Measurement, NAPX-p169631v01
U2FsdGVkX18uBvvIL7SOlrzmF/Npf9++SDqYNns88nHWhgx+HyDcGpMZUK7UErzVxC34uapluy8BKMoonvl86eqB+OkgnadTvH5L3uquGsM8KBRq5YoQYhBanERdcGhSEZyXAV9eNGSOXS84Ki/SJ2BXp/N+5TILou2j/M4j608EzBJu3BqOGOi+utRtLjJk9zc7TxzKVG3BKEl78EEHPUUk3TdcM1EvI4YWcx+l2NDxRITF0nl34xq14KALQ9z9SkNcBJoxSWQSDA5mY7UloogvdJ/hpGNsntpTw0L0cIUZCWce29uS8o8DsCMYvETvlF8zLlP8wssBrhA43KndBMtfm5V5SbYW5l90qt+bB9btjRLnsJYWORl3mmwCZCJ3VpKnfN4ZBID/Clng7PHAJIpV0FGNfB3CEBQ/oNmmVPlDRxWunJ/b0Ya96qAmxnK6anctlYScE7tGWx8C2bH0dT8LvvUJa3AzKmG6aCWCh6QJ+s8q57wZhkJzCuR/xkC8LFb4TJDefHs1K1Irzvx4THUUheTM3MWI5oWXdDUKcxJegbogbIOXQnsOFkUs7IVNzMvB4VRQO1wJBZdtEVEUWa9iKkQrZSOtpJGzkDSmPqCYucirYXZv60TJvc5Q4KXRSkBj1JD/voKlRh3RFbl0MgEYHpS5uXOrlolrPm7gjj1yCokLs2shqaWQO6JkRrM4pJqOr0XCAyFbbVkac/KwvDNIbum9eQI2RQS67ywEFvxU0y/K5shNXOLQtxzV0XhRS0Blw9Px5HkZNptk6XaGZytjrtjM+GOuuiyuQlA8gqVQictinnvaq4e5UvWmXSObOzqPuGZtfBk+OCuBZzfqR4jT8epFb0Ln6rFpJUded0LLAwcMAF9iV4eLhmyGZrEyYfWKEA161O/cPS5jTacFZQBU4hocwTrCp0kDcVwUaaHd5jS2GPOyxpJYC77q7ecd1YuCfZh7rVsm9E1+pJy2WEtm7s6hlegkUbON6nN3AM9Ot1g3HxT4mBaYgWeN3fQOjRAVHD+r4yCKFXYfzW5zJ6qqePIu/DN3HMQji880L/xO+sRHvRTktbLMFt0UmYSCuOZGu6r9vLcyRdaeJq3hGX4qFSzf9weHLC4b1VJSRYxLtVhegQ4ozWKZmannUHoPFI8oqGoME8waRdO6CitWo5IEEcKj4uvehlKojvXsbqosNsFqgKVWcQH6GG5UjvIy54gfh29lF+TC5o/e7avBYesalAdXvk/+LMAWA+Ci+jdiNra+Pjd5v+wWtJstw7zbbVPs4dTReA4KFhMLUj3tPUrpjveXq0y+BnpRxMmdBuWAEkXmod/z4ZcDdnCvsAmQAm8iCteiseKkbU1CToBfx6NaE6NejEscA1eFbf6IcxYT0SD+bRri9jWQ2FFLAg3YyFQNt9Zc1gOULcXfXEYiZ7kHFEWRrB/6eP9ukADPmBKq/zNwxxsUUsL5P9UC3OzeYC7n9k9wlpYlLdXmrdmPKHBHu9frwBxfH5JhsVg9jbFbqraD9JdWcJfBCEUFKAjAOr9OZo8CDH5wn/CU1zcDuPlfxtaTaeAyk3KrbLwzIJZb3d2T452fgjk4ow2Ud1MWmIYKxzKh7h2I8+Uq8IT2Bz0SD/gP+IGS4IZkp97FmVMeUSxfgdI3RZe14OjRUyAkQC9XGwLlpZzFT3+KrS2M6PTG78Iys1Giuj4YbJwIbscu/sDhqs2rMmkBCO4uXr4NgTop0cmYybTZrZ6u9VDQx2Hp7kYE1IF8Enz/gnJKEPeB+jpBAPbPY+K3VV8zDvu5yt9ZGEX3DxVQVakOXQ6oE+8rFg47AVrG3GQF9DpMIX3/EOrvk91uCSXjt7fUPChXe+EACfFXW2p1AMhqPecLCcl4D76jyTQArY0xwkQuKgXKdVPf4G2PCTTIXvqYbYS1cbS8M2YfyTYeKbX5Ga23Dnbl2JU7MOO2QKVA/Bt8jfcvsniYZcC3tJJhnY3TUzNRjlVsQIlMpOcfMh3454OB3VJ4pr8c45i1D8r1m9iHO2HEn2pK1m31M6P4g2cQ9SwL7rTJ6kuwlUQ/ityh+NJDEufGEJBmTto2RQsWbchu4oaHBMIan53KAsF/OidorBXH7kEvXOM6aRLqgKw3YC33Va8DMoGPRWbv8cYOEQ8AGWoUR/Gbco9aEp9SJVSAlr618B1vvwSoAZ564DwB2DPqch0TinU2DE0OXaWmvKAdQYj9vul0ScUT6QlZ/YnXTgoE/JJT7+O0YB5dT/vFEgN71qrWD/JVCYc5ttEkrAEIM/H3mFJKe/w3YAZePRjNMVLMdbRykEUDSA3GrRpFL6g/hVURByMFpkM0o2QyobUlNRA6jFq3Og8/kRA3RO/IY77jhlawmiQk7aITeu8cC4zB2Gy/e1OmKcd2Xpip9A0KHM7HKwVtB2xCNjg+nlneEJgUm/2GDX8+YDHttjzuTRazrEi1rMEJAmtpCT3uDMNNGi25/65VvYq36YKzGT2jj3YEDyznyJnXSd6OlMLAftfQN5tXk8WIN5kTNGiNgQ3YnH5JCQHEco595PUC5jG4gFxaInG+gQ6Izdu5EqUJDSyMjP9UzobWiP70k+1f5mRRgeNoEe2rKXhpmiPL9c4OMXZYYolhfSil+Nc7SEdvaGyfQohjAXQHQ0Ze3ZfYVIck0MFmMSihUY/Adzj7udevuhdMaGRz4pfQN4BxCjcYzW2hDOyE9HJQ9YIzkERG6vLzqSeht5IvO3j6OPZR933BM1q8Vt2sV1+aZIEzj9UDjeQpxdfNJuqfKfxCe1kgtpEEfHR77Z+1OhBuCgAqDGc8DCSmf7O+D9268LTq0EAS/CBqLxYbfD3YKBKxrWVmsVm3LdZxuyfq8PalyvMEJ2VlJHEDFdlguKzsM80C8+IHJVvG8xHziqKZ04dvmxEgaabykjVg4GfkivZKtFnkXkrP1PkzBDK86x5alrzYiW8ITDaweh/dsYYk1VRFpQONjJsA1lazvIcyQfgX7musJfUNcJ2SnNLlGGDZ+lmLKxuU/mGeKdHJSJFXvgVsiaCY28kuqbqtmvGL+4xO+fAEchJm7BEXBV6PuCJOOGMaHS7p5LENcyIG4fOlEXZyrH1DEOncJ2co0xvfSrA31HKfvx2tujAUDmTQ6LGHUVvzw1BZwYfET9PpyBabOewMt3b4oR8FC8pLklDac4V5DiUKyGouldnlSvYtqpVdBeJzXYOdUh7x98grY7NMbpBQp5VJhkSQXsfvBoQpQ3qTjvnUpo7+iIDmMEZ/Epuvv3ZLpFxDdUmV4YGL8uLFlFMW0rDP6e/sCUs+jMlkdU7DQ6iFjZtxi+Y7DVu1r27ZR2S5mOSSY2HhDTkIxPELK15qFPckwyKu0JekdfXkzoM5bEutugICbIxtFZxNEyzH4MLI2GdAhE6xpUi9SPODy02TVRJvSbPU9z0dArHXEtjZe2dG8fuJJ1vtRx8BbX97c51d42fIMYauHmB22Wgi6zyi2W5mmTdaBQOwtf2bGg5wTSXLD8yF0dc6It0tWKGUm3qwApp9WJavkI0uF9DGHQ6l7NFVRdddtG8Xl2P0cDggpUFyjfdozDFJ9uCi++1w1KILIAX2chDXdVbx2WcBzgrrDTcIzRV1wpifiBLOpK3U3nJDT7SKzhdI1wxy0K5VsGyk17rSpUMuDF8NK1phqiYuyot8/EQOhw4asXekfYBtfJRujOjpLw+fqn/rZqCT+xaO31iYOTtnDRRqD7J8jgvkxQN0hmoYWQ5ZXyT03KRbHyVLNxLwAtrZKfpyNyjs4GvZUvbLm6IvJCdiMUh/BSX8JrUEM7CjN6UmID+mlrj6xeu+lGWujsdZfITR8WWjl0CooTLFHXj/SqtlRQBEY+RHmhfITrd+RIYB8k3jblPQEc2/jXNktmNYMq62n6S7TnZFEKsjSqvYM6V6PebskMdeDnpLbNRNqZQBrdEGr/f9g4y51tSKmpyhnee7obOaev/QwIFM10va7r+W+JuFY3yh8yN7o3aPEzceIz5b/Uy67uB0IxFVPsyVfkShe5VQkY3FWIF/ePdDlccFryjG78negFri8qIxvY/w2r6b4RwGdsIVMCzGNFlP7bvto4rrzF4GJTatEClNJPX4z21mHfUKdcJZzAIxaTKTzoffnuxVKZUG/M5cUDQMZOKZv+wwctl5PuVI/yRwvWpYIEnkqDG/lDWDoFvIR4YpUBM0qDky4AXRUgMCIdx38sonHrkhAAv3U51gc7tFRtZVcEELdOwbShVg6zs/PbsLPmusyMkoYGvbtoJ2SpZtEkKE1PyMujH3jxTz5vKzBksBolDF/dHzBc40Qy82OxTAI2sVU56ajKooou972ZkxgWS7VslK6GUDRsn9ynNNcfiteLwEONf64N4FLaHuYBGPdYCY25BLpTz2fd0on+xN8FvU4y4kQVHB42vMXeohqy6QhgC4wkCj6rBm7gexL6oclRvoH2851umsNqsJshWanGpZQ8RLrRtPB036YtVhk9l5s6RpaQqeKutivjPYtBd+tHsy/J1gwTxI+qDEhLegtJAwgfs8GjzWGGsm40afIIoDPlX+EIBHl9Hye2hw/qkHM8NudUwqnnttMJbU/S6OHgEi8zE/h4o5ED4/u4pI0zSssPR9b1xXzpa5DThCXsn2azM65d5svCoPMq9ifqYj0LeQ5GGVOEwsL/+o/9d5pEG4B9oUxX3pav8pVQMBqarc9XiBs8pY7wrYZ5/+OC51ygp4hFYTukuzhmxEUm/X1ZqsQP9L6UJ4JYr7k0scoxQ4F1ITm3Mh5IAK485zEsQbJ3E4+zVRtMTB8pc7ktz+on5t75QeqpbyhgMbvzQPH8tFEL+UD1awm2rBDxt+8z6YE29rCsLBWXJIcVtkFXY+aCwk8ydZdeJKsR0QeIlH9y8VS7uUyIFs/kLBFbPTvhtwzZ2TdtGlhG3paJ020BUyLddWHqIqjqxn3HI5X/83JZyana0GSPozQsQ6YL7hhn05yzwZ4TS+PeXq/ZmiD8Rxg87xAY4tboV1GqQ4uFSNpfht31xOcY24rFi+XA4ABUChT1qjUXLqNol6Brulujw9OItUrwIBfaKnImoZswi5QehFpr4etSzbG3mM3GjiRrnHPqtSOugAmHXT52Nr+qt+HZ7jg6mVQ0bEehmxrK2fK6avpNyS2tIAGaq9EaeHmHH95/B7cY0a5J8IO5rT3Kw13K2BHewGR4heCihU5I0G6WfMrwcSsRtmbsmfPocEsZbd94qv+U9tPxipxLErYpBGPD5G3nGlYk9TB+Y+9hbaaTFAKImzA5u9EM8Z7fGyxFEz1fkr9Ocebk7lgTPA3xUQ026aVJya1TblxAgTdiar6D5mL4VQ/DhF5+MzldL4cjtWk8qcK7IL17+CORW6w7x/wk2tPDPmtw67UqKaXIaP0Xko60ll4ADiYVXWpKBm5OgO19QvPLIttTaJfcbag7Ea+UTznEg6Z4He+VP/LtsiMZy7TJ0SZW0iNBxCX/msEB8DhO+1yGv19QZGAd+tZ+/oFYYg+ybseTZ+auLtNMCcaSHsY/UAYL22M088/eMJJCMzEzpmGUMZwS39BxGeSAGgbDvyxcJNzOhCqnNSE++uYVt/WzIicmlJMDcebeIac74SCuU0BZadiaeWQhnLyJOqOnj4SbX0KdrtUv/IP+TI75oEJmN/7XOkhBJp0nps8PLn+E28xJVhxw3ZXoiqNO8e5l69owEKWdPl07YDReO4c7WEL0j7uNfIX5Ku30WYYz5WqoXQE+iBieWH0GG/9GTppnw1EztHNEPqZzD24sZBWZWe16f/YPM6cozXug63rfYBF/qQ13pN4BZhbaXnsUEiH8qQpRnyPXTipKcveY/bUrj2u3oylViWH/3lCdYHq6wuXx1PyoLuVR5exFB7BCSrkZ6RACuRoj1V/tI6UmFLfTntYahI/QyvjVykmSE4Y00U1WciJ6fudE+ZP1CbKVpshZQhAPkW1dl/ANEIqDAJkggbz/aUiP1yeQbjP+tWSFjhr9RoN/GuZtu5wetfiEC61C1iPvH5Vjm91EXU3KJ+2OEiUsJWzD8FYB6GtLWsLW5HGyN2ewhLgxQkno27oKVKlyxhjbW6FpA7MToWLWkKhnMiEeBGw+b/UPktKGXdd3GU2D2ZGOEjpIzZSvYU+kISLpVQ1hUVxVdbkFHZazx+y/R72I0wlNjvVgZp6mnaV+BJTaOWjKIjC9uQz/Gvhj3HWwHg28tKgTHVm6CXrr9ufv7Hxbb3Cwf/8dTCLzBw2drpyk9bgLcz7l63gHqMrTMsLdHoY82X6+u0VEupDgHZjSMftSMScOl8qARrxdPRaGZEkJn6nOsMBO/Lo5/313yB5pOZjliAe0p9LQuFdEu6IGJrdz3ItwHpc0ixXYCeL8P6z6A/jmh/QQKQuUbzrnewtggyo81le+KJAaoo/VyPs9lYN8BVi3OcJYchZn4U+mb7/1nMM98xWSyt8t8OaNJRKVEU9TIIfRp1G99XTYmSoAcVaCWkGv4Tud8U6HbqYYTHKLWN2YaWPqROWDb8a4H2vYn5OYQh56990rMkZ5cE7zZ/2/qzvmaAb30GV25Q3msrOorON+m4aI+7bNXQZPVYh9K1QQ2RlrbNHttBlhHZryDVuId4j/6DIMa393D3OoN2Z6QDFHx9z8xjtJM+ZwcnoAS6azKUz5HsvgJqEMZZkfYVAkbtxiJqs2dApkASlg5iRcOe46ovV6pIR3vewIBZUyteeSdXfrQDhtfoLirAnMnwfex4dEBP5YIkE3MnAd6UWhDW4ZIuYU4sUJATtPX7aozdd2XU6OiqsjRBnIK3kf9Rq7i31PlkF51SMbyww4B6OGoA1LNRT/bicHG0MYVKZdNi9ixYBYSXR5yl0kKN1ZHlwqmzPt5wtmr+Z/ppnIV0pJrHsx75nomodaCeSuVmFbVHPzV6e5zbY4rixSUg8yXN3QO+VZ+FqYedQYyphayV2A0fFIXBoXHj2ZZxREYVljQKaoUTQvyAoAaTIZdNnaRRkteY8dxT7HoJDoQozPuQzEP30/t95LyqPxiFg09cmMkxi2Heh3GirZ6rP8FfFZfK/n5R5ouYqPuxdrL3JPy6
Variant 0
DifficultyLevel
542
Question
Derrick has a backyard in the shape of a rectangle.
The longer side is 131 times longer than the shorter side.
What is the perimeter of Derick’s backyard?
Worked Solution
|
|
Perimeter |
= 2 × 21 + 34 × 2 × 21 |
|
= 42 + 56 |
|
= 98 m |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Derrick has a backyard in the shape of a rectangle.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2021/05/RAPH10-61.svg 300 indent vpad
The longer side is $1 \dfrac{1}{3}$ times longer than the shorter side.
What is the perimeter of Derick’s backyard? |
workedSolution |
| | |
| ---- | --------------------------------------- |
| Perimeter | \= 2 $\times$ 21 + $\dfrac{4}{3}$ $\times$ 2 $\times$ 21 |
| | \= 42 + 56 |
| | \= {{{correctAnswer}}} |
|
correctAnswer | |
Answers