Number, 234567890
U2FsdGVkX1/63Bnofu54+NmMq5aU/BSkBAYudtBnz4SpJiPo+tB41MDpOuGMUf4JXird8lR2mbYCZSqKYsUF2C2CCTSMClEvIn3tVN0YouseOKHlsTNTn45Wpx4zyn43vFPvwUMrKwxWnWMs1kKPxSD/tl/US/oY1iaNHxPZUWLTqoM4DkN2+A0+KwIgFoSwrzIPrL3ikTFvW1zbRNSm1RpogWcAYSxZII6R9/mNZm+foRYxlrHtV9jLolkxh460BSgaOn9GsaZ71jUgPu852A1aps9Sh2GPO4pY1jyQEVQApcvpcCVno6vXg4ZR/BlNP4a8jkKmEAUS5iATnTwoe8/PvWlxhotiHv1RnwZrkEpHeOQ3+pek/c3L4KWoUUDxjG+S5jP97tPi6j5reaKxkkFgwRyTgFQ05XQTN33s95nrqJuIec+P4pZziDF1zwlgd3pMLPHMYLenk3qb0YYpP8ILLhle0JO/0fFkYgiyXpWmXLbq2STXw/xXb79GccGerZKKEfHYLlFPM7YeXbfBjs9OjBati/dylaE+AGwbJWxA9IWFE2C/sNsHk97+z6G5gFd/ZMvDXJjtPJeaF/FMzpcUgHJS0neYxJS6e5lKsARS4+Bf5CkikbYJvStsUfeIA31mb1OqOW4Ux2CWwIEfryEZoOyjxCy6HKq3UubS1j3yHtmVTky9PPBhQi3trGiVgh45WZ1aIJlGPyS4GwYfr1ZMWAlgUwlrfPf4OTk+N04TIKBDAbl/38w/XmoXzgD7Uo5Phfw46z3hqvFzuDWSejICTVXGuEcT+Dw40hHQpFuLfe3JPx8f+ZgyKHYQ1y2T+wvmPC3wKzKfvJjepJZXMKhk7rAa1VrZBwoDcmDyrekHI14VkcD5pnj5jJatU1h4+FK8SnfKwNNzf5mowaJrcI6ffU+8uvtMfirRmr/MhuOWYelmffgiLTvvfdj/Jo3JxBqYtk1sZuDhibr0MooASLybwLBvF5J4IqpR818Jalk0wDdyk0OXSrFMVkhy56p8NisRk8fEVcybbYR4RZF0r7f4/nUoEpVXQ6nlSGHeBLu9MTZble1hEVEdBeCPySHgKpkbSmmpFnnp2Jj8K+jCAZfgnZlgpO1N4blUEoyzJjWzBmQN4nyj63jxj6uzbobOacCdiGvhRh36h/lRgBoD55weIgRqFMX5S9qhvg/DIQy2bMSnxzffYfHAWkhNvmhm/uzQYZSL4cq0WtQCBxDVdkqncpYysbq5hAW8/vZDrmBeczwXxepX8sB1j+ssAICXuE65HNNCEcdTXXOzbQq/c0NoTGti4/GSqAZVuFw11RUgkW5c23Ev8CuCzbrgJc8qx/ofVRvc8hA6/kWi4CX8FenqowvIKaTL5TIQQVPSP1g6xHWLiFZ0nW9PXvvzIUGikAqocivHGRzrqlo0qqqeTwjEuLTJ5iEeDFoTskQoPHOiGv7UwTA/qpszTJobmT75R22neZzviA7G2SKxn5B9JkcHVjRG++p/LM9sXJoHzxgNyymy2qOQVk2jsFYcUzlYyTLN65BgB+3Wna6O3pSY4qOxnyxA2q9JwU1GD0bQyU4trCe6rl81n+RNdKHs+ADiCJoDm7s8LDe6aQH4rMRsjllChc6S3FjoRl8TivqJIQYz3Ot9j2w3KyyAP7xWSGXawIoNNuaKNMQuZQ5hChp9WDxnWyg31vgZF4j/cOW7zdmVI83QAt8mHVobV/vgkoU3A/81XYr/evErMm6CxVYwsggEbrQukXuHj8IGdvsyd1wHbMJFM3/lwKIZOg6eA+XSARCdF+Hr6oE7hQlvSU34R0pHBj5DEuzCAfghQvpvv+JNFxJyi6nkKuGKYEi4q9UXbqvPwRElue1+47j5bDnIr6VaImFNUBAcqqAGyABpje3ESp2FAMNcyQrYCBtNz3dkNXiSPMW+flcnZNePm/zQKGmE8OZxC+MUFkYwARpvDCDXA2UAul3AzRdGvQdCov/58XhDdef7rLam5l8pms5t9CZ7kujzJJBI3zghjWvyA/ia1D1835MARM1ZW3lMhNC6Xzihj+Em3SJZHtzb/h9CUM9mhs11wIicwftqh38bGGsd52nVFeTxO2je+4wGjvp+gBeDF/x+kWhqSS4tVklj9egHkZvGxnwybIHzV1KVA8jX4EOazE8thLgCz4fRVYQYNl6+z7EC4xQnHr75wn4BkE5rQIJWMR/idbNqtwaDJWRaAO2hikUKOLiFZGWf60nG4K7Gf6yHkJjonr5WPzeqg3/4L6aux9paVY43y+iVn/bskgKc6EzhZfH/WlTM0D6aOqvGX0nrBfr6b/vcSWtx5ck+5xNLjeLPNBvm/gGQTa3S9Zk557HzYldPmDfjaRAzXxsbzK6dMlCwsqetx123OzYEYlWe1M2zs9F+JIQzyhQG8WSNY/V3WUsnSg9sHnWltrCRfT7+99zNH2lfq6+Ed8LY5/ST4G95oSe471HjqI2ucuk+azv+68NDS3Dc/Fb62BxoUL0WmFOo80TlHyqknbAneIeWpIpzTQGPyMZAr7r3UvRPzqDSjdh44BN6Osp3c9IQijpdgjWGwcjFzpSr3szVU3vFIEo9XONiWzcCTOZivPFNkndNc4K/2TKa0vk8yE/v8eEvdDdFApVKVr/J06jxJFwa2IGcajR1KyNbaKGr/w2tFtZyG8Zh6p+WIuMg4uf1TjNMzPfXlpR16EAw7/Ypm5OSu2Y4te0T1sI6jvv9bp6SwfpuZ2MbR5oSDKMvV5P/lVwR32WLApH/YYwQwtV1qs3MmFRNQvXIOS+CDCjm9gnFXzJZd7dIKhO2xSdhtLmC4dbgdjpyhvzHntyTjkzUDx36fYs8xd8AuTOHrjibGpPpE0po9Olm9qqEZDhjltd7hnSqD3bYK1RqVuZ/onTZS/wgAbuBuPN5KzeLpBhoOQx9YPdMo3AdP7hP9XzjUbfJ/0vuhJoJLyCVIgBWtwRnlHL+j/HVWpuJyXScJqnPozi8cDBmf6irblx1rs6D6y+2CZmsH73XS4+FdV9E1T9a0OVaB4ZXmzhQYWAwo6P8/7sAcvpWPUlJIF+Yc9jit2ouSYLr3XPcPNRIXX5gxTWM8V9WrDkg0Dd+cwAhpB4bFCVqC8RkOZd03ZyPNy4+xBHjJQdZ6OvUwIv7petWeh7HgjdKnuKct9bwuWLp3apdMbwqGe3mJAG7Kt4LHiD/WqxlbneJXRwbnH8y2KEKqNwJH22O9GbgeAQ9zlxqq3Fab/A6n9L2xo1N/dIQkZ0bfm0ajTSGr2CQEkt+17na6+5kcw4XapEFbayKnWe/FJyPhGgP67DwdckOps7ohr1IShe1ET+6qcobfKom18cWg2TuBAMA8b+BT3l4C3b6QsrxRnt1t82P59oKHSC2Ce/jNs/+3y8XsbdnrbwVOGDtGttMj/6+kQHWDekYX0eeOHrSKDIaATLewhn1oEBN1Vekhb0HToOMBwvLKSwFK+GA7NWKat5xi0CS3vGqN5Uww3hWWwYqTZsDSRQnCyDHA3UudwAhGtEbo1v/cHwxR3WMsj7zDbyhj7pShMiFuuhMtTXP3wZBUqQLGZvIe9hhbTW0pfe0X44swO6nYfnrZn5hBOE23lfkWuHj9RgqjsKEzfBAle1qGgtbBVgJTs1sZOp4m54EKrkea+GHETGRHTffD2cCorVTwOEzHm9w9vS6OoePZuhK6hYSb6Ia3vSFUew0tFV8ZvqiXQxJykYgIBv6JYtc27bGovIsKiBAtWsXQs7ShU9o7aPi9m1Ne43QsIlf1hXccc6wBFOti3j5s0LPKup5BOoeSOq10wNoDkQrJ/+sCTqMffbkXL//w2YNRD4vF9dDrYGXetH0cg5kiwFw7TLhDu0wRN1XodOCuJBtF61CGDXwnqp5f5M90Yd3GXlbVAKhpITVfOO2QyQowRTUirvH7ei4AoO1Co/rYKEFh2pMJRuosRfyPoPhVcp1ESFA6hqjmIlHXMu0gtHasExpBQcmRLf/495maJF5cDu0c6QEnXyhZtPKlo1Fs+OL5JXjq9zzEC9uI7p9hGuZxEsXugB3aMj2EcjillTRNVBei3xBX4hOpLFBQGtTmaT51ctJXgpiPJlIxoRLDJQaiKO+4jiDqxRYN1hxR5qi+rjGAjQ7Ye61SXik48b3XD35XdPcUGlpIsoHOqDSS5iuJdDWKHhgwG+k0TuqYT1FkK/95qVavTZ2Vb3iB8w3URZ5MfmhqcpytUManhkh+rxdz4S5sEEm6zO+T3NWfa+9ViDjkj+IL9CsbOf8A9G35Rc30Je/yupsSbPB5a4YvKoTOqx6dDjMk9PYYJYdUVmFt+4v1DaAAWE8vhdVj3KxXvMOFL6Lwr1jFf/o38anvSCFd+bMMrTUIMKOq7rAt2iAA+8m4XZnf01dqts69RrTN0C3ALFwFJFMd8dWiVb9PbZ8R5FvK0vwIGGfEoqZFYXzMoXZhO/8WrkFCkvcjowe6ocQQdsAjFajhvZpeQDF8PtlcA1DAar7TUyIrMLK0s6hHDsK29nuIYGEEKw9dm+iDaXI5SJPRHGrZ7MB6JNTOVpO91UjyQiy8vLddlZmu96ZBYDkAvJiMDdyFJHSA3feA3Vl5OcAgxiql2QydInkIJmVMApK1BxNdaU12PIqaog6W30+Ojs8qHN6Q0jWayuLNBO3s3frSW2YGmDzn3v7bxVwBmQbx3kEIrAqfYixXX1N3TQV2dQlFtHV+JQ4YUIcn9lfrhBcE0xxiv+C8G7EOobEylSMK4k2fNletK0G/iqXwXdKh99MtF8VKS5x4MaBBYTjmIwK4Z3Jc/c1CbWFKxZ+XQpo7fksllMPEYpUGE5/l6p/nfeMJNZ3dkz410mthajDZT1Lm/2Z9vUAd66vrUDQdi0vYja1khkbZMHKFWQ0QPCzB2duW+vJKZ0es0wkcFVOwxoqCXt+HvgYVxovWXvF2wIh47b1tUX3I0lHiEQvPeFTr6W/0pEne3DhFxwJ8Gl9iiZ2f8DQPXtnwaE3bYP+zD/zUW/bE62iVddoktc78Sn1ZMLqsbkfFd5cVpHvOJPzor5UrwC8jEi7Uvr/FMu9wDGa8o7FR8il+Ajtrnq38hsxQtOiKh8udJvmTNtuSsHsxRoNuMt/4isKvHuhDCZlADqVxATuI0usLUCNP+45g5KoWc+9Eg8Wv6CQ6jSgMvsNJL7cKjNHyKTjWZ4pWOBgGVrIbySCjdRiAfAfOMXB+GjQNJoPGzQM7K+raGXRUiOwsPkoWh6iknfhZ9UdOr09Z6w1Pvx9aWGADtSk5gMwztUudsxTtZxEzmlfj1kx9O1c3pK5N6sAyX6Kj7pazBlt88DvKpuCz1vhEboZc5XynMaSEhjgS6oVhNnHvcZWBu1/hJUdWDsFb3G9aKRVFCFvFoCkE/lI0DkZ4vYnF95CUcfT/URT16NLK6Ud1RlPexLxNSDTw/c3BNOPA0wfTY+cz04tef3BkXN7+l0WNkw+Shv36WZZFwH0/LdOBjswx8FQXKS6ezz8jabqKpVe7WrdAfEnYUvIJEqDfm7mZ+6a+/1LWne1dkn60n11BL22wpt3ASYHGCmyIiJuh4H4GFtuEpXUQfD28av4NJc6AQsciybMZZhOj7dcE3gYpuotwrqs9NHGzhnWo/3DfYkyqg/I9h1EzRpp1mLhPRpPNJaIE9rSnxo40pSOc2Fl0F3dEpJjLRwvYvtu/Uhtep04J1KCcC/INurJri8rD3A6YcW9ukAoBrB5Ix7tZKVXu6r6/j4fZHFMk29a8cixwvA2zPUlW0G007GhyMzolVLPuQRNymCijsv+dpdeXBOhwgQbKSHbTe/8RCtOrzOlGsPxheN02ERlE/vDesPY8C9a1OtJm/EHD2zjuIlEJaKoe1H5wNSIuhQp0uWLgGL7TlWxxEaaNjnD7v2CGEgxCSSxMVOSlsUIHS/LPwD5w2vl8PclGOwz/1/Oj2evFbbjzRTNNl3UK9pLuDwuWmasOVWx+zc5MaKxz7Y1G/xJJdrNgsfmFPI2yNUFm6TJf0EuoYqqO3QLj0J4cXWx7BgysrCGWG0CJ1alSwOnVbRjcGvoM5pAWN4/T2htjMIwWkZ5wJfQESpgtNBWXJMTKHP8o1LoSuyJA9dGbKLJH0D/j2FE1YvAhcdFEIDvocmGlFMi9q5XnOahVK9WTdlRE1W7pmR34K20QXf3My/JvCwukCp2ZvaQAJZsDBFeLkatUy53kHxdGspVTU+b4z23NwmXRegxVMWl78Y3l/bdadAoRj4p6GOZJgVF6H759oZDstTDGIA+b4dIRRU3hlSIUymmjvBmbJ7Clr2cnIPPHI1sjN6bHEJ6sw1SkbbV3hn4G6V6ivoWc+VX1iz8uXs96U4t8HOoN9s2hxAPN2QyQx5V6Jxs/PGPdK7IMwv+
Variant 0
DifficultyLevel
710
Question
Barney was picking fruit from his citrus trees.
Exactly 40% of the fruit he picked were lemons.
What is the smallest number of lemons that he could have picked?
Worked Solution
|
|
Fraction of lemons |
= 10040 |
|
= 52 |
⇒ Smallest number of citrus picked = 5
∴ Smallest number of lemons picked = 2
Question Type
Answer Box
Variables
Variable name | Variable value |
question | Barney was picking fruit from his citrus trees.
Exactly 40% of the fruit he picked were lemons.
What is the smallest number of lemons that he could have picked? |
workedSolution |
| | |
| ------------------------------ | ------------------------------------- |
| Fraction of lemons | \= $\dfrac{40}{100}$ |
| | \= $\dfrac{2}{5}$ |
$\Rightarrow$ Smallest number of citrus picked \= 5
$\therefore$ Smallest number of lemons picked \= {{{correctAnswer0}}}
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 2 | |
U2FsdGVkX18sAVeGX+R4sKJ0fQJaPqcx2Mdx20Epc7sZITui+wFOS+IRlEyLUrTzz+xvc636puukAmdvWSshCRenZOB7i1UHj6RyCGe3XfiFHudzETT4byFQt5holWIPnbnlNOxbpETGSPOWyIUJkuX+KC1mP4FPkpTOA+CgunHXn88BjGSqnTNOrRslgs0PkzkX2vMOwqT8JVo79O2wDx+2V+lILbT4PJKnKHYySqQy1EgGrHZXC0KuxQNlRrGTP81FnEqV1C59W/cLgn91NIOzCHkimz6GxYcVGoN1BXw3vT5qAkCvHIxB/M5CE8RoyZJX0YP54HirDFaxo3DW8qH5ESuBLX7Jl7bP8QHSTX5MwNXrBtj7H7NpcMwRiIdrq6wtqqH6jaw1cTGxuvNl8FgGHXu5eonhvop5N6zp7xO8A+1yJE9J+85WjWvQRjfM2U5Uv7eJgCKvVm7GH/QWGWHBaZtZuDzRkpd6+/1B35UwCAr+G+wt+wiQR23HXDQ27xdjoTtSVHrHYYfAUqLyRUg02TbDEQWAjzH/95uNKnPfmAtW2jQq1XS0CCGlMaG+iWWqW0m0PsY//qrVyAQLRXbmBgSzJuUGObrectlgusw/yzZ00rqDz3nyUrmNkWCiM4vohjaa1gP6v5gWmb9Rq4zAG50adoqjyEP5tXwZ+3lAbhJT/mAJ2OSyjL9COjasrXaGsJDPwdPxi9lywqocNvJkPwJeGF+id4cDG8iCVetpikgVW2fGG86Agl6oUc95uSRJBauzlyX/m7L8qykitG0WgWkHCOcu7Pp+TVnsiLjO8ZXsICBOOajEZ6x+zVbpvrho/KV21d+bmx/cUf0cd974MOu+wNUWC1Y3GDqZ8ORRU4HFvJkHrzjI0C6bqUaLiVHzkFS4ANAscfYa1pzUrq0VZ7E+4qKonrwaYNxxSiqoIek/RyPwcwgR4mjUVbB8cOxbGOI2LEa3L49xlYzcKSaysWAIOaTkiHFE36y4gmGs/o5lQAHxuoxtZC+B/p1dN9ldiXhAzcZuWjTkpBT8EpT4NXFVK62a9iRFrVL5Rckf5lpkT0228re2DOfjMQNzjPtuZj7mWUBX6WJgCOBElGq3aHyfuF8n9aP1d1lj7+wk4dSSMsVPAWotQpnn351R6tubMTNJNbepUo1xAogvJbKw1bMX3CWiYvKct6GkvdbZT6iLlB4pD5dMDgRmymbQ7D3vb3qoYu2axFvLJVEVk9KPgBaQCucmVUJiwngES13yi+BWHhW4DUxs78gVPqOBfVN2WUE/3Lo0rL8RCMqhSmc1cMzCNrXYQaTPFbKJsyhXRAxLWTxBLrCqMQlLyzBhpNHtZ7AbgP/IkfYGiu/QoNYGT12+sTqQh8QBo4t4xVjZQiwNy4I/U8opEqK9brtmOk9+ySXgeu31h4ycBaXblw53fFK3jfOOw0azhAJgNhyhKT7xOKlKzaBnrGu22aLg/9QX3RURC1+mRugs22uqD1C3cRwDHYSvNpwi08oeKXM8kEXMHSB7umPtWEjU343SkJnlJH8N7o8d9FJEYyiZhz1m6Nlg9/OmsPAOcQRmN1yDwp5unhax/ZBEkqKS/ZuAhrBLdqyNk5Ggc/EPuZu3L0gyMSDjNZ+9QAFg+0uRlQwC9/6lVHOKZBz3h4R6I1TFvphwCnDhyVG2QhN6vx5ar4Dr8OCitJA7JbZUp7LZwfOCipOvhXXi7N6SQwis5ovvG/lO1sijA/CfovYSY9cH+LlbAnzUvxzv0hK/24yv3ZqqNyXPaREN1Mb3jhBdVrbByXANuec4VlTEytJLMn1bREW3VxYFoNJj0+90bmefADWcIbsfTyqhfB9JrJ2TW1Bgl/b94T69Rbf7VRdOXMwcSKN+JYtpLd/i+pxG6BYeL0QSZCc0gjTEHq7K9g+j6U/RowKp4eJaQicxkWM1x1dFZKCLm959Oi4xCxXdJZlJ50yAK6s7/Tqw3rrEvt8Yr/xkQpRf6Kddx8TOPGJ3rkhp5x5kT9lzYzK4HV2G0SrE9IuShWQXY5CK/+bR0Jfn0rRgOcIjrbSIEYt9UCD5EjnvyllfA7HsAdKASH88yHer5jKCt3Ru5XRwVGgZM5PXxXoWIQ6o2KtjJy3DyH6u4OffyGhz2PSk6MNfRakhmMpd9KTQBQrSEYqORH5+UN9h4E1D21DS2/OUb1kTvOLDPQfoG9q2iNmbrbNFInLJd1f/dR2vWuJrWLqB7lEpvZWYZ9J0HxCzEo+MbkVRdHJtEN3Y6Z8h4u/SuWBww8e4X5US7Ssyc1SOnpsIZC+DX6MA9r/QYMtgMJdTRWimqpJ0MKipnHWORgqlHp+i541rbrB6DHUJXcS1kq3nwfQe96TWq2OzLl2Bh7g5BLxGZFTyoVFevnHwhFEIGkTZD4Z8IhboM6YHpYJuwSM/JyOaxtvSAzlv81T04kNTw8ajyJSz34CUl/PL/TSmfczGK2K+2yjoPmmShju6CID0yHlvncyxInALHy4oWw9iyAZcW9y+x9g6+rI1qgBZifCRDQYtnCD8lY/KKxQaiXfxprDOkk8C7sR2KjCQniMKNatx0T+qq2gRXXPgPI9IEVQfXO+NFWAt4/lCKV17dYOuciN5E7dCNbaWgBlQKifYasypaoWu5WKWQQr5XVuHmD8iW6VXMLXFaIorYvsEFXn9dQeJ59D86kkxw3aJ2yN9HTVPeSgmbB44Nn7w9ZoG2Z/eG0qGtaIdy1NRV05eON052VIXorilTxqYcZ71MXoBLd0xh5n8DhuKXy2BglqrLOSCZDsG8wUAeBP+7e2O+d57XYUkRduwlskYMNoFrQCYZ21OGp2T1n9JicdSb4pt2wsbSnLHlIaoF/8kajjQMrMmderdS0iSYC/Va7CFQ1ThahHwOOFEjAINTQLwLel/o7m7bX5aasBxTxIhXsZhxmuiprUe+OwqKgFBxBk0NXg1unqM6Ip3XDQmXEFButaXuWWktyNLrpu5q2Jr6ivP4cRgnAYjtsXKdlEjg/FWYLQE1An9gEfW87sq9ozGoS5HsX/PTgtE73DaCufF/wJdK3J8C9NtRAcy82VY9Xt8BVHtQO33HcdK6MyEehAcmM44ShSjdEXKoTrFLCZFz0GZoM0YJR4oVY8HPvPnpeUhkhZbHNDqXEqs7CAIIKQsxkNXlYBwRZPGhz0etGgMbcIZqNtSkuUnOH8a89bptyCLSGQB8LN0SBC4VwAE9EHF7a4/dU77DdwX9Ju/7Ih1njWV2XBJHJNYtJMHu2CvRIq2CrfPH7l9R1hRWIGsOQ4T1aWuF2PmG48EkF6rO3w8Mr97ffkDPktPs8b4GR+ncvPPqQ8atgzINAsOaksKDzyI6mFaAoJbH6YlBsthH1DuZPpwcVTlljtbkp6MgZsfKUme/jlztePQsmNOD3qMyq+O9t7RiUl30tI46WxUnhVyySgXRZeeYoLHai39fbJ9mQHG8CXIZIp+u0r1XMsRk9d4wzIUIxY7AnK83jO5R87YAhXfklVx5u+/a5A+thH6WNV18R6lk6zocK4vlLIV6twXUMo/4cVVhBeoV2mMGuz0jD3lU4YsIwC+sjUWjXmWvlup1VOIfCsgx8dke53Q5vxpAzYv6ndL+pYkdQQnE0gvRYDS/xZAJZ2KNPEJPdTA3S0rz2Lnh0/ve6IyokVi2NeqciSNIncsZTbtzL8Z7e/h5NV0WLQXbqZtG45a/Da/McRmutQuYbk43rvl1yLpuxzfGNiWj3l11rsTu+k5173JloTr5BuUk3pQXXXHpKVTI08dQ+Q1Hl35tXpNZqkT7sNEDI0L0yinui0Pj70L3wf5yVnGIRLY9lFvKWaG7dyhmeMbQzqh/HrmS2SXULyfPnTQ/+ichacHFUYoiGxOgB0Dy7MuJqhJAZ1EauS+oUl/Ja3ITNMbznq+NCUdeQPRJRGcqcDVKLPLxM8BLn9mRVk/m161btOnavcztjTkxqL7KbH9FeQPPSeHBtjVe82MiiCFu+XtD0DeYjLHIMISPbPtmcX0yBKXwWFU13HGKDGk6nRhvja5O/GE/jESeYxAC1zihVUuEzofsMJtpHA41TzFn+9o+8fQnGlAYryfZikdDjf+H8Wh+L/BZvNXbUDNwxUu9TG6djm6chYI5Q7P4ZAOtw7+81YjTgT1bI9M0F3Ja7ifdoAYF0+UNA4rVJyyxphnYKbXtRQIPtbkiWc42fDkm3OGeEwflHRmlTg/T+5MN95pKLezXBaoNDwwHI3rhBDTef8e7HiMJGYymwqJHGpVlc95or0RFAodVTyS7zVLpIsQynIuj6DEvrfw2CXD6q2LpFUn3a+V8Pt8Mh6VOEiNDreKIb+Bvt7SVmuFwhHm757Y92xY17bXoz1xo3kZfg/q5M7K1gdehEXBEKyXWZfMGgSXPm+VGrJooVq2cQGmdIHtmuyFfBhIHc0c5MBFYv95OBBPjTiRvx+xr2TS50TR6b334Y5Ohd7p7jqk7vOdAVen2gjgdzMm0c+CQUcqtez51e/L0V5dqHtThs8lyXc5P0VLDfqs0+a50NlxeXImG07kjk9as1h25q6IciHUK20a8lS2uvs1QnnNELOQ4ITZ2bLIC8V0OuO6omHLeAtDC/VpGwVTdz07fxG2VPw+Ohex37scp5fmA4IQpm/JCA3Gr+Zf0J1lDjyO6oiikwbuZZeRtzT5XP2lj4ax6XqEvLRczveMdcrWG0K23oiejIpW9O/I5vqP3toYmDeuUDnuS8Q6Uh7ievhmY29wYleDHYyufP9vPEhi5wnih2VdaxZ5miMr1SB3wJJmPLdetbgUnHcrNJ5a3R+twbgvTjxrIYrZpZtFjWh6Q4ykL29jJXIPR3W/tl9gFkvwzyqCacM/ehhvoAZzUYTw1fiFSLB2GxfrJGN85rgo0ENYQkK14nc6xrBemGvuP//cnv/9f8PQ3m6nyioGz0u/1WbyhvYRAMhrmsDtx4ciOVNq36mRgncAe5FjL61wVyJBMfydvbYDMj6vCFRStTEwwH1XOOlNKEkxPPFuLxbBm/ip9VNrOlI/eyQ2vHNoTyWmu34kUYFMa9KlRYcRiARIN5Zv0lmFqXZ0s+pus9qJbD5YPs+t4AzljkC7Qe9/G5NYQoFuc7zyWoI7cdSjnO9Dx1Fc2RkIGlsuKsdpR9w1IF3Piz3PMiFtNR6C36wavsIkQ9YeI82eYkvoH+OzfJ6VYyPwuWXx6JgXmOdlakHlGf2HU3WRn+csQpINTOl82cwrUPI6gN8K4wMSdPBrIpMpeeF2bePsgLYffh2w7OfpnW26TCmHbkE80CBSrv8aqoRQcenK0L1pt4t1hy6bv0D10bvgA136o4UsvcZUHQ4T+yLF3fHJJVXDTJQFaM2pcQucqFnI3M7K623AAAXvwedGkQd8BOj3eNTN2vCXRv9XXqp4QsgCEI81NkKar0SxBxUizifmoi81TJScAk7WLzsdu4kSxSFu7NlCScWkpQzPfDCi48oZKkYMxs1mlYWKjXT3yRrLV9BsSMIobmNa9GDTz9nGJ5s/8RgY4VaCMbXcgK1gXhEi1tFOv3Ktwu6+B0MAhpunNLNm6ow9KPzjzxQ7InRpfAUm4U3GmYus7/sghicth9D3RT3ODQ7hL6chvfwb6RupB1tEZsaDkMMSMWjxOVQWzWLehngWdAslGXn2HW3QEAAoAmOZsjdQvhmXJA+W7R+1VxqusrwqnbgH9Sz1PS9FukwVwyG6AGB9McxulbHIS5S3Vfp4Dcy12rydrxBcvPqjBmCe8Efs0ku4gdOj2nhfKdoLgbW1jDyIv+oyeWbeupQzxbgPhq+Jv7nvCPKo3HZDBqrorKzSIdGYTESI2fzWC+cSg7dHAK0zXf4pHaH5TEjCxGZmT+ua1fM++K6jwYo5OLPliS9PPWwX0nE6J4XKr3TVCTrgcvmw2CZ3an2Njbv5z2L5PMQKmEaYNomWeCvVkl1SCtGRl6dy/dlkoXB8CB7HYZoOdObXK1o7xy4dvvbbIAY+/9Ni51lzSM9XvRmO0IJeFn6DAXQLdUHMAx8fvHcnhkWXGtPRC63jKLxKl2Ag1JOICsjzjx+MDrQD/qjFxJnloggGDkHRlOZtKoGa+h38h5W9VC59PQSG/riyIi92d7S3V7NU4BpOze6ObUfc8VthGdyQa1ICUh/f57YJX6YXQGY/DxS/YyIsJ1nnQgXiMDkYDuC7sHNk7XGyCKD9/GGyvD3NSDhBN1d8VczFgUV/omqikgPRN61xOYAarhEP/GY2fl386uSWfNNVp/EwZzQhPiX82dOFkMbACKIIXpom0Sr3ZDG2utB1qQMurXrFKzqqNOiNtCqooHRL+bqXTUbeqMyyPq+WPWaCI6VeXLMlR7NBvA14q+E+I360+TlFYH6JVkdukAu+dTD/zvfNuYZ1ysD202siuYul+zQqfdAYFAkCgSexnruVcCuRRBR6ZxtYnkIM78J0F8xgXdPvgSJH1WoTyR6lMO4gJCT0YoeALlrb06zSmigAnWDzwVmxzeaIOJPj9KQjIrAUtm/pRMqb
Variant 1
DifficultyLevel
708
Question
Po was slicing tomatoes in her restaurant.
Exactly 55% of the tomatoes have been sliced.
What is the smallest number of tomatoes that she could have already sliced?
Worked Solution
|
|
Fraction of tomatoes sliced |
= 10055 |
|
= 2011 |
⇒ Smallest number of tomatoes to be sliced = 20
∴ Smallest number of tomatoes already sliced = 11
Question Type
Answer Box
Variables
Variable name | Variable value |
question | Po was slicing tomatoes in her restaurant.
Exactly 55% of the tomatoes have been sliced.
What is the smallest number of tomatoes that she could have already sliced? |
workedSolution |
| | |
| ------------------------------ | ------------------------------------- |
|Fraction of tomatoes sliced | \= $\dfrac{55}{100}$ |
| | \= $\dfrac{11}{20}$ |
$\Rightarrow$ Smallest number of tomatoes to be sliced \= 20
$\therefore$ Smallest number of tomatoes already sliced \= {{{correctAnswer0}}}
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 11 | |
U2FsdGVkX18RHlNPWXxM/yLsqgoxvjerkYAb+cvOvljo6wazBKU622w2vMGL+AwGtSXNUbebxncvtEXjpRfw4xuDkfCF0o9FORJmJYRk0amNfv0rcjrUHPnhiepSQtxAWCrgTGOuvNvtDEsYy0kS0xHFOK2pGbvAvsClgkIbvWfZJLylEKurgKtNCZbu7rugMF0gU7WzVDINgWsoNw7Br9u0s8QQ+prgB39f51L/NGd5Yb1dYa1im54wufZakt3a8c811i1HFpwSss5dQUIKUNPi2mlVXHXHU61Iha4SfmoYqRg89ciQGIgO2gn9akWJC/iDtV3v3k60SCN3NcQxVufMIAltrFZ+qfUaKKQAr5xstunZ3rhIZLQaUiW8jYTVhXzHubjbIdFRTlHvNdUQXdQwpR2o2lbwYD32hdYNLpxEfKR66xHpTpK6bYhGeuRCgpeIq4jg1TUbUp1eUO1tvdNqzjzCNZ5Bdr7/ztWd87kKkapN6HYAnXTJpE/TkaWaYbd8hs4552UrSZ8wNEHpKFH0luf7rC3xoXFP6Mv+O+EoJbLPBb2dKE+44IjyRayOO3qnt6KEqnt3Lg4jBTih5lLLCfcGmOoyQlJWMReQ8ZJ710dPzPniCJke5jCuhFEloeIRFa9zY7s6PNTpTqksLn+9lsRW2LSHyfYyLLtQtjR8Wn1ZnVaE4ALxbVhvdv0Jxke70gJhIqRUD3U3HWNwHt6+y+5QVWhHqv9+JF7wngL76N1ywMPQz7ZOzaxYRtus6Ikkiq9Pef5ESBDBcya8LM3rorQk5TmQ2gBg9dAKZQR3yHUDl6+/+r4uLVppRaijfLjQZcvOYLTUbimxQ8wliDtpafOqXiUfcOMFWiTG+zIsxRR9gC9kbLEOnAcNBuYr1cq/+hcOIr+F9STk3WKVNRPWC3Zj+t4Ms37UmO4rbodlg5znZUGPxGTkFdnk/rkRMUViQGasXAybbVLLZsslZhhD8Z0z0E/4Nnjz/NvhrxlphyGY7+kePYD6F/L+wUflZEnbMXttR2Yjy604qAqL6D7JJLEBkEZwrHTU3x1jitfTp76ZpudVBHzFBq8EHHwT3/ZpvRJFEjZWAFNOQ+2+SBzyaJA5lyRweFN8jkFwIyT8slDujVGfb61l9SVEt7ZOrpEPY73DLHrdfNt0AwrNPNKGUjslzuhA6J+Y3rGXTq/RQIYsObiBQ9vJMatde02kMfVi7q5WU/qFJiJlXT8TqTzo6FSNkm5xX+xxGG2SfzPf6DeC8J9Zie1SNZ2oL/MkJEaH+rLGZJqQTJl6JqZbwgNAmUTT9qg5k5OXadtvoevcgJ/YBkiHW7K3wC0VE0F+BSCQ9jdKm3tFaLVsVrEIdJylTdxSiHTGR4pqXD8S4Kj69snMOwBCeGpm7yrn3EIkPKZDWe2FtUo+Qdna8pE+O+G1/uvmXQKZ/gd9YyrZnxib11e4aTRiQxTTsVb+PizIstpOHiE5VFDCQp7IQe6FqqtXcZYs3zbh4VBEZ4fmT32nscxZcUa6fjtC0h5ninwv8te2Mvtdr5622abn4MOdYifiDgw7ZZNJ+y9taWcDisSEDiadQYGGkWeTi7Z2DifFO0kamzgsGEQu31JQ2Tk8bMfLsN3Z2pdiGZzWCSKOe626tWD0/m4lsPZ9sVVFedlYDCT7Uf9bv+hxevjOwdpdtvxKODdwalo/h/tZb5nshxW0lJbymOHmLlmoxtWfBF7KjMBq6U8xej10NyC4SZ+quytpP0Row56sWjXEKdSav+8BMD3iJvLcm/rmUBBTQFRQ+z2aav7HUEbDuUGh+cTtjHGvy+hdpCkEJOguGVlp1ZDVlMjGOukuGoMha6SKQ9DQVjErnMC8Qnbap2cmKjPc9yc5I6gbph7Ger54V8n+zXz/2EuCLczZdS0CDnQUFkmWy0pRKoLO9TzoUD7yoH8MB3L7xN0vfhswFH0DdAfba8LlRcdtuc0y1XusmTIzT3HfFec4bxPgFmNHY/fKtMRDDC9YBPUwslvHVbqOcMA7mviCefw20/UvKlK538nye/e2mhiVjxmkUxcrHkidGZEv/JcSxztaMRhBMgFd69nJ5y3fkzyNdhJInvnBoVxgfpjLi1hHET+wJqpSWSVMvCo7POAvE1xzmxUs/J/546Q1pb9USw9bUr0M6HDNVc50e0y+4fUKZ9aLVgjdu3MSB/SL7Dofnkr18PjHKntAn2eLtk3LPHdAEq06jpQ+xBrHBuZOpj7AFoL4x4D0EYpjkL7YU5uqZ52tHPYWR8IvXceCbYnWd6s3YVjgziqCqa1gYL9CQYCpIigVFSdomdiTkcTwFEgnp2hkrIciapQSHPiu/5ZemWNBmqaXexvRm3u9cxUuYKyX8+hQE7fTKi+Bp5JhIG28u9a0eeDVegFhs51/YLRuUub++U/0TGnooeafCYNEKWhWVmgLKYMmQkufUv6DL+v6sumfYLSWI9+wR06t3AJbHeYB/MbrWU2/tYQErFObtrD6XrfKJn4OiI9ukh4ZznR/R00z8JKUn6nvJQoJjIGRRYfEXgeZfSiAvx8hlfBxddDyEkkfWb3GJhyW2f1FrlrkolVGZV8PSqEZTddgfNpsos/CJFhU3CXavZn2N0Mpy6dUgRE9GBAQHnkHgcTM7leMfcwgwbh3T92tYKsGY9WFAd7YpelDMmdejxG5KzwK32yDOF39YPGkhIr+F967waIgETYU1wO/OVVqoQfRb+pJLDFEhZLAlCBmwYmyjV1U8dj5OErDzd/lIdhksfotGM1Ruv1N7YXma3dJkPw6VG89KQnQ9EYSI/HRyF77fdQ1bVHAjcLYHZbQOup/hMnvMJSqX/i7WEhDGOTL+eFDO7XZ668/gx5ttT0eknJJ9xLz28ONeSPZbWsg2ms3g0j+0N5AMyymkvIcx2SSY0dUdeC7cU5YNJvE2uYqNroIA1AubRWY6kL0aYTg0/0f/PPCLpnLFTrmkkji9UUqfiocvJTbCKeJ4y0VoxgP8Sy9X606sp7cI4hFn2v3c64kb+QtP+CksLxXC/om8DOQ3GLIWEY2TTno/FzMYvTMmocyrrkSsb3xVTMdaPiCejIyAu6qNW7UbiL0rNzA6xfCpSvoHxdeosGYmSFuSBhlKIJCAM0sRlZ1m7lRqh+qr3Os1Y0U8l2cIc7NMeX3KAhj0n/UDk2FnrqTmjVfo/zYCCDEH/ENHN5+MofJ94jeg7uq4QHtj7K5pW3AnzZeJrqKGBNCzYxWhpDT1hexbONQZ1dNo5mpcch0/px4Mtu95Xj89cHRY7PrdoQ9aqFW3vUu++eo22JfODsEaPJltR6RNywrax60XTkcvMwYwk1s9XC+r4p478qx5uwYmFyx7edPoWryTGxhxbI4ChmQ4ZhzaTbTGtgPoE6iwmqRyCwPqp8LqPITKiiEuNj7Z+id4yr2AE3RNQDH2+4TMAY0A2RN0JGylyjAjMCuLp4PgcuWztlVGEL6OQPiZBf1ewteh/s55hMJOZrqweNvhCnsqbTc7pYLLzJ9z9c/4w6475+ORiWTUkFvepQuWzFXnHyTod3Pq9Vo6f+ld1hVGOzXCj86U2g9Y/egHU/poOdA/9Gjlpr0rgdedQcvLjTV4Ds8nkdvMyqu/OMFSLMWcMdk70rPD3NMo+ElnwnLD4lyPpZw7uxNbgH6fWfXba5DT2Xa3sQ7hycYyAsMHNifrA//X9KTmuBAJGx3eQogn4x+AHq03OCpakIsmpGAYnLlFOZuECkdndxAeQBssNK1U/bwNCINbD4RmsFKXoJqzOPHnVhZGnaY5VKhlLz91vM/IDJHwDTbjP6k2jMOcbnVckzoQVwgzdTINdbj+Ys5qkWXFxayfwhuYO1JnBCa94bmtAavnW6q8/tzwBvAyUzs7Tqa9/CNZwxQo2gM0FUsn1UMqNyqU76Zvc1Ip21DdVuP8MZkPd3m+LrWJ9Nxhkm4BmEY0c5hgv1T/stUp8iwdG4Xkh48fkFRbxHUh/L/s9/aKP4GLI91/JKd24ch8qozDDefrToxvuVeau+tm11QTwQpgMW9RH0bZ7ZmNVTKCRZx9fRALsHkzr5gBm+sCUDenAQWieW60G1LS1NcawgtagLEkzhPghCERi/RaUrrQlo9ZuncG4NIDKQW6YWa3lF9W5GNKZeYnYhEeJDq64NBk6nDyVNp55hNrDM8yDQXp98nCwVix4tKMzHvwZ6pBiitJb7Gshk0NPxKbC46BkNEZVTSR0A7EcUNIXK3si7uun9SuLa3y4WdLPmACpOUEgF6ESRguhW2hGQxQypu+KHJvIMxbL4tss/+v57nYYJDJgoLNL7JkGvksVajIiuvXhOoE3OAqtjAI1d1V39jHJISHt93//6lLS3YAvzz68zDtGQ/e9X12SWtj1ZAoc69Wq57BcH9IY0hk9KH4ZKbAg4Kf4h73NcSgO4XWe9B4SIwEYOwR9f0yPQ1g8z1H/qbccvR6qRlG1Qp/2D4oRG2+O11oK78OOrxEnUsz6K7Dt89mZ0HdpQ7MEsdelSCaXEFxihL6x/kB4fO0Ql86mekHjgGzpsWaByZBNLI9761f1uHzS6/E6l+JGJtsPGk2WT+IqGelYNlSP5/H+GesoisAr8ZBp3f1n+tFwH49y8P3FliplrP/Ma++MSmbiQIcXwYKYG2jl9xbX1u+t2nAcinPSKZo9zzkH3001kKRjZGfpWOHmrgA3Igffrl9tTZA3resnvJvJ+5YhBXIaQrzrEi381DyX0wt25Ujw3s4lwAu5Sewmw5ufwfZAG8SxLYjQhXVZb6sScchwhZhjVI2qeeyg/BT5rmzVnRGrS2DIYTqUTkLHHOjiBbEMm/N2vJ8MkxDvxv5rgCrPGW33ySUNZyflIDhi4wxVg8ERO65Hp/Exm9qdkXvIMpHRmbBOBxQX4CJNpADQaO4d1g+9qlVVcf874fyccIHhmb29JxxDuA1Fd28Syk4pqha4efymokl9MjmINoQzUwSmrHcfTaLdcuC1oJbQBGm03OBXE9X9uXZaCMKWcEKZgGt3fRZ/juGtORa7cLMwNlHfFDfRGjNVwDSoHy9hh6fZSH1f8NUAjLpNrYj4Hbb3Xdup0bVe1BQFRLBUVg1wTgtXf2sPM1wdtJ7+7VxoLw57ohLCYXkz1b/8oYVv3nX4MksjXBFV3G9Ds3S/12z2/qzBnv5h0zmFFgRv8T9bbiiM2yHwP/GJxHS0HJ4ozVbMrl3Aadh8nAm0RNg5crgloCDAq/VNmZhvfI/bhN041fotmFMvej7gT99IISM0S+4xVYr3RmSer2HQLwZFnfGBoWxY77RBvyDwsBLFCHqUQgfWVK0T62MohdCN8i0mnng9J6M8AAHh2yvkNTCMBNdA/+bvUWkl0S9Jrl4fLkrUE//voMkFHsnfXSuvgvcUxVcCum+HM62aCK7nER1RpCzuLB5Y1p7I0yDAMPcm47SodZsj3eGrl2o6qY4dOsBzO+LktbMpG5MJq3NRma5En8Q3+pumZcn/Iu1NuAtZh/n+3TNNh23yfYCNw0aIuIBi4dwAdHJFC5vLZnL4uY96dmZ5oyu92aCuXHxuCDU8Gqnh7Ss8HBrfWd2DjDR0QLRb2hyhC/N3/F6NryThRMddr4JgixLd2CQD6WSV2yAKqIMvs85S26ShkeKO6W9lrlfiNlYGYwM/oRtw3U9Pj6rs3fIhoKk2/cbn91ckBcwq10YTs2o7KFmMNtIMm5J5omYr+EG/Nia5JMofXe6NOm5sU6Lg73FZ9wl/YjIFrdk+22sldqGciWCBchROqYIoh7YOuWRQd+H50THKFVkw4PHtqspfKtflOwWUeBr86PbkUxyLZhy4S5sPPc7MhnM8Ut8Wk63+VqX3O2ZGVYpURJIbVkiTjcYfJ2pwdJMSZWRjpmjzhdnVx7cMFy2w5ij8eXZt3ycluxsbjx9p5W9Giv27kaCfbGmK3DDKjm5Own7nEJZjMcJayMeMruK7sJrm9ij+wdtlKH+jyklsPQW/oVc9jwkFMX70TpUzM53GGdQdRfLbis2P+hXv1/26oob2PkWctVFfZxs8tBHHf5mNbBI1rha8xEgQUXVKgYrb/tmWuzov5uQhNT2aB0dPHO9xFyheb0IG35wKZ6T4LnyyHJIiOZh4vNtqzuirq/AGy6yIwGh7b5WXUzEU55mtgXTTJxf+D3oftIai5Jk1rbuRpJtLHl9f6B/dyHhgKjMs3ksKvTetMwhWTEBwRMnUTA1y97mVRcOG0bCJPtdLK/cvAR90MadUW9YjInbXpHMYmLyznv4Q8rYky9I1wzga0Gd3zeH869ajNxINVROMbAShFcsKkP8mNw8QLdMSkLavE5DPwObCAoKf9XQ8b4E+j9BZwQWToFuYmxS/PBXxkVHH2KqmVi6n2AjR+GuxWHgz14IoXtcGxjxVdYBqTB8xN+K+aEIQV2OGPrhSjYMCJk3/q4LAMLjoRHC+ukyLk1rV1hl3ZgrswwAjYFQL846GvJoA==
Variant 2
DifficultyLevel
706
Question
Jessie was laying floor tiles in his bathroom.
Exactly 46% of the tiles have been laid.
What is the smallest number of tiles that he could have already laid?
Worked Solution
|
|
Fraction of tiles |
= 10046 |
|
= 5023 |
⇒ Smallest number of tiles to be laid = 50
∴ Smallest number of tiles already laid = 23
Question Type
Answer Box
Variables
Variable name | Variable value |
question | Jessie was laying floor tiles in his bathroom.
Exactly 46% of the tiles have been laid.
What is the smallest number of tiles that he could have already laid? |
workedSolution |
| | |
| ------------------------------ | ------------------------------------- |
| Fraction of tiles | \= $\dfrac{46}{100}$ |
| | \= $\dfrac{23}{50}$ |
$\Rightarrow$ Smallest number of tiles to be laid \= 50
$\therefore$ Smallest number of tiles already laid \= {{{correctAnswer0}}}
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 23 | |
U2FsdGVkX18KnLKCK4/dSqA4G6o3ELoS5yyLx99OsGR9snXgj6ysBs0d0PTqzYO59sLGdUcW9vF60kMN0Co+7u9Pz2oCLarMuVGrU1bqlkc0+YzAZEx+K2JPMTnw68Ic6bGbw8yUsNiM8O+/1wY9O9WdPjiZAumTYBT4aDeFxV9LAm2wz3xAOtuLzNY7auNg+2rd3n/xVZz2sPx2Zk3XsC7NU1uity9HZFt9oEZjCWZz48m1eXrkMubjFsN9eOsf5j6wAXxDRMva8xN1+cn35zJ1GaMEhu2d17tCNxRD82pHWdql62VbUqy3CkjeF55Wd8RdudhoffDu/JoIBDWBjT04D/Vo9J9Z5U/tHIXOh9JOt34KGYDb7BqAfQi4drOzC5wt9tPRkQzbs1El060nokIMRHCHqdg6PoWAyRRQIZ7WVya8THUV2ISzvF25WLJE7QahUT6dj4UV10p56/5KalSQcpeV6zbT1Fnyt1+PfyN8gRDbo9njhX4Z2NrOCwCnzTOKIC5m1WluljerxNQ/d7AFHEXh2hYmln8jEP8sEINRuASgWRoPfHhOC1Oahr7ZZOeqlyXuGWJTXhQop5QfQXdz4qjA47NYS+30UiGr5bHD2FcoRR5kLPXwBq1L3S84Sv9KXPw+KOIpbbuJHYamPhppJzjJyAIzuZSdJoUqKI2bYp+ZFRIuVzSswMJss2Va8nUfb602sAzJoqWiCIPUzHSa9Qq48rXJtdoqM6kaSQYFtH9x3mMoK2i8geaB9fvhtn/J/3zshDSeGQc7uf0in8kXyqA7SiSHuRrysbqtAxE+94A2as/+ews9BDvw4qxitb1U7L8loKJvRYwmFpxvDuBz3ViJHe+5Jy1mRg6N7uQ3a5dCdbYwq4plVsDn1pFxUFRaUd/HgaGf9a+VfASVpC+8/pB/xn8y2YEd4H7Lyo8/MYZBNi/zj6o2LK7z8pnWvsAXhGE3CAYzleVB0zLMKFv9hmylmKAEbsL6LfJZqAtlNPI0JPAqn4UJFKrDj0X7bw/O7wE3bFf54XXadpkh3TaLENGuKtUufTyGAPuLdtsYxPobvSBJ4gGhl1RT74JvYprlfsPByZ0R105j1Zwu3H5mOBpUZQiEPIpc/4e+ppXyujaWk21FHlcbPL4ysD8QZZ7ebgOPQgceKp4/OHqOKuVNdmvwtYVsI63YTpefTzjCi6YJTeGdgtv08L3b6gR2IMtQVEG1nijem+b80eQ9DfJftLu+5k3BiMMGjzHIlkWWnYxXhe8gI8u9YLyutjFSHdFWBngIqEwh3aVXLJ4CsoUFGQY/e2hRB24d5SiJIsBI0p4u3UzWaJFqg445c+8ZubgEpARYzyeHRUd9Xed+O+f3970uInSvHFhwEkXNbaa0YqRHJDwxP7HJoDnrNR61vS+Xb86cNueDg+1yuQsRqSvAJ5lgu6TLCdgZPo9Up6ZpPYJVqemagDdGCAmJyrznfjzPbBGfO5IHVUin8Y62i3hH9kkh2LY52uvscZsmWo+te9H8XXOthkGaa+oidQ/vBwVBQT9c/9ixKnc9sg9CAz7LOVyD66UnV+h3GkYN7M1fQJ0h3GtZ4Ni5R1s7l41wAcr8HtSkbys4gAbKt3tS6YKBC9xBZKcTf9EIJtlHNZFXg4JnxUcRpu25tKu/1f3vQXjh+jATorIqaO2zy7Y2igtciFTMO8cMcBJAu9n1wU7nFdKwpunSEb95+GrII5mBVro95QHSm+4CmeOXRMlazwSwwqgNcgtU9roZ8p4/Xt7lX7s2w+uPWAycNZLXtcxFN+D8Z5RLBIvAbdPRRek5BQu6ijM0ciAbP5ZGEoa7JRghSPFHXUtfISKj4F00fUzpxsQ/D3KLDmIH8Bx+t/K5vyu/UYZL03UmZomjRrgGmgGE0EmKlEYWSntmgNb+kfBYtBkfJXKbb/rFpi9WrMIsccy+O4Mv4Hi8V4cpmU0++upaGGtYcn0xUhxJLkqrEtZ1OQer0jMfebHv3bfbsAHRpnAZzq5tliD7aCUpxKkHAlL7fg5hu+qZ3fTzwFiGANUPEyY5fyg2gHPclqkFfYhkrrbSjO7TBbVkY45yJLbfKboArPjp01NslLgAvCeaB9QHtplQ4zjBNsx+9ecNCToAyhtraZ8Ml0nizWsYusi5oEuArZrqSLUGwyy5bjBNp8jviTAz56Wlf71mxPnrvWdfJp2b9DVIB39S3mAMmHVKjz2S9n04XFl7rHAhX5ZxBIyqGPCBv4Can7+XlpAZ7d1okvEEyJ61xq05tRM9wYEP+6ZCPqACKpDfOtv3DqMYgCcBB2jYs04Z7W7A5mhb2Rolu2urZQ7TNr0BFOv2Z5+QTnSMYpVrLcFXf9fsc82cC+Xj+qI8AD/xK6irHuez1McONAwow/vkwbvyEK8N4vMizb1XAvU6JsJH2JS8FcFbcTCjDiOhIlBQNDWcr7wcoPHf25LBYNjcUQwpLwDtEziN9EruSu9uAMRpwHsk0Rp+U9Ys9C8AngMMxHBYvSJ3Ge6DEuPMMG7NMxE5zusopBm7SRN917fitJwR6kl7Md1rge3OeTwzMnawOaV6bthLFeP/kg8gs50mt7TtZ8R30neOTXYGOoQl+ogo4ZwyC+n7bvocFdCFGzFF0fO7sy+NHb+MGGixba6ca7OXh2VKOP8jIrCHewI2aznwoTRee1l/uHby6snhB4XKz0LFzknOaxivnnkD97JBOU8RJllXlCyhmaHTDQtqv8rK+LwzD1rq2OW9ldlCtDSFOXiVmrAtoB7N+wdgMWn5NUe4JvCasyw9BBtijAFO0Ixx5jqWA2CPwRyep+4XSNDxetMEQt3pGGRawQTvNBBJn+I2IR0kSGtPV0yY+/NXfzVRHc9hRtR3K4NMWmFoMAUiUxw/f1NFdIHHy8yuNOXkjcl7UItFn9hmXZltKXvQyVLM3ovNldqXM/KtkczEN7jEz0M6/NW/cA/KU0Qpz+3pr9bCOg0pM9b1bBQHdDYCYTg/uJmkGdnHgcbGTITJf7MV+aBXRoT1AF0foCK3i0gAEgyaLen+1lUqU1uvkIpQoloBajmZb6XJsYUqpRHja0jGrWLSW2kRDKIJfh+ay/1IYQaSPGXKCom0KVDV19VbaH5zKO0oAGuEGfN3HyjLwXvJW33vSosvLldbn7xMHNrA+UNX3rAxbyBsBELfOtBraKMFfxxF5xT9b2e2wzgAKDHgNwF/krhEiw9sjGuNYtBjNuBtag4n0XLslz4Y5Mcp4NaETCJBuV8ilQtyqmpRe2ffpnBnOHrmirT+wfemsMVQbuLeiN8cGzbaZ9uZDUpQJ2Yz82kjLBY9O87f/ttYBCcb4hGAlC1K78vhoEAXSIUZ+0MWLtZq0aU2ouQlWGq8LN5wYTaX0Gc3vreBzQOd7sVn5iouMN9yoAzVqwFP0HfH70uRTxHcIPahknZ7BwKWCqefUdrOxE9mz9srjoJGM47pkIGOqnsDOQini49yqsVzPVyfxZZI1dIH6LaNW1wQUyL8nuwhztrf8VBqPkP8BhiJyAYqOEP5tmO1SmVdE/c7B+ZBQs/f54uv6ku0lDD7kr0UO7U99BR4vRUotIdKejf9bgqM+7wuAY1ABtj65F+GOGIXxVumAuXygCrWeyE6hsJjwReiNLAAzVpaccfsFzIqWjhF48dyXgEjWStqKjxPCDGf/dsBXq4P3lL2K1UVzutgv7sIK6f+LwtaXgnpix2z/gCKLRonTMxOgH14TGbjQ7pRacyZsq0KXs+X1qYdxa/u3pRDZL66Y9s0hEHnmdFQgcK8W8VprkeTDANHl+1VKVqiWAgdhZ/UU4egaJoqYxy9jgZs/EutNt0ZgNKiYx8tejpvJeaCdAC7XgyC7Yjbi4qKMMAsvQlCCqG/OFZJNXltTAt6YXa93UvJnZyS2slWFd1K2xW8DziWYdoExNx0E4Mnk73kSG5/dgKgDyowslkMOCVIiA9Moc0P2swBCL+wy9lhNX2CBmtnqU23Lkk9h4OiV3uyzhlhJT7SDT9EUt5LKJDlUDeLcfgnhgW4BkSw+6FPw+eq3BafbarcE+XHouRfkeOrHu+gcMVG1SkHRG6XELysBwJMvkKJdTs6HU8C3+G17PaMRkQY8Y/+Mti+OZgRIzR664we/ECwoNzy1x6yCxH4TKwDBul3wdC5LNvjWpyPdeujlIfr+bKcD+UhH7LWy/dDl08ivzN4tCyYtOMLpuTBbyg+yEQAY6CkGl/wKk1qZ9Sj2Qb0BPMPE5REVFqDSE5uUQpaoeWYGGZgo+2oU9a3if9toJZLDU8yqMT3LzwBlk12JRzHrt2fsKvnmfxHwsTJtTqpkcGLoRuvel25/eAIX/CVastchWS4k7hrpJF7e1mtz7gdUBoRdALMXOMywoAfx0GLuBOIrcAkx+fVO9F4DeknIKhIgCgv4qGp7XkPlpHf/L5yut6JLNl8NKfvpQ34fSf4p8I0fvJRy/b40QzstflutbWeeCRjJ/0qEkPRgoA9MkO9i06dFL15aO9uQ4Rrc8BDqHM3ToYfqZRMD1ptouZsGxvlp91iRZObPO3iEbDvIr6B1EopGVx9DVohQ0TO8R3snRuugNBIjuOF04Tf5l2LIipy7dQCyLi0qu+UsGjmYI4/WdC+Xl9EoqumamE46Y/44QJ+wgtEhKHWr/QyqPNKFaSf5EsTrng21bXMgYtu+elkKsEZBZg6QN1J/kEEHpc0MUS13M7WklpPXh7EpCaPtKQSertI72TvI9vKrW2UVeZt9uBIuD+R7ICx0Pnku0gq7Hkcvtx5kfa6I3RNNXuj74xpb4nCfWUXTLe2W8xxYlM3IZY6dIbDLLS1p1JdF3vMD5aFyqxGGKpnulfvt12752HBkmfQbexojTvoveBwgGCnaWJd4pHtDI5uQ9+O4HHRriRv8FO/8tFEu0FeRGmmQwNs/Emp2QIkXy0GQ7DFfc+ziQ/teSFyE4jElZ0kl2YvDerAucL5jeh3klocKDH/NVSYC/HB/bD1F/8PcER2A1MHEX7vn7HbGWpOQvvlYVHv2KRceZSlhqB3iqkoVJ8yP/Hfwpl+3DfBUDXf9QmpGSuXVqVHmZyv/qNMRrAOaXyIJxTGTfXYiUGnA7tvx7SWNJf0vZhne20akNv1Lb0Q69mvjGuREiQvWpAQh5XEVqAurs1295CjiQkdD56oe3PobwLfrhpPCvvk2/GHoB5b0pYtJQFyQnkJ1xKn40De3ajIygv7NdF+ZxyGRU6w6FbbIJlApy5oK1BI+rMWipAHK2AyNHfcTZurFS74xATnRFl/Y+Rc9mvZefGnhDz8sR7FbqL5VbLuFpI1GL3kRk2vQf0hNJyWqEWpR10acPxUiylaQerIX70wD9OK0Rh0KdeRpg3YeO9BBi0t5kI9jLN0Rz4LNQ7oO/sUScJld9bQydrUkzW2dpzmiPLGb0ziWYx+uli/LaJT3ibGj0/GUfw2/VJdsPBsXuq8xpROvdvafu2IAa+IYfl6Nm7QEpJDcjCAKsMg1YTM8NnAZN2fKbJJvKTh9q1HeIvGtQ+ARS13ZJl2V8ZldQmFfwuHVVkWfbJDQzYlgZFbxK5ObG0GGg4d8pBLkuhv3AaBSDOpMDF4NJRQuU9vreBb07dbgQyHRRipE3QtQHCTustN0VugiXl5po9+MjC4vuU74LE3zWssK9GOsxhnHcZHs79QxMNWyX8uB2mrJpxvwwR++1r7q1L4rmE1VW8SdSQHiMnPCXgaQQajvta8gBX95YhUrZkyrQ51QLoxoQJbLMyDR5Yvag5TFlOxjdVYlPKB9ujdaBUYyDW8I0CO/fRBpZnTuFShTenlBjyhcQmj3MnkqRrNExwnibMWY1d9LSRkIiUxIUYv6k1MxE1IGvtJla5pLreHuAzDHG9g0eglytoEPw85TaL1bHgUF9n1TLEkUq245RCfKHuLmVY3sqvLj8a9sYaXYs7ORWllxRPR0BYhUWZ+NkqA4lvxGy9PdARPeJV2WbyrN6ig0R/XfDiOPpVPbq7T3QXvp2VGTWDBXutZjjX6YqhtSHYBzn/KH77q5SCTQCZvD6uNEXRaMpVngp8b5SMiDzLpXW0CxMMk8RGU5wCkSTS8goI5eKfOXfO4lG5BTnLqzmtaSRGf1qRNiwO7l4NpoY0V9hwUJ17aBrH1ce+RTWjL9KbHfLbTVrFu/9XTWJzO2vyrJAhdTr3CI7YDlG5YMlO9pqwvWaYMMJcr9S5I5AZus8wDqZWm1VsomPb5CZtiXDxk2zpaZ5v65WScaEW3qMnFS07HJB2r2OepAqM+y7nQoMkU2M9iL/BRjLYlactUVfJXMs+sy82isOqj2RardJscW8YSEpRAYoVskeUx3JAusVbyzpEJ3C+Ot/L3rB66HqJKqTRrKrbYEO1y3GdGN3xUZEQQrKhDmGNQTbfGsFsE7+CAxIdaltaV3HOoiTPO9fQwcyA=
Variant 3
DifficultyLevel
704
Question
Joyce was collecting shells on the beach.
Exactly 18% of the shells were pippies.
What is the smallest number of pippies that she could have collected?
Worked Solution
|
|
Fraction of shells |
= 10018 |
|
= 509 |
⇒ Smallest number of shells collected = 50
∴ Smallest number of pippies collected = 9
Question Type
Answer Box
Variables
Variable name | Variable value |
question | Joyce was collecting shells on the beach.
Exactly 18% of the shells were pippies.
What is the smallest number of pippies that she could have collected? |
workedSolution |
| | |
| ------------------------------ | ------------------------------------- |
| Fraction of shells| \= $\dfrac{18}{100}$ |
| | \= $\dfrac{9}{50}$ |
$\Rightarrow$ Smallest number of shells collected \= 50
$\therefore$ Smallest number of pippies collected \= {{{correctAnswer0}}}
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 9 | |
U2FsdGVkX18fJ0EAyPc/Om2zdiTywgKdFWy3OwlkxgUVgYE4qc1b/S0P7BlCcus89aocBQ438WakWHQw/QDDJ5EqtVTxL3Dh+oKwK1Dpvjz/v3hQ9ITe56192y/ioBd/8G7+XhNdhDnrt01aa8eErW+oEIVkH9HrxYR1Vi0DkntR0zPzmnQuBoGGf3VhhRE3KNyBBqzFrZ1VJsyAMAMexSzIIqmCIh5ulnF2rF27yzu1UANg75fkmjnteqtBNGiLsuGqD+6SPL6qhyqgTSerWWBYvOl0nT/U8hKlwc2v6b5e11CwENf3nwl72134AhIQuP5tiGyyFWqSu6NvbYvGhJBJmfp9JW+qT8YvQZiDawBwUBpya+7iHH/N7A4AvHC5MFUR58wNVKAo5J4bGVoAGlmhW7701QcJJB/eEoE9de/slgvX5S6tO1ie4DOdmwkTGWMTee1NsGWYaueTd92PEaHw7ot6V9dlDVDlbXJ2L379gsgV/6JSp3nIxuC4bf/P9guSFxmb8shTdSbIFLQBFfaEe3XABkDSUce4kZF7bj5+IvlT1MZQKMglz0oNlgJlrrDHKcRrT74sP9RxULxjC0UQXW0NeTBuji//pPBRotLhj8jsJ00xpJlSlHnNEuLwJDha2yltjQ651Nqwv3iv1YGt+DBSYc8WED3ZZszwN3cFwPIyYqdvVxRFZYsvmQAybLwF/aneT/Qk4ZHGNVD3aOJD2bKMZlzpOt/A+W6kUBFCwanWazAM8XIOUWuPYRbBQoGHezpt5bHHbw6n07O2r7zyAAjA3wz+1I1id1nwiH9Fo+HRAxHyqLQRV1zRPc8h3Xupi+m/oDbAsL85LzIagWxoVPmYahXCnt6Dl6fqFcJlNXunz2m7mjhDwCXNsJPkuEKyHpJjOkwvMkoe84BuUo2GE0q9aoB3djS0CRjYv9uadBDjUfmTBa399ZvbBnAN4yDj5X91TMkwapyQzLemHdLXoT8z+xhFycCjoXrA61l3D95J5QaZ5RT0nVdMBPGhmWOON4Mh19TMMba8QUoe4JNoUdm5jO3KRjxSaDojiF1bXCyWkHtU2yGA6Pjh2diXexfGePD0SK8JpElMUH5ojDnCmBwWIZWSensSA0Jb8pYETWJIQAu6vifbVNuytbae+XuZmFRNH0GBamIzU3NyiQMBl0FbV6W+oZYIgAMUdOtfqSS8+3Y1ukkG+D/R7SbQ2cTcu+VwanQVJ9Bx8ghOKTutuQK6tSEoycch6YOm6+hb39dB/gqucvo9VjzkcpYbBvhm5Bq+1qaT5WG8FLRW839fdvSGMXbZus5UsIsGiuZrdojKRS/Hcg6W2ObEH2HANDR+20EaILoubGg+hjlofHZQYXVvWj0MynvkDuDCUXiyFi1H/YG3n+jwF/yni17GaJE5Ar3LFLioTASscG+G1/vODFjmJyQVYCGEDnf8C2H+lQ6HWvbPJlsd8LRWkYe5krNCa0KJPV/OxEHDI/VWV7Fny0ZssK8SBkvDcE6ySelvCuTK0lLGMhUanCjdCt0IYRFPIPdIpRpaGr4jKXOGA3MJJefVbJ8aoKbacyrRzZfLdHPTzY/wk1frVY0FFaVig4DEIVRTe3KAwWCjZjGgvNxhUkis10wxB8/Ygfgs3AnhvACi2xiLJxMTaDc1z/AIOGhBwcmIouAy7sqEjSeYyBLn6vekJ0BnoO9vTYuB30TnF2L4cNHwbkwOUjXhIz4ZP9Qr3VdtOfGeN8RF7PxQ3OZ6XcKlB2m7yd4Z7wlcLNtpcrz0Cyd2kneA/4he7zZIVQrOa0gJt8ctWzlGFCYCSXW8mdpoaUQ5zq1hzRtCNpIhVZjZoB9clNqkGeMaAED1elCjRBcv2BP3e9KaQEVH70yqj60x/3xrxxxEegIKqe/EfUI6Qwvnrryz9fwDzQ1VR6v1Gb8P0LUtZTZG9HRnGHcV0L/rfJFALsO0FnCTaW6oVzhsnD6EPfGQ6jF9wezAlnRFord7Toic+UhVjg9PoIq1jKnRz8ST4ornnCJI9w7PGy9UtB9CrHNrz43uDhttCypIfJmgoG3Kft9HcTTFPo730UxlNzazW6giQjkXbK40Ww6h+SsZJKT1iXj7MtTva+44b08hkq1GVmgS6NnJnToSPMuqhEyF9xQfaPl2hiaF93zleZvYXrHeVXqfxfbuwes250kv2Xal2FgZ+B+vYAzAzp9n4bmkFZSlLhIv3XDWCwk+id/v3vOYUitZjTasxYQUvNg+13g/T+UCwingK8i4GsYp+Jf8XkQ+tUau3QjkmYQ81rpoPp9k0n7GSMz6cJALBS1UUaZzs0MT8yvL4p6s16wi0wf8SrA+D1LAvUm0wGLpmHTBBTz8wqgK6KA/xhmjuDjQFTWxtKHuhOI9b2CaskD2Mt80f22DyK0T5fTPXtjGHonavqpTMpkhzVSpOzQ1XSEagWNQUmveLr29j8efOqA5RoBccOmR0ZmgiahmopnOIIldO6K3FBRCumJuQJTB32oIXIS3tNLKY/Qb7GCGWZZYiVf2Gmt4lUW115zh83IxwkIzl701mi/ZtUQflxQGdxTv55RlJy5lmCsDy3nvYGO2ogGfiv3SSwNuWZ6BJaNyY2S/jjsT2safQBjq/3QxIREuKYu2PPwxwIMNuPCMl74PmNwOBIR+Ar5oLgRDzPdqHio8bL8YbXfay0XZo2unp2YS/0s3+yLdqAqTjqBy9q7gGU8LrhoVlmOBtQXNObhxDp+3QSypK4FfjZQPK8A7Mt1m+Qu8gmz7CiZcCt0QoPy9nq1kaLm4slipQQnx7yDb6eHQxhGbgrfM+SYsvYLWuG3zloFbWwAH4DianJZ/+cn5MP7NUryF4NwAXJFygE5zgj0adbTpM1mD4QN9f90L0TQlazCOV9bvb/A1z9hkQTjpKgZlz4S9vhkzqfKwQsKp5euP1BG2cD9FSUG1WotRWwdHziLwXqJmgqy9WIVSBuK5gXRMOZyiSQMnpS860MHGxMQGgJZe/vOdhLsffmzFUt+7HQgU3L4J7nokI6fYBIzUC8UEmQd0Xxb2xqV6jjdbdwFPGcwz7URpmTLMSPDAkPUq11Vw4/FXT8TmhligTVt9eCQejaCgc5j+4oWXYTogeWI19cpcGDm09eD5KgugPWp1oqSGur4jfxlrpIrI7F9pcESxSv1yKsV6EpyqVEpxLHhTh0pDP/uUnctSmrYLDi68/+4nX7W/opBozX3+Z53Xhb47C0pWUWjPxGxbmLEexS+wnuPwArQg/+3/j0LKDM4Wna6Hix+ODoWyN1YBDOydmMS7uifW2HCE0TocMMs2Y6ErbsoljlUejf5Av9SiQB24SPBV/fpHCzSoAcobrEKK++9ds+Wgm8kaheNlN4fNumNJyKB7VJroedTGF+gZuObVedtj2vIznIoK4S1SxVuaCpZgdPpEV4YZ4Z3ex7uAXYs8qdzcIKEBWArMpmOOp3WbIHA1RPBwSwivOZqufH2/2p1coYXjmMXgdb7l9h2UVevXYFDDPPNZpHClvWUXXXTZ4aScIa2An0K6qC9pBbWEh6ZrVIHA44/tv6Svho3pepEObmxCLEMfSErIYdJev3A+lKLYo4MLQEue+za0bz3N7Xm+BLVAaeslxT/XDR//VTGW2rGsOFnyTMb4PILej38KhSyCAv+EGew4VKFRQ4rChRJojkjC6rLTukYWiD5FjT93rkjXSxIlzZCdYNBhgjVS1fCh0Hm/ZOgRp6BLhWHFS08aOu2SexE//O2dkKsExxfAkGE6zHoEIqtrOTRlI2H/WtK79JuKLrQoP3wUK6/b/rXgmJe/JTXgUF3Qmy87xiSgBk2MgJ6Ehu4Tk9h2ZlqX9Xjeddoz0sSkB70fGzz/9sqkc0A+Elwnq+LxTlGaxhbNzB0y7avWnTnRVj3WkMciMwVW5tSGuDM9qZThlrKNeMb1APe4UIe8782f+AkBSp/UAIMSTLN9aXM8peyxi4rS36Vc2bVFeLke0tCRytGNXGXtVcUR3i+zu7SdFsMyWnlmU0g79uPCv4cyEJEIj4bMbudCIJhxBGCn+KnkquZgdOF6bjVfCgLwOqcSHRW5dqIsBzy2P2QuUZKDPtgq/5PWHVekEGbd+tB0Bfy/ZoMw12Td8IuWI4JEW/UAgvLNoCJh3W9YZ+x9aGCVHRgnwZXAK8YzXy0i7SdC8dLc96Zq7kus4/tAL9zF9JDQ56gAtILTvTUTr3o7RkAWkfSWSYdrau3rhHOXlPU+zMIdIDarFTGBC5/PvHoZ9/pj0gCIjTzam20HQ5SEYJMpytGJ9FpS761EuAcoobywodaNw0UcLMxyhscjK0ezMB+fbKNXbl7GylDLSSNol/lBkoH8tRIcCdNkYQA+OAJ8Op3efUi5jyOK7txGwdpx+DoAgk/jLUR7RRKosJnRrWIg30rjIxdFP8FQFpabN+KAE/DEDmUAcC5koGe2TuMelIq8bkEETbVRXPVA733/cCaYSjQfzKMkz0u7gRdVHUiai1RZ8IcSV76Etw2aVXpOXu5ff/arlZJojDvgm+CE+kvD1syZ8NsVwFlqikPgSN5eY0LedonY75tYxz3S+yzB/rdtuIh3PWtYyfZwdNxv4YUrkd6AyO8YNR14wyafAxio5kvl/QAxc9Eo/h9V2HVb4B/TOPditM2CO0QtrRdbkZA+26ptMcSOS/AyAq87Q2K1V0iH/DhlGmj2SjhKv0a6Cd1X2/xNPynaBIb4UK1QktctT16F0hknWxGsur4KQr3Iv7YHc6+F/FaLO6Fx52GEL1dXdcmP386RblyHT5VWvG5ZseqiDriTZzzjunNewhjStDg7qSpZqmZYkJjROUFbKqmRqiDsnpkq+5jt5aqtN5fyzk32JaXtMLwTUpGZWO2/klYNgzn1swK+Qs2hoY9V+x10CfZLZvZ+r4kf6B/73qv7lycI3PCB0vhqSXHez7vL8XOM/TL84HW4q8lyWUOkKZJFFK4cO80bMJorpAWazPutjOTeZnhpnjY15ujju87qG1dZc+7e5pFyJw3hKANRCR0etsj2zo3o3GwCyi5E25SZCHQ6BPzbNKZMn4tb/JrQp3cRSuVFDUSwJt8B7bj+NQ+J1gjlJupXC+bBwAmvU7Ds1oJHsH1+DkIw/03+0/qHYMn26sCRUOlNRQ33ZGlPtKSF48IEGP28K4gJZwDi/pNUdYty/APiWPPMf+VQt5CdEjNpB297ujgXT4luN/A2RvCd8P3CGVv9WWhvikTGqXzZTseOCnaa5q1OtNsRzIetftBh4qxdns6EXSmXV2ajAe0k9uu7TlKX9VRnepSNbRES/8gGbF/WnnqfEzW/rq5g1TU2Mc/Cj0OFCGSwYtlawDPguXLlK6uTpsQMtxj9M/u4vANi2Y9NBUfzWrQNPzZzmUSaOoNcJ2jnEwEWzH+Yayp3NWN5bPSydapZYMIQGT2X8MrpPuNJdWyTpUo9QXHtYkfS6ySIjcDzHfyafmXnuA/BPBK83y72YwizS+GBsN/mJGOpKPoRlEIcYipWa/vY3uSgD3q8fGvL61duxdpzUIZNJm+JY3yum/Fhc/OI10MyOCU0AVUKhKkmbMExc4Bt7/xKu2rJRJOUyCpTC6oIyVoE3v39EmjozZsuF4afa0eCBYJwCXvmrOjqyUb9tMXIbYOaMkknBbPTvOzVzjfw9xqmb6lECdUSz0MlNQqdf/AVHAmjNmXOjtYUez+l+ohAwa8UJjVFKP0qaMuKKfz1OqhvEgUQG0vOmtKP2o4EzxOCxn1xPxMmmPf7uM7s18sTZIJiJv5ZcIOV5lWdF3O5kA5IFki8dPj4b0rQvHaDXrdv6E287qKG9n84km1x8nsv9teIQb+5qrp+lZRePxxSaN/eB9DbeW1oLgO1d4AWEVOj3O7KTJ0nCAumw28THfVvrvCcCYmM9GlMLC6YgSzohwWGbv/hlT+xXt0mcZ/ticJqropciTbBXbbrX2DjDSFHNpOut6u0+So3KI25y6Iou+7RtJter+vM82CEqc3d3MKz6XN1sysrLtoGgw3lnKn2h/zkxUkn9nMv04vsNP0rjbSYhSHGsyT0T/Wt7NcW0HEIa8GXN2mb3RuOLubW4AMbd3aEujYL3lKVT1NbqaXHEXQzfofwrzd2jq7j4MKtEae+PTV18R0T9Do6ipQxIcHhSemWANy9ATgLMy9YpO8oAh/9Iprn9rJ+bdOKQCZdFdRhI1WIQwAm9DKj6UU+3hOpqURqqsp3V9x7uuh6c9yherLYnDlJOVb1SZwopMltJW+1ohq68Sid0scb2sAHQwOal8ULEMiiDKq+KLmyrNFrkUbdptjEqYIIpBai58TPqajebhIxOJzGR55eJOJcYBGd58Nz9i6atY3kVknnJEMoXS3JIFjnNxIg04CXs/Ei6P51Uws9xbf1MnUga6oRi5ECgLv746SEGrFWtrULhR+2//HplmbtcpUpRB4dgaR+3Bxn
Variant 4
DifficultyLevel
702
Question
Ali was scuba diving on the Barrier Reef.
Exactly 45% of the sharks he sighted were reef sharks.
What is the smallest number of reef sharks that he could have sighted?
Worked Solution
|
|
Fraction of sharks |
= 10045 |
|
= 209 |
⇒ Smallest number of sharks sighted = 20
∴ Smallest number of reef sharks sighted = 9
Question Type
Answer Box
Variables
Variable name | Variable value |
question | Ali was scuba diving on the Barrier Reef.
Exactly 45% of the sharks he sighted were reef sharks.
What is the smallest number of reef sharks that he could have sighted? |
workedSolution |
| | |
| ------------------------------ | ------------------------------------- |
| Fraction of sharks| \= $\dfrac{45}{100}$ |
| | \= $\dfrac{9}{20}$ |
$\Rightarrow$ Smallest number of sharks sighted \= 20
$\therefore$ Smallest number of reef sharks sighted \= {{{correctAnswer0}}}
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 9 | |
U2FsdGVkX1/Fdq0/LMDp8/441YB9MaVYRiHcOK7s9Kxp9FCocvBXGNKfNodWCGNEr6om95WeeBtGJKSYR0KOmj78IDI88jQaarjKi3bjZzr+AbcS8tfvlf6Mgp2nONB9i39igHOb0QXlngasSvmQHd2wQmYqeldFeXGmkSUq0lIadbZUmgzxGJ8P0apwU3UZqVkP3UZn6neRmc6ATBXpMjqALljgf1DWrsPX+c7qxZwxs8qR4+t9H1bwxpIPxpRl34K5/SUJO6/26GFlsTlzvIpxZbVlxfQqtGF0aKe6WzlTVCHV30gvJzoR5D71GwjhQle+vmEmJL2BScXIFSFnyaNdKB47PRe6eYIb2Xh35ByOTuIdIPzCD3dKNLhErJTYvtzhRaipV3/vXTxdbj12kDcUQ0HP/yH2yKUlAFkXJWlwJqa5xQI7LtTcAeAJzQKNeTDmjZY+OpzEWQaSIGUJMNHqjUMda9XLkDUqhaoubyUgZ/pycZFl8Wz/63cfwoTwnpoEE+RPbA7IXpT2V7ET8WgwGMePSytvj8d7jp4RXXhjqSf95xGNjx29AOG5qYPL97Ny5WPGF3MYSCWxLTtvKNIGwx+Sw2oDMotf206O3PsOR+o3YgvjAXnQGkqiOJyY/U2X4opbsBFmFKapzkQwYFCBqQWlLB5EelU/ZpX1KdXu5Kry/pIzHlbt7j5eY2l1BJ4vd33J/MvPXF1a0a4UnKoYoF4sgX6k0q+tG0tivP1iCDOXxbdonuh4Ps6+32Oc2wPeVPRSg/dEKppVRzP/AVYSMr+dqJIyw35evmBw79HUpE5WxoPi67Ufg4LjJlW1ySIcsvdR+JjzXA2gOwkOlgrQR2QOkD3axgyR1PgEam4JBxDzpwl9ZwGx40oIEBCppat/CP92+SK8X0kfjWo+isNRLmnAianEd5FYimx/CmrzmIF4pwfHpvRNqn4HycOv606AjnHJx7onibIIQ0ixPvwlzHt6DwZldiS4lYhMIizo8KbTGqMOr26oXT2+KwI9jJak2VW8MXkJ4jU/BHgTUj1cSk0hItS8O1xvAyp6nKoPCG+RSmT7P6s+H46k7nG5HXg8yfa2RykhRkUTU2rtmnoAAQLxZAy5j4gPvrcLAZbBpkxdK3FncfEQdfA4ymq+YheaVY33S47dXsnZiSDG2NSbyZI0n3llOXMqnxgDZQZPdlLXELh5LzevVhj0GIzojK0hWQl7MeMmQOwEuWAdTszFIGEnFy6rTGTTeVK9ppU29YbY3Yq6p9pZu4Yz2yinXqu48o0pE5ZRbTkFezbt/UzJliSKEg8Xz9RNfsl8j+/a8nkDcr7dfm3GcvMGlLMKGlqsP4MeDC8kB9gVrlbQXEDtsYJaIMGn6fUw6OJkDCUJVVTMHoUxhPbYjR0IURJXDs4XcQKpcJUgejpKeruR2zMv0PnuwGWAIJf1YTrcbMMESvI/USujPZQlFbovo9QrnTxniOh/VAvoZTXHUYO9WuSZr0RD4HryBleL3vUaZRISsluLwVJzycaWCI61FFYm6DWfWa20vcBW84izMbV5RzawmwPT68XCdTE81b6FEaD73qOzjy2z5zFGRhiuBVEqLvJHO2fgyBCpdsvcef7Hfse75wK0SC77a22jpmKZlr0d/r0zA85QlURfpR0zum7aigjb+ImPcQDDoxhwArklwj4NQYO0S1leDie6aIGvo3ZUJSpiQHtwpwcLUfrkFp2QTmXRSD04xbsQymbrJLeNj1VYHHspXKcY9GsPgZ7DM11qH7eF2VFS2Ad0u/Z/khbrBftHdWzAvevbBNCuZQkR76zHWi8/cNFLF5tXnRzXJOBfHpTpYmHhLHpW9rr/MzKNJciIcAPgym19dJEsgtLu2THgbZM3isfIxXQk+OLZ0mYabxADdsU7skFQ8v7DfwDpG7JmC/XqU4rv6av/8PbZi0uVechSgcblvQXqaV6UGqJGC3Vx+beESQQ9HrWDlBRPAbw72R1kjgiMl8VG1mnAfHS3a8yjXwFRVJllSFLnuvW4lnTs3xhnCvNi+D1J5VAOF4SbqQ6v9TgIarG4fkN5toa5eJAJpfP7ySMzY2rH2hb1EosC2jA9yKQczAT8NSarR5ekz0w5kn84R8iWqXTJTuibj3tZjPZxFrUZXPaMj1CBGCjuPHK15cfG5vkmz8KSdQNqCI9re7wcaGAGUEPm3mi38A8Mb58D56vB03iGjjM26MGFZRLjhmtU0tfGLsQIaVnQyfTUjf/ptOw1kOp5fyj/9Z8jbF9Z/+h6dSooL3vmAC9k9Rb5tWdIsD0uw2a9c4Jg+uuxcrxBiKZOG05gy/QSlGBzNk+K35pD+P/+woTe+z/oUPJptZMM99hGc5Dr20ICr4Ey1Sbm7cbCLGioa1IgcNqQArbGxrIVbqYJdLC22K5Cubp4EHbw6MurFr+5b7ZJTs+OEeBnVhzkYI6BfmAc/f7uz8sNzLTRvecdUAS0KeNwbVxoc6nZ80veUxtQNvVl5EYimB++GKCanEMedhPKnrSYWT9TJCYjF3Q2WARV63FgU0l89FSUj8KZ+RY7+Jxwxy81g8hNLkscubot36SvnFXsbQXtoKNKtCTJow0b+7TrvhwjhkhZAjfOhUF0DIhUfT0I3LyWeXV9bj+QPtuCY58s5MGkCTKpa1WQacxE8uyditpbIF9xxuDNOMXmeDie7Aohj5ZJJc6YT3eHsPEjPXSix8fqfR1eqDt4xIP0YPvOqjTH/VmRIzy283sv+Td5Pks0N/SmjxyCllMadWSKUxhXU6AF97wyksdTefCfymjZHPjOPXgP1FI2n5gg5+aNG7reffbe52JrwhX5yGw+U7Ib6lzwe2B48MBeRvdl8fs3DanYvHqsNtdr5xcQl2u60CEKMUb/KGfY7rgyN/tkczDL1S5tl24JXfM8k0zAtqy49ViJ6vERPpPWZCofTOy+vcAfvf6NPRirtMSP4nkOR8haxp0ySmhWVtjxxnH3hR4GYH+++Kg4L9tm8ifkFoJcTgf/YF408fgttW75/gzKFQiWjZD9QB7USf3YiEtQZsMc5sIUDKKrqbg0xpNtqo2FKcjrlfY5QGq3dy7IyR2y+hInZo59sNyHKV+nASJdDCWGd0Vax5Y9zcxhV78qkZKFoUyLO2EaRZIS9OaktV7obrD030VyM+RY20eIcUVOPuSj0antdkZIbYfMD2Qnahzsh5VZBq0GX7DLszjmWDiQCNaOuTNUD4lJespMOV07yrqpDvF2wSA+53/hVHCHCCRgNUonb5Ia8vRM66LeoAPG4ifHiJdK9XnpsS0051U5jbaGvz63rO98dT32bLAWrcmbWs5IAMPEE7BSvxJZl5ljRluDBDQGrRRKCAxQKWLnOx4F2rHgplDJG3+F3Y9BEN9hmJLLNo5BcGIdP71gj7JgKLLxM39gqNOHgycfSzMGGZQEHXkTnGJWcxx4N3kY4GWpH7kyiPciIRcIHP3Vw7sfkpKj2KUSFPJTk1FdAaFbF8j4symiEdK+CJC+FcHa07AGJGrMWbDx0msJ2jh6ImGoDc3ghh8ltsuViWiA04TKC+DqqRBkvrswQYRK9LoCLKiD0GkYNGP/ObvxPQWoZPTOF2mABK6WoZuNSUmgPjq5H5lDKIyPvkpcXqJCxbB0a5F7X7/oWX7QMIuwA7cH3fy8Q7141uoFsZDQxDtznpZW2GLCrmgLU9R1/ZNlRoLCUDH+7Vtu3OfQt61NsLh+OrApij64Yb49OhSMuTj0czlF3aq/MKqZTXRR3A/IYRQDbUpf/o9+anVQYMBQJxEet/9x1U4mcxag5Uj9Mlma1WiUahWx/e5SdkkQo4xqG2Rj2JDEXb1VjncjIK46yXEJJJPGVe96ApuFnCP9c6eoDXQqq1VxlbiEHRIjMW4xxZVYXakqenSq2Jc9rhgtThULtuXXlrPjkUQqwqxQnlPmBIYgo0UV4AZ6FajnMu6Qwtz+pkPHQXPTkImC9dYmMFD4JSQJhpacdfqtzvs3z6bY5fCWUgLW22UasqsSLWwvDYwzbz2Eb79vJ78+v4ihmggolpNLxcMZaBXWEWBFyxOfex4tZSXtnVli+Mhcl3TDg+icpzT04R0OmatX1XKM5UQB65aMkuULAqtxPTKWoIAUIyTc3fdA/K5ItZZm3/G7PW7jtz3Lm7kS3W6EN3Kcgh9+UBjrf8YeqTlyAs1h4MzkSJ0Ibu16fZEZpfH72QDwmdypSGQWxEVo8NZBJ7m/HG/QOHZwrBdXMgNODaadrTO16R97c7uylM9eSv4Qgek8vShPVzuDTPbZvH/pzjpCaRdbJfCqnVoJGN0RGqkvJ0WgTe/x52FOiPAzf2xT7TIkFc6Yy8CpMQGH1ydfnAp13VaXn0uBszuzeBG6XjlYlCBzY5xz6Q/RRWK05KrWt0b7/1yxzw7B36Toij43KHHIqWw5Sa25VYzZJkmZOa3x7fnuq/gKiSaK4VCD9n5RElMpE2bpr0dc76tNpdi/f9JTIJtgyU9LqnnBRMxdG+vS7mHFBqiugVuwqVJoOt27z7zAKWCWWQAEGNPY8h0DME5ZpkvBu/g/HDg5Uncx7p1LcUeomcQGze8rGBACgNh5wECO5tbikemBYigFL1nE3354kyU6G1FxyhV+9GsAmWkjDQ8ofEqXCllPjD8UD44NXpu+D72ssIoZPohGkUYJvDuWA/5hqrrNqghe5CgUa0OLGQWlD/iGiqANbIiuaGXVZHK49tkTbCVfoBGK7HeK3veczkfP7apZlAeMEyFxDZ7izYQJ9GprlFAsIR+P9OWf8Yj0CTJmL4Wl9PT3KXkMJC/BNZspdzil0UnOy45Y903+35yfqqTMqAFzaxAQoI6BBuF8HxEEI2PgwgyG3D2PfoLYRw/WRWDPtfeGoL4zZyOCLUumgNcOlsrMx1RZUm2ZmBTFvSuFMLtyTtMoa6YS+Ab/On0eryXoyA3J3JR1RrWEpyS4EF5qn56elt2tIdF9M/6iEhyV16n3hgCVdqf6o4R3pFjZbfLtvaqyYB9uiRWhJkZkh915yrlBoy/b3w5rTylXcoqqWTc5+BnbOZ44n6Fy918WHEqZjKg/pm1kaGdSrmwPPGpDOdKaxw31HMVJXLRUWaNCr8fW3lkJg5omfqIZ1mAXvhabRtWLXypS8Kxq0GdyKzOZAi7DAeE8iRqE4P87cLJm9PNCDKWR1tjZHolvZ15AeYn0HoMv+FaJL9S0WkpvXQG11IuHD58kLKASpjeOkBxcFOKHWlxqLS9rIsPK07UuKKIVmG7cNt5Yo+y9ZwUa8VW2Vmx4acYC89E3pQ7qQuaJs9bdSwDD6n/ifM9NLYY808LHl/JHLPBvA3mSCGxyo6Sq43AAQV25M913ezqSF3D3pHLOZyLfc/rDcWMFAQyiEPpkDxPxl2KBH0/sG9g+F7cCdWvD4FK0hbl0z1QuURUJV1RMt9IhA+sZK+5d8jBFZvdFjCbl5bYXgOjWeg17wEGWhWqzoPP73FWNL2Y333MoMeNHZwsvVVnXfPnDJ3ASs6TmoNOSWtfjPdBjOxqreWX4hHfjPBPzpYsxja1w8Gnxexzab4XMlxuKGMFlXkzodMhLgOzIxd0v/LhwPjUapd5ahwCZ2xDzRlRFXKTiEufMf5j2oyu4hO1dGpKGUfevisi6lLeVa6W9SiFpdI08papsQL3n5PRHup6cAT6S3E/Fz4i9uiAPJJj3QP1iaHRhB/Ihd4g1zaStHQWLaXPmwawV0EZYirB14L0xlMJOcd6xDDZZCmWaGqZqGJ9LyVroYHMVFMsgavwKR9wu7vE6Xyl89Rku/l2YJLYoriLfHMB7WqgbH/KMmKzaQEmeuTUZ9oHEt1Dzqnc/Vts7xMxL1AE9O5pq9c8o4PDwJSSQl+XLphncmRvNTygKqhQhzddZyYBd2VCpeor1LqD2Q7D4ll9CEuD/aHZsfbHLoPwm5JJG2WoCnF/bLC1uD4IOksj9O8H2bvEQYTkF6IuDXtiZwQ9zrC9b7djDih2yb81nwdeoBCIFqq1NXu3eiS2qloVA6CxnINQyQ6db6qkDcVCrIpHK8SL50aFY2/TT0lJanWwpt7+CnoOJlM1/L8CoKwwAJh9gUz4npIU8IdyQlk3VgO6dZ8Gji3PA9DpX68S9eQl3Ilq2AP2EEd8HPntYFp9Lqc0dd/JOYToy7i71CL8ZaeWoFvU7/vxhXIBdeMQ2m46FY56se0u3nFInvFxPXzmt3fQ509Hp3pIwvMHLbVvjhPhrjTKf1a7syHIP+ScGOiAK9DygUrf1mnx7/t87tguNdoHq3YvulhRyqTlGbqz2pBd4RbzVjAZPVX4+2vK8MOdtaYHC+uX0jRVpzc66NLgRndPPPKFfSz0bTTCk18m5BHYOTw+lwLRUnPFbKLFitLdnCXikl2oQpdHFINsxkIkRd4pCJIQ8F0VV9AtGXahIv0ddipm5fjQP4eFdDSrgX0H9VR4XXBJ8qqAMdEXiTHM9NAexXPm7WrWd2pERswAY3F0Tu/XnrqowFi1dx7co1g0mq09vpSxNMmcenCgyZSn9FQ==
Variant 5
DifficultyLevel
700
Question
Aubrey recorded the whales he sighted in Hervey Bay during the month of June.
Exactly 72% of the whales he sighted were humpbacks.
What is the smallest number of humpbacks that he could have sighted?
Worked Solution
|
|
Fraction of whales |
= 10072 |
|
= 2518 |
⇒ Smallest number of whales sighted = 25
∴ Smallest number of humpbacks sighted = 18
Question Type
Answer Box
Variables
Variable name | Variable value |
question | Aubrey recorded the whales he sighted in Hervey Bay during the month of June.
Exactly 72% of the whales he sighted were humpbacks.
What is the smallest number of humpbacks that he could have sighted? |
workedSolution |
| | |
| ------------------------------ | ------------------------------------- |
| Fraction of whales| \= $\dfrac{72}{100}$ |
| | \= $\dfrac{18}{25}$ |
$\Rightarrow$ Smallest number of whales sighted \= 25
$\therefore$ Smallest number of humpbacks sighted \= {{{correctAnswer0}}}
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 18 | |