Geometry, NAPX-I4-CA20, NAPX-I3-CA28
U2FsdGVkX19D+XHK/zUninTc/em6hEJ4T/dGzfMfeJ4wbM+YFfW29GbOkrnBi4J4bfAeQpej5e1apF2xaslR9wTte8VBH8N1ECdNXknLRPIiSRbC2pCWfp75ytuoKLOU5aFU0lEUgohf3auOTL2EsaIGP18zQNdkCR5hD37DGqVhXPygH/JIlfFz6pPu/ilsOJvvJZBtzjyzrWu/sv2JOgvi+hlSU0nqJo6ucUQgwcjbQ3/5EOa+w5VWTAV2jQ1Y62rXEljUXo4TrKGPBTcYXxcSDQZSABYaSZXfp0dmiPR4az4J3HLL+xu6akj8VMDgxubpPXkZdKmn0UWEHXiaUCfp/Y+bIX2ObUIUnSURGIwe2hB6b/VjFssgZV/s9maYcldyzbkRs4+XFRQPVe1bxfJ5HVc64YGOlyogTe0ARy301M70eZKdRhNcodETjWdJW5W6eLjuT/qlLN2Ys3Krcu1QAdu3hSlkkORmgaSCuwSvOBY+yfbpUc0Kc2Z5ApDBlum7TNeUB1sdFtjEOHIaoUAFrqMlUUWESplNpdIWeFBKffJtQyet2VOnqetVr3H91/zaHYchZ5J8LWZBIbBaaKN5LHF8I9ra5KS4rLV7TvjQO1LWEbLVN0dm6PsHpceJeNRBX1WJIJNhBfcc5y4+lHtI6KVVwsmsVyM7eqKp1h4ImF2rK3xCwvYid2Y4aGfX+FogtXKMsfSFG4MxUHBqD4rhK5q1Mc4kAnBF7oTgA9zqk9DAXg2jWWuK6QtbTh6GSPVWkqV4yns7aK2Mh0JS+K7fBrI1/4Snav6BoYkQXhfuXvd/JGHx/hX+u+Cwksq61LGvukun/okwhOU+b1HgcUVMwkBpaJxJqHIF69Gd0zDlcG1bZYG9glUkwelCfiGBhTzSd0lS1nNtBurQAmZda+6MPo5P0FYlmLdNsqHWuz6c95AqeFu7/4ehARDX5a3Fk06Jo08P1W8xb7R80yl2WJfUmvEpfGR736+TCzQf0f3/cxCSvjtn0kY3BAisN1Ck2YagXz1SAUhzPb56CzMFNRBNCnCEz2tyK49DJCTGNkPrT+flv6NVcNZKeQXecsIhWhYuUBDadKGb+lXmaPmNpt8yy1oPEtOko0n0ZVrohZyX+WVo45Vkc0yMj8UFXSwcdslaTPr4TNq6iypezG357nA+/H2cbzn8+Ljb0LZXlvGkXIHoMQEqekwf9ATNhFmjZLM95HKM/ylMO636IHKDAdO8b4BNymBe0vogGUGfGjwQ4GjVRuAyg4EJDI6eBQyWMER0BqnVY+BpBsCn3g+3S8xUQHgOVIKNI6HSndUW08yrUUP7YZTa2K5j6zk6IuLbv7Ps70wbNqzdfyyGMn/frGyHUYjEw/5m+7jLZSMRaUXHKGurJXFSaOy2p+ktHStSHpVMjgGuquKkyqDXpRgri0pyehAlW5Pb358tUkXiR3qsI1neobM8TWCjx+lBkzCKm9S6Ykx755+a1JzbnLMhSE5Isu/7EgQabxQ1NLADGaLydxZgrTUJe8DMSz0aTd8kXNd8Q3WOh9TXw8X58xRL0Dc7GVnRbHZ4DISZWm0k/QUeRY+rXxh+rcWTwLXTJw8HDnzkmbK0cLWo+9Wro8eJfp2OH8OTLjqD9Ad/RcKqgG+6ZS86dxFkfJpeDLA6pzEaOlRHExxQH112FP7W+HgqMBiZIicFql6ITp7HjAvHNtFK/J+XJJP3GuiNJQX6zsTwYOTqVc6NDark0ki9IgOcCtFqWXCMh7+kNI6d8SbIBPq/HYqvjVyGDTDY1nluSFZw/GXA/8RFpl2CqWd56msfw8evX9B/SpPDoO73aA60i5ZsK7bDZlqbJTlN9PxQN0BSmYIztnIJB7yOCLfnrorapHz2/ao4OE+aRd3iubNN1a+3xkYFJTd66rJWIPIc5j2oNtUSh6Aw7BfB/Te3x2lxLaevG5dAn7NDfiEE5kOEkpfERyttw9mK42HqWYCeFt5o5DNEyGlPhezSyYuLMtR7wzd8LPIIo/i/PFccyTZnTxJsLZBFRMgjEl/bclH04Tc+n01rKO5IRyWd1dCEIsiD7BczHS+PMVEOO49S1O1KjS2DUwEPBxuqpX6LNSGXtMfYr1RzQP9jF8A/fB/qh5nOmp5Z5UCml5z+34rHXYbolOWNDuX8L5vObjWFi+AveEIwHr5cVRa5gzi69efj4HM5lOEfNT2AKce4yMND0lMQiI7QzCVflPPz+ZySRK9uH5RjggqMmaI4E3+ScMEbbD9Oi/EHVThrIpRW81tDZ7rH0lwZxQhmPJeySuSFXv8kJNoVpE6z5RA9x2DLFqqFdO9Lu08fkqF/m+7Na3jCWmCNOQODTx6JfDbLr5R2WsykqKci2EkX4nZSsvDG8+DL0pfEBEpNIOUBGRCAFp74Av1+H8t5pDpyYVC8DiLcxbdx9+qMiMIAvRvNNFx9rXAkXXdDgTgo0I/JFgi4ehKxhT9xd3bsehlIm+KUwFUQB/IFBfFIynNsbW/IgzaZ2fAkOoqXL6Ets30RP9BOf2/icMHLGBpQirzwe+creQYoLd9UvwvjPag8ppywzK4bx1ay0UzUvG5t3djD3NCUIePPhr3gz4iuKtMaxFuvomc9SvLJnQS9IpzCMpyg3YsK+kvljnuATPSn2uakcU6v6uga2KCCq4jIYkHZJMeRO5gmMclwZogi1MzWxWaEhZ09RIZBqRRFDbgtpIHa/YPjHlD1u+69POiu7mtUwxifFL08Dm2hVex5TTF7srSD6vnHGy2nI+3FhWUPZ8R4ERAbS0dnCQt2GJW4kJinNH0F3sP0K+gdX3ihum+ZmJ8gVkFI9hiPx1RKRfuBb5C3M8v7gyHrAQyn9LZSdLU/MH9w0k5nzAwugtcODS2BiJ/LVAmwwcYpHHXqN/KEzkstsIBXFpVVRbPlAdHgHV+ftJl6jAMXy1q9AioFTZWQDAl0mw0uww5z9wgvNu+gw2aHCmcCtxDf8VJhuxBwKlBOwKs6QmwiRJaDIuotbG96iEui1hN18qXQ0mw3V5pbg6Dxqyg5K6m1Qp6Ddu3RUrWOhIIEDa+Nr/olnAQfMNIIcSWjK8lAX46rq+5x9iQdtH+oB5b6l/nca8DDHcIZD4SgotBxam/JXLZL+452ZRL4d1e22wMk52b4+F5lLGt4eFM1SbcFfgzOjnn8JYsh4LqpVo1BLY/j3EIYdkgvyoZGTsGh96ZUrfXqjoH57qsvoiphkqMVkYsXwzqa+1Ibmm3373K0ugfFqCMoGPWJvaAApdNMUd4NwTmrWhIFNMJGATvjm446JtPh9TosrqWkb4XBEeO4dzanV5BQsqdtOCtkCwZVcMhcpItm4rs/V7kJHCzbfUzBj49XhQO8/dcPSLZB0SOXGJ4d6egbno+WHnw8zfMQpi1GrOca7BLJUGAK48DYWD6v4IIUxFAcKHJNTtdBFR4LVRTlYvc1W/CHAw3KhgY5v/tpbrKqNWBnaBVqXb3cRAy3L2dhDl77524XL2YRJ8M4mY22EO9PnHx6fFwIIAON+tEbrPUTQcNl4U6yxSjolu+Hkhkagl3UCsClt6JrxQ1OF4Hv3z012R/t/so98rcMnaXH4JQ30HvdlzZbBqiV74hpk5xP64DiTLd1/d+bjgREMxvd+JuIt7x8oQSkLNhRaoH5rqDUtZ3uTWEH0TE5DSr7Q2fzxJAEfWyEnl8BfvsUDEyZFEil/atY8HjvK61Z+y9zSqAq/VjaQphVa2ptJRTufH22rvj7F9tWazF97K27JQbp8PGvUCdzIK4QOU9ew7zJ+Nbiwpxph4MNyDFa1tX5iNlR/8JKDd8nx3y8ix0V6zAjQxBOahSqNdDWFOTafv5jOkNVRPNGlygdbtl30hKOU1dDqW1ZOKji3BxtHcO1c1ggfsosJNgpGsS7fyCqDb8Ykk2rCjHAFgiUBoKANaXw1ahYJo0WR+BPMamKd1a79jPpptq5js1nvf3BauH6I0jBaVyrbx8OIjx9+svPuxm9Kl/grC04ueGFtBO8SyfaQgQM9Yh/iCNAg0/0IvGv+3v4CsqyDn0cNk1k/krMA5HTzGFJOELc4ji97jSPpYOPHEJTjRTHdWxsubtqSx61jF2MHKjdSOuzjt6nonGAivjaqosowK3lF3lP45ML0w3VTq+Q2TFK8s74fvK2oIvpegheLAGktr3gaHKjsifUKj1WvRikiScZWvX5sljirO2woydaVXQsF5bUzQ0nTBFja6lg9BAJ/+nNP3C9BA80N7F8bLHayXB9YjJXiWMxmc2bzyszYOXS6BCx4y+xu81sDq8EVgB1vzKts2ItY9veU+NdEfpofocZWb9TAXWIl+TSlm3fkUNKrNDHOEKGrwt45JTFflW+qIndlN9aH98waQBSy7LNyEZ0RFVLF6xIS7jlB5WUYVwwskXem1927MOLLqST7595jICs7SfeYhhPK74wvUhF8n/xwSE++8TIZ4SNyWTiGulU8WXzROWh3JrGD5UCyWkHY2l6sNItvUj56QMbVUdY3QSkCIoawaRhb4i4DtH5nEYbi2C8YfPv0ZDLQW9X++B1bsB6ctvIlnodTKhjtQKz0ntbFqHN7VD62a61HZ1K8b+ObPxqqDeibO1//SKSpjRZb/m4QgqiistHSjOjAOprn2J1/x3E6Fbs8U2FypF4zNCMumbWBmb5DlQAKJCt7YYB6GnOqMOkP2kHjIVf/NMnk8gFpjPqyd65JlrBBBCwpxmrIwsSeoGcdiemYrRaiQI1ECB0FPSPWtB0rTf4ftdUlTGHqtWzg5aqeLV6tXpX9LZArf56YyUAH3w6NoDLe86mU3oNFvItZBPZdamELB76LRcW7n7/B6e57o5fWN/XVmlC0GPbGN+bD2As9UNY2DEV5Gtd4FK3YdF+a+vHzBFknuTdW1RlynkHvgOBQ3APo+6fnOdzlrs5PoMhPg9g0hBQoutobZJiRhpLWfpPZpuepj+4RJZ2euRcPz5Cr/4OLFLyh6+m/QgETqk3GcFrkZMYsDUQ9IqW+nD0cY1zlTBJPNlEUuOiouxC4ny+xQ5dIzPI6VJT4gxdEvv03OgyR+wUdtz0uqV6vvc5+tHJ1ecScwOE54AqVsT4krnRug9QBShoYPxO4Dg7tBBfXrhBGeGgNCwoeieklcxHbF9yikWrr+2lu0p+al3oWPBrd2xJaPqGHjUec3MofoghMBysuUj4iXuvza7UO9z0lGxzCi2Nem3fWuHEnsOdpqo6COxX/QVYPCuMgT5XzBfGALbGOfcwG+9jo6kah3eUcMdFhSjsZwMp4jXwInLqLvTod1up7zttjjH5zvrQM5QMvXIeCd5115fxNrKBEspk/rugT6cwV7O0rHjHPTUEoj9GQSaOcjyPFRYN8JrPh3w3DCWwVXrHHJrynbkBUm1JVTBejH+XSbEAeUMcEfPFfjhjaqk223f6D1LpnBWEPjTc9nKTRhCsAzBrkK0A2DjFaA9rYjDsqpZOi4JhO+v+zx6fLUKwB40jVaBPHetUiDZc02UWOA8pZxRUwJ+hQ7VkzH5A+kl11grviJNTKKn0TGbDA4FI0A/izFOmjvhTQZpXQHrH301qbGY0T4DqM1M8aW/rr0JF9L6Kcf7+8CCNvMYIucRlCAds/z/uSW7hlHTLP7r1BgmZpO/dYHJh1qtcmjh3XeADmBI/Rf+XTwJIv/Odw519MsM73eaYdRbyA1G9MwhzLW29vDgMGtxqBBv6qIBVE1e37T1N1cbyC3ttsEsBl82pmISkEKPjT63X2q5yiCA6Xfw/oxKPEGNy8QHIm4qKifCErki4wUR7PVUXlzOMQfjXe78KKGlUgwj6d078gWw3d68IYgjBTzltKlPMvT19gF2rqE8tVa5scoAooYE5O9yyB7QFiSx46Xz57xBTLZ3VbtELVsglcj5UKXxoXnEKshZOlQW4PvpS3ucwlYaQD6oDz/ru9ZyBST6Jf35jsiO2N65RloRBgzCt6EtMM6yTKXFYivaQptK4p/jeQ6I1RtzHrkGqbEOmlku4trsa9brEgKYPEC8PMcmP5Q/PfmYJcuSpfEBS/qEaCw5KHwdDnJBTgM9rqVXgvx7TzTeRXzilFiPLkUGCfdmUHexD22xTBCMBLggQ0izbQLX/ZJVG7yuOATeL4QXLRRON/OSc402lCSXgw187yD5W8eiVySjVAkbx7NCM9uUKQh2OjliUN2LR0HBaDvGUyGVr8qkXFn6kGcHpJkUpptupLbrXY7Q9Gm1qvCZI79isGlrWxQ2mrc5iyER0yWDb+X5AwSn/qGvmjCTBNxOZXjtMBk2Axr97Fzu5OWm174a4EY+ZZMKEvWAFKpyaqx1B77jLal68TgxKfqm7Mal+9jdKkUf2/bwlhjDK4jQETrEVUXWnD7HlKq0GVQKaphAc6vEeAprITxhmoHOwSlNmML5iG92OVdQPuxu89xFstPK3AQlNscU86taJZt7md5U37vFjJgRSPms099s4ZrYLH9KNAtq1pqTPNhrTjoaZHSCmIfhYpPzs2gGbxPPU69N5aT1g+z7MgdqfQ0Lerq2tcK5SMpaLzzV8+mav1cQHTWwmI2wi89iEb/lVsK44FMHIxjDyNAsTt9DEnyl0NgcTducQd8W86TgdNSlpO6VVJAotXgZpt+1O5Zxp60VwAi5IuXLnsBRPJAowD0oAGCQ+GD9C05dZS56ChfBTA1WaJsdDsq3t+MKohMZFYj8YwGZkYtFqiQI2wRkL+Xz4EmtvWghEDxpg3524XknBJt0Sae0eioJou9yFFf9R99yNJsqdLl8ixjbb4LRow3mqYyHp1qesvjaqockZdvlSmClr6J0rKKyZzIEXmbeVBbOyfnaV7nvVM5BDoad8jBXI1ol9K6PfjQnGGynqsGVNBS7furFIPIVnVzMQS6Ei/6vSoBACUxn6H390Q6cpTnndtwQFsOLFIr2MLEqynybVdBFfj5w5+YvWKJw8r7wwCAmWMYezUnKPqRE/eeUbDvRaciy9KqPqueN4fD5fzVDWcTsvy/drAJP8BvT9K2EeM6AvSDiDqnzbvKBcPeu8AR0Fzm8vr61G65b8bTwynFhVY/rza49LVxBCzKawHuA3xRLLLwNq5bTa11e2DLK/+26LEF7TOVCVW1jeIMib5pYif85fIhuT3xEvZ16E0mviD/q1YsCj2X1yK69VE7WApS2z4pcDhwjxCqk3oH6xcLDWamggi7t7rfNMPVj3TxGiZpAoze9MccmUXpYzc6muEBz3+EZKfagwvDidCa1OIeqw7cx6le+p5f3B3ym75szjDMAu/YWdXQvYe8ccWsHz/pQGF+cPsKmXaZeb/MMtsr5ObTjItoUde8jdpC+wYhpK6WUvJ/yUr0pCQx6Rnhps3NTEAC0g6tjKhHkWnrGxp3NNpmnAxrm42gzEa+FpxdGNItfQvkoGLD0v4ZIPvV6Agv01qZJ2+FpJR1zVQtK42kD88CE0vuloSbww/GN8hmTYcBepv1r/ozSq0IeW+eLcjNKDObbXI/1dB9lCTiO5NajscHIPwm9qMXAToolrpTkGHv5W5GoXXbye5RdWLH8syG3YqvKCcdPATX+6b2g+vLeY+MM5g3Wn83nib/WEJsF7eXVb4YrkiYZS2tWIQqH8Wf2AOsPFNIaueoIu1dRGCknx6gUQcsoeFWjnKmneFIciA9KHGNKp1NcrGcc/7GN11RL4BlvACu/4wyVDSOnMUU33DAos66EdbTjdPSh2SHvRv5PcyB2XzSGhRI1Lo3zAAs5hpi2QTzV+p02PwCYLvUywkLT5CiT8Ud53qxdd30WP2lWExwvhB1gtgfbKxb548UycLo0bp5fjvo8pAAmdTABT+AaIGtcD0SGr/+g1XK6E8xdyEUds6whS5O3aDNAZqwp0RMV5BdCG/OHjFw1wL+g0QkhSKizwVsoyRo7H1a8dE4U9y97AtgsnSfFYOrE/U3p4STKPSTQqryM+ytY5v3uPoiWrWaxkyF8RfQ+cx5yekb9dkzCCP07y9BQGBHQlVk85Ib6+xqPBBQGa3KqSLEYTlo1yQ7xtGTJKBYAfA5AL2ipnNIUejCFw0G25gkFU5/D7qAwEAADEDtHuGjcAt8sDEwVdznfDJ4/41llRxxHyR+HlKD+ocKW7yktpzwe5bdWXn/zxLni7CpSt+uimnZnVXsz8QDXBOrHWkwX0mqZOsOhw3x3FgUbt9vxLsyxYG5wLVXn7qn6AymprVDafHEMwy3mtpO1PIMFt3UqrC4ZKX88yfjvLsOQHUtJkk40dWYqJj3dOZNlo4TnQiwCRhEU6XrNoSw4hufyL1ryjn+ChdbYLVLghLGNOD+QHjR6I6xZAU16KGKC2gXHGsWmUmn/DTp5sbnj5YY+b7yAwAc8jVIfIictSftdLjuFxnBhHQUAND/7FcDzerVqChiHj+wVokj1Nwm8bbD/cyC8+83eHO7mc96UiMSH3lKwvWcyNwTXeXDyNsbtDqnhnYb6b9tuWJO4kSK9qcj8Wh2HlfjWrmZjHjUBlgFLufYB6uo0U41IGxor/ZLy8LSqK1mC9dqAZu2KEE5YejHrTloGQyM4Zk4BS6nztfCxzpCccSSkPw4s9rI1/lc9jsRVCfNoi0yqLByHuhkD4N59Gi4AiKxpd3r0HcihBPLYmN4UTCc1TaxrfaTyqZq5BfcW3mEvuTIzcCTOP1Syqc97TCiwkNCOeQBMDMPUhJ3X0DCJYcQbh88hfjmLaTlGHBrPEzFvyaQxPx4C/n68r46Lzny2hxbiVAXbg2Bq1RijIXU8qaDGp8RaRANrMwj3Oyhmprm7uzwxz0819ThhaK+FzZkg+hqayW8tOsp7unA9IuFnhF8oRdNFDIXctvQVO80KR0cKM+VrHHLY3QHTY55uqQLPbcLXAGIqU2dc+k0qPmQtdzA7jX5G9WeMqH2Bt+ymvRdkj+ktB0onR1BEw1Xo9eep9MGvy7xzPi06yg/LNfqU56sAsqOb83BB4g77uVvKpTZTtie/1FuBiw+4R6YngQbtTua0qv5Scmpsj8u3HV8HVWG0ae1P6uqhFGCruEEco77ARwKoPNYEH1jC42mvUZ60oyKp8V8iZ/2MMKO7obLRO4k6j/uatsYxkqhhve/gvLXgpYy09qDqO1zcbrm6Mtyh4CTvIwseQlTyYZ3dTi2kY3AJZ3jzKXMQFUV3NZ6Bq+XF85Ys4p+Xn7WKMW6r1BAGp24giaSmeTmvYS1DC8bj1+Aesx+rEhEvsuH/c0frru77L9jvkB3YUCzra1O5FW5KxXDwFQQJW1BLbS8nNqaciALbmyGAoMAP0FSc3u2dRihIqeZQoGO2D4FIBrH4DN9yJY2ERrqQZRH4pYsVxYkS663xf/3NRrBydxm9PU+zMLyRsxZFWNv84ltX3OnK5CKjdanpg3sCV+LRAZBxK6SYz198PWbLUBB0UpJWAnAXHkwXIClC/oXuhAeDv0E/zk76YrQgbEpF9T7KHC6cfaGbLhgi9zFR1zonWtfiXqDr1WxghXbyJV3MIUIVmHqDxaDc1VVkauJ+XMcIq/s398xLE34fCApq/X/YZWK364LvfxyB5mQneIqJN4zSP5IBm9ut1fEUC/jvt4Kh0Pe2AB46Q1SVeypG0IuGjfjpOYjmEwzYP5x4ep+hJTgmyElW9/QN4YC7z0vYPa5dXY6e85hVSrEA84oAECgcE+JsmOSmaiTpDHctfs3WGoGSgyEeL8ctjRTL7DCdIiDFj7BCRQrM70K5QZvaVk867IM8x7fCMlhM+hzwMXeyKy64TImL/fchLl1A1sF0WEyO3S+4nPNj4wzPOv5yK72rvFOWW4LgbkA29e5ZiW3VH8D9R77wPrqRCzvZ00KXr4bdVDStCRETzSMy8mexxYE64dalCaTvGGlxjq2FcsnCPEADFRtIahjrn1ttDrRm/VOGUQ6v1Cx8pc63GwMrFj8WrYlEaRsaMSPKaxZVZGLMon01AwmERwp0QjESBop3H4P/fufMgsf+67vAQaS1RoW4tNNHfBjaLcN3o1bDU14k85M3iyBrDzTPLQer1R8iajeFVh8JL10a933CLinNNeKWSOzVnEZ3KqTiU/nRVPJdSB9pAUBhOaZWq10waEpGcoURuQmA4FE+b6v6LLDBk1hTPL7vqqNppjnPIdxXrcVnXIrQa5uGIwHNqMa5WqCBGTdt79jSVVMwqp807qfzZ15udnOPY0JwahiPsgL/S22D/LxOfQ590EYCzZiqFBPRmtVuIJfO4T2qe0KWCeiMKa4jw4iUI06JBj4WUJQW9WhlfimQ6jt8H5z+OLZfvXtdzNTwEI2d0iDfrsVoV/GHkCBKp5w64OxoA6GU9w7s6oIum8J0gQYOMwVVF105VG4ApTfSvd3YqbiYsZex4JJvN6wE8nvbt3WsrXR4HraE3dbbY6dYE2IdaN33TGC6SJt+hltBfzQnq+KxNTKtxYSbk5/ZIpytHZekZKWYkJkDiXu6roREYBvIuMY1Wq63fhNt0NUOr3QPy94JRrikyTDlg4wQDzrAnZjIVYlOjbgshLd3Tkiz8sRCqO/40mI/0L6zFVARZvlTnp3+34vAjqs12oTZ0O9o8uKgHabzuKz7Oz2bK1yBYFlmh3PSDopqRWfS0RAWOjB+2Cpt2Ri7ZFG+pnaZxizGUjQP1fxsvV4PnKdnFi3UACMdnkKllW3cBh06UMikWea833fDLZF9qAdwHQAxLIZffcww1CXRzJj9i8aTpiDxaeMuJYZElc4MI+PjmZ2M76mQT5w9lZGmZ4U0TKiPk7VpqVC+gE2fiHccxXpg3zLx9ZHgfWVPB5uChM4TV1r9zr2jnueUTp5lvzcL8cBTxmqS6Y4m8iHIwMybwcP9rorpD7q9YyZqmcfiV0oVzm0+ysP5R8XHYUc6LrQiyifqmckCfKssmtqexTYT5LT4miVn2UU28P3dDEWsRjJ0Sa75M3ISE3Sv/1VuW89sBt/himhZL88Ee+DiRGC++1qc4Nrw58zzFU0ssMRr/1yNODbptXz6oXdTekiMzy84Tbx5l/IxyeSuV58EcbYrRRHgTKndTpYylYRuT4B7KLRWQPmnhKRhsC7gFfkPNAuNS7UHrqBHBwn28KnZ3JXl+jROY2MRaWehDYaRqMDpD0JkybWYaPxfmT7zkMk+Bv86hpHy5b5lY5byBTnuGjIwnvbOjjv4EhlJKoSMtQARvv9zU5S7DcJULe1w2Dw32uc6SrPoFRwb/ymXwQN7u12W/8z0pU8fYxdm1ym3jrR2e1A1QHuh6Q/MUpIBWKTXaDl5f3YOwaCrrlaUSOjyIQFJv20Mob2e8cNhXtT82uv1BA/NK36a/GFj8ku4do7OaW9WQabFoU2qN03dxhQKZ7xQSF1EFgDbvsi7O++t9PErz8e98ziYO0ALPOttp0l6AaBw4GeRDoqOLjMq0C+xkooMNwdsotCsdnU67kgVnl65LszD7sS7/8QAKfRF/C70seAMxcEmnuWFDHm0Pq/GiiW4N9tosx0Djv/wb20C+y9axSBlZkH0LKhmosAS4rUHykUwQCH6DA7dqKGCcntHHdy8PM2mmX68FgMM44vy8ZaQmkbNx1gFjLP5kUP+3jhoil4zVsCXBR0c4gAUZPKpMjaULEM+FEb1Q1g5n1IY+t26EaEQg+as1bXbcYdRYpFoZhMV6y5x4tcOfKSQJh+E/S8pEylgOlS1NhXiZwMnLutIlhHlC4lVTPWRVUjq4hIlt2iiIP4r1cq7iYFcVA0MZWVFPVnlrpcBe6Qvn4yuBA7rCsLdfqQwo762NngUxrOgthFHruG9+Y4Sf8+z0yaLs74WwsabSqovqW0J+WVYEZQa5c6kmKI4XaprfWLyW/sEGFbumedFxA1YITV6OxWBjGinn7PMCmG6sJJlpFA0SUeAsCU1e2U7MhnckmXOxCq+1M4+0o7K5PVBUTdOzT+1wyv1rVGFyv8eZzliCcWG6qhT2zp+oo6IARzkT9wySbEZ7GWj+VaQNzWeUS/ZJlroBabwsvX3BxJjFzAPGVD8i1w6ryHm4z+wckdYGUSDTz9fuL3Cxrm6MqUEYu2qv6KH2MrY7xiofZUhl73md3QoFigi3ooyt0wKySp4go6gqS6aLCY1KE6ylONNAZFbu5u8gGrqRm9EJXJF6Puu7WujcnUghDlgETne9Qq2UwBaRoSzNa2CfKtMSLH4qfuAhuQCI3JShB2moE6E/+QlSw3o5QOLJJUPNJP/iI4kLVcJ2dIi9pcAxLXDb8C1MFtS3/1USHsHF607FriCsegYhdw9fY0QwfxJ9EEVRIUKNFiinYNVhUBS/xUlZTk6uy1qDE8VDDq0k6Giypet26ZdNBnkN+NNZnlriHOliTN852WtLhHWxttq7qhdeMKcNhKJfZIuQ3mTg1PcvskdB/UqfsUAGy8J+ZQPCxnwrT0bKj85YbmeWlb7rqPkoHL2P+pk4Fu40ExRu2q1Z3M8BJJ6/OonuL6jFlhnvktV9HLa06qVnm/CZJ9eN4uThTKFBipfuBqgIhTIqpb71jQuPYyl2U2qdVMI6qYaRNLsHhfXY3aBfYxOR8M6V56IT364zJMs1l0zbbeuBIb3LEznhBLN8hMPnuohybcB8bZjcM6++mr6e/fgwOrKcJ/+2GtvE2zI1xSQSHIKb+CyU3yp5+JmiMGVz2lbeiXBx0gAC30fsoy30+lImdauqeGQEDk+5b4027X5kyRgTNoMbt5FsmLroQRL0qkGrH2wsMEV4Ly5m/3x3QL5lRfzQ5fRVWI5XEWtsz7FLIhwWGAjNg+/8grgPHKaFJdbPJXCsiNdomze6P4HowJ54OKnTE4gGnX/4hyBOdQ9p0fmcfbWxQuHIoKetE2nGhfIZYiqRYO4Qry6lPWQJ599964FUlqe/GzoWFmH61NaByWQ5QrwB0L3ArPF+SnK0kPu2sQMC46pmVE7zflZ+DjRcmdbPfW8eWprM0uRnVmqIBduJvQ/7zNRGRRXMqm8stSpWJY5IzsL/k3sNVMFPHlx9p7/rG/YBn020lmVvbxwqjevsbtNj4l9+u3SbUTdF7Q8+ZBrb2p7yxrfLhdE2cw+UiLqMdtk4qHklUjOym8a57heRXk2ITq5DlSXy32MUlQcmQulc3p+TexLgdNvZovIFsGczpOdzuvTI8Vsia+vFTse10H5wADYa+GgCa7ECfzI5mkzNx/WNf/Xc1yp0I1KplMxCpt/E6rp2dk8qLDsM7+DMMc0MYgE1gLdy79oLpwdK7VlRNrmo2U8nbOSkOjLCushV8oguno25yjqIKI7anryf7JQ4DJcKb9dkZ1dQMIwr70U90rQd94ejRPVCeOe93O0p/mTbDVyJ0o6620jf7O2OnkY2JLpI1Wilv9Bd94r6P8E4C/4wwrg4gEWd1a2yXW/pqvaGhkE59sWU+8l6TDx6BBaujcnJzJinvSeFWm00g9NUBirZKYt6LmRn3oTyDkpYXeFZFUezNBJeB3HNGNf6PxPzlOaB8+26Bwi09yYPSYcEfMrPCG2/M+PXKGUWj9aLJqzkCh2IeLyqegtgUzmCBw+OslnbZpbXiKGZgtKH56QTL4K2LPEryGlO7n1v4LTpdr5JoVDYl14t6ijO2lM+csuRDb2z1OC9KhbiP9vXwZj15hC7sO/x1YhXdj+MzDCxI8fje3gZPmNjKo6FbRKT/Brg2X3x3c4vUWNUCZ6b9vMwvg0Xe+9Gz+GseZPswu81Lv3vxlH6jqXKSkTAISM50DKUZ8+g4kRTC8ONnLL0nMybYIjEy6GdpKGpVWlfGRMiRsZlDnld4GiFfqvodgFwvOE9aZ3uF+XCOW9BMOljPplOxtTRe4EAFWu72qaNBAf7FRWinLpz405BxyLe1WqgSR55yS6A3O55Gd1I0NrsuXG+C//5rzgKj+WLPmTszENITa7VLKhlxgd7XPce0iTvQor2+TL7kOvzBKbCk0kjmT4/GUuCGevbl2aat5Hcs2EE/H28r5dnk1zCShYKD/6kxhxaDGoqyBMLL1Vj+VRf9cMiSgtjgWjUeXUNe9KzMyFveTZib84/CrzEJm1mYhD0xgDxUZxQzHyME0ZXxS59viZ57bl1kFEdtfUaT2Q/ZgYbRLOR61hQqc4IMsWy9Xu65W404WOGPACBQg1nslkGhR5mxZJMp/rWsZH+98qpD4WCmPmIBh1wveOq6IFrbXRt7KO1MmZmCpCNibaW21ktXux6lhqHpqfL6/gQN6VM3QNGhqOrSXYVT5wWg0vQ21Nqu+mWC2tgqC/9Sm4AS86nQAQJ+iXXZcE1JVYKiJZZZtgylQId5C6bQYDGkY1XqaPMO4WMpAS1ty97t7xhcQftefp/EcjENy4cjiUTKhtXmT78z2MSaCc85dB628bsrg37mXfzWdEz7wJMlPnqHiMlU1AqlQz4TTrJsfSYJJBiph99pC1KWxEDSXARcv6WzZrNnCAcQgpSzMMQZhDxvkrV7Lp3rH5wm0J48o79RySRzIMg3SYljCxLsUzYTmEA9aA4w0Lv4dCm1Rz4p8N+QZyzv9fa5/0eyZa5gJTtdaEG4JRwn1X8pbpxjH3miMahGgmb3U+RGGrMZ6aZxqK0OfZBkOpQHFDQ9JfIXepEf77HDnIz2WJ6AwMzSAEV8J//FaPwcXWkxhfboWn180N2Jk9yIzyVDW9UWvBx1FrWrGtypfrouaxBuZEycwj3khrQZhr9ZNfwg2UkBy/Ofj/dPqRELr6cSdoCuPOwdNCtt5hj1d7w0Kr7mvVADPyanbd4m+I9xU5gWO933cAnzE2zCJ3CnlBw9+DFcH4QQJkxifVU0wwnf88iEu2sS+2PvlTqvc+FLGo5X/llZAcYgbQ2O/6GIDE83mfqAcGnsVKo2bdJEYjo4E6wMNoIKw4BGyxOEUFBZiw7GscSE8L2it0hsTzRHk4eUnRHuJ7dAMMcBMcGGEzFkPzuPLMpo+f157Lm3utDVhc3brNu2Yq1FXJwoJoF0ckh6hvpWFbzz+5wZ0axHlq1+YU7Vtq15Pbg1nVp9ScIdzSaHo2t5UQxABzYyBuCt9IHAVBKM2l+KMM9LU98X8rkUvyBuwAedoDswSS9+qxDVWeH0ED1Aplm9aO0JGezQ6owYPuGFPf2vsch7c5P6YrXORKRPE1+OUNtROKe2Kb1Yri6MIcRKCN37kiR38vIPnaO0x5GCOC0j1SQcjbr2OGV06e4tbCLWMvwAoA38D+01wANFKPeXoJcqirrablfxfCejm6sbPDMwKdqCnUdegaSdnCInRL1SgtapooiVXhNzQi/muIpMU8gKyzWzW3iauNbXjOO0BGhX14H1JnkAybk6DsLOYLL287UIeC3ShWVKYwxjyywJaxmzY4BePpVRp0KtrA3ai3k709PouicfARffKhwhhwQ+u+xQP7MfQKOFAEjGdZCnP5RlUEal/wTTIVEILnSBj5bvxkZOPmOQO6gKfmHM3GZEgttZF+IfVrQ5xqgACzQGaJMXURqcLBY0BMLFsFzmHcw2jKibeBQXsuLK8ClUrBI/aKcONsxL1oSUH4WS5i6Tcu34DjQtGWRVqP4Dq3DyCzc0M4F0zR+VIuJiJBIlPIz8A4nlZrWGiiWDwlZJMQRln4LOKfpasoOGlr4MzvHj9m4Q8XnabxOOqdfs/2HAQECbFnON9dvB/O65El/379Wd8+8Ext6VhvajbJbLw5v9+Mvv74TUAh7PKHvwCb8VR/Fwyhz3pQXi1+sXN1YLoq+67OFWy8645aQ8T98MYIRrSsFs9/nPot6lRsKa8prhhaGznAvEHff9SLAG/lIPq2X0gPW1jGbpzW/M0tVuEMF18otDIV1QC5SYrChhkupXU3oGyAY5Kq3OA0QT5Uf8saxQkeZ4PKzupU6ccigdM0tbnjpTthyY9zBbN64lw03AjsOOJzHpKNSP79qjh1BARVAp8ksFDkaOYfz1RAjZrtGxXBSsjGbUSqplQN8zTqBigL+iQuOYzhljC5BkBtC+33K4fA/SPMeg76lSeK3xZxQWwyGvUtcGuwRsQBwveTZMgClW9oY02Tt0AMXYnaM56yMkq03FnupSn9J///89hzQycSpFg7pAhot0E61n5+oAUq2m8cULN5ro8palukmeK+lrVWRsW3nliPB+rITx0Wnz6jv1kKliqEUoDHKQrTMsijalCMuy0nTI3wFVslZ8JyKzspsbCsxyc7H6BvFCwecL2rnkqQKPCz0Lp5YncTdRs8vKJ1GNrgQ2YjjfVR6NLZvT2CujfWwWkXIG33nf+9Me6k6NZwvT6uFk6whLJU6CXiPZrd+sFkxCqTZKNofLPyODnGyFsI35cefR04iQhMjZMK/VVdzpDhxMmHJHa64US+0+pTQNr5Oh7vZhuC2Ob/C9+ADyY5Y5bcXnAVJNzhidxh8y6JTXKuJNC03jsUz7pQvow8XtaQJ0h6eQhke6tt0pzsbMln5pHy8bw7eZhmuUO+reJ9VdCHbLtC/GAeHgwri747kD8w0qAesWkwlNJAY+yy/iFB2V1vER72ypWAwnnTtMaTo4NHx9yWAVDK8u5XE+6WcxUHYy1/61GjteK3O5pQ9jxYJsL6HkBKNE6NVE+7RN7d8tbEIyJ5MiYknYWGlzXG27Mkm0cWLqnZorcUKIFzoPaj6W4D1qDxYINKo1Cap0A7LoDYfB/cELwEinTcl2pfXOIysPZG1WTC7UzkX80r2S1iVJgfSD4iZRzvQehP/kQHNLODW8FUGiFXcSLFwS1mswTsGkvGBtsXBfoVBUg/4yPQA09KHGbygqD1CsrJIlRF96cC5/c7WqvsSuYhRpg4ztncMw1yhuXuQ6VfJSDfAaDs7xMmUIwzG22suSNds9h0GbmOllynH0G4vUyLj9xBWAOdUdeUgRaoNkAjnbK0PWt8t+KoIpfZeYB1fMa+jLvRoUfLBXMBT7HITcdvWI6XbciMnPvB+gySOdiX75ogzEvlQuSXQopZWoh+nXKxowZdZ12flozGWlXZr4UFFdw/cRlvC++z5DupSoO3zXubMZ31MvRgGkELDaQ05P6WsTleXwq4AmpnnS0OfWOyxlrGWvivH8ZuqVrXgnUFb+IvY7gXKjkzGAolUa+FbLJiIsflAaiwvSKbN2zjXw0Irb48I3GcXuhqcCHsN7OPOqgDFssTcqgH9lFttF5UI/Zuk+lqYIkAWzoRVzX8e6xwCHCqYST1uXwdTAmyj0Hh+6pjd3OIGOECbiQAVHUjaX+nEngQycTXv41PlV3YKCBmMFntWOPCMt9eGyjyKJ3PpSnkfzgZgc4bVDBXRhe6wAkTbde5xcL/RXtfTm2DtYU3lESj+rybZo9nhMFQnGcbuU+NF50PUS5opKWKpfQ+Wpdvn581yClpSRdyraprDA4StXrwDEvFTE4R4/1LhVOpWVZOth0MnDGna40nZ1MOSy8xaTNZh6WPqehhBmkm00jB80sgV/d9XPB8iVPxgw4N394B4+JPl9+rHFd4Q5O0NeFlxdYTPyzyoapEraokdmzxJm6/fqvTiurTTlpo52lOFgE8cqccKmn+UwB//cb7Lb7kxm+IVvZkyL3stSaod+wTU/8N7YO8HgD23UMHKZVxplISoK6ubNyMXUjxLll0eykmLasaRuJKrFm8McY9eoic/Itn0YEa6uOGhb5wyOrSD0Ji426Zia2UJ3H1dgqtmIltpTln1gk4eGa+PHj6c/uhjvgdnKam8qIrMStNywzH/xRZ/0as9NinzPwFFb9SqQX+EHM0aJmLfntYjYLtgoHfNWd+h+QhMTen4151OwC/l+PsVqzLA2mu1vq3VhjQA4t5dbroxx98ZTc9/8ftu3eFhyO7CBjoiH696PRHNYkYfu9n6yJeXERmbPBy6FVbM4aaaG1kg/18CdHCkzfY4oaoDD7qSKHHBWDNSMcm9FWe5oImoFSUAA4BmDPFY2/hIcF2btF5oyWKB/q9IPLCmRZYliWHjS6gRHY5y97pt2TwmE6sODwWzJqJXUSeMdLHxQ8DF1Qnar3HYG1VWOcp9NBy40Ar7qqsYkkG/hYdBajJmOC4rdIDG4OQebPgxN7MG9WetD99SL0RqDz5BPDZTeVTrJ5F5pO+Tty/1Zln6RSHmoAnY7g29+OCfUe3C4b6rft1NOs+hGcK789sDVr2iceOwFrgkOTg2iVSinES4qSw2vPcMnHjCRyjIVvjkUwz0t1B+VEQ0zYwGSjtflEC1l/WmRbAEJHSZ5ksbKhXczVSWW67sa6Qb+w867Cv7vH5sWk3jqKnD28U9WfnC+zk2QRmACXLdKLfZzkNG2erRT0gudJ16Jem+c3ehc6hgLPOZTkaIHmy8AfwUoxZswdTEl06rQrTXonzJBg7hIQeyH2nGd209BZJKcuLbPCdV91wDuzuBtq6WEeZ2PfIsgt2I/8iC6HBcE6t0zm+cKc5+bLCXHAB8TjsiXJmx60MQTB3mPD9bLNmwT8ocKI2rBfXfvbR6mHgadklOLMzaPMdYLTyOlZtMA68uYqtyKhaJvBvzaEQlzsyfcq+u+VCu3dQismGGYWrxCQKOhEKF5KkQ6O1ZxBlSbzAt3B8EODqESWlQIuB2xPQICH+fyvXMQ3krYJbTTXTHeDZ1yINMKlm8TN5d5c/rCQczarRHeZzrUves9AFWI00WbJ9iIMOjIZuBn8Zc8sIMkiimjTDcXGOLTPl78PktJuG5QwcXbBRYZt2dmlKcOYYImb20Im/P3+iwZ2u3e4EooSXjQGaBOuOiv8DYKX2rTPc6TnjYSm1ZbI/767Lst9dqa+GWVW8uGTTs1P0irAWdxpYN4CIJWucmxsfFqPqWOS0hN+x6RKJEVZKz3yok7KH2+uaS38Z2Zl1nPYzYd6C5zAY2RgpwJCmKLRuFRfV7EfT+1uY+0NsR6zSM7bHTRRCdLcpsDREp0sAagEQ14m32PcmqXLa/c8xj3fD6jqq8tWpIPkKJyg+qNVJ945fM/iUvrcpOXl7MD2DUn38fL3SD/YusTY/tPVX2zo/md0WwC/rbo7IGUK24Xiwqvdw0RJaTKN9mq2KZpegWVArqoSegl7cGXElL1pl8ZTyJqUAareRsvIrtz/cCmmJL5wfEGqn3VAxMaF7uYLwACe4vWDOgOBiukB6of2MaIt6/tAr4dZltau5i/Ya2nm8lhGK5BKYQlmheT8yPDFi8dUQ352mZ+xR15ujCTDtwJJdsrhvJtR6P9VgwaQg4HPt+qlKoEP0/L0T2lgH3cRHSAVn2DfPo7kmK6+mXEGtNsnQmHdLxyB9MFr4gbGDu7KUiIqgnBkVYF/vuFSc/WG4FnPYujQAo+lR4QeTYfadOufGwbARuvi9/z0EXaPR5aovWYxRRdeRVb/IlOzTR3tJZusvFbaxmP6qPC6asLbqX6/0aiERymOLW1NYhUOSk+BCaK8Biljlvv2j1GmTMGQj6ZkMY7WPe/kqeRpx9k8/aepmkRegwfRSX2dVKkEf4d0isuJozEt9KvMVJfGQidEPicTY+fG39bqXkpHifYN/OzVY+Pc0GUq/8Hcfk+GP5vC6uaC3YEAzBqkybjt1074Tm++2RW7FQHKLaLaFN/EAXh9Z2Fv8rBMKKn2zfLVKhqWWLIeztpMYVPruzy5GnFVPtSUnQkBv52TAnfvShCn9UGM1Pg5VPVfC50L0a1cI3Pk9M222ghuVm6KzqdAJZsmbkluhbxr5svnFVexosBSuQ7Yr20RJdg9f7x45SjHlLkz6xZwmQgCB8n4YOif6xBuiMh7T5fK7d4RoNr3PQIUbzJuDKDVMbXlOweoj0Snf9f085eT63315YEI/G5C/SDe1jCXec1lxHdxIxI8FdgOOm7nnu613Uo3Rir+KpPOR/Afaai0yEqKcemYhy8so0xAIwvgyCyp6HPkyAm6Jxf26K9zA1GgxiIRFOe5cH+HGxt3vrQ/eYxTtFlZfRY79yH+OoW3V1d+bWh7+9qFlcpbMnFnBP+3x+tQpi34zUFOOLGOAKo/zWHdW3GWDIfnOM3D9dROZQgvT6T/Bbu5WQb7w3dw8Zcw19gYJ1KcW25uKze74383qklC/1bl6Ftk9IV1/N9iQqckpXwBfINPKylQJ18D0bCPD1CGsAwLEpXr8kkLDGWcc8BNY6m902P+lBSfZWvk7j3lHdsUKaKcGkgDJB5J8/qEmayB5dfA54vLdNyqgcQSQQMlCz2aaeTBgmfZzOEkmPb8JUEMDCjqVKJOH5qPcyYRy1CNOeYsTbQ/OlnBs/Zdbthjg6QUZmauRJXRFbyEpXERxoqXH5Eu/otkP6PerTFNARH4hf2euQf1SspT7WQGx0YhARAXKY946mq4yCe7YmfMqEUIXGRIIOvwbmQq0oqYjy5o3NMwLQeChsu+yg4FUGEWsqjfYaEfAY/VL9WFOQh186LWIlKW8YPGsG7NJNYpV4q6OwymrdlO/T072IeXKqNuzDZFdXRBfThdYfcxY1iQWlPGYpGHGcVICiWTECUxso1TAkjmuMGKoWhu2gtV8jKraoCgL6tUneETUAgceO9iCodGU3zj7jzlmu2jqmc8Cr0/Dsh1PonWEPWs+fR3cyQy/3Z8SCRIaTO1DCBnlAujPDK9M14B3bu9wZzWiuKtDXeU5rVQ+BzXpJDEOt+hm6f84P/cDVATXWNgYxn4eVd+mKqOWLTQFjwUkhJPbGJFHLoye0D1FaRJxfY+G5iqNLeaPu6LwfXC8erQn7LP3UHyZLjHLLitJr7SqmSfGWgKoNsE5NwDL2j9mpFlsV3MB1/9efic7BhJMZ7U+MqQzhqDh+7UMGB8ZTziUrmk4YPzA1x/SxpXJ91R7be4lIT3z8RLo0rFqJypcPlCitHmKHiLD1FKkhNYKbDy/d7MHTYUPfC++0pc/0+wIl8NoyrJhMFpiGCMstigU9R4mpG9ewxkS/Kgba3gQULh5z1VSMXbFnKNcMSBpv54RpyJDA3tFodMu/+v76+Ym5uT8kjw==
Variant 0
DifficultyLevel
622
Question
Lines AB and CD are parallel.
Line EF intersects lines AB and CD as shown.
Which pair of angles are equal?
Worked Solution
∠CQE and ∠FPB
(Alternate angles)
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Lines $AB$ and $CD$ are parallel.
Line $EF$ intersects lines $AB$ and $CD$ as shown.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2018/04/NAPX-I4-CA20.svg 220 indent3 vpad
Which pair of angles are equal?
|
workedSolution | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2018/04/NAPX-I4-CA20ans.svg 220 indent vpad
{{{correctAnswer}}}
(Alternate angles) |
correctAnswer | $\angle$$CQE$ and $\angle$$FPB$ |
Answers
Is Correct? | Answer |
x | ∠EPB and ∠EPA |
x | ∠CQE and ∠APF |
x | ∠FQD and ∠FQC |
✓ | ∠CQE and ∠FPB |
U2FsdGVkX18rLhCS9qdOckmmxyRvh09uhsn2RFH5fvBGBiuduWfxxdW8yMsnEr9McPheKue/kww77HZRMo/9RRUOcEsrhF7VN08IqoSJPXupevQhsm6Q5pq4cfb3YjVGOszKz7IqQta1Rl+ifsMl3Q5Ei+x5TO1SHbx5Dy4cg2smmx3KgosF89V5tyrOFXpbRUm1OGyUMUMLHNsYAprC/7929aR6Hl/Z4BqX9Nhkcf2cHVau6Zp9ZwLjv+4X5W1rIs/XKvkkK49b8Zdvvg19sMwU4BnKuMZiP647161JB46x9a3HIBm3OeCjN1zKgAPAN6qeUw2I2JK4VyE2NzXDFPSJA1c6SjUoE6Ye0ahF1nmv3y7FNh3OSzSMkSUQimkrqK386Zq74dITFWNi0nMKK8UoISh26IQRh/NCkywZWy5kdmA2I5/RN6x2rWW83mIPjhTgnPnWaRGxYSbhJ84Mp7Dy3ocgQYFGnFumtUHy1QMUhF93sv0sM82sSwU7Z7aPimK5iVkEN9MI5RjcVcGXfA70ob/YvrbpdQLyuvArI4KdKeFuo9RIW4FqGb+gnzK5b1thSIubuOozk8WDetXUUON/QsZIGRJCGiMmTu9xYl+7T1QJBeIPJ/H6UWr2mj/lumRiKn6F+LiqsiPweS5K75gmLdgIFRGyeoBH/pgT6dS5mIxJu+N0ZjFOga+KPrFkpTLtp6KkISD5GEGIyeBWpWVR9G+3ZuMs/9BMWjcJN0JlzgDwMYa6bjdZflDJ83T3Hpqd3jTwoGFJu49vs2fGjVBhnueiE5v5ZGTH/sZLSk2OJxH7m8lxaFi0DPWcx68sW+NZe6krUvPm1xR2DEYGOgSbKDaO26fiP3RUy7eQMRNtvHuzDn551Esu9sZl/bZO1MCpsoHvPy5MjxClMLAVx9nvAzf40OPF1SCAZr8SBh8MUS6XWBCFJCBRHtucrUN44uRacqMF3qDiKp9kfyc9tdjjh5GGtXFhDX53oxHTT/AHvEDMP9m9gOhREyFKdfUjB/+eznkFdvG6sEBIbv+L1UyK8Peb8ppnCFnCdqpXAHqX4gtNzgGujyd1hefTrSAW4icnxhd/4qtsN1uHWVthFb++O3T/yfhKvr9obC/3Ky8S1ymXNRPMP7b/lid8CBkTINIXTMpJC7NVG548rwyN6k0DX84ILlXkmbZd0jt0lk7Au+z02kS8Zl3pcgtGD12pNUXGb86CyEnl6k5rSAj4rMIzR3uEjKjDh1tnHoumzFIJBj6QaDtPl6gCeh4a6U3VhXoVBT8FRAS7OaCxf0xW/In9VtQjyaA7ZNuGEoyw2rw0tkBmSoAl76OWClkQIdTrjul7kWebnrqggAR+zemjCuzmiU560EcMWvDM2nbmRYeFir2pidsgRQR6KQWl+o/8e3swVfi9ykga2AtcOrSNkPUAzNXYyg/+MbE78E+ZBRaHcezUo/xFPFYLI+y5gff/JPqc5CLvjrS0tMNNrbfVe4bmQh1AARK54DAFUv0AM1Mw/GeDZSaFtAuB5Q9cq6m1f7rohMcKNaqsSKAQ7Ro47lwYe1Iqqo1r51IUjYgo7Iovnb/REP6jPliB4RdnKUEvFKp2JZPjxQoNOHCPuQJ+YyPQJbV3+vVkkJ30JaaMpiRJq5jB8WUE6aGsKrvcGma1jMkHVKhDaV1kWm8ivArMQsyHWJP/7zsj0zguqjXGs/wmRM/VS6ftFBGrwkh6ntsrC8X7SirMOXrHRZzO4iMQWA0fttaQbMC+tnmHbPbf6NSInAGp/YuN/g5hKVSxIMv5xjwjE0m7i93xmyOCnRvd8IW+hxWgja4pThGBNcKFggsKXK4lNsPAIZUuVXt5p/l1oB1xAhrz33tA/9utSF6P72Ns4ek5EvI6x0Okt5BnTP1qdVh707HcUZKwmc0HdUgjN07X1TkFxMcKaFHZeDTEdhqUbRFIRNAVROMSlqaDTXD7mShXP2xIFVZZ3js1xK2whLtm8AJUaKoAERHD8mDJf2czDpma+IXB1kJd2ABPXcMtaUTjhGGVHlDxx8Cj/7kaHDvtVEq+kIEYwACU323UwnI7N9Ms5orceeltyPZQN4AfaKu4mlnW5FTw1BV1b8G5DSqiqF8u8ZbOXxBTtESDw82Wj4QNfnx0t6mVcIyGkouTlnYU3D5jaTSxsc0/fJlwzAV6jNZwRrXqkno4z27IM+/0rzr7GIBYcJHK8Q6G3DYQY0PrQd6GZONSfWd9RFbWQgC0XjnGu+F98ZzYnQyZgYgjGCZCfzQWgMWPbVyvAIhe3Dot+YTh949t5v+1R0MFCp71aZ6GokI84CO47XSB7PDrscgRRzb9u+QCkRJBQ/tg1siT/0rg2tABwVKj2RETOm0vNJ+aU7iVF0rXVSN7TwN8x3bXS6yLUoz0rTqXdIhD65kpKGeL3iiDxfGmAKua/uJDfwT8r/+2Qs3FZ4+f5zMwS6kopzW7+lJ7alVfiNLuOCC+Dt1NHSY4S8F3nIDLEI5Oht9i/5v4UlPmUcTNJZKTMqppNQiy8aRDVqobKTz7Yroa6NgAZKxG4kRLccZGX+EIjLmAjNHeZr1Bs3SP+UaVF5GNjxEGA4mE4i7gLYctNBEzKSlZRzc5+/MkbYYI/hn7F5nYph8Fw+KVVYwM3I3TTWkfGFE3LJSMp0Lvp7hAhafsPjDdEQK5dwCKpHrfbFR6tibdfyP/IU1vTWnKalrX1Dx3mOP4Z+yEolzpD6Sd6KeWF9t465KqpMVdR7beepAn/RwJbwBAgLK+12Ns0/aHNzKL8T129Je2iFVbNHBZBE1BzhNH38JG0+61WWunoDXCNUbwwSgIOLUEZnfWkJ9eFgPN66SloCVE0zoQKzGQhj5huGWjx6BullA41/vp/YaWvVkEeSihWhiY+hiR0f/gCJF5/VwfLZGlY+iCDBRjJu5dCrpGUoUDKecwtPjD9wKelwdUWPCgH3YVTZW0Rnf37RasGVNLeZfCJLigvjGEcH9o/sollnANiqVC3ujwV68/n7tNxhgsv3/TaZJTLIIXwZU7ajSYBaXjctyc0sAKC2gZWQ81l9rWsni/FIf16Idisy3blGFiSXxp9pmzRlXDGIvU0xggeU5CHHqaQlU05m1k9d4/aP1Vr69GzwRfE8f/BPaoKQRbVagvtbl34u7MFpsZXaA6nFtDrHGVBLIS7knxRO8S/GSSzhQnN1pkX6UUJyqhLUWt3LqEZOdVz4GaPlZECAQ3gkw70TinTWKmox6C/XAhK4uYb/7lIRcK6FSzuhaubmvQDIkd6kPtaIr1LCqoTZjcuUo2pOmPoJg0PW03DE4RklUNqid5a2xDmbv/OaMVIMmQwmUieyguqxLsZMs78eHNOMIdH8LlhIMPH5gTaw+kvX++gpln521yRjGYWlms5iDcIBukSYo8LImdgBdvZhwV2+nUZ9Kb61o5p4qVggnZT4vKyg7bVXJ5bigi3N3gH1CX6z9h+0HeJR5qcZrQNKRm6k39uVbCrKsH1KBAVkkyVgMw7AOpVdLLX5nLqbfbDfetiYYB33XrdH6At7ovyzOmakA1KdgNR6uiH6cVYko2cKML5OHMTNrGvtaZirFbm1/PsrBmGwHlEs60ABYw8NGpQIArQN1bd+pfvM7EPSne82rwOMhBSfSH0DWmsm7hTpZFtunQpGkF4FKyMf9p29Fg0Dy6RbWMQvprtFRs2lQZOnQ0aWgkPuOmCqAvpDggql6a8HAGMYlnixd5EVg1jBkOrXOD+GAqOw82gTcLy3N7M2tWb79X3SHn/D5y4UOYldTuj8YLSJ1RzPegxxz+qMvoPjRI3IaHNT0NLGkIhhm8qNOakypdQRUKiFnnKlAyFEpzsSOdaJCuY0aqMhP4cRKzrd9vR3BYnK63qy/Un0MT2yGajmK97JvdsDqzaRDb2e3KwVGgN4AuaI3kklS+kxIwx5UAGQ5lAk2nl4FKI8X9Fr5l9qPULrrBvamIKZgIVl5uYOEmmha3xNfIQJAx/ihTFmj5jjH89mXqyAna3elZgX81wzyS+BItQ7uUWYWDEVGOfu1KbxqM2+sjEc2i10896BaKMdZjUoPt7BFggyJT1swVWXEArozI5vRj8hrTGUPluvHGh7Gp7xkylKT4xlEL0QCjd3yuLxQ7w3K5eCDPtWBPBKTnyXTbzzVwS0mHCw3ko10rhbyy87F7/5XIC9agYTWhFYEnAVVyOJAGcEMcQfU4a2ici/6k4IYw0LmVfGFYWr/86V0OMs4Z5lrtwfYaqgRj9E5swDjJk5ixQ6GzelvrT9a4yTcfbBnNCUju/9mDENErT7F6T12fs/xkmoHqCU+NxjWJtixIW9iDJ9Wt7vCOx/QYpA1o5m2+SkAo2rDQkK1HzY5a8jnEHtvL29MzIh1mos7LwjJYi4GymqGx60BP/NxOev+3OLqzL20F7n9NoLAM8hzNN6uZ6m6TjZvY50Uey/YtCxE47zVCYcJX7M+MJq2K8hGfY7SWY8DNeDo0dawAZ6wuYWeZm7RVOJX2bw/rPwrY2NOtOIFraoSQ4pfcsU801gYhlnHmt9GXIQovxAmVburUsOhl3C//pSKznCe3GagIpal4acu1rxIy4RYgeLdzjhverom03+3hXtcF6G9BZOg1GrEHQbej+g9Sp7w9O2giDVZAryWjxdE3prx8kO7eXftoLUbOgJY1s3ksvI8aLkgt62Fg8pGXb4NuG4q8CYzxQGFQ3Fn2e3sfuJwWo+zXX9mvVGOXqpjidIe+SDGqtFeRZO6AQT7SpzsrVe0ZNHaE+1ttQkXf3cbO/4cY0NAgjzV4pXiWTGYXjylMLWBADXKApZIJwJKnWZ5NAHXsmTSkz75PRFdtSBUSLWfIZ+7DrvbzqhICXMlV+rGi+8dCwCYSAxtWIvb5WFOWjfsecJmw0SxSIdXwhW0MX4M+IEvwRzlzx2aL0wgEh7DMO/OseCIOHb5zRwxVsH5wKHR9xltLea7G3G9jY+J4Dtwag+pActVhMESF4kuCzrSH50EzAvF5Wq8Wc9QTEeZiOVQTEKl8Dos+bRbuIFuIDoWviDmb6He1hvY23PWJtasdLcflNNqgT83p9uATSDU5fAJ48Hf2MxG0JohavnEKx1mC+wuA/PPOux3L7p25A5Wf6IXN4LXONTgiWQMe/pXIT6TIVABcNF+rWWF8Qt0D4w5UETC+17CO2Wn33SQxgRq/L/FjpXlpaQlpagc7isWm1yDjkg12p8x6Kvq7WpMP0DBkbBRam6lKW6zLB79+Y7n8zN3SExPQMxm91/sUtVOO1QJZGYucuMzSmva202dfs8SU/hkz0FSmBhYm4MW+PBY6/4D9e2Fl5RE6Xw+5512wckmCl1+8TUTbBIObitEFL6IQo0FjzN5Z8r8xqQKzV69FLJx35gNqDatSHOYR0hAdtAkVqCa72n1lGUfsMd5maAw62pbSzgNqek0L9BvUjSbXnPeb/UBVAlR5NwtKSzKHU28LGpEvth5AW7qRQhIhhJJ6ex8bjC0CCIxEE7I9mXVTsv1rBdLmOmKD75/7/sibyqj/FxoXys2yleEGyrmhIF8jbl3Tm2JzuAsER78zaZ5GuuBO8YtvOoovtnutXyqbv8cq4allnLLVqPBvjl6yAL1B3kJ4pqFY3PEOuWev6N2pwT0T05kRCSH5OkIzlknv9hRrHOD/MQKNwcsms99SdGO991Z3n6ko7qd6UR5BcnoBzpBXSg4MXGbWvby1oUr7tnQtddvYfTDU0fqFTtXgNCACeM+LCJc/Rht7HU9VYf8XpE/kdcdAuPbq2ieVicbT84L1XQmpeZGzp5ivGVb0cct25owNBCk4CZwK4+l1RQed5NxQkj5ieQt530L8m0wkWm8F6T/UHz4lxxfDdwWgt31ZolhC6SBjCl9/ze327Z+XdREgb4CrxAlf7It2h941k+jW9wx6WlfGgT93cvvqYuIw2+h7Dt87BURxojjAaFC0o5UdvuVcphcFrPDLL56l49LvFnxtOO0lNiI5R1lXW86g8A2wYL7xgmskCSKAwMYhA6E1MwJRRGXTmWoVir/38ImDpGA6nT9NedcxXdJs8MP4bKHkmiBfn5K5xQMe4vB1T6W/kSLbZK7WUJnnjXdeUCChT4cXqItN9ZfZb4yTqa1wjdZ7seLpsX9dkqZ5mpaH7RaWFrklShQ0xe0KwhzzbjP7/87mW/4+zCsw26dY/cwY/pN8JwjRGhv6+CxP4t6qu0SJbBJdIhEmK6i+K2qpO8pbgDy0B9nMsAl//sXoRLzeNVkPcSqo/nN3Fw2C4RJQVewTfA3VF05ki8PrCe4zSKNtP0/by8Of6Cjvl9KA680HKttNKIS15d85AbvVAJ9YJR3ze7CnOYf1vWLlExTouOPrgBUdXFn3kgI0W9n+k0n5baTYptuuX05TzAOpgyDIsUM1w4wG+pQdj24EwsBorB488o5TRwt6ducVysuGDy4bcrhXqQZsCUG/b9uzHqNoiZG+KNhGUIJXc3iqsvzQl2RB71X+YYj8YrFogKshXAweko0F01z93BtgXhDlXNQ/2gu/qIUW97Z14O4sUrQK/45JaLnEl7W20XWiDYeQRbd4lwgdGCn24Sse1ZgVsb4NswtX+APvQOoTIDDfTWwuCfyt7/ozOHzPyeJOU8NtykJObgiu3R0sXdMHgqwC1vl+XNdvQ+d526LwhSj0GA6SD7Gx2SqZZKxG8IV4ENcL76E8l/NB/LzuzlkVT3CJ4xBgT4jgUHp7vfi+BpaldaoiOn6NbNA+pFlZl3CL4kqCbhVNUA4FJTOuxjK3IE94lg8NgXd9FfoCTn4pPrOIHmt8Lw1D2+JTuYfVQLLAlNj8BUzjqAp8qtxUqGPBz4z7uiq7OrpogQJdqJoS7KWcOnWM7/CNjGGSLtQklrk/D0WD257d6FKnmWe0thdtRr2J2LiiXg1qoj1p2AHmJAgo8BKADyHpWKpCPbagSjgyprtHIauiTsQjr9+JpKn/eS322K36BHnOrQtIOUEE7AT6+si41WyXGSqaHhXHW0WCJc0MrFCgNK3HtYtlINT2QTUNWvz9S3XYZJZtE+V3n6NGmAB0y2RAX4err4HVgxZCOWrnDaMTU/vmJpzmkigHOYThGaoHVzuPzwP/a2ee4A+jyT8MZyzE4cLGfvoBT7TaY8yTfeJnXZeulstYtpeEtDw/BRWG/E7aMNcCCX1ZOwxm1e+y7nyX5R+g3FeGt/5M03Dsivak6FvZhHTwdWVkLexlc8oOtUrg42Koewy8WAq9F5BK4TP3fk0khn9SyY5y7uEYFf2Mn24BZFXjwVPa1mBkuhy+q25VHhNxPV5Jp41zxa5Lnoc4Hxg/4+uBKxgjUexSdq0pNRd68lwX28Sl+Da9UBUjk8GqUC9F+Jc+wKrt1IbStj2WxxWUlFpmpKRw/8MttrcTblo33oRdFfzSID3d7np6R1b3R5RWcJuwoOMtxY9/asCyyAErMFlvGYIyctB8seKwl81qmMzZNmim7iYSzbknHD/EcM/HvYbQdd1gpPuvU9f3eRs852BG+RBuiK4dJ7RQJwGa6yOHGajeM+FQYRAI+nPypAe14xAqdoG6uSIqzMAbSCXr9NYV0Lh00MsI6GWYtmFuadXapewq6lIpeJkBVz8i9Qh2VdKZfTgEsmkKLeUawlbEAEr440rBT1+h1iNOf62+goAmU3UC0C+T2rETV4evxUBL3nYBp0FhOmQSmpQ/YOVD+09ZsZ9H3VCZ71xH6wj57BVjrxXMrFz0zR5F6n70Bu4mQlUXssd1RpFg6aE1LBfXlTqDZKfCOS/QEpATDHN7wj2Cc5Qxj99EHYz829f4FkEuZ483x4KEQsOGJl+dmUG9aNwezmfegG6o7uJlAR7AJ48RggfBqdvV9h6gyxO3CqMMpzWtFl0VpGq2rvtTgLsMSkwpKm3rVTvN+R81BKLpm2O+qhKp3YhsaAHa/3Lzz7FQ0QBFa93ZJZzmNU5K5e9FM7x89KZxol4nlltiHBghJ0BnEOh77yRCQLv2aH8hHctDVStcP6RDMT/sVjelsufndIHxblQr9VFgk+29zgPLPxHU6orXkiJ8vAFaZbWkcSNGIivS4uov2NwmY+xfNQwaP7K3HoiYRrP/qC3jxdeF7my8DN43gSV2Ue49UKBiZ96aSQz/8jQniNOw6XA4mAOCmWiG3iBP086gOyE1zEvMqpmqqnIwrPMa1Q4Zmqkc4eIrMSkNYlfG1usAJe5D/movGfK2Jr7FOfokCuaqXyCfcnyQOpwTp9Y3wqttEIkFE0TNNG9tEPqUCFLYw1WgkPgxYcqdORavv25mfULkkKfxry9FbpvyEIEdfXqZC442xoZn/uxPs1ZKHnZBmZQhs/G16yRRht4atLlMW7XlX9qGS6XjbeuyPeBW0RVf1LwOUBMpagFeEU/NZKgUaJ44y28QituSMhh0IoH0T6554AB0rrH2WBxFObGDtIXK8eJb52m7mBY2TX3J2d+k/z1D3TA5ByKK/nYCapSEoGuFKjBUm0kqr/va+4PvloXFqadkW3g3B08Nnnm6wmFKz5Q+gYgQr9X9rmO6WeL171+zv8HQaYnxRbC1PVaf59BUEd+jH6lB8En2kGmgheAP5xmO17J6OHh+ixzf/1OmX853eryYn/9iwWq10hetHZTUXomfuIEHIUYXqAjyBsaEgq2VH3TSbyQnCYQZ7vDvDz8NuEwIvRZODdAJj3gnkFld1mAhxTOjc9j6+0Lqb14jCX2ukqZ7oYWOG036Vh5LUSoQlYIv/4/rCNFwcl8nBPI2fH/xY89gSS4mIqfeTkt0aFNRac9GAi2zgSCMyuA4dG7MWRjjKYvyAuDhympG7p0HhhDIjxZr7wgPJ7S2qcn+zy307bxTPtPishaviBrH6DVSuLu5xcQFh6esvaQHnE5Rv8EhWkim2dyChlr/OLcWLJa1I5/s00vRF+iTWSldJgnfa2f6/4mb5cXaW1zu6FqA9FrVNBwER+tvWlbZpIJMEacauMR58Yf0SVKkftqS8rstncpB6MILl0RTCs3qH+tcfv7145bRW80lM6XkvzckMBlro+YZc6N1KgiyCB5KkuVU/BiL2wXfCoDwAjtv5WjWjwil0uu+TB/WD2Ik48zUxfT0MfOexfqHzbIoBhAMSpQ1ZEdNfVcAWQoYAQN29aorvWl7/4TEIRpDDRC0oIlSaolO4j2X3kUesB1q7lF1MgyP9gSKoglc4K7rY8DpJo59BUGKeEBIokL7abxhsk/n+xiIITY5jwbC+1oMMlkI7hFbzdCZjvcLJrOODi7M0slsGaBLJeqj9z1lQ9XFRAiQrkOEv8YDoluhJw2u4vjqyampO9YoDyuKyKQwwvpGCkcqBB6Ycy23eKGGv+hyrf4QS71eQF8gTk+aYXOVa7FJMKRcePVhvrprUWTamFR0KZ7vOoUQ5a+aOG30M4Ny13FG9dkkLfN25SmyHyeQieldYOUMfemcZu6pjp34vXVvhCaW4pwtZ5w5AkP+PqXTXGIfZ8lW68gCz1T3+eGQTUxDZKp6Hyv5vPdXWwfixsGAPJ7z50kPQLB7hNf3DIpPK0X71q0NgIyyM9H1LzwY9nMU1BI2IHvRpMeD680bb3lify5e6lQ2cGQVkkcHfFL356lg2Q21dA23jN7pVj08RiW6aX4iOnAYFh6TTWR3VApY1+RERd80/kjV1u9wHqEZeiVnix+mcQhNK/2NvNZ8RMz/LHGIIG7Bo97EC/IU/oTydPgYjSlh9hj+ucgfhGFOVwAii6dsNqT2JtLTgZNS2XiB71PAGsuPmsvXuqc3AnVToxiC7TazhoNMNWHUijM1TAeFzQQ/lxuFTVaM6hNoX1vGplJJ8hPP/aApQ153QiYPktWNPDoyziLRUYrWE9Lq9urvxXpENvpukDlArqwF0m7irnANzDWW8+3YWHcY94VEQ5BLaObwZGovUp83gJthheHs540xnMNooRWjg1mtCz6pWRCIbmRG5rub6SMLtlG0PMjMTDIl6GKWBkTTUK7b2fMS+mS489V1eUlRB/WL23rs/+jShifuGUhKJTPgS/nKIXF2Hffgn7tqK0mZGYmSM0Rn3lH+IR2Z6qLHy9B7jyOjia2n8Sc91jYjs+q610OThllhsSVPPRrdKq8coiV9EZ0y70PCeSXJwl+Pc3wEHZueJ/d7Hwx8D0adaQmFe8Uj2iyqzIlM1fQFb2yl5hdJr0Esbu/WvWcn16xPMnqlpQUcqrzlY97eNR5jSSbXKtQsXdzLaTHRShlGyi+6eGC6JkX8DLD5aofNuyR6QJtGPQsHe/UDZrOn3VBAvaaADne376F+kKUHNv8Oy3Iyzmd72JtpvJP1BoYo9wWy7iTrj0K6x6gQ8DIZvQNMuINNalHqlYXwbKNvziQHgbsbhMAoSC4NOoADbybhAWVHhbQF+K9ep6HHRaZt0KFGGeWyp3h9JS7YjlRNeyL024XNTvv1J/0UgsIUy0DK08zyYlVittCQDdEmt59yelx6r8d4Y9Q21tJ3eEUiNjmIDwiCw6cf2Z6UB0egxAeBgjw6AWxiqoCw6NXzdjNaxf3Mwi37d8CJ8kRPd8kAD0Y0wVj2M4Fe7qJy9PifRLZCnM5F+u7h11h1cCTbWbnfWOjSlk4OXzdP0PaJ8GNk32OhjLRZXaOmQWj/2X6GutIH0AlXeHY8eQgy8YXkazPiEYDW5jATookDvJkTJ5ih5MqfDZ9pNiMGHTOET9j6sz8eIMKqYclmFkRzJFeX31Sgnxxzt0YYGmiSX96l6PHr9iDAWwzkd4wyy/qyn8ve6ffWyHqQmerON7roL4VFfM5LWlYuOzWSMUoO/Cmrt91XnMlUOytHFR161X2HhDfogci5mjtEartZVwgUEEONh7jEPL/Rdv1k2TgjRhRZ/kAbwcYSfbBLV/p6qauYFFkcCpHlIv0RCDSHUnrJ84AkE+37WeKLQrpqaeU81o0qg5tzbyBI7Mbq3k2KSNwI15eHom1keg4WXMISLWkBMA4DKO1+r6zZDC1l+ea6CPGO7XcOTGOOsjfZHZ5Dc1zMBHPIHFm2TkiOSD8HKWh1zXlvNJ2/vV1FrJsYycfOvSJmPsAyuq+0kw8GZptzCrueHDx9gH4K+B863+K6Y0oCEIFxuvqItUjenGZeafuIXFuYk/XHq3HFDCFTyTuM5Gov0n29QxSWErZlYw74vIXeUVR4jkjeYNwA5+rcJz7gC2yhLaFgv7COUIIY73wgz0+zr9+uTvbJ3SgaUDMfAd5KggPhwcRmYKhGeDhks+CeXYd3fQElEfljvvQ/QOinkF8k/xCEW1hxaAJAhwHqJLK5XdpZJ+kMmB3LJMvSRznAKl+le0yJaqA7S2XHyIsfLQYo6Iret6wKN6KCb5hmGaqR9lVYRgoo+Lp3L7YTpdjeUjHK5PcLuK2En+7Iq8l9wYVTftOwlTTmLRQsPAfAlGuL/QwxNJ3nZ/yTddmYmnAh6LMimegGzwdFsIWRK9gYnAI1DCac1/Z0A7ZfhIBVAAtz+z8FTord8l1m5QpgguXGPrnJAKpx2+/K4ERNMRR8r+6vVrpTPPnwsgTCyhOgqX09GZSTLTVuGhKHDvJHu6VKI/KbA96skQ1ML4ajX9kgkArf3fE9rxO/Na/gI8uJqQlktNwnYEBkhWpAgt+QYgx3uapbtgMrDHYZxG8344i+gQeatUWujiDkFEDGxZRGlwEe+JZVjhZGQj8FP0sIxd0Vd5F0w2mdyaJWlMXN6uN46H7YPzJ/lfHxe7KdufUJ2Zes1rIcGl7GbcCkcRTJ+7LrEur4v1N376AeiWvovh8ItKpA7Nlq6bYhhE47x569W6ylNl+6acGsHpN00cJPNf/pLOcr918OuAjedgnpHjnrrcWIkqZFrMTbB7HdO17xoOuXASahjn90VCXYOp+0Rkxskkgdxs0gVcZx5jghZ4JbU2cSVlOw74JtSx2xXfF+BUhnnwejOnEyaJZTHvNjfUVA8T/6aD3Zjfbw3sStDToyzuCZmDluuCXHPiOShmpPhAEUxxenmk72I1BK5hr/+ndoT5GEDCzeYU54ogzW6jdFiF/wdCvuOKDTS+xCSiggTOQ+b+AcXZT7Is9qzffMv99rn7Sm21DTN62QNdAQw0dLQ5CEYXAI8mIhtTO89BIyEZi1hBrQFb1vCBtgkZNqIA8RKe6lJm7SmUpJGs15kc4xVfC9WorO/jk4X0j048PivWeh9tar+6fj6et9UDYcDx19ElN1lALBuOTSNnU9qclw2+VNQuToQ6JWWP/1Mds6wwaUTidAe644qaxzW+qKtiXCRxImAg2p+l9vyG34M/y8jtSL8FTaat2jlYDBQV0J2WNxN5TPKSBNHc9ZWaPBiTMtOfouEDaxO0TcKZmWyDGC6SAb16n713RpLP5dTSO8APbwkCtqsc4Hl6lXTuO9aRdLawxnxV7srRkrVdH8tITBkkOKL6BU77vMs8aQGFwDmHpH5DjZ6/uEfKu+b+wTgeCioGfS07cNXjG2n1QS0UkEYx10+PWgabyfolb+PAyIxRtB71aaQL/dKTl3dBZ9y2cPlw69nfA9k6tpfY1SyA75fdzEKdxaTrh5cbuvsbTsm5w157w4xincbD+JLekRjobY2kSaFHd3f/eeVrkoHcZPAw1cJ+Hl3n2fa0MwyAbuqe0Z1n/ymz7NF/eOlKHDiGTJ0Bb0xaCrT/Re3KIavfZVESA0TVrtogfKBh+CEFy3ZzSYLka/8abh6SXL7f/K/DrWb94EAqJzJC3f40Ryc1A/ujxLx1UdWM6wCdnlvgJtk9GZXnuMhU5CE/N6wFM/Q+nyMDrUSINn0jKKUSpYRleQh+DGlmaAY8Pqgqi9K4YYAxdOQXEqmDVJD/Mf+N17245+q2VOcoB04rhTQKCp0ebWpYhPO6nQzVLIpBjeLgbZ4QosX9y2a3K+Fu8+7pOwoWwDD+Mn3Dy0KnZrVE3xKHreRG4mJn7oo7MsT/p0CNnoEmeUx6sTLaipee8XwT93jO1C8QjCwFFQuSBrPoJduNX7hB87OL6ghkwbOY1v13STW41HyTy0Q9emVU2B8uH6wz2KYLSPxY1qVKaRGgYE1si58HtQ/G1ng9rGww5dFjWEUYQIeE8cysTkjgVmiWfq1PHABYZp7zl8EftcqNf2osbf46njtqve05iXWR5qRq4RNCpU/JOZT5sHNUemWnfaoDprjESP5iF7NMfibRWeAJz6CQCO/6DwQbhQGGTlwM/VWnPyxKRuMgGX/Gm3cekA1dtg+TeNjztiPzGscJ0O+L8sI1bT0D8JlM7LV6Or4Rg8YC6HlXpGGdK95q6tPIWbHnrh2J1dcts3PhVlFWxTZo3mxP8HACboyGcMHhgxqWmIZPbZ/vjAxP6qfABl8aafCY1/9kD99AVi4zNOYnL191HUItJSqXLGcU+TYMlV0ab2cW5BoMkc6JNn0OWl4yPneg+R/xzElHNysMsH/rnQG2Qm4DE+6+tul5O6u3BCnDzmkmb7cWjrE4X/fCjKYUpveGby/netuSfrrlZd26vadpmWOYrRwpU3zQDq5gd4djW0imXNJkEq0USM6yYuQl9NujvPcTtkYuRXDqICA4ekrWhq9u/js7380IA+WSBbSOe2wjFx0MZJvhGpdgnB+E25K/ETXevnqIsSxas0KmJ3pb/lQvzKWimkAc04QcoQKmOkwPOYs3TvEY8SMHht7olwLiXJx1vNbzfttthOg+CHqrQ+vSKr4pIk7SWBV6vCvTVgmvhLvhMU3d9iAjuDSIIyT5JBGwCTk2dKfoqiRp1Gz1Qt4D2vHPCZlNoxkJdXGuEy/KjRL87DemVGowRxmN3Zr7BEboVCUPME5aew/Fq5dVtS6hgNIkVbOf+7ArrsXlRUj9xWKVjJHYuSweIIfKsO1BhtEHMq+HEtaEd46aMZuyKJYFRjZqXNqw3qRDcnK5V42Lh7NOMwWfYt+riqhasWnnYznIm32i27xEhNnouP8Hnmg2U6fk6MvYDXMkpfFqm479oEaROGPVIxPDw7IrxnsEcj1wDT8y4K5UMiiSkaOd+UgPVWQrsQJx+T+XYpJ2Sw/Sk1SE7Oo9iaJiXTcOGo8YWXkav1EtXP08SEOJlDMgenVAz3dZyPqYoA4d9AfO6/COjxMZV+dhhc/QzPDUih7PrMR9U1w7/FhBWVTLoSNqb0McqTyQ6wQWHCyuN/6BKe2LkaspZI/GeIUPP6t5XZXuj1PcjErxtjGpzeg2kE/lf/j3iD6FIf9YahXkMwInDjOwcNWNzlp7WqEaLbmn60+HAof39ThNimlc+VmLm+IPVa80c5cIQaNvhXmX78an1gvg7MKJqxgcAyNKqtG8J1kBVoHYRNbdG8WaB+SaAF8NJjF8O0DdpWVl7iQnzgadWbeCgZ91dBtF+JjKJZvz2eNmB6glG+oVNT525wkH3WCkFOkqRVxaSM11Baf6BXbdOOK6/al6zMLF2VFNezNP04JnoOwF1UHijXVJ4WOF4lRo+DOQNYr3d9+++uKvDufdluxTHh4GmSlKATYJOnFRa5IP2NF0vyuO7tkD4ncYkTwf59qfkzXBFUEd/5P2tYJC0f1MhsqZ5WJBDzP6+0ZSfeXswFMoozrYu5zQNg1x4FOOKohqxCXrtWwviyYYZttZwlzq0zWGYBzaAZkXTv2NCptiT+e/ngvoBPiJRwW2r1C1OtIUykV78IaxT8jNfv4624s4/NQLUmgs4151c0bG5I4KKZU05g1SiihEK+Yh9pmokoYx4T9IHNzIETxKVDFLWuQLccBn4RP/eyxMDe5pRrgCb1vJczUKosYanbjvmCVfffXON1Q5VorGsauceKS7klAn6JgzGmiZQSjrh6yLVF05uArS1pqPjKW7Te/2188uVA9BY6Pwl/+rATSvx5T0Fu0aOK0or8lzUa8CJIpEkI6aurN1F7RzXhCNeZ4NbeXb6baBNu8DHszXOoUzv89cgDC5or/uZCJIJjmItQM/gJH8XuH6W7WKPD7LIZwBoyERX9e8lyz4WJRR41YMGjzoVveNuQ98OG64NwKiHfly3dPdCL/CAxGQ9eGgFA7a036lpinHnXWrYkhy0GCzs+XDUt2ktZXP13KHZwpT9LG0OWCEv27ro+bCNIXw3RthsPvrjD+URs19mjCzVW+dU+5uPffTbx6QRngJ29NeT6fiJFeJbkUyUvi29zscxOH5b7uJOxL4XQkVXP2E/WuTq84bMmrsg36JUPTtcOHomqTX8LBUbirb36zIOYh6O2fDi7OQKCDy5Chph0hUMC6CxOsXWHe2r1C8gBz1XUT5EfzLcwymZBICmDShkDHewCLuw/IIzAyTVRvC0LSgWscTEVGWRo5Q/5CvB3VKuSQCuV6qU4DRvIMHhgkBscSHPd/o8raB5CBhAfItZNLw0wP8aLuFRGKVrvPnDu9xwI78yfGBqCLd13SgDbuOnbciSTDgxSr/WQpeDc6f5OYjx1eKClKmWTk24JtJxHsw9fDYvUlMPbmLcPvhgB4nfyf8itAUhAJvFNW2Qv/3ffAkjYsydfGXBUfT+pTmOX+fpLONBS4aAF+ssuMx0keC5niaBfkCEBNvbSG3zW+zwChnghAnuioteyjff4I5JlQn7HA/nBF4fMjf0bsmUyM7ii4KqsAwvDcomFf+bB/tS5Bh7Cc14sUpRTiE9gm0oIuHFqHbTRAhx5Kgo8twIAoqmg0s3YVQySdZj4ng7206Q/s7y1lUsRT87pHOgpZmG6EXqTfpplI+OZ6ZxoUXRWRWmHViprKbAOC8aY7bvIS9AsQULlx9a6r4DC7z5NyGZEuMdQrFqCoDKUlD3zL7YPnUGi7GYo+eip1PjyKwIhuRogjPr5V0mgU5p2/xhpjfTewBBZINNe7MyhA88cy6O8UY03ZaVcUNnZF+xe/PUJ8FqDIip5O7TzamUx+E0zbBTuKfuILCLmReWQvxRk4VyqRFoBdYFxj+OJ4DEzqiRKZV1S2VXqtkeK89Cqxgi2z1PtP3D+2MzSnWiWRoD6aC0nweMjU8vNA1Fbc0X3vmh263Wb7N1x7cp2Bv/61E1ZNJYc3bU608R6+pPhyr7LC0SyWtBOyazBkluqe1ABV0yGPIppzRIYC5F5zEGFVbu2msNpxyy601yBwZAadJba/8a9XEKcVrDr1RV+/8T3mSrtrIqAy5WTZbcEWLxSzV7xpHkh3y9XDSG8fxSb4nfGc0R9EYTKfuYZLG5oqoxLFNv3WbDmc1TKW3PJrcA0GQJ98gi/YzjSzVBah7zeXIYFh/jFHkhwQfqFsrkKZPN773Hc6ucgzKuI0olR6ZF5gjw+sGX0pZyhxYOxRL9xwRGRa1V9BeMPqOSGUVHejCAGEYuSDye4Gc3dvT0ZLR3wsa9DQPBuhnKOQhvRvJdWsrsdPM758Jg7bAyQtAlryc0uVvfwW1O21VCz5T0wKVgR5I2Iar4r7qC/ICx5DylIbng4TDoYVI8HoOdu1OiiRNQsxfAikdmckwmVMS779B+5ozKz76ernqKcHZ1HPHJdDnRW+XCsZ/ibrGCKSoTqvVRgM+/eL4HWOZQansacUPCKZcGbn26+SFPURWuY6CCmBX9Am4oWZ0zLTgj03268a/kYqhOrAWTtc/INbktouZoMR5WviTPBm+WYcX0AOEAG9JKVaUjvjqeVdU8eA2f4WP9h7CAsBPPV32z8ampU6dfSTEA2egIi3Lh/aLKCoM7ZTlGZCmGW0/DsTkzPL7qXtxIWLZ6kBDl4J9ZBCpPoVzzWTAeZjpygcNKyX9O0e+7ZlNePITErzTtjT3u5p4BK714cLnTxF/Iip4x+5iHKNvNECjA222CwbcDKpbpt9VEUFGLmJMcOC2yWEvBXuZBoeZCw9aFTQANMIuwnmQzSxSfMBqPi2EzIaKQTi8Vnni8Vqr9crhSXsYNuYYUxlidvOh5kn4veRJzx2jiKg5IiHTt8R+OszOMzx7zEwz/Pl3RlHY6yWrhvqnh3cs9TM7bMZ4dqxW36Ov/XZKtOAge5EHTOGh5gq5ue5qiZb9DH8XPqUx2zneapbHsBTjLw3Om6Pkh0MzM5BLd85LvcZjG3zQ5k+hX+hKseWlY2UoMMUwTWS9zk6jogCoQMQ+wwRDleHN3vVfvRuiP/byqbMNsj+n4kOkXI0pkc5pu7/0CV4rflS1uvrlvf8NuXyqY4GeCx5pmSikCfhARvns6Skx3XrDuxOFwFVvwPByiVB0BnjabBatHSFc9uws9WvIdBIvlRppe7vXuFMO3tTu7/kcTCohMjv4f4fsS+JiFv5LUDZRHOTQM3y34kTHsg+WTE93GdcEK+YQGQ1rki4OtFx7hXaliGzY54R7+BxO0RZR8HZ2x8vaa9Qouk64PCmTxXPqJw4keq8qRWf9B1fhGLII0OYMvL5KImkoeme8sHOe1qRo10YZaxMyq5SKFpCjqDo7GmEZoZdeNMEJO90QcD+YakSsMtiyUR47Yp4K6dAyNuDVVKCqmaiTdEQuYJiixhmyTu3mce7hk/wouDWBCpKGPJW5ChJ5xVxN23HT+mL7yRSYz1vikBI6fO8ew/z4WPOgSdH7mQsyJ/uD555/jjZKKrHRrpxKau04S1g0dbHHYO5XlKCZRrpHefjM+FKy775JDvTNtoc3B1hO5W3p+RKth7+1QwfeV5QYZuLz4mI6Z8m9Uql5N7XaggERrrZyYA0jqhHxygjeBtkRjhkH6RwRz5DxheM1LwdYZZzlmUkaEH2NmDCIrDVlsUXcQS6u3T1n7EoYsdTOlQpKkhrTLLoA2x9ODScpjX1kd8TKg/BRhOQE9SlS0EaQQnKJ14kjDNZLoSbsGpG+vfMEMuvN6zVDLEkpVp2jFBK75QfW1amzlbI0G+NSP+WGaofeke4f+7ckfvOAoPT+qxjVfl9cWJ148CMKbWaDBh8iu81EOWJV+YDU62Bv1Z8Eyp7Qtfg0H5Bxu4SMgGrXl6ePddNnvKKannyjP/ujPPls44R8rb9191hiA5i8IUlZedQfJXqwXv7XTSD19kw7Pnd2OCgQR7Rf+qBhPVzvwyMJgWsh1co77AvJsI59tNap2ziXAVRXlDGeAhjHhw6i20IJB3Qqs2QD4/F0cYQzF3SvaZc0GDljpeMj6xKqdpVbzzKEoad4od6kwrIjfgOSgfBQUW0+Odp+qucGxxJq8jZDqW+kssAi6/sk3h2iCswODopJJTc7PLtSpr1LsTP9XOb9UtzDnc52IkqQ+BhuTmlzD5ne8OZya1BB73iwCNGgwL5m//R4JU2czYsf+je0aQC8SypH8T7VrNP4wcZkd7MmznLdD5xPgXXig9GVIrUOhs1RdXFG51CTPdBbrCvHjk0ip5p6zgC3JjCU+8KVTy3i5N2GPaNzapgHTvEmDeipXSLhd5Vsc5Yu6bjjtL1J/yqReRtYynSuFvf9D+6aENlTIzCQZbz60ImbNsP/fLko1D1/BKyKkMixwL5M0t93uBjhf0+aBLS5ZQoLdjrNkCF70wqtoajqSbjF3QuHXcLTawRWnSmgVQVRnM6wdFWW4DUFIRbqWzZiXD4ZSxX1PkkD4hF3otpR5d2gEkfd5a2IWnFGF+Q5a1gYYBjMi4tVu+LuKVo8UzAcqETtMipZrDVQLL/9W5mqW/+FkN4B8Y/6qjKY8BetUCvCUCSSsp0/awI/hkttvNJH/78QrVN4yAaNzH6tCM1PdT1CViw3rhXz1jDjzH0YOz0o44IHmd5uHP7qf3t43tfjdQ5iXG3z2fHKIC3gECZZMzSmWglu14AC8axL3r2ZiTBS/rhZLFxhSok+Q91CiLhmLjZ85ks10tqa1KZd1NgRcvxmxoDXtM8HrEfCK8EzrKylj0R1VXiMi6j0Xwj/Tpyo9gUzvxvFmjkqszAWQCysA/RMN/jY8C9bAsTP1cx1+hWuyjLALDOzOpk8x6LeMexM6bW9bP1qNH80LEv39l1H0kOswU9vGd2EWkDSmlxI+zdrF0o+iIEI4xL8UPO5EptM8Qhgha1twdOZkqXAcUHfoMdZ/thUZ94o9ro1oT7hSGnCf8D2Z3m2s1Erbrr5B2rsC7HyCjZpGWnoqsMIXeuqh8MrIZV7CsDIA74KQFZnGzOx8TatNqcNXB379W4Cr5qccynRT6+NPCF24ctaVKLXKglzhbGJdH9QDiLsPkgDk/PS2Mqi64JnKc6ePoT5q05lOO+ZmygkFJrb4h+Fu+ekuB8dhfFHB9E9RYN7SFmBao7CCvaDffHF658LgMpHFili01exqSyz1gt+fkfpzFWhmLrmu6dBIXJV5YHJlK1+BRWJVPQu3HFTd8fiTMY/yqDIz3VyZlDoz9tpf+qvedQGpS63ja5Ph6orKwi9xRtmRrBc8MVv0V8cj6TZCZ/4wRlG3xH3h/dpzK2rVXuU27rv300i3hLUNSpjkYNDrAqvppIwbp5VkG9bSrIEt7tNw3cpppeYE4ACTyXhMAIt7bsnV8MDFbDqBAvM9qg51VssLSgRVuHuVBHEatBKGegcyGqqyuR+btbS535/cbij52AB74RQzPAUt0pp2qomIpDhpQKaGCCe44g3UiMR3Fbx/IPTaYPNiPO6VnJgP47GLpWWH5ajh/QlQTKtqAEpbv7uVmidwKckbubk4tlrPqDXoWrCdNg9dF6NZfdt3xFgEMF2ABZRuu8DjVrCobsePjwBTSk8KHH7uSvTiLStGnna8ZUwX4o1t8dwQdtcBO/l2OvDTeQFnu+BeykzD0Msyc+BMB+CU7wOEPDz6P3ksMt12HCMfoFLRRg/eox4sJRSx918D+yk8Mq0mdLJMIW4SfKjoL97qiDSbP3w/Re6Gwe4nPaHcB/Q5gYt/oEOfJahHCVbvY8HpkP/nGPgv/ifvl0RY7U+X6o8NsdKdbs3Ned9fPGUtJ7e6HCDmgO7+Fa+iDhbW6fNUH3XKxvF/KtD3Tn3tbgO06RPjjaC1efKqUTPqJDoXm/VJJg7yRE9G9/q4KlfcZ47rORVZY2VdTVQh/tPX8i9pgg7naK2dqG5bAAkjSUeZtirbJYrIo6P7NryTuqRZGeK69vM0zReNIV+A7QkhKiGaaO7oGqIhl9/PTlXvxy0e9oZqoctCTJtMEF6pnjrPbg7Ikaqb9yeK1ErsYaEkxwy1aLGbpEUOQPKAEYfklZ0QinIB5r1CLu99296mUrahh+DUTg4cNjuqzPQc6UQ0WU+LxtlwFcbk5Mj9N1toe5Wa4tHxEQFIQLLXj4KNMADizONtVjb7WK38Fu3LfWp6VPT3G7LqtskyDhLblHWDXSdlv/FSiaixnh4CqGHW9paI7xE4x6GZ9Fm1fWPVuPfWScRXKcssfRwPXYT6N0QoTKxiOBCZCXR3IW3Hu9+nosd9mC3x1yBW7fxaWHaA8yXTP1j9Cp+mZmRXFpBqIWl0lhePQaWUx+nsjAi/AI4vkdhVKE9ioChCgwU5eTZPB//pWrF0UCK+xljChnOcxglKNMoiTobVrE8bmohUeH7PQAHpUfXzF39FBJK2TFiMGKVWD2+KQ9enRveoHQhhg2J+qJfNCVMPpjCm7jaCk4rxpZBryoyujaYoC//E27fwzCoGZNJN0ZCe+cuDhYAHsE1iTvRGwEv/mb2eIyzafdYMi9e3VlVEQUPtGwBzd+aEjGTp+pCdXqyBKigb3K39rRUZ2prCAgeOa0IaBXqhde99rbqXcRtX6pk2artW2tcnWtwszTm+Xika66MaP2+7IozF4fzcs0b94Q5K7yY8n696z63PukQXe5OH6/WrjFJSju99Fsb43kvbMjas5XMGkHZWVwAeGZ1C8CsOcIyAzmyIAjlPlfiNsU62zEDeuTMidpyC5VZdcHvEJviv2vvBzDMMwloILiykuw+UDkLQQTZvopamdV9g4pxwC9xgY0Q8UwbWcuJhkkTe/KwpKVPpBCQC7V1o=
Variant 1
DifficultyLevel
623
Question
Lines AB and CD are parallel.
Line EF intersects lines AB and CD as shown.
Which pair of angles are equal?
Worked Solution
∠DQE and ∠FPA
(Alternate angles)
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Lines $AB$ and $CD$ are parallel.
Line $EF$ intersects lines $AB$ and $CD$ as shown.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/10/Geom_NAPX-I4-CA20_NAPX-I3-CA28_v1.svg 220 indent3 vpad
Which pair of angles are equal?
|
workedSolution | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/10/Geom_NAPX-I4-CA20_NAPX-I3-CA28_v1_ws.svg 220 indent vpad
{{{correctAnswer}}}
(Alternate angles) |
correctAnswer | $\angle$$DQE$ and $\angle$$FPA$ |
Answers
Is Correct? | Answer |
✓ | ∠DQE and ∠FPA |
x | ∠EPB and ∠EPA |
x | ∠CQE and ∠APF |
x | ∠FQD and ∠FQC |
U2FsdGVkX1+oKVdIUgfwSoggCC2AUAJUqnp+eI1uJvrdR2qIQYWc4GAuXFI1juvsyoWPcfux2c0dEwySREtwW8zK3zDY0LDYBwGeeYiVgXtcmDvCRoN0D0zdBlE75C1CNntiemfErZ/COX+go0HTu8WlLvWJfEED1VJyZ+aWGpiiRJgCtKYVG6Tmcg85IIJ2DaUu6yzkdvRT33MGLWJqkdN0vKXgVCXP3eWwZ66s4odioY1u7jHMf3H4FKAkMRMTmrqH3lMkvCIxzp8YNjsFMGF+qtrHN9uHex8ewVQJRbVaZ3EARMMqTYWf/UStnkSF4tZS3Wl4Lb7p/ZwCLv60tzFYhtLNP9fnwoMe6T/+IfDFJug6QkZ1m6AFjDDx4j//KvJZz1fF7ZrTta6wSZL0IcxF8D7v6JGa+znDjPa79MktdWm0tGqok5WFhbnplIF5pYFvjpFSf0J4qLmK6NqMaLwVFqiQrD58pmzqAnAhgEYa+W1mxDKIMsB3jcRlc4tqS2wzKsN0QpdbAhXsxyEHXjbaJEXnT28Fdmj5jWkqX/1uFXA3r0i8is4HuBeai60oCWcNFpWpRGdXKksTQ7cZTs55jNe72JrSkbBcJh7KizKyfwNaX5iQtI76/Yu/BJk1lZqe39/ctgRfeiJ2INKK0jhhGjCyzGId0B6wBsNfJTZYskk4N2FlwnlERvabejYLaR22O8XA8F/OYB6r6BkKnUj7FqpwtHFxz8EWqhwOOkHOIkJfBDoSN+wdedAYIjkkJqMrAwSC9UZdk6AxvsQmmpkWyIu0Ojm/k+aUsEefnxi78wtZeJj3RBPUukK9TI4XoOfvgZ6GKZPFEvbScMtPxTJWt3zL4RwheEnz1ncKFJ/xw3Hn0U4j/psKkUPYy+WtwKUtAGEP7zE7sIksuzN8yqnJb35d/jtm6mdOqxrGD3rkyoHJZ4WXLN4EjX+UpCVJXXoX2Yl1wwvIyH9Fcl/QZyEz/M7HEIg2RlxjI8WUPUSbwpfAea57wJQ3jtJKZp6s9KIZYqceUWLyX552OmqKZGD9INmb32QSdn+tFJ7MU7wnel1EkIwTTo9fFLWVKrAuWnyl8ICys9KhYrEJsiQlvXV+dtVdlXWCi+JkpdceJhj69qdqJwXnFcXuTiaVFPiYzH/4kMnNlB5yzu+b/HVg5mlk0KqVK8lx4xsM9uZYK54FOWZ+cGyq/wygkLP31hpvgQJ2QCIe0SBNEvPceCLPucq84XtaAIz5A6RAxkIobRtKTWwa9tEO0gvAjMkDZ85dWWDLnTH5pGumSpVu0ntfVTsTk3YyDKKFD4tytHxlsAtMRkR2fHETn2I2gG8FN/VaD8QozD2L9PZUEUqNA0GnbGbwFSgqKd8J4brD8I0iWg3aO+7ZpI2OP1X0vre/CPHKi3LAKgpiABKcn/iZS6IU7WV50UJ2N3uqZibCuxuZpZ7mUVSehKV26UGp+NYJcz1MU89bCgiUJYmrMobLhNCtqgOwqsOR+CwMrs0PtCrkfpr5djRINHuwWCEuULU0Q9SlzjYT26h7oKs39MbdKTDXTUmp/VYaawehzviQ6BDOAF6Tyj4QRM7F43hhitGWY2qWp1tJKzDFhAq8VMvTrTFPImDi6aVyUkZlhE5gvJa/W6BTonLnyGSfnNkpTRj0oC0jxM0BvID8gXC9yyZTDEKpmSV/9yEt2B0jJpfhsSJJd2es8k+TRHSYwZR8vuuLqrjsGRMihoiR2TxZmSB+8y7K3TL3ICks6WA6Ek6czpcUcAsMmo/XIiFPLT4VbXaoR5pivufpr9jXZA7H+nQ7/LnMk8NwCvflpImtluy9ZEctJZfwG8fcXN7SmsDcocJN9230K+xkBfcViG0ULwzbhQH2tnY6nXp5XaJUXkBRYT+nT+8qq5GQN0FCFsjGlNzJdDWPu6QeXrWixss+03wjh2/qLv/CPCcBfdxQktt4EAGW7EcceoMg2deRdWd56J3phP6n0Ry14oX/RjCewDpJRkC0V1/lDazodXFlgWc0qCYCqtNSjZOtMM+u0+RbVyyIUbMrM1lo8aQ1i14KvvN3hTrWlg4Bt64a6Y/V5MbDtJqUo/+NhZVJoA1SK3Fm8/TlJ79SjyjPdt7pxmT3cZsfOTxxyY8hlPIdfAFgU4lpPKL0naH2RdSyjRrujZ04SHKviF2AHeaQVQ111AIrjd68uq3JqPh7PicJNal35xWQXQch4W7ksyCh3K+ndxb7qyqWvQoOS+mGS0uJvBgN56nGJD+7d2u6oqODT9cPr4jPgJQClkDGmWUOwKw6Bq9nsqSKcAB7rYh3aJgk/FkDvWTfJux01Apku/aWwWGJd8xT+RVtRVt3L/x4P2gKwlWe78Lt7haEryqNqZO0GsVGFOtjgodVaKDn01VtKyuPuYv/Ehm/CsynHB7LhBcLB/Vs67kUXj7LqOU7bi3lVAxP2pGnfm3Nf00ci5WMAMb3XDQVyGaascynDS6AyqdIhZ3RxPx/7xuH7q9ztQqcbWboF/MbiJTjq1Ru9LOB0MsroSX9vKpi0DwoCrIVp+f2C5qSUnaz1Z9xGAUeQKORIagiZEw5XjVaZrH+ZT7sFQuFShSUWj9AxSm+LBgAJWNH4z0ZnhMavIv+J2BhNquunBdBS3SHLjQAhLwnGzwjqFiqe7HLiLCWdVU/Kz8VjBqr1hhAYZ5S4P49+1IxdQ939ZY4pDBlYsmEI4U+oQJDIyaxp/yie3kEVWu0OfuMSvZdmHAp56t0W1INgoFGVpFJCWCHBGppnpUWt1k+SChCGtwWGul6hoYugEYd1fsKwB7VyDDGo9I28kJALmj/lLGtG8slrIB9f+okuE6aL+04ey3RRwzhQkX21m/CPVTrXlYKTJnBabzashoqxgdxdcsueRSTemlR2b11sTh/PH0xK6O3+vIMNdN8j6/pIM4Qxgxw63G1AeeW+FWzv4h+HHmiapBmKyhM5BxShrgOaN5jCE4yH5jXiTMuVBmZqsZ2BxA0hAPelHhoBDX+ZWW/73pES88z7Hj8c0auFUcmShrczJvk1wjXURdc3+OriTL97rak0pxKMoKFGhwMjqYW+D4vVvqxtvl7JgCM3Dgv4OzJRMMt9jib4o234mqFByoChn03YWmaKDKulzjTGCV8nrhIA0hKK61nCaLPLbpKPnmHeFV/bVN6sJaVvDLhaV7hDvb7K6EpauoxDod4IiXa6bwQ5bnlPj+oCME/aKjSdaCcLbOUh2hTt7GlVMgrcrY9hQBdMG17W/NComydthgNCVnLpV/9R42k7lkgv0Y+MKnKeyodZZy6wpCBH1DwJEdqNRdQdUEPbzK8g5RjgxSGMWfNwug+8MHy9E+lxcPz3S8FxxJ2bhBs9ti8FbyRQaxXr9Bm3xfOpI1IK/f9A85WvP/LzpQeYzY2p93GaPN13HA9h6X9M7fDgBQA8D3uTeoRAwLEkvEc9oM3uAftsDLHy66HFwxRvTuOyY+hbVnJD7ARBjYyye7HtwkneilMXCnBCN3o0vXVaa/1/MonsxIqj0taRokLmjHoqXomzl72+V0Yo5blFY1EnRsa4O8FCFZZZzAu2t+8Svu5lt3vv64TpSmMKJzVGud/jE1g07zP8nW+5S/k+i6jNZ73cdAaWSF/FQxICNae2IUbs0VwT4FI6uco3pnDapE2Hamkomv9ewcnTsGFhxZinuvfkJIRrPvA7Na97icVPrPE0/pwcE7jupviUGC6HbT04Ov2a90yQ1xRRN38IIzxF/j5OiFd3LxcjAQZbEv0zxGB6LIpWmbwBqqyPBw5drSVsZYUC46R3kJxgD45VuB1BV/iaNKOSkPCJgvzZwTLftHUDst/9mnmj7VuZLSNAB/MnaAnxtqUrdOFzWOLlN01acTYOqv3nkpG9+yzfiFkXoIbh2v0vRSV7T8mjY8Fa3a+zdKxPvEwDAykGEq+tUizofZ0PxZJMr3cFJaI6/27TD2Rwej/NJQRE1uDIK3sR8ZvEL8fvt+KQfIuThLn34+gApXF/v/XIN5+//VP+bzCmWqVGDZKNkWIaddriKuxj1SbN17NWIqClmtlf2V3q6HYLkSeEU87TpPvCdR1oysHt/U6SM9g/OinDQwGYtyv03wK387fHzeey7d6bvcww3pu/ChALArcZ+F35vtJM3ejpwA/D4hsQpWxPrFMxBrN2nkswdqsa5CNxPnlpbM5AZ9fNeSh5i4hYI+viujgFt/3PLt8HUwA8xxhp5zN1EuwqnRYKAfVnFX/zusKILqLJINx/pPHUSwt2YixP/jI+5fpWl1Mlz3CQx7grc77CNdoPKcDzJJyauLWUj+2C5qHykucXvZXgBaYRIKcaJnGR2mE9MbWB7mBt4LaW4gknP0TJpZHwcMoMPcl6b66rMJLitNjd1cP+43F1hAJXsUTOwBJxCzmZUOvY91HKwNFWhuxfBWwWCnNUzjpxyQcYK6YSdst0DzOj28bQCIXn0WlkP76tB/NJu+Uqn1wE9dfa43MGDEclpMB7xfx7aUfaWUqUW9rHW27KDCQO3GcBlkbtUQpZSY+x5xXG071ir04eg2EZUorH5u+Pd9IewRaKTciMIaF5UnMD/FusZb70x4jb7SqfW5SpuSpfm1s6+UWHFj8y0YwrkZ67z44if+QfIQBNn2MdNreXuQVPNm2YWycTOgV4in6wy0AJvnnEzXNA0R/oMnJUML2HXfnin2l9ywKvyRdyG8+mkRJSsQhJZ4YB7ciy2/5KUCm82WLCqnnmILG2xNkzipbUH4qKmktFOwKW9OXymdjF3ST85ikv9F7rCq3+6P9Yr5pZZZVbRcq742uIurAkG0LrGi8rZ6sGaV6pycCP3DUVJU8jUh9e27spQI8/roDE5RGaaNki0Xf3DS2vizZU2+p37NAbZ+/+PG5od7YmMCciJcs1Tyji9q+3UFBn0Kxy/J4MfA7zf8WC1xfgHFxK+C0lsjxNd+0mmrccjD6YBJxGjROa9e55o0ER0C/4cvreHdQ98HV8i0yPYSnw9wPs5Ep4xfnSxcVF5PoKo3SZTIIohZnMOAplcWafszarspnXmkcnCPOqCNFRrVvaOJdkPK4SI/sOKK208J77lnjZHOwJUgIDMEY7nO1/86g5rZO85VsYT1WLogYbmoszjASwqPGhSpmuOoXguXISuuZ9CanlMukRt8hdimv1M+cCn+b4YG0T0k22gee+n8JUj50S4Y6aMN06l3ai25rYb5NdSrKp1HD3B57r9RoxyNkTj7c+/eGT4+/citusjL816eYzzTsws7b2ZUVWsmTOFtWK4ZoM4SdzY+KH+UunrkO8qVn9TRGpH1ty1fowCLj9BcHOWj/q2HCHBJxtjlR5YNsMWzxKaTlyRTgF1Azl2+qGTIj5WStZubZQX4BlAwA41rK3ziVuTiPCzaA3MC7u5DMkGthE94TeP/eNYLurdnL9eEvi+aCu+pN75foJ1RTiDKCbwah//uMQRHx2seG+cccOGdtB2hyY4Hrx7ES6Q3i5TqA/6xeuBn1D8huS28cERTNeQiSXyxuagD6DzVkB9S8DlZHc5tyKK0gkUInutdiF9puqotjr4wSyjIkXsjpL2UEHUF1xtbeCdZRKVAxDwndvq0vns0QWLnPiSj3bP0NTk4QDOEqR/wswNju6uARTttkUWWF2A0b5H9XJWUURp9egyqInyYZIENWJ3n5XDlWqSXDqciqNoGcrZEo7rdvV0dCBBtAZZzR11VRW3UPASOwLR0R2sFwQhS3USMTDd61QyB5WTRQtYqDWGW/VMSiNb8Cvl212c0nIByUy+Q7RQp/Gk221R5kNszU1DecgRrxvWwrkMidJKhmns4krBleTrSxlkuf/sV3WAJerU5R9COKQOW/lUWujK1QvcGCCXX/8+qtjS/z756EMDuqxU3ljVIaoXtexj/HoHnNsxltNT7qs1c1ho+H4/QXD/QiiXuSVMhRLhO5OJZ5/FoB4aP421lr1KH7fwqVVqzrJSROYQr7E/Y4/WIPdQiXdbLTqWsEe1Dv1/jDdhjJnrciRZVQTJM2jo+O30Cu0Ni79dXSzpBgaOcKxKJqn/5YOFtzhFF6y3o8uHxWdwJQddkFTNq5t+lUn1ABOpMvlyonnaXCgD22XWu6V4MGT1895s4RcrUZ9sQK3kPenbl9tS5ys+xjpkDkW57hn9nVWO3Trut2LzrpEGJkOqUDZZ7DhlyIWDHXnb3sJm7bgT6V/HooC8So9WD9vSXUn45azyazLkzHrbOwNWsH3KIz4RWB1s+6Ne2E9Ix5HJNxAepgY/dBISum/AJy74+VhqT4q5L5QeKIWUQH6SMfpIOd5tZ01IdAQWpj1InsgAg57DLexovwOqSB60vaX35HfnLJ2Yzc1ReIAsaEtqBKpn7x9ETobBJqFyVo7DWk9Cfxt1BMLwcYdDZCp6HjCrljFXd+14SibHClv4wxMFPSwkiZUMNS2CUl/n3/zKGDIqlYCwnCjPcfVhPZLw88qDAZV+UlzLfE+26BMCMYx9ERdjRQ5gMjrYDuwY3YX3UkdilV+ArPIXnkcFb+1E10TdTHEC+cIjWhfdRfLzlDZQn3o2ukcg76XvU9HhOzQy8RLf3gvC4HNWrv/tWyFCjV4GrWo7x2JM7DQXUqOJ59GbMSLwSWYpCAY8G49bzZHUfxszAX/IhUxfV7R1Yq5hJubjCsu6wDyDg6p4VCDbK0tck7gtQdi2H7UGFqivwUcCGoRn51ut6+2hz9Wog+9hcZHCEkC/hwFtFEF9Olis4/y/R6uNdJ8+1KgfVzUz14XxqS9KHfRKtBrY9dQEa9qb8MQ2TMAsGYaYFssQ9o4+WOlnXyHWJlXk58KQxbw7Hgdi/3J8nvA5bqiIds3LRE/MqSo13wH86JWn7gopP9tqOjjEw4TIYhU69CP16uCm15rKjbNAaYzl7HrAW/XEhBnxkOSTPUTsHtyl7CbSwH5ZN80+FI5Na5IMAwci9nH5ztJcYiBuk0MoQvQhlIyBAqXm1HF7kRnTpHtBSthek5X2/fe4JLZRFFjJ4fuSydN6S9Aqm9v8EWemykDPBsIJvNSSaRrfOK+620v68H90pE9AxImH0bSUVafQu/lVC0fY9BHcmTLE4rHyT8sT6KGM8ZDMPcIbF/x1dPK48AMgbhudWpaw9DC7XrIQfSkJoQkPWNWx8gsY4P7uO0zBnLW+88a5r5lJr/gqAeyVQ1lEqemBx332xajPuG/wNSZv2mMTttJ+pN/Tn/oJRbpLlhJwNJxS+i2h1KUdmBTruQgbZPo5b80CY89buoUE9wO8M27BYEj2ZUABjzeGS6p4wJ+AxkpVB0AH/2FfDXJZeEX4ihMz4h0y6E/+//6Eaow7ixxftweKpZTzK+J5otI6Fq7ipNEN1KKV+64Q5iAP0xhUrAJoUYeUtgD9xFcTegPoQ3rcYkixFlLU76oH3vX6RIA7V8JJKb4l+o3VtctYxkNT2bIt2fhuj7T2ezqCHpAdHQEqtN2PO3K+x8ifVmwbCdLDjWiN/6C3XFbv2porz1g80+ChYY01rrizOEKIDJo7XcoakVuwCSccdfVeWcySea/6uMHcfdCGSmcsV/6t7hDYg1URHMuDoCwKn+DvKR/KxfJXF0u8SdGS5AR+GfjX2VomaSAktf5XUJhRy1sOee7fRmAKqLSh97rTJpnJu0lFHCfpRWAZVKHfCoMIfjcV4HyHbCTxeoticiqC/XYGuGphmzodyRQp660XPzagzIhDWM9oukdRKtxR6CRx6bzDYB0EPSSeqT4rPtHgcVzvS3eXx7gcJSkNJQNh8grS3CST/eE8wF28mST+jfyX4slPjd3Gu0dsNPMJWTVr3FSn8naCFMqO5w02/ffvatmwV7m7qe4auApW0QIDu0bXLVZlVEtZMM6i/wn6bIYrCm+bKtd0nd9suAMXurgCrOJlkRMq6fzPJpZfnnQ4RpfG8saDEZj4I5U/PT5eqyojMPXZUkFSWXNSo3tqMSHq/4RRCEbU2gERQcsIlIZ5etkyalRyZzewUoTBOr17bw8zN3bqz3o/gX3ei5DIKydKVDYbshqYRB38wNYGjDu3DuuBuClSLirNMcZnf/acCnHAhBh/NbJHmQPc60mmfU0FWKBmcjMzYojI9C7laiHVwt5BPWJxJRIL6kaE/f6QqGixbhE7mOGrg4LjWVjNmqw60/rEtaEJMnJHIRK8o5D4zEvrCUHSLgUNiyjvdURgF9UDH+4lCAzPV1/uZYSqNlXTp4yomzOLYWp2PM2PLG+U6ARobF3lsRPB9LJVQD1PgyM+OUQoNBbtUmcDt4W+5Zo9u6pLcWPh5ZX0HGcox/KrW22qy5SmrdGATuqaMWviJIix/XvEHBngMeWvy9XcqNYH9LmGqS/+HyzTna0niLLJ0T2BohIQ5Sd7a1aSHr5XRgKh+fZWqmG4LHQ5nkWg7LSzJukEOk+TXU0xs0cdpacMgneUdL84RnlIsMPhaePauSv3YtAxT43lEuABjrrg1zXR7dOrPkBouG31T35mkzfdqbFA9sZ1zE+9i0F9NwmIthVx/KQ4IQnKo40hnzOzG9lHfCgL0npaC1hyqy2pTF7OM3lqDeNac+NxNelehX3jQZr9FHkzGYTfCTWoZA3FWxrWZBY2J+dnmiFz9fYIj97QhbEnX5QF6xCGk4xBfddw3Dtom3eWNWu4c2/iN5YCmlP5p5vlm/BWkePpD4p8hTBb43TwKXiLq7uUVyF9LQUqBsPeCXc+i7/Ui8zR9hwoP7N1wyNAXk0Yf/zCC8H2Xl1ZkQTwx5TD/mqGnC1NxUqfxBuisXwXpietyLAiI1anCY+QLTdXxZgsqvCkq/9iSTtQWKLiS7+ejA7rtKHqETMrabYN6sJ0XXuWMvqpE5koWI5W8DnpNkKPBr5J4FS014+6uylCf1wGrG/cshsauMftUc1IApP59ujm3qlcsowG2TdZln81Qx3KrcCBrQGz8pd23duinOVEdL7zboIxLrhIuF06BQM7sXefMGzWTwGypEvtukL90Odmy3/SENSXfR6/8ltH4pKtqT5x9ykhoZ7QyR7ye/lGbN3Et7etPWEci9GesF9G/eR5L8ohy0gSEo6S1qJAtpowsvMMty8gHKwJf0eceevqW41hHSVEVbhs1nnwcSel8aFYP2GQ6sgCG4fVi1wP3Afj+vxSJdLG5Gx2FKKa4q9CPc8F2lWzXDpV7DbmzNQdOO4kXaUY+SWicX7fKy4bAT5hq7SwS5XSjCEG+lDqtl+PCqM3BN+P2Cv/9LqwmX3QJJ57zMISQFeYmm0b59ImVxhJAUmBIgME+MASLnmloezwpIVPq80eN2YQV5lPsustU9lKhOqMLNPASj4Rz/oKNzeawJRVe63I2VD7kIncHfqtbP1kbi9tWvxm/mXSxet5mFHucREELEJjamBUijkQWZYmuIJimE26dgBrqOYzbCKqQdM1itu7rTuAsmw89a2I/ncGEKbf7zMYmAaKRcvZwf/jzQOc+Of3xNY/vAtXWBJSIkBUFTe9oVnoCj1kDQIusoFOzN1reHNQPuEKr6/eTfRDigjd1yVkiV16JnuOZXINrAfjxglgCm26Fdr3OFrWE8UTp941NHv6nCB6gOCG+00fb8dGuEq2a0jBeSxZODVopih3YzFnxpxpUUSJR9MMQdrx2M/7Iwi5uxbqjAkXTqzqoXgmzkL6CRSq8mG5SIIiUi5Bmrok1jgUpr2TcoJQvBinkhaIENYsExYcj/Y39D0ZUszk54Cgt/vKuqtLD3U+zJeQErhSZjR/j/5nfGtZ/CZ+JzOlATeLqlVie4bxd1YYQwnk/V5aNcou1iyplltrxlWvYPK7vWmLW+NcCyIgZgelNgYi6qpusgWh5QtGxdJXA7pXXpCPUWAEus0XEHGMCHwxafbzj3JCAKbRovQ/HItqa16jxrk/JI66vONvRWksYEwt7j9nwqYaI5K9zQkWfWJzUax2saOHj7CFkELPMLzsS1Zr3U9lIpU0V5BbH9YWhW/GaWJBnCjRV5k95iNknzxoiqM5Iq10fYv+DkQr8Ruci8XN9YWsFy8fFBAW6fo3quDk97qWXO+LIOYLk9lVJD98a4ZbW5LQC9uDhX0+tZ55Oa6EujW8jJkGclz88Oiy9XtRwNOlkfzS8bdUV+sg9umk9j4VNbfl2GJW1NsZo7ZPFZO63o5240SAlBDwR3pai6gMtSePXOqjmHeGAWmBaS7hrDTn8kWfYc6SCuqKOx0SqR4YZWb1Zb02bQEiTjiA8S4nFTOpW6/ZGtZbb3Q4b2TJ7BZBBPN/qiUAOvg4qxfH0wfrl/5p2fIQBfIYmRa39cmluxfwj1WCiFEOn1X1G0Ie+5EIp27OYayQKWTgHi2hXVb78YzeeQkgrVJxkI60XGFJz3STGNXLWQRWi/z3PNk8C8ihMF82vWfv+xP+N8ZnPIK2TpEMwEeo88QMWsgHW6MEMkogsC0KNP8gywM6KRx+6FiU7N4PRub1MT9iXBmmr7keXyqcRW/Cswmtk8tyJCiOeie0NMlBHigemHPCQGFG54EoJqtZjKCRCXtgTBDhXETZiDmeOU4mFfNM+BohmFDYFEtHV+EZ7vG+S6xshoQ9ZqCQ/hTeAuPeinZY+vyX216vcoxB25aVPUh+E//2ZHjN8L6yc/7Y/d44reZJhJyPuNVd8lqK3pe47VO11oefN2nbM9Y6vDAADBzXrQR08/K95wrsWEvXutBK9jvbFMPl+B0scABdTA0YyNN7+hgS0uAnCmSOjkGZ/hOm+3QF9Qs+MaCqS4xrnjn8K2eKSVR118a9srALIRhf1uSO1xzXxaCrzKFLQDjnG6NRHsX68iBaUW836CtJ9RVaNMKK3xNaQ3lg64JzClXdC7yCb4ZqKeZFZZ0bK6elrezb6hOwiO0OPzOOAgJASln+Rm4a7PeDVV2CiZLd6oIEKXW3BRLEyCuY2ZoqBWklXSbAqjwu0Mf/Vce43sUlpLq/lp8kNXfNFzw9QyJfPzPIoBrPuejDbV9j4N87MKY3On9vPh7jEjlwiQ7SrPUPcXoHdebaULc0vfp5rl/0mf5161SANJyD0bKCVzZZWaOBFo3ixERYjnC3+0AS3vVv6cX8KgkJfZ9OeUjSW58e1rWxYL+UcThjI/1s78SFqhhsuz0iT5/zH1oY70vDZJIoY2Q90OjokRO82n8cR8anBSbO8H2+2JAXyu5lObMQ42O3X4i1PLayKir3IH+Dixq+5tn/RGxmYT9P0R7QfgCiLJ0x9jcic6OXRfEGqu/WLtp9c1PkRzyhrDx1jSZ+YyoWJM0H8S0WGAlY6ef5DjLjysrnLDcG/iIJOwMlddMxloPlz1K00YVOH/TECzoex0WvBjgTfYPTofYF3ASApsZasDcCeYnda6fv7Erb2rMHAx58iKVAwCCOfgcSAcULC63xv1Cd0mc9gN6NICSyoCVLO9WtmCzox2IaLvP3cK05ChzCaASpN+E0U6IobAMnmLhLnFjiZSmmW86KA5hFBAt9MRu7LOuhIQLIdBONFAvCI0LiecYXTt4KXyFRARwhrlTljB9fgPa6Rb5LZAbDl2rdY41fEIS6Ic1YB1jnTastp7F3cv5QdKFXDJqboXLc6K1R1lQdAQ3qqV1f0c+egr9nExWTD4OzGX30aPOqXBzWJT3d4MnNnVybgN1QywoUh66xOSAICah6vR/HknLLUiogicBG0elb8ntrlRZkOSCV1sueQf7m0TJJwjH5vLnOXt1eQHFUHqWH0dNWuYZ5/xKOnsNop9HuUjjh1IQ9rlp10fh7IruHEG1+ZeRWV0cEdjN5lKHgLehlACVrH1QWSMBAEWeh9ORs6HKa0qee+Tm1v/OcE3TrrM8y0gX9gFF66vZHJ2j/mAaXuwYW1rOpzIHpLb7Cz1vsHAUS8I3z4dbgsfBmiDh6eeAhdBk+Z7vlZU2Ahqp4RiGz2kQW8t/yBUgN9knjnD0IU9hO4rtIgtahrp34Kh7fHtQ1m+pkKQhmdwmRx+8T1xQq7dh8Ier38bD4JKtpk4/fJFqjB+kPwLeX+Dnaz3SbWSQ3tTT3Y/CYHVutO9NGHOPtRcDQt83cvF3NpVH1vo3TQhQEwkAl0YbtCQ2iUFf76TEunpik/Q+N87hLlvh0lNlD0+edoK4qjMMX311cFJxLRyTPBPISj+oTDfxJbhT5P2Rt5zr5jza8O11yw8+d2UqkEWcUNyZc4fsD0BJZfFMbd7bVW/JPqFnBEqxIS3Lh4CkN9lbFGiTRqoFxw+0huBjQFtn2fUOXh6G40/Yqc1ebssGrtH2PshlD/KPneVURD7DuPWV5FPB1pMCI8je1MhzDpPRAOWEDzpIBAkD6CUIGM6fO+H86WW8qojqXKnO0AuTWgOgXLO6M2o+zUFfnaOMVO4O5bvuVPuTy1dcNQ/zjxpVl1uVy2ejUgXrxQhpta43H5aFz8qQ3heG2L6gl0JtBnEbTbHUfalrhI9hfkOyD6DQq4Pbwv6w55W0/lHyIhPiWZJBdOWi2Fw5up5izw+rAWbqblvnyNqR/R/c3y8BFvblkQ25c81tcrT9463hNZdU7RFyCMpd5llevzaj/YMSzzDkK8Cu/+tHjN1fOsw0lmwVodyZ9eqyUpVMhudb2+sNuo5XbFC84ZaqT6gyXgj6DyvSXCmJJfMk8b80sRYTUF6Rc2SYN2j3gFHZPTX7ssiXGrbcDZ5yK0asIdWLDVn7tNNxzxvmnNW0ZiR3O+2/YGyRVLt0tsNnhzjP+y3w+JQ2xWs441/SBWVxIh8HkqiYh6f18xZZkxpHGEbEuKbh+KkHCLtEGELqpaj1VcwADDctvNHAKeCExw9cdk/vBAfFEupOqheipxsTkZHbCFp9IRIuWEbsZi1Ar5hmk8eZgp4WUBc9QPhZ/mVHbt5K+SUzJB+RCLeh51Dd/2U6dFejl095wNa0W4XMqvFesvlhjP3bExN0XDJVVW0a74pckp1Lo4ez3/NafCKhEoKVq06xbwuNDhzstLr3IJezpXwqqX+0lbUxT7H293Ygt8ZnlVWWXfeVYeD7nmcJWpj+BJfgBk0ETHaWn+YJpFEm5onjhZj3PP4Uj6EBVp3mdzooq6bKRuUC5R2Ma2qSIJioSRT80CODNBPoI/BXASdtR3PycwXAm/QhsCGls7JDFNLIBlCU+zhb5KsH8aSm8HTHToO9Nu0+QEDthPPBk0Kigjyu+dtJ/fYQ8yi8pCSEIj9T5fCBCH4nK2Qu5kGgA3UXz3HPVx+X9bmkW+ye7D9IQ5PN88eDlSecihk3JbKLgfZ/oEu0lQoP2ID3n9fmytVS19htBt9Rud5e4BVAXdtqf9GHNyCBzQIC6U20O16NK/7ZZAFBqo081QlxEL9rMvoStnozXKXvyFRub+Q4CZaI0httZ3PzHRPdjNRq62C2YNuln2ZdUqpUcXjEjuKJf9b1s/mkW9qjLQg8ctGiMm/W7KHBpK9fetyA+C1TclWJ8k0pUgTbCjIhYyOpqRRXt6MnKEeQmjeyVeZ6ixeZIirjBXOAtbyYuy4FdE8vfOKyiKMb3L/Y1ot/L46Npd3K6KEARx5sEt6b/GZg3/4yTtAa0WKle0V+WeVVmAPQLl1Ny0LfO5L4oql9Un77gyNLfiQwBn9NWjyD85GnV9osT2XGbY7rB62ey85CqtHaGSa2njkKzefn2OwwdSAnTdL9FJxpi+1nyiOGVPWWiWE2RTlKE1h6b7R6mkrhGf74Fyh5z56n/E2ot71qRgeh7+yNpK/RdbG9oJQP9ailZ4BxMQwLAuGDofp3S2YEaN0FKWF8z1UPi03ok5u1i5UbpqgBUzRx0vsUm1V99et2k2/lP5zMqZ0eBHr8eECR5VugxY3PwjtaM26t+yKS5Odd2iKMapwK5MZ60O1aRH+L4Mr1mlOuqPPAzHu8NkQeufBBmO4IknucCg2DUvtgeLX3Lu8M3bhp5bq3uI4aEf3DDbyE+t+qPOcsE6kzuxgjjzvXecR4AQIMGhPmmP6N4V8bVj93DUAuW5/tnInjsPr4JTLG4weH54wdKV8BzROhLdc5QQO1yfnT4rM5qh0hUPd5eTGNTJq+YGfUovnmGd2O1tkSpg1hZvaVIVsFzYyZP3epjJBqlbmG2hnn3L59Jc2auyDlNy0SlT6SVaAXFDZcVDQAqaJqldKXkTwoqXzp7PNI9+w9C7UIFqCjlC5+opVEzvh+MZVSCjNmWOv+3E9lMP9w6kDpUsNZDBgkjFJiaNyDXZd/X6CZhRJWgbtvUFr0b440T45peFy9ZKGfg28+iahoaBPWUsxGfx4w07ywh+Tm0WVOnBqwD+WTlGcUFqJ5M6qf0K+gJy76N0vPuVodUsV3JekcHUKqEiGUosOnW0L6lMDalArvv0BY5EbiGS1Af1JLTnuOz5nsRmhAxV3MMuUkmrY0Kg/ny+6+vwsBvLRAHdP1m5TGXejO+aEl/rjrtIsWgzjO310eSYRRg/oH+VxOKDJjQmKIa2GIeXZRwd37lYZVMNyo0d8sHYBvbXo4c9bFFtagQjr9P7Xw4rm8m00hB7mu5d8aTYNgQVB7rrxqPhXtidAXPAU3UPl5DUmxFG9y0gCIeCScoQdfU3v8uABPRKBsoXy99s1VGbTyUO+9tXekNMk7NGba0QsTYS3R863DEBOldUHzQBgzWjFh7RytOlI4bRlGGoa0LgPNzpeI/PL1upOQQ8eIOiTdFy1uwGD2eFFtBKoHErba4k+/rR5KOwrc3Q3pt0E2X80hBOshyxz77BLuF2ECDf54tdEj5HngDvSEeJKUerGHXyJfkqHZNPrRDS4u9i7HuNYvxhfPDa+EH63BFDoR45zY/E1gAvnrYz/7PQdwShK1antU00R07x0VdObrblUsZav1eq3Kz9xQ3ZYMCDF/dkZQ3cCdH1kUGA3mZCaXuPdhL71D/oCvRRo84Heuu2uaxTnQET9OMVFKpDChCP47m/SGYOco181sd3+cLGzil+iYls67CSVkR6c+0cWK3BhetLX+y/aapaTPKulXToRhu7s9UxrCeJ31htucSNqk8pJa4CCvXxX6aZG/N8pFZXpbYpc9WwCwLkvo+WO4c4Jx0mftVlPArIbyaEd+ttxSXBhTG6q5GjoJwCcrSK218hg7dLXy81nfrfUQJyINyZ+DcfZ3hrME8m49zRU8zpC+eTTw9XBTUUIezMPxV7of0NXl5i10WMd9YK0b5qwI8h5pfd5d+iJ+iS1gvsRhlrIQlpqFmKTH7YFndyd6bNRX9690AeZSQsqcdRWbGjdj9PHDvwplhZtBpHWv9mvyVAExZi4dkFhWckdjxD2NqVjZtVPe39cjahWmZiiTe8que2qGdFTXzEpJqVxgwhzSMj13uP+aTPlUR/i3mVXL4t6SwdI3Aeb5DscqQdmCPDfLtjr2nEgt6iMOdY966Oc4k48PXxwYVgeVAxV5Vj06nZMMXneSb22FShSkbVHoJQxv+UCPdAX7I8R2apyM5QNusao68Jxr+/dTjDsFjUi0PM2//f5kVnQLGKtsGimTsgk8qD6kx9PpIOHflMhpaN5scSrIebTOXqDGdYUGHiJNMQ6EIXQnx/a+09ZAyvso703qiJ9GAQMem51nmk9O7py/A6zT39Bh4UnX/YpTImc+9eROwqtPiSkBBsywocYU8hf008aB3yWPOn+XfUTvrwXYMsnmQXmtKqs9AEF8aNO6uY+DkQMc/PQfCeWRq47yl5bZ+z0rdTJ7LQV/VwgSNViSt2q09bkB4P52Tosl/OR0tG8Cm9drsSJM86fpaPvhsr9lvkszFlfjoV0c303jhCeONUsy9DJR56BhxrnzSnh7TXcZezF8jHzwrTOZF26nAbm3lVh4lbcYBVX26xa8/9uaZxaFeXnTM2JdRJg7cAdsqrwTk0VUIrJwdwRM6/8xrP1HEivw5EwcJe6eVXkm8WrhFdVla9qYAcG8/+RRFT682/YiRuSP2RaC3BDzVcHuPOQRQbNc52AkbbkHPJMYqPjyXNxW+bEcvvFdpEkj0KSfquAHZ0M1Nd5ja7A7VVTojACcpzkitGJ3bCtcu8unEzcpv2/b69my4qMB09CkCvI0yEXQIthDPBE20maYbbvTx5Rly51nJBvSOmBVSVfjdM/eVwRBtI9lv0XH21jog7K4S5UzM177a9hdgjCADQLroKxN84+TLxO5dXJD0/uQe0mLQAoW7AQ2Kh7u+esQRw583Fn5J/1fX2MheTtJFbnJfgp3ud13tlH+7iO9T1z0hJVNnWHiE+aa3PtC7aQbXXvrsmtgsXDodYVWTZ7rONZhtf3WJr/4NOPhS+yh5TrwlvM5UkxyLDLOshBqoAKk5V4WSk5nj0CqnDfGbPo0wkVAg3bTv0fijk5iT+kCo2RmtLcHg39nx5XE2sCkcYXpF4JqJDnIz99Rs0Eue03ylZL9L80ai/RtM5geArKKyizs6ZkPdoVFCrL7cjLYKBmIHp7rh4d0NSVBX6BB5wG4hKok3p1LBZwE3f4wTdapBiQBgx/ixlaBNkY8JvyjJaNnIq1dljzSzc6qDGSw76XYHyXR5ig6Vc3kkCTEScth/wUjG3fsWOMB94M1HTBEZpwFRVeBF0gF31+RweawyBbfRIB24waOF+h0hUlZ7y4Ud4180h3djsUJ94euduXeONwdaIURSQdxwsxFPe0TllvJuwKKh9GPZHS7z3S1xWtmSkh2HjEl+zHN7DP4m0HXYmmU8T4ZD5TVKOd9URumfzEua/B9JARDnjEzo/zUaq0JFMYBOl7YP3ZNP8A7/BtdZyuwYSRMrpEdGmS7Z7kOlg0dy3X/GrxPpn2hMiJ26dopme7018viKbC1bq7Hl+3Zu32gF3KpmJu9Jf7gqnP2NDs+hWIWZV3C+fXuhx7TIuYIJm9OuJUTrf5eQO/1KFLMjWa+A8/PwssKZDuYlbg8h/ddpU/rkPOTBfFR2oToOy6bd6ikDoCVO1KwgqAAbSonXSt8SaG9oDKXc3GmU3rSypFSn+4xY1LlJagfFLq9xc3biKIN+E93oDNOTlTRKn3UyIcaEijOwPOTByXeg4SrZPKHG5teP+DAPtksx9HeEOCgFKewLtzRm1qt4i12fy3PLgHsdUcflj6fCQNjLbjyuXaZVf6AQjPIrej/P+aXnvbwBLw2pcW0dZ6pLCAHxOFtm+NtBUMxgzhTbZWx223DERCgNhFu6864uG2ag8yBhvWIHoyyJnZShu7nR9X7Tpr8XugUwcS/LCTyvr3HRD0t2RrqKs0fc87apkRc96ZMLB+OIAfsnSh7gJ9uYWgoPS0v9lvWVjHDm3ujKEPxhHOvOPqPrELpLmulGLd5fn26GF0V1/QiK3NNZPhtUrZEm8WCnhmqD+D3Lpe4uAHEeAfs5lqIGFe91CKE130hGUed9lzqHuaz5cWW+mrBxm9yTg6NGoiNc3HGNBXgIquQouG0g55OIiAIneL80DytCo8EJh0r/wMFI3TRdjI4M8ny3wayJIiE7merlQS2W2PEPRIauTY3wORirfzk1KprO+SNIA3y9aJ6zO8uCIf1yGySRmTEWC2WcU3bYL/2uBaXFtY8UyG70UT+SoGToiFVcH7LAThfBXuLqDUK/hbmSC4KFNZbwMFOsMjrz16MIeA5X/WrJinES15aiGA4UBuTz4CTnsbQ5S2kihDVOI9WH9/ZVAr0FNUkFbtoX/eiVcKWPwaeqAulNjaJiZkCFkaLF2c+v0Y1JmUOhXufgy5P4fzF0w8bjkKePdZVhht9kayq7OXVHGCH0Ic+7NCwq+y7+G6TKWGMBJzX1gnxeK9XIjMaee75XPcIGl8wCRjizLAyrb4h0DyOxII8RNVW2pqmA6F3oL6Kvjq9J/4nsD7LKcQI59oUVwd82ijth+pJ7gmsSZigTqZUkASXt87sNkjmVNeq4xeJ1TlTsAFY0cxqeBJnunas+vh9ueqiE45EtUQX/tPG9tde7mQoHszrYHFrCaGtBnMKm7Fv1i5bXTXKWW4StjUU9vTgNmFsidw2ldkgK0cregJdvx94qcch87EEsgxfc4FW8bSYARTsTorZtiorDTop1rZqSiXtEH4RcUUqHL00OS4zAF2BWNnFWlZ1xbODseKuKCMx2joMCYt3ckRa5SItK6+gPRIln5dfhQ9DOBUHV1Utg8NKdnOojsvwto8+gMlp3lBdBvtm7345hvVTWS3QTUfwsIGAHwBFFRT/yMeHCSed0tjcBJzPdDCFz7rx0QU4m33QIiP01moGo4HJ4YXJw0WncRSnJlGMXLDIInqFzKJx1eLwNZtW3mRxjrT9Mr3CiupfSPQjxXaj2tgdqrKlVZBW74ktk6FIKZI2Z2bkPZQ/UMb9mwWfwv8IiQjAHSp9wOy2WmEUsw2+WeALVC0MI1kqG0JRErhH50cuXgIayefsiU1uBGFO4p+twnnZRPxaVW7n4n98NGitM7kBCIKh44ubV7J2dlHKd8ynDRdMRuA+kx8DfGspoBPKE0E/6CNp5/ifqTtWdhomLMmT5FscMl1KsMtddUzf4eWtOIVUVx2xlkUHCvPNnFQQo3b7y1LdyEvnyxUQ1pPcX0F2X0ImXcC2B1hsxVwvrBXdaW0zrWFx3Y+gZUigSAi7lz8RyA5Tu4qM8ZRpDjEKKlq4/UwVq/azBGyBMz2OI9rlWIvYh2q8FhTvv8t3mFkjTGoXR1CFUWrid1WFSiRFrqoANu57n2TuCD5DqKXEldtE1xAu5gzvsDfMEaQaDQGE1eSwhbG6XTD7BosrtHuoQYTt6f545KeG6vJHAzIAH1L1Kng8LRx9crZcjs2/07jcOm+Zl4xqxVvhdsoFdUGtEtb3ubx2VP+oPBxOmOVuEjeqPrFYMdeWb3NLchRjJa49gaMfdQUDIRBKCVE851PMFP5xcb3mvj9eCaQgXCJHery8U4o/prPWU2asUzMXH3RsVqbGKmVS+YRHOcpYt8zJzQvGXMT4UxrTYcOrALCAVS4D7UsksblrDsmTv5/8I6ow7JGAK9bjM3CclTU/+o2gjNwq/W/BDIHZ+F7px4ieBdjXaKpf0pcglSM4B7ieR7rkAyGckj8eCSVlY7+H6E9z9D6j4o5KrExVrRIsc0acdKh2WaM7MhQlScmfreL/ardCtwI8/P/3ymytAs/+5yidGR5tdXasD5flWguCGtX9kadn3Fq9ecQrXG+RsrlWOLYYGpSqBLozixk9TnvnxM4DK9jkiUrpjE1th3qZWkWRGHq4zXjgE7RKXmd3a2edY42fbs8XlYKEM1QdQQZ4VwnIMw3fvy/ibhvbPUhBRo4CU5HSWsNvVHEDjMF6maVmDIM4GuBtxe7j7Rn8iEkSeD6aiKeS258VLP6Illhi73kps1+Fwqw4/ftM7eEd36QG5mep8+EnllFgPtMi0QVPv2b9yk37SEG/V9coQ+rAIJfBB/AFcKlThxjwOvM3axQXI/ZD15OWE52U9FO9sFMNBvhJYfNegdhse5Iwm1y2eh641UHxycsaXXwyRGjtIRQRORbC+ccizK9Ruw6lLzfpVpuwiWRo/3RpQIjV/I17TClzWWnQegCnYCv9E1MfOoPrH9EvRVw8Wizu4MU8+LH43XNaEbnvPWk/av6i1UBb4a5TULcJasPMfTZON5fiuFn7lcfCSUW2iZJRIEUYRzzUIJs78a8Qd79owfnu3Dq3MR0nk2DNaMqX/A95CO6vglYk/lpXYvs/rQZ9v63NGVhJWlJ8OPmgQgdtEqExYVZ4LsLyx0DhjtO/91s8LTFXBRau8MsJtyEvXw6szge/15EkZNwiTJ3nwphztO4X4amhF7TK09fqmOYedMNpgjxxCkJE8FfGqFNtQ29Xc8BPfULQz2VInm1V9do7aU76VlX+K0G+haAHtyFMd5hix6ra9D96SFs1iilHdwrYEsR5creXvwbBkZkUi0wDo4LAZIg0QwTeJFELNxDjqBrjx1gPS/6iRUwXBy9NrPYD2pa6YPumiubSmudd0FmsUUp6FTEyFAiXBnqoAjl4ESwdlursNqaiUKiY6QNCwCGbdaoARTUHT9hgXenkW881V/xfT5qMnV/1bNGOek0GKjaVrgMwghYfbKESOzukNhfjujh5G2FpR1m5+YFFF4VOfOwNyWaHrZ8Ai8mRGE40H4O15nrWQS12Sq2kGA8egaig0KKRrdZ7srmIV2n4IdDcWaKYICQ9O4Rl4MzjJgdAqAt1XQFi9eKgEayYAfLCHX1UrUMAQFU9ZQMs71zV1Cm0Jqsyb3FLJAbKzjMKTyDvSoOU392USF1N78u0QED1s/OZ9dv7oXc92oUsCt8dT0rRZ+/OIEsjeL/ThVJyIL0akg0MeLCq6pfm+bh2Xj8Cxqk47jwq+uA9L6CcpP6TYuTsUQOg50tz6j3vKzfOq7msY0zdob/J8bt5a2vHARw0tVSg4l1sB8/UrkzOd+a9kOBLZkf2OHBP0XZUNkIl0BNGrdwcdScpsGSdWVoA5bBpcLLiEM4vlfg+cQR0Mv1z3rnfcHt+6s2jy+xNtq895Ow5wfsaKpKijCNgOynOqTMwFiMQKb6MZCPB+Z1JVU5IZtwRKsdHcmBHrbubfmyxQzW0HlC4WnrghJSAdSBMRV0DE8xD6kXThfNgM+F3lP34wzm8YT4UQsloDcbN9Fxicj9qU7C96CDOMr/QRYa7Kaj9BfRoezsXn1M4zXkbA86BkZZtsQF/FTPxe8NAlp/9w9p5nUUjoa7A2AnWbfSfk7NTIwnR9Y8gRoLojlsRnzE/KUkbWD0R5+PWtSRPsXQ1JzZumhIJe541YvwIrU40GsLD5MzkyXnL0rjspVQOVGI4ZdClGGgR0kAE8Bo4nSdUvInqcLpRFjSG1Xik8DEFoc8BB4kVkEIbyx2I0PHmPA2CThQziv9n3qtFzbXl5qtCn4vNX4aBbjAV8t1NfLT0zvs1YKkDcfAITfDZ6zJ2rZUTfuko7RcPEBQ9NdkyfD3lZa0TFev7vD+axAvCgZ04eH9NlMUwHvZr3ygOuW4fc5+ZpNaS6/9iuLcdt7P7wUaPAFhM6/yLUm7575V63234E4TKAVjkjweiONEM2Q=
Variant 2
DifficultyLevel
624
Question
Lines AB and CD are parallel.
Line XY intersects lines AB and CD as shown.
Which pair of angles are equal?
Worked Solution
∠AMY and ∠DNX
(Alternate angles)
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Lines $AB$ and $CD$ are parallel.
Line $XY$ intersects lines $AB$ and $CD$ as shown.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/10/Geom_NAPX-I4-CA20_NAPX-I3-CA28_v2.svg 220 indent3 vpad
Which pair of angles are equal?
|
workedSolution | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/10/Geom_NAPX-I4-CA20_NAPX-I3-CA28_v2_ws.svg 220 indent vpad
{{{correctAnswer}}}
(Alternate angles) |
correctAnswer | $\angle$$AMY$ and $\angle$$D
NX$
|
Answers
Is Correct? | Answer |
x | ∠DNX and ∠BMY |
✓ | ∠AMY and ∠DNX |
x | ∠XMA and ∠BMX |
x | ∠AMN and ∠CNX |
U2FsdGVkX1+JzD8OtcZ4Inh1e3jNwnQ/wwJnNRyL2I8mTNPtS+LWhfRSC7Jnee9OUAZxiB+j3Cv2Z10sQDOLdHEpqcSYByj5PkXBUGvcmvToibPel6z+DcRbdbfsH/m94XpszH7u/agEtfI870PaUVfdrEj6cAxcVJ5JSJGsItkzOg7g8d5POMl2oxS8jQHqBlqX2zEsRNWQaz6+H/CclxcjTUY1jSxvOoKTK+sbTHvFms5rkxlvXdoHWKtnxQweH+srSrgWbreBjJd3XLSeKuHf3SenHFwKLDs/AycdsgtsjdgF85aFK/l1s0ggAp5Q9PJ8xdrP9RhFANC0cwunEKdOyMRf1jWitora2houXUBayJMd1UVpQDEqDHWXc4JqU8v70/1BHjocAJ9WgsIbFRxGIEzWGyOuTZNyxG/KEGV1Ypy8+ug6eOx0/eSTbBMXK+JwcpK6vz+FNiSmKP82lTzqBgjXnMUYimw0C2AX20UrUPjlNnGqoNNfubORlUJj4Lr88tW/syBm7uzSnGXj8/NwLEUTKX/Ah/TVNIyQsdyCU4XILegAUlbT5PUHzynAF1PyW/bsFQj4xYnetKQf1E25uKfBeVCU9UOT/Wa1o5Dhu384D6wqHl+D3DGr38XsTrmnaTTZgKhiNfVcsIYmW/vNnvq2R/aUFFHZviwW99wAEXDs2/gCaar/vULgJfsY3MIG9DVmX9jLcLrkQ+nwowLBWdFJK2w/j7LULC/DFUDxf3Rlt2hn/3jndMn77N5AAPengY/GXwEMuqrYulfSujxlNjU93t6KZtcrn+coXNF9FysQUlzln2HNh60b4CZ7WYHOwY7UfKj5cLiSTqajJomI+8MrDUaduKMNadzSRlIEyBOItxplpWPX2N2lZoG0+E51kAVQfTstonRKz2UR7d4Vb7Pbans8KI402mieshyhutqdv8UFcjhCJYYKCpO8p8fwrjJN07flh6XtbW2vJ5Q2H6ZvRb63xfntzMvHurtq6EDnh//ycOzPgcYxhGMtosziciycCho0O6VEaLpS6+hyM71nRWCpbE9gGrPXqQeL6O2BHtJR3hxAUyj1hkIYHuFVdaVp4ac4J6FAjIxCasdSnPnxlcgf1mfj0Q7dHmIoDsGp4YoTl3Efh1+byVZ9sGC+k1F2hP4wSS+TTOSR7eQfZKxnSCpYjwNJpiAKoY+9HAfB6Ce6ofAY8lg0ZayBKc9JGStXP+/NQI/Wz6hGW2UIBBNRWCwXYnKHMgojlP8xevAG0YQBFTUL5wqoG6SjJWJvILC3LtUwzc1oR0sGqJ2Z/q2zAr0O3wBIGtVGuxvSO8o2XeniC8b23LQ3L4Fi5o3imZ3RBQma6GAa8qCD77/BAbjA/PjLF+DmRMpuferYwsxK1y3cWwotWMfHjtnIQgUJy02uVoqx2LvmQ/mbqj/kOhhg2ifwVJW/gegCOpPeaoVroPWlXaJa2m54hLRMG3Iq8403i/2kkr9bwoY+0EMQC+hZwTDzI+CQ5bMdvAgdRQWK0NKky60Kz6J5/2xXP3Apxl15LDgB9Q4jtNsStJute7s0azqgHIu5mRpi4rvy3jNogGe6TQH/mcDqXzNVl3bQWf7QaYKb6cQOa4nykodUn28YxdLAL2ISZudY0IpWCgj7l6iLTaeeL3ZptFdIYNPk0lRvoAuAHmIQUVlUFOlndiQhwjbWG3bUZgYKkdMWfooKJpdfn0BwX+cpOBBjtTsgGK1khDiyrCHkotYQOPvpmQm2rEnGGtbclR+5apf8TaamZ29wo6GZT5K5uauEclHcyOS7SHm1Gh8il0bIRP8WlqjDEtchcDlfELgqSeJLNAt3F1CCK8NHAXrygGHRZtCRq26ajwXk/pe/tQRgP+gkAUFthA+GhH2o2Xfg7zGt3HROFifknRXLDe1sG/2Sw78bU1HOJTaVuI8JeATSssGve1VF51ynf6TPaNl8sPa3Pm/4SgQ+SMnmifHyXj7s8b2Fy0eLdUUQUp57oMEjIsUkX0WgjA+MAvn5RRdv8VdWrkD8uJcVpGj6h7nEbFwFkAhEWABhWx/Td4rBEo7zfPXqCFrBw9sdCtwi+eya8zihhIq+6pgKKW2WlyYToczjdR/iPo0PtyvOVi2EKNj7wIfKJHODXwEAK9GrJE85y3uhFwA0k4PYfh584Qkhomy7pvNjKEaOhK5gsvUL8RpgwBcwvr/hJi9a+u8xZ00lHL0jTZd/otZgUdcfaqSeM1WEAnwU2EfczbVMfFS2Rsoxe0PR1jkpDNrBF6oaISr7XNdLuid0yWNIp+OqYBtLl65Ku2/9njA2ryFTlDhwx6QacR6d8CUXhBSghA7L3Ua445lHuFzldOkAsFtbFmGe8SK91xLHjg3+ZJ9ridsk3iSl4OXNO2wTksxTSdOE/nW3tu31+7iEJNYPtP645tIHGe7IIwqqmiVFIC73QamkF7X/inKdBtu4+Ikoirph4qRN178Y90SzLDt4J+Z2UK7AmAALSmwJuAjYhn/cUQM2JWOQcIFGdNI04pjb/XDTO5Ihi8opmhkWdew/8HAjPttQM0CniuVs6hrZUAppfEGje+TTY+mwuvJ1kP8pZ7YNR+UUtSjH8dtwIgJrm+EQ6xcEQTUa70uLqGUxMrz9/tdDHszPfci89tr9G5YvNv3Bvbt6/J4E9eas5b4uzRSL1nvREQ3mjuQORwOWYiqZ1tolizW9lll7N/tcBugB6ujzHF0M3fkomxKhAJIoosDOyZCiw5YXKlOP7P3TLj1BPDXAvdLgjI9ZymlJ8O175VLlGYt787DXtXJc4rl647KUNlbopdbZkIhT40Fb+xBFz/HlO9Ax6JE3XXpEWGQRCSPUZ6A5JUZI6+EnFFfwcvQla+zAeenU7ISwdMUD6xWXiXTJ94m36x4ggCna4kZmDLSI59dvgsS28X49hsce+hAem92addIHnsGUbVGYOT0snk//Jqqp2V8zqPC8SXHVig2GhDFMIHFutEwBipPuCa2sbgFDQgaMbwteIoClacDWnz+6Ke+3ER6thD/d7eSA0JTOC+kn8YWqhYfWZdU9qiTDINcu6wp7QF3c1/IJjJurUQ5MV8lC0yJPEFNXnmqIbPtj1Dd9t9+Q5fpQv2CMXdvGqZlh05DoCCZWm4ycnkNVkRYEyvcbuoef5Fqdmt959vGx2BmrLEcd6BKNOx73MFiBq/+K9H60EnTyiUj74EhE5dofarNFc5pGqOjly7PbeDsSSDgNhIZPv4H/n+frdAJAN0bwg3Ia59ejkb3QnEcbCtIALDjZA9L4XzJ0VWyG7UsZJCtSLd9NCVMn90aiPX5bzemUiPghhBl9a/8OFMgHdVAgQW+BrRFwvTtNTskBys1fqwbNdHpRwZ41W1ZMqXiFOWr02mTYuvoKNwTTeq/GFb4egrMgbqOhgmBSB60fcf1nth/eO1pakTj7HoTh7at/TxY1atOyu5sthYTdp3y/9lTr6BIM44nFEFGrvXOhGNPU4QeOw7P8/TXXCvpfWCaTUUdqfKEpMNFN9vbwyLI+a0nP7lpT3sMets1iT1VYYaLY3nAMT4bzspNh3pejbTczcQJsekOafWxrNSoJb3WsRtVrJIkh8/xdi2EuwE6vTb7xuH/DX+CF2DNp3iw0AnpJeCOILR3TYE1lNnRaQ0R+eNQncKeP55pcBMO+rCpaYiYOr1YyLzghMwe75FROSMnhrTDwMePym7Tvib0e4B0yRQrBsXRSiE/1fWAkPwzyPB6iS3wVfGdAfD4ZMjfKcEjAr2yF+4mGVkbzzaxr9Blp51NsvzDCB51zqa47oSws5wCPNnVKiwPrtGOIRSWVAAD9zbKlQutVTlk9k3zZwdLN6AOYm9w1mSNc34NATwY0TYUI7d+fK4EWxxI957wetuIpLtjpiMKIRWMxJSaSEHmkyqcyRrSI13z4CyQHa9EFe77sM9b9jGWqh3hndDkakPDn6ed7TzstdNHm7pNfJWRLQDrZAhOIOScI6rqmNp6GeoM8EmTwsPFw/bCGTBrE65CyFMDZs3qi21tbL7h+zdkRM2rgIxV9xRi2evTO2i56AgoeKTrNyQQm0TL2vWpL5x4M+pCTjxp7a7yZ6Sbx/a3Qi+VMpiXvTjALmc6QD08iyD4k17rvWejoBSMp7gadCUn1jSpt6dBG2/W0pVL/kNjqdNnN8Gj4ZaWZimBnko2++RD/sMIYTgdUjAzYfmpGB8kBvKNjc8d3HjxJX8ATm7eEgEO8BPza6hqvHR8kYwjcc7jsOtxkKHLGcx2zzfC+cKI67a3CDnUj/yxGOn74IqcEoxAXAvXztg6SxhH/XQ1r4zqomkXwvvBGSF68DRvYJTDZaCR6XY2liXIXtMeNFBerhiOhBG7csrnCcHHB8jL0H9G7bGDgJhkz25pCYyaU6J1bHZ2EW1bQrdgAFKJGQ72sWdzGp1ACgFhS9Gvo1SY0Tf3gKJIriwuc+IPmur/SZAfbky9/HbvSTl5aE53XoD3GN2v6rwPMLxXnuCeVmd/guYaPYeRL3zmo831fn9iQSXlaxJg6ePOt9lQ5xmr44++LPtRSSXNfWzpe4LS/ekCqsm5ceY5kYzfSrhkuy6raOeuhKA5g+oUbJqBaKE1USEDvm6Nq0BNg/b+WGm+nmLvL37VOtUehdSrXUir1Ugyr4vQWfy+O2V5tZrBEzjicyv1pJWIC56M+rYLoIT2f5C8Qv07djDbSloHZSdIxBFAtBDczEGBCZAs1jh9svO/KubfdjK5Xgee/ryxzEea4Xin3328HVX01YTgpLBZkV3ZcHgzEdRCA7/+tbm2B+88w7qzRWBUY53a/mKzVFd6bdK4Sjhx171wEn1ue1G5cmPbMqSL9TxzpxPOPe+vg/GAEz6YkXIh+yWh+P8/I5kg7/9pAmaOOzY0J5HNvQQZo9OS0BoFQ240Vd5r93+QwJVlwrXVK7gpuFPT50C+QAu/jbuHdShA3AXySqo24oEXXOyX9oluy1cseLEW7jATfA02Pbv0pwM0DOUi1Oqiq0hHOmzmDl8a8BwYASS2bugqhjEeSVCF4eKqgsmY8GekuKlkGhYBIMUFHUpqHKWl61qT92MW1dALsybuPh45YUIJk2puYul9wAVnH14ygGY6DnLvMT67hmgWFKmnkRzfXeJwKjuLgBW/g7SGWiI2mvnt3Eh58V6PXIJjXa00OsZcemkdeG1Qc+Mq5acdAisE97HHAU92FNwM4z1zP7KpydojUooZQy5FSYNdU1JX6waazbZF8x13WbNniWHmszQK2m8EMG1Oa6dlJFILJROKfNtOQ07dpnFzZBvOVSOFC5Dxes+L3JCr3tUCAyuK8YPFTq5WeF00M4sRb5qOL4BBY+jNJDxKp+gFPO0ysoebYDg0Zx1023HkeBBUOZ2NvcqXa7YUTP9Re+GlLjVzkspScaa5RBm0DB8u7zRdl1qnMhKBx2hJWZxzOQ/kaUOYE/LPc0ik6cyIbWmSwzL7u6wiC1Cw1s9N8ctixWncGR+pGEMf7ehN9ejoFk8K0N8MOngs74Johvqajs159ZQ4okJYfzigvhA56owUi+KZKIjpppiI7axP7PvfwBAHlI9CozPGWPIrXEx/o3JGdANUTsl/8I9n3Ze4OhKuO4BQy7GOQwE1DVcT5mK1Wy7uTFCXeWiAbVw3MMQ/LiHjphCIZfyFJbUrZ90HGmHFATSCd89zIzFUI/3Lsh58lXx7IJ4XqP5XOvEeFkjRXjgZWRtN5Ks2bA/Io/PQftDRfu++OOAOtbVakXy8B/2y3LkzyTpc70m/IfIxOHIH6Ru7KFYnoUSAnwBpvij6tAeARVuPbAvW+0CJaOp5xst5OWzff3mssTXIF9P85EtQDr9VnTTvBUKmhVRyiHNvW0UwfFZDoKiXJA+dvYKcR45NDs11ux5HgqECzXKtIrMlsTDHk9C2h89mbFBJkNnfAAFykLvvesTHTYi2qIcNpYoKT63eyx4Iy76ctXjUNMtd84Xpg9Ms97hdQWUjK+ydfCDmcdOAlCv5N6JcUYQ08hCSaQOGs1LZCaHrjMlgxSTA/DXOls7xGxL4jb3EN+g1wBGlQB0ata+Zihq015ourubCswE617cXtnijml9TzivOkedvys9JVeSVMeRf8aEIXC7xfN4/cXp0M6rVfMRJMjGHneSAtv+hLBXjENmjVNa6kRS8EoV8kGDQ1kiX1iMo/BvqWOB0+Ggbn8pmzIL2p6z6Dibk5lUqKA7Lp32hlI9bifH7IpyItEC28g9Z2g3rRZuemK/vqj7cgcNKbgbrYoxzamxvC6Wnr9NrbQYzwjRvEKufr5V3QQoATCcmUyxfGhjG7hKoPxt29WBOt0j2B3ezctRteOKFiA5bFTtVYi+IxCs6HAHviggLnFLrFKiFsk6SSmGdKZ5LN9Tnt/ldzG3xvWccUSRBoPvUhtTK4tU5PmeTUH/1CQeoW2jZEsxeT7/c9lOu+bOwn8ozJ0b315Us3+qsRpUuqzZYtiLVXtnFvjUPo2htNpS4JKID4gldoLbld6iDSE+g7M7n6MEQmWGUJJ5/Hy6UyrnQ8Giwa/HrrV4YDE67QMRzdnF6wH5WpsQh4zu+gIVdsRH6vIVn9e+NrnMJq3r6UdTKuVo880U8jr7SXAqaN0QK2clz+dsGAKKKS8NmPs9qxQI7bZsj2gnRi1t36LT43+KQDwHQl0+L+96OjSkCJxrAV3LuFhCdXLIsgn/xvXbwUaGhvTTptwyEB1zQN1rzVk2t7snl+dP1UJdTM71kULj9Kmc6oUAV1KkEG4CUKZF98y3JqWJI2XszFibsnavTy1LZkZtuPevNeaObAhhE55/G0xHDusU4OtptXyITNtcFK0iE9IaF5HQ42TcoTVfUwGSaylyUngDZLEsWv8SUlkRTE+qrrV+XhHki/+r6DO3ymY12neCIUBAFn6Z0Od1Sb4nZfKUMEs5kAa6vMwJ3S0Wu7ktCaKtLKKU26iPMwL2t8uVKdOD2oBudsWA22/ANgaDBcvYwyG5VAfm/qunIifuskUo8EeMM79nvgnJm03onU1Uupyoiq/stAUvrPss2jVgeUhmlcyvEAhp+F4p3p9pa2mdkTI9l/64XbrnvvDgASFFeJqzexEq9qRrTeDVMbs40lKdNe0AcohaErmDNWO7nxgAcMbUYClrf4LexKSivj/SFDiuPFyAAQedSuydPXQD0x5C+94UQkkyjvsHBLdo5M8+CHAUqeNpI0ERZ5iGda3HgzMEZWK4oDGGXnOfHT+L2yTregnjVF2aINDDG7lG732jB8pBitHb8NxNC1UJx7eJp/GOJitnmMaF8aSim3ztRo+/W6CJV5WiebC19bdaekDDHJluyeicEj9pIwCRrZ3dFs8iOlna6gr8AXXHVF+6yCFvvfY8XyNVIYU8pUPvT0Uy2yJWLLcTx56jlVSU7rnQ7StRuIFxpXjsFOc8Rn025g+npiUChvep+Hc3qtO7ID905HvDMG1xtAuuaIU8TIKMMBT94fB4v1HMxjhu2wCFuykDoo38/wQi8jnqNwATZ+e8Y/m3Mzsi8KMcZWcmoftfkbO6Aj4kl9KuPvU9ES+/k/lHAW5vyOCGutAiGFnykmidmkVSv824tu44NIb49T/+JOwbn3RelNUyuidL0Hz1YHZJvzxHEo43c9u4WnwkXBMxELkI3vSCM8dP98aRFldoN7cvozbjG8KSl850TlPius0AdSQzMR1NkWQKhtYO7ci/SnA2Yg/ZT3uQvE8gxiSfs0Agbips1Eu+WPV46fr6YVEPpThGcVcsawRd06zLiDRyS9rTiXygWt5pqW3zVhkAja43futFk9XSIppf5iaspy2DyggHdhAugR2CaRrl/Qwy12Mhe7+GO9d6ZyOkq86zsxHIZqiHjC8SR4qtQZdGiS9j0ccTMyU7YfccLVb340+BIgaJpBFXIB3QErtbMHEBEhfxOGqnZ0tZNWDRFw+A7eIpWc9rL6zIvpQbVGcigTgyjxKl2P5nRv2f7qygYKy7rlmH6uQcJegOcckiuyj5je6A5dZiWi3nNx0mm6J4F+84Y6HtbkH+LfSZ8LvlWKNozjqW6NtodtNMW7fbpDWOSOFEcgyxrthWUI65VxU5SfvI4WLcfBHPhJ0NWOwHzf25FSlpKmLvjA0TdbSKRh3+MxiYajphy5miwKBbBJSPMQ0BjkZ/1jpopkeGw1nBC3OUNDV4UTegPSbfFc+3dOItDVnq2q62L/8NWACELPtBp1xk7QJluw7LxM/3uaSbF61Hpyj68C+WhoYtCXP4WOPSSF8A7Xo6YqQuqce18Ao89mCYo+p9Huwj3bxzTaiZL2qM/ai19fro9IDATNxRhcDTW2Y/2ENrVt1Qkx/j/9Q4l7iXs1qKtY1XSO5OOlis+U/T3xYPXV784B1FGDbp3EfW+INawL5A6DTDHcQKYYiERDlysxoMxT27AVnFs+Kct4tOVFU+7MehLE2HiKQ3Y7QpjBCiAx84eRySDaT5czbGHXG0boMxTt8zj/mbzd421IKKrwArqRrUG7yu4DZFxmxvTNAex5nE2dJii6zTzmPShqwnQLv1dFKYJWkCpDHRjkLIvVlR5KRE/6otCJVutag8lLG9asr+pgPPqf+L7rRmyFJCN4cEaWcLKjD2uf+rCvj32cWshqIsJG01iecelcakBC7saHcgJTYOysRXxEpG/rA73gBoBgl8/ObtLCCn0+FDETLtFqERRm5Ez560XosXAGZms0LyzVHYR65v08B14FK91rldhEHU/LAxQEicI3B7LSBqptY+Q/A6JRcrXRVVP1THfhZnAwhTDwsYSSjp2RyYw/E80FPjrFjsqOHTU8l9qaJ9sdzSjfKl+fU1FBjserp6KFUT9WoQzgcs+sweIgDlS3s2pwLiUxxnTbMqmm73we/johnwvRUMRXWRi7gVMMnPxZNJKOErPykRmqFSTPOBqL6GfHx+NZRj+McTpFnd6ScpimUw3Lj/Gaib2fHbe7i3elIGrLALn/Tjye4ThFyS7S0txOC0giiC9zJ/DDli20336pnpob8ZdTTdH5m75Egyj86vLsPMfUa3L7Eu4W+dML7ZYjRWEsXPUjWB7Myxq+bWvpvOWn32lKn5gJoS7rvu3TJNlhAkw1qAFh4NeHv4Wha62TSOuaUKWeBfUvTxZdveGV+UdtTXdycL+1t4le0/zNpb+DkPNTlmnvxTE6hEmGmC0HJDg8DL6lWvVNvN0pb4T4kn4U9QZ3xgNApVRYyat8TtsNaXR8UakGsUkfF0X5cnG4eKI+TadoTJ5HkUBedjQ7Z+Hnxs9Y31fDWkaCpueDlQcYimsEcC3bKPK+acHyKQtTbJ+CIZhCALYXTEetDQa5iMG5vqs/FTX7Rp9r0BtZTFo54xICiUwsLl8sqRNg4v1y1MXOlX8uSG9/iAlsZFF0dJDQ2QL1wLOQ8iMrUVJ4DMRAn91z1WE6jRY5YzRJoYeXbV6zWH77HyqZbOhlaFf9LXiCujvWGWPBGjSf7Z1mCxhLcbj/xPxAt9TUnfPhO4zz5yAMXyBrMAo1tuPn/6/dr18K2oZO3deWY2vTVMRW7V1mLF8cGQ+FVV3FlgafkrWxa2ASD4iTL6C1PjP1hVuJWAZQAe2dm5OKr1KvrJG7US2WhFbJUmmWr4QvNQsGRQiQGiz6IzfAr122kTZnKru/eHJMCyFLnKlI0UQzsFNtNP7JulvdiHyebAOO2VbSUVrSwNp6PCW+wm6WqpKEM1cQhjuVmwxllRxSs81YSEc0iTiuF/jOD22BiUGgNFCXdXFItBiiDBf4xZjbmkkE/ODBMVYf23qk5XW4n12lbG31+N4+NgzQ/kdaZJwi6v+37lVMGJS2tot0R+YPQEYL+/Ja4ZsZ0eoRX3lcp4tgLGErsh+1zrSsjpH6BjMnWbS8HqwYQmvBJJo/gd5Xb/6sLZc8LJCBIlIK267bvY3cI5yzfs3Io10MxaCShGFOcIXmxgTvjz4X9zYlNhgdG74EGeXxwd5yAHmhZizj2hHVloYtvdJrbtgqvHLXkSlFfVAki42uxLyN/ucfB0NfOeLLYNLtEDHwBQQi5MXxINM2uf+NRL1JGSb59OKsCvbiXLJUjT6tFKJ4DDW+qoxntxPXv73iwVwDbSMEW3PEZFrnJ4B3azm56L4pMji0vrMIwTiyDj6WCUH1co5wLLHcq0KMsKf4l2hQmj33MdMdDSApVKgMN4WBVdneHFC9YXco/v3dhww1jNjcEsRSC9jXKoAUei+t0NpX79MqCE0FOmYVaP6248dyQlPyOyzuYyDqIbsgHtDwcCu0f71LmZ/3LY1XYkZEF+OwbGNo3XC+isULrb7hXCT7XXJcuu7FKVxvyT6DIuD2S6QuvoGrt8jCDOQEziQ6gkvrzIjzwAIhdJOwDwI+r5t9ha9qpxW66pkxEbbCbBQ9HHGoi/ZVHPtEQKcXxphF+XUTaXgN0SudxMDb7q/a7YfLkTJO3DhnxMaNYu6abOzLWPF6Hn9OsYU23WOt6xLInmdTT4YYRsTKLPpLP8+JdH9s/JQSK0ONXnjnrNQsguLjO5xKgrmWEMmMVqsBwFUSiIMjLNXey4AiWiqMu0WM+SfbskcE7VWi0jfpfpcpzIIOO35LG7WdKQvPbYmSfUqzUhzrf6e9Ck9EOdPAgx/zdxPz54KuIk4gF62GflAIw6IMhwlhxW5443+wogFC89E8FRyYJFavzSLwXWY46tDKQmipwlsCEXC+qfPZFdzZydsG/e/rjW9tkhflmr4rFpQ9tH8aN+4EhSVx7IOGpac8udIr0WIeIkabHxyzMpHzb/YqioPlNcNxV4iobW8duzk5GTBA9hyAeNzkvQ1a1J8AqCPKywVxH8K8Zzjn2t1X1m+ZpSoslfsp/FWVi6TiM2l69s9iDmL2e99WTtmzSygCHtnsEIkH+vyuvQPcm98ZzDRfVZLZQQm0GmzLuCPyluvqQTPVAjVSd5zRiciPGKzn2dmUzJ2+06SfICprGsIO3vGdPyCEkMnE1U/GsC6rLpxJhiXykpM2nbt9PW8c4LsMuP6/Pc8JlSd/+lrTmCAfOHh5jyjmJ4eyQP5AIJp7mqrtd/BbwRAywCBRHZXepaRvLjYr9f9fkQjq5cr0eL2Jzy1cm2vEJH/5I8zord51cUTOFu2R3HW/oc7wtPDCccFTeesPQpKDClmKwY5JRYU6txAB8TOaLsz6fA4cgfSmJ0FrBbHqqCu4YBecwNoYNLN3NYJ0Tb+StH05HZ+ejxmBxxEDwXEVG3mcGKOJnc8tWresZ8Y/2jKVWYmPJaC9z2vU6UH/gu28WDOXO3F9/z3xRuYVn074MttLtkwugfh8V3D9TN7ll4T/h5pfV2PrjI+yn2+nIofDqLqEl7uzDlV+mBy/pE+8eBclBprjZnJkJx6VBxa35cKqyHe5S2YvDXduOFAjHLQSqvsSA/pAH9bW/9OotkcgmsSr4i2qx2e7S34OObKmJhbttFmzMhhSxRMFDJseycV9kDds140cCqR69EQ5jgTX8jYkNvlD2wWu5Y1549e+UR6XAZbaDHdXofvinIkQQeJjdoS3nYKxFrLBBzWHBT6BL249idqJ0VR4mSdz3HZlV499MKtjym9hFk1sF0meQmjhtX6Jcpv+iyRWK6YzA23iaouy0jMqH/+Iq8qkjTSSuRLTqB8w0chw1v4l4f4Qx0FSqFG4oHmaokBxUbtKPjIKgKtebwT0rGPN+cGB1jwZR2HX4Hry+MqlsdzAPTR7YJor8JcDRlH7T18iPTz3NwKwBDYspbX+u8RGysvwn5weU4oWRfJl8nxN/quMlJn5IjBPGGurVt0sIj++mGIsQFgJRCawcZJlRkp5RMIhmEwrByGMoArU0QZtf2iPYKGlsw1LqFMc3h+o2VTsZUUDffftgfrm7ysIluzNqoqQV6cR40CbzqJiiN1KDvvBJ3mKcCZnbhwENPGbaa3O95rHwlMeVpL4ACr6qoLnpOQsx2KJ9gHcISDqzrnpCckbJ/mo3YtpNGOGz+/kkE/MApAEPRloIpc2NrOhYZNgR14CfvIDKNNVFpZNQXzM++Y5eAXIDZNmAie90EMJQpXvvpmLZO9w/wLtBT6xOhmEM01INBCthI7xw6xyVsRBfx4vorTOwdn4kyWLlAnHCDOyRU/Ed5EQ6dxJxebfHWfadKKo5Hfjfc1cM+4x6oXMjqq9YhSzr/K9Spkx1yOcEhB9s1fAn/tUmupYI+sHEPyO4QkiXDu7+fScC4Gx5T7bjHR4/v0J7/oAXyqsycx1QQb2QXtj1kdvP2oCJrGz7PGUT99V7OjrzRR3DhgoGtpaRqPt8mvEtupasLl1hIadgzfm4nFXJqnaCCJ9fNV9dWbf8asrTkqCVDp+rqO5An8lzS0HlX2Hb0UasK4NQWuBXk7YEwJhbU22XVVnzvMRYW8hNgVdvdteR99L9LwPFLLBO8TAXSFtEI3s/FWEHYrZrDlHfw7nX7Fd3lriPQ/vydNYKa6CRDBH4Mii8Ta5kcAZZIv/rFjdHir6gb4ayNM3Q+HYTuQ1O3YkvVq51pElpesAXfRMwVdNpVjlPWDHQ5AdwQ0APNlNtVFgJYT6vgPXsxzeG35qwzYjM2IxxgOPzNcv7LZZLvQ+NoHJxAmN0TTKMxlpKcLwcT8CPaQ6bd7kUvFOldDd086s0umGYkvx3sz8dyqKg994c3Jc9iD2p+zMnMkwUjwE4kzThcDgBVFZNTDOdsGlZRFiDBkj93hax9C9VuA9xwDQZHZeFPRJ/YIq1jYb5Tqot5Na31GsaO2AnHwefT0hAFwrboWLDn/Y5BzRQgRte/DbdEF3xNiRyU66xAL5gdgNcSv/JoKrM6vydbGoLXF8Ld7gSSB8e0JUCk4tgtSAgulutUbymHtwHSj/KE5clkljIkh5t17dYC1oHO3S/3BJRQjqi1C3/0G9pSQXqdE3yAJd1BuqJlniAwtJ6QydcYX+LS55kvRt7liNm/hMF0vkf7n80SUaheK2dO5tqwz6XYoY5DYX/hpBCJmDiWoTtMkrHKYEOXEHUEDrT6iJSHV7xADY3ENCxSaIkKuszUIKejXKhpdUPJXIzxrSOyzZdzcAFRaoJTk3AhHub1Pzs7LtqyjCPkO6jA7DKJkRrUGqTi8/rYHcb3Al8iCcN85rYJiQoYDpgFVOzCMF/0jflTTjDEhIzPFNVKcJFIYhiFKU6zkpL2US5EGA8xZoUouFm61AAOtA7Ya3ivGQeI3qhsGzLdBpzlvQFClg7rz+DfLY4MTArGnoDJxQKi+5R2o+pK85XCUW53Qa+zfKjOurRSvJ2sZkZq3NXAukCdB4ndx7AiCei1wTAl9Jx75Zk9CgbIFMIPYCzNZs5Htp2yVeofKtjWdcxWyhavszoQlBBvVGnTtaWj1twTYZT9m1CW/UvLcuq3nhp3AfogdkzgSf6YVnCzW5IgasXkUvTc52j1Fdh0BFEWygk9I7bYoFwXA0LlpPgQoWka7w9TnLCbf2Qhtgn+ad5Y0p0jRjaOXS9rNeyFpShfHvmVTDn3TxiNfOOK0QZ4iTclhkpCRxqaMBr13T/Djrr/v3mda43czCKsY6j254LklHqmqbl/yf+8r3NKctaZYzec96QB4e5BTu7P4or7ztGiiRLUXGZJlyM9KW/MU7fSf7I0ukzLpeYIfaEMZ8V6ewrNGpaDTdjDm27S6nAJTwtacr3erXN3Sg8akmYd3VEll138/gMhQgmrEZLvR3YmcRZ6wJe9cjes+0YycgYuLFBXXx28f3N05JFgvtVRHbVhPqwpbC5Uvv/RCCZpwkKYIyvwUI+YQrB7BK4p88m7/KGApkyYyOYNOIUKdyl1GgWD9yB54D/UyXZsOX/IKDfvZRNtHMuNMV4WXR+b6h7EPBznDzAsBGibE4id6SNSU9RR/otaxgNvCsMfS9LWcnIv7AGDAVJB/eXwtlUa9Ba0k0YX4Hrnd7JlJTgG6sBGiN8Dnxw4vOgttsGBtb75+BsT4g+3U01eueWLJAHtnGbXAp4BUplYETbqyes+JL47xLbIAwmXjG9kXs1SfYdEgqCzUFHdBcsdVaikZjWQcNbnIFjGzMp6LgCBVdWUfTHvU2qMFTkF9ONLJ866yyvATp5tL4IPTSFOhKxkLRuJFSAtq2ZnS4xklUUJXDHakEMZBXhVpU12eIUDTSWX1qKnCsSMjCj9n7nu2A9a447QUg+rdTij1KX1vxp9vXXKqMLxl0ObaK7+YyKcr7yajBQqpOP6Syw1CB1HZ3f58zzW6ZHEOWDxWtq+DIsveYQZ25eFtX+92kyycbzZhP6i5Q/skaLtLkcx49BzyTiLECFkpi6F2JaFhreijfajWb3qIgD9j3vi7lBoLS+wxCn9Hy2LY/edU+iz3QI+HphNpCSrvs9hH7QAKRZAyTX68CcBDuO4MWa4E2j1U2O7zhJ/981Q/9QZUTNeBQeySMme/ZNRivx5tfIvSV3VX08XJtbgLD0cMfQWz9kVHjWb1xMrgF3IAkV9LzDjP3afbtHcjXk21r0YenTPVfTH3xP6pebCIGl7VMhI92u1KVegxabUjP+IswLLqDn49JASH9JQqZcVv3OAgdO1pR2EpQeLiqfQyhqpQovghqadtgt3GJKDzZte1E2K/Rk0tNBgTzvZXhgQarsvXxyGd5ThW1KCYnkZIiVJtXHE9vnLzz1B1Mhi1gjCz8jXwh/TLD/W7kn6ZfONm4BKx1ZxkT+OMNebSJZlQ9ofvhLe9MOA57KlKHEvOfZDEtXKXnb8UCEiHuapEMcEMCJf6ej0iW/C3DO7aFzb4kk8oia6dOHlgbYqq8lA8Zqa+xZP7Bl8AaG66DFToZJG9gLCW0mLdVlpIG6Fx5+tF7+1X2JasC1/PnnqcbIIIMQvI1i0mBOFoqU8cHsg4O1ha6ym8wwcRmX8zbxOF6pD8rlSdlF22RtF6m7k7ykXVlhukQDkQL7Z8/Roubj6wEwMGCq5F+vRebFfG3j7kibZFhpI3s90r1TbTuAyyCBrfg1THv9xJuDgB72LXZZsuTkH1CFJg2LqugWyKrCT4QaiO7Yod5sPYOZXE1KdH6sTOvQwyQA/2NJoUWgsaAgjmfJ0Gh/c/TIWofNk68I5xnhAmIKMVcTU4mZ/u4quROJbZhlsQyd+48MQoLgW5OsKH5KHuPI0ahY8uIvinFqB33KShr5GtkKv9V7e/KwJQT2jU4Krw025Qb8ot2rL00+z0gyF2tNHHD8Z+FWnCpAhAbhi9IOiVWEHY5baC8dqLZPSpR42ZKncgsHczXoJfAzs+ZbXF06v9aryM0zy9n3LBWyLbMP3hW0nd3e2Q2SL8SCuR7cS94LHj6mOvfuW9xMHtu6d4FeCczBV8uXVL8tEwLG+m/eqf1OUq1yaTBW332ma+Fgdm6hub6ruopDjPRVoJtSKLR7lY90pZXlYGw8sMDDlvcwkcBmoET95pKjkdBcXs/uQgyz7I3vx1pSbbriqeHbKKR3RcnNztxXkRQLEo5GPMpNB42QQfHaZbkbp55rMXh23l316gSxyXEkV2m6kYO83Ws3e8TDxV2U1Bg4gk23ucAlVKq/77V72xs8crTp/qNEITKcuHjTq6O/1yJmFhE0HHbVbuiX2aU6G8byNNyeD+gZMjf7PF/40+IbxpbniKaboCwljqNvz3x4TWdnKEo1F3HzKEyvxinTaUxznSPzohoFogQJ4pOaMrIR9QtVjFy0L763gdaqwy5OOoBOfPmaW+xbgoZ1deu27UfvoUeOlmXPHecrqgdxgqVox9kNxOCzezqN12i4KeiPYynPd4v9ufPogTAkesIPEZhEodS8xrba9h1hEIzNk84Ffqf16Gf1a5zSuBLDZgRREJubEREeFToMasGzQQ5a9zJziapHMj4XWVf/9sXPjWhWBT2eMF1Q87NKAa35UiLerUOPp4Tg+Tm7MDzjqCkq20TeS1H1wL0fOG1YZBLv5U8R3cSIxlKDs8EfM66sqx6MeIrEE4YhI628E73BLrJB2fOjkYs7Qsk6X6sy/MTtA8K2DUKPm8DkhXnD8qhI9x5B83O0a8HnIJo9pZ79dkLe/Atlv5hikAZkfHKuw2fbDbZiCLoEmdnNdISz29H9w1DDX9GXjVlf4wKYdULLnZwAWmbtQ5D/Z621PDsadp7fuFU8B6qbJkOcRtIhSL7oolivAMunj6Xhi8DgTHKbVkXQuG3btJ4+0PHCy7WTSG11FyswTxk5dgKEw5km/OsZCIY/Ynnm8whJJ7hdW4XkxjrcYaQbcbaR8dxiryvxgDNmacCr17QerZo1LtzjqJfg7HsFNaKGVuiLr1lAok36v+qKpYEKXC/9aMuGBVrhM6e/sCLnyBQviH3+kGNUBufCg5M9YO1N70hKHt+/GrUxNzIpu/bg2071w7VfFKJ45x+m4CpSDa1Mj3DYhX/KcCqWqkzz6xM9hm2ZmG5Lg28bJm23spsGKSK+c1e1Ka2fOhI1x7BTcm2vGwrkoZslsqjQOGXzQKtKH+MgPqMeZHF5VSQ9qPX2DjD30QdKi4sFo4FpJXiV+4A93QjdDMj5ZXFRWiLsY03WIzay3qJkAX811ud/8uRY6j6F7IoLTq+3h48+qerkMNe6caLFz2oj61z6SiCv2nUgaYZ3mck7YbAjXGAOMhxg8yfVTsdYec1MmNFXE09orQLk8UAacUyJ/nGZ8Qap6dQ535ukhuAsK2nZkIT86KYZDfJ6j6RRrP6/9zrZZX5bKJaOUcF8CmSmRJ4OPXbSngA6WTUtzwtA9gGrbhmtV9pMzCBjCDTrMQ2UdxEGFi4S5vdJjmWa3spJfgAjLNipPGWgy6qj0bk0ZF/vEYMUt808axpr6ql3ITt+lwVvB5P2sbKMyBdmTvBEphis2gqc2S7p2x6x/WY70WQd8ZQzj51E06Q2ONdcEdFOahkCbrZLCOXuTjKqMRI00V7I7MCY0O7PP5Z+XtEcsib6VtM7yk51t4IYmJTKi14SjHjU1+0kPGMMXnJcsPijZ6PfQ9Hivhrvwd+XIDg+jSTFpUXMNBstBZ2XXnDUgEYEbs5nAvdlFBpCi6H+yAJLtsIFmHFwAtuTLZDJgjPWbO9D/GEH9xXAYLtVwmqykUe0vWO+ck4Y2DxHVhfuJqjrtGzj9JorwB9sYP+bJFsxz9M3kIIQnwMKV0elgFRKVq5Uua+0OIb8Wze4xFQyuywna+Hq1b8zzUiqQet9ekfBYKUvhZ18YHpgPNrZ2C00+1/FSHqqf5zTNIuF2G0R1B+ZEGpzuf5ZEiER1Q3v2wSCtprGOLehbAEcsSFA7AH2ykLb1RGLSrS46EFkL1WJuN6RfLK2X7TQ+r38o5TnJjhKtSF4ERxkN49dnPJhYSX6vLgrwPFdNALPOgUUrYkVMiACXUh6dP+fLdF3CdOuSKj1gHdfoPXzxjxHDZBJl+1fzhPzpEasmVRbr99mwyicdByoc9Wd6Az1/WCq6ey9uHXDG3w2wsrUSW0D/SJscGpzqV17Lso0QdxJ9bI5ZuqxBFe6mu6/2cDAdlDNU7QMBDytqts1qEHIk6ObA48sXeQpF9/aZuYk+v88tD5cMxIOi14Ne+iJaZSolU+PROHzGgcYntagK7Un17GAa64/t4B4HS5Sulk+f3GNbTDiTifMXnw+jkg86EmV6nOwwuHYaZcCuftw4FOsafNIzQG8PO9gU5SHhJJl2jJp1cB5Y3iY5bqrOzKoPQai6F/j3JJ66OxhmpeViT//tUDVHeqGkolzCKVXnc33MdRmJeHrvTpVRhAFjsCaeY30f527q/A5tFXGd48SyeH3NHwTmgAvYpQCkctUfSOZi4OC5ZYT5gaGRnxMdehAOYJ3CGckWYKdM/Gey6Eco902wAq3PSsK/i2IpXEHVdlA1pU4KKOj3BW9lwxKpedfUBAVdtXkBSdwqmyZ5jTZG11XkeibZVDEEEBduFwK9PEBKxAgn0T3IW3QhmxUANJxC7VywpnVDu9BIgbf+BIBp9aj3L7nyYHJp3EkYQL39WfsOZfWRauhNY0S82NPTPaf5zRf5dtjafFbRWnwtlM4CDwnabXJcZt5oagoEO7uEhCHAVOezBDOkDM8GgXEWhrzH8XEosY7C7blTObDT/DDnBRGmjXNr6jdfrUIbRA6/ywEnRSsKQ5ECIYPAze3bZF3eY7NFhXmjV+TBroy1BavyNJ2jV+batjvpyumd2BH0Kvjp3Mm4IGqDANOCG0J5iuyezivZMX0ooP66FStroLasjXL3r38x2Q6pjM2j3asoa3G+C/R0JPESgG7qSFslTrxpGAyi6CRUHKBCNmP1fD1TDgXEJAPDrs5xwzt+BKsNgk9dj7wk2OZ81GrghwBvctLC4TuuFrW4PSMpWHF6HLHALVwRxFf0VsWJHonEC0egqY8UzUR+qH0Js6cpdnsSF5P8ST04sYw7AiRUw9CAvgPocG1qw18vJKaBe0QXXRCCbDpyu7/52IEgPGLSXWaRIK5wPf+WTjJj7ZJMZNu3a8sdi1kbny/s7GCvC3G4LrQsZhoDpKrGkmxGNQXqTiQsFrz9tV1EzbGnGtV3v0gEO99AVPW/Qj19AeoLimAqSniXezw/PZ4Go/bUfjhZ7Kx2IUsitzK6Ss3LLN1xu8XDdq6pxPROo2cd3ZBzfaoei4/yqoAmWDmRBsQdPDEjnp78f+h8clyL5GnoPXkr0qrDe0QXy5CZQSDqU94iO7N6sCnjGT9f7L/9JaKcE8YOt9mTzpDeOl/BZWHFaP/i5bZkqcOmFT3bSFcigqbVlb9l9Erux2zxuYKhJu9Cd4rSBPnrnoIXKK0dUz4WKE1dRCVPb+YSl7U1/8fTTebKide3Crtq/QjhhYTJ6WhoOQOC790z991jTYiLjze1+plCbHWHSlrY1r677HU36iBMLs27FDrg9xVB3hmEm5AkJVS/H4vHwfei2gx8USGS/5Juk+mN/XK4Q7TLyJ7fq2X9UogkhMsKAadno4T6NvXdr4K4ixJbpakac6dCR+Q9PIN/ox5uNXo+gBZogmVroyOuXKPPsXtDx79UgOQTyECIo8qe5h7WIf+vLfSi4uRUI1wa8H7NLKRahDCwlF6FV+Nrqf87JQXy+8n1HFfqfDF0/lDuIWlH9l6mqGzb0NDgKvwMSyx/t+/JyM0SN3D9fQLwvo2+h8dBP1kZ2sQP6+vXMvPe5KlrHgSiqy2/cxRsMqU/O1WgECawPvqPoGZIc0RnUz0ngEhEtP7Lk0cYijG+u5EKRiErVdwcZP/eagL9NpWUdoiq3nCqrDa7YGwKQzpzkV60ubRC5GkggriSFzbgQG6ywlqeBg0ceImmmtQgRMjThIACIFLGmSHhGfgcPeTconWPrpPKIPjK83/fBta+PIPbTv47LoJ6KM1zGC5JRgMEZGBM8RYuk95MNxrc7XaDuflSc6EQS4HX/astDlnymhvGkZ8JlttbZjHrYAJGI4g9G/aYEAfvpQYD24k9zB5Yigpp9tetPnbVx0RlVk65zUDoMtVs1ogqWTsutuSAumTvxD6C2iuPuRgNAzQBfl5NgHGLURzEl+ktkFZzXHsUcX9pF04Yg5aE+O3mmFPh1mGh32tuZIVFQgFyYZJeI3USmr7ReZodc48AyMBj9tslefOOYQqA9uzLbsWqHyJmPT4K6CHmYM1CXwpeAzy3J+4liwDJu/TicBCG8ji3/4nNWEyY9qSvitKQKNqAFzO7DyY4LVfo1/K8Yo7eoUx9urdlTV0cJBKTOkc/k7ywC1bcnvJ2jWXM612YdjgDE1/x6zJb4srCE2csKsd5KpUc2DR2jf15SYOtssaW6P1Y4634wL6SgwYqNM/TC3WNFZSLJ2vUO3cKRSvHFNmSIGiIOuhGuS3nP8xfEcOM7zR7CJy6OQHACRdYKqojACDlfWiX4RNi3BVZ3sil3fcWYZrNXGpjGCOGFxD/+e40/bImdEZ4WDSQ+cCGTZ7+4U9VduyPqMF6OQ6XrojNDkDjalaf2YJzRyvPUCcds2mRhzoWyuQMrRBwh5CYlNTRvwTBM7hbAov5yDeMwbbayemV2lo5QryMCA9jPzF+fBxwEhRgLTYYQXH1FrlNKAPxBWeg+sJl+LfF6LQl2Ukj9L2X7kCWHmUQHp0+smVBCwKF6wRk98+6nnz0Qh9BtF8tT1O9b7qZZjciDwVSwFPS9xsSCMHPqmO7Q55m6n0Hb2DEzXZ/QsYPvrMdm6SBCS5oQKku+3Td3w19+bpGGzNykIx8lhtutBxuzYmlvlC1CQSUXq2Ib/gVV+vRSM9POttVpaaz2uiiqeeKSygx+czMo6LmdHJQYv0tqoNTx7/SxQi1NAO/EdmwwV9mCbhF2BwtyvtLupDKd+c8Gvve8phoxkU0a97iCTZNBe30aVniWkbUvUP1JuNalBSkh8WgzZI+UUXxyI/Kv05JTpy0AskkwXoBOq8Gyhas/bdbmaH0/3U1sBmkVc2Xi9yRp2E+h9jQagsfOs6OJQ7mjwVVSQ+fGGlxM6qTvYgof7Q3ft/SGrV9WgYF7YMsQPkVXpcGoxGVjPgpb0bmoz9CbuRQ5W0dK8lnsW1eF4u0QiDgyvAPunwDtBRDZ2OQP6Wz9kVwFLwRWWC84TOqv81lrT1lg1yC7hd0Lnxa/S20VmV6cfY9+utTSo9UTstFo/nIqtJGbLdl950sPLtjxJhrBO4+wwtT5l8idrp7RLsRFe3Vzv5KSDypVRq2PNOMDlayCBPD1rgEWkxw2iboNIumyUt/lHrUBnkZag9+Stno0opGaS819v28VmUxhd0U2yasAS05/2JbzzL1nY2A3YRI6ylAoeu1r5js8Fwy7MVRULz47x8gvH+MJ9do0VkhT0Pr/QIO6LpdckmXGN9sulKPic94yc5/3QJwnNQK0XU08TTSNdG13zKqvuqtSfiIjPHr77Az4jV3iDE7UDquhMZ1QSqfXa8XLYfinDfyfZ0rDcVn/Ur+5iADDM8TLaoQFWnSsjo3UXz35OtJuAkvduhw+/b5fpgYct9PQelYg8wn6Me8IhARbQsJ/B5WzHKChJNwbw0W5zZnB1gXe8aEmcherT3Ez5XkoFaE4N12Spy5D5Rnnf3KXDFhQ/sFViXM2Kc/EPKoQBWaLgg4vzvo++BPWfxXt7aZsdjVqL
Variant 3
DifficultyLevel
624
Question
Lines AB and CD are parallel.
Line XY intersects lines AB and CD as shown.
Which pair of angles are equal?
Worked Solution
∠BMY and ∠CNX
(Alternate angles)
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Lines $AB$ and $CD$ are parallel.
Line $XY$ intersects lines $AB$ and $CD$ as shown.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/10/Geom_NAPX-I4-CA20_NAPX-I3-CA28_v2.svg 220 indent3 vpad
Which pair of angles are equal?
|
workedSolution | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/10/Geom_NAPX-I4-CA20_NAPX-I3-CA28_v3_ws.svg 220 indent vpad
{{{correctAnswer}}}
(Alternate angles) |
correctAnswer | $\angle$$BMY$ and $\angle$$CNX$ |
Answers
Is Correct? | Answer |
x | ∠AMN and ∠CNX |
x | ∠AMY and ∠DNY |
✓ | ∠BMY and ∠CNX |
x | ∠BMN and ∠CNY |
U2FsdGVkX1/++AftHhJ633WPS2rcMl9g5uOlmuSsB+33XdCWS0SkWqCYKW0lwSUzcxj0D88rELLr6m4ORuAdMQG8pSJbER3b/Um6ViFCNcAa1+9Nk1m0aA2oAuR5pNoBDIifVxwfdYmeNhjlRcact0/1gQi0kG9YHLcrhAUUcWhP3YEzXt1YXe6i3ORXj9hbuBOI9fO9+K5XDmyQvdTQUX6skWEPjProhXV0XEl8Uam0HFl4eLJZTextbpEgDLUDsSDCncBcjKiY+GrddRVisc3oHVgFQy8JCM3NUHjk/lFAb5xoQd3o8Qu4cO1CAqD4L4HyJyOJnejOd93YyCY/BKfEFxa2Rj1UEd3QvVaJJTwc5oOi16/QUaSd5EZuxKg+Ru9h/6zj/LyJQDsrbfx1hho97vkD9nkd9QcMNSgY6pHBBuW9A95kYglc/Crdm0aMm/kmvA9UBBfRnLlGK32Jl7FJLuLR7q0WksX1Cn/JobEzfRKzRfQPmlF6KJZ/tWT/kBJjyJ0xusJDDa7YH55war9vxCXnKuVlO/Dhqt6aPfQmITFXi49oyuBBaFyDTA3MKXFEwFQ+oKLdQKeDjZibeN/022zaaSJdZYLqtKBu8pPnRjYA7B8jSPVKMmChMd0NmaRotPdB7T4wziKCN9sRqBJf/hwBxQf4OegBuzo3vxiEYLg6Rhwcq+YcRsqmeJP92E36/OeD0E0O694Q3sGtZRkDbUHpEYxbejg+pNHSLwlDi3uEqnVwhpJT5QtcKpUk23mJBrb4F1mpAltgfGscNO7a0EfxWf7qaBmR5wqRUY5wdwSkvsCFA3CR87NBnyaNncVFXb6B+CzN6mYKX3KteEatBxmnv/+ZH5qc/deNEoqpGcJ2JGSJCRsTlFmFFLVKueucoT2ASm62bKVs3+9yIyOTQ6XdjlLBvOcML2WCsCRFbVF9N8oIkDj0wbH6GWcjritUEk1oTXwTN85oIlxrbsdgdvR3FBD1Vnm2qkj75JV9adn1kCWgARiSqECwyScM16Zz0QdC317F2J+Zn9Zq19AprsgqY6JvqFsTLnOZEcg9PYQdID2GX8QkPHAlNAk6NQk8s/jPIE0kAqf4WCneX+BlIraRk2sxveVbaoOIryPUUi7lurCiVwbTlLP5jfrRyVO5NtK7ntjUbD/A8+QLXnB0BoONip8d7J9kBTTlKb9krJ7dGG04DWRbjlgczzkLvfjQWHpdJY6TXYysoFF6l57LVl2wHTRGdTKP5MU1B8LJVqWhisYvagFeBdGQlfUjZaspWSAtRbR/RJ6PhE1lajD6R8Et7mmhZWnG/73Qw6Lqwkk9JFLalF/3sVjQM49M73+uwEofnTmbhXnYSKU7+lmxrOmztk9moYO9tE3CihbcCw4FdYxq1ATsAg6SQLmISRmbb4CCUDQmD9K6LRt69p8U0QQ8dkoQlDvYpzaPcR2I51mJwDh4dlRav8KuQd5N0Q3FHBqNla6tfjUsWMOywFIZW8cea/pCDDkh6SA8LvdRW7eDIXGBp5e8p1kH9cck+exRuCbQgjbc2PlglJX/OrUsQb9tdBRQM6LaQhRNYVE1CGLgzRvsxjVJ5qkbAMfjUlCkVVPMUY3sKEuesbO9u82tE+j6OacF/p7KNZjI3/1QYhd9pFE3rGErFfvAr80TmRAoYdEBBSHABlu+fWg6NlakrEAE1NgX6KI7l+2NpQDlfVV0BJGRyt/hrXhINs6m49Sdx4JElxfY4/2++x5kUPKt39ZAbNuLfKnv83FAk386iLF30zS7Ucqt/u1vdpR89GrxaFmk5454hv3EYb2JIXuhna4nYthHodQ+E4oR++3A+TAEh+qLCNWkx6tZ1qrasfce01Kc2CF2pSUHU4mceIgDYJNABu3Y/nO2aWi+cgurV3uTk9kpPDPPIIImIM0K/zrSrLGXsHuVI/xmPbyoC4vdk9JE5285+bA0pC/e6n8Y5b2GPz/TgPhfnzVXktbK82+i/ufVIb4etq2WXVqvvK+KTebIkNA4WdwWXuQWsFp2Ab6rRKY5OlIhxlfthhlfx/eYuhtep65gRZ3IwITIqfPRlWgWU0sUsvumJvq/XNKi+nbv1k0LRXvtTPniwCpRqK2EquIT5M3B+oKKVXqx1Gb9IUwxC37oyzoxWK6tWSpwli8kKCBoMg8Y4lYkoVohVMcyqDQLU7igFhIFzVO0ABw66VOye0dY+ZQj5RRWEgC8VAIs68dCqdTdTu3QmOzr6QQf+FeygU92xz6qCT2YoH4zB0n2NiuEjUjpzj3xKp+b9dZEC39DdvZawZdq2wySxVa+37vEvby2+vV5uHxEYH/0j6plr+q1n1oXZ0wru35jjOo4sfcjHyqV+F9kufascTeZ7wU8Dj+OIc1urnPSjkBwZiAO71CpBkeedTnXb+kDEexKuaYLX0ciC3t/718K3LhRPB3a06kUx8k4qxULmL+v1iBK4Gc+OpmljtWzazFVbsoqkatuY1L/l8dQaDFUle5nsEs9RJsYV7Q8GKhUhIPrcN8InWNvtBlxH7ZDJ1uupYx+VHTCmcZY8wIlEZxIvnhWFevQB5CbwPuGKCNplQfD3nUJkOqrJr9KVaeyhsLRleN03eHAYyomTG1n6rRX5nUvV0lfg7R5rRUr6zKi8U+2etUN8489UFqjnfNegunZm0h7l5Ib3lk9b840wR8IOpe7tm8KVOUm33PZ8mKKmjIy7zwPn5H/bOrMfCPRQUeJ8PKUGrzSyRLIRCeJnZDlOKlILd5yJzo3pKDaXaRg1cioYHv+WlMuxX2gBDyo9oGFShU00mgjE2MRedAZC+0b5Lk0/8iLud1t889HqhEWtWE7KOvubXVjxl4xULANMzssWYM3SElCvk3FxiFc1OtsVe4Op8ScvaqiCnWjh7Z88cz4DEiTHA1rPie0dsK+dRQ0vx2XjT/ZIxpL63mzFeoE2NEN1sJJ7mcvG4lEtVlBwMwi4ePDm/aZHzYtJW+Bn3rmx/HSCV4t148UuDvCi3Sb7gTb2siTjyh//uwsWhOAnbZRsWuV/utgH9zlEE11GhK3yqugt0R1Xe40wqg4nAtg6vqOtVGrR/67LAIvn8tdHG2q+9C9d0wKvrFUCZHHu/NkDT+pciPjL7yEIWaslvFTwQHL7bf6+0+O49FPNbfA1oU4II3OVfrHs0ioEERJDXM3MYxaB/wc1VLAYkkJiD8gG8X/AsSFQOHFihAcsIvP95/zB6OBVWWpBtsqtBrgLAbvNpPpucT7LA3f1f/OcSPq8MTFVOKXM6Fp033ma+YAdT+4TWYQLCi96mhsK1QzgmQ0FOxHjtGROaYzi4+bZ6G6M8gwhY1jjA7+CP5LIq1bkF0bkUBDfAzpV65BvzUjPQcaUcinrv4LVMRq5bkAv6cPByIs1XX+c/rW/wOq+4QvcdpqQc4RM3giIKhTdUGAHRIhZIcHMlV2i+8OAul3S6fLbFLyek8jr7rUys32HMn26kM86eKj+nzP84QB0fK8vmeLWkmRk2fGHmglq+BG266SB8gPAxii7ukDd/Mp+zMiqxV0bKsmGUA+DyMZvncZwrlRgQdSrOyiPq0eMNBHYxaAOqvwveUMSIOEFZPGMEamNrrNvhVfqnJ1G5v7MfThh86v9uel72B2AcVTY/08Py8OE64UGupAmzHdogRR95Fj2kqbjrJob7wqIf0vyFmheAMmVvEWZ1z24xe8JdH7yAmgX/7flxG/B2VmdQ92njjNNsfMayscQZNd8WUjEszBS/XY0/r3nmQpXO7Toxl3iRGnPZ6jOprUHZr639drkl7vvZmsgN9O74PsNfbN9ZAltayTcg9pEll1j5B1bnLp3Mo2DUA0DIZDlPbzNjvTS0PtmWLhYNHHPJpaY4rSYQD4YwDJmEpFpVdaeDjJxX4QE76Rxmkcvlj+z5hhXTdAt1jaV6RvaSLaYG8CM7AtbKcUYiXBnOkysvb0AMyZyrLm8j+2XJm95lytfj6MuEW32R/krPGdPswzS+A5VNE4+o37Vk6V6lMOV1jhrR5LIrB1pVRgo8deP2vcmfMizLWi+bN9sxUQG4DI7JWZwsClyXKzAA9ZxG3elIAZAKHxJLMK6OAOT3rpcB0XWfY8ER2zRclpOnwxtqcpGQEmYiCIcwniPSUOxUhgVNX89LVwsLRuDeA7LWk2NYmD7nIFg7m7qFxModjo4AeJNKIvr+LYeh8CYCa10KEq4r+oYKTjr4chyLBaJkYth3Fk7+BUCE1hNirHTmLnec35cQmNtZlb5UYegDzqWxVfebx7/ClysyM+1BUU5NL14rZfTb5gS5edbFZOQIR9N9ZSLeqvtNJMslKw9eXeJ9c4ydqosgJKMxlVYquNNjduwH5HXOeFHZ8DaJT4zOvjssCt9RLSrjgU3qAesI+kK3eOtUsJFvUvGurMjpECdVKE0VDNcwqCtzxvpLGqe1T7g7SrTsM1ZJhIu96un17GaUta09vB913VQaTkk3hdsxDn4S7LM1Eim+3930VGMfhcqbfaUq4JDzzJiz1eC2fJwxuYBJ5IepTJ/PL9rn89PKIe4StzebxD3WQZhk9DrluVNVX9rrrSLfD2maQdKAIM/RV5YDqVFqG8uWJUN+iXreLNCKO4hTv2WXUbZyORlMaeSkvhWCPqxxX3sRn+Y6Muacndf/II7vXs88CF3NR5564xOvxsQgttUzOps8B5HIOm4atUdWEXLgA3aMibIPrJPQH33LYqVtOe2M/PT7eeaZLaKLlj7hnDHVvqjx5wWB6VGZOQdLqq/zyOAabuDBaZmu9qrFzqcS3qcdY9mPmjJzCB//MTQqp8hrSlh1oNgy2fsc+W2O65hXlt9A9E4Aw1rLY0LL/QjqNQ9EY3LYROG47fvVBwjh3c80GN+Fp5hgnadO60w85wWSO5ztuO9LGcRtSDJpjOnxRxksXwcGv+T8pfm9bXOgh2nAnHmp4rr9HWQHVWcYr8h9RFy86CVbFsahR/+H23TzBmtr1UYNHYhzJe3pC2X13s9wghW5qzkt79gOXrFgw1yE+Rmsy+BXaBut1xlw2aiFq5onVoTXbJclxTvP5nJaHDF92Vi2RllGhLCKlpe4toGnEOaqc4wNJfOUIuz1xGsfyplt3yXQZ0bbtgX8zZ/PrJjT65K21yOYKTfEZ5c5/c+dEqfc6QA9rt0SJ1G0EBtqtajr+O8p7j9N3ZJ1a4XOnIYw0Uo0TaMYip1J6YXDfLkGERo6UCbhtEV9jd/5/kf9vMeTxwZq4D8jPgPWergoz/AHfpUPPr/NP931L5bsQ7Uk8Gcz308CNx5tYgLquutYQul+r0OmWzGVheLp2uuL33j1TTEXU5bpWxIi4ycMT/NjXBokj6btKj1I1hHevmHcXs/UOxPcCRXnq8iBTv3oC/v3RH/dRuQoWIMOxzLPdiFfKvbdmMqbZCOAPBsaAZJDNF/WXPYaAyWjBiZVrTOsgfitTO21xj1j2DgB17dRAdX2m4xHNON5G6skdbMNJNDYY3TW+kRSGqa6fPb2qHZcuO2vfgUC6vtPNtARLPbqumffha8oet7par04fvPS1R9W4udPKVoR9oIb7Wh4XyGYqHF+W7BoAZwMTo/NB0oTHuwdYOU+dn3CdWrXLks7aTKnWd/l8ysJb0hLC8CqE+mhdmGPJKTuQTz2MxoHC0qgbD8vDnLEDJsDhTKC6M51ckzHu0SSbqGyWjzMKOC7kELNagf2DpNkEqFZP8e6P6KxB1ZTRMuzustWLkGkTDRkjTAZkfbhZ8oXOjpHXZriT/jy+8JYS+xOlmooNmAMNNfbhEAoF5KEOwpm5wvbdePJaJXV+n962Y5cqJZSUjNETpmjF/+P+sn0Xou13BhkrtidoL56omUrvTCAlfogYoWRYgdMDHmjAYAwHPqJqh6IItcF4g4VQJQ4RriGTpj7U+RCWEWHrWEMlKoK0R7nirY4RokKcbXCB31kKmThXojURCQ7fiEFg/0BNd3caUZlH/xe7FER1jDb9rdYkZ9m4lHGS2HB+CtkgPKZIg0pJCroaBtPcaRK5gh+OCcOYQcPdtohTLuImqBR+itticX+oDyaArLZYxl71UQeEAdqYGE1aA4e9ne5F1QyYhA3ebtCFzXo6BsosgFq8F0yld9Gxj5Fcl6zyUw6My53wRKTLSiZh+FJPisx2svbO5ddaIIYYruN6fYUrd/8tOaKCs/YMOiTVaJ81IvbLHwFy//51BtQF1xe31UnmmtqShpitS02zrVsG2x33U0mC8qJCuvAqn5K2gi9qsHuCE/7Pr2zSdWWgvwBnL1dCxTG4137GFoqG7avXGLl0EAc3J3GIfdw+xQ1xToOF5spUTWaLv0ic3GoR1U1IfagXEHFkx34ZhxIU3/1ndD1CQr/5+15fD6VN9kLfwnBrGBcfTvb4FZjpCFxhYJdjNbQ6BkAz10sjQSG4Rle6yUst6NFDBLPlCbH6hk3ijWjA0ogOh5vaEWS54m7CI8/71Vypkn5i5HBoVeGrCf+CMX+gYrkcEvCYyhiN0cECKvTNcQSz2VoSnnxXHsK00Mz5JF1Zzx0H5OI6ldYwnazdgt0tJamnuqq+taB58anjOY6l3GyCy/O4mTDVgl/HGa66ufe2oHN+9v7KJIZpGcgSLIXMlLBSZkVms6+31g1oZonrEtDzh0OadrUdfoKRIx5nRifTbPfVmfeFZrbaioa0BWL2u8c3cAMD13JYly4zmbjF4saC233ppP8EeNpVb8i50dPsOvCwcYw0T8jItVFGlqqTF9fa4COYe8zU2gkCjJeRYde2Fvg4LjhRWmN68rYcedeFORKRR8HRnZF5WiU/12vOuvtsMX/RpBXy1OlMVT3aVnAsIGUQAHwRB3Eo2P0RkQmr9AjfCaVZ273ICAVoY1Xz8OmrAmHUS7Ko2h0OhSKcku1seqLmT5KbztbHTriH5hpVxm6tomjV5WO/5dMksLYHAN3pI54XCBgtydccRHPE0Xg/l4iFr8nYqSENebOAJQcYXMiq3mtXxWk9SS3diXWJ8socrST/eR3zvy0GDu7f41X0etHtVkTlqKc/nrZiZzSIuBL43RrbqlZGQ5N68E18UdcLC0BsDHXqw+wUCeeX3J0i47Bs5eVb+5lvewOF0EuWRPYMDklrLyttzK1gZb664c0uZXCXyfE9YzeiQZaTd8fx7IwqGUxSvS0yild/+vRDEWbLBB/XZLRabtRzoRQiyV//YHWUzpNvVn63HnLzgbc/8BbLLxTVirEGgF74d92p6QGPShxUtDd2Sm81BGbBqe3Y6Z8BqWYNDssucOy09VewgM7Zhrib+4D8i8O6V5qYlu4Sex2d3wg0rwWm7qAIgOgLbfg1UeHyYL/l3XrFrbYjZz3+qT89Un4BCio+7X4c9jkX4yIGTDb+5KF/gdjanea7UzhOAOejbyigZc5Juh4z7nhTrj5HKdgqRTnhs0O3V2e6GqbuqrLVAHMC85qS5o19ApryzSexsWTp0uxv+ivwt8ax0fbtneeyyu7OYzFxr61AlGHPhOGVvaUV7uppHc05HG2rnYq2dICiK1tK8F/bFjZ9WH0cRR/6DISEhR/LLnA2nZstMG9vQcZ9Y4Tg/joURRvSLMxORsAeKmqEIqTyKmay1ExPIy5F8zFVcHFlT6MVK4nPR32nvemttgb9ddK2m4XnVk3APtx91SLfQTCgunvsuC3mrpKNvWicBDBi9mSo+iAp0v+H2U6Qx7d5ImrtY9/o/Uq7XlLr69J0rAQDGfGYBYNQVrKT6wLP3aHpzeHjptIrmtqRuRuQxN1p3lXyBNSNf6XFDfF6ieet2E1NSlStAN1bo9EbyuSEv2nFbLqp1yUV3bW6axvZe6ks0Rs412bqJWs2zYn30NPeVSfHKZGIdWmuKGpuVAQtmXVpCDywKuAZGFXiRdqWCf6L2qoEGtN2dPtBqQcXsaLBtOxtO/zCrg5E1zQ01sClFzt0NqoXfOKv7uYhHv2dJQZ8bURR3bAOgOaLChcvhRk9pt/0H8AJt8BYbphoxObhfnmSEf0ZqdJ9unA+B0uKarJKzlSTWKkD9zrgAPbuTmZrD8McHyNWD2FRiSoDlipSxD3pZtgq9mF7OA53jBMvFqQwhgEfosEZQsIobIBTUcYbQr8iy0PMHayT2P6/DogzBcgCjovg7wGjnAWQxVN3koT+EhR0WUMA9o3GAeWwepbrlDo3u0a5ehYalLB+eORMC1rhd8rNImL8YdjJZd986gmzQmHbyaN2tw0YYAN7GMmYRP8JQzp1stptHJGZiyX8Q6tBz4DRs2JMlqvzEvpAnXZWVdqPvzJFtbIjX+tFVZVDe1gk5/e1H+uImktHkM9QdMKw34oVHj1lmrNMwRAgJlfnDHF5ody8TEfMJiUsp6dlK7s8T6MhUhGDIzLydSupnlhYsjz2WSRmn+fdil9sjuamHaKdhgk+7J/RyliHMwexBRZMZQHOo/WmwSrpg5LOD6N4Kx6bav2ycQtB88247dQ+6V7guxC1i7UIiDldDrF4ob37zANgQn824CX9Pm4pNUayHkAav6sOMFyBshwNWfzSWKolW707axMvB6Cid4s8Kns3d/XhzEg1ZpYkMIVqg3YzMtDNBLIoFF2gsv5qwbsrDSwtnV2wg7F6jJ2KkgO2tuD/VQD1bs/aDdaLe8ne9L/Aw6GlUwgerfE3AJvLu9ujlCf6rSq1/7xuRg0SpCFGeuqZD+FVrwyAj7I7RH9R4oPtZCPOcVLvqSg7k2B7GRnEO9T/W/NkpHD/UlQalqKcr0+eyUwxWKDfcF0AawxJOEtxE/UCQnyI3Z2Eg5uvz6Muznn4UecbN4GW+CKTwbLRTx1HuQRRtq4DSorpdTAMT1cd4QfMF1GJI21icpsZC9MjTvSxbZoO27hAJdcilhWyPk1/tfLWnYi4H2dddvuIrKV0EWn+uVIrB5kMUQtoel+TEYxnOEzAGX/FU0mTRv56QHZU4GcaH5oGwx1IuzjCNLp5EDo+YdFCcIXkOYKUlVq4lkUpfiNZJrrN+eQF4vYN0lvndhsea+cr29zE5JaTPwRABrSmFfoC2Z2p6GMyVEP0hwKw9wdQkF26IV+aEQfQvpjw2HHRB+jz3qmORK5EpW0jDFAzLelDsucKxyP2r8d62rsFzEUX7sTsRx6p3zfphNPe8/PEMk9eLftI3EPoeUIjfj44YNLqXt+Jn9QZx6SGl1z1I8db9wkAm1ZbUTPnABfrv+A45wcgiqluRGA+aqL2GNuGlzPJDiC/vgFeLIIH96Nh762ZxG5gOm8h2oovDfIbL5eLSzpUTtwJSObX58Wu7OZf1blcTl4PU+XdDsQbF/DaK0PgtRmWhnONQf+hUybcVYHbvl/qX96VNMQtjyA7/p3nuftoGEEeoLhx/D0sGgCdgCBd4Z2fR/f4yu8Nm0+VnvztNJP3Og+AHO8T8Ghz4YRwmHr3sCEkfWj5052jdow2ipPKSvO5Jl7ecd2bAhDn7vW8VLYjAZm5qmn6t3RcEmUBNHjtxMW/aUJAJ1Dar0FN/SnRwiX85ZT9a857wXLvs21VFMmZWL0VnguqnfIaSqJFqyYFTbpM+bawnkcF+3tHeOGxpkxr8kdy33l/2CWbosdd/90eaZuIJX8G9AJWPKc5CEKToxdqZckgWwFGTTWMZ3s2Sw+CuR3yJneyPMglwNVpadpTu0mYljiYThdckwmAJW1fOosSQN0+2MlitLgvACHCaYctrSUuC/3eENeRH2CwtZFKe/vcpC0zcQFzjATlpCYGFLQu6FDC6xHGCjruYTyV0Hii4/M6ty6sxfqQ6Yo0gwiFWRWyLVrj4pBCj+RQceHOthiGhcOtovve9BL0qzzEigPVdjuMfMbRpGCaQ/oRsK7dguYHuMIYB0SkkW3Ey7agLJE7uoDODyCvKYEwskzOBrYcQwMH7vaeILFAvhn3CLla8hmqnlCAbzbRaNefHl+v6O0P2ohYNaIjrx8+ARkB0WvGPL9QGIujZ/H9uSxFlvswxmKBZbUguhA7q12JyLaaMmyns+jPas/pQIYmvdbMuapOUyJUn6j6O3RryCs7Fw3UZuF6qG39nenB918kLSn9n19nL7myrVnlSqwdd7eGosUihFVk3dZkgnRBKkgwM6cvDuoNI2UVMYPAJIsuivhr6ymVhh5a78xUbYindDaM/PHAkeCpQmG8B++6pBZ//zWB1C1T0TowqGHG0XRq7e49oe3r76snfMQoMSJ1rPkBG09kE6SeLgtAAVF1e4Cx3yJpuu4EOoIG54WUOaGcmRqe43pKyhHCujl5qs37EV8BvloBnM1ca26kyYiTN5rWqhPIrO0/UeqSH2LytSS0x3fr3Dw9MtrLeYd0jlwSiGXYLCuefstbm2t2OyyNrpSJiz+ul3kogpNuKrXRYnO9LwYMVmAQ8+gY1aCjXoCdRMWiHxxqsP/JnFFcm8kko9YC6EbYLrDjyvS0V+L3gxCrgYYFGer9vgeFBvOk6aQBu3Y1FakiEU09aH6gcyiBJLhnxfTn/CPBJXqkGaze5Zdt/wlUjkWaS383ofboKvd5oboMC10gQX6sIvoeTlBK9IGrSPGFTR5ELYI9OGloouwLC7ODYxNkj99dY9i6YJHcGGj0maTVFIG7MabV5uiMEiTlB119l/wB3GMMdQ9IHiUn4/P7YeINei3EZfxYWASeUAjROSkaOKZ5vfgQxR+MN35Xww38Zn8wkM3NVYMTIoMwVNaLyNskoCPrhZM6/lRD0dqxk3Z0U6hNgdEH8Ra4UtCJiZwWTw1CrieMEocQjHZZFbJ+ksbkh8WOGXTtLf3sXkjuRG4oBOtX9xRxNVRkQyad/InCCmqKe8+TEzcedSvK5BsY5Ocqw5vY+QPDuLTY7D88595ZymRNmHjBPwZsodM1wb2kvIByhFrTdxaBtDj+9WY3dtvET2dwJhU1Cc0dpJeMeeCw9VVrYKWmAxEAK4+gcvz/4/6fs3UihX5dgWwEoU9sBJo+9zOZr2nTGuDBO6yh2U9ZJFWe+MQorhsqumr8Uk+kmNDvisrm6uuBxBMUin9PyjygxICtaN9iXp9RraHHQj/KcWhMQx5JfbCrBWvITWxdAVMaeTmvkLTx+4nMg+CHHpkQsNLuZ3bauyOXrXi8h6wOS6Ev0nCyuyuNcj3i0Bf7U2iPiuj1rFTsb5l4PcTcO8nA56KWRNgN4/Yzko+vckyS156RZdNJmFNEW86uYxtd/hCdxofOg3sHp40BzEIWFAILfrUleVy/boDK3GyXMmT5rvyWJZbDJ69yOVsdzWzxIfU74zUmYuYl9YT1QIId/yo0XrX78SgkGlvNHFNCNPJhI5FGdMhTGWno6HM8wH8Qz4vCZDNbdc9KgT39EO9ZGbKI1LvN6OluolMm8WoZ1MtY8x3RXrxXk1k6fDID7sjbhw/lokpzk2+dywLpfs5xzPIcbkfa6cNP5E/hBWzejADrf7EHoReHDxz/lMTUmfPndaS/h0gFj36FR8Ejm0PZTZqNh2QGjg7oVNmFefAMRg1FoVoGwQSEeumQaZ8v4zISovfKaPIYGLfqpfA7vklkGP1f3ah80CRSHmcWDauSw3oXK5DanQsfpqzc8Q4xdp38zVsQKNn8IjXfXeTc2PSkcNILs7tUW4vGvClTNUwvKZlKyr2pXGdTS6CdGixjikqKq9ORIyQvJ/fvYY1x8T5/xaw+jSicQF8pqKdiVIyYxInJ/3FhSv45oiu+AmoQIRq+DwM7EM/kZu+GFiFwi4QKC1edhfRz7pKGvEutI+NP2cwMnTuxGmIkxwVkia6/Og6jlN3O3yaugSEY+7Ey2v9Fu3gi00aIeFty4HARgJwXkgXKnmeF810Omq4fROppb0A3gSQbdHyYQw3Rhn5h+homnjyJS4UvAszCI6b2e8nwF4Gm3MAy/Z1I5KlU9w/5jFBzH87ivAols7L5hxQ9IJIG13XQQgn7LDdM3Y50RMU3GC6llt946Mec2VVvNRhiMdV9ud5ApJyJW2OJoYo8aMfv28wqq/GKTWuaSd+3+h39t0s6ILT+crlNpboJfcl5mM5OT9pSZkfo02QZiXNNtN3X+KiimvFu8bBMgrwfo6uQYcIo2Xdnv3YkLnCZ2OnzWGTAnHEm4qtGLnmPCdykowuyMTFjE5NrpQ4EUPz0OwwBLpX7a4uiT9+qJ4AXI22EvnVCx7zBiQauZqo3ZuTYUSwJZsIU6WA6GP9c+NEfCAn+sL32n+L7vRpBtKgflJLKMdjYEPLUzPqakoD9c6QuDtlylfS3HKEQbXHi4CJ7eI2j3NfaVVj0It/Aia/wYMge1ddpRXb78cJtpij2q1nGWCd/sSWoBQZ70WnTE7jAfuNVMTMDQ1Pwk71H2TEGesTc4Aa1D9wF3Gb4rNWpJSx2jPirHOA7DbmA0atyRcrEOpykMs0KuzyifpaTCMaDGNScvUH6J4qYrmQH2ICuhi40WZIOr7AxlzYsP34McpQSV8QFw3VHxFyyVoK8pConGshuxmO3/HmHTenT1xpMySBRilzKj7mOnSxhXmDJOJUSHAJeWZa7xC5kTljScICXVEKc6yGQiCzQhIpn3bKiBR6OoAy+byTsrNfTEnUax2dlkPHqTaJVCtRqtE44rWXGdVA3Wpj+VxoFnL/PPyamyjsvXmYIh+OtlsV8YzkKwbTmliRiPEXD5IRLfw21gh3GRPhs9pEQyujmEQEOolisr7G/RBsYaS+ML6wJHdiT6tBGCQEuKGOQ0tAWeWNlWHsSlLn5F7Avuk41NXHFkR1y8YcT/ujRTcbNgkfrTBiI0ss4j7DqGTn9YAtOpX+kmCtsqZI2LL1+nz5N1EWMY7dRrbCy8BvnVDudxJEN/xbn9Omy3NUiotZn72FHl5bsahRRjeiJzN12Hf7ybSu8Pccu8FpqLDDVNPG1NGW2By7ZTDCiwXCso80DJDEfeOobDw0jqxrAqBxyUEyyiB3QdSf5EtdQ85+cnm0H+zlJHnlpsSG/j2HkieXp4mvDR/bwqFA1yVcQ47ThCg065n9pEuK1Qy8KytCp8Mu7+M1Hc0AOK/B9c8kvvIL/IypGnTDa+A2XhWehClEgceFEqi4s/tzndRYU6V/MBo3NCMFXPzjZot5R5Mhi/YxyTq/jxMkZpimKIppBxr8d0PEQOWyhQ5+82yfvI+QPCtydRJOQfTi1HaH2AsvauVSj3erHCq5Hd52ayWHSHZh7mHl5l+uD4P6I8hQaxeEvn4fC7o03A1MvnQvPtZ9TVHTWuEgwymWx2V8F6sou/Jl6qYa4fyTDEeEHJvnSLLQSL2MbbpyQLKgW+CxOcZR7ViNpzv61kJ6guQZrmr0waASf4SktJ8bKWImDUC7VBFpxh/R4Xqh6bufBSxMFqTQrt6DdeWNY2cWPw2MU0+V023yO7ADcLnVljFNEf3rb0bP0tYY8kwbc0NBY2SBZyfAXQ3UsGuesH4Z8CuFjEiiTS28Mtl7p1NX4djEbgtUVKtAMshw1nSlmP5BDNBowh/bKRxYckAX6he87wk0pJe5aKUBxwlX1/fsmme62Vwp0yehRrS4pUj82hgPDCJkp+9n0fGIu1s6ZF/XIObh3aeGa1mjCICNTtMfB+VNrRa3SsteUTAIC2CE/HVUUikFwtQvXOFnT3v7Et2L75IHARkSK7qPu5/Upc1L+3E9ZRVfkdZ3qC+AkOz99kpfgUwtqxUuBbrjPQYgE+4FY9FykehtYl4ZKlrV3OHxtaBevWygmydDZcbS7nQmW0u7B75P3VmY36GNWcoLughJGmh668a3DJrikOv6I4Pb4ucH6LtQuimJiSH1yH1lX0GIfrNmoAlVgnX7iZ9tMEvLjcysA8N/0PvW469S2ouqh0d2SduOMToBKj7OqKiSQI0evWfP+HcXd/G8TbS0WBJCyPeZr7ybHJlgcr0PAucU3gNYtcZIqabuxPiWeXnrtgtPXhsnJFcrNx5W5sxOM4O5oKSep9yrn9N2oTzyaGIlsSMqS4yGLX1NDaXtx9RUSVTvLB8vys7GkLlWxqRxLv4MrdOZMfNiK2mpP1Uvfxe2dHJbAi70nb+qCJyWug9zWxOqHYSrkozleBvqhhaqD1tanErAxkk5uIfTYEP5IjM/fo4z1PcCAkfYtnyj1Wm4a1KfCL9PoTasRbsCIewsi7l+11ZU8SGRpE9uQIYXjy9IR4ukSZK2d7rTbLQAGt3afUXwKJzolbaMuP8YIn9Q1DaFPrKh/5Q7M/wD/AH6qm5rKZFu1g18pJlwOzYBS0VyHpJHSf0Ou1e/hnJ9MWgIZIqQpR/1sRZwcQIonMEtDx7vvoVgejPGOBipkcyrdvVVjuBrOHuEPuI+IUNMkMhNm1veFN9ZbGF/bWHU8jXGt7qeLd0FgpGqJKds5K+v7ilzDg5Yt+kLU2DuiKrnE+SDiCPh1gxgGknyUqoEhPtFp3zlcElQSkrEI25VNVweeeLSBtDtEXYWKHOK9I/BbhCstKtmXYqoqFL4Nb9feG8ZfpLjybq3r8EePAVOxlTl4MhDD8LktudWnhCziZp3KEidmy+37vfqsKkQ8rD5qSMjd2/pqsD6HPzPxqd0zJcXpmvAeY6l7ZZ7iddpG3nULgdCQMQERcjy4oJf0c8SMMx61pTG1qH1Li8okHsiqwmevaCkkY0iI8UwvwUfN1iNblqLY9iu3BFPVmEbSR5awJ21DQHIO/JXO9Jlgjua6jIE3WfQvo5L1Ve4LQcOksApOTw3Znpi48rXXffCS/z9NZjHYAzWg/WI9Ymkd8iMgjBXhF27MqSg3do1hUvvfyZ5WQ7tIG0lGT5nr1LCOIzVbCzCsg2BetL8Veq1xGzoXjS6IHzm/XCCa4v/6bP/HSTWJV2wI+upYzxtbYRgBL8byL2gQVa7ePvdesPDnwfBgX6dVsynxi6QwobeHknGksFMNR6ObSdGtFtRq8SW+v1LLoEK5iAHfY34Ib/BmTSQHtimropeRLV6Rir9lzj2Y9JbQ9eSZ0NOufvUyIfoVAiZq/Bc+6eaG10SV8M0OezJMuj/PEQTs0qiCai6GZuRvbIWK4gV+DzMhqf3KOwkn9Fe3lB0t7BEjcxwChtZT/7kazVeBO3Fdo+Zlm7+aV7eNq/zH594soGFMQkL9kmzwjSEiZnVIRqaPGRCS8YSC/nGBf/1LUXpPg+6SHfctM2/qkMJ70wYlZ8ynfM8gKJBoaLlh13bmPKrRi2e3sls9IiyB1Kg5lwUXuroUgIK5R2MnJNXbuxabv695qHPyZcPE9jSdTrIajkFlychCYgSjbeQZ/0haG5+xbhf8K09xaoGaIzT/Ys15senOiTsaWZPHqLUg5OscU94xcze5WHUH/uATdhynY0YkwCFL6vhdcdTS3QEBA+XOEDprSnlVkQjY2hJtwPeKiwTYkmcCjpcN1MpoXnbHokT81bb7Rc8bQkw0xeuCiTLV4uCNhakr67IQy3r0gvnzkRW4xaPDXnhBwv2Z3x19sDKbfEyLqrDENUak8GiVFYRPea0cNYfYB/Xo3Ru3LilPywcIsnDp8GeugYP8gxqjJ7SxuBaEwZnFvQ2Z4gvABvufsLlQ0FLBVPv/Zao4cowC86F8H4SAkQWXr2bdCLTcGJ27dQlXWWAR88j14o/X9HBiC8J9YPbg/bOKiV6LGwkqIOY0EdmTXHNlc+QlGp4EnYxjClD+PLNIOvATkMcoS2BbaMZ3xo5kC6owQBufGv65XAB4aQMxAtWoYIDDF4yo/ysgYRyX4dC2cqhjh7pHjCvSlrFBqOPIVPfMBZ2BI37q/Fjkf2iqIdukTunY4LGH3bvmQFbg9ps+gIF2Ns2ffvmIQSLJaLcicsxvmeYKfaq7ShKwrZHuoiB2myhE++l1/x6Jy3dgRLZtocD/VXj8wCny24EJrLnUhrsiaOvo8aRgwo5jb8Ba5WNtXLQiibh8UmC1OXKGYtPgm34oRY0ABx+INexyLr3EQtobTlza6569yZKs4sUJOoZNIFQveMLMT13a9vhsptK11D5MIxtL/gjOECvfbMknLfVY3tMXIz7Yip1ONqvTpVEGQIIkZVNCvnEICDKJZfzAVAnzCwdO07/4mQjpeuMkKofbAXyzi5o9Fhx+RVrl16QWy2S6I/xoBA5vmBaAlKS66fymC9MpGOFkupWMDTHtsa3pkpaFKb2HgKMZ6VLhoVpnY/IJgJ1CfbM6sgYcGe59H1+q4JF1TwgS5fbilyRTCmZD341bkb6Oa0rNl9JeuuqkUmcCnpcLG3gLTV0WFXu0kBpWsz+WbMe4qJIIJwWq/0uROR2ucPbqdqJ2n0qTMjbqNEg1up+yKnBtvpmzfBsH7FFTe3lBmclF9biAg1f/11dbjE4FIxp2zRQvWm3CZQqM1gtMw+4qDPdCetnl2fhWLxQAb9Du5wegvYASHlX+Ag6TMPfhsv2e/kdHsW2RNPgUFL+IogOpdXHjrLr6HDZLJQ2ccoGIura9DuyGb+ntgcILAfouAJQTOsr/pRK2T+N5A+Z9zdlfNi6XAZa4xxmZ4PSgCbpZ54ICQfaYYYrDxSid0v2dhzL82+9NuTUO07KnowP+WEy/UHsJzcCC7hRKrb5m1LszqJGdzjt6h2sJ8mHcsxgUe94arORtFY5qY8CS/D6BaTiqlscdn7gHE/qKaKGeqDv6nRGivpniO6pDeSZWUTlGPmS3OkLCMzQhUgwY5S6oPwDwbiW1qCYNGNZKpAKCpTA9cKKmOtRAs6Oa7M0XP0Qtz2mprSYSYQ5Lb8mD2KiGUkzOGhAz90Wxyo0ZdnGigYdI3W3z8wdWkLv1qfn+ifOiQldjA/vcuGUvzcMze0pMgMII++YdBJoCn2JZMPooIjftiJ6Hz2W0JX4LqMXYfl/BDDeuMtQBuSplALwa7YqoGt/Zls7wZGgN2zVueO3LmaK88orWn63alnPBfIXAtnj/IOgQ3bwZgNyN2MIP8gOrPKnW+muQHbDPLkbysUjH2tD88IQHB3AETPHCM9xxW1H/VqYQ4cpy4RpAsXXw0aQB6DxR2vrhg2olwGO3cwVxPb0YAppNkSjJgUzvWmYUcnaJGaVBLde1VHCei6M7v8F7TCYl3Y1W9oAx8FEa2U6/YZTXdoOAKob4I8bhuwcGZ9hG9TfdrjlfqdTo5k0Y+E8gZNC1gwpmoQAffH0cjBGP1YimOl9o+May69IwBV76GnMVsk0dsS/otju3eSYlc68gBNYfMXmvICojpRV8O/1hRgpXJEEhORiNImjXS+MLmH7A2P9zkG24P7TRjer3c0oB9e0VgqykbzSg0+677W4AqEukDGKDP/IgeHBAudYPgEsOMi72/d9Iq6Jc28VFvJw1ZiRtvp/LdPi6jAPx/aHBu/A9LUMeZf1fHJg5pB1zJvenmO2Gu0sAzqcaI8VYdeOCgpVLgNJJ7pf3HIllpSxbbe6ulGS2UUHJZq7sMriQGPsuc34zX4r0NEfOVu+rpPfeUuienS7Hjy29yqaNzDYyyvq/6W/39VqWCKhNUyYPNNEqm7P24oK3pHRun/qWWmZ6KpFFxsug6h1AaMhnmiH5AYUv5TYm4g4gDwh7/ao+vw/EL+FdCYg7KVfANZbFYeZNdyUAeCre1cXRUGrfRvKJ0+XMCJZ3qLeLqNV6fSrgnSTFBXl/VST0cdrCU9HOb/It2CRHxsjivH+VhyRvYROJ9ZvIdGuVOp/1UJrkSFhY8C4IEEB1gz1eZB1Z/Q6kCQJBEKZknP/5e7bK4f4tAHL3r0OYabfQX+Aps5LKcio4m38kb9btaJ+BxwwNwyE0dCF11j9lHQMOuhmIrHbWOmHDKOe4OzgJ/2BozqDnKNjORbzBp2+IiKqoipX2Mpw0Ak2J7kmOlPbixqICvLxo8a19d51f7akY8LwPjpj9vh541p+mJfU40ztxaDPSLBZnyFq8ITbkh1d/lyA6mekBLxiQ8DVhsORp11JN/nSjPh4yKIEebQn44n55FjV2HPwOawPcBsKmxzijZOY3ly6uf5xRLHa/cV3ZIjiQzJbRTIS2MpfqeIDHsFKSeEp1xTPYYwbfmFhp69Pukx/jduh7JyDQGrdBUJIW5f0vExdBjjonrY9A0gVqjiLVl7nKt7RgQ9wIA7a4sULXMe3SeC+eN1MwxnTzp/kkmsi/6EmoComyD/cQ0E+AjPCfEX0zYmChwQEQPLaEWGsck7lq4Uh7jbPcL9f5cgi7HC40EHPNSkncVaGbnVqK8qo8H4c4XNzUyNA9+44ERJYSEPmvbfo2tTdrEijoPn2eYzrO+leyDsOoTtF2aSTWbdTrNuDyFCwrv3XYrKgOQCrTF/vt/XkPtyGGHRZMYIuDhsn3Q1Xij732jgE7187vKceeYxrLTy0FslNm4jv85xRud6+FiraqFASg9BeDiGtkw9i4CoH46ST4KnCs5iu1KarDamiHSMs7hljRxqbQbQ9BnrNIksv0zfHT+gtKeWudcl15XE/7Nndl1j1RgNpbZyKo+zms3c0vxFG5oMdr9dZ1FhzjlamyEA4Ta50zZsVUCFJag3Lu3/dQuSLSiLzc4gEXNyjPROAwp/so16AHb6dTeqMLKHhWWs38EzDuWH23fjwrQj3XMOEgA19PGftum7UhSknehC10Ib+lomEQEXwF1J5G8UtLUxGV8KSEu/LB3TagGXL49zLUDi4bHFhdR5dUGtaxlNqsk2mSXdkDxlcSqKSQcp0ujnfdSXiKtrSW2rY3DlCa5dzr61KzWq9S4/4EzSFX36cq4y7h90SsWCfb5/inci5zyb78lr7ERN50LMyuqhM0IQxoXL0NxgDZ38V91AsD6tX0ymzQ9z/b0oW1SObKYjcQ126Mlvbt1+r3xxap1HwP3MsaS+8qOLE6IJvwCHn3ofrKL1jnBgnltDa9SohINxPst1VyOkuWEjsAsffp1PnsydTwWg1ZEja9RZ4pjg1733V9LqeR+ucVwxn3GWRla6iJF/I4QEyF7MBVFYJym/LURhJcGs/18k0dF8/dgwe4GqDIEl3WnjmhS7dzNZP6tdOGMFHHQSOuhETevWLNfnt4v787+fBGPqy0RBuzE7DvygzIN2pOCQCvyRat6428d9agnGjqkOXpov9gQiBuk4vONsjXU2vHLtkO5KdmKCsg50fyuxfM8myq9LFQBQs07FU8HcEEkCVPwAkVRASB8/hC6PR+meCOOHLw2Xxrhv//lilQ1SHmCcHXeuzG/24HZm4F+KhE+7UegUbA8xPLeYly80a4qkAFb4fSYXRjbuhxsLDbgDN89dhA54EUNQr+RCkFr+4SlsKPPaBf/GRO6+mWiKoDmVZP03M/zyW89C5tG+snq85iiAZcZV6JC3mLHbGsOlHuOBSomo7FiBDx5CLwXWiC5pJTXwQrV57S7QcnBjS2NI28hC5HKyVuTX1sSoSmlqhJiifdya1fEsB4bNyhZM7sP6bANMP+rYETcmOYcL3OmlnkVkt0BhtoeyxbPaKGJZwbZm6fmoLgaQl0GKZwUErok5dgkSJrCJmYo4970SUyLHPeT8dldHD5s2RI9Bi0ZddOkhyC6SlcfCHMJe0AAzY6gvbEuBJj5WbULwl8UMWMA1X4OfBicusXBxtjUxgfUtoAIhKxq57mouFGfju/oH/EdSUzQ7s/EczKi2gw7Nn70dVkJukGWFQ6wnPGIAdS+SWXOx05Q0bgth/kaBOZXqh2XoId3wYqXXD77ZM3tbhryvupB4rT0BY6PP+8Gf4DPUOSMagQmB6EMlNtdakV7sTULBAZuHnHBqMVzdPLdZQy1iZWsWG5BriTBOhQLdf04L064XNd5H0Gwj3SNEZC5xoqDFd5BTlC4hXmZp3w+UYl8Qzp98cTkvZbWsbJ9LTohMG7cfK/QzyBVKNtqJWQwf5arzDK/MK5gPuG6YfMtwsO9jyRORSA8Ea9Pa1aoOKxN5VaXkrC85qkyYr4tOY1XvPZTW0tkm89I8yzUP3fSJJxiuqrTQS3TzN8eTzj+MZfc2u6Q4r00EQ1EsItrj3l9U1MmZJ2k10novEOv1HkgTPd16Hm+IZKlEkwaptoBihMF0BKU9y6jkLNCmoSB1J1mwMV0tsmJXy+2GtFSHRxHX04bDyrPMLnmA3DJiHhhFR6h6FBT9/loC6OZ+yfRrmHB4wsbjcZfOItBdi91LLfhSaRkBvQedTUHnEmF00ghJZmnfywUY5eD0q7IwBgQZK4sVZvZzaS58JY2F235yJSNkGO9JlS8AKyqd0hTc1jo04uHIiQabVx1U2IJ8jg7NwM2tCYb664B2cfbC+9Xyg3gs0nrKAUM0Fvzap4rf/gyOjGPNF0ofAvE9ulGqtmHuRsxTkNM5XEbw+k78CLM0Z1ShwxdrBjhZLtV7qGuXvkArXtKh36zItcjQFBNJZll0QBD9tcu4ImazZKHq5RKmKd5kbXqk97vdHosYkV01lINVZO5ohls3wdehkYuZsXAzTo8u+kuF/CN/GGpkXbPxaCcgLj1F4gLFWqOlJOCKABrnvSVNCg/UyN89G1TO1WrYFXDY4LaNPvZhxbgqboe7eK9rLN5pMPb/VsVvXw2Lpa+hvPKyLob3ClYPTAXxl4ZzmY2lsgqAQeRxzfqRN/DQxRO8VryDp92dIyUYLVfnZHKguf+tm2KojDrrMXdOw0T/D+su5cGyTKY+cpzv2V2xbaITZml9g80U5iEA7QpOrAqiTigBsfBK/8VuLg4dPg2LuCdRr6UnfK/8FuKqklOrug24wvsZybcd7K8546Gx/ztsKwDdSBSsqwjJvewcK6isg0LWfub+DSzgqwYztRbbhZmrDVudm3xquqAS0fML+FtQ5KegBBtepYjt0DxVFD3rQAHnHGtBpXH2YFRiBjvZgVnL7fSx1KlJjnBhfZxUPYAQu3n1XwAJ8DPq/9bmXq6sFNAmRcCiRP7yI9fO7tHrFi2grtBpvL9OpqE5Hxg2Fsxw6QXI9hSqvr45kqme9rQXVlE/GngBGn+Dz1hLoES+Ae8I5XxtSv/0gpqfStNrAWs286/bidtT/7YkdxQNhqlZ1jMB10iE/8B7+gOeKF1/5f0F+vUg4YE+vF13cR73V8muaruiNc2p2H7W2QIq26SR7s8TZszy1xugzreLWRwl/fAK0TE3lX09KsjR3kUz6Buf5HXpXetnKnWrnNAxiCTSRZLKICRG4UiKlP8IebegL5OxJWDGQhj/hPh4dapp9p4pi7qGqM=
Variant 4
DifficultyLevel
625
Question
Lines EF and GH are parallel.
Line XY intersects lines EF and GH as shown.
Which pair of angles are equal?
Worked Solution
∠XNH and ∠YME
(Alternate angles)
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Lines $EF$ and $GH$ are parallel.
Line $XY$ intersects lines $EF$ and $GH$ as shown.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/10/Geom_NAPX-I4-CA20_NAPX-I3-CA28_v4.svg 220 indent3 vpad
Which pair of angles are equal?
|
workedSolution | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/10/Geom_NAPX-I4-CA20_NAPX-I3-CA28_v4_ws.svg 220 indent vpad
{{{correctAnswer}}}
(Alternate angles) |
correctAnswer | $\angle$$XNH$ and $\angle$$YME$
|
Answers
Is Correct? | Answer |
x | ∠EMX and ∠HNX |
✓ | ∠XNH and ∠YME |
x | ∠EMY and ∠GNX |
x | ∠HNY and ∠FMX |
U2FsdGVkX19IeSLq3xXUbfdO+3Cuv6NsZi3/gxa1BrjtHpWVmYlQDRyddZMvYZxugmGJZLWuiTazOSCGo+zX3WZjJ9mwM0N2jTgiigX1fX//Q5G8AoLqLnqXs/EMRhG7fQvsvzcqDpZcOwAbSI/fosgrYIRugD1AVNyvbVHgRmhGODYd7Iifq7lrPdxCWRAea+VGNGghdH7iYu7XFiUOTFu//ls2oHOaqrlM1Pomf/esnTtCXLV12tg+kGBHLKo71E5qAGsedHnQw4QDkIbpR86ciKKz9fpDBBTiA24GJrPYWHVG3usSnoBR4ckMlL0zyM8SNfn5+IjsA1tHy+O/TIohVIPKN685uDDpzANF+9PsPkEAzfId2JfoNZZ7oIsfmis62X9vNQinZMNl8wskC/UIL5fsxFODD2IkaggBcuzqpk0XOpMEUCkHEDfAx1kUyDwHb0VdI6PEDsCKxD2UiErGjG6QxaI23K0VV2KEom9Xj863tubLvQBCqI/oHYdNOpMsDOhiKc/PgrPw9+wSAmMjHfoV/ZZb3Ec4CErWs3W23g1oth/JUk1gPbeZu8MEfRPX7wwvvhlCrYz3rG5QmMZAaVAgpDzJpVC9eCXe8mpYmpCHc7XtFywWrdv+aaachftB9X9fEJskM7Mrtgl5Pn9QduP+PRoWDWUBjzmi3uwxPh+Kxb7UU1hkP36ejeI8rAQaUzCvoG+yta1UQJK9jhsGIEaRXARrjsusuwtnDBdzKc9nbU2sVtLo0BQc8yChnJ5PWEdzi4MIZhh34UX7bt2PIyjO5QyrS4Vh/id6JwLtVU91cUlHmxt6aJ6uxvRtCf1xxBJu6fcRWOY0e9P6d8oQcvSkBVbc+RudZJBPVcruEEXKiqblAVorBxNqDfkXBM7wWPFO/g6XOJm/rcPWDRnJPjksCsCFXDXMBUfRAJvJjiiO7cqdGJjOQEXQWuuyyD5BWS66GRXRuUyhUIjX73zKhEJSQ2NRpghLO9yjn3mC/40u0sfrFzIuRA0xp7gmsOp/Xvx6QrU5r258rWGeA3qe24gy/Pwm5f66k+LVoK7rGNxIpHj2Oh+bI4lauSdge6pl0bMtoE/hkHVebxFxJ9Ri003Yuaz5qNsq7vsfy5WZjt8HbZU/ma7U3W8+8DR9BPsUpYg7Uwz+/wR3YAnO2d/YrslvC3IcNh9hRHSNEhiXYlByLtpDwCOqfmLsjoMfR8kd5YriZd1ssmrWl0cAaiEBeQm0/RF0IhgCWj5WnBtvtX3ntUWSyEHsR1o62b7Am6uVLRP0qRKS4qKzl0Qrcwh/lxx6+PRkA6mfWZGVlGZJka7PEPp30mpstSLGgnzTu4M+4h/i9KVyCbrh4G9Vw3BaF9ISU5kfGd6uQpUb0ni5mB7awMeu4+a50ocZ/63Z37Lm7XodwRAt22P7xJzCA4EBpB9D9zhHdgnMXI31qh1KYltNa2+cLiX/Z+OXU0JO0ALapfyM6TZ3DcS8kTvcO2SOb0F1XZSElJA/bAnWRTqLglZkMj0X/zxMGPQOFKuB2n3siBgtL342zO8jlsK6SFN0WPechVAHcpfnhRwCjFgTLYaIiUe5ZM6dxxtbeTnnqN4TYeg+so1c/jSXsrpTGm9IxUS9qvxv/clNCBoApwWiUxoebyLnSlhIO+HfFvvBCtMbXXUV6E/HD9zIsmnRUUcV5HKUV04J7lM1T1R5Aisxedfpq/fVXSp7qAnfw7MttDxWQ9bW4v2GARfwDviAK/gVjBhyF/r7tvhhA0v/Sdq9mvwfL/uW55guktHz4aRC2qwa+nY5D6XCD/4qbk0Wu5mwAkALRxkYuFZWGNiDQyFAldbiAIdKDvCda2DyuzXQ8RoTlambPXcCyyHbFX+iiW4/0EZJUpmu45yIz7EM2T2Q9x0gBsnLYxIlveTwO4aOHvsibkTmV8ELLDIumFD+w7ysXCKFWscaJQdvH/JsfnCxqhAA/tb5uHy4j/hXNeDLj39bPDK/WQLrPpM2B+NSWwTQ/HkrmJh41gpb64MMzH7D0jn59elUfvmFQlbxOTtpQ88Ixl8u8XYVvbTobUGNV8nAaA5prybLkfb0c+rppz7HSzY3KtOnKgde9yMpqb5GvxJkJyVa6SCrkPLpehSOeN6MENg1jpwN3cV7UJZSbCWd/YQsXolbgemAbdnbXOhqlwFCAOMsL0XF4RLP2buTTruEiir2W3GzxOmQaJUz0Gper0Cy6U9uLQWYi0pbKAqC7HrFvOtX2YFxFZgUaPgSFk9y7t3p4S1Zw8Js/wJyP1ft1ilqvnbuiJcomNG93AEGf8QJtBcVJyvmrLbdcgxL1wCHuBfc8xxH6gq64ySnBWbr1lBfcuOwPivsoUG53MBIv/1dkkuCC9I6ArQ+PtgzbGJ0MRzKY2IDUIqHDAgoX4iZrGlbojqSlPwWeQLsVBnIExK4Pv9fznVHVQuiz+gYGUL+SMkzU+PKyUJsvcIFVQMDFb9Dcu4zHXpre8Eh5Xg7Qqi4iohrfHGlYC5P3PWtbh3LCy+sTL1rxqU/z7mFGM9xQf9S8KJL09hjMtUEkIK9X9S4aN+N5t9rgpJ56vFe0AtsFYKUkiRwUheDqCFAntLI1a11nfuDYD10Ls3arRN20X1M0qY+WGvct6ql2JuUAnalVXVAGkZNy/8e6CAj67KT3GkCaSZlye27V6tR6U1CHGhd8p+uuFuOLLsZZBsOInxdIKGkppXLGCo4nkORaqgxQ3liFMX6MFtx97ne//pOsal5qPBaQRodcWyc98UZNXs4ezfPqoecNrfHEOcrySkG0xk6YnWuyp8xfkGOxI84hY4+rSiH6AVhSGW7AIC5t0po7z/CqIVPwchWDFiq9w3jFiT8n1BeMulJ1CVnXGoAIrf+v6IbD0d7PdpLSdYSr+5hdLde0QQVS7KPjC5j9XUf3gDU2QQTyduWmWokLdGN2RcFvq4oUex2Dti3TyVadw/P22OSQXUQFnmVLrHDEeVipTCpoHl1v0p0yON0G7cvwVMOB9iMohmsBWsh+H5FfV98jo1VFMbng1mkO7+P88U7opaPXgpcTpkW4iMfBbHIke9da154jCT1Fr9aXnpC72ev8fIhRQPJTzpZBhR6C3V4KI3h/2g4zksaDbs9K0/ANTWqa3elLmLN6yfhASrI65iCdhBIi7sryTEm/NyOj2/e813nlbp3dc/MEIwrOIzr/7ML3vqZHhoAQiDJK1F6uKYwoYh9SAjoga+Cuq+aVUwOyTmDglcGECTVpFZkgSAPApK696EW10R3wyExEltxFTl/lGv8VXZcHnjm4NjfHw8vHtc8v28hcHEwzi3vuDCPIqpsP/chU6mc2TLquQ2pN7oAndFkUhXblauGxr9uzg1KwSqdemEpP52hRG70oYJ2zyHxCxyESPG2W88rBSY0DcmXY+sA8px0VHFc1jEP2LlZqv1Oo34jAiJaPMHBUUnFdlXb4zhaPBvgrZqGB9KVgdnUrUzgSybRdWbP1EuCKQUkEiYPbq34EroFSV+QFydxhd8FiHpm2HPwSQjA1uzn1H2ykUUaWvhthaueoTLxHfy/tRs+nQxPJbwfZ82tgPOKTPsJbH8xcSd7MbiqygrUgK6/cW0FKBFuzqmdlm/mpcxYZ6iHwCBMZWShZ78aHkLqEdnVm0g1joS/jkvcFRkXTa0DZhUbIE7gmYYypBSysUoOfTTRgqYTBWFTmd9+Q7Uca848L8hrc3n9tnUcmq5QSM6KfjUTgSW0S+LbuTp+Sim+ik8XfzuHXKRl05ZcPYeCq1przPHlmRD9aXr/5UT5iZFv4CgZynxeDMExbOFdHLpb6EhA/W6R22fl2vWN15KmnTO2GpAlH6FF46ZfrgPnzb/gJvlNIQ16XZw6YnoG1e+NqFQX6XtO5NbnBLceAL7jaNj9SGv4ey3s5R3Bw2qtS/kcLLD/50KUTruKxuL2ax+kZsWE9sAzz/LCljn+J6kw9aSPVkvCHXri7Mu8e3u10CyWnAQFwMkeftqiWbGUpmq8sjR89vAZcrAZG6ZfCm5HZojmyn4wNCoW0pZJcQTSaLrJ5yFCmpWFHBRaOT9nDZYj3dwobOyk/pEx/IQkx3zJcU2kRwL7mamni7sPxo2qkYsjQQFht9lAVWhBUtosBwRViIs1gxRk0qy7qKOrdHv5EU6d+T8uhkI15qFcp8PN8gwbWSwE4/vg/EXztVP6Ve7DEm+A8wfP2bQYFJxmN1n5GDe7Ql878ya3dWbnRtSnRMJOSP74qHnOjfBYhxWsYpeDGv4q+JjsNH5KnffOHc1xgD1xbAZoJDQ0vhKcJ2kIz3FJn+tkyBj/LX3QcZem5y6GOp4B0zB2q4bmuXFFjd5C9RXeF7A4TdeZrsfxtfNPMWp9KfkpuvwZOWQmfSVLq2tGA333vjKvK5MhBvrKKCOJXvTldn/T0XBPkFz4ycz84PB0TiQK4FOxfG9buPDRGPv3PCVDo2xYYhguuiczb/pozq2GkbhJZVlVbT2loKM7IIOxmCjH23mHrnwen/+VnEH4ZzbhbhfFhrI1HxaZ5C9MPz6ED252H41mje3hJoxt5Jl8iaLBiPF5YT1wYxjJ1078qXcDPhDYv5MiNIurimW/ye3ZvpgV4R4ql/Po//h19OFS+GcNDeW2kYlSv4vB/Tme4V71FroSiTTeECBbQuEeo3YL2tjqVrLqsf7WZnoSoSQR7Vy3p1DlZs3os8rrH5Kfv4E7RebaKNmDCfjN28ZNR5HsAphYtFv0+sTL5PLRWdq7ENUBf5IC7SqhQopkR6TPRQ8M9EOe2+UeUQmnYG42Qot3+69M1dUtb9dD3gtF4aMbQqdogS3pc1arfNRoQ2CpUY2HdC+V6xd0Bp19vb31GuXq1luaZ7FkGBgF0EGUVDK9EHsmFEFaGEWUyV0D3P/9O0vwNXPiiGbDSgqsvuz+W49D2hG/23FHTQTBhi8ZfTPTrn6mKBWAxWs9kKQ/29FPGViiziT3jjF0wvaLNfUHY+zi1rMPqoTH9F34jFp+UOwbFg1rhj2qJlOLlSwQVJFHvjO/qtHp//ULNsTCWPG+jp850kx1KCP5BnBiLCLxTb4+4to0jV6X+isy+E867WyvMzztXP5WCWEz6+GFiXBTklCETDvTaDNEZQ61TZ5sZKQgWNLaW+bQlkrQ+iL/aq9reLL/dpn9eWNWJ+wB8IWE1p65XOyF9l+OQOrQcwIUhyuIV1JTnMSu3YvrMkwTOznOdO5EK2CfPhmOb62xo1RYqz+H3bsZ1C5IebGae5Ax0mtmcuKGo2JTmmstyR3dWdZbGrQk1xOjJ0Usv6GFBRLoGvS0C5gW9MS7jYISOsL4xpJhXJ5IYookXRg4ZXZzuHdiy0Ww4y5ZbkwgWtuCimco+gI5AObcHcosYVgowWhS5/EWWEXGpLavmPvOW8MsaJhZEMDu9toeJNJ9aqo70I2Vd3DTgXPP4d5R/oaBEooJMvY8LbJLT6eODH8IIDJAKUS0ddzkGbpOGnpgd+n0SLYGTmndLqniF5tvngjqDTgVz8JjrG9jf07ouWGjb4AM7Rt/EIvuz+O7ifXmz2AVhuB34fTycZgTgWoQ7uF+QeM+/og4n+5o7NtFqgITGUxT57Ll+yXwQk5y264xUdpKKHQegMjtnLgss2WGks8hxTYuh/c9nUtTFaEIB6/S0XvdYuVQRRd2zt5hMbgSeHEl1C0RWCu+70n+e3K7OXN9eOxGuSJXXo4vDDjx8HMGlWAuQVRI5p39S9FdZ6Oro6vRArP4VMtNCaO9o6xM4loeprOHz92Xsu4AXMUkCq1hZl7zhO91Gi9t+RsOL/yEIe/balCBAqOy0l/e8+FTsXw9O8V3vyyh04fd8X5Lr3yeBGqp2ix727tsuRvFDjJOS8cgD16AMSFY7jvEFLr6R1H8RPzIoIlIoP1O3GcV6W1Z4LfXY4CSgr+zlBaoHzja1DX1T/A+ht2L6QBjV06CYq5a7yUqWgC2bvVfL3Oj7EfQy4i1buIJxAbmqnWjinyqljB/RhopLqW1sQqWPQoZaR58ATB0HctNbu/OahP4xAxmQmwEFUWbXb/LmE9Puk7kv8a4PmdERPxSPE5VeJtrON3K2EW67HuFLiPgEJtg6xlrOq5qWwqzJOYdm9H7WeQLTIQRpiRVV/KepfWw2glN2biLxjf4TCPQpqTtvWKSw1TYwN321WrOwBEdQkxbmRcD6Ilkzw4cS8NKS8WccstXcxCwUstAu2RwedTjYLPQqjpMiDk6gPqva0f0NgtPOn6h6qzFKfM62Or/qPhdWhClQpD7wZJQlgMbyyekqRj64X7mTh1e//uo5pHvpRy/P5grL24M8Ku+wK1xr8Jwg/WqzgsJlBD9aFi2nCXBHNPmn+ueB0FHAoGSjrFJq+mXWWFWcpyxVwhVQZkgIrVx+F7Z0lOMt6LLwjNPRBwewqQr1kucSQ9eBI2t95ii3BEwz7AbogzcbQnM64nt0OC/NRxiX8rERqbkXRyJB8xVhvY5EbtS+SwgOiYIt5XMnkn0BPN4IH4eIfIcAAuUpx2XiuSG2bUBX4Ric9ULE4s5t4oJG3usRpVoHoYfvyYZBcj4cpFfaIO5jnKejnknDTQ2gRs+B/kMmPO8iuTbTCd792hMS9ao6j3Fl8tRUtvKEdAPxs5J3IjqXpBt5rBl/zGbIcMHVrDWbIXg3+WUKvRg1SIlU+6U0dfNOnoigukJtxzeT9LuStKbbtp7ER4g2xFeiTyplt9M2a7lFq8vfE7UkLqR6W0jkTQ45E8PgNRHgpUTixZNSHGlSeidG0RecZbB01v+h8SQzAsC1b1x7fJEWrKrzuQnhxtgg1fKMv9UbQ8x1y59FOVDycvq1YDdTS9WJ6lkl0potIMYxJt4utu4GotegBozmxwDPUWH/r/x2UOuB38upgGZPqMhn0n1uXwnYtbRX0QA+QxTtnoTjtGejC48PrqbTv8INgGongGRF77OJQgff1bX6rikp7cy1M3LAFrQc/21rbk+8ylEEifD76w7JnigakSJE+Z9hVxdU4ZkPCk68L99Z5S0EVnnrO/eOXpP9+B5WD+h/wSQlFyQAczLqO3g35v1+9NZ4Srj+x6commIPJf7ZRosV0gRapurjdd2Uk/O0gVHE+vwF1Yed6v6QXxngmUqxY0IVMPSZuTSMbSXUk+ZbIgNPmVJWN+YS8vOoKQDDyuyEYFEBw6pbLUqQjV2Cd0rP469XGH7+AhYMygt02no1mBpdXvlPMNralfyejwj63evAp5RzdgKm/v8iwDxV/MLOskp/gdqnKvAL7BywF/Fcxjd6vPhuIBlsfJSRIlpX+zjDh4XGJvqYl88rhaG5IpVc67BGaJSZinpHmCuXIIzSQEnINiLFfwaI7xnLN4vHk2jL+pdYUeJL1N8d954ipgSlnNCehu7xe1ZjjAJ2tlqZOuKv0ZGNpoxJrGACMVe3amK/S2Snlz0H6baktDhv1zARO5qN2ljDvBQljP3KePBfdu76jYCjho8C8gqZmqassx3g7+C8EaUDFhiskOif+2tpQn7F0ZrYG52kc7pUWXUeX/Detk6/qbEWzCsKf3X3j9gfM9YkUGNoxbDTYiTIob/clK0SGstogv4wuvlUvdbAZTbPEhETbhtsAAIZhoCcIKRGZU2MJ4u5laDPL0FwD9lLFAil8qxcfwKizDs8pWgEJm2N/YWQDP0ZbEcRI/lrILgh5T2i5wIQ5258S80dy8Rn6Vsc1ZI+70bUY4qu34BS3KvNDSQxBbJfZKFibipHB1lpqGc9fQblLEpWdXPqWJl9zDN9IRDmf8J5thB09OfyCPnHosODk6a1OFhBcg81OyW7v8uCURIrI1yh5vrmEjWGsCrEpUhjL8tPScSmUH+a6+I0yO8ZKbyVril6ony1Xi6ThJjmLVXhDxsQiVhoL8NSJe7QP1yb/wL0YSjW3Opz6X5K/v+JQWmcV9vQE9ttnb8iOLANSdVIWjZ9KzASvqy7fbxwRcxFUn8j92Wge/N12m2jR1UB2YzsIWaJj52LFAmWPTibINosvvRLsgNbI9MEcIurVtXhYlFIUOlahYPWXFqo6G/lr01WIQDyrPPlDKQmL+tm0POuJGweEZRGtgLZSWqQtF4cIrTkHvvdTXrbYICD8T10lORRlhyIucXDjd8zin5VV/gglybreTAjrCVSecI13FtaWS5N+Rg/a5TmMUteImX1bUFn52HWolZLtjw/tswZuERsSum3sJ3GfAkGoQelg/4iUh94gj55TpTRTyaOUCLDts3gsULXa160bPUjYfM1592uaKBnqwokmjH8wUOZd86tE+MGLoojIBs/O7d3yAP7mfrTEagmW6ibN2MmVWJwz++z29C1CL2Noti1N9NCe0vWctBkfC4243n0Mvtjpd4Kj/TBEu7GdoyJaJMZz43Qohf44of8QE8JpFRM2Xx83wMXZHDObtaKK0F2ZwDLqFHgTmZ+fikqM2/6P0vdmOsNlZ3o6D7R1TN6GpDR9Y+MSuqTCDHkiU9C3VtyTZGGjGVSyChVm0fYNjIVzvgpfMgzTELn+Tvss7T92RqDTxOGILXlgIJpEHE/3SKGi9jGEE6kMvwa7bmbM2pCiIYBGncMQq6EoAHYHlqpaK9rY6Dtm1dMQ+CmLbzuSeX1o58BqNiZvVaSaGU3kbFTlPRKY4RKs3gEVtVyoMgTtFgwnTacMGE7hexmuVwBR4E08nRJEV/2naLubA/dtRzKXw0A1+yDiHTf1N6YWquaAkNkyjeYFxVGfdNTvm7GJQCkU7whOIzMsjhT3/yCWcdbl34yUZQsLEslMaUzgbRnbQU7SFfTeHM5kwDMRcaCi4wrnSIoukQCfRsNhufj5UssTuZQWN7Rpj6exMxm4deUfkiXUqR3XO2h4E09KJIAqp3hLH9VLfXg2EqeCeKEhhf0ojA2P561jx8o+d/XkWlNzljth4z3O4S6uIABrnf+BN5ZckdcjO1YGZ2vh5XAJcLntx5xfi75fQZlustzKGP2zWkUWUNoRg/JQ7K2xem85fwRBDNlfZA9DXPMFgizaM6nolYpPy+YekwgAKggEFQCkdGDpBNR0QlLFz0ohjaJN/o3+PMILL8u/+KS9mtCPYR5H/KaUvygBnc8DtoTx1fB37vk3QH/erKZLrozf0d4LWhUZdlbDHq6RzW3j+o3ViOQXHHevccWARn/WAy4gJe0XWdtPN2sfY6F/rfmFX6qv3mIujsnFNpv9SbyYlOVqKsLM5TDfcM9K1rZtSBKI4mTWAss+OkWxp5MQ1wWp+fn2ccNlaoyfAbajqv57y4xUdUWMw+OeKbabkkXZCNw/Z6pIIK2UkWdH0lXU9hq8vBg6/4CnVGEGsFhXmYw/sHly5g9gfGlXv59roF2RM/vwF0NfYCtuOgaPr8HeSX1ftxHaZKEotbPed6aEvk0yNunm2A5+5bOVmTgazENRRe30e2LnnxhCugLbmY2D/CyrFgdTx/n5ssyL4zreS7+V0skSo9w/KmTQIEq41UGGfCBLW4bJrhD/BChkkrGx3v2p5nLVrljuERw695a/c/oRK3HEyY9dZbwUDEuW1FWi6AXTvAV1PEb9P25mplhi2/U/8Lk8Kfe6nIDa6bMU+xaayZLS52OE3ZziwC/7mXVgox8I4yiQsq/HHBK7HNh/hzZwy6xeiX5Sc+UCh4wwVddgSxA9RgA/r0hglnaSD4c644WmMCp8SjITi0gMxcrd0Qx/FPb+BjAIV7cWDDIqlh7jW2iVd5HXn3gCU+VhLiTm4zH7GcJjDO/DFc9v1rESMczS6B2qqwJwYEe6CygkzDYI0XRjHtJ1XvgYgCl6LmD0FR5d7alHHestA3WSNHt4eCwfsdxbZc4TRjqrla2OiT9J8gjZDzvrZwvEgHuTAHuo4xJ8SnythzRM3TnXuWEpr38KlwGdYIP/qzGqkLB4X7go6jExWLySikWBfvhk7VNa72h3+VcJT9cGiwkXsMHFI4gBIEPbHJThNMWKoeVigPaffMBrQe4FjTOXxd+zWtmQBNb163etVXbLhNWpbwBWMVK3ZXSUV+u4WgO/+LWM6CVbHZDrLU96BjyvdecbDSj8hlQ29vBiLdOo7Jqtja7VgoMEIyVPEVonXg/BdJs1cEmr2F918/Ot949uoHKNDgfWbwvIczYcPuLl/7xyudo50s1bGpOsoQiqsdZnj0yk6bpc1tWNvQdqGDz3mxSL3SeHNCJK4Z7uESgH/6JwbXCBHUN/iATA8aZwTCc4kcgK/ak7ekdYGw1ESGtq7oMDbrxiZOfTWMrobjOwDs03QHnsDL3jot8tIgaFr3TULDjkkF1/24su544Rh6/40BGRU9MbzOXOZDjvFihWdVs3yRJkzfxra95Es26b5sGU1nUILUZ+tqeHZWxSSMHKFKVIlsthmaF+wn6TRPZjw/UNpjVC9Q9oIqJ/BhpKRilSAgRm2RYARrMWRFDO7nqoKJYbbeBlKCgh14EBxZ/HMQ3/xoyQs9NBRsFtWNZbMB9OUuLwjNrz8/v97s5DLfrOtq8g1/zqNR+4084dIaJWstCs/7nYYq+rX+Hg40GTY6R0gwZYQXJTESGvNbIe0qqCJZqVmkhHHrGd4z/I7bMfAJkn0HwZxEyF5YbtmpRReZYtnNHzNKBtKWDl/zFM+OGWOrpd/iSW7UyeMCLJ3X1B7pORs70zuDZri/x0JpSnAcHHp840ffqJU5caqfQ8z2lzGSuagquiJyIWHTId9n6hIpS/giiyRAyEZsXAZGOlrl+jM4RJ1u+Q6NLaskxUhwoAx7lkzzbdnOhU7YFCa9aE4Bs3nFXSbaXiOYE5mjj3iFb+c9VQrR8dhrIz9Xj0/7OQyxa5RzTYZHGHPDjb/7Qw8+MoGDlI5J6KqTGIPiOb1eHrJh59oSfjKEQit6QcI1reaQp6bup6wE3cZaIWcozfcLNQHMN5x91hM386RRGfCfzeQ0XzVRb7W0BqyoHPZkmxBh+YaOdrhxtxdJy38dXGC9O4NBgyNhijvz1Vjy9PEiJy8I6wJlrS2/CbA0MuoT3t7ZX30LGlzYlpDS8oIFUWryIP6DjNtsJQ7PWlAIJgAeH9hPTvRF+bbVDRTGWpZnf9ubEemwf5fUNLhhiOuriBcsITjeedCRifeXiUymK63N2hleIHxu9TGmSCTddXe9qSit/hrm5BuHElLMKhhkauLLumxtuqJopmBRqjGhnjUy6v5Nc/LuH130t8mfqfYDVBvreNrs8kIRtTddQCg/5AMImh7z6yCpyiNa+N5ElJhdWTcp6+cXMOzPyEVHSsEWFPiT7/u+y8YMse8TGJU906dyDRSPGXuRAiltpkk2Dy+UROjFfxcAdNvWZSBIhYU4TLMMsar+rePNWb/CJ2LmkHW2an47BvhNoLSgePYCfH+ZpdzfGpj1xxcxxlPnPg6QzMYUXxpgtTtO9wcnqcFLd5I+43EWWrvpRf8wWHXVcm27tHl2WN7MrW5BobBZ6JKUfcrOQ9tXtfGTItFbNmQxPOdiXBi5NiopognVX7AqsvqXxzKF8zRJe3WnpqbwDEVLtoP/Fd22VR3L2LPgge2BMsA1ToETvajWHyTViLBRQBL2X0fNvv7zl+VJdMdPwZzFJPH9RwdMy40r8NegCg+/dxc/gqyk1ZL/+rdPDm+dBJjMfYe9eyjQrpCRYAztcTkVYt2EB+Tz+Ps3yzrmd5+7C3sTafPLs2qQhqppT/rjOoLK7bkqukb871UZoGpy+CSoRVVjdTOFqsSehavnq61UD2ePVYKCf6QTVA5VWafqxFq+tk40VubJNpo9Ei9GTqcHgqzA+dDDwyadF1o/t6PzDewXNQpApcnvYd8sfbjEELvG091QCdZ7IniW/0UKkAow774wZteWDSRY3vMK2QYlwXmybThonqbHgjbp7ISiUHFXTz+u0s8WDyVu1GJCxq1QLz4eWmPEgeYXp1Udys0fzfj3Tu+5ZYmDf41rQ4VTlRQ1DzRoiSXTGuIcYcsMj5o2XEXJNziC/aIMuaaprsuo4rnh7wf0fQyBi//3TkZP1Xmxen4pF1Mbi91d8VB69x5ePEcL3M4J5wqMD4uA2NLrzLdB0eiQS+ZUhBWziIaW2b6wlRxEUI2YL1Zo4c8bJIY5xrXTLkEyJBeG4cC5FqEkersL7UfyUEMZ3ZngjsQCuBnzS1R2Na+yoCT1rKiwALfq34K/hI54SHIsJuS9oeuH5lLqhhDzr4UPCOsUGYLf76qHWkwvjYpNnepcx2vsGd8tLWtZVP5TyDemJJ+KcIIQpw36PHtMnA3J3ZlE95vtokihQezf6YyX8KArgeEZAVXVTnNjkAnfl9ZlE23cKcm2esXDhbHfBsjJFjVOp406ws4ZN4t3sU5ix66T13bWxp5AHOgnrYCXeZqDWJJRd/RYuX3wFFIBloAZIpsvq0Gf/2epjubQMoM0KvnaWqNkOvcbxJBlEEUvpzbSEXPlweVthlYDQBGPBcQoph7yudA7TqXfvnjycK7FkGOFzP0/Sz9ZSqbOXqCQVqKqXniUIq+t9Fx0hyImE7VZMT1U1DI3Bmt6NWmZeXDAH9F/annHlBaNnzKq0xTPLCx7BC66YVwk5sLITil2SR8mlVOikP2tpVKpO1VSKNF5FTrPAB3ql5iztYE6UPgyCdDtOih7N84/Aun7tolWRQN5vnsaS/gCpS9qaJXkJNNXp59j8zyR0XtAMt5oH6QHt8aGk3xxi6vEAfohgBE0rgariBpVPJnWbGG35/G89UU6M/Ye6Pwpd4m8jM3ILih0qIkDWvmd3z0Cd34/3Azn2UgprKYO9mdOXIPN0l3cH14iBtIYF3rQdiCGoj6sKQiAVF3jvyyISym72jLcu9U+wUiHpY4dAEjl/EChmm95gHfsg2fHmS6hOtNRVmkhc97EZDGlOswJ1m97V8u8t3Y1ctKjbOK8bKR8xuWFZzQP6fhSq2whDDQrgd5Ob3YdpVr5tP9SQJY8aKnOZsqoho/Lzkz1MPQQicw4N2CL7gOG3OYxCzHZmrRfBgn20jN0fxTGf19ZkL3DpC6U4Km9mn99fP5uYMqUNFLuINr0zBHT+DMqGpSqqmSe/fc55eVQJbpr4dm1jCA15oA3dDbJuH/EAjcvC7f8B5H4Y/Sba79xoA3mJgsF58sRDuvxpXr6HvIMm9PrZ0Ox99WTKdNGxK/Gxcijlt14A8XxoCjiszPYBqY6cnAmX66VzqR43Ug9C5QNNMoUPIALE98v6PwpVIxoT/UdCXNb1aGd2Kq4sZlEehFgJMpzxze5jREXPdLYgPpBy149sBXjgAZQeO4Vu+rUjBYChkY7mUo3zZjBe184FJL9Ecnb9LnmPBWaBdP8UY1LJaJ8kAuXh9CM7QnusJZD2ppqP0pxVqnEBSd1LzAejuKqVeB6pMJ0bZ6/Mz5TRgQ4bbPTQ4q+UqtA4aYUOQwafawe7N4D1pGLKPEF20a3nCuYFPk+e2sKngnwml648WQ6Kc/VrESdbuXl+hkuEyADqwl6Nlvw2gPfSJTLPaLzSuY6OpjJxCJtfI0ZXnbevdzRQJOJHGaHkv7Ib8AXLwBCAQOS5PyisE2P5jAVucFU7t73IBm849WExjqAhPsAQb6Y4GcUFphKnCyxnXBTMWI+BcAjsMrdtaxl0SJFvsRjHG/A3DtQu+VRJ9k9J68WoTSei5CAvnDwtEjJFV9nDYbrxoY1N/enSrdUr/1B7HfjV1bPCG9rXb/xF0XOaGikMsO0eXn478MBB3esHorAFzxoUm1Cm2zJw6A2pYvs1DhhWC2zvasvH+1l4fVZbbxQI+EKac+8938WY3icntM8B/sf4UgdwSdMGUkXEVMQjjEJtFTTnCGHX591MvbLm1kAqC98ojfoa8MO3w9gG5G5qLr3x9URjOAV6W5O0M1+rIr0b59RCvfbpG5YEeLI8L1EBdV9U+oi4Vy25ztm7IyAB+Ur951Zpk3bOadOoeKF2uChPkO07ygifyFaooVeaYTxxf8lE/47w4alx6x3Y+HET0oQ0ferhO9FUx6vdQAaMMVQAdtrYc3x2CsQsUaI+mS3G3UqYRX6cy9KPtZyWdLloZdQTnqZjUlCsDb7Q+yjMtPojw8JZGH4ZYifYw40X5O0NNfMXCCjM2a+N9fdCqHl3oLryb3PAzxO2RvVxZJArUEHSSNlbATQcNs2RGvZUnmI8aellUmZ3eqK45sWWvKu2l7ZWtl0oZTLkmxTiPD3y/nPxbXAiK0NU1NmikB/8+yUMq7A6yFH4AwEcRUe/FWiV06SleFOaCsyUP59+O1COUmVc0tUMEm3+7bWo5yzkPR37Dlg93mq79XIfkEIFjidQhWA9EeS0Bbsea8O0YS9PouUBaA5wPvbu6161dz5UPt0yvUjsx6J/ydYHZD/rk3xMEQT8hrVCoBOWY8/JchnzCL2VBFgSfQwaX3GdJjfywmkCXmJ7uUVg7M219nV+c2RtFTgh+LFgYGofri48+/GzWAaMlFhLMmOx4/As8JCIWdQy1h+YD2jYuJlvETxF4IaQHRXekBB0V173ITH6IyEWMIVskJ5JnTCuZxIctuWJHnHrQbfY+pjn+mWwwoi0Q5eEhq6iKcSSZhyuEcgRwQHRCjC0l7qfPRTrNpVoM85vjMBT4EbP9DZD2RXda7RliU70daJCKeaktcJBSDRxxjd4vGA48feSngmB9x5yz9elEKwWPg5D6VNLoOoNtUtQi6BX1E5PuvhOfyU95nOOqSbwcOaLbax98fYG/Ps0MWE8nIKyCVJ+OJVR2SyOQPSQh1ALBs0LvRvLJqbeHUgb+wmAIA7YXlYYiMVHWlsbRTemO+JJTge8y6Fn2RE9+DbQago6cTMsmswxtARykC4KKSjoMV6D3ED4XpZlVmCr+kzJa9cRTs853HLBi1G9/OVEbKVgfe0S9uH627Sp/B/B26WJIJu6AVTAmDhORlZfWflTlUb5Mi4HaiPdRoDFLxz0HfjtNqwUf0Dyyl9PMk5h+QuLaEk0CwK4z1kMJ+ku41XCNjAYJnjsKoMedr6OtI71YuqdTyPUO5IsqldHYJSh+SM+n6+LM/rLAQjQQXqLpo7r9pEBhHY7124SThUnF3akEA6UoTnY095JM9ybseH2jsEHGRrhhi7q8nfc/q0nJBEQ2XE2ef/1cIXqa9lj/dJLijf87I4pyB4Ox+YaTpgRW+0w94ZEYbPSP/fL1GiiMcJAf1VllVmKduS6XO4ZijQsM4soZk3iBZneOmUGmDhc0Qo6hf12lIgInWMbRZiQb2qNZUQABuzH1blwz42VLAhFlyiRSVMfnVYAWROqppd8W5DcAAI3lh6jEoIVkQe+4lIplpDF/R5qk9Z2EMfXP5eaQJX5wHF3iA4RSFeKnUEqn58+nopBnHd2XM9MhYOkWpv6xqbzvo8z0hXBRtyDjcmGCGDmjVipuywYKcSOHMsgj+1Av9m8YJDU2abT5arz85cLqANT3+s3Pah+/d8QxNVz28VrQxJcu/7bdUT4lk+9aGjAl+lvkMWnWnXs4yJVwRdjwvD8HMj/JZrxEf8AFTmY3ixAgSzJn7cU9AyCGdBb3xDRFqYDqiUKFotpvkmdLvnrWebY6rTJJUo1PO6q4sjodxHPyPXnFRJZT4Bu6WRA2tmBUCOQRMMlfaT/4vO9+d8AvbJdl3E3QOER4JvxkhnFqo0EaRAyXaUvzz7IQaUtE8326HqByxgFQjJLmAni3xEeZDcrkOnq0shwEcZH5MrzMbVm15K2G0jtR5fzMpNPlgzx8bE9YzO6D0b1/WOMNYakKfJk+gcg0SxpYtgo1vNm9ZZM3y34EiI7cKxMVTEDMQHzQ5nCBiX+ZZ+lz0iTnl43Pi7E7Ez+67Vp1zlcpVNERc1o9N8jMSBPyxwNDxTLkNElzzDsyzcYy6AOSjFKHq8GJOkNFOeVVFKvK6gxfsRyVm7cZz7S6j8GP7IZP68yz2JfN4tTJEz1lJ2YAkBfpQ98+x32DtJk86a8CPO0qYQzB/8Hmz4dzwVHzAnBPeZXg+4CbVsCh6T+OIFMC9KgBfz++BYWTvmOl51Sx6XfsQqW8s7t0KJCFPpfDYfMbLHK+vym7F9zzFRojHZVBhsvyGbNWC50jyMpb1W2aTxItnT4XMH2DzzQjrkjskL9c3yNt3kibwM3vsj68Ofnex64GBurIU/hl7ArtP4MU4vdjdm0fI5gGOfGbNMcrLS1YDwNF5+8DQUguBgDgOa/GXrFeGkged+GGMQT9TvIii12LV2utR6eWWydnTkGca9RixRGg5lFmOgs8OaV3u6jG3N20KvBvI8Dgd/cBo68lacIxjwiAi5mhdraLJ7rNkUiz+PuYoS1d/VuPcr09NSZrycAuXp62dR0pS9dn4wBGp/52J/82c/mgTtV0VGX62ue0te+xmdrsPG1d4kQjQzooaoXKprEBT+AfSEzba1hPkGhoDgYHJNOB0o7y8QZzakpclNE9/yeA9VYGKIZIZ6n0ti4+kOS5IRfp4+QB044i+X9iL+d85Uewy77M/zzeNjSZ2hQiU+hs8SCNgvPIq4VFh0JWiZLox9f8t+BDPYP3S9SIWucJtZXTWC7FRExeioIj4PKqlxdgdIya5N9fZCI213yDkgOUR/OW3+u+3XYaCcVJ70yrfy+tCuS6l+Ps1jYzmeWxTk66jZh6AuHgGTXvi/GaQKqxK3r/pbeSTlUf+vif/Nf9Iz4cMGedISrxfoyRgWB30FHNLizm9Ia4mv5mmcE3HMACFYtjCO46jVUg5tOFUwRjUfaJdphrnrPFxSrAu4anzSSEW/NSXE+X0LJ3A9uWBYOP+dMkGU7pJmYCS/oZ7yjUp8JLJTG2FHYDR3HQHefu0BUbyVW3OVxMmmISvCW2sLc1k2nCGrg3VyiQ6NY3bwj+g6UrZhRUysy79Ma1Zb3TBrXImObzuKHBGFoOKa/GSgOGEBfA5Eoyr99q59k5r9hs2cZsAK0TSEMour0sNkC/4MmcoSkHZv4ncpZDb3DJ7WE2SPrigGlBm8Zx0cM8Zaxx6Jn6zVt/3VF7wMr84cYnXCkX50SkYmMwq3JS8OPHVUOVSmEqth9k4oRAtoavxY0dPKSOYXp7E4wIHTCGR9o6NG4QRwZ40Ae34Qp7hV+PjzfwHYQt2TNlv/xJtqGthPUtfwi+Ue8hiM/PlkAtFGbCA7ah2CtsWaOYkRiUsBANKDY0rF1d9oT8XQak8YwTHmy0O43Rfc+r2Bu/YOa+HBYsJwVvnx1VT5rhPouuz9DxbBNpewghEZJlXJuIy22gj47kDnSNj/vwBHdZ6tl/udY0oqak/8+9eJiWyRRnhzS4l8a+Yfx8lPIDnUE8RJL6snMMkgHLtAjV/69hQFprHuP/Qhdlrwy1mq4SrQNbDxjKatzthpPQy+Dizbv3w602q/4y+X11oI/Tnglueg0yjrMTXcbb9lmSnTYwdACLmQTt7CjR5Uy6sJteZeIlMjZi7SbLU8rTiKCjypDU0tSBpI0oPh4+BMLTs3yA+eVIDzgVxQkpsV7VmBzkY0gfppI93QL5ePwCjGDxaxe8EzQRhND3iDmu57RDX0Vxm+/AirSpZG0VLu6XyXJ+fQT2C1SaDGJWvJeLIKF0aszQbr+fwxNK9UCM13zfzJWDUKw3tkk5Pp1dPcgDVS4iJa1r5xDYX8CAhX9JWMv+bYrPnM3C3RvCXf/0cgrMqrFnFE7Qz/YHYKo/Z24s5xiYL0sIb4c41pc3/tUoa2CulsXuhOts7w53ckHOgdXUQK857rQiA0zgv/UzXfbe08FtHk9xLeQWTMXX8MLLbaoPe0FFa7J5I3p0mAZNCm7mdLzmMSlRlzLVQMJrBJ5PLXBt4MJUOYc+U66hdWmwgl8rK9oklHyB+VTMB+t3il905LXceXfBEKC03+qEje4CpRK6IzfCpsjNORphGok8lPas9v8YHLD21XS4+qAyYsJeyBvJkve5UeQxHmii9Sx5ZovIUDWePMMPh5nX1lUOq+L5qvlavQwZuZpO47QXgTftqf8bfz3y8vJdGC+YAmM7NY7+2clnjhMTl427OkQoBf+TCV0Q+wIxnmOzNCjtcWH3oOfe8gKyCtMG53zawlkxVe+emiqrXgfSwtnKGa0McrGffrI6Wb8G3na1norv7E+CjG5Rya8u39X7NnpZP1o+tpti7d6/R1K3dy/hr+TdO+LQKEOBEjBQTriCCO9Irz6ix7by4ucjIrLvg/YMkxUE+hRkqWZ3X7Qt3Li+McxonfKINjsazdutwfo6sMftTis44U+FMuZbqSJqDpC2+z2+Eo//BAh1YFw01ZID/YQC2oub92BY7O2hCU8kV8epvSsOcIyFd0PiT/8z0eKKay8yFghkUNcCKuhnBLTjkozxGpjPDQqLoEFheXUjka48eRPMwzWPqDj/BrHf9ECq68iVbWHURIdKQv7i4w+XH28KmUoY06tvAxPZH43ccQ29KArZA8dhV7E1ezIM/2JYXok0b2ChaPPeDHgayFWzGaSuZ+sH4AvN8H/qGeJcV4KV8qAWK4WR0wjviK/s9tR/oqDwDniBt9eNDG/UvqlqNjyoEgVHS5vQfSdGEpJtqsy9s7YhBpnM98+NMe4w3lazql7+F23gdBvBEVg+H8V4SAGwp73yL4ySoowd2K0iJQh62hGzX4ouqRF/VBXjnYlpPtICvYGlBBXstHi2BHLwJzQRbyUXofao+f+Y3uEzYh00/vZN/mCvBdYXaar05BEIAA2xRIt98Qe4kqdUEHLX51ykm4nCFEDsOP6JD5POv3FV/NYl9k3NQkvihjx/Yts/rnBUPxu0aCCamns1MybX6wB6tgUPXtsqF7yR8bRjSVXIR0JOIgakYWR9KK+IdlNu+VpAN+/2vTZmnJmUsqlRXwqIvA1u3YxH9Saeq8q//QXDvLvO6eFNg5EmyKJ/o3onKLd87sKBrSprTkrBscMmMWmzgezCmrqbHnYOwJpZ81oBN5+HQLLdzFMtI1jnW2W3GpVFvy8sIp3gXkyYEKyuWvsIhTWEh/ildmN8uBoyLt14DknsDXHWuRgXQpK6uWkvDQEyxIo2htSgwWCK5DGIb0/8PUlQob5UWuFC9pCAWhtDaQokiirn5eoYPppdQ9Yibw59Rtm0Hclagz38kPaxeTPOMv1zSOmBMkFaHdav4KuBfSizBB0Gd/w8uWD81Rv36yoFGjejogiabXGqcvX9c605o9QG876MXKAbDn4V95uCwHc5UkRsrzJVHuRaLK0/rN48ezPnJndUL1osLdVsE1bnnhO9IyjeUQRXirhxq4wlGdLoZ3T+mD38Y1R0S2VJgIKKedFqWSUjcMCqC711NzO8r18yK8YOm0tit4k52J1zyRpxZcPIJYmF0yFCu7vF3zlu3rHkI+NF9Pk/Dq8YuOUAB2ez7XdANE2mWh12f1SxR6RRV5h2GGO9TxeloZe5kPhs8GR6bM+1hesBxVJYrGjWO02tILtyFpwy4sT9OTjAn74d9TAtU7KoNT8CsPTHD4fpcRNrryvCUvEzr5wcb3HA72qTUsoz4FbwBfV+ekjf4f+cpLyF0AwxOXcVFq9TbF9WOzsC5uYUpymdtGRg4P9S1dzG0ueqAcRs6smCEmsSv0H1rzC3grtNDZYRRMU+5WO2TuymopR5ywioO3ie+5fgQfOECFi1aM2PIrNY2LyT/7SCu7rwoTdj19Dq8um38WU1u9CsA7PlhAuuK6QpqIz8ZAwoeWhHIa+KOImJ2Qj9GvisPCFZA5KWgfJhy2Zv17dhREqfdKQVNTESdM6ZTmRhjk72s9nzY+MMqtWZR7PN6/75MYBX09Ja3x9+6Tth+fjbEkMB0ej+r/xmixZMa/gaHGBrfptI0XowWhZ7TGWSQTg4zjMsEPYarWojB1mUc6fRZNMIIPiVi7nU2CkSSuIgpW3l2Z0aG62GartBGBf55KPLaSe07Dt9uis4nRFGeUKpKukcxsfjoY9vHnHzA2qHna00SZJnLQ+eUTkXI7Im02/WqWOea+28xvRki78Y5yYFUdy2Y7K2lcaQdGImosG2Md5L6cilY1fXTAWVXaVPRgf/kk9rvtq2XsWHA2IvHxwnag+PCwIolli7qgH/26Wibl/gFzZkU+zIa8cYvsjEbMIiLxbmm9TKo1tBcXAe3oC1slzuLk8PpsZ2DgFXTS5Y7SdhSL6VrePtRhNzoieLZEYPEa+0U0eSs/tpzF8hxchpqEscY5Bz6q75vllYSp7ouRt+EovtLAebmG8rfx5nvDX0/EutAVhXTjpGeI9A/D+jJziRr3Pjq4TL82UJJ2Yio1G5YhNvEXOWeiQjc/QVNDfIS6ExToKgDnq8rqSjk3z2uIhow0VqF4jySpDpvnCq2m6GINfrcR0rId+Ta6F6fKXU/Zj3gso7Ef03J6S5jrKVjk6VJzrGwLjxOIemDrjiyHWrRigDUO2H1xTVZlBnOnm58Fn64Nk3iz6dcNiAdVTYWGJ3FbVJZ+uCF4XYrCCdebnA0MoZ3o5zCz5IVOE1niuVJBcAP3VsFqD+Pz5hKG+NFcBYIK/sffb47aqrIREp2cgQ8odx3SMKzqlfGw8JiFwmFohfbwtzxotCiOwQK2aRDW5E07kaq7Su7YtQUjJAtk8pBgKSdDhoHjOSEXOjbCBIubW/nMAhGJ+uN+ZNxw3yD4XamtqFS7COXyaDmfr06MW6JU4QcP8IEP2mMRFazRugpIA+R3iAp2tCZX/+suPQoC+vtlnFqiJ/l76iwYa4rJzSPlwjhxDdXipCONDG9H9YuoVblDJuOEyfdqQmIKzoeK/RXQEFQQ5NUAb3C5S9zfR6ZT0SgXWgMtpQW1rR6mW8oJHJHz1frvo9bMENZf7gnVKIX41h7LdnQN4O88dJkJ+2DLrJycAO7iNBv7WlSfSxI4MhTXvuarTHD/RWOwW0OC4TFCI8sZanpzT72OiE5zyfqU1u5a3/1pRO4SQdRy614zyqvjSjy0W335HU31CxJ6FnYokNWxFoxUCJfq1QQPFdf8ZK9PaZUXbSSGV7KoqKFFuiwurX09VVXezsgMHSY+hxb9hy4vGSAuoXFqea6nTSPneTqEyGyiffY0VDjPDPWoyg7rd8rdGW4YEA==
Variant 5
DifficultyLevel
627
Question
Lines EF and GH are parallel.
Line XY intersects lines EF and GH as shown.
Which pair of angles are equal?
Worked Solution
∠FMN and ∠GNM
(Alternate angles)
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Lines $EF$ and $GH$ are parallel.
Line $XY$ intersects lines $EF$ and $GH$ as shown.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/10/Geom_NAPX-I4-CA20_NAPX-I3-CA28_v4.svg 220 indent3 vpad
Which pair of angles are equal?
|
workedSolution | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/10/Geom_NAPX-I4-CA20_NAPX-I3-CA28_v5_ws.svg 220 indent vpad
{{{correctAnswer}}}
(Alternate angles) |
correctAnswer | $\angle$$FMN$ and $\angle$$GNM$ |
Answers
Is Correct? | Answer |
✓ | ∠FMN and ∠GNM |
x | ∠XNH and ∠YMF |
x | ∠EMY and ∠GNX |
x | ∠HNY and ∠FMX |