Geometry, NAPX-H4-CA12
U2FsdGVkX18ShgwRRBp2p4tQNpWpVqrsDcSUDatA5SfQLzo+eZTSIBbzPSKQN/rYrcyCzB5kM63GAmLsmW0ByX8BHYoCgvisDMW3FazbV8eS98fexc+P3Qz2xie94qesKMU1hevNUJYumaKRiBmtQe9k1jWOEJcH/rRnnq6Pg9hrmS4BzmR/hhg1r2N50t8Hq37GtAli4ewD/yvXWyIXJC0RmqAqY84Wcwk2TY7Wb7IB/C50fKhR/k/zVywg0Zco3cTF4dtWIarSQJbSzrei6+Qhebpc6qZJEb63mhfwWTau9Mxv7SJQcuWO3wmW866qp9/xpoigdEFNPgR0Zc8T12LM8HINf8VkvkvjjK0jah/ovDLqu90Ioc3efghA0Ir9w2p1eNb6dQwzV9QmpNak/lw94IllJrkxB27wLJ/V5hmGyYzuvTeKwc6aRJJGBm78hGvRo2TwI5Lk9NCC8qD2zFvKzk1tIN10LlYVoKxnp+8amNIt+2UkEsCeQDcpclA5qhKlF2XQEnQDAOW/uZiY+sxmD/O6rHbqDKSmDhk3FiS30SfRvYnv7VPQ09/ZQvEijWZgrFUaXsBeTPSGVkdpzZF63vX/MzqZ5uue9xCWxPE4pV4h12Butl41JHSZ8r1FbCzv6/jtx27gJ76B+9C4X/zFNDR5q9wgdKozjCDs/EvsalbnhooZnZT3ZCBkeVJ/yAfKMuulZDIF1t/ICHR6RpGqO0tSOWQ5kHhKwVKKGw1SgcRXuTBL22gRud9MTdLDl2jq0hf95QuYnYYbRzMq9yuOrZh7b+iYoUvvkftaYFww8FeVmV87UK1WFfICB7PjlfxSAaTiN5nX0S5N0MR/fPulAy5NdM6OV49nyh/wrAmACeKACcdpr9nn9BeaJjgAfOtxV4VfAzhdRMX5iOGJ11/bg9u+tee9JYW4Bx7c6Cb7V9HpDQ7G24lw7ElbKeZvpULhhIQHFL8gXPUEYg1m/CzFWbr+ZVasR/W9+ZltaY2sctUt6gzPS9F1uXsaeX32+pAbCZmx/PTPBvldRhWcbEPC8fC3waUAK9x8XTfwgNRpAYCwBzrvi0/z0Q1TLHgu0zJvd9HmTwyHJ4RmoT0EbA7FQBrQtoIatnQoIM5zuRLm3IToMfc1RT8wkdybsRJIaQIiCrGTn+A+v6sT9qEL+zfvMeYl8pr3dC0zHOLK4Rw3MJXfaQb6XTpD6bo23Xbo2fBYdxsO1ngMiJ9x8Xn/b006X9BqnxrXasDG3I2G9oqVPbXhXZcoyZdTjVxSZTQ82T5aS6QUOSIefO84hApmuUqP0a1u/eixI6Yyz3C04keQxHuxfgf2ABxWWMssF1b2BtuNnoeBDz6WPWwlsKku1SjTxHV2LTPNPu0u4J3RmMfcfZsf4fEVg0YBZxcrXC3yHECALVX66m/K6DJ9kt1MbfIEd7L1EvEuB+g0K5bvRlckXIIW5xBMAIR+f6Mk90dbiaBvfc2mPUI4XQCDC+ETedY26SGa+T4M8oUP1GEk66x0RxAsor07ay7ceawGGGBC2OMYEfM/QUwwNn73fWHMDMyMR30xsRmQyATrcGJ2BOJzm3zcaeMPqgUm1Fta4uuna/gReOwQkExlvIxbVy0MvmfbF8rvJ0cBRVFKW6GfH5udrkQT+s+x+uS+M9cWtQfC0aVjzfori9n+nUjksyBko9yQTKPfaCzC39TH48PLWbXUE1s2UBexMX0esJS5/H2G5WA8GCFw9xmLiirenvLo/ZeLvkBMX4pinLC+NQTThUgrsSXZvld2ALdxXxg6/p5nIcd5MXqeJ3YmRokYzSBiN8WZSK7QuX4MHb3Fa8fl29iPmqUTJSfU//IjcyRzIcdH5K2VX4hueEWNw83EMVl4Wl/HcNxTXrVv245mTvX9ev7ff0012SI1h1hxAKTRIzmlrw2DxOl0RccElNQIP2tSi2Wo3kaEIDNmaDoscH/pD8QemkZO6aBlKM98GG3hPR2I+0FfTwAn1IpH4Td2asH8PdV6njGM1mlGY0yxwSsTAR238Cmjspqx3Y0ekUpDhHCm8UNnLWkVSTu8d9BzpFVROVxNZ7Ojboy3nkGphwZJGP40YtefOVZY6TyDiTZZhEFndwr7t5KShQ3buhY4aPGsMukBN02My7SMdHbsetKZimtLeXdgpEnXwC1GLmaVWgUpEIm5r2r/3ZYelP/FdbJWpxRZd3Hf3BUineFp8A1I76mSqeh8HCZzXsRJbq31WZSn+wtdhzaGspLF7Xte9vEmiABIAbGOMYNwg4eFKqOOQyWi7Qz9Vjs9txc5ItNv01j7RNfuu94TKVPXMGPHy0TkRH5bTksP4jLpdiP3Mx6YWTu4WE2Dqy+xEDxy8oOjPUsP8bagvk1RXgRxoeD2wxmpy8BhFh9m9l5ak8KcuNjV7OAUjjbTApw0DYXmfUZyBQGB8/46cSCAQey2/KbxK8uJzlyY8X09l82i4LlU4+6eCV0EQKisFl1FQPFV0O62HQojkyWzyK9EtfaDSwwemh4a+zGRmo9DQZD7xW2KPHJTK3WPFVFXrMqZfg7yRLlgE0UbFgh5QVHyOsCrpNhHSWJnyHMbA+5a9fdYsPf4XNqBfxlWNJlHx87uXn9HhEB+VygIHke/STD/38xPffPw6BjjvtVtuj0qCGnSnRIT7oOgv0mlOnMdhIr3Ju2vJapQSbWsU8jIDBQi0L6XksOZJV4XlyZngRBKdL8xu8S9ieuYMD6bZRLylCKgviTVp0werw8P5CUTfBTW4XIZoo9FZiZyzWWhe0ClB0wZZfOrWlD+Eo0J/thIseW5wK7ZOn1ht3nQ0qtDJnCmwsA34AUlTzRxjjlIRRd2bH8WJTyeL7fzjsy3/pHBGNFsSzJ3Cl4TSk1dBPn1v0jG7sVPZ1akfu+afLARqobMnJ0h1Br6iqoEx5RIdefgH0cshFP++rwgXzUNzOrDf5Tjc9I/GNqlwDCUVLPcMK1tg/MDKzlPO5VcABdyyyLnCKNDMYXwBqlSZ2NNB3F1pGYlFG5OiFX1fbFyLoTLTJimmI5qnyuPDYdzby6sQj8EXRK209UOIrXe+RrunMZkvdnW41Fgk4RzW38DlhXvJL0vQ1hWa3YVlO+PBWk3nYh+LniRO+JaQt6BziF0y64OwRI0rvKzzDbFUpQrznwnGEVWyrdKZ9SFZlE2RAAAz3ch/PWl5Bc5n0wjyCANDvP1Gg8VKvOeXjAtz2s2w0FD45N7G+eF2dw1aNmxoGTIZkFdp7jyOe8pdbOyoxGCC/j655JrJXzP6ZWyHxcNalTuWmRjXp7s9ytrNpFwoE6QZK2kFgTaWGYvjNIO15UIeT+DLbIFD8PEaqGn0yuCl8LrMiPlCNqaszjUKdCD1eQtPrDOnfC6tShEFzY+2t9cuv5MSecLzI17LrBOEywd2F3z5dbqSXn0RjEL8eAlkSQp9WfM66Z8KoA2LemMdR507WGop8XXdq6aW6UMipPZyA4O5sNtMFvvb5WOzDMN+r+m+ylj/IcJ1eBYsRd4KLyBFVPmyZTuqwdhVcwrkepIWGO6D7hc+RgFSqts3lahNtoDQY/Se2HF4S7GfyhDS47s0qYnNRJd7i+7pir3nqjL9IOnrh1ubDcgdqVYJvffG6i0oDqkBVwkU1M5u6j/EVXT6X1lsK6/PENnNMtgtqiFRCm8ki+jngy/qanpY8n1AJd5d+0nedL+DS5x9AWNwfNSKbjAPSWS+7dJAnQzFv2SLUyE8nf8rEt2xLITvcY2ujRsPUWA2goNjifXtg/SxBpnDXO6tYCJPN4RR8z7ZnDwAmxMmz0oIhSwvXv9P/hNML+NKvcYEhysf6fr09FrBhGN+CNbrzTrH6SQNRQqoQslu0wQiDCtXJj1Bzh3m/XPrafjYRQeMfkBlsMOYvWdyOtWzRkxn9Fe8uhzEcIjEbqLnfcoIKlW/nk2gP5TbN3OeGin+JZFh5DNJqcLbxPTvUzPUhJ4cvWtQjiK6MUZir3lVZg+k3k5JJapkYQnyBC9ENEndeYC+7QCyhiXe4lkslF7BQyHtfESdnPUBP3WAlafu9Jalr+SBagnVpfb7y6hyq3Z03JTSbUSv/3wgqxQjjgKZpFjaMTk4R3uE9HqJ7CF8fj/xOvyuFBoKihX/AE27+z3A1GEtHBTFoeWBOOPwDWqc6WOcOb6uUHSeKHRquIrD8lmrQ9VX8XCHaW5MaEscrB2ekIeIxY/+s6hEfUNFcRRDpgwkZ+doK22S/e+kQiHp5FBRfH20UPUwJXdCVAoNJs2JrdLKQsmVuf/JiVfnQufTv1x8SUDzFmR5JWa4SDo1px23hXBTNveB3Y8QUBJdKhGnLKtukrRY/ZicQRQjD7QOgq0fK+lj3SSptEFjHTpYkwlTUet8oSKV3PLqXGGz/JGtg+fcQrl9ktmHdGwxRBOD1VHhu/Ew2Zsxv5XnvQnFvFbibf3hhSUD2dBma8rkJJnS72+5ah1ZaDp+FG9KlQKFE9ISiFYTCpm6SeV6KZypZJPIh05/Ex7fP27cgKFQL2fm8XXoNCkiyvAQAUJnnJLzqGw+ubm7CLvot6Pwyo2AjLosc9ycmFTonyANmhbIitasK7ipGWZ4mekFGVPvcRJkUj0hcvd1kV+AY6j02An2g+kWdohKEuRMz79l8FyimU7F0q6vjx4Jk3nrgqLqA2dBynuuqDCtpOJSiyLBZaEydgkRWDr60oaMElLrI8GKvKpEjCZ41mgFZTCvCBj6VbYD6KRGxg/AzY034H+hFrcjv1qzwn4POUqfVIibxNy8zm9DoSJAzsypkvKOoxR1OKmDmJIyCQ2TBYE/agnhAOeYlZAaKtYXQNxtnRfvgT2bi/7XFExS4VqGdjxv9ivER3tqi+aITof0LlVu2cWC6awzBukptyqD/STjD9InFjfbw1u1HdjmUlDjMcxIC+JBEzRWn65tlw/uN8S24XiIN70eedq50yGVx1/j4T6ZA1OPQmDDH2m/lo4UIbRy78l5r6F9qlhaDRd5WcjPxvtiF+Q1nfehbowjMl+1MZv9fPVfCJusq8+fnxt6zBRVVoJtzlbmaLqr6iDwLHBlk42WFZtpC/drvH7NVKnrX6cq32XjWHu+avUJXw8gW7RmohFAOqL4O9ssUfYanjvCiN/p8oW+NpdpKNlj4zJe/hJfSc0nu/EFr7ZaqPW7yt61ISC7YYDLeYg66dum86tV6fgojpFRioQyfue41SWlGQrGSR61OU4H5d3DrzmzKjVn7LXuBY+Mfs0wzdPZxLBV3cW178XHJ7B2BIq+ky1T2Wx7c0eX/UFdadYfsqBJG+BXRje2egzAGqylIuBplvtuTgWN0UyqLHErpynrSKWmXeKut2ZI8Nzey6C5ueBhVlzWVlgIwsDr9Mva/OQjStSoWcRK6bcXIUY3fTX5oCkYTvGplQHlbE6Jxz6DDXMZM22pqRz8RQzwOqU3r1V5N7LIvLcTM9uS0vsQMzRZcJHfhTypT+vv6UToIgGFSNM1uHE81S1PWSVkWI6E7j9ZRYTEB4XZ6IxZT1XJt9gWeL8bEnXd40mJ2ibYXpgwTUS8RzBgmy0O41Fy2jRyvi17XqsYvqrK4BgUKG0SOqK9ihHXqDUDJctxbQ2ApYnPSVb+uMRV4XA8j1w8YhciBaLEDE6IZIKkJPDqILxWeOEbV4j3hq+Fpww/W9mS8k8mZq/4Z8QMkoJgZn+fifkBl+9mEF9dmn37DYTDaAeOV78ER6OojrkDacFPOyLQyjnIjMA7j5xRcj1YEtCE+J7g+MgpuPFwcnwbhD3v0dG0b4ZXroJXzQ9QV3IqPLZNeNgWXU/aq0V/ZpwNw7yESjFHSBK/bAI5CEobBnGqHr3gxzSKsYU/PpmWv78mc5q0yRkN9spS/y/TpbOHvRK0FHb92Zm17OPJc3afv1P2bvHuahvXX5hoGC2irh6HEq7NY5JYB7EZw/X2blGoLQmXsVyWqtynGb9zJ0rL12GEb7n8q9Tc6KGMtb1Q3J/IAlKOUdXR2/SHJqNG15iZ1d2MtBxXaF+J+jFfP/UsJcfbeF/NQ7z0xcDIOLpeZSTALAb6fOWqB1Uhl4uP6xNd6tifTJ7gdcphwV5N5OmCIBz6+SiSKYQxy2gm1z4a19DdfK7vJ5/y5tz5dxMNWV37YG0SrYJPR7+jhjnVQOWritsWaizIZFqUUgOuMlXs+oRQqpyuWzSLXt1GkQD1VsEZN7tg1EYv3zp5/CAU+xxZJ5cZRcOSBpNl7VveaQyUC9ontKcPhvu2hOp8Yn8P9FpUYIa1WcxcWeWBlesPCQXGfeXpcss1T5I8Q1C1cNMeQ4nEvDlvmKeEjXAKy/marsKRxsxl+sNUCREhc/wwPX2sWMlgTDPX+QjH6VJroAKI+nsE9JQ1WHORgH01onqVE7GfNiLYhLAu6KY6eSuISq7A83YWyLFgwXbxLoTNHNkg89qU/G1zdPLMx1TR3Lix/DwaUm/sG81QBgMwN11P1F0ayaohbvOSs8HI0LtvwQVMPsDiGLrNYsMfce4j4Cz2UOP8wcEZZtEEIpm2FLlTnY50/oYsV3ZktdscRIUJnh4PPXBuKHUcLlza1sg7efEOj1AsK27rH8BsQjtkJhqWXPTO3RQx/8iTJtpiSkPmCqll3NR2adVwRTrc0kmWA+pZEsalepx7n/ypmos14InrmnkY4whULknSdd/qDhUhwppSXGeKeDeVs06tcIaJMH9BWSelHtTZqwdDosTZ5pOMorX5MtWZi2ZC70MoR5lapQttZ3829bpKV/IPW5zKuUQXBUJWaCEGbfbhf1AfkaPO7s+GysIMRbj41hy3+W3KvXlZGCyVECT4skDwt9hfbgYT1TVDEic29aF6YPyj6TtrPYw8+YfGc9uDrIvtyUgdGTlVXUwYoerwbJBc3prPj3V6iccZob1XUqNoduKcdOJ6KDvnN0Q3Va7Vr63SCCrI4W0zJ5JrLGOZbDrT6A50xD2c1DbYBEbCahw1gF2rUwO3+j/ZIG3Se0h0Os9Rgv4zBb288iYeewtCyJUIYqalVA2V6ykdL0AQA6ZMCxkw9TNDGyrlRXJIQ5kRWtgGIsQ3f+7eftT8uUza+YqBkJWZ88HY9jITQgk1WRRl+t+HCRepMB0P/HEewCOEKPAonSeyzHFnDkEJHlkLxvIPzkMWcpa75SMNqwDFzpUTM5SvVjv9BhpqQPDUIKVDJVfkrOamA5TDJ5pW8E3Qizn9TxkLDYy5mOYfjfUrFgWxLPzuCfMXrDpf+sVrAcvY/BG4gwCGHOutOoG46FaGe9Pk2y5StTZKqeZVe5kd4PUTYjPlYV68edG/ZpXS0fZAYxLhfgmpdc8wIZmYp2ywYRgQ42AZD0x3Tzcww2i47m8a3qQDLfbb856/zVzT0FgemUIJjbOofkHM2Ud3PLrnqIeFkxheX4Rr+iiPEylrOUfFANuf/1UQrtE3NA06MxucqH8T7+DFeN3x13Rb31MfAgIqHi9+sRw2Htfy8hqIZuiexQItkrEoXatAq2ye5Yzes9l509E5xqScXnKw66pTHjad/0e1XEaVIbzLRxp2O7CIFZZn79zehouN3kgx+JX/GWflv2kPVEGNFVFrI2QJ4bPbIUJqZYA5WRIuI+kRxU0j2B/uCcfqpYYaSahdHv5JIB4MiHJ0UXhhN7rX5pCNIzhYnobzukn9YSZA1a6/1ByCqs4x+zHtTjDV2p8c12mV0hk6wMa2VZYXOIfZfESgY5jVdXAERAhKh3lpJ/Fi+kgZxbwerLLAch0xEyKI0C7b7F0/FQxUbIHdn14fhyg9eeEQu9QXaHns3bV6yMLN+WypSKDP9qOi4BsvmB0h9AJH9jy3/nzdogMNqxM5x4QsrXbcYEX6h8zsvlrMORYaZ4SaRREEcFfbkcXMp7+yBlwKuZ3fIIFaPla5Wn3AnbXWiU4IHd8wHtsolLAq2tCF3OmocFs+o3Mzht2HYTvNAu6Ea7Z5JtYKWvU7j3zErfzQEg2BpDbkI+7mt5zNgIIJ3y8q5dOLz6rtqNc7IQ7kFSXpesIyOy+efIMHDgt6/b8yGPBD6TcDdsODsVi1FLgTvBUJq9xMlaBZl1CnJB5B/ii6jl6wZ8v0UlkqSGapkoAPaFn3Z1mAAqjIVVdJoBGCZC8JU0/+MQ+ffGH6x2RJeQt9Hhg8A/4umR08NDqZzYmtjXmQ4ahYp8Yl3v03BNrFSnqo/sr2u7xFlpatm9gdq6LmT1aaHaKYvZS1VjgYPgHkgAaUIw4NTap0R/xQmHIHutGnLsOpri1kUYiV5By6+pFK53PmCz0kZgtO0n/nTOCsZyaJUORioWwEGRqB9ExQecXqD5khehaf6grL/T6QRwSnX4WtapUkSIM0foWGXTMIkgSKFMjwWW50BPRaEHLF46EPE8T8G3vewxBqR/klMod74N0rAAijahSt7sMRKNqxHKkTrkJwbCXT4EkXV8uGIdX33Zk1IE59cittTyNUUluvvbIh5HHPyhW0a423vKiKluh10TDUALFlhF+Yt/G3S08xJUqC5G/dbRhBr25fDmSsspTqQHTh1Lt+rwjRCq+i6UjaFKRM4OXuqxG0E2aqax8oCXgroLs2B1BxIAwMgsufS2IORwog6gZydvir3lh4WX1UZj7wOIBf+I9wf+2ufIUk2klhuyL7ZutdhFt12df38zpv3m5esTLP2c8he9lnkPMzuSMtsWRuaINbB2YJ4WB4crvutJh/9ImtU93AQ3EgpXWDqqgnTpuIKnZ2xdQSXxmfP/kLbolpcMdp39gvfsN3XN/yPitnoaOe71cN9kHEqtlJN9Xjbeyxn56DlEHkBrL25lGzkLrIcOwA/7Q6nxfA86UnEh59J+G0mDHHe4GtM/ocdl2eWlCuMz8fmmKVRr2IdWbbeQ0pB0nI0BLL/vNM8w0Gjz10PCU+hvNOsMPnhz8Vq1uV3Dj8qFvCkdYOmk2QD4ufXaJ+2Prf8bVUU8HmHJb43fMUQQuFLdDitXNpwGAsWNVo9waTMCFdjKPdz705tIIVTMJjqKnrvhvNoRQmnHIs63m5TDZTkbPivxtDRoOY+zfUHh3CqTg9qYcs5QZtpPMZ9SupbBxkDZ62ehgc61UBS+B+gBkdY+eeMi9JNk7jBnATV0aoygIz68udo2K/ZOspwEtvuyA0FAmOu1UKniMnufV4FW2RO3DpVvUX4K5rXOROQaaFX/BgYP5GBqY5tKm3IE/NgaItbZMytaQTNIIAvv+NeHzbYGlxSgH8iEU6/Tou21NnPMORlyiaJ4+/nKw+5OgsGzHM4tGABzvufIgvxeyTnnY5ms5cvx5y/t5dmJVsCySlKIS69KSG+gYoLqkWv/jxP1qlGYbg5VjZnsLEGNFmqS3/MhyrzRYP55sNeTPdetuyvLNHes8lxfWADNn/S6molXhKFQ2yFiZ0ot0p2P5x7KQErmBiEs74aD743oVvL5NKRNisOpPiSr0QZjWiDBNhU6+BiSd2Pcs1bz5HdJon0ec91vEqK2p/lHhl+XkEwZmmZHPvoGGD82d9HKsOgja8SUqEcPmHuWuWtWOnouR6WI0Mdd2dfAEKbZuLqKJnAqXKoYfjzb3Bhqv3/b51ku1fMHApLbPJHjKQpMMJEcwPxhLGHlwPWMuznd0wzHvmpqZ1ci2BGk/JrXZsJO5Givo79++t8urmYSEaaTQaohCDix810mOzjkb3SKguBwsqLevQQpcuDpda0YC2STXzJ9uzn1EcNapKZScnXiVjnLdHOWi8B1vm/HaYj6iwza+JkcEpBuRZrNBe/PYGdvBMkZ+BoJUT4p/aVsNypWg74GogxHT7Eqs5mfCmtKAJm8vgtJLP3c3xHb66CZtktK+ZWUAu27YmOJRkJy9HnBQZTu5Tsa+bI69LagmtyRZTE0IWoIzPL7EE+65pYTR3OXL06vmq3ZKF/aKwwyoQJ3H9EBo0mGhoIVAtIbwyevTChmGgzq6jQ5RQSKuV2dnmBUPpQfhFBWCNXEU/DcIPVhma8XB6F44ByTVgdO2ESrfDSDNw2uG28lvFl61E+yETWXtzmIBkeBB804lhNpNQDJQt4tDaY3a+F8HA2PiIJ0+7RwnsycRTdig7VSuild1HrE6Qek7M/cSp9Do8V75aqbtZREohwkXRVYLrVYTeSkW/ZCyGqDuOsL4PMZvA2KFz17f1kbNzLMKvRl09NEVVnX1+d8++0MoLFeQAJhsenwbgxa1qwRHR2BBpO3sVKVajLQYPM13oBZ/6OeGWQlNbqDm8liSGF4UuPx4QlS/ABnuhzkt05rxl/nBeDd+5BRTmyRosuN02zU1D4U0QZSRUCvKwb3Go6DnxKIbAAWnBJYibVna5GgHaKYhAQeVR+IuuRRB2Dx9LNKBAUx+NiwUg0imHLwxwsso0m4xyEgQ9RsYX5bLhorEQ5nqidrdxWVv7wO6COOA0JYQiH3zQF7L1KbLo7EE+JHJVjx1l/SkMtFnKTgV50Nri29idS+i8/c57jq3MIMWkhtebTEyO5v1PSyi5QaQOHoKxzbpM/kxxIUGYnVbq/0KeNjUd9jbR+u1tpQSdJP0V9yqi05nSZBddUYwgDpYMEALY/jRVrHYT5aXog0L0k8w1Neq6WrBQIovEJjW6BL0Bqxs5UjlO8fv7JCvTccRSngdGoieuhjT5gZcaQcRkbS3ZPrdAIJa1E0pEEoNW3loi7YEcpgqZ6AYqAxDLec3JYvB5cKISiC4XuMGcd9VBpiFIMoKIyVJacfVIHwoumHjySN95rA/M0jUrF/k2Q/rShqq1REd9OkM/ZmNzYD0jcmk3zWXG7coHqoizoSfcxaMIPASFUixzFn7b2GsJHVHLOCdCBhNVv6Jc2zbM1XBM9/5v0CC1rDN5cip02XJ8tBdocVj0aExRSfFN2sXBen+lCNA9mYWf6tVY14lj0wCZu024WsscKb5IUpW0nZ9L46h/Qfr/XC5bWMJ38gT1Q1wxxiguEXifItrrOdtF01635q/gYoAHMvyZk4RI4SJSmCL05kNL5KgCRgmrcwCHhNAnuj0av28Rg1DrQmfxcB6Y+tz6JdvHza50nn4TzjaXJy1gvrgCe4u4qrKSLN6SRT1nO/6XWqiQJ01AE3sDz3CA3yh4YUS0Io2TzXKXRe7CeLNSPjkrfSFC8XfOvg/sN9vU+mDhrQd0okRBiHl96m74I1abod+Z6msf+57jHytmO6gsKLQWNzxiJxQ/OqgRb71NnowH6ERuBSCgGWzC02jSo2Xst4uuruSZIdXvxL4LSFtZEvo6Q7B7fi8czliNlP6fZYtH5TFJ+1FAnzAjpJtHat3rNfze97xYW8ikJ6GXcgm/Lmv7DbmuNB8u3sczAa4dpZ6ZvPGS64JV3muq+pXb85YprdO4iPVGqIxKD/k2zmgxqQKGEfY6ibKksXVaJcqrrNO2uMeCZuY2J3cl8XqPiLVmcS8xTnXZ6WZHweAoi2Sf5I75C0jXCR7X0NKB4PGpTAiH/DGHKv2Z6Xys7tlzTrsoyDltzoSfMMP4/l5ClSq/OFVHcsuDAXOxX2amvYAl2wji43yETv2UvULOtE61mJE07vfda5Q18w2Gu3TNTVMH9EPyunkUGJqMKU7U/Iq/GE6vjmUzVhzhRSU4iYPDQvHS/dWZuqauLfMGE+P2DyeoEBpXysfOov0VP7iMfryZ1KanfKha9smtOiKbu5Z/JlPBR5dOaUxdApQkIEb0rCcPCF8GpBX/EOFIgKUIBvU96RvTcmdNkDSjQF8DGY6cBcsQ+7nva1/HOKngrWPFbJa9jc2NojQ
Variant 0
DifficultyLevel
588
Question
Triangle PQR is an isosceles triangle.
What is the size of the angle ∠PQR?
Worked Solution
Since 180° in Δ,
|
|
∠PQR |
= 180−(74+74) |
|
= 32° |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Triangle $PQR$ is an isosceles triangle.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2018/04/NAPX-H4-CA121.svg 200 indent vpad
What is the size of the angle $\angle$$PQR$? |
workedSolution | Since 180$\degree$ in $\Delta$,
|||
|-|-|
|$\angle$$PQR$|= $180 - (74 + 74)$|
||= {{{correctAnswer}}}|
|
correctAnswer | |
Answers
U2FsdGVkX1+gJ0pIjhuDBspQVbv/A0LQa6MbM8v3uxvXSmT8vD7Uy2jQyo5tvtCrcevgIrUirkUdi7X6Opd9CEIK+vyKq2EUuscO1RP5WfpryjzMvuqKd3MA115o+iuqJnpbh0Pbd16HwAqP19k1rFzCutbBjVkJ+0pLzluAW7m3yBZ6C/ULNZmhDqq6NHjcmdtD4feRHnXz9//pVu/OZn5QCDxbbYtzux7km6RH/MPPYaOM3Wxoz7lVgMI0CrTiUz/BBrztfRljf1jWqz0YG153bfg7+cRpZmXYIh/vuIjPEpAELga3RJ+E020waHcF7/AC6z4CcFOfzH0mJNzWvEzEzNzifTR+NUQhb2IwElC6yt7rzV2ybFH/m14iu8+eysc3+C9quj5QYk1ajdoObsThG78b8AZKvF2tW5txIB/QjPcjCnf/QPmGI15YFJ3l4MVhJFGsuy7OWjRqI9NBmcOHRAnc/nwZZNw6d32hAFQeHWxQwu2QNa9P9nGHhzolz1izEk+Hq1gD5zPdGfE+rwXkOMwazfL2gzPr6lFOg1y835qlDnUvv9gCxTnF++hrGl2AE75W1Nc2nsmeHv9AEhcDCbYPJbuOOqeyuoU2Hzt9Q1JxoWt+5GWJ0hfWBFKWiNb2kNHnB4kH3Y+HEoJmbJrxUaiTN+J7dJIuFC7r1iDkEsS6RhP1/Q6tOoEUEkAXm8/01i6rXfGLtan7WHgEu8X13o5SE8VNRSzFXo6SJWhw7z0VT3DbiJ9eVMXXHET3aKtwrK6aegLzfAjNUDJb3JWUq+6aFjOb8Hn2NMLhkBoxaMdC6LPJ/adPuYkgviV94kj8xTorpdcYbbuCNh5U2AQR5ofSJ0nBwkUrcHm86Tgi/UHzqXVK1tQdfoMZaLIXcFMNcXXqudeA7klEgx6l5XSJrXG0pj49xeoVQfihbJAp3H+EnlR2czceQ4GW7KI6Nb8cPGBmqB+1l8c2d5xNEBphTI2IvDuhaL1z5oiZ0I/JC3kIDKL+4bGW2a9fSoesSdsmTXj0Dt3cE6GcqfSgVF3TF7Q/1+3Nqnm81jGj+5CmSElg4s4PwK07GL92vgNvRnzzkF95L3ToNNJguQB60vmtMfbHBNRSd3yBlMRKk82ct3A9hbiBlaTism3q0ZkdiiA21FnXeoDYG3DL02Pm5V4Tyis8uYyMMChk/l3mR/8lTkjPVtaPRxZ0dnGb9WB8wIPvu1nE788NJ6F5zt1c5p+S0PyKTTRF40KURyxHjFapCfZGeKvIsqjvepP0yG4RfOMz56ZJ8vGoiEnS/JrI5p60J1pn1Mn3yFGvx3dUcZBAIvq4sXHkZA4XFRoEVMdidDArxw4CSvwWeUhmwx2Geckrs2opG3iaQH70+R+vXWBIrtMpm1nD6Tbg/JKmoK+J6LwNNGXsKQg7zwHkkkVJN3xvgP+8LTa+1sCCQa3WnVIPVYWn++ocILcCTb4y4f0YcGJNXER0WYaJm7aCA7Jqs1lmaDOplvioKim4THtK9Z1LLCHOsk8ZFzbnnoBHGUweZdEfok8lMoPKuIHr/IIvbGRamJoXomU0391r2yuUyvepHDnmLFuULlAzFS6P+DGT5SPGJOC6IbDRKbe4qYe0xzqmuvWZZRd06bktXpX5FsAGiob9SPQ5ajHTk8y6ghvE/4Lws23C5TCMb3pX+8hK7mQjh+LvjKpOAOFbRa7RlIQpw3B+rsVpSP+hSGvllSAdPaeg9np4KSBBZExpU/Kghzjj1WGGEFy6IR3734Gh22ufy2Af/RDVRTCTXVeucZ3Y1yznX3CbV2pV7j5tit/DHDMu2eI8PLQkPKbgRy8O8/2RzaMyJqWqgtC1sL1iwMnI7xcBcj14UlxpcssfDLnacgCRwhtTU5SEVHDQfPTYgRVfcsZCEpqdwdyFcItyrLQwAAd0ZyhmiZkbgGhie42eTgOTxCWzl0SyhF6O0RkZ8B6Eplf8ZenP2n9BI1QFDEs351l62Wkcf1grEfDZJ5YeZfWKWQ9b9A7rivKCP7krEuEm5lWx9lihCCh1KeEcV+RoiS09XrzlBdlTdfpvayI4Z0ql2uz7MT+PYBGnauGHHiMs3Qh2KMmJgcGVurGokSZgci5nuFRD2kpET34wTBkzppHy8kU3FJ+hBIyWgFssZOT67dkL+Uy19JbOCCYjsHHWdyhK55Q74w+/3/T2rpCtJMY1cUM4Msnfwa/eOB6GtbL//cWNNNEq+zdX/YjsuIBi/B3OAFoCakV2we19uGLWg4hto0D3H/vSAF+Cxi3pUaSm13P8brFFWQhDr2bk4zwND4ojGML8v0yq7/pI2ImTqoFG7K+wCPiL7huSUf00Fqx2x0UjA3cL/rm6BhHnQoOxf56Foe8wJ8i+TaTz+vCSXyW3hgUgJ4E8+zMn2AW0eo4qV6/xKXCqrUWA9abjY4g+2rhtni1Ubrwy/19vF/hG/Er3zCI1mmIm26xxbf6nFEqMFlvprsytKpgf3xwKKAt/U3WKRdCB/rxX8gqTYVqxlTVY40pK4luo0ZgeaQSG+DTRe1vYr5Bzh/ZcwFeRZvJpyozV/qZp+TlfKZhm963qhuMel1urEi7CeeSXsCFaXaIlpyLWdNOEnap1YMNv1C7RQKGXPHr55JmropXL6t5MhzWDjv/bckDSm0UIB01mV+sHz//8ZrVcRagh6s/js8VCB3eCuC6mxwHTGa53u1+ZumwIEQ41x2PXeJaYcETzIuATvDVuZhzUyOdJyC2xKInOZMjIBYYaDJ/eCmushvfUdhJ6dac+3IDyioJF8XuapCyGpXyXP82KCzvMxKkXVcJzOb2rDi3IWgqWAQJf+0Fq6u/9uv93i0ZRBmzMyKI/jxsAfWg93NZdIARbBQKKE5MQ0Tsrw7KfUYp9oXlzVbtirFvH73qPeXB8sFQk2HwlLbvGdVC7vNI1hAhGUMBFWJ8QWH9wuCXR9Pm7vQ66b4/IQCLx1TDs3pTj8PNguZA4mEUWV5U/KUVuFECIFnzuiImYiBztMRXiRwElsQxQcunBq+jPhwWvFW/XZVCG8R5sx8IhACx5m7VRsx2vQZg8eoQb98BBmmcaBcBYbYiGpXVLkiN7WCwHMRrPR6bEsbf7RY6J3g78vN8qO8L7z9KZ6GtBmv5Ux2BfvPUiRv/2hXgO3QIA50ciKTAT4MUBehLqtK8i/wpmYorMLSDNmVn2vuSUYAgheYgBETjbrJP2WKxKvioZcy14GPWbOrA7mpgq1kz3Ljnd4zQANO3Kdo4nLlDnEGVfWiACEAq+pmmoEoOsv5UFaTLVwEQCixAQ5BtpwsYSPpVZ7pMpObYDB4nEi/uGgTcARZVa2A/WbTG8EyeJrwtY9AeyCz1rW3H7TFZSTOdOqiCH6WVUok8rTT19KQqT0cZoPYbuS+6M2jMdIy6uhSEOLiKpqG7HWL2G0Sk3p0hVEX8AWyx6swZhqazbN7+qBHPMn/CYxIwwoai7HSxn7QwvQ8xrG7B8dEqDMDUa8WS4xtnUqCuJFZisixGdb8WCa06pVej9gehdcSairtuXFKYsnOM8Gy8o+kegHC09MPZEus/Oefe5bDrT44+jXLbLdxDiGpGd7TiPQCVWBHgfzYpBpY9KhQcH+cgxM+eK2BvltOArJ+rfu9PmjKnOdq2yY6VpzX5zAAWMyIxe/eQrIFSkEfb0BDSuzQrlMu7JaAogPOocsxTmN/9AuYoNXPDCdlRJp/OtceVKVPzV/AVr9Y2c8f6FWFhhm27jJWXqvyfLZu0L1wXZU+ahg3mBCNjsElAw2C/faApI6NY7Y0A7tyOEAflO6WZ5BuU6NjwIohyI88Dpetz/HeuF8j9bibYlc7C5vTD8y9UQgMu7L8fuW+/I3o1srPjIZpINv9rN+Vba3RyUIf4Ya1lJbTXquTf9baNaSxFCJQAByBcUMwtcNmq+Yc4DbkdzeIbXUmZ1hj0po/6KqqsBQ8oSwOZlAq2BAFekNAmGm2Vvc4ZynoOi7NHWzSnlqcGUZnFESAeGlkyNswBxiLUbLZCq9k5sil/Q91LPnaKP3KPQzUHK/w6gb5DPp/QFBbmu7EBYcNDnZ6UOI5TdAvaGAbCnwP4HrxQCCtffOweQzUahdO1oOF13uFYIrTlEmUS+c2HiSdSJWJBr0AlBUF0D9nZJ+Trlm4A84rUz/Bk6jwkhCTHNivtMeIb1GDKF4WIvWpeZEvfcQhSf51MmHuGzCwbenGhCYeW/GLk+TzGQVnCpR5AAnlNwwpHDjPOwO0J0+HMN8Fw/WRfV36jBY+UaEcOQ0lHWNlg1uYyNbrupm5AZhwmO2zB1rgt3eHq0iPwAD5eV/UyMeQG0cjbK6bcKVDGj8UfSDNNV2uk1mYs/hl2lWGRpTLHvp4ROW0Z9sVFUzxd0vqMWfwh0ZfrrRF4zo4HxGq1hq7I8nG+9FazXS7ozjIF17uM/Ur2mE1ifghFMlGZcSN+ceEIwmY8YmQ6DWyXMQMbOu3Bfhk81ufDDDE1MTBmhAX2xNWEhljgN+gr7bFZnGynLsBEUDBJmn0sShFOqRbCQXKG+ePPDVD+ZlaMxhPBYt7qbxsnJjWc1a36gDG65WVpCUSPojK3VHgZOAhN4oipwZcJ4y4QEh8rIcvAClmY1Qjc+V7GMewGKNWLbTI5Jn7WCFiYvOglylmWAt5VYq2fTx5c5PhSA4askbgfklaMr4UMbKGOsH/E0kE6R+DOy2O005+6wxp8XtMLVKDaAf/WwGLCgBce3pW2nXY1IwUhOqhHT0O7tr9FWAXesRhlFTzSyahHBtgmHcdAuiWNBFCT50LmWwmB2FpSOQVMhnQxJ4gglFPQJ7ybcvix/+9CttVo+pDbGy9mc24az0tSh8S+QwbnwNayndn8AUifHqEPWW/GGlbewra19BtN4hijQhVCWZyO4R4/ndORe+LFmwD9IlW/DDZR4uTI7mq3kX3Jc3jFXyZhR4xdF2MUw3TtDR0ddOdJjupUpSlAqAg89NKTpJvjYSOiEx/+vcbfLiKyGM+A/gC157O0SqEcn2lrKfdCfxyszTobf9OmFjy36f9t2zwDAcTViGtyKEt0vUrcFTZ3EkWrYVYvC/qdJ9SgPMcyhXCKNi7P5MUqh1ZOYzPZOK9AltYROmjNI8zwtNDMc+lWV2FcgAU075Sa9WXLosOuU99VJE9+VHRE9BfQ5XMtyS/bXOIbKr+NvYwHsYkMASZS39RCwHTeuJ3TDeiVEwOMZSIIcStlSg1uEamH039AEk8XGyBYubMmqzVj+8XC91/bIFS+A4fdYcYM0V+xvRtHCFNg76qWnxFQ/mY26rIPySW8QVYMBK8VScQE4PunL3xp7DS4QARdqVizQwuawgoY3c9lzC7iNnZZPAlAuYGMa4vfQE5uzY43JM4b3BEilzRhUSLRJkrB2p9wl9LGwM4vAY3wgNeM2nOg+caKkfaTFGAC+LfDDG0VoWun6szSHmwzNRTlooXFMcyCcX9ADpskq5aNNReiUAM8gbvVIIPxGfg/oV+OOFobsTKIhWPyfrvekAzLY3h7lqDfCHZmRP02a740Nw1tn63tlKwhMBYSQUutrS+rjGPe9tTjENh5eCPox2z+ZT/7w3JYnBBcVOovBnWFnJ+fsbkHOlaz5FDdEo1AvVD7j1lu5HQAyB1fBJXBuYXvdSUcnNZCbXxuk5jjJI3gJKVk7Z4O9ZtJvDGq4cDV2dASMAUvOLb6IqUmgGiSlOd+hS1KMhgqgXBCCFWi9ZDouIiiV2pasipWW4p8U4R1ooMRyKBFKEQ31ksH8hxvqmxJW47KmDFZ25RwaD+dONKex5lqPjF8gTLm7mdpqVJfs5qUxlLVDvSVSjRNOSjn6Tw+1Rf+gbhzcUw5sVtumACrhAliE96jy+5xelnYegBanphVEChJnzvkdEtpRjSXCOxIerX/zazhCseyzSr5hTKE4fb9CioBvCS7O280fGc9lOuqcj0ceM0dxIdZsekV1e49DvX9VgCwnwVYIDj+F4v7u1kPlDi56FBquYztfeEVqXbCSGnWYgGE3P2HHDAsVoY/TP2vSh+HYcEUtmo6qk0lxEj6SufgsJYSMQBggLL4ad4b0eNjN5qG/JO8e1JpBLJlyDaz/zmkgkBJiByGgXq+0q+xnxAwIVdfbq4ZsOOrv5WqejWYHidYE0d/boyhRWdRzty1FjkIS3gq+IZ7ft/9KZ2vHDve3cDWkQ6z6AIjXp1A4pmlgPGCKU6K0Vxl+8oq2qCxVlbzcVH6w1UZV75eXBqa5QxlwZ3c7CoFJ/NsBBM+TgxT/QuoFn4JkJYpUrPQoc3mRTbLzeHwn2Jxb9I8fjp9GZ12vXlnOkGvnC3w/XyRrZ1/Km1tm1VnyBBD7ZOUvIiJnpsU9xyuD4L/bUa/mb9W5Ibq1/e3/H7KTUDLmLhN5JdCBKd/gi4MqIgoUyrrO91lAUDTUiGy9KsagyJBxUb5QaHczDCnbtQOTpkyc5SXUFZF/ulG4QKeddbG9Z59S7N7trCKk84ZPgg/DrZbDVCBID4dMVHYjAteo6yWHnGTHy+fn7pBT8sIYI81/0wkej8Zug6JhXIi0XxOAmRUW2PYC/98VvDCNQgvYqvE7MP+tEKm8FUuZ9dGrBOZScHKbmXtquda6C4O4DOqFO3O3wkWtuXZnzSmTcQVADq2kz55Kr9o1Gnvo4zNLFKOogac9BANetoQPHckMz0SPP/W6fYcq0fruz0otP+AUjA/bcN7NVpFwPkCQhMAaEXvZSR7qsUjEdRJcq6tdk3xiITmigM2Nk9mAlvhgcKCLRthmDfqTXnJThiZQEdfb9yuJdQO05UIsff8tXO3Wo693RMDThlsEz+pityCtLJhAbesXkksMLtMCBr7wGu6fFB4t0UgDduOKQ5DIt3vOKLUijTEcvZvFy3Guk1wPdQEGfJXMr8J0e96gAHRrtE7azPPdkpizyRZzBtH0pPdsY4Q9cpu1z7wV37QPfzHekEFJNbJXwM0N1R31e/2buoanwpCqimnfxiZse+uCFz3fbG6Empb8YQP7fiUXKH36rLH9WdELNyYTTgAZRzhM6ZS751LoMpmHMvcVbkAvnCEjJlf6zEVbJP1Q2BEFD21bpqEuLl762CAYHYyWCjJYDAa8ztsFaxsdr6Bi4PoVfTIQ5arvGYfj80gCNPf+I5/t5f/KG84N/30JkcrV+S4mRWSAp29Jbka3L2PWF2nemtRMJLfqNfEuHFtXMjKRrJumUtycMd2ZDCGmc8f3KEFABGRg/T95HoX190VBiT+L4cO1g7Ruhvxzpti0K2ZVedU6LCgdgXYbGmN52RU6y/pAMoaXI7a9gvMw1WsiWAjkChc1nNHh/+eADD70TyvVAJ2LfdR4dW7hcEAbjpMK9IA2jmcH9D8qTT9EVLzr4dAhD4fkfRkKWrXagwhuFQWHQt6YyjYCs2W6IJgj8hwEGazmG8GUAEPUcoAtJr3jyVOEAPkEKlmZaUQ6bV4FqnSPHiajGZgGMSuaT7bkKi77Eojnqx46DHrNUiA0OMMPLnQP+TGLWayH95xW8dkHH+TsxX4U5QLQfgIbIQBinJl+FnzRrghI4a16oo1FIl9RRrP1YzJlizCxw/FyqudQN20wOISPMzu2WIwamyZb8yjPMM4GtrXbhbSEcZlr+uF52SBiYIJsv4rSG8PupZU2fYS5QxR6W1WB3iJmv2+BEcS6d3SmsmvMXpLenhACFrYdW9guNk5qeS0fBGO3GnpFn4QNIWpGOyor3zdtkqUinuGulG1VRTNi7Mwt8MMAGmy/ZbNavq8+6ZbecQ+LCK+ph3GTazHLMayN8E/kKuuQP05s9eXZYkdicI+b9fB0Q+5YB0aBZT7mEnrVwJhjnSoB2ZIVQY1TCI/M+K3YL3ehEAvzLsx5teJjCoGOnqMnD87eg86th/G01nBkG3gEcq1I5H7uIhrbSHUXWYIorFuofQ4EWgzP0mcjgeoal2hKuvCHMeHLtZ9Aht0BdLZx4TOhpvmA1sX+cufs+frxmQXILlf2d3+EZb3cHEKN0rBJsrZcTuLKyYCqoOpeoXkguo/zjmtNyQJjRZ72ihVPTot1OGGOtE06/XLcw+y1KpMYnmwWHkU7KgWaH9q/uFuRs2Rbm9QBgqPnHSg0XoPUYnG38rqqmCrgdJU6TDq6W4Fxs6veFuILsxC7LnSekdSNs3vJvl4W5Vctw0oIL5oUJ7UjK7vX2T/aAC4+WZ/32fq2XdkOl42s7ucwJUucOLTlBwpQ0D/I5B9hrXx9RbTY+p4Yq/cErTZcml+PT/AmiVSIvOfSRoyc7aku2l8IDAShJX9sYR8bpwjyBIYRPg8gyvgBsaWNEi7nJFrVbLPNE3KWaRbvYC3L/MDv1Hf9wPGVI0qtCHEyoJsCZ/JM6vw8UCruTf1j7qW4kic4eKem25UJdCenGQAgxv44Yo8GdWc9n98Szy1UVBSe3K0SGeR/YGXRXh4Rp2pEFPAxrOTDqRTxUbDQeemP+h2QjVjNF/CzwD3SMo+tAym6qOeYS/uiPcD3iyGFz5S+XOILk7Qt5hLtI7v/AJKUMq+eWugo0+r6YfzLWxhQhCybPOYB0pL4FGB6eJd/pH12L7M5viLb1+Q1ybNn/DHGbnmti2ONYpKXBzgeaj16r5GQH4kBUOar3HySr0oZ4TtWZIz7tMx2c198mj2w2H/ETg3hZRnujALifq1E92jmZLGe8xULCNwZXPx8NXrUqU3bHin4G28d70paYCvTDIe4abE+iood0ivVoQzH3I+YVfCeWgIb1EMWEwpKQn0VjYExxXiFGB/UKydX6ZwwtFEGVEhcbEObFUqm/m9kbUCbnSdCeODdz+LXKBSoiOxMq2PqsdBqVJ0IkmuorbTmaA7FN6vtMk2Kxyp86YbZj4S/MStl7nuwOaxrrvlSaN31RN9eT7XF+VAEHAyikmCNZVDklE6dEjwAZ31s22dXgBwJTx6f35zh58/4nlGn4zYzu5lbpjghkmKs+2WWLKLj3Rr1aJqHR9IsZ6AUcCoF1fVu04YWcfqP8lS6Pc7fEu7Uy2dJIMH/LCMbXLxN2xngg86WOdsaW4WWuX5ng8VtAosEUFDO8+8CbQ+kkVK9odQ8MKFrWIk1JoipZDFGbPqwyLRfPle2l/h5XFFtdJTwIqzW0eU+WIP9uC00ZCdCPKMgS1rez3gHfwxzsbP3/nVPJ4euWqR2P5/sqH+aFJxHFQAYjIk0wTxEVh76LyHwgvlRYs8dZH2+XOkEVGiZN7TGqkd/DBPqciBh4AxAtI/5jXwCgUsIE6DGEHJD9aSBYOrls+yV6PWzlA1TVSyQcsKoAZqPs2GbzW/a+dgP8N7YmsRU9woNZDj40gWugaT1nbfiVHEWsRSlGCAmzSGUZdG8x4RqfqZHoMmkALfW0Ymv5QK9igDqmdf2Pxp4XPFutF5DKw62N+pXiPhi5mKGf4Tihv0HdtDSXzZK8vYGRLwro02ITz1opEP+DzyAOOzzD1fMmX0EhoX6YmzM2TOt3rcuJ98sXJxPez8tYOmDjpDy1Gu059Lw0QBjj93+OExclm8ocWkoceM904BFLFIeLZ3h38hLDyBQ2CDdVgIpb3fYC68j5m9Tnnwsk3I31a/7ZQk6Cst1/LVGxI8atzZj2m4/RVHsHZdYhwpO4o0dpaIaq0OJZzJBoR202DejLhLEdtpDHyOLLsN5orXzoi/aN2bhwilNZtLtIBItXpmJSWKhv5nhKZVicIJ9TE3S50BFybysvk1ZZXHGGDWwB4a0OauuWBwUgnzKd7MqLi668HSKlJqwR8FnTiQwdQGdiG7GKhcFSAn0K7ne4Ud8mGgkOQ3fvI9ujB+yFNxAI0B3tY7nK1zmokjLzSkZLqLtr5zZ8atQ+C3/VLbW4dXck4PCkjz5AO5zuouXOJkJBDxMLwloNL1JAiuNPbdqyN0OC5wdxYQkPQsWiGNfAg0pgb1csZ0l4ctEjh4KhEqakwPzAO7aJ1ALqdLNSmPs+Ld3yw/mP/UeGtwXbc7PVbURnkbbNQFv8Y+hB8VeP854X0DjSAg66474azsiTul1lWRA+mPR4gpKLDcYrBcRG/JTzCPyXxXtXmjnbW96PCxteULGtGHDeNWofjZW8qj/XD5RmqIWMrgZ2PbIvpW+w4W8ApQ123s/QRRKIQ5nBv7P77oN9GFfu8sRVc16GDnBnC29JSVpKUUvAkuzZhOO+RnfypoEjDeNfGQF5Q1d2Xv2RucLsv1rS3IOgSjWYw2ClL7j7t6nK8Y2KMV/4p7m3Y6xQOI0N9r9TPRAsBnjIjPkAjh/I48P+0ak6Tu9ax9h4aB174v9t3bGzqGDUkNnTTB79obr1lsoU2Muk38qQP/CSA1dmay0BgYASpK5X39CsuvyyV3X7q1pO0xIiSSVakE9JN9Vi5tpjbLWA5faDFtSd003S/LpgKSI7TDGY8pIvtB+wezcuoXUr56VPi/f8m22H4bRlg6AlgfouT51xZh7Efq0gf2TBSgvh1mr88pGd6Ig9GszryDAGGhOPHyc6xHzVFHEjBmCbV9VpUq218JfqDDpRRQ1loypoyUGu6lC1o8r4C/nO7va2fYQXLHtmA7cXT+/f5F9jCAtG3qTrLEEcaXdXl6thBJkucdauqAr7Xob6vmbiWeFDzDXp7BOCtI6YJS8J/io9+8O5E837QH7YAJyRnO9YlY1aJbK0bPh7bNH6pjgq34bqyxQxecmkpsWbXr4JHaiWB3JQtVV5O9C5rViA8Uf1yxRfgQ0NA0LJcINIVDVDEc2nYW+hjfVjIl1ccFYyC/HXFRhGxFvtfTVcKeQCjbsk5yY5YkjvAjhwv6W4Hye7Yw+uVSxSpT+Oi5szw8ZdeWtWfcDt0T/Ux+DBHdQMdcaIX+vmUFg58oJe3avKCKtd+EXaht4JpMKNIRvbObvgr/9ydYtYBURMJ+N4hAe5o41rdD20MTNb77smFEWzVbX7S9Rapk+8oIJx4p7k1G7g3kDKLV57DZEmEiH4kD/hBNQLsFLfTUTBfwI+aCn/QtlbcqRBA2z/6HqDbe1FeZ3fLv83/lmsDfMbxaMXfk7F/QXg5gsBJemtuR0SHrRlH5bYfrSP+5k9pjB+uX1nWgfOAm0OV3Aa068BlQlUHc8GjMIQBzxPMockKFtzIWB6xTSl68jgK7TuX6Jayt35IQzfJ2ixmmskukIL3h0YWtyLnB76qEFVvymtLuhCdBKioTcX2iA868rGfcgL+eH2NML6Ssm8gNmnC6fPtVQ1ZaGs09mPFe7sxzD1lnZE7bMqORlDAusMHfyseNGD4Rg0rdZ7J4wYMVGnE20rWut0ZFYqk3ophs7HSsmyhO7q3bltzQI40pjaVyVAF9mbmtQ8pIX97fvO0r7vl37SpfyR6lpxA036fwFaLpEeMhyTh4RSwgJKKG4EPmOXX9sZpumblSbsx489EjG/F+LdjbKF/jRPjgkLOLO+ivOecE6aNgan43oCcT6wiYWP1Vjk9Qcb38Q4FVP3twspnlX7TYU6o+gxWQdo9SmRMAKSh1Yi5RxUCoYzeCm39Fl+7ZnIOx5isMqwBdFvsITPgcCgTnZSzxSmF/NTEwmYkEB2d0ipBqPD36/6YnhHcVdyWjQNCwgluxz/3zhNQh/bFlaorplsWNcw/nDsM591NV2pkdP7O3TQ2Iyab8jpD5nQSYcTnpoLynrey4TRo27rIpYnmbgV6sP55uteZftvXqyHUGyX4hBGM4o6U+aJbkdHbSZyp6E0LDlFJQrNxSZi6GW5ssqQ0s=
Variant 1
DifficultyLevel
587
Question
Triangle PQR is an isosceles triangle.
What is the size of the angle ∠PQR?
Worked Solution
Since 180° in a Δ,
|
|
∠PQR |
= 180−(2×39) |
|
= 102° |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Triangle $PQR$ is an isosceles triangle.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2023/01/Geom_NAPX-H4-CA12_v4.svg 120 indent2 vpad
What is the size of the angle $\angle$$PQR$? |
workedSolution | Since 180$\degree$ in a $\Delta$,
|||
|-|-|
|$\angle$$PQR$|= $180 - (2 \times39)$|
||= {{{correctAnswer}}}|
|
correctAnswer | |
Answers
U2FsdGVkX198bSoX3Z6OtRqshoZ8YinNCoQOV07zp9AZf69lsXdRSnS+NSEDJnhSpyajRSX7kiMExSHCttljZLllfA9fBoK6dyK6zqE+cVK+Qio6CBrumcbcPzFEqoOrm85PQ/oMUATxBFxvqBvQpVXi6RYYl3MZvdjVIx2A+sxnSt9H6GwQ4mA6gJkpnp2jkx/PkLPOBNw+GEW/UHXGlvaQj3BjYlWAYvgL6kpSZh3yF9SIWFX6GuV2mWYC7FBUEbWixJGFPW3i9RPN9SVAoXxOxMPnpMh96GF2/pgIEJYoqIt/ZizHbwEupIyTJnfr71FWp+E3m2yO9fpsNGMLBtoIL+kRaCDdPjgDq34EYn7y8P1exq6HeHC4G9PpFtsZZcKpaY65vUOzp60hBXu+Kb9jbc4lQgcRA5CNqItWLuPSYTfMrwaPU/gToTyVIZOU78cBAiN4lXp/zBRiSKHNk4C2ppZUYYBbwUf9rVe4ngn9g1oBQqixWY+DFAbWVFylSaPjDoXQgzkN59CS5/40i0N1tc46aqtCVbAOswPQWNliCQkPP/jGdBvRK9ZLFqRB6yWYRitp47Spax2MRLOYV50RwTnAYThj0Hkr1KGkfoh/AEDHBn+m9bSaqBb8/eD5xrExj4ozZrcN1bUVuVkFn4I+RV9odKBJuVA6on4TE21bgmzW+PqJiN/vJg9ADXQk/+PStSyzLy3cYB9xE5w896br3c2Q6ZKkhR35FGUoVFuj5NZk1aQBF0x3cUpAzY/KsJJ1qKBImzoqvpyH9Al0S8RSPx38bcLdoebP+ptx9quMGpXD1UxvePyfGV0s7ysfKCce0Bn69HG7UEMxoOvegJ8ISoaDob3i+fdGpCGhV4x0Zvp6EFS2di2c1q5MBkLULKx3aJejTS3M/M0GZGxSfCnkcc+jQlhChE2Pbx7d0YL1qu+YhC4zrgq09dV8D11GUYLFcy+wvsS9dw/wfskUJQYH7H0feXyadeQJIpCpVYy4gJHTjM9xyXKF0dK9gEcWKkAiYHZvm7zPNFJq2rA0goOOV+Veu8F4v1MTOm7gsw/NykxTTQSCgJhPX2jnWDTmlZYV32Yg16OHdt0oWosc1V2+Pu0OY7eWd9RB8w6Rcpq+OOsf4qgoMFuA2jt5+p/OY8KGX6kL3Za7isG/xIbgKHKBNxkqjKab0X+r8RpdR1omzO+OeZHfzhPB4NnBXD9sn7bZLG0lWIRl+Jj/S1hl6Ct1Q5fgBa7WfZAGVvvSEeKfNgxYW1QC33WKVChbxLVZBncXGZ3lQtB3lH46bzYwrH/IYPcDv/Xu3nOFRS1sh2ckbgOFuHQUSC5+wvaafYbBHfOZx0q5tQ6GPVy9oiOZpPCoLs7tCqHbKu67R6b7hQiZ6zCMk3eCV3hg6vzWa1Rc8XfKtj6V653hzSkoQckibQJGaPmBy3HWIIbthrEHc7YGpFmIUIeyzrx9Khv9Bdfu3Httuq4RtqtaZl9XEwldLVPAznqtgcuZnHjSQ5jtL6FbQxxUnfCDkhgrugL7DFeNz3WKUgLL3N21hsQ7bqKnYvQx0L9ybb3f/DI0YJixDfox59xAiJjRIwW0dDRmF0dLRgBrdhrQjt3QbT2sWHv41RAQ9nTDpwdASCbR0PGw+1ttpligZRwDhZWIEuprM7lQSqMcPOcpiXHT2DegJXiE6q+hPvIoisMoBQ+dTqT7wz5oSDsAnNnc11YSzs69U4IrjKEx7pTejvphq8K44QKEcr1EaGBlX0A3hcFVhAsYZEuKMzR0HqOjY44C/5ebgqV7JI+5e4uKPCH84Bh8TTw6PZiYQBD0dSRAWirV+xO0+8pTvokqrJfeoPtkvo6kFVx/b3CT3DbnT+SByWKdAy+hGjjnSW1YHtK5Wy2c7TuJP4sChwSzRcmwRPT/KXrz+hz/QSLFSG0wDm2KCxwJYnFRlyW70WCMjn2FztFzO/PJGHNyLE5Hzg5Fm6xqHFd0DUIR+bn4e19Twbkv8eJC0HWyXTGSNryXxWtagKjf6Sjf69+uTNS/Fi+0pZB4beEjolLHYwT3QQDbMvdKuT6ViFvyshxkgZI7YL9V82K+jS0QcNAf1k8bgYxgRpQoN2tsAJan4yQMGfYbpnRS1d+sKhd2mzO0Eb2Ubvsk7nMUZwOxQT6X0wZE1zO09jIsPHOpJ/neZIlq1xiSl6YZUVCeSWF53+BXPdqH7VLkIIzZqtB99f5ZdA3zqjawcMbloJ0RJDPWfjO08iJ/RWa8YPGgr2tLnfcEyAK6J7dKbF1A/jcrHlKgCjUSZiY9T6mFfxxgag9I2jzcr18+mcdyqgKdMRxV3bpl0eSHHp9drUr80uqfxh92kgxWUEvgKmRWovQAoG79X7Up5LJ1dkS/hgU7YetGUKXw/pjhq430ZYQGhiyIsPUo1F+EghARB2EGzze9HOVxTgJSaP+mwXEBsJe+b4dcqcx0klo3SrNuLgI1p3wDCd8eZaPNyjOmfbj/2HjWGcP8CM7+Qcsd9ZfBci4J9ZSPpWsiYi1VQGl/8njCRIQ2Xo9nIMwYTWtI+x1W/OviByf1otxpMSdUxqMLSaQkGy2qf1y73sBZplL9ULGxdO9U0Tsj32mEMAABHHV5b4xbQpRPj9Ute6G3deULuz1V17pWe0wSjDNdAOeVrdJnH2oZDRN2FNQVyGhGB07HZEkS1fcFvy2TMZgArM6kRKZGq436xQOjYd3c9DgP+IDWDEva2yjrRyCl97SnZLmkWHREzb3bxHcO+UqJCgogIhYqfxLma2e4oLT1Nz3XOiPW5Ou3u88fN3CkNCOv3rS/rRGD9TsEleNkeP9zZxuh0OgQqstf1q7iEW1PIyo4BtaB8VQAX1JM7UduInlUZVhzv9FImN0+e6VxgDpiLlSkh9RrolpVJTQzw5Z3zsYWdqHIZWBR7V0au674DQ3TzhIhT4AHVLt+kyIFvu7KRbDGhyFXTrvnzpLyNv7if0puwY6p2hyrTMUZLMiLiHaYIrV1rrGl7fNIMmMh8GG45u88yZkw77QrCeB7CVIkJJlxbYA95N0WSjOiwvwfZDz97Umr72DVIM834GsZGWXcb70r50Xl35+Z48qC1XbsFQ97q4cv/VZFGSooz/YqYRcpKBcO4ZvQuQLJXDsHgoWUIgx5RY3MJvAbQ4DpxSzZACDqLixv7mZAhozXe2khLlzzu3kU7UMKsGWhYbkyhwfKVeDeVc/O0wxESuCYbLaxPXuvIyek0Z7HzA2XoCDEtPzjwd9E30PIz4GabcageLSHdJyrgGnz7fT5MOLDkdGiaY3echCRsOH5eFaVT3/Ruc/6ykboCT/TXw1LTDSiL3lRpWiSxd93M8lycmA8Byvvg3+ZSjyOSOCDun7MUh3TicT7+0jVpQqSPCArferTa9Jn5Kwfbx4RK4AQF/RsyzuOR82fvHEgdu2BcrdxCdNMAvFDY2A0mI33cNJ4BfJKavOkjyrEI1nFHASukEg7mCDgFVMRgU35MM5eXOoBEi1FOElNqzWKToKVl+liK6ybcG+sTOHR13Mv5yfpplT5rem7LtrWWwWitn48Gh18x5yWnZbjV2MWaFwVJ1NeBsHZUEdc1/dAQq0ajtCicIrMfmE09fq7ZxrH8Xrm3sB5289rV7pS91A2zpeJNyTkRAjGaRsf9sFPf5XLreGolBiHvpm+I6YBOZab7AtS/2suyFy8eaA7ghoa698i2I5jLcUbhgea4npgkPT/8WE9AV9d4hzUuMS3NBQQxbQ9/9MDSM3IckFb0rWRvFKsj6mzh6IKZgPXq17Tkpc3TZSR7GRE5IZm9mmfz5SbDycOwuiEHtQFHjv7EopD8+XDQPSlwehHE/aglsm0cck6PU9zdQa9f1MqGeozad/7Thk4h40NJMT4LeyMi1lrlulFKROy/CplSu6c50U0u3PGqxCJ8NbnqW6EA6FFHHTLAzzKk5wGGXrQkkDz6KKg6qXMtNK9htQJ2cVzyr2xc0o+XC2YWrnk/2evvGG1J6eM+a5RIKUhUd7eek6j2FW4eo4slJPMKA/LGy/erV/h0ZpzBlla8u5kFLAt23bcHrwWrkh4h+fu+cD/YpN9UNFLcuXdWhzzAD56SN8hkz+W8ZLix4k7QaGdLP+CbXpAwU/nnjtdLLU5VTqmj/PsliWQynFxu1p6qwIbx4C5bBFS4fqkmQRF2bwhA7WoZK1UpGf+CT4S/aFv9hdufKdYI7ZyG9vUY7p4ALQQ/0FOKm+GvTI67kLZd46DUNk8w9zhmhBK5m2J8G4MNlYfVXcn1yu5q0lbEApiKb8Q+WMUvPrvcIgBDC6KLZK2X5FS8qTbuCSTbwB3EpFnRpNlsiWLJtIbx3TviwmJTq+1/A7zwxc+cI93JO3sLzcmqIGxL7ahDFHxc2+T6F/CMWRVp978CZSpfVR3aZBuqUvGdyuhfr9l1NzmvFXuEmNZ/Lmzx0/9JNXB53HCiAbtwfTq1yISwFvTuq7Bw5U4md6X8YjKoDxNVWLT1wTLXx2fUnQI5t1dde6N1amKYVlstydsI53DkHe4c3xiIcahL8Syjec4h51cE4ql0G+v9d7la9Rnkzt96ZGIWvA0I6jJ4X9HuwmooSzTBMZL6E8KhzHv220wqi5BlwO3VZoFMEIEziAdjC4XlEBtOH3LMmL6ZyhIxCq1ycwBMmQkpcE4CFT4OvmCMjDNKrXOOP3cEyR2Dat1eu+mv1raM7Qrc8kKjlS5uMvixnBCSvuYNrqvf3D8fUKSoX9JVxBmz4LoytrCTWJBpaDFQgWbsP6ik9vVQHWssIF0GjHFUA6oRW3dJ3pZnXssdhRTVNRJEHWWOHaUHSmglO5Fakwj4mY+E/8VH9eAiI3LbDwxHX947bNM+iLWQ5X9bSnaYlov0hqmiGpAoSKtNRuJ2CVnnqogume17OWYpUkzNf7rsDJKQt9XGAZF2z8vbSFLOgZrvsbHOp+tmAK2nrsTObvHAVrYPooDtQcOyX2qE5jPkgty3tJEgu84MZpZR8bEwh9oqvQ6iQbzbCqdrXM+Ho4h7KVYJF8OQgXOEpKwGYAVDu4Qn0QV/VeEHlzAM0N4wLlvGfpljpB8ZIpR/v9QFURD/AvlM/5xHagf0EEj72eSc5jS78xex61lnN7oUjjvVVlCbVHkUby3LnDRMQkuItRF4o/Dhjao/avXck35S2ZfMFwXbDmFXBTWvKGyF9kVIOFdPp6Dw1R14V3m2xlU/sxk6LrpuUQYmyb12jlYKSEHwjqz9c4UGtbKaRBPZaO6DBOoAZaa0gR2/wtsx5Tvi1aLgCNowABU1XGJXEsgkd31zLGHlal/PLgpP+jWtRsFffx7QSLHV0PLgmMli8ucjM1nc9ifSD/Ce4GKcashHvslyCpycwrKogeSRcCOdMPH9tFXSB2q/WBQg2wq4+Zp8ibyCqq2edzHe8gdV49E7cf/+tmqWx6E0uSHJJgcEpbcG1VXeW3ultvMEM2F17iy0CDPtzYCQcIcjZqpBcLKUz/gFBuEHsON3rZr+dW8e7FUdbT00xkAH5Ldejr6be4nWlrdtd9QYFngfkgbYZQmd13o15+rObx1lQT1DMEIGLW+2togz96trLOci4GrCwduJpI0HsSEGKTAs5bgqN4N1DjfaJBXS3EKjLPliKsAoPomTMLeCme/egaj0WNq59n74Io0zAcXZ+2cyslt9dwHiqNDWQwmlur3dEXJoyjE7GPt9zyYz3KIouRzMCv7zeC4guTfyOCA4Qt5DJcS2XsJBtJCQu7ts8rKrz4rovMlCBGSpRbq3jooQaJdrYNsGXXq3/ESBA9s+5s7pPY2rE5GGATtVXBKq5341AHj4duTV47rzxJZehaSIHGPOzq9mBS962PE1sIqJZnC2bgJJ7fOJExqBZYP2ieafajTU8ak/f0ftucsI/bL8vco3MyM4LpC32vJrtm1rFtwFrj5YUfIqa/q144LG/qIugOSCinLsVE5y27wbVzpyNeg0jsFhopCi9rYvDGLHxj5g65ifh4/Pvsspf/8LKclRjJxt4X7YbQV8AVwpi8ZEGx3c0ABPjqAbn2TB+Lo8PUZvqJY8WCkaU+4wKimvYHe2wPTSx4ceEZPkmHTt7fYm2mN9MlLwQOKyJxPxFinJ/5/9aYbkYlkD9BHCXSB8mFhfYZ9GXnf/HHsvDOyZCilivymZXKFpnHPZ0eSFocUVZk8wGpe6Pu9pnQMUcVB3YEstNzgNDEuJwjn6MO2pv/npRUtCEdNtnqbipuNJFrYY5Ie7cPalwMYPLz6vbaeM0c5IkB0OGBVtexS0SFVJYNXE6F51AED8+8j4DOe49gnfXMb4MZ7eHNKZPvyWpBLtK4xU2H96MBgI7TubMOrdxbiXS7t9VaOHCFW5cfA8PvwhdEBgTtHfK+r4PfBfioROrgYGN6SgCez4d9U3qIyKtPNqmvHqSxJvZewDBorM+rQgj51osRjyQADUIKvmuoGC/uN6DaxHhw8Py3HoXLJ4YZU5PmmPdDXxfU/fkkxuBitNIiTo+IO0XrQiMtzpyIp7Oe/7TOemw7nng3lXBJs1iBgQ2VGrtr36geogeP/4quULZtN06DksjOhIfIXg8lpy3EOHlLbYb0k8bRIymcGAXVL/OO/Y9ss1Yp73wserY6uDPyCj4TGj4XQNxfN95bFipr0Inbb4p9/+p5pctHslLh49KXMmtY8wJHuquvZLqaGKPlzNJoZr1a7PTORIXikMpB+H2cCh4Lw79eHY62ZFEl2ihVHMVviorkurTgY6D67nEZfCFdimH4GU8nwNSVEtaJ/jGDcrrAwK9hT16FzR6ls9a+1jCCxTJ4ux6KqKoGW64eXwTGfRMbn1AStutqTh+ltPt8OMtImBJ2+eUSXEM04ES8ywntTFLQ7lRRfj6SM9mPYhhHThK+J6ZoLgqFJR2QzjyxpU7hUUGNSLjgPNgETiYHw0ffvgfKwOt81bMJ0B7o8VK04YEjjSHItpj1lzM4JTzLaH1IY7m0bLK8ybO2aVRCADoltUNbDLYhUGpol/M47CANkVtoyJ/LO54Gp1HbruuKPhwa0W2gIM8IyfMqjGJOojrYRkHxq7PUBhdccDcQTABpihdiBGlD7t0idV+vfdAlI07QRSiFZ/D7xM7NOOSPPxBzJG+a8dgU2ubh0SGNvGsoIHUgyDJBxjrxtuikN1WiCcU7VwkzeMvTWtCnPov1nCrKRhUniHLy31m6E+Cmd/CGagldVMyg3amT9a7gI2jusGlJnM4T+s07pjFpony/GeDEvkVKIjBKBupdIZOlbLZSWG3/D/pZcdT7h2Z0GbTgw+8vMmt/Hduyt1I6Sl27TFxEBYCeUIymzciM2qgbvbFmKpbk0ZUKk0y6Uvf1ipic0XvZJJXTNluSMDgUvTcreLjc2IPi3EQkNp3YjRonVZ6k8biarydiyJ0Un9zHPFrvXHnYn2FqAj8rXEyeQOJpHIMgggpwK1rKkYwP6rkFBEaFUEqMNxixs3uBmBPwfIGDP5/g8hkRPk+jaKz8qLKUAlsZQUZM9keyqzkWwkU6PvDIk1K+uB2T6de+2XRB82HfUnFdvXlQwYGXYFZhGa0pRSSgQ5o06CA1ajMWseMW2oqEiCKLGuzRRQtrpDr/DLtleV9Gvd5hx7PQWTwaGgCdwKumhgUxSrA58pG48rK7GCudJO7MfLMv+cd+iJ+GM3DgwR25Hwsexu5cBh5ZgptJ/DUUkrXlyxkz9WgjaCTWRvghPIePkL2PgHawdqkXNTMDRjE90VhDizppB/GRqnix2SZD/697ETOAfIYr2+DtOa2o/v6wJjamTUm+nWDzYLpyFRFt4b4CRvehCd/KL/LL3adTWSofGwuCWBEBURb2MMnizjResGe3Zxf5sEWYhUs0yATSY1h0c3aXvd/VyovgbOcdjFEvPquJEezLzO1KsrXm7v5qYUrF0qyPgbhThtJ+aS/eP3ywBfVrzYd+iJOoddqzLBvAs+lzNwe2p6N4vz8nHhhC4ar3GKqlVuYu4TLmA1KuDAcR+S7HqATwxrykQo8lU3buPQD3QBg8RcW24ID4sUS7Zfwv/ijaFp7NrbTp5YJ2iDQB7/EEIl+eKNDqkmBJJO2ZPXoy3mrFJSEWhJL/8fVXV4TMh0YVaVwMsZxlyTDgPPlCZ2gpNvtusCLCs09WI5I1sscyHEOdS7B+dmnkKv9Aswwaz8UM9wCpBSKts4Av9i88mCOirJer+ZlokTQqDOapRT3hlq3Dre0NXKoQ+NScFeEAubAz7eim94ngFhmUh7aBMFxqcbUbEGEi1Aq2wYIzkp1YiOaLIyGPSyp6qJJz6iLAcFGEcrcInUp8B1wCNyamkdEBDDPBW+tIbl25uRmqoLPU7IIccJjOEw08vuW0IGZBIcwHARXk5WxUAkTTFUuEOMbutGig9qFIJPkw/+7GrEo1ZU+CbQF8CafsM6HU2az6AoShpNz9rRY/VuC9HhbovJnimLSKn36Mm6+kP3DkFjUfc3ikVIjR9PZDT52kYMe1f3fAh+VE6HaC+jgonDG9O1U9bkVyLTbpln9oH7R1YKJ/gwiG60ZvMyHwPtFxvknur8jDRvVTnuSJEf3XkWgMHf/GPaKU/9Y/9/s6n5slJBb2OiERxhnO5i16ugHD4MbPmb8xiw7wSF16FoJXkFjvSPYqTh6TMSWArmdaLmDqExhd4WS/F0Y2iRdMfabZq8uc2pU6a4ebY37OI3FI0/b6EpsFRc35UD7q85ghAF/dtEOpszRFjQ8byFuZjDyr0mSDNVDHouJJc3yaoQMDIzfTQHEHFg+g10i9Ro4XfHkXy+1TP+W2JIYIvvwB6sNTrQPqkONrSLaefqBRLE19Q2/psNQ8apy+5iTZ22r0Ky10St+6wNYjUCNJHiVaR8NApE3j3G5EUkyK5IcW9XXlON4rksC6ozZu4bD7CgWgd4HRi5hctG1YjHpxmOTzyB7/d9yAiPyKGFzQVm14n9RUtUCJ0UlDcSlmeU5iLxLzTTVETlxczOU8E5CZBkItGfyseHQYBu1/i+POiVT1emkv6LI4kwuFDY3ZsSLn6AJvX3zHbKlW8drvrG2AcGhw/csORCSw6qbxmSrWgQfxhNnocv1DtXRo+Ba3OZjX0zf7kon4CppxzNOcgLBFGIAznfYq3DgtuoEgbbl1Px/ecNoVfSLrhUVFfW3IAWMZjRFQ0fE0f0r+W321OFFz1V+YY8QHbEAG/TSUA7iLf1vOMFN7Ax6L40trp7b44XcW535RBsiTgBZBwHm/MWIg1PMnDTje1SXSIoAjHLQl6F5EtDhGilFi5/lJ4wH4ut9ebOibd7pbcFYMkwSd323DmpA6vyCPprauaM6YkXvK0rXTn9OXVTBzCPq+s/AVMqJ0r0sYtdWEGnU+9jX9XzwzcMpaUnnq/L8R3Pliup1wEY46x2RtgZUPDXFXTwWfZl6crh9oiKeWCgsk7cjAA9gqktWp/pdn/7nRJ3DYG2M15vzPUcmjd82SZGS2jpkyUcGAMEYEQW/6brEPo7bbWkP+5XFEQV+TgqvtftLxigMmPUr84nsgMWZ8EkQ5a7yifiE5R9VIUMNX3vUXiDuIPIwzHhx58Ku1dGC0EMshYtLaAe8gY0BALORR65zs6dYm3yH9WhhyM5VjKdcFDSHfnL1TQWaaMBIHgp16SRVkSSS3UiMpGTF4LUvuxyC3aZieyqCPME2qK3E3VSGJiMecWyaY233XLP9ySEcOaCtXN17Mcg2SD4CrHBDjGkCrXfAplCwmpJmYiw4iwcasMcgMhuDfJyNPBvUfGzjgGYepAG9LNYfhZXJmD1zFj20KnfnEUA3XDLFHH2H0jxZbGAQCMjiWRSpMbGdyeMRi+odH43ol99f7ZS6uraqI3bWkfgYckj1G3SWoJ/dYa4hBJY0npJl+nyjSeA9h3+lSvU1Eb2+rja73upMnP9rlceM3h+c0NCT300KxQadeFMngu6/ZP3AoxAwBukj+EotrqIm0vXekeZ/7AXZec4auCuRqRAViOTjvgkrgWa3DHmSvKQX1UCDg0H0GtrZDWB6s0XnRO3QtfgKyWoCBw9H44rFKO/qoQDIg6Ec42/2UyaIniy6T59c5X2WVRg6IKKWE9UJDm9g/3go+/7I5vuuHZ2CAnPwu1BPWWy1gmbD9MC41T5b6eBUe6Nz9nIqXqrUfQB4RZP2Ceyl++YL9mNdMeByBOYpucTHiKRRrPBc+Xsk/KVd1w5K+9FX5GvFbRI9dr3zILQrGAADoJNa+c+sKR+RAZNgNelH258Xrw8nuDVZ/okPFL2uuPJDky/7cMZmbGBYOOINMU13jH0RtSRQyCb/Scb9k1TWo0KjMnbZAvSCbmzEHQjHc+abf5v6U2p8fJgGE6HxeCjeAxfOn2C6JJio5YqJ0Wqkth+R8d/6I/oEFs/e+VzFKKRK6eMlAb1aJZgxO4MbMEcBI64FvaSujD5KIBPsc0o+R9jHdURrevsIHrmEU9IjdZbS6CSV+IyTZa1TcONaFpsy9q893klBm8Z3+V8ngZQmAVLS+BQYihYCUGqNH4OQnvc7AXpqrjf+VQu89tinIdNBp/90647NXS3jLgjo9s1k7LMU1M3WUdmiy4m22AO8QMHsO8t/idSVrjEpOnqiyj26WbujfOuMwXqee04ygb3S9HE0e99CaC52jkMNDeWBEsdQu/4PyMR1vjXbZuZnTPoiLbxaV2ibIRVHhVhqbVaNbiX4ZVzoMvsIrKzqNt+Ke+nEeRueKLsLSI8ddFSsRw5VIjiCf59zgs/OyqQyb4rRmwyiDCe3o8gPnQRZqILfZomvLg8idBkKTTrMMUTmVSqWJeZAur8WqX9gCvEezeh7v/04DPDtb2NOgP7Psw98DwFa+tdAElMDUCjxZ0w1v+YWpT6LFJcgBHtxUo8RF86zK02pPperzNyK/D4NH9e8zr0SaeOF4bpJSqsfVgyWR+mjO4bYFDzQ3onwmMq1K35MxclgZa40WuUGsKkBhSkd59aU08nuhKFXXtGFYvYRCBISxCKlAzVzrUjTK4hRhTPNOphhF2CwfrNYppcbTDUaCORkwoSJzA4kHmJEm8hPSetJz5vHMeusXyXOyJH//AZyFvaqJTUwCzoU1ucJzYTKIf8e5vqt5PKgD8IWCERTuxbeEuRI1cOd+3CL5ClR57Fe6jhA/YBv3QD3YlcKdBh/NA08rInMOScRJv0sMLBuaXpQL79Q0taNxtlftvh6b5kWNsUyYA90IVW+F0rBMgmmrRINzOgXtwIWWHf7839szAg7k7+dY0f3LVo2liuYC6ThiD6J7TrNA5EiRG2TAT4Frzq0SUZz8Qw5/WVA5VDB2GGiXWfGlwXcg8ietaszn0uHBcxpZJnTMqDhHhYu1APpZxFd1FFIa58TGqpeC9V4hqiZVGhChM/vkVt36hpL8wp0odGkKGy/4rqvszb2EWRdhsS8MYj/UOWig+ItA3RCiqLoDnjBpXgcDgDuwBMQV07/UPPEDuiCRadRRvuUp4Brqb93Y0jRa6WX6RDlIYQsmFe/yF0ntCTTruzo8q6VYtBYtW6/Pb5sBtkC75Lrs41er6NsJMCBnWWd2mK90WQeEZvsT5yPUlVrmdYx210or2ja3mVq8tUmkilxpA1EWdfPd92kBikMFolmHg8zlhMXevPDX7R+0PaEfGyAWIXv4vBdl7vpylxHjE/YmO8ExYRm4QsXpQ8P8dRUT6kROKSI9UUf8VqBK9f1GnrnP64LfAY4YSH8RJJVQV0oxa6RropEc=
Variant 2
DifficultyLevel
586
Question
Triangle PQR is an isosceles triangle.
What is the size of the angle ∠QPR?
Worked Solution
Since 180° in a Δ,
|
|
∠QPR |
= 180−(2×73) |
|
= 34° |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Triangle $PQR$ is an isosceles triangle.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2023/01/Geom_NAPX-H4-CA12_v5.svg 180 indent vpad
What is the size of the angle $\angle$$QPR$? |
workedSolution | Since 180$\degree$ in a $\Delta$,
|||
|-|-|
|$\angle$$QPR$|= $180 - (2 \times73)$|
||= {{{correctAnswer}}}|
|
correctAnswer | |
Answers
U2FsdGVkX18g+GvNgO69GkxoXNwCNhPzWeO2qz3kyhWMCZZdJgLaP4JCo+C9CZ4OOdxbQZuARurEMF/mrsqdGViunIHMskkyIJAWAYbRsB49C+JevIEm5d2q3MvFrQ8eXI9w72PyiXBBNY6AsyH4v2eDhnhyH6/ZBpaxIn0R/fHzPG4LqjI7jVAkdLRwXKoDbDPrytYd62yNmLms4gZAQ+dbU7S0gGYLnTOID/mPlYiBYMbwksxkLnPrnliNQ8JaOPRokRmgua9BbgxcrGuKfXe4xNMDUhF+p1kQj4AUzG2+QrIZoEmvD6Tk37CQTrZvU3H/qD2y29fAbycykV6C+ZXzhuzvsLi84lGux6yvt0ivoX15TuSpGRIEzqQSoUKjSuKlVl//saN8ZKB7228ZZnu96bEIXfroRrqCLWzCFZjBBhs+di2rTbRcewLyhat8Qsrn5PCfKi6zVWJJTOsgt1DEfyAzJaQ5py9khPsku0iBxd4cHAFL27MlIp0ZrLi9eoDZro3oKAUfRHTtFO+UydCabS3OjbWzOs5pzYJWYw2tr7R4lciwfOQI1Q3jbzRbUfeX6aSwFxJsOc7Gqe4JZARF5BUrUn6rOO7vxEuRLfI3hJgOVlVFU9xAXyL25743ApGTkdS7FEUsCfQY1m/h8RQYJ6woTa1jCUEZw0LQYmgHFeGaVUJyvCKZJdFXds4XfXmxHdQZeFxUvmnXrY0ws5zhZz1/yLYqwKj233/LJOEgwUQojkwT0DZ8z9dq1k+eMD9yTSO6/cIHkhvxP0t846CZXwFw61x75E99puUsxnopwaAROUDVroJOMdV8/cHXv8EdVc6cTu6MO+YI33x8I6x0CQ0GjnWkaBszjTUh/gzW70AsfUrb8SL9UMVTHEeaZVzYebiXQcA87979ItGZfs2UiuJD04/bBzxsDktFqri6Dcu4gYAPBRvc5aYFGlpJoD/LXij4ca8b0bzvH3jOp38a2NymBYwIVAoLh/8GCZJJ8RJ65DVB1pzFqiddU8+Oan7y9V5R2Eqw3PusttNuM/4WszN32uux2FzJCbRN2HV1RIgyjxyjS/AtKpGiFbTn3CAVGMOxVLDyhFqPCJNIk3MM1nW5sbtFWTBryixHh7xDfTODalevR5DfE+NNZjwqRO4t/5NyuYF+HbNJPYrvr9LZ+te6sUjA5MkA0iOeuuLp8SgkugwfQh+YSAsREUMpfSTXCXsCYvy/WG58VzI1gzRwu1b3P/Hos99n7yp/162qa/HlIjxRU1bHwCNr0RV0tNaaFYx+82LuRsSol+AD2uCGHEw9FHBNl7d9GlNaNoRPToV+tMiURINUaS4FFbkHPZhAwsQ61ppS7QKjNBwZI8EBVDRYxRbcxUMrkkzqnyl0VlpAnN1trWs8RO6G36bgswQUIrmIpKhZF9fW3MoFVth2lbSxNMrR2qhZowjf+sdOUORBNr7UA0m+DxeXlDbdLDXFihk9D5esdydxfi2BLxAfqINqRHp0W5Ecy4PzpgsQ7/7oqx4fwg1PyBSm8FTamhPUR1Ve4sAt1WFEMWiN+hgU3VunmI1LiAbZYswP9FXJJKEYF0vCg3X8djsqJ2n1lSmdVNm7II9FAvfIS+lqTcUadiRl34gH1jB8ZBRHtLSKX8oq4aYo8DivtpNLUbG/s1uDmVu7yMclyfcAhOye8CVRtWpMwyh/gm6hFTTPjjBGNDm2594oUrtgoiqZBt3Ke8je1K9wMSfI0z0jyGiuWA5QxcFfwqvnC5Ay7ghDyHUxIE9NezcTbqsLurWhUIsjo1HKlmBv3HNE9HJBKuO1yqeISgHJu9ZGBqlatt9rB5vCDbaxvdSYJpMERNheBkwX94jVuFuE6uqLYs+kjLA9VvYkXGZtTd837DNlaLN/Gb/Czqtzbsp6bO6XYfVShQqwv4IT1DmRP3xZ+PlNOIf6KqRBtkgSZNIdUwSzFB6XRKoX391cq+uZbeGyIYJikYj0YQVGosoNYc6WehC9G2Q08iCV62k4d2q2sT+qMN1AYRzhQKEZZ+YX08BcEOfzHtbb1+N+l7Y8ubcgT7+XzX64xSyDiHMys5QztDHfn6I/+FHcpslCQAtUc2ae8i1aDEKQqVdcjFF2F8nl+gsvBDQouxKW6DwUk0F2OZEyxQUzhw4V4FP98mXDgYlyTSStM1nkuiA0PDIEI5ZXbNoqMOZ9ZN2HPa7lF1TfHNIsUvgQRtYak6iiCh5xQ02EybKAuKu6iGQVwWebMmZ2PTy9uHnM3D7bYhkM4T28xOFHuhlb1RG7p7syG0FxdjQXzOAILLqvNolwYm3ohCs/J0NdLgwvVOkPcbvUYKE9ps38v7UwIMr+izSEpR4rfLLm5jnAZNnpJmLRZLzmNT4xFrsx01jKw7ENcnjXjAomTAzm2FmH5Tm/2g7E9bsI5zFFSh0tye8Z0GTnvXCe/b4kXZFsfREZhHLEtBkK1uvSyPe/MxuKsAL+tOcKjNLWVJ5JAT3KPcbNNTNC1zyNUpJgrkPgSBwe77ty6yJajww8cCONrz1+S+kgJPE6C6exWa6ULcPYDK5LnGJ2KQwoFv8e02ntblMhFbZrcSPBnVVh9WrQOz5pbUkwpDahtByjxvwyNyD0Hkk6/jGgESflhS1ZyGnIliSYxI6ERXLmhq4zXLIimWU+gFvXe9bXnbT30EdX41W1VG7gH/PpNtoBvCnF2ApY3i3ShvntC7LghnqQKwn48igTF56n4JoP6zxjli9GyBini3pAptcLRu206etLLQDCDHO0gCpY3XK2jLLWRIugRcuXzctSSL+6c3QvQen9yKVhVlGgfNJ2CJsE4eWG9tlTlwkr48TMQA4sF2d8JJsIZzbQrK7SyDBVtxjirFdwasd6tidfqAhwNcK0RDYTyJeD08JWNn8vV0mnrDMIV862QiNCAUrwwjsqzmSFekSXhyK8fx8qxoNbyVrqgPCRH6gL3uU4kzC3wWCwZ/zjENVGlF4Sy2QfvZy29qCaUWN9Q4Sr7CqD21HhGQ9IkSP6iTt/WuzTbuZB7knvYK+NQWTqHo0AyfzNPwvwB0YuxAszgHSLDprGcPCe9YEKKveGatxnNwOcZRwL3HB0EzxHw2yePE7CzaGj1MHCmwoFjrWnRQCm4P0dJ92da0OpRBl43LYML6LEjSzQzFA2LlK2BCoKO8rN4Ea+ifyTKLm3tJdWTKxNcyD05p7PBNp85aio6pULF1IdkO+qC7Yom/QoWg0gKrIjJXCsfnKD4QobCXsAzRuCMw7itxqkrCL1cL49N7KKrn/EaXyNGRjGSU47S36iQB8BS3br7wXgW4HaDAvj0tQB70pi5BlvIRDgdzrnM63ngXa0eXP1qCYJRkFZaqE47VTM8b9EYe25Hxaeq0A/+t7eBoFqMQXMti15ZlL4BCeTTqhMn6nVaA0FA0QaCR7MTwa6Iy4BPHKyF3ftTnbplryScmiuvlszfVRNIZRGdOTGGL0ZUPKCPMXIS/caRwevPXZ6b2JnuZcFzadbENZldFyZOuiHGIJuu9UB3bNN+celweM6bDlrSRw6nqMZAhTxIgUXzdKTil64Zop8CX20ZdmTxVjH2AEmB/K2lRW8CO4r5ZliVMsGXiUlZMOaRb1qwWbYLnbLMrw+VLY5+zMgkqshTJjy1mhgkCTeHhMubllTDOrvZUs1ywiyuasvqSj6VNL/ko/5spDKMBQeff2ux0R+r0KTZbMvrwz7e0Kne7qZDG9gbHFCnrArrGBKVt1Al5hKV5mmb0qTqU1ULTjSgxYSnvBEb0a3ypcbNgL0qIvlhAl209nKZKdiQ3yzn5F451b37Tik9CjNK2FpdwLtAYD1l8wXc7m/so/fxtOJKft8QOT1Y0Ob42q1j+Cq51B0yH5rMetG4ezN8IuSk6yQET0rkT+P4c886g/QHbdwlt2CzUWh8pNGtybvZN9jx56erfm5sJBcrrFY0K6BilBhG6XSRs/BVWk0Jfv9a0zYBwb8wUihI/bikixZjzo27pXBP77nR3g/kIBLJFOPSzfQSsMRlk5adsgWy+MhGapOK9AsY96pVRptsYq4P7Hxd+RGg6eoUKrwNYqGtIa84guvhSotPJw9w9eVj6kJP7UK6TYH4GT5e6GSoqj83F59UFu7GuuBjicdkcT9PIp61WaO0aoipuEG+GptSwzQtZMJw8jJp8nprXeJqx5UKBgA5uHkfQfveVBrVWuS14Lkh9JDCfqnjqY8qH+V31w0r1gD8HwI4wKGiID+djTFvn3/PBxHs7xceI/1+Ws9fL+deKZXsXHoX91Sxmofis35YbY0f9lj0sb2XzrkJMBk5ZCz0dPYleqDR9xVxK16a1iuB6A6Wy0LzdRbp2LZv4hunwj8WIlTJMrYgrLgSVYSzlBWUjz9SD76N+dsi4g3CQstDsNK60Cz1FK6SRRVvxAKYM3sJFOcfkYanAwIDrcgEUowyUr5MHrtLEIFluLZ4i4JNzgv5p3uuKQS72j0dEoteCajp1kfdQO/VwHaigaQ0bh0quy5B27Ze6C/+vJ9EL6zKRaqq3WlbP5lmIsQdPwSgNzD7c4N69CsMufeoamXAJejIz172B3p99QErboPB4G5E0ljCk2+PIRDOYQPFo18XEQFQRYiAphoQZux5FJoDp9cMrWtzyVQJbsiQuV0A31zNor/A/684EE+g2QieyhkmhrjnkIOhzdzZIRvBOHv0+Zd2gBxaqi9tXqQmb7TAvuMMlGp2UwSJewj+JBpB4tkclRCeOr81XGgZ/SH+pqQW2bBBG8g3ytf3g7MS55DvnZ8ps/HiLaaIdF0/IzfPxF4z7HIIs5SwtobD0EPGSWDTgRS22cvmcO6hiB5+5/vjNtknqIF/lNy0vgmbSnymSZJpKAaWt1HE5ygbyW3twmXDajFXp/Q9tu8dJUVTEPIVzuJh4Ta798Uz/EUvoVeiygHEcmUZjDpENNn4GCvxb+y02JvrYt67f0cpYS5r2M7y0fLK7XLolgVrvpMfiS/V2NqSHiphF2eI5oqbG/G2UoJWPpy9y+umCI22+RBtuDwHJeohKNU1LqZqEQV9Ym5TPOSO0IT4jPA1Finz9zcL28Gq2e8Hlw5tpklt/8GoRhZ2Hmqsdi/3Z7Vdmy8hDHjZV3xzZSqTybXQUxXCXFCRYSKTSia8WloaP50ydZ5b8g5GAZHcajSdSiIXN+S6cciV0fAkgAZLOgQa3VPfNckUP0+4A4UCOIzeng+VAMR7IaS64Q/3sdGmDhTpMg36wLQhx6NkXgpI5qM8cV1kakhfKjg8YynOt36IcNaSVN8UIOjXSFCowXgWps46uOi676HRzB9KawJvrQnp7FlqJE0DszDnndszU+CePlZyMel32z1G+Cmv7iQ+M5QVRegyzpB0xfVRMbsE4U8sFTOXQdIpD8P9Z/k4o3BnZaE95+ZtrLLqQu9CN4rWUZ5uNKTBRmz/LUN7mvPD7M/mjf60Qp3GGPVSGoxV2ywlXB5odto24pQxfQ4TXNaZIdbr/p13mndCsHsSPk1sfTido+JcBlxV2UweDZ4tahBlFHg1fBI46h6wh70ku5aCI4ma2UUOivCY2DZk/sqOnXclWIj+gj4PkPHmh68+laXJ6DxDlD7rh9J7QkpFyPETARY/myq61Le77g1CwqZ39GjAIoJuo5T8y89fktyCRjouqH3q4RPJE1iLIN4Adzez/oiTjwaY1rFXyNPDBuMJpKjNdORFJmYaSj0FPF5UIYQdFcbjGs/5lL7583YrgykfBsBtDPIeJHoSBzICXrL4lwdnHPXLgFeacObTZcWlnIdDUghhqhHl9fA1k/W5a7dLeU4wIbzeX0+hk/yqyapTAbTyIeWjRnTc7sY+7M35pDzdtEtWXH3jZZycSoKPsRLw0Tmlb2vB+1n3cOKH0OoaIBrk+ObmGdhd4dOhopoouQcAldIxJZmEm2NVcst1Cfqxt5T5Z7xeqULAZ5SP/L1Dqq/6NmqMp2jZkgl6QjycgZn6aUdnHWwibcpz5Yr3ICQWpCm1CdvLHoLq1nFNlIcVdbF3bx9BDuw9MtoqaKblSIe2TXhUEVYggvTU2nus0M0RSyEPafNdkcvpl8KmAzA8iOyDatGubi4kPyN7vUVZ4WJCjcnpAj9XDGP2aZ28FCbeGQycFMUl/rSBYxMbj8sqk1vlIvRmnIoTKOVaXedH2AAAR/sZShZDcJ6zIUz36Pj7JtY3QOZE2HG3tRanz/G7t1+/aKACg/vrW8QrfQ5aShJ2UqcaSiZsH12LeSvsJX3l29XKyYGSdoZ7jZsYK4TG7AiOmmABIRatBfrRDnFZXCOanbYJa6CO6rCnHuw/Mk4L+ZE68AS8LiMtnENF2Es6Y3pzscCUlCt4iWn19ZdaZu1HvMB4GHwjASoocQE0jD1SF2KZakrFTsCUEV5D5Rkkloi7u/QDuc0uHJoFdSX0FQ8ui/7H2SK+MvL+8Oyjh+eqHS0r8esk5RT30Z4ipQk0yAiUnbjEXStmdc58ETHWQLXiolaiCdg3QsDb6tsbLVDDsc603xDsQqLrmGHK/mtSnYlH0qB1yqKrEC7y4hx7I9tN5lrX6INltQyVan3bAEqKcA0ek46Ai0H/HI7TRRHsTAExKKtrZTiHYsdZg+h3mhY6FxhjWxyAYEyS5GVdqNCaB6RY/m+kmXd51qABCIciPxsRhT8O+QOMEGIf6TXiQrP9CXIqu+sF29N4wRE4YQDFhzRZ637IaaguBmVhq5qoMBpWxnOh/3CphIfz+Wf5ihsLYEKMMXujwGapkJ8XCD+hNO6jUYVKjJmtVeDvDnh5EEr7Lkl9GaqCu8xqCYWoYEkF27TfS58skSxtTvgTw+R2+fOMY73We/DJ68BTb+s8G+HIFsXgtjHrfL1Wl19IUV5uIMFXxUq9VhDz5LuIEkXaugnhsmKXUFR8ce92j6YeC5HdTbKuiSZC+INcCCczrrc0FQoYhkPVtwloSk3U3oUX7nZtEo25BuYfxQjcVeNJndQgDjbpmBRX4w45zwJXMS4rhQmjia2h/KLCcuLHFGlpWsHio0sN2SjhuoshyWX8jqnUBGZXMOKiPhvA6ar8/gXX4kFnEyxtc1br+Iuirl9Y+Kb9CZ8Pt9bgWz3ps+Ha87jMMEbPCSB+RllbsZXeszh3ZR6yaFSiDct6r855uqFnm5Ow/qFoNdAAYIwveScGFSpJ7Qgk1/iwj5lpWTSVohYvvmmBHu2kOGRTlIZJxTsw6JyN0O+nGsswfReQmazQkm7RdnFCbVjtuBW8g0Cke9AhPeOEXjlTK/8GWDWf+EZTRyjoha+Ouy1OIfKrcIjmylCYKJvDijO8EwATDoNEZpCeFXKHJ8Tda+AWiQSCbb5chObERAKW35IQnvyZc33jzBmgq2TCLhQupQhhjpUjJINxOjvB6jeyZPJCbRAvmsSUsg0DtPtHxFZO2n+OSMjAxzZjuw2S8cIBhWBVfSce+nqwjKM/9mR1SEjwu9BLPdDWIqGuUVrkbeL6QX+DLoeQBS0lA/kC9kpoeGA++hHyDe+/dAsvwzN6jROBpgZMiR3y5lA1MLhlR9YNxlUBEFNSUxJ1JD4wUL+lHjyH75RQo8w/s/jiokn4rfW9rDZOovBIedci/NfJroUFjxNuNwJFp5NKHZGW1V6EImyi2MJYhednVL0DiP4Xmq+thQ6P6IYO7xDE1fmWFEewfsJv63zbN7tsH5Tv9VfhGg4VpgesVVF9f4niizDCHS5fTOOTRcwpLp92HDg37KClvbt1LZWN1f1xhocbC07pzDzqj57gFTaCCCodYK7p/CUG22/9Xlzw+a3SUG9mJQs/82CvGiR9lSpQCyI4w0zu+2a916sZKEyT1McsZXq+O/aMIK1oIuPxc+y80DLx3017mUqm8g4YQtpNH+Q09loFHVTtx0egetect9idGz+WvldR2IOjsFSsr1sqUZ58G41q2mtOyy+zMiyNlFF5C1WtHOASzSxeeeWzGArufncJMzWhHFlLWyucyHb/bF0bHghLGFJSjKWI1mFd8B+YlQdx5VT0qSuSRSBkzwAvzovPdRwQgswtFR/ueN5d1p0dUEVX8kiCBcfWe6aBzowZ6DFsl4blX3OJ8WcmWUOiP3zZZPVlVtmE4RrbO3avfLp9k+oPsYtTMGiFflrfvIebA5OlS8wmWLHIyZzMiOLgKj2VHXSE/XNiSYk/I3wEwkwXhAfEalyf6qS+Aqh6Y/nsj/JhrWMEcu95IzQp2BXCT+tXIXjVd5LwbaJSpeZz1K7MT+9e3aN1O1P7wscr0AoRgJsV7IssPSbk6J6zHJxauAI46JbLxKDxPfoIKGJa9xG6dgKJXiS0iQs1HRoK9Dh1oLphg75pm4O3gWxiJQYs4bFYaloY/LmPZtFjz+r2TNkovB8z5ef4fgS4waGia4IMKgO4ngeZKhj/TlfCdXkWEJ1tVHUqTDU8qMVMiXikTS3vyaPJd6a+1oyMJ5jAEQeCPepnZIJa2aVx+5l4brDMpN1XSVHEgqzmKoHMRtLi9k/0n3fjea7uMA+f7J8GGdWO9AGBM72CqpbQPxNlY/88fYj+RI1fknAoWWT+LO17ThzbCxA7iKI4v0102VmCD3K+870ilAXLpQjDe0xBz9/NAl2zC6lKDGfusz1QfPfqGS5K/YL2bgJq3GMGF7FR+ppaIb0SFvCWJGwFG2efZORwQnaRDGEz3dDi+OAeULP/E91BD61PZtCPOENln4nbWA2vRD6jb9lI5XBq8YBIeLqz3+boTkmOcEeNaabplpE9yQjqum2pTyOxcgtUe/P6sgoRLvbCzS2L4KYxiI8pMOWzob4m/vgxgnHwn4oTvW++tQ27+fz411pteW5CNpJypNHGQTwp6wTHR2pMcXvgjdvn+Xd3eAWASJxkh6X7KSdDsJ4QPqoXN4rADwn+cciNrOMDgFjX/gbPGXD0S4DwaEpDhkovFCDq48WwpH9sMmd1sY4szRDNC8O1zksDaE8sNHl4x8FRux0+9uCap+2geYbIat5hMyZ0IigsBgRS8a8xevp2HGfpunxdCSDNEkmVEVeyiFo50ms67i0y/6gVZPhimot8+brAgZmUBYdXqUTPVrWzKS98o4DePjPSzvRjuN0DbC5aWfcWi65ncmDi1lX3/odfUdrztylRdHEE5R011ciWCi1fC05SAZLPQTigvscCi8KQETKoSF9d2AgFkVv1QhVZhJAk7XySl6IqU/ewNajBImTZzE7ZmvbdzzyrLgLT/wue+CPcSUx9Yugz3HkhCjW65+rhgufRSGj4I/H5FEWJJLBc/+KJF7QyrDNWg4jOOhATAtUJGK0/3AeZCsZW5UeGH6lD/ylf8kVIrAkE3mlgGr9jczcEBrIR8Le5sPZUtyYUYByzi4lriB6aQIFVyjVHL/Yl4lWiTZwGPA9EZ0VTttEApDYvwm6XIbCnqUKDDbJFrGuwiHey0ReyVpEMJAULLWKQVEWZUzJrG+KHZmkbHzTJw6SKoXP3WEocLdd+cuTmRLEYGGcIlubxcpHKIdWB2Xh62L7VRQBPJX//gHdvSAWZCZ1RIck0fQI8XK114mEk5gGNj7fXojUpBhcOJHZrth0cxJb9w9eIhtJEd57vtd4wpu7lWwqexqy46DmkZhRdpSdx7eT2UoCphpr6nNg/a89b1dEFLNeEPxB+L0CMnlec8UFwiCL/I4qAT8ObfY8XGln6/Ma49kZNWSmjuxuFfnZ9DU19A7Pq/AQZDSmHvX0L/aJiHehirW6pul8aW/wf5eu01R6WquBaoSHirM2hFcbsmQKDwjHoYSNZrg5sQXqrUzHX6NCtQwUCWvFrC/pKTNAICtVIhI6ieCLUjS1zkwaFfhLdHxRH/QaufMCEklZ5/XRQi5lzEoFXsLnSypCd0tinNtWXBLAoXeYyiQ++Kq/t3MU3bdst46YD8hOHt3nfog/if0Z8NFvoClW1821G3VW7CpvNC7G5SBgQwqlmTcSFfz7Kn5zUv/5KLe4Uaf7hafYZRYpV0WizPmu464taRXAD8VHv9hLrZKqBu7iS0XP227Exft5UoZHU+uG9PsE+NpmgfkTVWccfL6rxfkJMszVzATD7Mcl0EXmU4XmU6JwWaEDN9/zSMCqPJrxz3yuQJHKlhFj5K6ueIg3KDzZoq61MdDLMPegt1KUUhtG/0VE1RLKKgC56rnDjf3gkG0ecxGipLIPwScVFGJSZJh8dc9URSF+2BwQKev/d3VK5FN+9MAdbf75dL6jydnIhNoE815EuWNUcwZv1XE63Wz/rxH8jVPNqFEGwv2lmL7pmC5zxI0PCo4IpcO/30ZLsKNYlf12rgbFrkvtyIkVMqnYhkP3Irre9wPQBBPwQif8nVFCKClAq25RxYhsJmNOyEdeR1q6s4iF5PRmyKx7xfPc0szWVZ5JNB7lNJNKdSGPcqQ5YGTz8ABES4esowCEmOxyWUiDdGVEZ9uzAUkZe4DOHRgVP6HTQijDAelw0yEoTImj0pbW50dLLqG9TIpH8dzBdk9sRWtSKVZTXGdopY3s08EgLh/8uNTMre//esMqVbnhHGvxCIInRmD1w0/dHScuM3Wh2jFdss9fuyB9eIcilLSbXUXOGXmlWc56/Uc0YfEu+5rGQv3pviy9b32YJQCmuvpQvJYHZSlsWC/gVAtDsYMBErHQnT0ByEdA1DL9L/TTGIoeDZh4jG2VjNnQ0Fy76W+equrxPZFIlofnUIVPSeYHwihS6E8QOIEMyijq76MEm5eSN5Lyg+GCs2h5r8ly5n5iD8hXeIJiIlxxKgWe0IBrNyCcqWkbCW93eXUMbbNatTpVn94XfFOolwLegb5c1EzYY6gWb/OL1NBv7R/gSUSKb6Tw4Hlsc8k3Lr0Nz5VPC6WvgpBwq9gDfDKPxNy5EQ2jV/wXdPtl+M9hvq3QkUNWEBeLAZhYIKhQayVLR5krfEs2IEE29bIqNVWOXrE3QqR7ZWRxBi96gdGHtHYPgskqfZP48YOsgY1a8KnzJKxrK7+CkojnXwRTD9xgiDm94tXV9aEy2wTYJSSc+AoUb5ZIHe4DAe3eqk1cd5DgiD6OMnvJvx9wJceCmPvHYuu+M7flrZonBKoRSNsXaihousELAnAYrgq3t/6+dLYKSUtwM1IZNWmzBsZeJoUs9ShRQvNErZS1v5KwN4TR1DWtiS/ZuhSISINq+G6M/W99pc/zQXejxfOu1E2NZgVPTYfOEO64qEClPXpCgF61HAuhxqDuXUnlrU5o8KAfAfa9/22HSrITJoyBU64EpMbe9ayvK1WObCgL/8t3RYGK9jbvrjd1B5w4IXMWGbuOITd7cv7JpwJAaj1bO2Sux4W/gGsapESwwO1WvWB/gPvxdxEuEzBIuBBGNvjVP9kcQhKQmCis7GlUcPm82+LCZIAovkaV+b4E2paGbX22zhGKOpvfUFl7QGeuE0EQdiXB2ZQhBNU9l4dbkBB1EmLQHiaZOphARCeld7Yk/LXMGsim7gS4/tHZN0X1sVHViaZ3SJ/Xo8+PMoUNr1wpBNPo3J9sTrktEiGMvlfeoGG+kNqO8xmjVa3WF+dKK0bET6eMaOxTcdGmi3tfW1hPePHmgwKgj24Rkp/S16v1nVhErRmjDbR4Vb2/hNTfO7sPrZKgQ1EUjwPCgloEBjJ1+twU/EJNsamX52FCd8Am8kADY6MItowJDFUfnHteQPAS6kIqQuQch8YCilw0ZAjfkyRRMwTC/Aytpxzrf8IzlfKxa2NJpN0m0RBKTf3XIUhq9XOgI2Q=
Variant 3
DifficultyLevel
585
Question
Triangle PQR is an isosceles triangle.
What is the size of the angle ∠PRQ?
Worked Solution
Since 180° in a Δ,
|
|
∠PRQ |
= 180−(2×81) |
|
= 18° |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Triangle $PQR$ is an isosceles triangle.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2023/01/Geom_NAPX-H4-CA12_v3.svg 200 indent vpad
What is the size of the angle $\angle$$PRQ$? |
workedSolution | Since 180$\degree$ in a $\Delta$,
|||
|-|-|
|$\angle$$PRQ$|= $180 - (2\times 81)$|
||= {{{correctAnswer}}}|
|
correctAnswer | |
Answers
U2FsdGVkX1+rQbUtWZqXwUXdzC3RdKeBOLYHVvyB0LqdK6f5EImBao+r3Ud93n5GtwvO0RtVcVHs4jxWaPtQqAUmW8dHp1kBO/h/CWWtSLwLkmPVL0XjhjyGttBFFUj2lJfDyBwFiIyUGOZtMvXEM9/LHloP4Z2u5WFVnjWEmv+xHv1QG/e7uaJB8sqFYV0NKKC3PQahhzlJAkaqTmdKtDgWB2NFDGk/cGyWLJigOBx6VVcHnXxLLEYlSXefGFOsNYuFLI6L9UkAI51ycbq2QtsTqvOtGVZcIfGSeguKn1VkM7MaIjA+ZuURwhDV15qPB9oYX0nAqJuIc/BXN4TsodRCGprpuWjxB4me6OpEJ1To0xA0zLHoGjO4DMAHa5eC0pL2I7oCQNNzKRGDqb+mztFIi8GE+BTLaWg2scnOBtybQoMMIq3NoT8hV8kb70H3VMpPnAuZUokW/7ngfUp9boDC7Ewqo/yL9ObDByqizaQ4vyDY8vlPbqAgl33APlCi2KVr/5G2D0T7bT/8PpCbT6TTcMEk7qIUntGitgUxD8/pLbT7wT8ZCwr+WGCvtuXQ3l0gsaTL3lSUJn/OOoFgU7ED4hQBAi3e1BTzGiCISqZexrV9HxxhdqYbU5TNXvm7yiHsAxmc7gpwHwaZvjFbUu7yeP3SNr2A1/AHugcxUco5WFUCThuULDaxcdBPS3aOv2yGMTn38K5qESDmJg49DTlSrGjDhyP9u8JJ3ELTDx692LfhXVTqAKF9PKTtrnpp/5AYhiA89pX+3Ul4Dq9Nifg9SKAZ0W/uy+sWDFIv+D1MrjtoN8XN4D8dMgNHqEh9RpV41XP1oRouVSzjq/qLlOC48eojL+WeKWoG4qJVWEjWQ6XGv2cBT8FCGJKLq0t32JKZlsEbwvKYLlGJHwVG+xVF+uOBMnrz3Yrc9eiGW4lbOlOBJhqa1N+uQf8ZBRz54YS3RPO1UmtQ7MUgF+gFzoWAhpbtyskr4Vw01SW31Y3sX5nv6l1eq/1FxEupsbe2ZTPoCphjS9KHXMoP9gbvYRm8dnVX8DigBoUv1Ng34Qo1BEdpGh/OPhz8B8DkBwyHw3b6i+G4fLD8dWbuXLycy8muP7SmUU7P+9zJmszlsOaIL6BnlUMZHtfIRZRR+Zo06TQgJjlyOCwE11fWe7uqV2jhyrVl0iYwCUR56Fyl4lIjgD/Kl11t3z1ZqDt9y8OTIq8JuD/5gruniPXYYHdPz5mtoUgsh7v1kFW00NTD2uAD/abTqUmV7Zr2MmSa+k0H+dhi0tj5dNQWI8gb6OTmhPA8oCg4c4AGaZTicWHkkr6iS8sl36oJKkfIcdoA/dke1AOFo61J0YGsQnB1wJLZjtgeGNZi6dyEgPdl7vXJyjzV/TfITR81I1g5LNnyMnldi/VvqJmEvlxXWgySWqKoEHMeNXlWZD7wsDn3bRDukBk+o7MJfyKBtbWNCvxHK2hYyS7ZMK53AnCbDoOHnNNdfS0Ka3uvyJFd5WDuQMK1wjbYZaam7qcBIy7QCw+pe8rOn4c/tX0/HfuqaHnVkliEMG517FmopVajoMIJpA/LgvFywfTmTo7oOxBqLP34ZU6g5twZhiaqeQGyUjbLDBKhyv3qc90kYKfVIkx2FK0b7ZD7qw0sIKh2sDrV4ToCNNAzME+UTp3RV150JaehbCkmSsF4OjQ0ckf5i44pPJHGiVZ1ufN+Sj88XHKZr6y4YocPy+kJxVVgVWs0xPimfhUhkbLObLXSBECcrpfWUOQfN6enrw5cOi8xXCz6XYEyF0KgDQ4hRfPfZqDI+g6HDeWddI8SW14zXcnwB2UTVWQT+WWwFVELthbGTQr3q017cDuypvC8xmCt+gyvuEXz0q6dnELd0Jq4txQGadxBXXHgCVY4VM+Jk1xzpClO1ncrMvVHU8c03UrZ2Nwc1++WvQxlJY4twRL1GFKCRBHAYOOfot8/H1uT9a94aPuhg+TdOiD7QQWa5n1i+upVF9hYvlaJeGFjksdLFt/PRj9PwkHQ455gN2WZSV4BcHHdBvLJYKvthmRwsuU78r+QvmHW77rlnCNOhMqGI0enPd120ZCOho/pqUAtXJOLNA7YSNHPOdo/+SnI2P5/yQlwMqgKK3HJtkHqdZtZHpMvzjSX0mtAmDLKu+txuC23B6VMxz4/iSzJ2/PKjaBsQ3sQ6DWLn2Cxo+wu76bfpeUXo6/egs/X+OZsBkyIJYR40ductXKL4DzAE3Z7dlxtFwTdCO01ju9m4bzu6EMv5XIgh4Qw0PQ/7nIx/BStLiHivaF5hMU2Hd6pGsx9/PLh98nqx5PgAZCvs9dg8dapOtRTGrjeJLEl7SK77ndA3Wk64cTiyw3r9LB4dXVKs3ctyV5J/FB/IP79ir81aHP+v2CKPCaiOA6K+iprBb63XDsnmSK0QMYP7FcbGZS5fOGLbRyZC2C7RZASzfVOgcCic2v5KZ76lwD7SxWM14v4Q51sPRUFyZb/GTqK2DSFTwVdCwBp/+sloCUk64vHS35f6wN35HjCDtpGYFm+BV5JGhG+D3cexjFV4AIuXSPQcE8+L9upxtD1OVjQwYjAPf8VCPH2uVpPc1gEFwj3DbkhTJGwCdWguNTGCfkRv1Wh8TispybYbBZS1TDysdmTwTnw5IFC9ZUkJvnUjG/p2wJ7Iil3LTE931lUyb9QplkR+cljhjbpFLhveONgtTUXbV6IbxAEScIzvsJcnm3l0OkwVBi2mzLN21wkSk3VAAyPnnStFpjOoWjAHuyPDr4wxd+XgJcybMuhDftC/QqWxjpKdkxqJL83R8kkZqR0XsRLWs9Qp49QXizXpiVMZGVhEJbCFe4g+XV0w9WoeZ5cif4h/GR7Wxb6QDOB65OBGqsPFtzw7N7zmfDPeV9AQetq/BZ9PmTJgrEu5N+QGHvvz/ELjAisZI0m44cnZ9nQyC6wPVstsrr8z6YHRNs1u+/R+mMKP9WL8Sg9Y/M0W3H9W/9K7+tdNvb9l7E5/s5Z4BflPTuCgpeB4EnxdU9NAnbs9kMBc+qQK19K2agLN8gp2sJEbgqF01UW5YhWJY5llRB4l33nMHuIYaZi90zZ4o8JbE/vEz9coDprnyewaOECZRtdRfhfQog08Zx86hXbFOlBU0wcaG+zCG5F+b7jZxghV9K0r55ygY2Jjnd0r32JsbkInkWy4z7tZIQhp10mrnA/NVmREDjOAri6gMPG/VG0dfB6QUr5y/i6uFGHnnPjKvOu2I42R3CAl16s7OxJM7sCECfiuChcevHznjjkHxybPDlJPF3xyY8e+Jn+JqALkO8pLoNlherv2/OBGhDGGBdyJDzoiiy4+wXDr3iSRZJQ/c5bIRVEbYddEYimTyOhhODiDrsCX2KL8HVxo80TlGg4ETPX+vNifJUPZyUvnewuq/j5K/+naEzuRK1G3qRXzkubt1rSdDfWcMj+mIwgfHBRFyp82/KIfHY00mGW/2FA0jx0n1R7cl+SLqRf+ZgrrdTMR2vxBM7w9khzn/wDiHiGTYXXZhVUiCqI7duCxL5QgTtxeGjCA837LpeUpaUpBj2zJ2ZA9o25IQr8MPTz+x2tcuJfljqFgUVcLi3DBL6nm5Wk/yzFyN2BUVdfx7jgI3Uzp3tJ5dA6ndZLNpD8/aQR/SoXsPSv35qHvpRaSdX+NdevicwphRFSPynCplVJEDEOcX4iwobzUjzPpedr96Q4TSPfCpPs0pXL7aBITkWBaOowIySaiC0HDRSPCgrguB0W7SwPhLq4zlkPFRfggFgLP17OYd6kA5YChUizyla9FrXkl5gJrnR5Q3jWp9RhQ3UEGLhTrvdJM4WzhD1/Xamg6LXYyLmXYQ+tD0VeJYwoMH6zot5LxAoSZcbQcqEAQtnTqQ8iZg8k36BiFx3p716uo4/m6+FBbPnbkwMkvY+TseWc4ldxQw0PSbEb90JmWIuxSLj5uzDFxnFqC+Wk/4lbXMvgGHRYT6wT5C/mAmYrh25pG441cL1hn184stPe9X/y97IsW7PFRv+JDEcuQGMRJzfSHO8Dflcqy3zkBzO//UCjPLo/Y9VgeGk3UnVbbwGP/K1ZUm6BO2O7y5boPrd5bdnViVY3eXI8gpAu7iA9JdYX1XivmBSBFv4AL3mhI3PsY7+z9edL8T3wt58zh+ZLX4QZz+sZyCarcxVzoD351kz1QE68igYiNMFIiuyTMfu5RaMahc0YQOkmBh50Fzj6LIpBky7R4tQxjMyYDHb+ZclTRXXYSN80E+hhEHdvexLhq/sDX8mFxF+i/k6dPKTOj7l0ZYatwaTOdjdL90V/rKJtsuwgLZPFfA0iC/8YuMb0ccBLj6o7nt7A+96CbjDyMHB9bP6RIcQ4WRIIdOcFPL7h+TqgaVXBgTEdBr+aBgaDTHCgES90ztP9l2Y/JU6s/mVD5pWPSeYW7uL+r/zHkGSAUnAO4KuXyDBYDEmnvljl/NgFBdXPEK4FCH/Wh9Dd4WKeH9pBmFlZWwDshDsgj6G+kop5WlsYyoNzUFmTRzoZNewkA4d+zIAwlMTYytnZJT6O6AXU4Jmuh0wNLi8KxsrYF5C/DfVM2cWAiHWHx6h/La7i4gsq/qbCHdJMTbSANX1A/gx8vNLWLKEWZqfQoTQ6tr/NuZX/sgzIu0VfsO3ameB7l0gCWzrfarLnjTIVT+JeUjk/RCU+O+Lke7a/3x627nbzYH+AkaCVKUXv1D1IronB2sSHuEJ77h7Dt/LFwKPMRaTkISuvBwIFN894jHaE+WBaFiVMkeRW40OtiA9UWPF6AGcRBCK56Q5q1FlE7Y4wRNxraldfYS8CRM/q3Ow+JK+L/dwp9YDq1PCLtKlRFJ2K9sf2+ZWritwfwJHhAbzcaq5uJcbnPgCAx9pAbtjCUL0YvTQUiknl2C+VaR2gTuHiZIKnCWA7iyrteqmlYZowrlGDlFzaH1Hc+thitnuI/idTn1NYR6HsNgBA0ynLpWrwJztkRtwd+r7oBU/kPq18mZdwqYQraCp5FPlDiZaydNsJYh9DBtJ+sOa/QBv7jqY3t0MogPqsH3hEZhFvbs4GgFG0HbnjbjNs6osAMtIoy1KKHudut+MHnCoAaovrqaSzDedJpHd67frqD2SpLHHNVob8yrAK59QqV0vdrFIX094Ui2tR8kJMTdEsL6hPAd4GKUdone3Y0r/4ZxBom3X1JWw33grOVXbwOMDl9gpgP0NCjkQsbBGnS7aIB4bhnTI9vMnrdMYw82Oy67gAQo7lORXky4mR5UpCauRMBKqzSo6Yo54kFJ5g5nIkZjk9r9dyeEeYm7S2KBsFLRn2A5igNE1j33Hh5+jyjFnSxFe4xQdwywoNbYj9+pkWFiH+UFQZsjJIc8kWs9E+UPAVF63MU05h9IMaZIO548lbkhXU2Iib1eBeMbaxxYvl6LdmP0u7YQd5AZBxhc0xv1+Yj0qa7dR43Q+43H7/jIpgR/oz8862qSctrrJCG+zk82SNxd+wkW787e9SF2UXA5V0zVRJ3daKEyu30OfVcJN4FMsgTI0WG0fuTjWcmhkk8/v7rZGWsn3u3LI9K9815/fZ/LQYxOBV+injDFhvaUCJKRNTC54QWIcsx3GhgLZIVJ1+MCtj+NxfG6KO445H9yPIP3GOHk84lZT3GK+YEnO35mSZUkTMaRGdk+qg3Frg+jHzxfQA0lGIcz3y2enZStMeXPWUESCIyXE3nQIWXEpdkWDYA50NtMY07X6KeaCw3YkANm4CffactybbxX/v5kzHFwJDUzRvrj1kPanxPHHsrCEe3tBFAQaChJm6e4/2VprSPyAfXFQKy+RrQSbMdVHuAvaHGi8rXO+DfGc30/sl/FG0yuA69cUlwqxbyJIFzDtfxRAQJTBJvNqFUw3VmGLUkfFx3Va5eDijOR+eL5erHEBms9Oy0Hs+45axYGPygCCIzl/5ocY0K8fxCG++ik14RRZJh+ko7A4myE/vMOX4f84aYtmLGKvSuWli6QCS/uQGiabHZZ5pmNpkAoq8gqkbRKu3Bvyc5quR0ECvJPwdPfV7K1DkERSXd1ZvsTTYC6QVMLimd43QU+rmcdyLBvPeOnqySTFfT+LL3YJQPOk9CdPOxUpNiaLFaOnuSbcXu9T9dC3NQMCmzLs8yC7NsoaGaiOjk6CTFwRX7EW+2GslQzcRqnAOLZk322QLRE2DBz1arzanaKsKwcHER35wC4kXImnwts+a4HPWGL4rv53SzcuWnDghpn3RBRWiylu1/WbDIfblLKYiYLOu2YVUbKAVnND72hYxcPVfub2Wm7aFo7EgaD3Z2sOs99joymSU81Lk8v8e6kDeFd2xKCLwr/rNfH9xq+7aVht9s0ssJtVoejvnddPNpgzw0p42RC+jsIiKrkNSkgBxNdk/vQJlFOLmF3PAczxiHrXZq9FCsBxGVUzxKl6aUA9gBzb8SVZNIRG8nJCuYwrxXWPtg4TLkU4Qgd0HWeGbR8CNhC+PaKHtrc4z1/GzMS6yq8vVf80vLZPc4XXD/GjzazkXjVTzOxZ/CAlVPWRjbKLe0qnwfWYNrRhrC+atB7h/hatuZWlLlZ8i0bTI8Ta91KLMKhpcCxftpzgxUJ5axqhto6rE35+PVDJkREw7DzMykU4dLTmKp6ug9/ZgeSt2PgxSLRPcBkhOYyQY1vgH5Tuf2UVzbmesBZJ1corI9wZrs35+JySjc3D4zvJtvDRGCy5KCF6GsNEt9wfLZwriBhbn7wOFNxy1w5R9Tb92c/gTFMzlUtOSc7IubHv5HNY2NfHBrGccKaJ12SPDlPV+P9/D5VWRJE6uG1GHlhXWe9O3zPQgaDFmguPU/+NZ4yyP9FvPWlGzWiE5CYIg+U18Zoodiq8gKe6aWYMh5zBTj1NjML0JCEXEqu4Lwmogd3f3kM8Tp7gJfPmofbArPFtyXFi8V2cMGaA6vCepXz5y0X+oKEIwpUBon/jSRzIlldUDHlu29xGhr9BC66/hTjq6ARTLUjI2TzTb95RUZN+Am6A4buuqPWuVvlOVsR3Z95jFn/cDM4+DFvUwVoVMhfS+8deSdsSqG0QEfeXWrDSIOjrUJv8hKPTvOLoyP4gS9jFWxkDqdqNPSbDIM3GOS95VHQDtxRQHyI0audmDSjzX6W3cQ03f5IFkgTijaxWngA1Zqa2hRW8HHJJ4CeJecx+ciJSJKMMvs4d8SY5mcrHstj+Ei7gfMDMBhnEh+ecEPPOoySI47Zgi4KrJ8hNo3V4JvuDF2W6JfOUCjdUZEp6c63AQWcWHcsUCID3uqKiHn/9drpx7sSkUWuxxQ4i6VKO5Uf8kWEruyUAS+KSd6O51OhNruRxRhbGopV5r/ErpUm8uVjpLM3LpR8/gibE0sDtWJ3i0yU8Dn04tL3hXW55j/tsWJ4GPqsBeD27+2yNU4JmH5Z/CQTSTjQ1+vrNB52+iIzPx2kfM7ov6e26H9qpB0e6m1hwBMnT0hMvkHRF/nWmqkrWGX5jK4mq0FU0Q5JYImyeVuTb5vmw3HMrrDu9MNUuuRpSNvAsaITcpBczsHc8wQ1bX5CuC36Qal3UsKRATvZwAt/oPRynYaAw7ykA0GSRiGZtNipXglQBuHM51FE+R+irtSMny5PlSTUltEnnLMYFRxC41LngaVGjslj3oUn5lBpoveoRW0pZIU9I0VFbv1JQ1GJQ91ZE3WvZj2b9VrWYXb/XNggjBiYKrlFDSOm0i926ry82YxKqahY+z58WZJV9RyBIFoC/5Ao5J/ME6Wc8UGj4tI/L+F5r81ilS1CTFc3OJFvuA9/LHtISsDxTDZjQzmkyVKbFXnByAihLFYqszCRigICWb3jSnrl80Ixlmftux6taTfI/0luSD8NAQw2sJZOsGo2nAdIQFyxTCl3tpQl3iBbZpsYFzbigmmAegNwbfMZuL7PfmXXM6SIMr0MWJhbOqF5GpGLK41TSy/YAAYwIC5KLDyTjpja9XETSVAFlo/3790FKvWCfP/RKjywTsmNy0ZxNsB93pxxCTW7kO23YpHE/qaJxmxrH0YaYxrlqx3X2WjFjeysMqT10TfWsTnPHPoQpOi1X2/CZ3KLk3Dl3rDDvtVleiCp5zGbGWnwPlR1PJsZnwP90Fzqjjltk1/00FEJmoXXvjlt1nvPZ8VhZRzs/UwOo1TIMnmVWndbBfEl2VsfLBIVQVKR5Sa9twiRGSdWxEO3BFm/gOAhwj7qwdqQIm1qDJuddGGmN1UOLmSfOlCe5Sdf9WrOPF8Ln+VtS1JU829zRk+k0fPYuSixrLoAn9gqAw68/TDJR6wX3NkVmosMkA2i8MiQzHyZSphUVBekRz2SGYLHmpPhlZxfdO6lYVypeXAQWno99+LFiVtugtHjTey1rUl4GJRciesQZ50EsicHtDRmTlUDkoNyRuq3wQfAfckPhOK0CsZp4bkWywdpH30a+6wB91WkWmHtYaBZXaewIU2HmT+GLqfQXVx5w5TcbCkyV2PJqRfblva+IOZEScASug8XvmjZ/J4oys375u/g0G5FqRJJ3HDLadPJAutXbWj7fdfLjFi2Ry/hx/8MbClKD8yAEmmxOcjgOQaymRD7wTVIE1Tw6Z3tPPlFL86OjNRSTWHNwnqBtsoKS0B8kmI3WZ/Y77dkkVtugOlSbbbOLFEfj7m9/1xWQVZVGpsnxesL1kvz9Flovw65tWMKQirFgbxAUXAxRPSf0J9jGFnBLPO38X72WUQJZLiSkYws3H3PenlQ1FIr3iPO84NpGMRf5IKCS9mYlk5zI+gRm9+wTwh2Hdl8Xt7VcVnFWY0eKIj2CU+vvXeg/phN8D8Okf7F5VBDwhpEzdqAxqv271W5j/Y7yTHyFekoJqinN3L4qgzLrqk87YT6mZoS0hpf+HNJcMHZvGYEd2aG8SH/ouuSTxG58rw22r+dVvB8Mt/WyFuLliI1LWl9UKdvj5wEcEY60itq1oa1j/Hn9SPzxY5DxPcy9ZUmqjEEzOsqH571RG5FR3gJ1UKJTeJqzoewk6KBzYyTwGQZ3E4RgBAd8A0FvH2M39GBMuvd2qMBe40+Jc2iokeZP1mU5V5gtRRqwkwQ1uE5Re3DbEUiM6ZblTGqZGbBVKLXSTO+lEtHJ0x635Pu2FcNL8v1C9BofR8TOl4V5Z2d/i9z+qDYJD5R2kNRKNCfrYcDXU2UpOh2nCrRiq9T8hEDtllMUqCSLISjQcJptZnzmzCQZ4EcvjSFIOqeAkSq405sg9275m4K0zTrHEUueKkucESt4he5rolHbiKMJg5npJUfMiE6bfu9mUk56fzkw5KZeidb22OWDGmqWGx77IPiR6sgYSdhY/pQAfuBLdge0zgucQuVZtLXnxOvk2DsCPdXPPHCO7i5fTaPs1nvLABvncjyEw1BHgR16HT5SY+n6DA//UKxHSa9+5XKVVqQ9wxinVhjWLGQt3NInzAdEp1/xtJ8WSXGnUduvQ238xoNLzYTNO3uKHVaib1giSTCwge9T40lYvy6MSgTL8MXXCeVAOj4Xd36uP/bekwW2JwAArB0RPeCuQAeZHqp4xZ/Fyr8vIyo5nFnJ6pVLzjO7fGpLfmPQsz1qhmxJZgivoIahlE5/kVm9z2gDO1En8GVU/jzC9RcAdKYZrL8V1Lb52+SGV2nDsxQSINoUH97aALpA4LwU3TeqqgLT7J5ulL9dco7E2A+3w90A213YOefiTIBIxJbiWRyGxZv3iPXoBUh7kfLmOmX4s+BePjlTF51VG4Bswc+O4v16MD1RHDHmtzJkt4FJtK5ZRdiAQfn4z6nQsW38iYFFhISjUEVffGTgd1a9tlB+RT4uB0n2+h+hy3vcdEcG94IJbi6GoVX8EUctKDE04Dt9sEu88JEqBqisOA3jgD0W1f7nqRWemCWAQH2kjyS6jICZleehvpSRMkTMkz9F6Dooocj7unPRourWYGaq9/pam+xyH/VcllN4FUjWTKNpEt7KkM904ioWsBlPGbWaFOsae/jnRZCepb7EJF2FkGOfEJ8SV/dl/46gcJhlFSBMQ6kUflFameSha2CCqVy1J0cMcT5NE3RF+OUIQ9V4YslO9x9e2uUY5XjHzR5qdQLWM98OXqg1vV0nuAf3hI4lqBDplNWF7CucnMuSM0E+9DUywZhrgTibPo3sLUD3KAa/fMIETHna/lpGM5sszDeNPVbAxXdKyW+gLAZRbPf+67XboZUWlKP7flwCdjD75VtpNkl4+kkr0asXLQJxgpM9ZO4w4c39I8ttviDN699/U9xxgWA4cwm4Dhcar63/dgW7MKvcJzJUEwlLfguQODmnlR8qqmNFbP3T5t5UnIJjHKuc/DFY3EnJJmrRJu1EOYPzn+Kwgu4FKVa5dIVp787FHmrGHXyrlKExEHP9/XstLnFC8RTDbD0XNfFm/uNh1gO6iAdmsyiSL5XX8ZUJ838gIUAdOAiijXgve1cZQ6MzXsCVx5KfsJRIgTfaw+5uQYaEw7dBr8TFaJXLlWCaHCm5+v2tsdDFwB2NI3NPDOb9AqmzaIE8L0Tdqk9RbWE2MLFzwDiOcdcL001tkTxVA3a9ynNxAFLEaVVmQ+ZOoj0zBdbKYmRuTxJPhKKn9QoQFn55QibY136BZEBMvffsQV2C1NBtbKMLw6jJXUXZe0EIu52mB6sOPqhjuoZSnUaM3hEEMJ5yYWC8O3O6dX5Ll2oLCaqT3IT9pBHsx3JiG47DA93ATeCVUSjDU7WmL7dQFjFYFmtEo++ug1vQYYxs5e0Eh8iSEndR6pSoSMKZ4QxV3Lxr1INAn7/cbRBHlYKRk2u1YmUNLx6YdXk9+wBCnGCGTdSEdZK4xyxrbV35EqjWWbe9+omuy91zBSnMvcSx9ibs/FRu+uCb47MkyX2l1s7BSSqXdsvShmTwJplxIBMnwEvi/Tdh21WyIrCd9gk97G6ZOeHD1QLOa4p/bLDFAULd+XpFHt72ghiym06WBFykWSBcnllkZF6WUmyJ4XbRMU3WH6kPRwKpGLehhsrmD3tBQ4eKulwns50Qgakueo75mcuky7HgpMYdoGspmB4QGrT4sPVmCbStR6QbXloNNJ60CUUej0tc7gdfaNmEjResvcrBdbdeOwFUydTaAgXkz1KzByJIctUi9hIQ4S8FA1gW9PkU4NBu6kNpIuyVt92jQs/eCsT7JDpO79nIClXMAD89aQz/mvc2+REBw6jhAj1UILmirh+4pRMCQ9wUXsCynr6eUtrZhJJz+5ImcGWntDjgo89THr4CSbCdDkQVtjwL/PDQ8nY/Iwc6kBHzQX6HNylyskwQxdnOIds6F0kPFYu9ITwpeRUfQpddKYnPJbzeepvdc2+iRC9nmGYszbmi/o3bVbkIkLiE7qKPvjKnCx5HLoT5qzB/zgoHpGNMnHAjykDetpRgDbuuRUX2X2bfqcFXlE5mvWFkUYCR4D3+xQpg4OKI9irw6DtbENBbjNlmiw1SZjQhW65igfTD/jZtt5d0JdOAAYzkc/VQXglJSHtGX99HwTTG53nsFvsifcHDCad4IMi6hqoSW8tmKsPKnWtzStUNiqRA1caqPDsRo+Y35m7sfb9r0MSC9ROMDfObr0hQ4eJQd/ZE6Uze3e3fx/f9Yx9qEGmD6cW4syvQkNatIJlNMpQI1x+VXb1wTuHghqRjMxnptyhHAS0jN4a9tnvOx3az8sYOVY9hIBILVradEcilILLlfbSp7aHl3LUcEUVk5NIq/VRFLjxcxsKMWG8ZFpOXrY9a0ItQdfdsF2HOeH4s=
Variant 4
DifficultyLevel
584
Question
Triangle PQR is an isosceles triangle.
What is the size of the angle ∠QPR?
Worked Solution
Since 180° in a Δ,
|
|
∠QPR |
= 180−(2×61) |
|
= 58° |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Triangle $PQR$ is an isosceles triangle.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2023/01/Geom_NAPX-H4-CA12_v2.svg 220 indent vpad
What is the size of the angle $\angle$$QPR$? |
workedSolution | Since 180$\degree$ in a $\Delta$,
|||
|-|-|
|$\angle$$QPR$|= $180 - (2\times 61)$|
||= {{{correctAnswer}}}|
|
correctAnswer | |
Answers
U2FsdGVkX194wlIeZlvIGUT9CL4dhUMhJlGAFdSS6JXWTU5i2gIF9sDqWX+3XLjyKzCViSLJ4CifAvYVNbC6WI5mkbLpgPVsCaC8DDun/Um+hkCggFfHmcGffS9hRGzmZVa3PwmS8MnRAaZjL/79OSuhsaHQKQKRqeV7h2Z7im9XhiheJwkp5ObnrU3Kw5a54TY5vVo6eZZonQV5Wl7Pi2tc2JkaBjfiFRhkZaQjfvUfZnweZOKFVXDLuXAnNAZUiNstC9uyLNa/R+1csLGvLO+KMF3h8JFh0joasVXBu6WYdDFS18gl8Gsl2hVN5JxnsKXJp3dY2nK7G3YRoXggGQu0Gf3M7ojlgStVUyCijvRZA4tin2sTOTrU7iebVlR/JPon7ti5UrJFLEJU38lXeBMsaWYO5GEEWaVJ/BhBMzSq9MvRbizITaAWkF5B4pn+lG1oAp4Cy8nMwvq3fJ8k/Ti7ooRVYU/giQHgDGceDYgXJcJYOEU56iaVd17ZZjg5XCw3++NIrHUp2/QCPDKlKN9tzryS+vduZFLj/AijT5G+2T+4R+Pb0b9sQ2TKCiRWPCRB4hgXMk4ta/L4zdvz0/x4W/mohDb+YnflIfSrrxwG1MCKARLFYbRvArM85u4YtYjFH/frXdsaUmEzH//yzYV8OLBsCtufF37BRoqxW6m7joFH3ycZTFT58g4a/wza67VoqAXrfsU1OpwGUfwREEVBl8up1mJ4gZVzx4COTR8XMlC2t0BtF60V0CXDeQfA1c+PQRhcYoZNsB1Mqch7jiZGXjvw6OiC6BD687TVVbXETo/LWd+yCKg7GBqj1ZZCoJ2xlq3DVjSs19A5SyETv8dUMLgS2Rw5Txf9fW3URHUAxkTdqXkuFMKPBxQw4/rdZdYe+8mOyVASXOZsAZ7DmRza1DxZWs9XZWS3NYbHOgSsQ6lfD0hmkRiPlPFfhn7ixZ7g1grAoYtO1MwlGww8gy1gE0Y136lDhC44ZN9wt1IQXnND01jajT/vSmlc//YkBoyJorYA4m7x9SUywN1QoWSOI+49zJMqFVo2xyYp5xZEARXufrfQ2hO2V9+Tj5vLxCKVPL9Yzx+Ou8SbVlJemN0TF1raKnXl6Hjk7moKEIqxY5zl9c/3vfW9ztud131LAz5STCdIUFRPWyYHWIzXxQhYq9/NYf4gOcmFm/zvQHdgESWY5bD0j+LojxNfJ8yW4V+NuivYsomX4uYmEn5yCQ573Npr2+KhvumEw458oWQHO+DJFrZ3KsaiNbJwITCMK3eS59NIuVCcA6IUHWbyzYz+bPJYyRhYX54mYZYFVAh2yX92bgNCSQizvv8VVmk/4YYXzEz4sFPB5re9XEEXOlIgE/Sz4UPeeAsFcLSzpBT19KWi0sKSa1++Zu82xAMXtxa1G2BFd+EbJF9kDhmg4uFK20U6dFqPUHmLUSe3lyMyZPMcmSK9rrjUZRStGzgK5x+EphJ9On/y70ZUIXGNRt/xA0rZ0ejMtuSZUhHgxSggYdo6Ssd8XhPlFc+p3el0Dp+A6PxUufI96++QkKhhO8sN7GxrXXvtzqE4n/QytOVQVzUfRP3HFgtpEXkMUpPsgARypNrO9riK/F20XP+N5Z5TE0f068N5hdxxSN/O5zOSppca8XgiYqcMB/O18MXvREKtEmR66TugozTNJgJjcbYEN4mBGoDYeqdmAppbkAe6Ksh14I1xC+fRN0RanB66Dn3/4yRK5giuaOmaCTCzwdGH9NppobRyHGn+bjC88aZaVVo7Mzm3pVdaCLsKzeGk6JOVPmIH/pFz2JI3wPA0oYNZ2Cv3dTqa25tOEXkvxCqW1yIBwzydLJJGuLACVRndw4XMNu5WzI8KzhhxHXOojHN7P0qU0XecNRZnodQhz429sLciUdSLTTgvevTpS16N6Y5ayZYdcNWYpRQE4blSh3gsXlJzx/48PiT6MAAoBSijoRUU0Gb2ZA6RMA7AKZKjhk3gxEgWkZei/kH/SWTE/0Pg7pEY7H6sAF1tQQYurjDcVoWuKLpRh01/f0K7wGO/sD8fQzJZQiRJL5xkCOG3oydqWermKXJFNtMvffHMwxINf1mikR1UkkaEqG1N/16JqeJZPSlY3X4/vVKNeKY0dwliClTBABeipjUuREz7kJOp49fDRNU3Qy0FwsU+qMUfRW+I0pjwgV4O4fARtbtd9uFfCU5eAQ5W23vuG0v8cV5weajuPB8gw/dBAJReLHh9kIbkqGkY/eE+0ZORdMYMkJUSuicR2OZxFPdVR1IT3F/bdQQhA1807wxXSTXY+4Y3kxK+U0BHF04KQjvjKksowQypnTEte4U4B5kIIX7vtea71GuZp5ZboLYrUgCOi7eB7uFVTEWP/5GirAcq0CjxvF14Xo4helqEGTaesVVcDn3Vids8PK4LR931prGNwIT69yh5J43nSHcyRJ58fY5WxWFrG+E8n4/o5WaJc2JUyEBfgWSAht2tkjR+7eyBtegMGkc+yr/WN36s0q1uVdyrEmnr19qOKlkiD4zJGK91l27Zvz4cKnn9++vP6k98IE8lEnwak/PdAb/I+2RLyJSYr7yf38jcVOLy+Fn6RLH7B6HbetmOHsnT5TPcD+xNfKpT5roI1kTAD+EBlYRBfNasq149d3eH+TFgrylrGmxwtOxUnul8Gt4ezZUMFTZRMI44CP+1vXIzFMWYq9Ig2+l4v7qA62bUJoZVXtGEnqCPD2P7l2KYUdv6HABlomFV4+iShVcxzdHDve8fY9twEA2FUYuVVaBhFXX3S+bcKaN/rJx0FPxhqI2HEEgKqFyHFKm5D6ofrAw1xpc20S4zByfcoFe5cOhIKOTdxdmBXpYz8EgTT6yateMVJQEKRhd2XE2CXWzLmRAwuU2l8BOLU8LVW4Xh3RjIxNLyhhg4qzZtk6rR2sIJSAviMnVCf3Y10NlOtgNtdukN5xA/AEppRkgkBKSMv6UL3i8uD3MZBLXI21cWh/yjeuDV325X5HzdAfRwLgAqDHq5bodkNtOXmQmNQ7att/F3am6OmhC5f29h+u5X/7JsfqSdztA4Q8FCBxJ1kpCSB01ehRboPPKarFqC/2PuUkuC7h5eQKzr2p5tR/obNTGiQUwn0wPwRHTDYO3OkYPM07079/5aCczhdzbe9R4K16G69IKipzuvi0yNhpYe5RQEcIqXSio6FUeXvuI6oUKsZiRnN5Ha+KRBvwvCbD54c9YNVn3U57I4D4lntmPyv+UHl8x75iE4THyPbZI+0gWVKEvHDWdOfsq+uc0JruYPxFjEKOqg33H2y8qzanmbo0B9CWz5IQv8N5pG+oL9vdrBYeXauayV5BSBfC67OyqzKBA+Bs+R0uA+vNKK5OO+CJvY2p/qCRpl1N5UwisyNFvaHSm5a4mv7Tfhm+bY7D9UPj2JAQ3v0xoNgHfpD9NQrVJnrJxxvDaRNIp1bg3VmDGaHd+4PAe8+YerKqWhTPmvHUIUSGPXDVxdXliu7RkiL8PjmcIC1FXLyTjo9ScaOPBkB/zsOtA5aHO6MeG+PUuDEdsReaRP73Q+hLSUGZRMDPOJ4o1+XW1eCuLs5dgrgGJB0kbE0hzEW2CQwZRL+3JQ/9xuwk46GER9Em6KDIh/JPFOvhHjc+EDkpZqnuAiqnvegSfzqLeWhON+MJOg/pA0wROkEPs05ll3fwLwjVAp0WFjX9/XPVqhQA17P4ogcOVRZcFR85X+J5AbL0u+unupL1puk105zzZu9ncUNBZNAfURqaFGHfHOzIA3sfAvTVGuEeaNkykUmfk0TEj2qcf6yl2R5eKN09tnVRmjYDLfXHBjHFgVYr0d/WvYd1nRdxgnB2cD/Zue8ktm3caY8T+ZFpBzDhz6l2eOYnDXvILOdJOyJ88n0teYARcRtlM5rz9MXjey+167UB9utz/btJXAPTeNsMG+8B3wn8meg2YbYxVmzVl+RsgdyZ24GQyCbN0ai8ovseOC7NQTrJfGS9YmLpwuZcSTuDL+sz/Tcf3V8cmF1m7++PZkyF+FkaWeCgLeIxPNQofJhLzFHNPjAEvFqCi5AYpn2gARx4zXh2kcwKnelGFEQGZMXuI+yGmLoRPV4sErkVfopbttm/X9MARcPBEtlhl95BlLl8jHUHZWnqL50GoIg387GLzLVmvPxCLmtzUKpDiZEqqL1Ul0iBunSGffx5YTR6+GYdXl7CKZ+l97IaSjOTMCe6Hcw0kh4r6EBaRMBXowv1f1UqYFzpHa6E+t2mCU1d1xngzeUULT/nCgS7+sZMf0NdNpFHgge9E8MEOgjntGt23WoE+d/cdaWzSTlMcVZ6rU/amq1hrSdQH9mVouwI6GfquXaDQDeIqKx5a1KJpj2bN2ERHR+bqf/WC8nA6yfr7BuCX12hVmqkPu9GuwbgjgagKaAsW6ZF299dj4miEU0tvQVww8MTkO2PM9K04keMeqpjdffC7iHjph50iqOJOu8TVj3vUGi8m1FkMb8/4WNpNPELnh88Wyd+iYYNzuARU3VezPkXoxRPP7lDuTNEcDjoqS9Gyom908wl7fgACH/z473GNUlKheJRhlv5YpwvSCtQ37PJnL+FtXbEzM8PedoH/3ZNla2k2Mwsv/tS4jeNcQRLu8bDlD8y9PaBJI91mjdsS3iQJqljasFCeS//yDY3TnQL/chRr0X8PbloUyVz9AVK7v4ouVY1buDR9QHWf5IxYRhmLgwegfhQOl7kZ9qpVgP+4pU/9hvD4YZzmH/LiOV6DOluozSxXvYCiGDw0Bh9Ia6tRGQetRHLE63yocL/zg1+DM3LkseYD5mZF9kA+3mG4r2g5HPH77LG+1wVXAwOrJC+w0HVG4W+8EfFe4lc/ADaA/YyPQ1T7COiUMd9/bfMa6GA7jtMrsDJ4rq0lM1uumQTZ/amnKFtuWQ+yZT9WH1QO6T+xkvkL6ZPJyJZXa57L+erVnCWvWfEhW8cm2P7n1z0AXj80AWNzFZFD7fAWLTzppPyV4WKFCD+y6dlO9z7G5BZZmhyYpbPmPzItu0zYH23emqW/NwOTD9/4AsrozuS9/mDeTwPfRbRAVdbeuMurihFvTxTiBIgJc1gq/t8As5m++kRo2Y0wPQR6aA1RwRulNEGZrny1m5++4YNLQvJtH0PFG7HGQxNVkL4Gv2c4uP9ARVfAjpm84KIHpn9veLGSGSX7846hYauiBRhZYyDQYbhbPQ1kh3E2iyxw2WNcy5BrG4+TWbb8WmzETyINrCedw2k/3uB+XvVGxpGYoCYiMr4+3BL7DIMR7eBKiebARvoVG6GiDnL9U3qPNFrqM7KaFpfKsfKyvZTvUKLHhMrUtRJrUHdvBKw8zQFTZz9wa3+u1L2eBQJql3gbPQWv3svIecyZ8TnRJTOlNTCxaAswpZB6KOa8tGt9rBolWGQTB4saAQWGVVo2YuudOcnuHvNfCPTgezM8fQa7EyJGfbowSg6SUaJSEIgzveHLTjn9f/WwvNouPDerMut++clTgNWCr1mlzXG0qOxXA3XdIRM6Q1gv76CXV3SmPSMcZr1zr1bV3GgPQZxK3XI10Hwr4kaDWHZTW9x0SUUnnFkf6IJ41gfMvnVu3gCVAfX7az9SJc/Q6UXDM+uHckHFNGYaAGFKhm3yzk0BQHpHmStAY8APDC+d5tnWbfLyz8JXeiMUppvmp5P+rfVnwNa+eNo1DIXL4pWdTTRkdXkVPb/YjPZG8OUIhhaKEgaI9z69urYd9Am7EEJs+t/vDMTBZj3y89h1EQoX0Mt2Z6xoCwenyIa+eYVXZwTgM+4EQsKJiolvpgHG3z0y/dzCmfzpUkvitf0kpQOGv8t5V0kY5xrC00hqVQtVH6RzKfkn8TkRxrOPI/pW4a06n6M4t+Y+7D9M47akArxGEtNjbGNlRUWmLg/yjfX4yxW4nsyimrtjyFmO4SlqCjHcPw8k25eWWUGiBHXjLWJMHU6y9G9jX81+iIJi3onRjqO9SCqU//GGmtoAqCSjqA9r+e2rmthki3dNG+XW8iW+Rk+qpFgUk/89khwruo8synINPLzWSuNtbvtbOot8JBOmyHS1HJYvx3UqhioNsckfn/0mm/AbAGFOf0sND1IJJBEe48a5joynRSj230cQOuoyMuPiVB85Ykaikge/bqdnXKpNm+5ep/R+6zZiwMve2j33bfWrtceGkffvaUSqagstNRMlqmRdVZGIitPxcw7IOFM+g3BxJR+2yYTWlOzkCuKF1sXMWbiFmlFT874DPTauYyvux1kbbdgz89FJNRVAoOrN1t747VPC6Aw+OzjJP82Zvt4mFpl6WExa1rjvIgvb1aNIkQSPJGbV99v5bXES93votcFnR9Ozok36GdKePsgN8su95XgQMX/F+JTqw0D1akhDJLKM0I/WHcFeJSchNRmxPaLWvQG89ldtACV9ZkcmRFGV2bWlgc2/9fSAoroZ7nGU87ZsfaewB90BLIHcEtEJEuZM+bDd3c4gJk1XUMx23v0qGtDIwIC/EP3A6MGCjMCOT03j06TizSbhXrTs0zKmFnUk4tOMugZ4CiFMVnZUe4yMbSvIu2hujK/+sS18y7+qMFb9V2G6w2wtIzeGJG0/axpG5ny+MjnqEkF7m1tNvseN+lrufxa4Vfsg2woNCAe969sM7izjXEOWNhHOVgDvDVFSg7yqzTsNi0ccbkkr9oAacDaUGEf+Mz/T8rd9PHpwIoskQJCvSruSZ69mquXyvZRyOcAQdaxdPrpr+k/ynGlrt9uxSYEvWJ0Y4iy1zHfB7r2vQcOWuWhytA0mwrEed4nUVwhNZAMzDZf1iSRJKcCYoOUWluzued9YM5DLzNwa/05cqALVtDcbr1y8oPzka5OdG2xThWh8VjkqqmuaPpQ3ArI7ClqMO/V6QygNW62/UL7HGhYuqTuHCEtvLU5cd0wRO6V4Lfa8+Fa+TA0CsQjYIahzR/lCNltfAs0s4GLwpM0LNk6wxIlhGck0qbnIjwJ2iht2pwkEsytKj8t4QpUObwg8TFOivP0PVMp6T3Qwch/bKWI+22+Fn1/3xbAdlBoo4pGXQvDruBpq7TGB/AohdP6puJusni4eIqFbCTR/tKqBZLqhAwQVP5UpXa3I4N6d3nGI3+OF+bKwPfDy7iqTYkDeLDfwnRP8F9s+pdYKuk3+bYJGa1F+RBGbBChD0eOAIpLRQjT1jNV8dr4wO2rFEG00Wbwml73qinV/KG8CoZ2Dp2y2rOxo8d49qNFhN914rV/UX0V1r0Ok0ns1M+2SuW+XjvFZ95A6yTzu/t/toydovJW5eO96V3uC1xLmWATGsj3V6qIbHKmayS7XxtHGermLexbFcMuCxCeQX8mHXz6EAOvRrlpyehmhBa4apwcMN2y6suNFZfF/zsq30/dOOuC2T3arzeopLfFanaYq40Ee7JX7iHkWkpjN2DW6m5MgeVNN3OLmOeqq1RDk8Dvy9rmvUGgRpXj7+qQAhnL4+ZsrQ5qkcsNiC7mOQ1W/GIBIRMMo+nDv9/cg51W1Pr8sSpZq0Df6slkdauu4r4Xb/PsjqWdQnbjpCSMshtrE9euZltca9bK2brSqHbWBATHQoCJYbMQOdUvK+DtGflybigvGySMCOBjoet9ru5Viunsll13ZXfm7d4HGpUMYUleXod68ZF4+AVCDnxQjqmcb5VntX2zxHuqIvLhHq2fRCBoxPDM/rpDX6sn1gePu2KF5BUgIdKxK2zVgIadIrV2tn5OJU82apNVPq0LYVw5dosUKKTzC2ifolP/EGmJ+C1p/Lgu74vgl2gS2Vzd484IqB5MuWOrtY/pKoc2JQK38yXGlz/twh8cX7MAgl4oKeDtYOo3tRof1o7HgXtxkY7Xhj0W8re3WsiiQwrTlMdHQ+b/d2d6aQ+G0i1rRZ3S0XodhW5zpfxb9iDiSbzfok5ZFy7zxtBT4ttr2DGzvNBv0GsT/jNI5iaWJN4cDCanf5dKMfGynMRnYmTNbn2JQ4o6Cn6saoB+kJ0b3mXRzzkLCYsHl1aGuXBQIGdat371mNxugBQTAo1Y+WAEyyB+Sc5b8/GW+YHq5Md+SKhe0zY4n53qBKZB0gHJqhQcMnyZO4BO1KYc+QOYe6WiTbeJveViin+1tWE5rXNmHW1R30cH4LqdkR8+7NBJRF2Ju+MKHHhEuEegQadDEFPlzz/I/w0gihY5gs9vZPELUNQ/D8CJzvea1DxSY/BU3k+y/ifYJ2Ej8UtpWpWgVaSOeVRMQUCdTSGr/fcj0XVaTFNYH2WJkYpeHAkVgLq2Mq9eIz2eg8S7OVu5YNvV44lXSiAZIuOGuU/ewaKb6DSbJxvt50u1SdUfCfyocTI6Pi7EbR4aLDr3o8ohf77i82Ta4deJFv+lYZpPHcGHNoBX/P/IDTTxPrGCaMgFp8P1NYjCDT5H0MocPG/rJPBf48Hpdm/VKHsl/1JUkHQmJrooPfRIzMunzXsDXIJd1GxFCcfiCn2fX7Xq+Q4qDIWhlI5bGeNlTDIYnprqAXTFREGbVXH6rFiNoRKlC5COMiGAx861I76nS4Bit6ltoKEyXaRS0nSHvq9uZQqJEyO+BH4Ok7MEtNZWDJP9RaEOJnLvrTtV0RyxjYBvU/ZySPAHFH8nDF18bdlw3Eeq6HnOUT5Y8ZVD8RW4l3orBPonSvOfrlYHzyQbOXSt9v00N+2mYihYgigVj1QG1wbSmroCeXVO6+nQ86i9CKHjOFLpO7mPYEbCWobYaPAnLsUCT1cULUvyEh1c1U7v0YuvgFsbQtIWhtUrYEZ6FaSdS1MgSYgsPAFlnp4iCT785qWPzbzknnXrAZuVFgG6vEZbQmlJjOR2EKgDgGzcPaJpe1xU3uxjLw2Gq4H9d9aQyYd6GR8H/ETvvs28PAsuyMm5txUqPssq2cPLGqW+LQAYXlLQVfJ3DqHrfGCQFH1rPsK6iwAmszRihHO8rh8NoLgta0DV9r8/IWV5BY9Oslx+Z9FeV+vELq0CShiwj+pw3vFi02fhaia5hiz/lM+95sgwZZbECsbKn0mJaUVaWz6x7pYaprHLnQGGX8WzlzK5uwJqb32RqP1Ucai0A3lmoCJdu9vPsmCu/KxGGNfv6s4UvXVmUm1NT1NZ4hS5lfY2bNlbI5l2uyBGW39LXKyDeaQDxAM1rbhIcBnvUoUxyGcU/R0gIwozvvqH7roO4dSm10lc6H2RiEztochnw7C4vYGekzjtBtvEbQ0U279DG6e1J6HplRLGG0Ahgdom/t0p+oowbUqqzrodz82tX0bvuJrXsOtlADaUFCwCEo9wlRPcNQXxiN37ClbMxrVzCDA4ScVSk5Cc/Gk6cLA7pIcTFpX2x7GqLIPaGXdu0pTZCr3Ay4WTP4oTqR6mlzIvL6bL9dDnwM03pzLdV83M/ElTGnKytCgN7PUNzYhm7QY+co2qTKCGK3Xa1slN7UrQrQaktSaM6cNQAOm8DiFD0jDkurWZvY+5MBNT1HyQC90IE8WkLn16QXYQvXNfDroXW7NGWvSQqEA8fNPP4a3FQ3cpgAMGaKhmjzJroZB83EONOKpKZB1cPQbPNC/y3bCPwywvfhCsks7bT04vDiaZH+qmJ0Npj5ttEYg9HBhTiOwwssuh+Wb8ItLSUeX6ZgaOubcKaGmKvcFx7crmKvg2WhA1lBithG2oBDbaurCtsg5i6Asbfis6Rm/KT7RGkNKH4FLRwa3Njqd7mMuoGpItSDehUdb8Hb0WERwLMVYXdz5SlbcuWAaUmAwHwdhzWfZDg2h3S/oqW5kMbsPAsILwD0dc0faQVyP4INoMqmn2oSFfCs1MrhDGUHdHAwJioIbLtlRPfXjEKINzYn7SFp9YOlIerSlM46bc0nwHKWlMl0iZIuZe3OfntEVebKmJqSm92RAEew30Qya1PNwz8JtmCsM5qETeEfWFsBmxu+HrdaJ2Nl4ekaJraDbxP1BchCLHkuWXLy2+cRBVFil+qZwXB2eZ7l4yvd0yAhj7ODpYWXQp/r7oBwUoASf1t8hMfhACAMkKWzR9+PM62wk0jT0+AEi4kKgb0VzHyNTUwWCYo6vTfRUr+EMNSI2Knl0UCDBa3rLotUIj1t0xn6SsBatbVnUi/2xVY8w5EpEgcSP02PrBpcWWmT8k2ZOz/dAkUAg8QRcdzaMNZWJc8/OwjWXPHnW3Glc679aUkIrBEXfZ8kowPsOYwNutvbaZlgi5Ie+Y7tzSrEZNG6adx4JgzzqnaOexX37ePVHqfXFg4FWLZss+yfmbhzvjLgZvmsff7hHZ9BPxls1ZYEJ2OOCdBCouhogM2pbq1wCp1llIZ4Ohzrk7hVN09vp2tSKo6wkaRSdSwDrCiLnn9fDcwnf7sx4ZJz81YrHcKCtWt/VUtVBOaHIL5XJTjuDs7y2saIsmn2D1le9/q3wT0UOs9bc7SxdDhQhbfxuT/cMjn2eONbIrLTCnGBrlgA6Ou27Ai3ec70d3lc1fg6la3eWKWmrH7w2GBFJQIE7TXnqDkufhPzV8NCYtSzGYIxYiE41gTeIgmi3dvyTOILXLmOk2cP/MtjZg3Pez1oKRQ94F9DymuYy8ZEz1Z6GmOdUy46BfshyWj4w9jzwFAzCwBl4TeMdZzbzb9Jipr13sDhgDZ9cSulFBzvaMABpcBiV7oA/8uxJU3BvL2dEM/zkd2JgCG3AHUq4qbHFTyA6OgUzFglWFEgiKMl72tlNYSjiWj1zH4LpyNzvbsdUToBRIfd7rWHVOiv/3bg3WEeIDpEkBgZZhbRhk23BizvUCK2Bc4bp9Y091CwF4AOoBQiSSwEk4QP53vsAQi1gBbiji2KinGtRtpWvyiTWrCbrF2S6t2iR8hEeRIzL6P5esjp/Jt9gKUBjURp59oYnLIBKwO7xn9/0+QKov3WQSWIgvEellDYvK3CDbG/r+76ao2QbkSqDdlJVhlgby+qq3jmG+SJbDgdaDH4jBfY3tCKZ2eoJOby1L3r0Irp8PAlbOe4Sq1twOYIlu5i9geEssCGCHfmyg9O42OwAe4EWyZmlHRO4wo7MNnLFhHbqQ8kHEb1bSFM2FooGqFVz8Cq8e92IPU4C440yc3CxQM0e31Smg0azwwpv8F3Ah57vBySNqIAOs58NJh+IFbWAgMb5X0+c6pSbPVRWvVF+y5hACC9ernEXeK0dMBhOh07YKiStVr0sdAj+6soErtjEoHiakG8yxpr3GrqsbjFNJUjNyq4GwfbteSkV2v0wTZz+9TDvahtgjVK49bC/eyGzchJiWqeVApTdG76x6b7/ZqefL89pAVVCvsXuvhlAmQdXD9Cuymkaqsohs0Z9ftUzTpCu7R1Ly7O/jegefJnXqw/mgzHxI7hY/17vc2Q+Y70lKU1t63NMgKi5oUYbCcM8wkHr3Z6I2wk/HqeK0Tn2tbg32pIuCa8WXf9BgFyKhlQnXemeoMuEb4o5vTR7fN34FNitiYL3p3Goe/uxOESfKRp76lbA+cW5Hi+e3O5zWtu4G5wXIg/Hh3aiamMdGxlLm0qxnyS9xcIZDm8DpA9reFb0rwTlRQnrsuOKu4XQSyBnBrZctBvRqsqSSDqJfj1fJBn274ZEET/OWH/yQX+sUVe6cSKVckXBF1kFDkSLHMsJkERx2thxyUH4owq338ZAWNvteigd/hOff5BTAEVvoGvHvMvQkC+HlxwGww3dXIeVXpSzJDp0bcwAV/n1+8EX8hk5Fq0L2oUIRWBZzLMwj+2UQ5FJO0BC/8iZQt9z0tx/NnLZe9N+V0WosNkVEc=
Variant 5
DifficultyLevel
583
Question
Triangle PQR is an isosceles triangle.
What is the size of the angle ∠PRQ?
Worked Solution
Since 180° in Δ,
|
|
∠PRQ |
= 180−(2×76) |
|
= 28° |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Triangle $PQR$ is an isosceles triangle.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2023/01/Geom_NAPX-H4-CA12_v1.svg 280 indent vpad
What is the size of the angle $\angle$$PRQ$? |
workedSolution | Since 180$\degree$ in $\Delta$,
|||
|-|-|
|$\angle$$PRQ$|= $180 - (2\times 76)$|
||= {{{correctAnswer}}}|
|
correctAnswer | |
Answers