ZyLEGH25d2/kWPLlPhnjqMONsubGmLcuW7L62fglJSSteftRiWBeNukJAgP0s3m8l3dqG/RQ4rL/zae0jRXS3SSlYBmGqsC1HHfGsQadLtbDVTFpcTwOxVRPwsX+Loe5Voc3XgKNS6mtWzA2MsBeljQh0gdVg2tTTYwzDubIFwIUqGo0aYKnj8jJka2EGK8HR3dVZRAQjuBpw3nVclx1m+I+NxImMPCiBl8g+dFDftu+VvGJb5ZHvpmGlejht/R+9dfkFUI36tE/sYWA5KPBoiiWwjGx4dZ1XrDWdi5VwIe/QYyn1OsITUR/6PjgWXALrhw+MAybzRHUAc3zfifW/x7OwiFUO9ZROczu4NE0pG4T4mK17flzb0ufbRmjEm5ERDfDnbtVwjO5FnjAWh4EGfl6y7zliJLfes90VAZ884WKxnEXyWJDFBinwPEDSHaE/VVEaZV87GX9nW7p+hJIQVOmvw8RskVmh+Z+pE64ZcbfIFcTPxVQMLVxcEhccWz+CZPW5rfrJJZucYR/tdxJqriWg6CGvzYRZa66JFWEQw1D1d6Q+JBGJEkNqoUHh89teuKAqB2eMslwWjmuIi3YurHUyFRFO2of/bnqmRaTqw7+zaNsUYm1Vg6pC4F9s/oMSf13W+50vFdsuAcpDSWPw5BVv8rpk4it9J5lmXQsX5rF03rIRmV5mHtBfNQcqYZb4DJOyPAYc3kWiLY02F7Tf1ggfSfvfNeVXy234GYMNbluhHQrTqbkACKNBCWYRz8WtZbvbHHIej0MB3lcllkHY6WdceuiYtqRsDARC/AGJZLz7QDZTkgtVjNTOBhXNXv8R07rOsK2m7bhESaUbyW0P+EoQeeQbylrBujpJQoKbWh+vcT+hvw2/xLnHzg/8YriZeUI0TbzdQY74wZspWMJes9zBWrGnOf/z5cC2uh2Ls+/XBX4Vn2qqaj1NhjKa+VJiY7YRBTZEyoCZUUZ5cxGLaUiEVGgRRIXPyqpL2iVm2HOCWUu/SmMsxjWMumgrrHEGC/m6IcQ5qHv/VDyAZwNoMjQopN3gQNn1L4oPRCdwD+AaBDlg84SFt/YZIkqf9lyqqb5vuqyYuD3SQ/nR9micEQMBSarAeWHmJGpQ0kmPgconqLg6bT2tIt6QXycrL4IS10FeZXPCxSddO4GuOUdZilOXstsObMkV7/hDvQYoOBUfxqpLAJc+O3oOgjFpP4dz4oUZg1ZeHMV+v0hXJlhjWfAmrpEQZIz9GmRyxApqmanCz59sHn/LzsjuOLKLi/aQeDl/G4an2S9VOZQMdYRatQnAkWO0IW7LTo3FbNstKp8qXyYgBujAQCuHIRdXavgP9/hjT+3LQwZHy6zA+/hGCUA8BJO+dIxJwwzmo4HfiUCaRRf+dnBgrPjzE2qMRx6Jcz1pOhBSwkk4vdxcizI8L8B5+RDIF4JCzDyLt6/JW2ehVtqL7zF2LdIlpmBARywN99CW6E2pK45zYl2Kv0J0/jXxpvoawmWy/v9V/WgFQu3fbplYjXP41SidVfqpSDfgeQgOMklkwXx2KZ96+o5pUsUKI1XvR9rHtOZvYfw+9wJBuW3H4pWFNkJlN11yiIcIoipTcRGuuTzWv9GCxypJv2mg3SR547hhke3C1Zcy8LN08qDV5UzzFwI/KVtz9tOD8m8AKPwOtr8/T6zIGCifJdYuMZMVQOaU+UMVuWApZ8NeAiVbV9Q8Qg34glhpTP73Te0D52Y5jI2DUTakY9ljcV4XYpHIH+8D59rFX/94oQVZUJETXxYx6GrbW3HroO1Glj6/VYsgsSo3GtCEq56oX0qF1hoERwk8LGCIAv99kt0Vr1csOH0QpfUtHunKjeZk3udvGD3/obhW1tcPJ75gn4CcrCz1LyLlqcUKoED2YOEoq5o1X2Dhb6PajgnAl3t4VA852qyyLEhj23sVLh1mmRbyghd6gG1h16BcGdjaeP2F7dIdlQD8McuQzQv9gy+BWTJ1BtCy5hTQXghbc5jV+QbIlPZ1E4i3esAotPi2GUhMXpKJ2+e+OdkItzjFWAOFy0W1s4pC7m5NDaJ7O/LoxI5KMBTaV7uyPm+964KRhmjZJmYbwVj68WDI8NxFcWvvVN0PBe/4o/BdvAdEQqNsz3bdmPRUJEUGEkQNWxMEvj9wMSTZAT2QbmOK4IeTYrkSrdZnklyHZuuTBTN+aDYiCGGUbP4mo+jGQXdHGiX9mUDfZioM70R+RvUKR1DcnXW44ftpJSFqLBzBiyBbuWpRViz2jYBhOWdolLTEqyI6l4urzwPnKC16xueeGWSiQGBVUde7fdHgt0Q6Ae/vWtJUOm5z3ivp2rX7DIyfMWcEyjnRDzVravdkPCO+qk3H6VX05UASWzXFBQSNvGs24s6vf3SElaI8NjmQmhbBCdROwO6vaIlgIpp62akXKw==
Variant 0
DifficultyLevel
575
Question
Which of the triangles listed in the table below are right-angled?
|
Side 1 |
Side 2 |
Side 3 |
Triangle A |
6 cm |
8 cm |
10 cm |
Triangle B |
8 cm |
10 cm |
12 cm |
Worked Solution
Use Pythagoras to verify if each triangle is right-angled:
|
|
|
62 + 82 |
= 102 |
|
36 + 64 |
= 100 |
✓ |
|
|
|
82 + 102 |
= 122 |
|
64 + 100 |
= 144 |
X |
∴ Only Triangle A is right-angled.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Which of the triangles listed in the table below are right-angled?
> > | | Side 1 | Side 2 | Side 3 |
> > | ---------- | ------ | ------ | ------ |
> > | Triangle A | 6 cm | 8 cm | 10 cm |
> > | Triangle B | 8 cm | 10 cm | 12 cm |
|
solution | sm_nogap Use Pythagoras to verify if each triangle is right-angled:
sm_nogap Triangle A
| | | |
|--| -- | -- |
| $6^2$ + $8^2$ | = $10^2$ | |
| 36 + 64 | = 100 | $\checkmark$ |
sm_nogap Triangle B
| | | |
|--| -- | -- |
| $8^2$ + $10^2$ | = $12^2$ | |
| 64 + 100 | = 144 | $\Chi$ |
$\therefore$ Only Triangle A is right-angled. |
correctAnswer | |
Answers
Is Correct? | Answer |
✓ | |
x | |
x | |
x | Neither are right-angled. |
U2FsdGVkX1/6Qedap6v2uSY7C1fZvUZcpcUn5mJip63d3yNaQupurXco64cNDA9RyMOQ1Sd8gVi4vdKQO0aRiMQxorRy2T3fPqLpekQHLsK/wETFazgZq/bpu09Ve5ylQVR1K/8w9aMPWKPOF85O78gKfxrvLSFzESNYWDsYEohLHKMBydOMp3wP4gq2ZscCLGZZEr8aYf2pnRAevJNnSjpjviLFWIPMNw5EmkTuXi0OI41PyyMD1ApF9DFWW5DRoAu4L2DRGLR2uNksCSmfkcY3JL0jISmc7ug3MooYqk8wpXNN4qFGh71tyn/yLAxQVuB6/zOq755MYIs48U2hSBreBl6F76LfITHi37oYYQimxvlsUmoDu+F8ITCvgHsbZO2OiHTZKWU88l2RUZG0bw/2gBNT6OozRz0cvB/wkikbT+pCc63B0kbjYnSNW0XMKRatYZUPgeFd/Nk1iFsRLk3vJemt8oRowGJKQX1N16P8VKqX6RtYno0NSkrRr7H9/olhvv5f2ge/jlLEhtskoBQFzNCFE2bLhqFvtXa4ClFJJTblagsZLrPCArEPi2zcUsrpPMBUQTLLULGr7s9OkCwPO6ONY3/Q8NdIP+riAN9Jp6AvcA5cUqB8O0+x7hOOSa+4oGpyMqVIhZuIuBg4PvnfevI5gkFspl7+2lD9wyotxsgxYjtxIbYENQKGyzIMv+ElNHxxM2rfNYWGKvlzxJAypj12K4Gss4lQ6wqS9kLo9LDg4fTMN0eFNK3hSqO7EgqTPVuMAkTcjkVmUW2zau3mm2Ll7BU4uZrn4WIzU1soD3Hn0/Zk26MiBa+VFps2ajXRT3Uv0bBFouZNXSC8jNjHN3u2Ow4SYBwkQrei5Twu9FvN1tv5MOeEojvD5SxkrQBNmRJYTrKh6JnKq0XHWf4p5+Ip00tN75jq96VWO20Vo5lMKAfVJfQKXPVut4SBqgwunxFQgLPrJZznM7rQjzfMPrhluHvNPM0kP6ZlA+XdLKQnsPoeEhyPjdAVdUnZhS1zJfnDFDtUY3r80rAHjOxw7lRySDx+WBFWdt++Wdn29QjmgqkSJf5S2LnBZwSARfxgvpCre43gqwZN82/cINVnCxG1/lqVNsjUHunfEQ4C7dFBME5teTWl7ZoBvZWfsDnMG5mtVyN26GaCbwJcwXIYF1vxMc9d2ayP2qMbmrhn9WKZ/g3REwR/kWAwOxc84WLUzVqjfHqDr2drxWFmASCNjn3xVwMF/+jGYLVP12x7MqPWsxH8eCE9TC68YyRaT2YOpPpx2gbd6ubQgCnijKLMFuUh/F2yFCoKas90qB3uyTirt+OBzdLRKe+JPeSU5E/d7lg+lWa2imtZ+ZMBeUVk92JIQCWk1X5djRXHCp7SSvrjrVAuyOm3DjLB5emz6nmtekjeSpfIWBh/4DtTxiQpCb48WJcxoBMxlzisAD1J3Fi/91jG9S+NksCE7PQ2DoD8WvoX8W0KiAMOzoOSvBb5x0okwHLoBlJ//7dWq8gFNyGdL1ykKquiTQWRoTzAA9hhpjGkohcsXBgLuDz9mRqe0TuNUUj+f7VwVcpWR0Rg0kqECGhUSLfQvMC+ahYcKWffxDeLHxJCVjNqBosNUiVIm1TjHYrOWvotSKtSM+t6WD1isPq+7PO1kjHrpKuOpzLsRQDBPelC1+XVlIL54gda6EdcLWpPg2HX04LbWxI5qMYb5Hd9IRwVR3FF5pRJSMljwQUSsckNS+WJPKIbmkS+c8m/iDJlvFjTSNOYhGLLaoPCpmcyULoNnDXiCXHeQ0nj9WrvBz8L4SDNs83ckwY8EVerR1tjYYfj5DCFzl3rJA7LuI49S6lUr6IMhUZE1Sa+RWRW8bDE4L6400fKx+dZcJRquVrQADC89PrEya5J0DyQoGq+yfUvlSPI0tHDxUff9Ain0BQmNnHEsZM51MbUdNu5eBR9Z6J6uaBf+X1mysScwIN5LpIuwqIrZB0fcdKdBIHOK4lt+uhMHs9P3UlZyBAtSYmYcRQDKRG+l8qEYlspzoOYX2Ift58mHTuwWR1edaWZTV4Ro0AuFx1Mjr5yG7wLjU8e7cCh7UBzx+Uc/+26WppoYg7GQux0ce+hfDlPAmPaYfybAQGRYzuLFPQ7ZVxanUQ0Uk/EblNJUjpcJ/LWXtloUSsYEXv7Nxm/kxZrctsX+tYfj6oBLZIxhh87c0JvaRpQiCxw15059bUn2Z/WuFi7SOeMidWwtb5ZVzd+Gp7Gner+Kf57fOTNQH1/oBriqqde2QqkHptmN4gKnQuiSMusVY4r2Kb8mT/lD0cSAVVZ25u0LLOtPXhZ/UP6GJQFhlTNt+a5WFCeyGHcBVSMzB9H3vXPIDAj/GvZzx19r6fw0hlHIMmzujrWaVVTghsg4LY8vNR4nTg4C59KuIhLqGvAnqr+zd+eqUASIYo+GO0nG2RQh/S9aHliTzyWL+5mvGO5r6dYn4j0jERdUA2GfUIoB3bxxKofmwo8AT2JUzw+aa7W4+Y9pAudbpZp/T+2PIY6GqkuVTiOJ44ajmsqJrqiZpdPqaFCKYE7BM3UtHj1KHWNb/D5VeJOnw6DZKJWMf9h21NPc2qrte2jUvGbM13MVg1iJFWUm9kRnoY4/Cmu0h+e4k8isPR/aJ5rfgbuW/QgytxNAsGmifvKhIisA/WxW76bzGKu/x0qpmPu/kdPAye1hXv6MKK5v1L6Qvr+vV+Rf4UB5Mz7qJ7clNQC//Ir/YZ0T3tMVl8RHYHDD87E0aWRYUkolRLh+VzcvVlKCd8apwkYlrSjQ3O8vwp6EsY/Gu5UvXG/5L7IcuKOY6tUaM53jIIT7gFUwm9HNaJ7T7gxQg5kHyOXTU9laA7ZhDJ3iW8TNsluYMTx+0VS/7SNSgOPu9vNuxwgldtDC3qJu8+GpqcfxD8VFsIVfjnaNq8s3XyGArnlL5pR0yCGgy53xNNtrIVwQPMPgALfBvmcKANe8LLqKnbHgYNUB9Qm+ALOl6QOA8s22tW25m7hIiX6hBJ9vXB9RRrYloTuAgtzY8dmmUwNdaZYuB0KQ7Y+3bzK4KbPB0EYisbhIZhHvLGy4Vf6zzhDteZUNiHZUoGbVbf/7iw0AzeycrtPnVgELI4D/Po0XtJ9nPOnCTgdgsxVjQ/9pzzrI4m8b/rT6cSIj+zOjiLFFOW+1rbkZ0JcHl7IDP0Tf4dmkAIZuXVzzpC8IvaPzCHsGcdUI54fmbiswwyOiPb/UIZcUjcJD6uQ6Oz4o26aM97+O5XUkYl/Z0Xqm0fGAluGIOy+D2+6FagsHRWVya0tDrawFBHKlp0nODOXeKvAxzEJ/PIy+Ea6XxmyIgG41SHdpX/9+RDusxBo/B/g3gaTnll60foytieDiJpvDI8FuEhGOTkryq4WDPZ3bxzHlsGUncymXGagNmg2Tqa6M2bFFjvIXNuKJuKM9j14LoQ/HDG6xpqa3TvMYV8vGy1FM/K9yQcJaRpmZZ5nSWA4x5sPYoumKSfzKP2auidMKMjrRA3g9c7Kc6iYqQRM/NDcya2pjHf+bTeEJRRnzzdyrgy9mMMnz1OCkOuHZedciBUfflAUY4y2y4DGr2E0gLew0X0voED6zzRsS42+GxiH2QiIHlxtLgoG611XPALzZPBeOkByaxgMdlSR+69lFoC7/3OZN/200mCLY6f0pKxq181q8uyhhU22rCWBGe6q21JmRYsWdfm5IBMkHuNkQrqbmhYHPJU6ciKto5Jhv78KLzo5WVS3uK3SjSStmq1YgzfgGgjpkCGaRYmAcvJSOlGNJV3fWIvR4Do2hl/q2VjZNNFXiC82jRdU8Jl+5gt8Q/bLzOO7yTtnBkxNFvto3aWzhtnJfbVWPtZHoiGxiBZDAc1LoWuPMDUhM1pcvyNjKEuFCs+RwJx+qZQ1iKArmYFgX4Ii4sFV+0g5RsgAS5QHjNT6X8ShvDdULMwnl2gtPwHbaoC9YHqmyxTxuU7TgV7JHzPGBivBqLWgC3XVlfTX0/4tlcsUA8DPrM82Z9hn4jAuyOcfxZ/MFNPpHbLCx4fYrbvlix1qG0iufY/znKCxCa5P8sYlSPsfWBgOrpC/mlWxZw9d6S3g969hdJnzQht/eem8qIdSjLZ5mGQSvyqNeJho5rSKf71E/FKAhwaPIllJCLA5Mh3UuK/HMLPf2pVRQBSSm3nZws35Fxh8o2x7JNHYk+R7cHbTr6b3PzGIZaO+pweRnSgr1nV7+B/zv59+xtb1FerwPbT8FWT8N+xVDx/JCITGd2MWEnxkNZMcVV9joqzgFGy5txGJvKts3I7AZvaWf6GT9Njym/w2CV7Kl7AxCyuNTLFeZmsK4JoMjTQme9HaJ+p06DJIblNLVzWqTvIidF+WuMmNSc/7v8zKjSL2I4f0VRajNX/3sPxJKfDXfstcg4DvzlrY4WkW87DozuK/yEuNc7DkJopuN4ba11O90cDE17ffd0TFKiQiUU3jEErShSlW3yYHslhhN5O9eCc+3uIX0BOJQUYkM0jrlkGl0Xg52JhzCjpM8rwYIQuCnbHXBhDh70MFaupv4bUXXVjz7POx9d+VpMhdi78dXqR+hvzzeCXaPxzo3aTuMgL/I09TSMGaStX1M94fH3DZhvQOSwtzN5B4ADisiAiluVJaPRTTNVFzaacAQJsc7TOF1zVrtAuzl73CONzldxO3r1PFLg3sYkXovqKDvw7nwj0UcBQsoSTi6PJer00QY4exU6qr0KySJnlUcfFYH6jLg3Ymn/D3e8XgJzxk6L1y7CVT4AYIwX917bwdPWc7Y3PEQfMjRIfoLzexOJJDCC0nkWyYYpxfYBLQEwpSP47s6YZ8tx3rRha6v+lgmskJI7t6qCyvCUtoHjC1r9oezLcLQrLOuI/Z1lmakllZiQG7Po2G9V+NhKfywCr55EhCLlwmXDeX7y47sd/S+XdO/Eh+XkYFxtKubscMkv28lejBaPQ3mrDZcdQxFJ2woICAZOv8+r5uIh74QXFtvEraT15y8a8/SV/RksT++l2IDZAiws0tIIN3ioJNFwoVGvQQ56q5aRVaXxhGGjcFJXbMMUvGi4TduQUyG6v6M72fVIIbgaWnk2dPs5CavkcF/Lr6zS1l2y9gmsVUy+9qM0q6ykz8VLu64TQws5b3b0pQ9lLPFLhn+YufSLFaaX5XB24xWJH4I7pJyqifXF8t0/ua3yH62ojsTb67vJrJ5rXJuDrPGavFZnMqfNrOcfx1sdlDQrlYoR6smyyR/MhNuNReDUOL4MAM2o1s3dhrdjkhQMH/u383+JzLHVJsa9QIPc7T/OBUMLrLjNkOZAWgiQqPxDYg/HYDfqYSMeNhcaUHJ7hQfeaThfyHn+/YRQ2EtzoW0GIEkJWLfRymVXXcqP0SkecK2h7ZI8Cnb+Gzd4zNKwE/+UZ2VDCuHXR7+liRT4NzitTMqHiJKQB3o0pupcH4kTaBAtK19ISV6mj9nEOz8uhUg8WfN1O420cqb9ozT+Xz9pHDnUj6TRJxPH8Ej8UaIfYCn2C4ua2tGvUe8AeyQlkSgqomGP3Quo3tCEB1vJp5AHhaF4WbjemeAmLaTQLzwiHafHJFRkqblsGUDp5vwFVJ9boZKLqFmE6+BCmwLjqsHld1YLqhhoj9sZ5MmWpfd1Qe8c/l6J1jfZEXb4HiQxtG/taCgGsmR0lBhzeUOFZwvV9i5PpNroRbMshIMIwvdJ5KWaCiy5C/RYzi0zJqLNL3uo2FpG/AfPzY68VAE4lhkf9rZLCAfe+J7yCoKVmXL5CVQochmkVckya6crfDCKKJS4rTUl5L5fPJA6YqFImAm4d8Kpr2HZ8PDIrgIBx/px4o9ceCO1BxTTvmuy0ZBTOErDLa5GUpn0iIsP4S7e3o7hT7tJmqGwpe0Z32z6JKHBlXqiG1h6kwK2STl2peQ/OvhVPXnTvactx13CV8G8j8FKER+3c5GI41cg1V0xRBulQ7oNQVGDK6xsjTY0kGG+A1M9GBvY8pKtpt4farxHTRgVqguApD8LmT2HvSFvDhfMTsMTeFfMD3fvt1TSe4D6PvsTUAj2z4PWUT02C4qNdNndqJrMIsGmQp1nRpp9aIEQDiVf3l9Pl5p+vbjff2zp5+1ZReQaNcYT18zMHQqXmCmFcIthC9WzQe/vaNQ7m8PBRbLOWqUWfzWjxyNzZGSjVufG8FP7x0pXc2FMGGH/DLDfob0D5bQFqohJxzEfy6ej8wER5f0BjMOeYLTsXkn51qXAfNo2EOVWlL9jkxIw8IpdVGhWmhOg6ft5Ioasxqy9/MGZzbjTfeGRY5/7EXWXv2AZZBO+KBakbUsmP9O9yIgzz2WnxKKYaIaz17XP11CRtEYoWz/JP7lOc4bJ0Vf0GmJlJRTiOSQ/mkf1JVSGXTRMrDUZ7NtGipH1o0Z/uhb2kCKaTlVNYoiCEDEAAQXlSDyVQB4HEe+GX4QbvJj6eJxkk74/ohAHko4DeGzcohAP9+pm2GPhaojo4DuHTYLaeNwmHms5rm+nXHDlyZIkLrPTQL82pEWTxqyhvTZTphuuHpwAQtZpHpRxg1PLTPd7DuynT3UiJwfeof/PeqlF60O8GUtTOlgLQx8pCHLKOK8kG1ur7FbuT7qaQnEB1Yvre6+O4SnCUSv1LhandgJgg0O7iLFwYkSHV6s9eDy2jGVIk3cfd0vdbFNWH4kVHhxET4ZjCsAYVn++uQxi7bYFLnJYCZhcpB6K4BZd4UfdWav4++fSJL5s3vFmmTngKv+llv93GDVIL5eaGP4RStfHBYxccIdfPvMkdgSeHJ1CCGMv9fewntP43yHeiyeo6gbacH4lQjSV49Db2yu9QYC3QTVxerlJpuseXiom1IXwX7UKrZmY865YSn2NGrGxt+r8tq66aR9rX06Ussh+IrQMSVIkBO7coZNCtB60mfjVD1OLCNew/P4BgyQd2NVq6Oe494wphrmyfWUrTdY6amohIUKumUUCeW5AXfirAXD1FMAouTrpKNNdjwp6tkZe5IWHbeUuVC3pP0HFB7JzSodTK1SLyQDA1kXu43c4VuwVt3tl8kSNN0sqSp0e0Xuf/bBVCDr2UBv5SrS8oXFF1RRq7Um8VrXcvMfZ6dCyR18yeY1Pi7kVAHdDFSYA5NxMTzLpQ5Id3JSD+eiysb26TVpOlTJEGs6xvkueJqAR74h0Lof0iuMfJqQC6aTaCvHm9TSY3OH48uONvi3ebKC/+j1sNjCBXZY8UBGWDliAG9TKxERALacAmUthmdqDxHpVe3X8VEAo6bAAfWHebKch6iepm5/q2EC617IxcAHq/+y6Q6N0UDGtVX0e0hAQIPMyB/SxV6h4X0Pav3GHmIe0zB9gjMY/h37zdot3aiKvEx3VxKUePWUJ+namqmX7QSKlNXgWzFHzt4/j+S4PRYWomgqOcus1UyBDaJSVQBHJGidYUGj4s5hEAfvjiYlIWGjNot4EU1KbXRqekJ3OpLa1OETnmEVBRui9qy4tk3cu8fqyIh9ClAl/v8L/ClPcIQd8/9xd61KzbgudYRPxsKwQiDNMn7Y0FNAoZ72fVqXiOb1tOvhzSnzFZ6F9sTjS4SMSWcdYKh1I/jUKuFlzxTuh2qVH6sSRrGn9ug0BjMTXjSUNiYZLy9x34uVfDw5FoyVSD+5O2TipiK8SBy09hIYBkDrB3S3n9t0W87FK20m6KP3J7LjzqwyX8gXPnUFZJaDc07nZBLxiDh/S1Sh7vOgSTw3MxNmMHqcLGlzSpFI2fRORjd8+NjkG3VxBfLndXCrVPROzk6DK8Bcg0ewcRs7z07/qztaoVQOIIvATp3xbEf6ZgELDkbmbw+VDVb7Um6ZGvjOUqXWV2q05cxrMwg/7T3cKj4+GpyGKxACAD0X+rHXiWxfegRwZdzZjp4GNPG6nttSRIrEajLSqfkoz0l3SMnDQMsZKQZJEUuJLu9UEzJ7LNSKhFwI2aK6WFyMrDmMa0jBOi0F2h/wTa67EYZKJKikxsmN5cXwcklH7wVbS9pqcMbLQpP/OM0+jrcgemjwHTVI28IbYXjygnwUkc6AonG4yXGTRKpvh2z+hzzla/gjpFZ03Ji3hYjNryjWus9g8l0MK1LqYbJLvaZcXnid+o35xPaiGqQJQoFQVDhbEMhy9wbw7ZILG6G+PXFYSVUBW4XF6/WygTeFGrWYLMzykwqopQ9b/sVn9i0vOdxGlRkgcwIvSRR0k8fU0lS5y70cl4bAEjduNyBiIFQXORgtp0XDMxJf0eHauGeIW2TqRpYhV43he2UUqt18DR6shGyI0mvE3fbrSfs91j1Jv4DUnvOjhOaboAXWmaLfgBAUssmNI2WBCDv6iRGd7y93N6cTv2jtzNQpO4b36cxqFH05SaagO7bYrXB1AFra5khU/qD2Zl03/o+8caro6VvwqqtPGdelCaLk2kO/bV36wsH/oRKavJp+2nccJc9JT2KS9f+/NOThufbeG3bR17DUOWS28a7p1xiI7GMXntwe5jF4lkc7+nwzW/k1O/ArVaG1MQIT3f/qoj7DOqV7YDHgsQkjQQYtdP8sLOue0OACTRd6UQ+qYN0a3dYap3xdwBmshhSxK/DJSlL2A7m6l2iqQq0FqfhlkWhd2O3i+n9sowaSs/ep73uK2RsJNJtQ2qCos2k5REw20oZpAnzCZfsKyb/0cUsRVongs+NqJfBTd9PPJZ7RL/3MtJDnEXs6IGfl81VgUUXBRdh5Iyb2j451ErnIowcBWx7AG5FAFh7vpTta43ovMpHwu6QjqDkBNwFTA953cYQ8HUMBa+2c0W1oEakmDMkZTCuFauUHiSVidcZRDF6KxgaSoRNW1ppFpqb6nsNmt+VN1sqp4h2qu6ObyRoQ+Lj/D50i8O4PN0VOZzYN7kN/piZs4RyRTY/qPy7viM07qtI3Yn3ZfsuCv97att9tmd5+c16TU4F7zou8HL/KXi1tNQYV8zf+qDL8cMG/B8GEieYY6oRu3bQnR5yxptn3/hU6q3CeHi4jYkx/hN2FKRLXl+M0f2XzApeoxJ5DqmB0rGRHqZLCVzd/64boBIMneEz2tdxP0edWPtyYk6LrYOxhOzBjR2qGg6XJB+FQnlk5BGqgP/JOQEFAJ8udJWSDdjC30JtsQP10u4esVjj5f6LGOXv9RKjAYTw1mq6tS3sgoATgGgJL2+lGOSK85gZ54Veoq++cULTUI9UEOz9/H1Hs8eL4QyY5atbQppGwJOVDLZD1SQYv/gpVkaXR6rquzvn8G0UWoqQvoTE0pDsAfPbFP6tk8mpRYsp41X+Tpuj/JXPohV4od1fxw19CI95LlKHGcnwjBMC4cUC9mK/CdeiwH4n2AEGp6rnh5EN4Q5Qx5P2ZHSPNjBT5lpO3WJ0XF5C4zfioH2Jqspl4fs2MC2dJvgXaxbV4Krfcr5hn8+3k0mL4gXCgnC7ZNU8PA0QMwv7MPjMtf0rLGwp+GTN/wqV4pkzzxHYwSAQ7ik2k5q1J6mLuT+9tclDlzFfOGIvAUSOkooHYqWEgvNQ1d9JjArLa5my9HDnN7HNgPijd9W1MGuulIsbddalpuLndvcR9819RHA6i6YEdx7dTDYE7XPRwI+F3lSeeo5hnZfzNvpK8aEbPSOBR9thhkO/bNp4k1jInmJt5L4cC6k9eI63M14wdIsecnwcsqmK7guN97PpMxD+D9B9BWhK1ozAx6gvwJ71q0x0LLiNXC3hq2AkRy4gKKVUSDh4VgOWwuG790v+WBIfI4QuLXPB9+wXxoHzn97ccKHxv9l6u+05xQYMuSh756kM1Z/OvIAwcS3pLxB7nv2ODsyJjvCUvm36uxasF6GoxKJzy+ttX/Je8r0sDgNH4G2PvN3TG6pK0l6Lc1lW4vReyp+rlBOcPhdm8qPGNpUrOL29pUNM24azghSej7QhaCRIhRYtbzFKNZZSTUNS1TVBXCTFNSfDhVSoR+xpdO4cQQH17Ke5e83ogMH8zEqR8eXDzsPdT1a/Blj77pFtFtWcsF4IhqUeCiW8aP5kxKYTbYpZ/tv48iNWNc6HUU2Oo8fNXMxR3DtBPfRqKN/wg1TuHC5COacHWlhifp7J95i6i5DaNj0SEVJHmsuzvuUqOajEkZerhzytmr3TdBvcfWuLkAVI2ioJvbK9ExjsC4ly5pbZw8HFYuABx6IZnpScUR3xcoorbtEEgrOwSeMWLC6wpSZZDkvy+KjbUBeyKNP6B2N2KUeYl+qY3v5hoE8M7jYujuquQ42NJcp2wmDOnxNrTtEzEKITHIpGKqDWktGqHNz5Ns2EObYyoOwV3s8LolsHounPWgx9W+rLQu1LUYGwBDaU6OSjNrkHNf1rLvZCECHVzGdsUGNQQM5MCunzLujIwgJ8idYPkEhSYVxYTkWs4Mj1XMMQ91gq4oOVxZKoMGvCc9jT6t8misyiadaE/RYSyU0PayKr9aGzU7NDUIODka0roKUDJMbSa40z6di7moNyWZo1dait8F73TYhSAIANz9Q3bS36vMphiMsl7zaDTqCXzSoh9S439oEklbLMd2itRGoZnoRRxe9Fym+htdLR2JM11C4JOMEbbAdS/A+dz79c8x16qgpEDsIoGS0T2hZe61kunYBlba44EOYUNpPu12DUnpNs1H9VQnzLjUH+1wxQTdgPOn9pGaQrfWyDInQII7GrOhN6w/ITQ6kRD108AtPFNAJWYoYXoZRaqr+9k7hiWAcJ4X0VPq5/FjhAL5lyYEo1c//2dLo0YkXp2sNQwvz4R5ymUIFO/+iT3vD0t+ua1YKJnFb+aM/rBL57Qs6v5GDJQ41lQnF9KAI3OHNI8+MUSUW55uNKTbnyBYnufAly+A32nPGYyfIOHI3zvp+461mhPBnsDfcjHrcTnY7l5BObKDgkOIJAMUqCfXy55tvhRNpTj87qqX4UyPV4UrW6lvsxBOWRWb4IUxfG1E1ywLRHGHlqvhsH06Kn7fgVA9zqEPjJRO/zC5BGCHAv1QW1TIC61cam42fc9fr4yf78iP3fzBUaIF+jLwlnO+9ykTW7fH5CYbv1zzfWlbA1zGPp3D7lIhnFPeQoENM8WF6vg6GO8xIy+YCl4Mo5w5nIjzTpuPszg65ZpXzNC92LquucpXLT5MpAV43HztwUlfkqQm80xiFWZGIy172cOOMRLi+El3SgPdwLDaC29Dw2ooAorU/8Z4+mi/s66z4i0G5PYp8erDNkOVj5FB4GTgYXVtSfvj0hEnKIp5DxN1WHeB7rwf0FAs7Lpbq0aH1owS+HYq2QocprVlmr2ryIgy/RrTQCzAwAaqpiXxwaU8ttFEzfR+dXm/RPw2zziBlxFu16v4j6AwVP1T4lzJDf584reAgVp8Bt7aKoK/gNBSkjAqTQngJEqJnjQ+V4TeIlhig1O0O0motTsVWoynAQyVpKPFsCUYtcWh1roBpulnzF0EbvxjuG3rJHjhCWh/B2JXucZ4RktwJpGWZZtQ5Hjxt2APwFoxOZ1srS/08hULZDQw1dhQL2eHbGofwZu5xx3IaPRgRTkCN3ARjI
Variant 1
DifficultyLevel
575
Question
Which of the triangles listed in the table below are right-angled?
|
Side 1 |
Side 2 |
Side 3 |
Triangle A |
1 cm |
3 cm |
2 cm |
Triangle B |
3 cm |
5 cm |
4 cm |
Worked Solution
Use Pythagoras to verify if each triangle is right-angled:
|
|
|
12 + 22 |
= 32 |
|
1 + 4 |
= 9 |
X |
|
|
|
32 + 42 |
= 52 |
|
9 + 16 |
= 25 |
✓ |
∴ Only Triangle B is right-angled.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Which of the triangles listed in the table below are right-angled?
> > | | Side 1 | Side 2 | Side 3 |
> > | ---------- | ------ | ------ | ------ |
> > | Triangle A | 1 cm | 3 cm | 2 cm |
> > | Triangle B | 3 cm | 5 cm | 4 cm |
|
solution | Use Pythagoras to verify if each triangle is right-angled:
sm_nogap Triangle A
| | | |
|-- :| -- | -- |
| $1^2$ + $2^2$ | = $3^2$ | |
| 1 + 4 | = 9 | $\Chi$ |
sm_nogap Triangle B
| | | |
|-- :| -- | -- |
| $3^2$ + $4^2$ | = $5^2$ | |
| 9 + 16 | = 25 | $\checkmark$ |
$\therefore$ Only Triangle B is right-angled. |
correctAnswer | |
Answers
Is Correct? | Answer |
x | |
✓ | |
x | |
x | Neither are right-angled. |
U2FsdGVkX1+lE8BUSqpl5a7SfSGF8bPnkj3vvn2gb0bswp7h68uz18S3Om2WaQzyh59ypnhtgD9F7MeZ6TduIrK8X3gIUv2GZdwW0Z0lVqN6wdSyHazDivKzmdRA9tgrzmXRUZhWHg2lCntKy+3NZfYPYi6c0BSJkXch/cgYfTAbxaMc7FOVjjW6Y5VaoSPiN8JvF9OubwXUhVXN9HD2qMnLdSfXSzj0Gg+gLciWyxt6ZxP8RnAg31AoXdDbbDHbNBh+qF1FcFymN7EEkleeZPnWiTmmNkjlnkXJmVLkFpRRqUEo9Dk5xbxC5ywL0lex69KffUZ9DFC7AWEMrowVyNQHR8NWkGghVlFv74vc361jNfmHu6sg0f/K2jGf9X2SHxXlJGF7W5pADxP3v2mayLjSSKARkeByZVcZ3lhdxhG2tAWBPPhYbxvHOgxxtatpe2THbCvVJWZtuAi03XxTYfzyVdhVP+ZtzdWzavW46oS2JrnPOyn0GGX6ShXPAB4jDCMo8SYE/p1wnx7avLt/xHJfMQt7Fbj+o2KlCZsAF54PUPWubokwelDOVdCgXjwAbLY6gh0tjdA9Bju7fEA5Md56kRDCSwXGbl+KmA4OL4O8SZlBvVFI7pgY1ZlzdWRUXa9J1UBcuYYC+e8yKblRYGR/bzK1KhGkMXsbM5fS/27U8gLYtF0hGTr9repANJoesHiz87QkMuKGoS/uye6tAGYqGMTKrOLfcikBAY/BGs/I1V9XzuJ5rGqmP7ObOQ/lG1u0wyRm/fHTbyecJd3zG1b0gb68VbU1wUgxpEWOpMZs3531lNicjaQaYLwPsjxdhT3c97mFYOHOGMmI5l7zhhj90AYWQ10peS9LxAll1wrzgbaU5RXPQJTjss/FbFlAVUkKpPxeV2ZvVHaDgMEVLhNZG1U2XTMkWxeUgLK34hOIAUeMr9Ck/UTe1pkpq+q6gdmmBVoQ18v61YCyI+qxbhKqDFxeqvxLVLy2WJlL4qGroyk5Kq3tu2q9UEofuiz+sK7RunbaXoFK6MxqRZjANkizaZ2MTHEatAY/LYQkEYu0FTWAZOBup+R9QgWlsl7U/Uohz6xFejBJWrtuaMvPy1Z14nxgNfejZ1cGuJgzVdB93UgfpT4BDmfdtv1pttW/XadsQ/eRt6dY/St1ia0F9EBPlJrHwbAK8IRUV3dH4h1uyy/1nRv6mQv2W4VEUywXGJMpSLaT66QMCN0WmZXf+TVxXg56NrHmeQOFl4MkilFuh+PB4y4DoTH2Q5QKtzVQ44ucjVIqgg52lgtmP08njyx8wu2mgxgSi29o/5SwacltY/4PyNjjfOSQmLE4fXEGUecewTZ0oTskz2xCUaXkUj/apQKA6Olu8dSM+z+FUznGUcuGHPEBIrNfnqOipncAirjvUYqefLfaFs0aCuSiK0wKCfVOZH+f0B67x73TP4mqFCgZ6zLKzz+lamVavVnuZ2fC0qtzCOoAxrVbYSX7M3EgcN7tHDhM8/EJn0oaVeMHc9phbOIOLSU9I3OANG/8peE9ydxvL4EsHxiJTotfLRI60oJTEvRP4urPupe0jTk6PduovKA+s3uYpaFJdwDK2uxC7K5IysSH/qeqeB/I3wZRB4WDnv/OOB3VCrVIDZYwN9dZVupqZJ6uGd8ZAu3eqxiWXV1j1490SbR6ZRJJ61Qsn8zr5hh5JZ4qhbj1yKlRplxoHRxnVI6un6ugb1xbgecWq4eAaWpKvzvdi1hGzwZlSldjRCqqUMy3CgwTZoN234RfcZLL7HXkXgCvGvueVF3ksW6s+Rdm8XGB7carSOquCjAXNJP53tON5VUvXlr82ap6KZZ8CfG4y36hkSJjOakG88n3xJwG/deoeyIweMUMOE0gVZ46sHCqFx9Sq7FV3VBHBcfAGsua7ArhsJdEy6p0AuIQQIlj9UJmfl2TkzGWWwwY+2c1CFJwznX65jIBZuMulinUEmxapFswfHEmHb5Yo5vjyrkeOw/XVIuEQhM9RjS3eg/UaGBUzIwtC4SPsE6dpIDpt3oIJAMOKzcSr44kU9753BVWLjghf24hQTGJTpYG9dVMXIc+MJHE+iPLexgJiVjF633k8jG7I5+QQO6ItOKmy7YUg+h2OTcAv4trol/5r9PBbK29/MmlJQf89b/cyPG96zO6z7TX2mRRWkYRpCqRK6/0/m9dGVszZ4yi6LXPy/jxeGr5IQX/a2XcBWkvdvkZJ9witOyhNMyf4G7OuN5+3T8agOLb8NT4vcAg40xLOSYxfpw+kDdQ+Queoprns6r0OYQPIdsdvouvZG9PF+249CD/Vxlkwd+m0ft1GozdBJDpTHPW/5bN4K2KzRKEILDZkWUzCe45TOWr6EfMDyMNmX+4V5BOX1tBCeFDPYEHzmkdcmPECm9Kxrit1t8j6ho95mVXGFHSG9jryxa3QpumFJoBqZnWd9d3bljfTZkjvZ4tY0zmB8u0VULEelQMnfRdxPMOiMSJpF//7ohG28FSoA+Ssx6+ESFwGTHe50HoKp4NVCEuK7T/S5nifwPhlkun+HARMthbMN/0Z9vgeGSa03hiZllIC+idViYpUEom5VMi1wPMnM9yX816vurwJudrcCSyFuksZs9OuG4jS0zpxEJMqRDNZl8TzxT6/1PIObUsvdZZGO90A1E9N+FJeRYWuWB7MFpuYEyDR0rJKDoG/37Y0bRn62OTHbS+LOS9l80FX4dGijbrguzDbCn6NIedzhTy2xgjUHKy2pc+kM21sHQ3sJvQgt0aDmfFNTI2p+wYIFDl+gQQBZg+sXtn7pL0HHydIr9JsgLgoVjU+Da1Yu2aJLB0FVrzJbsL66eB+dtP4Fv9s3KJq4oes0NCo2oGMlcjn1uqL/4BmGehim891MOzAsEVeUShUMSlnst+zoNpLcyLRdr+Xg6I8uXge/H7m5SF5CU7xAa0ZpyQS5BehXShCVUzHiTmwR9gGBBDE2H1cxsVxn/7neZzlG2IfB/fi27UzAzf3pCiaskpJ2sGRne8Pa+9tWtMzEoA7WsdPkyEjqBSjwNres9AOjmwuAW2CHisesmzsoYxrhj1Ri1IHS80HiGh+ikkyyvLg9G019KCR5wzruWhcyU7lsWUCk+B9DaUk/pZCtWe6thdNbJdhYj/+WCnsR9v/f6VL1us+JwS0BZy50XHcVIhxvZhboQpeyasuQRzAUm0zSv9QqKgvjQ2AO82F2XtsA3Qcgognrv7QP1RsU4jawsnMfLwlGO7e+kcvbO3i1OWaNlfWocGUUuX2W7okjIn5DMRL2OnJDzvwBPESq3Z7nsYtVaL8riy6ifU4lGnIT52mS4/nMvjFEmB9+wOG0YhTbrHCX8HcbLwN0GsyQzhAOPs60yrvYn/lCae1hfyTXk4DG6EDw2IywS+CMMkd6Q7AOdTFjwBuNUNy+NGATbr1nHM+ibnlDiyuxdJICc/jUZWSYnmuPsSSR1g09vdg/kALOeWuAaqNjoSAm8wq5iYgyCQvo2V3IKAMlF6xBpHQTeFInWpp2mBEbO7SKlGndqhgBfJYXS1BgxCvV6BjDTFyZTQYlowy0c5ZK/GhmvrZsbcto6ai563lZ0rjccNAdhbQzbwHDqT1vXFtTJRmSkTLKoNQ6SW+wFBkjtHjiu3zs/AnWSaBdE2ekAyJvT7BI0DVsPQ3fkOHOGTKE8iMJxmCqNoCBPcEQat5Pu7pmZS5Z55dZ3n53JO0LNtEkPhtO3c2lP07BUhZUEeoSNruj3ZPxzDOpWvpbxf4b/9n8kC7J5Y5qeDwjtb33UAOtRVcXvQMikui62hwLY9tyXaVYVzxN097HpxqskTc+Eq3JQsRvGY2iic6DzWHcTQA/I6weqbpuiBqF+8SDRh7R5Cj9HDntU4sSefEGoLWlX4CkgBQLvvHuPYG6N7Iuiww6rkzAEn3EN4Oc7QAbKFZmfX+pLpzRUl6EsUI8c6Cxk/sneWfQ3emlpkVeg0eSjwzgWVJUTNKoFjJ6g5azVWY5oxXD8mRW98XdhDjqgS89rgDX7MegrUVufvT9P7N0xYz6p6DD3XpgfTtEjvZlmlDhNmkaZadi3jGM/WF5MgaHRI7BFw3jgrEqqPS9WdiJjw2auxiSS5gO3ddwxeafyesgWTO0VHiTZfQ6t+83ilD50ImyKlGFNt2EPKbOLuaRhPw6RCf0juyvztjK8GdIrOWWpFVh72iyGJtghdv6bIj13Q6E3YfLmBNbLICH7cXFp/eMMAQcwc4phEp73zIUTYpq5YKYiANoCm/SZRWWPxGUBiaxNKGzG6NLorZ9Bvk+akmsUStsdxgvIGkokcF4H1q439WLTDD0e3/pEtLmPeeud0Z/NV0BpzXdUJqUysp/q5cJY0VWZmkZOsPoXT0IJigoFp5JxPlo3UfFgcVNMKn37lL/MHdIwIMptlG/X9Hc2hDSFBT8gcG0/v4HinpqDCfIJPjbESUy12dN8fpr9Py3JdXZBjOmNnMM8wPZp4nZJ9bpWYQRo+UvtK5JMB9ugY5vd4Rn8f/l2rZHOyQOgKGdXrLG25fc+CzQioEMw4lsLHXZD/Md00FOgsyb3R9zPi8XgdcPSZ0ADeXPNiT+nA0Ii8lDhWTNkJpA7tN+E6X0YE5z9Pj272kTRIXtoKh5gTWlYuhYOf3IMOQXdL38lEE6zus9nHcGnJodUKqb0clKRKi6mjDosp/s7WoRYEVvCDPKySLBfQjYIP+VBWU6xLEcifMyZixs/2kno2mA3QQUCL0jbSRCzztIQOVP7tTBZalvvs2k28HUPhaiAo6cFslLJJgWG+Tnhk8AMb1V0q4gHzOtsWyik1jCjfI5MIi42Qry/WjpWKrxtYnCoVDCB+SuhckGp1hUO246lEsTgIk5CTYO26jnCDA1PubQMKxD6AOJfAMtsm2LBzaG32zQ/3I7Nxts8X+jG1StNILwVWjxnNd+csg/zXGZvZRWjZdSsGLc0ey9OvpJLCER5MQq01ZGAlWejflt0B/8oza/Ng/Tvu5GfGx66fd75cw5gVBrG9S7RrfJsmnGTu4b1fJeIvPe5u6ETnkMaLShfU6EiDCgndfRCYCjH6IHyFK9wr3puHaklWUHooXtRUEZ38rPCJnzK6tnFFSa2K8TBa9JhihwPEfIEaBU6hhyCLJFl0dzrL1GFdh+UE1djVe9BIjT+5p2cEUpkldnLUma8jEjzdtJKQLF+WktIWOreJsZU/ZzCUObj1yxoZQ/tE+W7eQrH9lGwN8mPpM5qBPV7A02hS4Jd8/cCHscBrSNwEG7H8EvJpzseRF7uHE8mTg8nqcwU/CnxEIX9n+f1ogR1lhPP0VHlSOnwhE1IQAj0+EJEpCjwgO679K2YN/yr/egH3CYhlOAC+tPZ6wxASWIgREkCN3W+Q0ZI7PlwEgeAjuq7QYzMlw6wOWrYWJk8JRSY0g49Y6N4lggw1WXbUfTa8wpiPP9b6hkeO6d+9Debk+eFxwyGfV8jPJ5fqLHqLkk7DTxx5Xjf/RQKfXtRXBvRn2XrCtVGO3a4meiJ0O43hsGxRgqywrmNnDSjbT2ffHB+SlHthFKRhDAr0u3WadILGO6kuZWLH4t0BkODYx7qodfQc/BRMj/0EeV3/+GWWfrJdHPcd54rgYxqcn+mL4c60HUBbmaTdiUXhxauMC/3vz6G7TJHjlqe1EKjbkOOiROoThGvUz0g+OpAgf6+g1xSLBvtoIaKvrIIsUnciwk9L+0Hzp1FLFL0HVFz3A/uPpeAyjCc63fsIvnMi74FiOKejYfc+xujfNiF5JslW/Q1iaat/WV1IcuTEAO00EbeekwAuLfDYo4L878dPO1mvKUgddp9HEaShxl+C14Dn1frJ5bI/tmhT+j9kbi7j14Gc/up/ZlQA3pRyKZ5mh7Nl5tPllOCKEjcDzZQaxQ37nnXCPc52LTe1Il8HsdXl/51+jeKzBGmGMj21vt0AJMKWMLt1rAYK6CwgT2gkyTOLvVisvV/wGCVBp9HCz/l26OKBFDE+Qn5OnU9eTMLHqMXucXqQhCC+gfoR0xQ45cxvNb1h6+YTLmxD/hmgwcs+1RrELwVAVYyhWBol5iLHEmA3leuUBex1d78XMUjyxxDHGJpbpQWXr0k2Kgul32VomqMq2YdlHeWCGRHwCbocE+isfTTKklwV8JYFAUSmVCuY7Py6dcMLMvNCSV0/hrLrYGUq1unwOYGDIjFCXbnTs3lBBqmsEf8r5P1POTH2J8i6A7FJaHe/218ODqp4XSP9IFAIP3ywtNHxkFdLzk8Qrcu/Vo5c4GYCmmcrmpiA5tvi3QjxEY/K8dOHsBjhIJ3ykUlnVKepPIF1XumMEbJIollHv6btTdZEy1ZhpPNleJXPg8VIhC/u2rE23s+wNjSHIBNtHw+KnaLusQYXEOBFvuCVqFlwgNQVRZ+8uScvTap15U9nRvbkosrmdEp8xhlvgT4LxnqAcNyk4GYW7YDEZaDMySb+8JQjuXlAU2ccqmJUE6h6cKwEsGLL3tINAl5dIPvqQIDTbWNEuZ1lmRWCRxeqeKKH5nITw6yMx2OJ/2uio+xYBmiuLmJ6IomCw7IKwvC0ybVZNgwUWMPq3/SwLY/WIF9CreQF8Kyx5f4z6rasNbe4nyJb53zw4PQ2EerPqW/LpgLEMiTfXqVwh5ndNbdlAvvc9lpciWFzSZLwdvJnkkLqxxk+8Fn3JVz581FUzV06q89syw7r6i2j5ZKfdlHtiGmdOClmithhz4iwdxvM1zdlWWHQ9XrRKypMknz18ZNOkSYZZpDUu+hSP+z/VSB2q+blADwl7cSY2VsV+1w/ecptVioKwkt/yarrfhlOOXvj0+0TBwqS66Mv6hi60hqkkVprLQWaCcaBpQ2jJuLQsYwLJjL8iiK5aGm5JOxrNPOa/xxUcJCgHrkHOdAba71ws5O/LINfhNDqxibdSZ+k6bKRm1QNwRUIsKbadM/sW9NmEQIcLrGEpyRbSuVghDpj1y/Ea2+/dmTG1KLysqSJOcPuLn1qwUjLWgB+7R6v2Qc/1Q52h301bpAQQ9b84fpeffA0R+/v5DEW6+G935+l+igz/sM1QvhPyf05vw1uxVm/elWmAP3mNpUCFN9bGrQ+kgxaebY11S0AVwTqpz7ebYnbsOrabw3b8ltxCyrwzeyETXWz2/T1Rg1ONQvD11FwO3BKkdebdv637t79FDLULuknrqk7pmwjYy1k+dgS78tiNMo9y4MPLXZ/zlVwC6iotc5BVoauT+RV2n5fooAlAmMih959Tv1So9/AT/iadkeu+3YOyMrYM3RhV+UXzRI/CWOm79cn8jalhxVCwmrocVqxf9eb6KI4fz0QNryd5k2K3hZpp+SlNZo68Enf2CekBBR8l+EQtPhoM/+Pt1lhI0G5k5bHu0JDHewtdVvzzj09AERdtFo0WD8tTKWiAedvtLv4hr8HgyglTAV4jUSjSdaSmnFGoQ5cu2t63LliL/JLS7u+f1MM7svAhnhsJacxPQXbyuO6zp2hzmGpBgTnPXf4CM8MRCEvjyhYzOJ51eqDRQ8bbgRmzX20ygN2AjntvdvbULawKDDl1dtFTuwqJs735nTRsQ3EKFrJxYhYhPihlU3H0mamAZh9ipVOhpkgs99gX5e2+4pXony7XlVV0xcCeNV7Fax0m7vNsxijHf9sfdS/Bf/lPJFvOJ/2mLbuZAq5mGetkHL5q/o3FYgkYK312naOr5hVYwfYY00wBa7zx8O0T5Wlwpzn17FQyXXhXVmdG3H4c1nZE3fbNVsIIXrRBoQE95BqnsuSpDGtNshCh2oCGVUBJgb0NU+2/RQPCI3Q67Q0T6Rjwn8E33CyshCnDC8K9PSZv8OhiZWjkeys10BzFuxhZVJV7sLbfEuxdl/ntaVA3+8MyjNoS3QHIXKVNwd0Xxiok9ekMz5OtJsuDmn3PJl9jUenR+45SmRd8G3ly/56ocvOj7oHDBOEMjDeSO6FHx1h4BnrurwYFK/6Hc0HTCcIdLFznjBvohakV6lvQkU4Ix4JzQsXRUqHSDD938jXDudHVFMehrT/2v5524sv5XgH6iRy3FCZwKskwz08WzqLnl/o5sj8kYsbx2Npqy1IonmdwSkWnaCVCtXjfAMvuTT2DK1Fo0pq2ntxVtnFvBoEChz6AfAzR91zVE+4n4nphDeCyZFROd9nJQbs8ixvZZu1rXP6rwv+Be8g2R2B8Q8M7/xJNAsRMlIEFJ5/TU9now8dia7CMXwhBCFqJ6P8Se7c89PNz2M1Vu2ztbSmCU3oBKw2RZRnoy+TnhuhXGB0IKTPSvgdiVXWh5f7Cb23K5a1XhGrn+nYPxhr5NcwQUy7yHf3kcfmj1vc1g4rSnxHA8Qy2paBf6NSuNjbyPg8qdIWtquCm1Po4AgRLQBOWvGSZdfAgO7uqyYtB5uL5tzAyYlJfgmZhWGn1jDdzEv5o1lmrJekf1G5/mCxx67uSggUKGQorMlSby7UoTZiGxRtGZAbX8HTFCz8xbU3q2RdaJUl+bsnNS3MvaR1Q1v4oUS6oI4D7afuovAug6GcoQEnPx8YGEMss0Q7Z3LgXKeyq/1LqpFgwc5AaaBVvRTL6EljHMOsVpVMXBWITjpzT3joPNti0To0dxBEmH3gCHCmBUJrZYg8e/3MhiBcEAUBGg/vmS+HEjsGGM041AHxUnn+5H9GzeNp8VJAbAVGVjOjsT+nb6zNxbD6EBeX6hbL4ljt5754zgwZD7eNBmqeDiI60F74w89HMxTqMMU8fBn86aqjbdyi3wMV9gZLunkD9RrIBs/qIJWnaDfkIT1SGi6E6Oxs+AF7kk2j7wQTKRtlWbunCCP1sHnG1oOrwOVFmw2b9WkX+1YuJv8nvB3XbYHUlQu29rCQ/PPHbIzta8YJZMQko7g3xouiaughbuXf7lKWMn0WJL1ozS4zFHBFdFCN8i+EJZkeMV6TOt7YtGEx9VOF6XzzLBxJMfAG54nyhardy0eJkjUZoLU+Vi0hq6Z1R9eSqdsEOB4o+tO5/mbOwlxqb5twuIaLPTS9DrRp3KQiYq5i0tS3ChZ+LysICoP9mTKRd6XgE9tQKb2OxhuY8p1BMuK1W+EDcWmidA8sWROOTNFOb+Qu2znuasNeGcuWMzbS1eUc5mIrGFk7a6oZh9iTzzYvZ22Sq90EonpF/o4cLVHx4DmoSph7rSAqx0SDl92/zg9rtUEx0acU62tE6jnWS11IYkt7zYwy2yemxDttOJVutPq0aYk57YMgX4CwmUlh9oHpSYDkzYyqj6hYRhSaulrQQdolyDfG758xkVNDK7EcdoA2Yw4JkTiaXOnoUHDsKuXbeIc1CIydXXkt+h2NO8E2CXFoDhASvCH0hHLqCRPiJx5UMVDfjohXB2Vf186tgkHkhYtZdp0smbC3Xnoh2Z8gYATdhZOrKlVXAx6k0WHhrfGL8cLtE2dvUEoCubzXim+guro9P7hVydgu3H27IEovLNe+FcbCoq/6S6pQyWwxFdhLT9FxEdnkYmQ2lDv7KsFUcGJMhQlItfeRDFC6BXaIclpS3JKUDq0h4OPwIpO5GRbwSeifHzpw+gnrMiH3zYTwrD4t8N90osfJ4e+bDdFw30Yl6ec3NXy9VcXSS5JtS7NiSMV6YqI46k9BDqC0D6CMVnY/z60DoyWVU/wc3RRpx8XJ52yQLRD1MdbjQ5Gj9gOrDOdtKxSRooOdb/m4Cmq0AWpyf8py9bGw+8Ml3HiWWm0UHFgMM0FalpwSq3e6TNJja9EjrDVdB6Vq4EqCiwjZ7Yb1wIGnFUaTcC1lBeti9ORUSRsA0HkjmyK7WBs62+STWIKhFLI+8Z5WSdpk8r+mX6MhfYx34W6NWusUI5UzJnL+4qmvIrcF+enMfmFKHROPkfHOrwI3Dip9CqdOpY2q6lsOsi7Q9N2mNfEHQ4oUiNIKGFGAQmctcL49HFe55yDBSQ2hHJFy69U+4VO1dddD38jw9GaKhshq6Enk+Aca5MbJDrhsJBT+PdYbD0lekgVRpCKLPF9jLVx8B7La+EUeaAQUUoAKAA7hCwwatpJ32LU+U8VTpvX6oa6Ya3ycgkTp2RwIxWj4yoQXiM9RLnF3bw10l5xBI+iHTpjx3Jz5Sh4r4WhxkYAwQCijVYY64YCH9Y052TGK6whTT2Szzs1tpF7qhSR6yTSbIXyR2+7u39mD2CENxuyQw0NAhhFWECEcFecSB5fAoK532R+0MiRWPL9e/BeEct0VOSCKsYhqj206pZrVr8pXTZWPtMURSbw6L/46TcyT+LI9t+EgdQvQ7H+uqLbi6wt8SQHVLQ8ZheQf2vODkXe7dp+dmvwVCuRdJCfdQABN49p3/3b5tewX0v3FHypT7+FYJPnE3u2ag8us5d3ReiNEeFCbSYU3xUAQXx+r5fOJQVwfraZpvgEelU6mvnQWJqTO+TW3nHaM9O3STKpae4H47HSaE6AYZhmH3mVbMN6bz/1Ne+ctKkadxf/WFIoNk8xWiaGHUX6IJ3qvPOwFtOeeNslU48xENNoWmGRRgK2ry6OnRwBIrqbR9fBO0CvEv+oavCK+2b5RGWZY290wxbpzlbF2xDiWkfK60UA4MySLnAUTWw0MaDIVl+3aydD69/evyJE7xbp39gSi7kiN337M5gCbQxO5rvAfgegVgNIvq6gIHExD0WiglyaQirLM3eBC3tNXReVRmfslw5Hvs91HFyulcl5hXAavVUOMhN9CrNcTxMuAmjW/XNa6whrPdOP3EvyLBXmG5XHNuHF7n0hvQ0/AMJON7QvftqOoUp6MFdrqRBYJOFm19jwJYmwZg2NWsyVyWZmaL10l6W1V6QLMpCF1NJHf8+oLYEcOaMWzlQvGldXV+aAGh9nxNk7F+56/FnDgKSrlPYMnP4/n7BJb3bHCtqcxC2zlE2/u5xwJldAddfJCfXhzFoeRYUmzxYY5R1JSZF2CetvUpAfsUWJoxwHaXpRkLsL7A17JpTHBvenwBAMfs9ETc6nzPFvNzkdXj1avqP5/4IO4Il1z2HfGz+QG0iUcLXMCS8lYpBthbASt+q2YqFHrKmF8mIIm6YcyC00c5FDvj6jDCFRRs2vNp51wHAgn0r9brHEdR9QiI6u2TLly7ysu3B6qvl23a3GRxaGUkmRANG6aBfxIRQRwGkXng8d200YSmdZY3iOg4GX8HKF5o5scvtpCE5vLrok8rWVtqI3Q1C3KkQC+6gYed6Mz8eGi8M9VAb6UI7DoXXx9qAJA5P+hADiVUOiTuVfeb3fkpkLjIsqvQPvpRAL4IzkhP5+LFOQIAtyqnHV6j9cVLd0vFEMkMi7Uph+oq7tbQZ8XaqKz5ko0UM6UFmS0Gr0ga/DRX4RQpBIsYN1vC0klpq+28RGoxFkuGo5F3nidK+/CGjIqXM3TVo3lTLl6MjGgE3KZh7xPaQRX414J2FyFZYrEHc08+wKcyL6RUJCKjnF0UccO6MhJ4kmeT8vRcFCSNIb+8xyvGxW4IH+xFERwhZ1p61qFg45ee4H0gCWZ8xuyvVB7v/iA5UZTw9zGNqDOxC0xxmdbwlqgxjazDoUnnIY9eNWBxfFhTstN6H0SUKqPyv/D0hvTQZ+MGkm1wt0kIDARxKC9m2gESbqmv7k2JPi7tjY8xj3oCNDBkAvjfod5l9Uvn5MbrC2AVCROkYpms5GYtbGDc6ErwGnamKaG47WgkYt0jzJUAeebP0Ta0yfZlA6dWGFgiYsD6llnmdctKtDzZYvipye9AA==
Variant 2
DifficultyLevel
575
Question
Which of the triangles listed in the table below are right-angled?
|
Side 1 |
Side 2 |
Side 3 |
Triangle A |
2 cm |
5 cm |
10 cm |
Triangle B |
4 cm |
10 cm |
12 cm |
Worked Solution
Use Pythagoras to verify if each triangle is right-angled:
|
|
|
22 + 52 |
= 102 |
|
4 + 25 |
= 100 |
X |
|
|
|
42 + 102 |
= 122 |
|
16 + 100 |
= 144 |
X |
∴ Neither are right-angled.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Which of the triangles listed in the table below are right-angled?
> > | | Side 1 | Side 2 | Side 3 |
> > | ---------- | ------ | ------ | ------ |
> > | Triangle A | 2 cm | 5 cm | 10 cm |
> > | Triangle B | 4 cm | 10 cm | 12 cm |
|
solution | Use Pythagoras to verify if each triangle is right-angled:
sm_nogap Triangle A
| | | |
|-- :| -- | -- |
| $2^2$ + $5^2$ | = $10^2$ | |
| 4 + 25 | = 100 | $\Chi$ |
sm_nogap Triangle B
| | | |
|-- :| -- | -- |
| $4^2$ + $10^2$ | = $12^2$ | |
| 16 + 100 | = 144 | $\Chi$ |
$\therefore$ Neither are right-angled. |
correctAnswer | Neither triangle is right-angled |
Answers
Is Correct? | Answer |
x | |
x | |
x | Both Triangle A and Triangle B |
✓ | Neither triangle is right-angled |
U2FsdGVkX1+SAiMwKz1QXTMqesb5SJsLgyVqlWaWNpjTlNldTjlEJovDiXejkxgbsJE8ffiKZxvCdiQK7TxjLfX3/+n5Zx8ETbe3jee6lyIeFF9oWUysPCX+MdgzAzTONjhTF0dk7AwS9eYnh0YalP1XNUu7rYzkVH+i74EqxvD/sHVZ+2V8ny0mVxUQoZixag4xJhwHg6lhLBjDJMmxwfBIkojVWw/Yu/NFU13SXkrPDi8ZfCDeTwmzsR7JxvsVJ/k8HwwyRv+g7niPzplnp++12NppLuJasKFRYcFCz6ES/eqRHX1UmMBYnAC8lDWb08h84UzA5XMwHlR1nVXjhdL+P6rd4Cx8QTBvGTC99Dt6v0rgXCfh/hEhsSkArrZd/j8V3a+Os7dnYYHKe8lOFz4eG9aU6bw7UvgohfSX/a+qxDs0Us1jO34TyejWc5ECIwHED5TgdmpFjixejjQBlcf/4+QUGFLgivaoNjdYQ3sP1G/cj+MCrj09Xcb5simqXlK2perZoNoANBAynwollhfIqpp6LgdJMm1oMI9LOdZmINsUO44L1Ok6Z+go8/ZGdT/TMXKB9OJqXiuEL+lIniCVGhRRJqkp94/dymerl+nqUbyrbDEuKpH3t1tfrdihthAFFeMM0zTCePX4gEfSMdw5cJWhuZmQZpDpCqWsiDAXo4QNtLtwWK8BNjcmAo+mPZPdvOOKmco6pJGetZhnjM0EIvZ9v/y8bCAbzbfYdbdX5rNg8HZiAXhYqWYZYB0QLziydWh5LqvKe3nXNsy5fQAuz6Re3Lf83HlnTyoVfZMX63iWz4vp+jjTPcCrbyFHz5I9floNc7vC1SjoaqCihsT4i/Lg2BbV/uYi5I8+b6Aien20s9oFB3LKbuB1DHDbPGqhFw6KK8CyOlEj6VJG5dxZycW9bWsOQS+u9S+SmM2qq0WO6kT8hP/PlrnTiTaHZkqcHgYcw843urAWn4nQ7MOSNbR3qzct4/5gsfVBdCKR49aMyki5xbi8WS6nW3NAEN/xfdbW/5mqgh0Tz78MOD8GWIN2Kudw6EzutEekZ+evz5WGcy6I1vIReFqJ4lPIB0xvblm3/W8b3X7uetLKxg0yggZpmO4EuKKAC6vJ2awxVL79AAWBk70rmfaB9S0FzTuxE5gwWqdVh/swBbX5i7Q/NI06mQMYDyqewpaAzpki004W+dsflPODxincQ79O8ypS26dpZo/6pEup9DFzOKUs5QrJosm++YbI+QaJ5vQT9ANJVOOGOvVWnZxxxGEebcLNZFzoKgGuarCB77KS4qX2GrO8ALkvorDNk3XgwopNW+Pcf7nhwXDU9VAUCAs3L+JV/TAlF16zt9zPartjh35OoJWWIZ4uQkm4kgdzyPanhlH14zTlsyLe213wUFxPsioqbS/TnAeftgjTaJXqpwRjrLLkcodnxeft5b7tMZxeTFIBRD33gaZQyTyX0AAxiXsz0BfeJlo4p85X+uxzrOofz6IMIOBtPhWLs65LHn1NYfqPRtmdki2GVOhsA1OSlYU8JGbusGb3go/8O8RC3ZprRMAM91/8OjGGQwiGfK+leSEDK1NAF5Wrbk5vlje6T/io6WgYz/n4Nb90ZovW64FdkLi6Yxl1kgBv1cKbF/1phc249+8rFsy4RvLB4en7j2MIhLln38BkbdNKUHcbBqqMALxpVCDSNjREGLEtMWMaL9jnMWib8rbOob76kQ4nrmuehjnnh5S3v4x6BZyrLib15CSYY/gxGSM7hsHjmy9IMV0Qp3tXbhEgW0v4HPiVGeDR+30J1xd1+Ovg5Iu7AqJK+SRt4khxIoJRmMv468/AQ4IbVuYW40cx4eckdOyRllty1RfKdETEEaNVO5icM5oghWLy8tJi/YGzMiNvOPapWuQ7frd6hm2xSPX0EC5c9CQj5v8+ctlxSEdTvzJQJbpyBHzLEYj2AlwmICSnLcMepJD7e+youZbbbEGtHxTuhYVf1oArBc9ugg9XY5upQwSGGrprnF/3W+PDuAU5XtQPNyHhQYWRp9dUw3kHkpxPYyrIl91P/DEdiZbohX0N+CzPJxuCSMh9n7QM6dMjfNSW7QlmvT3lk6q2jtLgBRy4/ESEMudNY2hNuuEXvtzQrW37whCE2cuV6AsTPTfS3BgwOWoEeCgr17xTRz1AQ78MhOb8t9y+LFkM+GYjh1T+niiY+soeTFpUO88ypqP/vwDZ3hhcSL6VR3QS25VxaquUiwUTe+pqDieoKynZHwxI3eB8nNQR3lqqIb4NpTs/Tw36zk1xsRYnnPHtc9I590Un7PJof8Y8Y/DwT93GafgutorNKpnbgS1MmXT6kJR+gbDTmQJVC7a1x+fK86OGBIvCvpo+xUqI4C4gOiSTNRnzPR2e+hpGPpF9mn96RX7/z9hNpQwdNyI9aOvPBzWtxGpr5GJQqNZpmLFoxncUJ/uBhzpdLhcE7MyrL+2NSY4NZsTMSp4vG4mUBlI4Mf+VeqteTAk3KYhAJO0yb51uK/txChOpC9GpqWiPXXuQjq9twv5+ao+KlETpWnp6BXCHW9lkPaieL1iEPy1yBtViCJEtHzny0be+Pw5ePLK7noC4iL6J3zhNBBWGhzE5i6do9WUfvVFPKEhjUqMIFBlyrh8hkVkf5oKp52PPanWoSluc5pwmIvk6pms6nZSJfzTpy5EbFnI6CsDBD6NCSujNUUJ/SquhD4J3HGWa10EejP29ZoKe/6L4qYuVSChn25llxmt54UAH2NznQI/0Wcy7bUY7t0WIzn/KwVgZesVRQ2cd1vh5J8+x6w+zWxhTgEw1ZPSSN/NGpkiigEPkxhWytBcmEJ7slsWIjGYLOfSENGycL1DLLngtz3Z7xpCEWTIE7wWMRuqUvX3x/gDaKtt/cAICo6m2hXN2AdVvxieilLT3MfAhKZMtIMbVf+2+xCPTMYXMJtdQlQDdv8MdGyvTNv6gnpyzytmzNtQjysBLPtn24V10gOep4gz5Ccf44O8jqFMoTSNAVrYbMAsKpRVN7jDef8wJYyrWcL9uHZiE6AJwUPgY69IZNm1N1kSt5OlJ9uBI+W7WZOJmaJs6/Evc4EzNf8d/o2MnmQfowuByye+zQk1aWYdNmpbRKpdbePY7EC37awtKCfNXU6cWxcqky72w6SvdKkX+51msiZM80PGEVdK4H3V/PYuK2psdhRmkJF0RPPjJgqvAZdXzcFSVQVGs+YLnLPta98FME0mf1TVwd/kzxi9xajBbj7NL+2NbgC69c4qZxqkRkxrraZlo3+fLZszrF7fiqtrDG1Gn4udiFsV08bX8nEbXl/lxBffrZUeuCigWgn4plDNZAzx6QltOtFfdBJmPO38/fa1JLkydxXtYKojU55Fbc6L+1mTTQxMcdju5TKbKbmnt1K3ZaF/VE9bPgu6u9byGYcstau7S7OGNQlWMEk/m5Tvpxt3Q0OuKulDqx9z2AEGwmSW98m6NPziRbd38uVoDJjLz9v9ETmcVE23S/dzurQai+4qvVwBEXckLjfsa8XL1s5tOwSqIu20W399AGONfv0TsDS2IgGyyQhpMvU6t6I7Is0gftkcl44HsChKbXA1dFnftXXDuSpKz11j67rqT/a7R/RbOblQ12st/QEh9S1b1IQ0LX+pFjgDkPJTvoR/66EFBCjTEUzdwP/Uo/lUK8TAYvUUYnGdWrXFZ4TlvjF46SirkrUpMfF2IRB4qzXJ/n5WWVmzAasdIZ0f3piLu+ECBhW9gLfaEP6FRTKM+cz6TkzzzkrmtU3tMfSPw9VWuTfxTKNOUgHpxNQXuITY68s+DvKh1AHLeFS/0vq4Piuo+D7igaEVJ5L++cuuwSzz/rL4s8CGSOzYQLyZK8RgQ+GNN4U/PYGbLnnUOERG+RjFIJ5CkxmCx3e/xjtUKDqeqdgpVallb4Qy+lUcKAPOnuIPGHkGYtmIJmoBznRFzWouFFGw1XCWOl7Du4NCcrKQmhKIG8ovKh8eB6JVW6hTa8H0IncI/NqHvQ6kYqoqCd2Y8fP72BWG1zgiyQ2IgKiLFmwaJ7+fvckvFt3gEeqdaDUPIcPLiH2w+3lAFMUMcmSuq99riFlKsRqsImga6HnR1ho6NGOAsKBNwSCMLjf2PsuhbskUwuILacAup22YS/SQEg9YTBqYkmf636iEkgwnejtDEjGytRkcZhVt7XodWLGtlvOp6VPE9TefqPhxKhxsz4HdKNVAt0lUWMce/W71MMpKQcfDRIr2H4Zr5YCtFT6xnKRHaEKIWfiC5iILNbONxzDHl9WKhln0VV0pHt2004WbBMoGcn2JZl3DHudX/ju6kg0pzZWTLaDFDsnm9sIb/3CDs72qZ4iXPGfjre53jAYFex6XGx9JBx7H5aCnUZb2OMbSK+0D/Lu83Vkt3lEUQ14eQeUp+78BzVntqdCi2NoG+2iUpVD0R1pQ0sS+BsBXjHgfEgSJShKVm3lfEaIrsaDzvVCDJ0a9ITmSt355PFmrxPSa+XH1cE9T9G/oTswxjWPZKjgF4nEp4iaLQ+e+f9eZSUVBFiw/Eh/apmM2bjN8GU0zFY/9T3qA+MDovosUJ99+9py39RQeUsTgbdkY1MNuq2BaovGR9HGTf+oRoFLkf+FqUE8+NptDdxnINsZppXegkuIZDN0p8xr0bE4PeiHvSo7EmV7Nkvrmnj0sAUL4ranRnpoixHabwVU3sHSautPDZdS7kOJwBHi7Hn7CBxjiTsR6osORcABHwZzsQ/N4RIWPC8LeFPeGw8VlAagCwUHt37Ys8NyIzxjF0XZk23V1r+650uOSWAyNVRSFN0uDmVpy/x4b5wjiC1cngtQVVjijot1EZto0W75uMmot1Z96sKcpyYOjU8K+lKLJ7mcL3tFRno7pRjXax8yl4vX1533cGife/AAc6FUNEq+fhqhew8llYuxMc7UeMQAqnt9nQz8R6exdc2Tgs43qoOAlGcJLXvm9A0M64h+J5D5fIpGWca3tHX+U3Qn/P2dJrxQxrFh8oV82h/1gXjopZYpOdAhKJGgrtpUSGS3HWf8RjwrOoYlsCcPbCWNPtHzfNG041zHQCbrtqQO1qRzNn0sDhwLPNEOA/3R31Cd6sqWcJPCJz7umP9lfYVqniaF8fRVZinjfaWg6JKyvsdo0cPMHECCJfAJJUE8d9e47d8GqjxpczmJYksstUp1k0VSXMPb/tXp0WeiRC9nAYsAVj8J2r+txAbC5t7LHJU/UMlFo8Sb+5tse09mKHdjn+hU+MpP8UE1tQWjlSUEliCiVWtU8wTOlwgPLtCuZb7hWdy/lcvNsFG5r7rMjWUnFdNbTTcnZv5e7KNSvWPrN5YkMubVQSWwsM3xP5I+UzR5L9VlsExhFRLJIjSh1KaSWfffzm8OF0ifmP1C92U8lGQCbVDz/5YsbWBkMFH5WRarTVhX34G4ookMAznn9P+QpSUmLlTytw3KYA1QLzCSmX9bfzgcBroVlcnCsgycq5jDt1eWVf7naBifsmPx+8piukj7d07amBgjW3pE2yY11XO1NN80MHS3QO8T4HYcoMThPu9qfkPokaFpIRmEMoWkIVg+CA/NWaqgtu7JuYMI3tV3Rbks8B1IOfZEoC/Ltd1gUKcisMkirc1tRgcbwiOwLG60K9yroz9qnBDl/ggXvtn0d3gy3kQ9zZ9qkAcjl/HL6hmyDEydNHSLCZpdp98b/PSA2/yFi5WAJQ8epdZGwy5FvEvuQm9RGEh9SeOt+uVT+ebtDl4Z3d1b1CkcF4c6Cmp8tlAHnIKCdcvXFK+uI/mm57GvgrNncx5/kOggLUAI2hhDgjD+ja8HbBWvZqF0Br3fLdFKFDOaLudV9JHpj1b73eHjCG4PaGkMJTjjmPTovGOiQVAArRHpO80S4bkUvo4YgEnlyjRc1G2iQLvRR65GY347rQH+ZAyxqEPXR8lPy8e2soQsvsu+6EI9l/BP0ecs99bSQwNIbvQFA1Y25sX3ZKhc8pw2KTrgS49i/V8psc0U08Bzt7+4UHwTkD/pfJM1BhDrdrxOJGeLuMs67LXW/lvrqLZinXQbo+pgwSjmOivqyNxBRYreunAugbZi4KvJSGFclwE8eGnK9GY+2236pr3Sifq9CTW+gZkmDzdOhaUUYs8SxNnnrHoJlGKl/ZZtU8mMdSs8GY9LepbPZNSq42mKlES9ysRN0bkL5khglyX5wBjAa9zMlEedwHc8jdn+WCFFDcxrwsKZrxCf/vWMWG39z5hxwRoVTjmSQY2XK0BbvhGf5vPcHeyG/nIO89soWUm0O45a7qXr2ueUnqNNeslGcLua4ma5hCPEf7cbdiV3d03Q+awIGeUC5kRRE46ePQgz+hK7Mb8fFTn/TDOxj21Xa4HUKVSNmzhFFn1HRudo7U6/ul6mwfweFjGbjoSDgWcKNMgk/CVeIlQ625hNwJ14OIIo0OyOJkvmVz9zwae26wjij0T8uE1Ybt6A/G8+UlIaM/QqlgShdZTDnaQXCh49ucJe5RfitjjteGJu6brKUrSvYhOlfPVW3tse8339ml6cLWxvykUC+jePFl14TAofeNzZpM8FE6Dn/ig7zw2ctUivuTdcD3wY0MpsBKQEnob1+ePDfqXcYJxrHSV5PL68LBQ243H+oUFrIwnrJQ10tdAIqmofpZMkryRe9GwU32Ezdw8woqQrNsDGBp+TYIBfwz0uiPoj4w99jPbiRixvmLW+n8l7ZIvE7ZEzS4BKrZ/m0he7qCZ9OVKHRpVQONogeQMNicTgC4DHckFopPKzM+c1PpMHPp0cNtKhfDTRI7cu+dp2Gg5M+uAc3N6ZVRO25oXzeEFLsKx4/ivZpM6tLdiDHVk4q86S0AFFmGNev78zqQq26+uNcqSX7zxt4Q7wSHpNQY1DBToKaYK/mKSLk0zdfR5/h3wmG41UwDcm1JJTNBVhKcwg1NuFAZTKh6TvzqASK+T4s+GTEstjdXEDrlsS4VDPdBLARJ5T209lHOSo3tV3UUg4JJ7vmfjcqxARo0uCq6caWD2NcVC71tYX9aZNtWFZKZtXmBrMffDn4YmnfWydjTnVuzSHlI8iqcGgt7B5trhu2IXcAZiUxH55QTrp6ha6tTPZ4N/fT3kf74EE0sftGF8oto0K18VU4VnS08GNvKaAAOJF+aMrFH3vo2KBeLtLiBPfyXcVJy5XrmbOm2cxahWjcv++3CX8O9SrNXH2bwaCG8xq7FSlckMskQ5YuzYkE5i+/4DUk9YGuIu0vnLBbIHFOrd+PNEVX9Bh8DlruI95BorLMKVKdLq01A++PE+Qq/djynR4fZ7LSboNL/5Nfpg6F46E+N+60uUbD2/BFTTH50zVz0hpcUujvbfUFigBkhAkFZGHds0tzAsd3WLwOsgqZd043jE7tfYOmCbL3dTxxOs4zfeSa8Evt6f9medme/lb/GEdD2rpcRqSXrMXhqPIuOLNZpC74FC4dtXK3U/Ue8kyHbR5WKUl/JEroFw9bTQAHygcTVM8nTbZ5kwkNOmNMgrJ6h2iEIwE5XM2IgmTQRZDDb56AO3H3AqhmU5KBDDK6Xpx6eb8jx7ldiGnp2WdB7Wgi7nLd9Kj8Q+oF5Wq6KyTC671g2w0FXF8Nf5rPTXeH9vgwtxVIbSv29bOuOPtb/4KpnP3vcKQI6f9BqMz9w1mu+bu4sT+MfSuyR02l156b0fMTtIMIIvK0SekuyyaV/TWa30F1jrd3zSYMd4ixt6j9zMHQcsUK7o1aaeXQB80M+uscL0fp9wSO+s4I5Y8orZC9fVI7e7UbZ4Y/B3a4Afe4eV2eKK2X6x7jLKx9LutFRio9UvsrBUGiAAWKAjw5B+6WGyh7ATsuhGqmzGjJakw3qAw694dTfUbwE/U+DL7gCAJ2uEUW1T+HYDmo0MjEA4jpiXCH2SKZwctfycre02UogRf91Rsbpn9xwC0+75gCeLWNubEezxTjFGF1qyZg6PEadGA3Nu6rAvYn9SuA2W+mnwDwpt35JV4hU6ApSPkmvKOwVXWqRh70UuKmg1IZ+PXwR8mMF6ri0z89Gm0drkHzX/YSauDqINVX3uhAWyCrxTW547Vp3ukMPxXVu/mrsRRRv+2lEub+6G024FashtdeoqkrOwoQCHYCdOVn9PTA6BgvvEpJo2mBL5/lcBilZ76bNdrrHRkSjI1OjrYugzvAIfgRQxpaiUzbhGMO0qm4G1O8OHGo3+kJ0EjXBF+Ss31tJmdu1+BJvxKMYTM3KX++ZtTKGQOFfSh12SOMB8FuPYan1R6t6YAV7ocX9dJmlm2LB7bArO1xly8kFg8/UV3qxjc3xWXsSXB25RFxxQFhExGggJ0w8E//GktPfJTh/td+r2njxOk89qr2vBawIXGQnImjW6qLgW+Hd4vAxIDBRO56R8bqGvfniXcRXK9sYNymPrQfC39U1tr1YGqY3dA7Tu6uvYmThiWHRyP9QgkWKmHSXTVL2czlQjf2gpojfNtW0oBE67bKkGqzMt6o9/z7AiIbsvseyzMVrZVwZAgsqw3dQdRO+QBy2gya8gbUQq8VUgwPa77DmE7j2dgg4tYpPICctR4v5d+V8VA8c7Vx5gtZALnzDF19ViM9nOejyw0/DMma9E5eI5MAH0a4g4q90fdwY/qW6wD1zPiUcR01j+8ie8EM3jr9pf439lHA0zeC+gCL36lbFi0Be+huDfQwCqukR4PBwuljhynUAFazo4YET5pc8/MEJa0bu5F0VX5hbOXC0lARsR7maR9wDshdauoZ79XzhbUeeOZopZWZONEJyRw15BZiv47gsmg5rUXpRCciKXvCiM2T969UhxtpWQcm6gqvOn490TQepmgw7uslMvakymq382Qgjpa0kzDhykjwaCIwcIkR3dojdxtTxEY2pTVQqEZv3uzx+DbTlFtcr0ptWQyNGslIKGfvKsMiIy6FdYZiN0ik17dfruCWFm2BZLDPq0PEMfaPDn6/oUxiugnsXJBIKi4E8wRk90Yrj+Csc84jNUxq1rwmW9NF7P9Hc3s60E5YZu85kzNKWYZUUA83+xU5YbeSxPtVYbRBNqYOEexwWMYs9qAi6+Tcp+wcw5isI95n99CUY5BYpAV2OQM6pxV4rh9Mf7C9qpg7+9ZVwbxwS9BixOjfEVrxfDa8dr422YiKlpdnrtmsHJF70Dl2FpTrJUZZiKZd3AzxVrzq06p1WyQN24c/rCtCWZ5AiDT1CQl60ksOV9x+X6iz6lTli9b9U/n/AGU2Nfp7BJDNK2wZpCAJ7pFey4w1IePvavlGTC/vPilvv1Y0WSfYy/9KCTPs+voIvlebjhCugFm8qA0/5QQb5SyLvC2ev0YE1CjjFaZzMrKfnA+uGPUENHWo8kq09JD5qDAp/sa+AVqedv+GaSLbc7kVFhcuNmaBzGJ0QeUUeraLJDaU9Dj0ZvudE5MVgJwMvI2lIe6LYnb94u/OcyH8MqK7tP1DBo+5O/1yp9izqagCjgV2nlClEA6s4ZLZPAovfCwKN13Zd3znrehDcFUOmlXqujyMXese3pwAJ2OnIDcxMs+orapZGZYr5sqL8TX/lT5/97y9pVEjjs4hAMBTLifLGEjUSLmcmJczUm+M5FacmmCY9lkJL16InJE474uwvPuRvhnP2bzLVDKwxNe2P4716qQenXx8o80muUCXqB3/ePBLHrCz3tvLo1jyfEy0yo97zpwHo8hYmGcy/ah64YTyfO6543h7r08Ri/jHktypFdO3A4AHBaV7eA0c6R1qomk5mq0QuvxOenWdJmtHhgo7hV9EF4wc9b8Ljy7yzCHgfbdARUWHR6y5PLIRPBI1xIiuWJ29QDozvMWFmf/ewyUew4IoyiSE81QTBpmImQ96B2klqVNGNF/F9+PMbsmlwc7t2FNlKW5F6JeF//1T3b8E3iBobheYR5qawk3ahuehTzTCcC7ey93FN1/iTPtS8raZ1NQ1psXn5OxJyjXi92OYs+W8RSL+kMyvHq/EgzxJ3CWouAf15kZE/GPEe4MVi1gdgxa0woeQfGJNz/fh3++Zhisq2X6h7LATPEizAhxJ2fs4uugpGWz0/cpYipBOsME7XzxKRNxvtgzsainyPyZDAqIdDdTqdSiUxMktz4FsRjKoOmCLDD8hUVLnIosbB0z5betndl4Od/RTYs4gt84n+UI2MXJcv+I0QLn57Tpq/N0BDE70n4osa08ISpTaPycLFrbrBgv9fsEn/hRihO1WFXoaddfXksW+SkB390xR/10UOLNVFHD/ziXJFHLGXOpmrQ6JM2yPrEeUe1SDmOT3usju1fk2MkoKPu2/2mMfbOKVpAkE5D3rs93qF4kOKbojI76TtwZaZu3K3WhRd0ZtnbTBXDtSuUTqdn/aP0wGZVYq+GpG8fe6mnAGN/ZYWyOVMdS5+17AhtgO+wJNTgwHP+0XBVTY0q3oAvJurWVmrlV3jQbT8g3/A9mfTuKt/5Kg4XIljP7tPP4ca2E+WT1vNbGYlseucFlXuRnk674a+yn9jYFa3bF3hI2XoAFdl/x+RycLuLrWWyUn6kyDfD1MRdfvpuTLvgI3+KPZ4WR4tv7Uf1ZXhKiwjZRncxHe575RTV/tkpymNyFx/Sdxefyr9uAKO22o5JkHjV6KyIc9Y7LR2yjE+umdfIBtctoy1bSaQGawZrgqgFVnvaPHND6RGcL9L7azl5RH3g9ZcvPyJPsmMOUUkBj2ROOUhKd0iGOPgUaLfyc5CX3s4UFGBk6e6zzk5GNQFU3YXsgPO3JONMJSikKwNdMfzDcl02bNkqXJfV5z6zNmNCGCoFgtYgQzI/F3IOpwCwN4aiupNw/2q4Vi1IzLXU/QQXLHdc4quUta7H2NXgJasM8sJ5LgMKWuwO/l7ty/SUh9lEfZ8kkwCbgGfpyCzYwpW5zoxw0AeyFuFL3V5qHwMckKysykS9572wuovMwbt3UQbqPcMAUgFp3beXkVqsetZU3cIFZjMradccgmc2PbR0v0Ie81jw7FKYM/p2V4Lvw1hOMX8GEaKm3FbXRR/0w7bbDtUJ0LjyZuzKFf6yjoO8SsAoyQgtrMWOivtVeWR+7/rwVR7kmB4R1rztEGoKCCdw812W19FgkFjGDx0nTGfNfghgh9Cr6Pf3WteQLNlLTGYPru06v39Oq9ShVJo7he3usyil82XrWB5avSgsofPwM4Kho6qktT+mhd2zFkInb0Iuyb8JNshFoCGqM1wZmT0hz4BabFOX1gJMKSdnFoEkGFqd4JxhtaWFdFe6Fae/QKCprLO2KuOsKsY/SyOrzLWwoGgpZD4QAmU7GG9Yz2ANqAI5JLKkYjX3Ws3W8bvboJRf9Gu/CRKtulBApflMMBM65T5N2MqUOf0C/K0riq97q/kzOx5z5hFRsYzmJrd59zNlEyyzg/utS/hyUb/I4OsOMSTJLneDI9Iq5dvG56yJoLZMzc0ltIDaBSS7x/xY9RkVAKuthB4SsnRnDhCJAqKydKiL9T/VfwZkKdiJrtm+DWeYTRkeq/sY2l+Q4nBV0OiCf0WSY3A8Eo0O51eoWu50igOsfm1114cpzj0oYqJ+1RL3L7GHv+yAac/8YHA0GG4iS6FEyYHKt5C75COYr3WxM9egzkC+w==
Variant 3
DifficultyLevel
575
Question
Which of the triangles listed in the table below are right-angled?
|
Side 1 |
Side 2 |
Side 3 |
Triangle A |
2 cm |
7 cm |
5 cm |
Triangle B |
6 cm |
10 cm |
8 cm |
Worked Solution
Use Pythagoras to verify if each triangle is right-angled:
|
|
|
22 + 52 |
= 72 |
|
4 + 25 |
= 49 |
X |
|
|
|
62 + 82 |
= 102 |
|
36 + 64 |
= 100 |
✓ |
∴ Triangle B only is right-angled.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Which of the triangles listed in the table below are right-angled?
> > | | Side 1 | Side 2 | Side 3 |
> > | ---------- | ------ | ------ | ------ |
> > | Triangle A | 2 cm | 7 cm | 5 cm |
> > | Triangle B | 6 cm | 10 cm | 8 cm |
|
solution | Use Pythagoras to verify if each triangle is right-angled:
sm_nogap Triangle A
| | | |
|-- :| -- | -- |
| $2^2$ + $5^2$ | = $7^2$ | |
| 4 + 25 | = 49 | $\Chi$ |
sm_nogap Triangle B
| | | |
|-- :| -- | -- |
| $6^2$ + $8^2$ | = $10^2$ | |
| 36 + 64 | = 100 | $\checkmark$ |
$\therefore$ Triangle B only is right-angled. |
correctAnswer | |
Answers
Is Correct? | Answer |
x | |
✓ | |
x | Both Triangle A and Triangle B |
x | Neither triangle is right-angled |
U2FsdGVkX19MaRK8Wp3r8y/Eoy2B4gzK/+PO799Q+B/TczRMlpdL0X4z0ySbMFlk0aejP32IvYpj80Y23tEFwhO5MSirC4Np1NaEYyKOGUidyGqjIvDxWNyy2Lb5CM4LLMEaBaW7GE2qyCkRI/9KtwRvrJxY+2C8hjPb9N2F1bIoTwmfHjCTlrobmCbQBebp40eiX3iZCSSndy+9b2ca182qYnD/x1tQWNikPNBOvmD8QnxHPyWfWGlkD1jwpu/wWfJrfRJS5drpcUZyNibnI0BmbifVBq2qSPjBa7vHT0RbevuLz0SuMRvVRqtN/HX39LyInvTyDE1Na6JaiJP/IMxup4blsZ9hUJy9dovg0M+4LIjBzqNVvCDhIksx36AV2FnCVtKAr3Glmw79leIb6K9XBRrqLCJKzX7WGdlcvywT9BfoWmu0DKm6hhMc8YsAXKRFdzCtpt1wU84PBarjbTGyVeVVp24zml/TcPjy0m0iTlSBxYNQUftVAen+M7+J8ZyblgIfVfnmP8pYfuKnbY5RPIjQGuXPiJ4DLnv0us+eMyIZ6QturvG9wKNdIXUm3zQIv9yZpoKXOdYlGVwAMI5ZH09a9i9pRp1LKiNfkH6tkCmu8i/dxjfuregnzpWcATBEz0oE+FYm0bRNi0F0pgFbYTAtJKKyBhcnW66gM96WrRx0sziVUxjxi6GUU0fYt1Ue85V+mu0aw/XGgMwJaVuhGaBHEvIILrOj7exPQrvMqn4Fc8L8ZkURkkPT6pVzRL8UnW6ythrOmGz8nruRi0Xvk1NOnp6Kg5NF6OBl0mfrYYe6FLnlEeu66m0I5KTqHZwnMAln/vkGEh1ao7JYgzmdV7CKkgM+7E75vTDD8PEQafWAYNiyHL3JTYUuMh7+u6I3dLUir5OZg5pWxD+uEDr57FghTRQfl9AsqlZiwr2VIfEpK9/p0M8V9LHEjObycKoPyNhDw3/rNvGOc5RvRWcs8wgi2R6LkW6rzFQCik4nhoK211uoQ8BoyUD8a13obWEingQMTeLUI0Bq/tbImfrs+zf3lDEtoHoodJC59qdakkT5FjrLycDblL7ErJ3MnO+ljQapX0HCJuS1rutDXZVSv3sFEhfVDwown2eqfRFFg061Ie7sXjvrI62js1OPSaxvtvp3FpuJbs4Zk+/G9bLVU14tUHnQ5y7GIp6m1FqKimmhuGyaGHd5LJx4ITuOtS8985qAVcMWS4gDvBsyk/gKuZqYZPKHiBrIFiDtxGSAotCmmG33r+LUO3UWYgyNLLsAu766Koz5Ft3PuMgZfRW7C/AEsxPDtM3Ct9wbPs6VYLLklGo5Uyntcv/odoxY+ZZOl1fJ9M+O7i50gU+tdXPSDGFz8H3DaDEDS5S7xa8A8t5uHCF3HS4m4ExxkSCRTX7wd1J+jlKAX3j2TmkVRF9mGeyUuJR4eldEDuvxKLmyukqzIZ8QAM48ZYpwHhL/Cg41jJG2fOLzyPW9sX3eeqDYHPTWsVXp+VYQoR4KXvGYadWtq8utCPjyIzBE89dblyncfH1Hx7VJHNOWYITs+a8eY9Yf7PO/4P6ocEDRjB11PmssKq8YZtlPhy6DevlRZUaTLjqCk7kI4pZ6t0d65JtpWUeZEdxwtTAPcNk9kgRbWLbc10Yx7ZJB+CKuhmZDeJexTRgqnxChZB/56+Ni63ZqhWeptKuGMcmeDie8bZXa9DObtRtTDwxNff0Gm1ptGhazuZf5nBxCVSB58TjZ77OeeRUQntkyX9CwygRwxke3zhtJPziKoe4WgQ9AnKkz/oFrccdfGRFu8PFl+XEyg88xt06N3CdJZK9C+dknDW9nzij5szy2mhRWbpEp4WZUQzpQZpZbUtBlz2O47KGVwc14A4Jte/FV0V7CoKtl8jtiROnslMv+/7zCuFqfVCZAi3Nkc5rd1oBN3rlwA6l8jtLt99giH5vmzpKWuoQbdIcRr+HfBev1aENIb1H3FyHy8XbQ74gO3Sfrw5rcyR2NoLVtcD5eHa4rVtuDPwJJ1JMePl67sgyENhdezZche8KbIiQUxnvWdXXTQKU+z9AlcAuTfLamELdHbmnPTOAzI7OCVaYU3OjM4oMrs1SlkeXq9X60TtDs0JY1rr+oYoTpMs1frufaGPAHH3cdHLPCF61KOkiDW/qMGjXHj7Feer3Q893Tkp1FTzxU2bIuhXv+1ndwUAVuxR/DAfiyPqrvgsv1sJy9b5mFsq0Ve1q7CQ3/8h/uu4yfl2E+8QYn6+GwSQZ/Vcw3C0a6tREec+WWoPSLrDeTO8yczTwQM9opMPFUL7rVQde8WjgW8tWvcOsKdPifQVM5HUb6E/vRera4I8bF+4UvJTU73QUPnKv+LrmOLKgsP+iaN4qnHjtTl3NC/mWoT5f0Icw0lH5eeGJDNI/k9xAZpkiHiuM+GRyCWoKG7b6P6oEaK5ygSnJQ7rgIFUqg2MHrOPpXvCbYmdI4BFlNcJHtpbDim3jVZe43zG2FUToi90NgcMLFjhIrdcT+cfj3xqKR/j7AHJdh9kDXPi1zE2WhqrOUAYnsuRc5MulL2BpibhXs8+llUMKk2Vp2/XSOCvdw2gViX4ZzOhRhQLrMs2M0vzDQDGa9Boil5RlWCoO+u8al7f3x+ARKoZtLXRIb3u7KDdBTXoFFVWuRdbshzT6NTgrn/hJolRzd8k424gHR/eb0MfEK+g5PUaeiCGbd9/9QbfPh4MVh8DXkugk4JO4yPd1we1FzOmquF6uYITdcJIjZ71h1EsQLwDRo7d8xfIy3FBNzRT1l2j7tLomPPlM/JD4x8rr1WmQwwkukUkHvdWUTB2ZyCClmh4H9zfa1ZnOMF65+jt+yu8nHJFvZiUcxGMIYIC3xQDmIqm+fg4+gpNtreWH9wzOkBQf90+a4AaK8dLgYKkH/UClkaFuKbdtogtWc0uxHsHZqst06o3acL6N3B+7S11nn2c7Bx3ODwbCs0itcC7RQgSLSXo3k2dLZgRAimy/a3TTX1uhD3thvl7BVay4W9GYD7R0foLztXF7KUsf+vCopjrBOgAigrB4Gfn0+9+OCZEMrE0TxVG1Epm2ekp3vGc7JCPjvms+Q6tR9dZrTGYqZrteALysFpRjah6k2uopYjLal3xnjK2Y6iZUk4qcML/QZVwmzS8yq1C4qyh+gnF4dNBL1YLVXnprxBqZL+K3pmEQmIo0hNAUyz3s+BuTMwJhL+dQMmhMGktSGn/Py0/yrf1NZVgE1I54blNK+L6/6cuR/4VTNax92FTjRf2sFYBTEVZ1uX52Al+DQIqJWzW+2Evnic6rADiwCrdJjpaJBgzOcteP74q1mPfgwQ4EZqk77adKtdT6weHOUzVuUa980zbizmGy1pOixaDLAkUGTkrI4B3+bNwcr0wwPnLfAEh2qTFipKZBZ1OtspwZmOjcZEIcp9deHLBfTj8IoDfm/kEhtAiv9i7WQ5WIxn2zV6gKNtrNNRreNZ1Ee+NEig/cOLRRfBTc4yW7hy38j9pKDbqRxEDzB4FfXLnXQT54oTItUEEzY6FMG2LfHEMVSnElxFT/kekOUr1GvLOeASBsKK0Uqab7LmJx0L7Plfp+7KFppJPXiDW2Cc0fnmoZsi8PCFyX4yPGN4/2D6/g3grZnHsy9imaH0AlGUt2+dbM53w5R7UHgpsET3iRMxCxuwMqrRZgwss8CvKggcDJfuuIu/ReAX3ESn3UmgwT2etywAXeEUGQpOfwLZq8BP5XFgo23B17FCvBGA4oQ/B5pr4qT6cwHrel5zMvg10yhJ73AvmqE62NMf8lDgCWTe/OIc4WNNdeHnSIoL4z1NWypOxaMeAgoH3JgsEsifp5uF1kN6yyFyyVXMlN1kMEW2Jh42LPXwynTwKFo+YDoi5agF/h0QCSIIVrZuDi61SNcmBuqz/baqfvxfnUmXgPbYPW+BRaTmUv0Z5izpZk6Zo8CSRS/8t6VLc9r4I/B9HlbQ9eZCu8vldI87VgWGghqp7uAmmQAbMZO0dEZ5PqoU1I9Dt3W5WIcXtcnZmpB3c4xh08wOB/VimpLRvToQXqJJwGttcRsxUdiNZ9YcIQZpKjsnuxWgd7LmfNdCTT1dWTUT//0UuuUg3p6kdqFrnLzRB7SaEK0PNtziZEiYs/MarOzmQymZtIJJIgC8kvJbYggarAFmEElJT3xCR55QvdZ0B0jOiQ40vM4OgOzhNWXLPk/7NPyMODpQKlsOkuvKL1nxQt/7XRqd8lFrqZBkwC13C2th9yxspjlozyGVMnfbuHoeldwEh8SX60zhpNbrgq9aET3++miRTLGhMAqwu0jsfgx+MLpBKeIa5NsB0/zQYKCGdDZUYDSskvB40c40ga7PlT6Iu4R2ixFENHVKO7Ii3d+rS0tbs9O6x0JGqFTbi3X5UCfLD1Y93DR0guIoUA5BCSLFSYwMXKErDJ6eIP4WsIQTSD4coqYwV9+3sVNpYBLc0VZa19ExmnKGxrBjn29B5SQKlaQ9epG36Ue3NRBS2rW1ZJMywznpCEuZDXCPhWx2Kko32sjW/h1+m7gnrZ9NNVvpKoFHBJdMeADyMlra9nezvzc3nM2KZxUTIYQ2S38RsI1HTWQi7zmE3qjBCAWX/CcGgA5+CCY5P4HbBOvPllV9Uv4XZwUGIp3e35GyXiWoRYuY6E8vGe9sBopitsNmrt3NNPhioYfdNCODla8fyWkJ862VQ4mjg6ArSFLYpak/Vg+Jqyo6zetuzpV/T01Lfe1qrcXw1WAeyYQaDXCCSiC3+dDHyl7v12fWBqvb3fz2+eT4Kxgs4laJyrsXLPXKiGy/knkec1Zb0jMJxx9kceeXbGrryLH1Mu/k9Q0wTOQCVgys8XYL8Ryj8z2JFuOrcEwnrmv0ILlSMKsQ7jDqT9tZtq1B90i3WayOPqYe33xBzGfJexTOMnxN+S9lLWRWcW2//AI4NszmIXeRIcczsbr+ysat1TTVgzstxWOLL66CpiXCH8Gvuzy7eGig+taAQJXzn+smnzXNp9eY0QA/e6aGAa6+VKXzULjyHCuAAcpsDaa0XWaPeRyxuVJe/hzgrW7li1CI0Q7k5bpfZVtLzkUEWH++CL3vmPeCBVJbQS6Wz+8iKF+hoLgh+knO7l0KAgNMzSHETG4B3q1ReubdVzJOrDTFo+OJA3Pmtw2QtfjVq8jLecAqSTiYYzuBuT4R24H5o2DTVsRHsoxMp/UvNWKH9hF8A0rH2J9k7llBJmLDVnPCmIQcwxxfGbV7opZSEBUz/G7sd96GDKHB1p1n1pxoz6ZduekY4UxNTx6qsa7xFj99DIJ7YtFQjRMds3gi8skVqSIOE420/Xik39y+lSCTb54048GuTPLGiX8KfL1g8yXzNHAiiW9bTOJ4yTRqV7C93KgQmScOpODyH3Ex++YpUzKLWiRMQnW2q11/xambIt8etJxQ1ub8kCSTcDXENSF45W9HPQet8fPzb6WFXWvpCoLKDyFph23+5EvpBxAPHgar3GIfkhGu4nqiN7o8orruQ/aOeG276lTBShrPL2RLttBBmhqjg5peUEgr81mdaPDgyAgEtUvwVXsSQP8L6fVwrW+TXbz5Bwqd1zkfRyb2/xmhzILR5nm7ijk+eSAUMXupTXs9FQ7RV2nY5YDYhb34QlskAiUPTsqNT9YMqmgIQKZej8GR1k7GgAx4JYEmBvF6VxLlvlMEyjBCI/l7iZ1/S7R6SAviGQFxNLyduE/DsiB7fdLnGh58/5zpZeC+SKaTyL0jHSZWu4uqQGRXz51+kBtKaVHtlwEOaU6A38TjNxDIMPndYBPk+kWJVBMLYSHUhWQrDB8XjIdWFjh7ZGJ1V/BIA58NoZBpYkm7TQJhiHp3FrzMxA0Ya74szc9f3dnz4DCrf4F6AhC6wK8deHKqhQXNW3PucxybzmuQMdR8J/ZnZnCTYNhWKWqxdmcAj85dY2lrftjmjuPa1cT3+wt6c5HgDcc1cx/aSVhy8u5CWPRM40j9wnAl+nwMZ7kWJ2Kaw4v0ddsv+Cy9LKL50Z01g7ZuLj2WuwIPANhY/fIRLVNd2x+n56HzQFG7VY37KEA9cEHWq61o8/NmCF+Gwf6emN/TcXDVgcwmHQKCrfG7lLqzp6zhlGQuZYeSYqA9/B81gb5gZgmaRBP7Mx0XvzjPOO8NHhM6jIxryPgqem1hVjIl/SeQWbSDGqg9wHdF8Cu5geaCPZmtKmIf1Dv7Q8i2nztjtDFEcLxeQnEpBPc6+cD3DzhRuTKZl2prbunGnKHNi68jnt+72ELo2Wb+l3UOzVpMyz3JC9GUXXgcYuIDzLt62XTDjFFzDvhUv0UmTHUrj6RuRzv745lbDQO/sEp9qoMe8y+nmISc5WoKFVCAdGgfJMK6GUuQemwc72lOgK5D4/Wpfa2ejeZYjKG20KtpGVWQm7wkRdhoKonnyz7LhUcDPnQh7PtPIafxZQYTQlo08cw8OeEIcx0gh9sAqtTVnF0kfkVnIfk3lfvXq7BrmO7Km/D+RNWpESclyiKyd1yO3RvyO9Uc/6VjMoK4iWevSqaNt6eAl0oQGyf+4CBpDCeBCEp4L4cNrUR426snPPXisllC3Zd8UlY+4Kc97GcwRI9wja+SpesW9SMfygcTeSN2q9/P2jBlVq66QfPqmNuezXc0xvlf6VMdMDpnJohpzutG43V+l+gGYmAn6dMVD6rnloSHGBJ7Vg2j0koqWW8Z9G4Emwzzc5JcCoGrN8B4Si1MRd6mUcN45kT0jQ8gP0a9lDhYkIq0gdiAmRMO2dTq2KFzA0npH9fxaxOVos+c0B8TAotkYEIdW2rlDdqLeA97QQBajbUlCyvXnLonn2P51PY9xYfSeLxin2jGsZ6/MFQMz3gajYJ5eWhcCWsC80hxHm6u3K3mjpv127yuVWlACF0cd/Br/X/rfnK8Zb0hRSza8VsrK4vjNskAXIh/IUvTVufsJRELGJ6XKrUtCjCxKV5V3IJLoOh2u6rB3Bth+dQizEiEmNao8ZWAKraBV8h/ZqdWjSRlrML5sKg7J8dlqev3qJxIraZevXM6mWe3Q9lGQoyslS4ana+cFeDAkde07sZsPA/wllKo8DDlFpFoCwYpsW5LfM4RReXyB6zMvvXowsmW3fmXj7rSUvjmRfqUYgC7iD8JtsdOEy5eA+7uK0pBRCtoCrazBAwHkEa5j/99gnC4HB0hyeyvAx8jeCG/GJ/mhFF8b7wRGIzTlo189tzOutIiMqVau4cSdTYfSv8pgZDZ3kf2fpoUQtbozR3+FBQpUTZjhcNhvzLoVaOTIEYMw334QXgWOTljDKAM1ODi09lFa9Y+4mpYqZtBRMoVaDlgLFrXOy23uMDEaUVpv3fNoKXJwYCpp4kWxpt2U7hbIVMI1qRn6cIt2Pta9XYz/EonAHKWLGmlGWG2UX9joC6U7o4LeZRuVqo++524dOj5y5YedpcdcrzkgWg2on0GEryE7JwXEKJrfddcXEd7qXlE5bXaApi2WXN//gTOfV3TsOZk06fXfONSia5pHEE+EuZCnKVfWKP0HpDDtJCAyAvqZ3OC6DB6ytblT9OSYrxzL7btY3AKTQFx2F4S4eD5Y1xBbO5r119CHgr9S8+AlAYEuoUHyo0RR+ATEEpnkG9Uxy8kD77eoZxY/PZy+yiWzDlgW7hJDOGlvUA2n751fS9cmcHsty6MVYU86W4ZZQ5QnwZNfSkboWyiQqm5FeRCAuAs9g1u2Tcl0yl265iczcACmrQBf0kykrJrMIXsi1SA6kEscvPpKW9PEomM2VKCQK+JRtYR4hlw/c/UY7kVNXLHuWIwr4TVeDoqzugaGv79u0JvFrZn/RAWyIFJT7ToK3334tVVJkWI4/Te29uej/rKaBFapTxm2mCclLjufgT9t9lblMuxeB49RK94Mlul3WgrLFxTirUVHLhpMIM/bJT+AlJlI/Z9ZbRBe/9SMkdKd03PTdQktUBKaDAEbC6RA/VOBDeexBOil0gyI/sP4r+peyHA0Hb4y6PE4TjSPfK3I/OCBB9c86J8euGIVoVKs53THQ4TXvDdU9/qnSb+JpX6UvSPVX62wKksJts5/7kPGA88EkfQK+opzEjgLHVb4kH6RuxAyOX0rw9a3IXmn0jAAvyGP7bfWT8ZR2p6MyI5u7pUh+bMbwHTs/Xyqr8XFnJ37Pc+SBRf2BXdntF3h2BJwoNkFS9ucCuZ9RGwRHuZiotrsaKmL03p76d3fKiYoM+Nw0T1TblSgXyv82lz6t32DP3YNq7vY+OvJp7QYnokfxeJKJ2DN8yDuV7ED5ZHgkD+UR+BlXrLgKnZhdV7H2kE+7SOXj9QRW4I5gGBC3eoFlvfrDdVPvJHoLFthvgxLah0dENvtj7Oo1mgR+zwaEuTs43YHEX7r4vwpbfqBDq+r4boOsSgr2PwkBrcxOKABX/VIg5b7eJdYjqAMK0Bn38/SI9xFD1wjGjod6RcELHy9KnG4OFTj9JJb5xGREob2tH19THH7CikoLUP2vKxZWY9wGjtDOtSjCe3z8khhLO4R5ddhZ9wZ2CjfB5p1r6wJa8TR39vBN7F/KQaBwNup8FIdkPBYzloGD32g1Xz9/G+HlxAM01O+Is0Y4ufiwUUmtH/fotQTtADCovrHiNGndCkUiVEkGjs1gXzTu+29QB6vLGCsg+j9e/+sc84GjN6oOi20wtRQsT8VZw4qzhfhuLvaaD2y9Eq2ISH/EljZAzNl+Y4AuMW6u4Z34/V9ZDnEtmzZ8x7hk9MOeiHL6fH8mx8yWoPIedEfohcIduzWB2EXf7mvFFmWXUUB86Pz+YrynJXbOpmjnftGbCfHkIqdGTqPk4t60cGPPQ3OhjSUAC7muyA1uwKUbcjbGDN/wEvz26ijC1EONBeIAendgjpioW2Yd+fZp79rDPtk/hXwN2BuUOLNwL8cqJ4g893az7MJ+4GuQwWgDcA0eRyv52owbZIfFh5OlTZ9zB6FpVkqj64T0sQYUca5jHl0GEWgcNu/JiM/VDBQQgmWaiZiNizOtF2KdgOIXhh+mSY4GyibZgygXaea7xf1mAhxCzbmF1/zeqQ8iHu5IiIkleRHSMutfA0qMsOa85ke+ZYWkfJlb1sbqA+vGvwXe4TOPKxF5znfCrR3PWPvKaTiz4Hh+gpNub12Y6nzPcfl7WxIwm3s41EsVTXcOhv7YZWIysT8n5kgPx7gqwAc2VEa5jU0aqn13DWbjBieL3KrfrVlSSFbY6RXVmwYCwpvucaZHuSHifklIhDkebkMYDdD0aU682j6eFNxmUzzFDqMnjGA8tbnIcNkayelkFoj7v2RO0BThC5rWPX66Mi+N6u71u9N/OtzKPhWUqlRDzFFyB0CBlR4nj87jRFj/SuMDQYqDljatqVBbD7aQBn/3TC01mwnqO484iH5fQzd60ZzVu+izNKzm1c+x728imYL12DcKh+NIVBGzNZ8E9SbLzcgzSkKlpJ5y+WU1NcjEMWRXdaeFDMdKIJAyMylzVGF1Y3LOXHBfA7c//O51fTteLt8QcAS6Wy5e8Zj+4RVgC7+MvOYzBARLs4a+8FmRQYXr38Dgb5DvQ4soGWUcgxVeZYt04L5SS9zfmXQOCk6cwRV8q0Z49v4kGRUEj7M5dC5wnSX/zBOLB4qn0yIOIYzkLCg0hQa52ycbVUXQUfKoADymaqhKwVr4cXDmYVhzEQi3ygELoSoIP98WMZZAhqjB/MxF6Xv9nU52lLlxgWXh4DPx+l9p9q8U1JPes4Nb1zPLTGOOL8CD8Vd5rymX+5OTJeWsEWouPVYHoZywne0zCFdeyFWj1mSzbRt7CwY7NTXZXHawP3X9M2q4tQDo6G8P+noAcxCeSYjiYMn3KK+NcF6OO75bj6c/IuDGRW+Xq6wNTuyHK2MFxcN9aalhGw22TgIoW0nL6sGGCq4GDhdm3b+Fm8sezcO0xbL+e3zUPyhkZhOd/FzLoxuiD8BGrtyptn0nIIhfMH77iK5/P93sZ/yjbYAE5w9zSOi4G4ht7O9el+i5UhaviUX3CSRNbiJFvGeHl2rFc83jqQVhqJPXeJNKikl2EBejyWOuZni74Z1ICi3MSC12KF1e6zaXLERymQcU/TWQJCXF+LnY08TWx6id0q8niDvtC+VxVTU5dgFqtMuV/Te0g15BM+aPcbsMeos9np1OwLZRB2LN/RTGi3i783+o9WZ1wZsJL9Ihw2AOcbnY5TucSRpzhwEA9Ui8CLA26UmfVMaJHN1g1IeUdnijk9u84NjnWX9IJBPdofFR8vdzIVsHAjghX3E7lLlkJpy0GuEaFdnNtEvX8cvS813fg6dH9UpLIsv9FtNcHOH4UhbbvZ7w//L8MkWI1j5fwY76ssklPD9+F92UR8qVM0G23XSaVxvESFUya+0n+2kIaKywYMbyJ6ZvxnkOSxjE/LFRXPIduDLJEeWkqokz1geD/j8YuzL8ppgbZxRXZPwyemJ9Nel9cv1qjAqEE1Bzvq/ODDxsQQ4BkfhTboXJ9uHkKYi+6B8TuQ28oQ1Vyd6GqyLV+AIrB2+8ngFFP94QOfBQ1cc69rhyejp9J52XKhyAf1fvTzLEYtnKIxzi3F0i6hzK3G/IBexZnJ8mWZz/ej++KMITV/mXqMbFOSwMpes02H4sHWfZSTnDWoKu59B4UmHtlS1WkEUXS5w0hGNU4GkdFj06HzJpQGXOBgUkbfIuU0iUwvvW9c/zPHf+W5EXBMnzD6TRy6p759aSEKp2lMdWab7FewxTHW5xlG6GRTKZ0de97/n6XfGacihV8EO7aMw3mefoK7w/0jvOtfFdqBK1fAicVbCiQ2SijOFyS904p8dhIzZ9bAo+imOyXtIXy3DsFWEdCOa0dtOtQECkggPbWCrditjtfVPejhWZoN5g5ROyiwkUD4tK8RAZ8qRKux+ApwSkDgiVuTn3tirv2sqpQ/TAUAWuBpoizzdvzNzIfl8mm8A9J8N/a0it/D3JpbGlfde+Sc2lc8S4F3can17c0LNXVTzhRDcYeAtujivAyQg0a6UG74btXDR6MplGrCSgZHEfk0nPaF/trhfhJh70rNsxwd9sohBaU5Bi1N273TmFdfMJBjzf8Kz98r94RdzzxHh6SjkAwvadQFmei3jbpWitAcu0ws7+NiP1SfIZmIFO/S3/4HnuT/NEd1bXl+0PGIgDezuxz/nb13nV4clye4foM+Nx54oGYLKgMCrdHImEA7dzid7fJ4Yc79ywrFk3hwXIv3csGXikX93xGy8X+0rPMOwAlOl85cPHAnnHn0MmLk/lkh9Ia+heI1UrnVA2d5fkp1L3HEi0Ss/Ued4zLyD2xNxxYORzGyXXtsiNY+nFW1iqYLdiCod9EVsGSPkCVCWer8/L3a4D9cyJ+h1r6cl+yiwl/WZepQxYhain1TLLcbrPC4incjLcgKkbwKKgMSK29X+CI73wbBjkaIqaghHsA0lGzKggiwN3XmTgq0IYDcrV/KkoGlPiXkc3z7iCMIATIkolKkBz+CxqvEB4/z5Zr94pwfdeVOYhr3kiANuW6w63O0h4DP+v+vE1wIroYMZ2/YO9rn7ZDiRxPw8xUjmYeo/mjxlie
Variant 4
DifficultyLevel
575
Question
Which of the triangles listed in the table below are right-angled?
|
Side 1 |
Side 2 |
Side 3 |
Triangle A |
5 cm |
3 cm |
4 cm |
Triangle B |
8 cm |
6 cm |
10 cm |
Worked Solution
Use Pythagoras to verify if each triangle is right-angled:
|
|
|
32 + 42 |
= 52 |
|
9 + 16 |
= 25 |
✓ |
|
|
|
62 + 82 |
= 102 |
|
36 + 64 |
= 100 |
✓ |
∴ Both triangles are right-angled.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Which of the triangles listed in the table below are right-angled?
> > | | Side 1 | Side 2 | Side 3 |
> > | ---------- | ------ | ------ | ------ |
> > | Triangle A | 5 cm | 3 cm | 4 cm |
> > | Triangle B | 8 cm | 6 cm | 10 cm |
|
solution | Use Pythagoras to verify if each triangle is right-angled:
sm_nogap Triangle A
| | | |
|-- :| -- | -- |
| $3^2$ + $4^2$ | = $5^2$ | |
| 9 + 16 | = 25 | $\checkmark$ |
sm_nogap Triangle B
| | | |
|-- :| -- | -- |
| $6^2$ + $8^2$ | = $10^2$ | |
| 36 + 64 | = 100 | $\checkmark$ |
$\therefore$ Both triangles are right-angled.
|
correctAnswer | Both Triangle A and Triangle B |
Answers
Is Correct? | Answer |
x | |
x | |
✓ | Both Triangle A and Triangle B |
x | Neither triangles are right-angled |