Algebra, NAP_20675
U2FsdGVkX18QaXRji2muHZCWm35W2J/FMpdUC6giuYFr7lrbvlExpCPxXkV+tjjLQcTbUws+5SFNDe5SLx6n75BpnsxMBW0jMfTt6X8ZWwyxmSQ5bnJKBsevDheikWw2MlXYy/MRlODRlrjFURB4paqe3XyZUB1RY+UqWlgivc4loOCf7C1XTQiNPFyfltoDgJX6jF5IyKbzLEsJe0hldOA62t4qfdVjrUrtXWQVQkt0RS6BCS73Ek9DRLcu+CUFY2t6rXzKCDEmsEG4DXs+Nb5HLA7p75G75vsCEWwmLbst523D3v/yCfXc9TKV4bOynhmbOhk3JSeMNJunmDND4X+2rdBkiRAHXVWgaaNVuP4zFv3fwKd922CyZhl+RamSu8yjWwtgk3vW+zmw6GW+woTS836dziyIy7ZkpgEVH6bfVB0iJY0+B46578RtvG5MRiKxHZLqZmq0DaTF9Ojtj1tGJeVu4TuE+8v1DnxF+sTOj7GHy8ofV1KYdH2pMCDty7D8ugo7sI8nUD/w/PT6nhPAVTs178ldMpQV2Y9j6AAG0HyOjNTXNGVT0DD3RHeCnLbCX02BhpLsDyGEckLc3Oa0+QW0J437lmRJ4kjl4tK5dwX2y+cYFJT84l3UxmtoxGuIX7Zg3iiO2qQT7xWL68QKFC8m0yk51FSktWWAFRRfrrwZ6POlOxZ4DrHe8A+ZOzTYLmGusQRwfhIRJpq/ETwW+XETCXCyYPQyEPyTGc43cxAT00Z9ZpAe9u/4749OqbcZjS/6Hxnj9uC5PkFds+vJ3K+r9767AfLNJsFrkJpFvWtES7QqsfLFHrhtonUXtGdoqw5b/E05w1B+0/RZhIi/qgYqhD+GCSgf8PpQv/YG5GuKHR/QlRL1A8B9SXTMitdTLbl4fY0u/eUptwnbo9OnbB1YfRg3+aJuOADxWcvbtavrZR1qviCfPp74/D3+H8ErDFRunxV0UTdtEFptex/pgclUG4zUwW4lokSLXdej5wFQJKECTvOEpvN35FxQpEXyKrVV+EN23dOYvWB17Ln+WJg4fF0NITRj2Q9N1Krsp1SWWEkFOrVG9sFGRq0UHGFeVa6e4/ob1jpxhhqXJpWLU9j+n0R9WI6MRwbS30JAIOdBevsstxc3Yl+/ca+fI5scnG/n+nYg8cp2mMHmtX6n7t5/5puxdlfv6xAeikpfSeppQpkvqtNxuYi+Amm+s+ANOQAKV8zcA/mNWgH5kIb/2+2yzcr1q9sSz6O90yxZnDu8UjgpBHC2Bzcy1qJ6e1zxhXYLPwI7lYec0Yft9qfi1lT6YPLXEpmHIhZN6wZlzLLoKIujlAqJVFryk9upTBsum8CcDbVL/K0a382dyc6MksLkhSCiQBwgX/LyqqrzRZ9i03YYtcUi/g32ufqmGQOoAW0Y8+E2ZX6QBJuAVuMbqbZA/ytbsrhAl9GXyFTByzOTQUsag4a/v8ln4ad9y7s3s6k7KQ1lboovDvLIJM4OquoHRooK44IQKilF4DqYTIBUHJAtJOTs66dx6TtAdlIdI/HXJcWKoeHArsgsyXz72uPg5/AmrGGRRN7oRzbejSbdwQDFsUzbqtrUf4UaK5HBfitHrIJ49nAvjLy/i1DmL6YhSohMv9sedRBmmJ+wcF0LrMGamoUMn6919hRjJW6dHD7/eceJziHPIkMT4y9oWwfW0HQnpGW9G/e0zfVFzmhzR92nVL2DAaqP9nd7BhGeQ7ZAHarHsXTNRySVI060HF8Cr2DBKLRtX0+ur/01tkNrkCZFrUqvcEWGKc9Vpr41dfQaIeRwMdxD3r3lLkgyi9K/SiGjyx5S1dgJE5uOMyuVvprX+KfWrRm0P43K1ai22y+QS+SboHMV2AOIQqi71dqDE7z+eNvyEirJn/DhKNUjx2P/4VnlfgzLA5RuW9z7oWeP6cJ4E49YPkD80ZoLuh/qG3r1jDjc5ZQh85lSuJJpDVnHd84+8hbSxnHVeLIv42mhlt2BH2aVFjzlT4Z1/B8glL5LStigUJzxVcLtK628YEpWw44TakyWOfwqufz4WpfEH1PHv4saCFCGy8UeSjk4XyzbVuZpQXsBf670AS9K2fXlHKRBW64YKTJOA4HWRHIr+nlIqHzKekhVgsSXkbEu9DzSxLg+9+yegwcQnzu7hdaEbi9aRD84jC1skSzI9YjRRVgzuYk2CeSi3xfdivB2FdHLQ0gB6sT6OZ/x/8YZFmKwOp+1drYotU6z7qfY7itJaggm9xtDDHeeLU3dS/71mDD5xMrGPi9GM/OSWVcQw/90yZJZlscrIjVIPpjsxvFPqWPJG+OTT8SroP3Er0TE+Yiqzk3qjefO4/riug3yrBrfHYh4F2S4vzNwmMHrzB+bj0Kc3oWG6PuwwS8gdgtRV1mInwlKikySNgusvdLlRrViVnqKYA1tSG4eDVhn2sTOUuCfOWwPnfPC/YrgWpGGv6bT2ylKFQEkOrgNIC3cYyVK1lenEhsJJvq6X6GOQxAZQ4Jy+G+1VHTXRbPuhPar3gjW5gjixJ/mvwe+2RPHLrG4+dYiQugnr200xJI14Snx+MdZe9YJe7GcFrZcXdMtupnj/T4NXFNvk0BQlqRgdJYQgsDLCTRPkwatLCWgItoUZiei5iHl9oeFw9GmzVhUtronWOfLM4LEzDE/ity8W768jTp4M5HzKKx6lSrRYW8xll5+fHgVTaAOtfv0h0C7SvhD/UA+Wn6CfsoCu/9sCg4gdgoTmaU0Ga3BXmH8wMgObiJbpOhweYCQq9p5ITCBUKB+RwcTpigGtDJfSB79LKaCHxJOpB2vwcZ3ZToLRAF5ES57fDlRAju4iEV1zcVeaaQc1CsY4nAHZxZxIRkWLu2mv2/YR6bEYV9KXblEytGzD8b3qH9Nk4zeTOy965ob/CFZtkq5TZNLDyO+K+ByQ8iRKHz6isKynlcr/1p9i3sHXVsVq4XuT5wRox4uc5AiFfkStsilRMr8S6f2WSYXyfcAADwjeFzLUQju4kANdab1kb1ol/olp9Rm0xp7r3DVHjbEF+zKwipKgGa138zN/cLZMP94DRuD1cHjrCRJdHkxyBuTax/SK9ykwf2tnalIuiKCAclQBph70zH0rm0XUPbVe5ScggLirhohOhYpizBQMvs5bnM08szE7U2WNe7Bj0pxjup249yL6NfOMtgJsvPByObzll/QJjrKl/YNmxq42G3UlDdgyWNchmcf8dWZ0iQEA8G+WRLlC9SkCYCKl4G+z3MINplAaUoUNhig3e1g5/xMBCxmGIxniYjJ3L8hCtyqsYawHROstsze+183Fr6MVdCVhOoLe0wwIvus3tIgYBx5UvpI7bSB5WtBBksNH/2qPILfpWR1XwlQZm7SVfLGea8U7U3ePSmTml4hAOO8lvli61oVoDsP3daHDxUYrFL4W/lSGcSVzDwkkRPOpxFu3Gfo5jeqy1xg5+VXaWxborMKUjfu9qykjw5bqVGVAtoUVuSRZc4pe4MnT5qobRrNomcdBMFicAeywcx7WwElTyVSnZIKGsm6R01X4tEXCxbtWhii9FKlKh25oJb1t7VgaIte6Cm8droDsmKyp8Yk6WAZ/fBCTpdjotltFxV2J2J+YudynPK3VvbjTd8saF9VbHgYTE3UaZXwuII0y7uv8czv8uYHFDF1VU8oaQA3JgJ4iNoYt2REXwUC0XsN7LJmNW0KYiothrxWlh01VJNt8lJGzVSf4jdx8K7AbkidwnKKKrNdtIs46Za5SYVGyxCJ3zNiEehQ2mdoeM6zahYiSttIN0SSLWkKxCVPY0CspMawoO6ulN+Ef1bM1LdsZAcOjQi9AHzH+NP6kjszLCtKO5ADamod6V5kyJlOKZ+LEHg3SMKze65zCtGeARl3tO7Z0FHeA97tnJaflFvI8uVCi1qKw9r8fxxARKDnj91D+X7RsoJn6GlLgCxu92UAwpD4+DE0v/gSFcpwm37ZN7HLFyQ2ysPxrmPaljpbPTsKT7MbXrd/W8QoA0i2yws9IhC01UGWw62K6KxRSda9yhLGS6djcNwVrlWbvPgCtHgTWzQA4j1sL/c/E4GJyI/E2+wgzBJWG1N1XRa43Ayp0HTY8CEbVqZjBvIGg7H+LdU1xl02CfNzuBIwI7QLreRm0N7/VIlbzBMy5/B8ftQMk25VkQcK8LacFXFNwLwxiqXpHYoRo1P9yBfYZrxUtVtbMIrD8F0OY+n7yY8yE4pa2Y8lR30YUpMMjzJDk8zyFOB247oSWBIag/my7Ssh2v5IHDpm00+dOIqb3npX8vXOqoeCS+RY+uS5ra9082Nxxo5VEQ0OLuEYLuhd3STloFqtwaDgJpZ2aUHvyi2MNs0SwZF7fMlBGpdhceuNQ8c4IACDqulpq05kwMCW85WylINuUYDyKSJtY1PRPyVZ9foVJEgOV0uRDNjPPyrosVfXqg3ZGbL5b6dBvbciAqc6UJ1CIa62eu5v/NUmCgDPMDFDdvJZHoRPGhquu2+cyoSZpgFfyYZdMY3poJ7FpO8fwPbCPb2OuGimuLGvmi2fC+nchASSFSQ4IBJ/zd4P29uHNWV7htobQE7mtw6ii+23c93TdG2fFg2DszxxojBDzTOzO8V9F7jbUllI661ZHv5ZNmTlbCI5NT2Q8cZBKHRBTN7itNWn3jpml/mtSrSct4/5AVvtsgGzIHj9hfeTuQw6rHHQ1/tEUvQr/GHE6Us10E/y3MSklhsEXPl6+7563uDbuIfOy2/DLYEhkK5CNjGTfMYpFtolto6WubgRFNwxOlvsn+RPxh5+064DN0JudegFkoI/yXh3BJ8ujmMUgLtbzOpM1KVETlx05h6uK2f2XJUqE2Cm+Nu1zEJTWN8IVgICCfim8Hedix6hOB+VJ8sylkqTOWOP6dnBsBfoJ2RZNgL37KYRRww+rz+qveDhvzoLwAs4cixVZyqAKgKTC6GSFcgxttqfftRHrqdnGtbFYiKNeto9o+X+862/WLFHcSKT9qv8GzAptx4bDcaAItzgqo3UNSntSedrWpXnzw3EruQK5zWRfXkP4iyKqX66acYF917csy+ifTgd4INSjmJi4zc9+oGOsUsSk1T0/TplEq/8BIQy7kzihQxEtiVFp1pLsgOLeU3JP2ob0K5bYn4I2NYW8hkw5wlfOwLxS+OjunqWrzZnVb2RI8cAddHJWkL5ZuyHX/1KtrIjHUpYnYPrsKSBauiaY7DCQNgN2nC/tT4uENUI26vn/AGySVBO1i04Xf8mwFKgD4Jfn5zo7cfIFiaZ+2wcm1RHaEsEqO3b8DMUgs8F2D6tHvd2zjRWCi3DjTWAotpo3GdFSSIUQ83vF+5ZAar3Ph5LqsaVPFmxnUZJ8wnUzMZdQmOwg5MXrC5gwztjwF6q8BzvACBR16s636qjhaG0zTS87rZVFmHNx1JaJhzs4x5/TZWPmKzG+RbYr5Dw78xLm58GvrPy6vzFasGVZgFF327ZY50D94y8TMPLbb5DuvhT+941BxInBuMSMWyp8ASddfPJ6P6p/TvYDUgM4oZjx5T1SDOSxotXeWkMDjrFCytde1civHo9QA+zf0jL88RiUkFK8w0iUtUE0LeuziYF/3o2l4R3Vt5rb1/p1auRnBZvqdbRfzutgyd/mjY3v1WI5MNnGZlKhvKWvOFI5CD0/nx4JWAERSYDHiR5HQVCCT7GuyKSrdtg1VYsAcNSsvdjzi7NSgQn1x93kd6PMSXutZwpJkNAd72c6ydplcIfdy3rEz9DNPia2qmpT2RyRpo6SFwMza1yllRHc6ncB7EUo2CAwsNVmvRfINpA+chm3V0QYnL5Z9GGvDNKObLUChMvqAj7ZIQ/KeqHuRI93tM/NPNkwFyW0XTJDnMSFz74aiFw7G5rpWqTNHcK4//Oo6Ft2jJ4tXUhzTlpBzT69w7AtSCxcqwYkMeglH/ti4r0CPv0rFsSSMYFn2NVOURpArqSiFtAnyAKsBrlcwvaM2YAEg06rJxM9/Ets4Quvc7Wv+pU3Vb4jx3ahHL7+XVBoFLbVmBm+ocCrZ7jBeGDellodOYU8EFh4WFx/6tlhrmjyepxm3Wja4VbRROu+ujtgTtICTQophra/a7MjDc/PDUlZe7vPIN2LQNs1C6a14H2M+FIk6dKDZqkwtY5RcwQbqsOz4/Re2xohyr68atPpPnKc0zYjOFKudKbPpXzIR+O5X8pdArO+c5NxRl6lfmq0hrVg/0NY4DCt1DyBPIZO9Ibd1K5i5eoAzWt1W0X75mw9H1hzpHFz/4hshOlsq97C2MjgT9nbFSmR/ArcODlVJ+vCpEv9sDCJh8OgHZm2nKbkGb0afAfYB9z24kT41X/9m0xynQpW2C+gxC2sET+LRx1UbjQl7FzFqQfLMfcFcsAjEmazkEA1BuRh/MTt/gy6rKgEsw6SO3kpuZ/Cjp1RtqBqJ21CE9hj6eQtBIAAemJK8u5U16aoJ529qYU6JRQV/9IbZGYeCrwFYMAklSNxUNNbC/+1ZMmmoQMFH1oXWeHtQYHOp3nEjLg4L3XIyy7sg3KFTC45wRC98UFU7AZ8yKLRO4cGpSPyIIO5F/AalptWppXkmvF5ru8WFKPh0dnIHKh8Io0J+/dtonPGZviXqRbGdzsyxormVkR29o0soAhLgD8txqSaSt5uGqup0TPmIHJBG3NSAgixcVh70HBY26no1UDQ0id3YXADp0W3wUbgPTTQ99/fwMBqXN52XR9uCNjfBQUmN4HxlEZYUCv8Voxg0VdST9Kp66nc++7DCXD9MMxSiAuczg4sGJ2yKS37DlzRPXng7oy33P8w15gNwnbWrMFPuzoDz4O6h9/C9r1uyrUsYGHrmBcdzL1Ji/H/LKXui4v1lPUcqUo+KnOBZTeZdArNRdGqMGNb/cskR2dlngNoKL30sZl2/gRoQsiBgrXY1M6L3qs1YFvr8loQvHFhPLE/ZWqWV2JFmM7clHtANU9n1EWifx+PspJmkGJfRmoEFTPxt00FfEXgASuzYRqY7kp4dC84+dBlIa5KTPRKEp+AYj3id0yAoLEo7zIPT3cNStQCi/P04TMt9vUHL2eXqUvZjVOyYodjVk5ETCLH4a+8IMnFqu64zw9PxeNyCAtEOLKFJbq21v0TKOAV0t1KX1KmUMzW46qsZkeA8VWUhAtAZ1PlF5Bdb8C5JVqNMymtJV3IfHPCwrXk/oIznO/TOQqEZiZS9RI+i+WpLb4go5CqjtZIZSnMFz06shMtWGbkxuXOEVGOQML4sWFLoKP+Fuy3Vr+CDcbQOg4SY2MB0/ABVVnHE+HRuYehWEttOldo+s4jlqLhFceGDe+mKsp7YHED1JB21jq+ICHYFc1BGmKU31VZt+p5t2v0Qg0eTh/P+oiiQ/rRnGw0BnTJ0NfGmy9suOjHIRFbeIigIRYzLd9s533KaLOkA7mR9m4Z8ZgZQ9X9dd7imE/ev6kl//1LdElgISN42Gilo2dqjlmnqi+GS8cwFuU37cEOIWSkuN4TV87xKTPt+xQDFh9vbFHXd1fRYUCs6rxHCwVsxzlKDsOHRJ/cnR2vGFlrTWgTgTymi84YThng0bUGRK8Fj1G6ESO36VDRKB1N1mVqWkse3+lPDTwGEbBEu+p9uW2HKZxw39GRfTSqfdl/ZraBH33CGPvBECsOCB5/2JK9XabuKlx6cU37o+yiQ6VVVRa0HQ2VjLxrk5pvfwwfgdvbXqsr+N0MB2GY29sk7qGrxVEESLqAhBt269u9drfmRcCQSagPRkqoPvs4eIkBQwjah6tYqo7s4Xeeuy8PArhumjgvg2f+TKiSvAmeNjfBUzm3DNggaUVdfOnh3/4DO/dvva6Slss4EOsv/5nMtsxUqUvCV0w0dz3B0lFSn6r7Q1VlBxf9vClZ3elWUrEaYplNy01NMxrN8y6nJeftqRCRMkthKgUuhNmPrQd+mpYl0mQMZfkLF0a4RBgrHz5/4ghpLS2JpAb1MtJJPIFEATivO9AyO3uLQmK2sTOa8Er0brwDxQhoC1bCRakszp2clkCMWbhzX1N6elyaTAzuWWxOm7bsQyR5PoaCJzREvl7XgrZcctT8QNPPQCyklz/QFab/7b7jUV3gcpRKj8fb3a2CeG0HY0uSxIlA1m5TOf43f0qz0vXy4kxlBuRjMeclo0n6tUJt6MiJESch9DXImS1euob0iF/xkgS9tu7Tz6uV8DkhIGqEyw11xryr/LOXZmb9H3FdD8MjDTx86XBsHtD+ux9Kj9+hs49Jnf+9MN2NFzwIsunxlyHwvUCxz1+cqfCIN0XQi/sCUvGBxkyMNGJT1bqOGYiqWJxZ1cjxTX1OHurQ3O/ezThm2SNkB8TSqg6lauqUZC+66b5zoJg2v5wTEe0AERNPu02TMEIA0h3hZ4rRYJXru/SMXQR6VXLNUKsCPJzKtb6ECAagH0HtmOsTOKQQw7GwcFA60iiENCc+/HiunEIiDcWMRMFN5+20PKuqqKYJJVlfX3404W2BFppdSc24sAcsY1UCrBZBcB2Y4A8vIM0gF2B7NlI8dSfX8a5V4zOYzypXZrnd1Qf4X4YIZWB8+/JOHE50ph7JxlmfYmd0SFTuhMfTqRNsNGnip41idst8EQUjRcHKzLRdPEY48DJYFG50DrIcQlu4hKWwMCrDGXaXwpTmy9c51LeDp0WIijOxYlDdYh1Asx9bSSHC7ko6a4+fhBEChyJD82FC6GQu92TbG8aGnYdZ4hRqYDRFxVhpl/COWCHafiPJnFPEl8yQgm6+en6P3AWKc66EXcfSDnlMs5TXsRrGSEf5dUkha3qLd8NupGvaAu1XVY0KDPxHjSZWcA3PRD9FNqytWbm8JCgmWZEL8DFFWYvKlTLAlGj2YY3xsQboObyEcynPGW8Qg8EojVE9UQqo2ZPq7Rv5Tdyn1fZXkFzVXqzW+DdEBwas+zAV7VsFzpPIu7sxjvO6MYVMsOoFn1suGNXR3NCarajkzMN2uy1fMNm9KColy9L1SAjYF43hPYb5cxW2Qy38rM2iurzDokFulQH+r6grVksuKzmb/jXCP2RX0tWgBx+Omt7j7MbKf3eVt+D2RcUg55PHeFaePzYFBkjYxhvKR84QN//3OhYUzJyN+gSxYLs/gcg1TOOYlnd8QFFqXQtxslSkqEdbEUd3azPxOal+04qTHqCm0tb43wiHLUa90ULnepZ0fqJeYRzPb+m2kFy3LB5CU1/Kk8W+LdlwboBr9g8wkJVYrFRY1nMVvFgGL3i0GTjnOvmbq5t6P6vMCYmJtJFk8coQXEBPsqND5MxbNzsszkrFDIHJ63OpgVjdpPpsTOr6IktMTDknC7ZOQxsj3zrf9iXcXKzVIEA7Di2AKLL2soRMUaJdUHnvWauS3/iDNmmt3sz0nufe9oHzMM3rMr1HLv35JxC6vAncBVJ7VZZgyyx/0QHqg+QGCmIOIeStZ9d/oFRyH1Cv1AbSwIKxlR5MmwQ/SPtHg4s8zjlZFd4UD6SZRpIzRy4SsCbKQj0kCySzVja981D9p1mx8T/aUpC7o/H+UWOgJ3pieTWW5igrSDbWagbK921mbaJocxyMqVHyb3UUvfSUtHgi16RUEKRppFTMXTPmkI8RNh361nW6ebMyqOEVIxWKc5COmqgmir43l9R7wEzxotdH4G7jZROnjVGnOw3ckFiIvOXVMTvaKnlNbtDmBJN8R6XfzRA/YsuIO/4/XdvEi3wRpv6nem15s0810aKQNIIHC+VfarEZgKAp4Uly8ljucD7JvFlPlywRY6hg/0nes3O2bn2jlWeKIsMZyTZVTolWrqQIX/ibSHcj/QdcW89k4s5EuE0tp2BHjC5QbyfNNuVQBrtqFJ2AbhG4fFoZIO+ZfQWZSCDq2JiFSWcKVHB43oN0wJxkQ6vx7K9hr8uwt3/vbuehvKkNIu5M8334HgcdgGzFT5avlXMX2Mk4RwDtLFRhsRv9wgYIIMuxiiDN8eBjW2Q7B/vzXDgD4ztl9qjjnK/44nBuSet9T6cLFpQL1HN82o5mhjX6FCODAotGFhXltFxk435jhGJJotrXtwvQy1AwXfdxplcY/fYRnmzuXq/GID2nFw8phPVnB7ifN7fWrG23Heep9wYuHo31MZWyzSxwUyBwZoDVsmb0vQ5pmkjQx4MMmgsVDeHlcSZ8/KCr2vGyILwuZuaffTifs1FOsxiDzxf+a0ladL8KxLIRKRVA57dgVRlq71PEoAEPUSjtMgEHrvEj2HGEERuWSJXNTevv3tftnODxYLDvOZ/WgvHk9QL/bcuUprzFoanTwy6OKGr8mIUwcjlqu0zyDz9U384A1GUlpZi7CyN3mmynWw/mbNBRwhDYQCcqHKtQb6S4Yn8FX89IRrHU2VTRGo/J7yVn8PBL2OkeYs/m0Tx2KkWH4GEVm0wqCGUzUl3EfhH7wRnQva8zGhVx4HnHwBVM9IUiXvekI93PxW1j7rjg3hGg5omwDBZWob65vdQh8yNY4r12n3x9hm4cfRoY0Qd5zi3SU52yFI5PBtqT2b227wVRxN8WPAgYqFulivlcOMnKhue+OIrHjpTysP0uukK2CarTMv2MvyCGglrQI3vChZHA/iI1oQN3nALNTpN9jbh3Z1KHIhDVZJ/2+ffyE3YCw3xO+BGV2qA0g4ToL+1Gkd3iNODHoiNdY74PkVbtP9IZnLd0H0Uo9ab+cR6ZGPpaWUoxMAyggsz8HJUJPnbnGlYtqLfua6n5V2gQcHrEUNouR+6sm2W3Ik75Agp2GRH5vKB8IV/5zA+qdbGssKLtfIe7b4nG3JynzxoWlTqWR9gq7dvXyNkvw4GRFuXeVPgJPdEjVK/r54Xk4JQAh4Av64P65lfTgCn+DtkA1tzur67iwaDqFR6scgh/p3CaTJA3JnRCiWIJAkb6hCJ/N1ws9taMWnBgQ1owIkQYNGQefCWra0/8qgHb2cUQ4sqosA6drmRV3K+1qN6mZVRfLnM5lHT9KE301ruhg5c5u65V6DO7vrc3BSaa6pLw6QYqNjfQ/Kr3EEQjClVN8e18yDlqyoFTCIcqw6Dn49pl3gvU/ZxZuMKcABJFT0BeFUeu3vsPLzOBE9ffh+GJt2OFSMmrpj9ukDDNZBqwRfL5kNHNUIIoie1tAN3pYsZI9rrtxG8ObV/mY8wbgVItBdYGZQN7bjXNyCwN0lRqu3e47CI9kEbNSyWgHPNl4G9v8MSeHnSAR4AeFH+Yy4HjH1rZa0LerP/k+1bmEZBUdQi/Q56ExRGi7i731SPS53vD3OvzI9QjYOAk3Wel6WqaCfCGjtPRYi7EDEAg46z06pTHErSYLNjjVoSPPEK7phl63mGtq0bP43GhfYSeXaKnoCAviFbg12JDBYVWn1cny3WuNcsRv9hvY2UVZybKdhsP2afvarIgtpnsnGj4w0DgtOEzBUNx82U3BxehQ3RNwcpCwp9YIgZPvNtNHWizzQYbRTGoh+R1Oxr87/t7wyvh+NDasKpKaJWBH6CJUwr5xeu40yx1Oe60lqQOWqB0FCCtH+sx/xJgdIjSFTrHZSjur+LWTuwZoQv2hadNj7cKcS9kLIw2ctbZ4InhxmtMTPlDuuI/YoM15+rLElzikAIgzYazIDro2EUu6KcpD+vC6T5I60Ayh09vpAy2wHMa1jTLeBT5GDeGgf5GePWa1OZ3CtRUxiRcKTHyDAx2zjjzxrrEffZ1jWLsG/1VYqwoIS0sTOWaJfq8QTsovafynHWL/1vfmuAJtg9e0uYLPEplKO2ia1FBuqAOzvPfzDaweZT8NakN4esq9/jUzo5wdc2K8Lr5DRS81q/yu1LwfJP2SV68Lb3wWmdsIDYo1WvsuLwnIdfoulWhSGme8SDedAQOuf+MlBPgohlzdjIc4BQbgOizKIsNYTXcBzjDYl7qae0H9xvJ2vRpr7fkGRdFjwvgeR3c3rOPxP4mvErxo8oEzDApaSDl1V04UWT6QKNnV2OYCPMsVzUxpM3b7oAMlvVqzOqDCYPppWbMPGnwFeOToGckUdpJnLNnTPoNQAfyCfyU3JMPqh8f8krvOlnhJjhsCS8S+ekVuEObL2ESLfge01o4nsU/VBrCRvI8qmrC85YWI7yOkpC+3/WXapLXmlbO9yg0ypSXxtCx61L7ykOpLS3gICt0yeU3pNRuorEpQiAPFYslKMUii+KbcDcsACPvntPIelNJe5kDapig0Q/BQ51DZH6S+DVZJ3rdLeW3yV4amvdUlAbH7bngQ9S/dO6oY/P8ChJcz3bhWTBrUdBcm8nAjgFTj6NZGTG+a26TxSNlSx++sSwtNUhtAIkLUE0RtFvFYuOnmGWLM2GK14O7260T9eytpOFijozwVdDIsY2nA0mQK7Mr/XSDjhx9aqBNn+pMNN6XqCn7PXco7AvBZ2cyuJDJ/Yvv511Vh1fYnzaUZDgZObwTeW/1zA0BLCGIGyWJPUJ2n/FEoZIHhJVwYfWepKOW4M/HEdg9h68s6yRdT75jkN+sboe4vRnO312zELNVF/KG11fATWNXaAhbIdSviTvlQDTh9lyIpLAARl5f3lqRfyVYXVWO+7A2ipKuk+26CJWwu5hKYBtyxmc3M3lfNmNnijiJoctt/90p+7FuChAzgH+icREZqm1ZfoLzRPI4oDlvBnI5+mjZOScnRS4JTVY5UwGyoRy0+hQebwCZLSscfklcS/8Gs2JD6gli3TzRc9av/Ma83UFoZ3Imy946sQl5ZcUFMTxEmqAQot6Szcuu7DIe3AA1ZqNdPC4vqBaOqq9iZzTDUlKG2XhibnicN53WjE40v8cLQEl254LLpbY6rZ0hETe2qpnouu80U/whRzDQ2fOz4/hCxaQZR5KOf/NbSGqiEdq/oaCsst2ms/OEbOya5LxYCYBdz7fyMTGfFk0W8N6ia0S9fx/+MugEDIuVFqxV8NqcIppEFzTUkK9fQ2ixI0s/6asWw5qEvy4durkPGPpQcRd80tr8MeigcCau4iVhtSfomGtD6zQCAMGtDN65yDMUAzry0FbIKma/uQvq/nFRcopvkGf2QHa3gTUTPbG+Hak8MKpOwV01661QiXkS/ZXRX+Mt0F7ATlr09rrcy+9DA0l+dSU1wYx/vub4McIYOvCIvKee4ykZ+EwMhKWSdBuYY/aMROev+BPWPERda2o/0GRVmQ0m4BE1mbFc7LGX9nwGJ/FRajOGOHzSc8e04KmmQGtfYRyEPbIrPTx8Awa93InwmvGQyDehOLnpFErZW0ImroYeHJzEiOPaiKsbp2e3jm2XNiWVCd2I1rpdEOHUdDolXNJ2vkR0/VNMQAm/nXxnP8O+idBtf2osogM4KtmAGfFj0D5Juw6x7aoCVUZmbPB64x0cOAyKy0txySpyUBjuiXJfXQA5AovioOmwMygJmZ07oDjjnNchGyKEm0YeZzrTHx6t/B1NYH7L37aLlLqBeDc3U76IXwcebJXAdxsch/O7nk8TCPhTQAANA/BJQrRJyklvUfbV3QLrbRasx/JWnqAypIrEq/aowGTpEcin8NmO2psRAJ96uwbf8NpM3mXRyYowbjBsk7JtNrvK18C/e/zqUFtxOAmrEzEfZ1iN+t+yIn+AQ9sDBQz+Q4WGzf4FX0z6n/6WcEGoHDNPQoVOFK4/0pOxQrcx1EFmZgK5p4RiTVnHHwFLEbBEclQ3RIg7wFLZp9YI3un87p7K6e0HmMTmH8k5OBjzYgGM9qaTSo3c1mRV3BEWUE473eIClfNcCRK42f9EiVfm4D0ZxC8t0rRXwKsI7uvLJ9uF9wycJxfQ51v8W/ClbBTnD/AaEsLq+pqVFD3Df7GZPOYgZmabVe0isQmlW8uIQdG8jxhIFGzYkNXES/AY0w28tVeSCWL8d5AIVo7fWf3V6/Vz+NFyIqL2HoEReqpMPLFue3C6zgbBsH1j+uXpaeYaNkRDhYek9kju/0Y3JDIhYVK5UuaqxhB/96iiKEouJ6ZsqblhwifjJnsVxsmsHjvafaSQJ41+A27esGkfxfbOBPy7Fb9QyXgVtfh6vRk5YBDnmbVJR/fmdz3KjMcnthYLNa3Z8GzD0vpm2Ip0AM3WemxWiIDndn/1a4sDlJUDCV9GLW5DqPCGjMkiGKdSM50p/1CA99Y/bK8CjZqJQmjqj6g/CA6yyV+iH/MFwGpa41mKOAdQ6+TZ2/6XK+gPY3XHE7nhuWSSoI/x7O5JgpP2qLXjOo4vYuHYmfrBdMc82gzg3C0wK54ZEFTpKhH3L6tuNUCVJz1a+ufz6SjnSeSeL63MEM99xvy40pn3wYBb6UtPQbjqkyWl5/e2B0sC/l+tafaTw4ChIYY3HTIouWYhjlsKFcvl9geBO7HjWKcFpv48yqfCEyG9TD/f0+fPXpg7/CiKC8tr3tsbVKlrx+GGOcCUGytW4hEx4Mw/bqnbXacXK08UTsFdO3Na4fikqMd9jk9QgljmwBmO1iQv2sXhq45XmTJGVCm4Kjin6cpgD9BzO5QOqEv++RR72TH7XIRh73csozAUaNnP2rP77fgRTZj9U47NeGEQraWIt1b4TX0FcNycnon33nLhWvfPvR8v5lIC7eGlAsy4ackyoA/yBYoDsv6Dj/tfKy/S816Y8hqm0NGCF/OTdEP+6/+oRWozAvhCr9Yf3aXZAGcAMppd8caJWqKeDdlzGneeT/P9L2KjdeN0w7PCS0dbkYBUFBhN8zpsYLjoRQDsWBl/v/+JTku7tA1rrNdRipp6OHJyQvR8U35TWVHMHex90y+8axWSrzvopNaFNa61nyPKJMelo/usDp39zXcP/RisgkcwuBPsb+cfnlLe9FCMEfPOm48XIwEXZb1HBNoZmWpV15BA4MCr2laWmqxMHTAwDycoVGm23o+tRyhMi9jdKxB2UXgCLfH/njXYFhA6suTi5x8WYj5rihQ9P9qd/u+TgWguSA3+yEjDa5AOlow7DsdAN5AkADbaOcUTnX8B2MHWtm97D8gFNHjaz9oD1gwKVj+Oue5+vprYDPIynGqRmD1SWYl8hNi+SXh4q+o1jU4DZEm2brdaIe9YOTwm3xPqFq+B/5O5g4nSX7cp75lwMwJUtIwCR6VN0nHG1RF4PkPrYQK465tQcyXK2mjyrn9kKQWmR29HEOKBMmdCF3FSOrOllxS907ZRaQRCBsuA9+AUJYlvlxyyw/rh7a+uG4W6sAMDf7+Lhj4oG68Ny0tZaB59VX8hrwyEigm1HNnzRfPqfR/YOJwQfSz3em1C1I7NLyvZL71evx0LP4mGOa+H1ERLmYtfBFdkgpLvjWOlDWdsT/5xDnrTGafqCaAlgrvkPxNTrSoOmmkNSrHGt3Mm6Swbg9oD+gqypQ53Sl8/7TOgmpNUBl2Nq6t/rXTniov8kt0IdY1YvMFuT1ndmVI2DH7JF3XkZ8rqGhB5hBZlZdBZ+yyfZYLScG3ZCjMgM7jBnURUbIzIzjvndjYoNPYsi7KXFz0LbeAK5/I6i9z9M3YaQmHx3cT+SCXguoVzGFSagOVQdJycss91XpZJBmh2LuuP3qBOGkgKUxQReFZGv3BzgImH/c3f95nvFZpz2IlmynYxHk19oxMZGApmRdu+n/SDhCmijlKodkyCO1KRvM4duw7fKtBGPAMoeZWaO4XtZ7m0g+Y+EtjE6oJwiEy57ejMqepVEmFZ/KhBDHQEUKgCKlBmor9EubEgoujv5zi1ijwWTMV4hyyLyWQIzliy+t4qFQAk62hU6rfDNVCsR7ErFiHLHkjfZzfEfSqo3dhGhzuYV7z8qpHVoOKkxKpd+Hk8ZwCUxBjnoW5tQGpT6FQUupXygmvmeE4SPUupWDwOzLnGN7IGSWVnyr74ALTrXdCiA==
Variant 0
DifficultyLevel
658
Question
A Cartesian plane is shown below..
Which statement is true?
Worked Solution
Points on the y-axis : x = 0
Points below the x-axis : y < 0
∴ D is located where x = 0 and y < 0 is correct.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | A Cartesian plane is shown below..
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2023/08/Algebra-NAP_20275-min.svg 300 indent vpad
Which statement is true? |
workedSolution | Points on the $\large y$-axis : $\large x$ = 0
Points below the $\large x$-axis : $\large y$ < 0
$\therefore$ {{{correctAnswer}}} is correct. |
correctAnswer | $D$ is located where $\large x$ = 0 and $\large y$ < 0 |
Answers
Is Correct? | Answer |
x | A is located where x < 0 and y < 0 |
x | B is located where x < 0 and y > 0 |
x | C is located where x > 0 and y < 0 |
✓ | D is located where x = 0 and y < 0 |
U2FsdGVkX18FyIkQbRjfyHgRaFZMzszAy5OH70nSOOgVGI8eKmMKj98xf7nJx/rAXJqZu1DeKpKbaNzmG5UQBmdfCU9oz5KRf27XQTX7LT7WPH79SLe5ovXOEDHz6tvVZG/n8FFvYBe/EHeoIuBuCicirclr/5+FeYt71lB5R1iVI9rYKkNgn/eOF99VZu1yWd9L9hE1WNKaq8Am+GkmMsxihe+ip5aGikq4R1/5EbFR7PsQaq05ESXFjNPMiX3uN5sRRP3uogb9uHCBFw30zBVxaOJ17pnjAecupE9ps3iNtxCaXIL4exBZCX1AUjVoY2NRxLBZANB6g3C9YeD9UGKr4PnVyShU+eTzq+hQ0r0Gb3FIXprTF7/oCeU7lKqo9zAOTVxWOVTR5f+5lihj3WKk3+IAvNBiyRTJJINptb260DE3+H/4qt63Ibb+pBVOJuZ5/j+PADay/Vdv89Prl85WwsoPNoBq0qoCLXMXywWHKGTpCG/NcYen3cAKYp+KqVMWWxagJJ6weravzsLp4pT0Ps306XSyBFiekV63J3V2eT5tAewkGBQ7QzJBqRI3CR8aNrAW2eeoXfHOCPuPcpfGPxLuK+hi2OFXrlSW6D/CFLzvye4mbqCgDEMqekpDPe3yDfuLWxORwX2psfTUtznL/kX1RziAztpJSdkauJsJXZeMe048rbxL6ao5sb6boxqYWeBXs2A/sWhPKe/5SYcJ0RhjrRKu+IkT/i3WeqLlB8Tq9IxY+J4Oewyzn986RPWlviUbuwpqGyiKB9DrOMOQhsaalJ3OCUx8qcVfmdZsTadyBehpTQCbK3GPp6eNcJI0460d6vM5UBjb6O0A/c1TWfjybGsABZaH1WQ/hsXAFQSbWQdeiis3qP9kVte+aOurAWd7Z4z8olccYnZGiCz6DdqzUBwtqghtnhqLk6XyoTpaQ/wVlHUDptXSLn3cteFkDAASZ5fayEu4Me8ek0W+96D2SX9YkJhwDI2qEsOeXyasy8iA2CAKJqHJ9CVPz3x5bBlHYEBp+8HhPj1wHYWaKKNCdLX/5tW+kKvG4RXlgq5iTALatHIu7H5Bu0P70u9TpNBnqurhxPi4ubeDCOskerLLhSTi8KlvUP3Eer5H7T6x9ANcYjfDg3n83uyTtzlwvTIt8dpt2zAfeOp3oEJufo/3JTXhIVGb7Rnwbge1qomWV1PSolyEjFDAAZTM16y92MPtHvG6xYw8ZaQ8LN/tQWdqhG+0RM4esEqFCtkiIDL3aQBre8MsiQHjwpnZLvF+/96k0QIzCJRyvWAHjDgXQwxtbT/WSqK3Pwa+KPhMtuFsAtwgRvoq7Z6VMgWetW7Lt8fvtE38EYNmXZl8Zc1iecAn4Ec+RyAg0yeBOJY0nbQPzlkSGYAJ2SSyWFVbEDYlVIltxlbJQMOiMm9awvA+LWFdRoB8VYJ51+tT9dOAa6Wxj7v1XTQ+ORokLFZ+01Is2qEWuqmpwmKwIkjgiYUxX2wVfa5V79bX0axzxJ0IUEX4g2ddXPTEew6I3lxAnCLl0YHHbaANJoM3stgNMiKqVZQhuSmOw4Rg3d/Z607eAywidDEfNT+tTqIleE+Yf1qKGFnOUsNX2dboYr8hKDaBikt6YQYHlDQBDDDhG1W/9/c8XO0onoRorHlR3iMwz8xJYMLmV6PdNnTYfqdNkxq3llC8Cklqb0Y9bJP/guJ7J9kHiQXLZaC9/2Qi7h0xHkY3rb7s9RIztm57XK5rkcx2ELGPOTEvNnKHMd9Gjy3shIA3FroUvkdFSW3GxH+Efdqkk9PWArjGF78ffWWORnfLLr7/1D48hqJugb6UjqdNCd25tQXNGO+dLQ7YdE9gyHhP4n8vPtrgy2YOzK1yAhey7pbLPn0ReBMDGgI0PCmVo0xupK5G1CAH8fQIDWUUW6hWGGucFPnrytRuYkKQQDhefSC5disL2WGn/OXUWFOCorikie15jn86AUGmcbUfKShQh+ryjMfVUvVpVgsoOKkTYhVss4VyuGLRI4YmKbkYn5onTyXsCRJsoPRwIdln8Quk/xSM185FmRu0LUjz/wns/WLSTI1bsgD4wCd8OIZ7kMrKwu9O1fFKuvjLp9Fmdghi7MvQOkUPYmTnn2q64LPP19rngTEQC9HyzBs10GouznTyMk55oBuKrhdgd1gNcUSZG55a913/Es3Y9zd8aIWYqBkoFyxiZtVgHbY77ecyR6gL4c+rXMIthKjifPpWn8HLZ9mXMqQlslLdigPY7yHyJTzXu8z2BWtfoOYOvo4oplS+O3vguajSTUJrfVm+0P1+60WMe6Tj58vjhQ+t4540aDMZMvcKl4KIXRlN8RCNoYqLUbplOTOP6YcnhzKRHRSyXrcA3Ey9r0cW0mEMdUtWgnlY6x/jpagfRpb1bk1csx7qB8rrQdqmu/2A0arTxKx2vDl9vrYDaeKRnUzgNsoJuTFKBFguJ/n1XGDHkl9jvjkBJL7pu6G80Cq7bedVBLoF7EyJkcivTuBhBhxZLmpXj0/B4JL3ZlJq6oqjaMLmis0Gvx48KfZk/d7u/DLgK/UjZQHqhkwObVXHU9SjMMEtWdo/kve7cvMhOtAzWvvgm4hBM6nhlW47XXjD2KrblnjEKwhW39lLBiTtERXP0XV4a8T5BjymT5qcsQIVzHmn/6/c8nxnM/BKN0JYPoh+E5ATBgKjf5p3ZE7T1yE0ewfV0t85cAJ60eP9XiehX2XvpH10I6Wt6uF2NEWVd3KMzEFUhCAiV9EVkJPkIR2ucJCxObamTKoO7P7139RMAeVZlxmn92sVzk14VmE0ccJmELF6TqdmVeTjB/gJgRZhEA+luFLwyOvRBKGbMHoNNvAje8qkN9OfpMSHl2bGBiNbIy95zltaOSD8yx9Z4rwm5nkkYMK1qtCNr1Ox+uPoSNhPhF1iAASSux9EvXeXQl38E9Mao4FJTV9iIDapVQXN1tOsJUowl1TsJRjMFIHgRRvYQw9jDhjw7avg5B8Ve9wdAOR9MahMhLWMi2HI0jInyWbbB2CwMq/n1LsKq8tc/vTqxypHO5Ql9/n7fc/LxBYfHzu8KBxDXrOzbHQLK7BM74gPvd2qfIaoVACvn+fiwEUDdUhov2ifgQUjZ2mOf5mNMkXvsZDLCHo+etIj1Gz4ZjlfVQ0z+xisd9MtPVJoDqGNvIksIUzhu3m1pPrLmcrKgTJw+PgtyMyTOrxNV6Rw22rjJRungoXv2F4GDWnTd9D1qlLOTqPCJC8q70qSLovMHlfVqXCn3FIOA7duUKq1TNpA3/O5x7EM9achJmJ7tjMlIjCt7drH4gSLjy4GAbvFqgyD6+TD0aEDr6720vWNbRlaZQep/vjfZAjcC9ZAl2U0vVeD5aQGoDNoUesc57knCSP0oHIIhNIB854+rHVC5ZteEHtb+RACx9/ORB5I5G3HlExAnhpAWr7GNkkVbVRcdYwMj7ubNFyxCtxNAKrzyieOH707icL/K9bCVufeKjx0I7y3i0WA3+vI79+6wN6VTv7MXu9If0D9oVOaELdhQrFzwy399gRmZNyhslZhuRWtMBAWlexG9EtWrgQpEvCUi8M1xR0yMHfoQ2fsk2OzbKiEhWgh9gqFi7JBRfjqMtwk68tJcxyude6U7KE+E/iJluygSh0NrMCX2wfwZNQsYFLlc//1qCpL6/0UpaWpY8l5aAt6u6bJVer1sXrAERkXiRhsxCern4+MWLs6kpxw+Z14+wCyH3rh8aRVm61lJR6Qjvuy2ozeL3FH9XLl12IpsBZIaGTVI008uEWpwimGSeovj49t5HnAF7YyoBFRRiKaeGLA1b9qfgDnJ8Jkf/HNAUWe2Z0H4CxBvqQzsarfzHm8JgHSWSBgd80G+tRhhedakUMawAkPc9iuJEqYVwK9kt7oxRV5UpXkdsT028HYzG/U0oUqBw7G8MaI7c+LDHjrALXBpfEosLdaN1PeiuVj/wpdCDmuxQLJfOxF+9wQHxhBbpISpwKwCym26yQ/zu2xfb+KLqoX9HX3whyTHNvopQlxoTczbfZFxj6ylGzEAG7k+YPkbnzPP4z0z49Wsl+GD/nAGUzNRQm5z8xBUaDi028hYMXrxFWM+r1OXxDwkoB/LY75EjwPAuGsE2qJkt8PNRc7QsnjdcMw+fstt/EAv8IgjHYSI2g4mVPqnw7sOVsTAgGEY5deerYcjWIFGNx0wdzO8SvZ6L2iD5CF7SN8DALB2dSPvU1S6CO/wZej52BhaV4Lr2mJBm+w6VdKF81gp/KzawhCCCt+77TbQD8rJcMM7GXM9UKcs/mvkz6vyWembuGo8X5oabwiGdcNNW1ODJ+ghkgIeEffHRJE4eIqTHJ/+PPi1Aor2T7YttCuO/818NcCarGGW2wpq82NVWdiUF0hDAz3domgWYNKdhMyOxyhRCWC5g5d7R3Mv3oYsSmkSkOhz5XJqE/jUanXoHVzc+yiCBLpk/Hd1UTB2u9zhWPuhISknzEm0TT8oCKqcV7L/IvCDjwiYynC4uOdpDLjYXTI+4MX7UweIvNpBV40FzTBF7WrpFZNfDySG6xOY0TNw2T0GMFG6qxWRENx1Dhty1v54hx3V+9GYAgcIb7YWUgL/znz037V/33qdl6pFoXINX7MfVld1304emtDXpWJ1YLh7RlELPX3pRckqHfg8maqms3HucsZRIWGt3AS6kySiedbkwGSV3FkTiGumrYg8ONHGVrZY5TKhRF4qkkX1DyhAxbSGx+esaIfa9d55h2p/Pwv3wW2rXNO6xAtruRvN6Vb+wJXCCyA4Ta34cFBCLvtUbLNodcPkTSuYGn7WsKK2eGAouhPRK+20hzyrzgQsR50tOWfMnZSVOy4SbDfYHdPL/AVkKDS7+WZ86r40MJeBwLTpIJQC+uCxbRCoC2VTgnp1ipEw36Z5zb2HjatNzeFMs9MhEO5gUCEanoLhWtD957kFIDgeI5eopXog04pNWMRAWQc12PLvz3BWzIJn5xBuqJpAsr52RHgaojLB0X/XtcAKW5FkVYJnqvkYvdTM1XnHPI8rKeOqGLHJfO1Ul7LaTl1YZhhmknZ5hY+RuWayIDKdpXQCe05HY3llb20OGHTHoD84/9WOtatFWpD6JJVva49lHm7YfwiSxT612VRrHLtyl3FnsvCuENEBfZ0pSYUTU8p3DR3V6Koua6zaIcC+PueCbOpMub3H/PAy9J02sE/2w1xwAnlQCJwApOFnSeXbOQhh6HV4dI3A5zWaBHN1uJ2yJY+LqifCMTfYbd/2Sf1pdxWFCIMkON/I42Y8e94+zoIq7zZeg47qi93rSZYLG3CJ5PkFeqptznp9ukUsLPXqdoBJn6tw4oPQ5vyvhmFWdhPL7iMrvsdZOhw/A/xUQUX0SxVAjSBFok/RLec65gmZoEovgE/JlGXCJD1OK2SPprwkqmG3BUldmsBkvEPOp3FH7k33AC25kKyL8d7lD2AD7H8gglE1PLJ8Rk4M7pfLnvBzhgsjbffqGJTpgPVMkAybKZ8+xo93Hqx0i6RSmLcpVxBy7gjeG7luHBO2AsTyF4DQqvaDNj200N28ed8sszaxhfjD0KIAdcxzcWUfjWh4FSQH/hi9BtILu0OgIaLKcxTPQN8ZtpU5ZbUTtAMuIafyFtbITaq9SZY87fzQZTxvmP3GcYzPtA7xikbIGBMWEBWsPymZKhm9K5JixCL8XvvkSteqBQ1pzbEKE3NpBjIco/sZgGKb8k9ogocr4ST1ogPfupsWBLbKfXu69z4SeikvyLgwVWfHj+w4S7eIoElDeuN5j+mP7FAQjPigV3wUYv6nIfb46qktQdeZQuSLF2cudCxfKPFmPgwGaj/4Kz5uAcn0iSyTvRDPGdYBJcMLpvHPCb1MDN+f/qgjMaznwnCkkBfvJ7gSLZo+qlPmk+iCT8p5dxgoMgbh8hm3jTmusvYVHl4ONT+EHy8VHeCQORuct6wQTvKbc5/CnrgL3ZnJgfhxQ1USLUanQyVPClww3wWJhs/bZEIH2iDs5gBcG667dYzwifM/2RGMeEDq9g2WU32HpTRewm/NxXobwLeI5jjrW7FFbapmHfiDj7Bk77UUeKjeCFK22WGif39HAhPPfdLhqKh+AsLs0zZRlbb+KQ3bPq7MZ1N1oPdcUjnJ0ZuvKngTaEqbD1FcRIF432U4jQH8lxj7owZ2Wt8rXAFWD1bfwpp715bOeITarfuHhV9kGU8azsw8YKqZkNbpSwc6ujIiH/sU9VRtrA/RF523sP9BaUmhyuFiMTu5XsZuljFOIWzHjw4jJ39zXqnNAWIgqL5CWNLU1mylcAPrnkGNa53c45u+1l67vZQSmCEG4dJAqxoFzr6a7QF9ynSh4v4o6dImKmWlkX0kwuYLj+oEFz+oAK23hKjTygOen9kmGpXPGDP7+Hy3N1xGYSSR5g7kf3LkJQbV+8hAJ1a767xa3EdCbtizxziaCOICFY0h1yZJpEKEkzs4toiMEY9vfublJ5xdyWnqHwQFXpYZ7lAgD3FDAmrT5P1f5wy5LEcUbdHr88/uc6eOFxMQwXwodvV06ki6F+BBPzulxBrWUAfKjm9XBPWcvZDG9g8dCgQabG6x2iEC2emh+9lbMdgteycfr4IclMM6PeOX1Jae5t3banlAYlebN7t5bwIXvBS4whqWj7dOM2CyebNwFJY5Pzn4Ccz0d1h7e20ofnorKGA1i2/wNymcWSeZDrolWwnEd3oMnw1SNc3Q9tGeavR8TParZwAQ9gnX/IS1pzzcPL6veX5349LVJ8rPkN1WC0KMq9nVLsHCIk+5AyJm3Ee5Tfpy9GIiLatp4XX0Tmebl6+j6L+8FyB2ucIfPfqsYjI/I+5HQO5jth+jOCBUC6ijVHRo8YjOUZvn3vrwI127eaj1LICb8VfXuzsrI7w5RUG9xwDY/BWO0KgdOhMsgtTgZc3PX/5RSS3+pDAHAuLZAME/UQYhQ+81so9mE/JdwkJpmmytKKIGUxLuARFi3BW7dK246yWuyPoVdlkJJwa7oPWsZgoWaGff8MzSAFeFvkiFhn4kXJejw9bWQ1eY0RtyZzI9sx7Izdej0PLYqcmlw8j2sRwOr/4DU30TIv2VjbHcG5pxiB4W1Y2QHWC7ztJvcf+aph5UHl/COUAZr2rsYXfK1MQUiE2+ADUr3Ql7FyaSATm375NN42JWCgls7AUw/NgkasHoQSCnQKku5PToklVJJzNDDaB/2O3T/KgLRghgV0G8OfUprM+f4R6MHn35uIwvyf/4B1tAl2Vn08V93ZZVT1hz16/i5n85WDO+XJwrJrxtb0KdnfmE0t+z1Ml09da787bg4bXDfrBOfc4CWQGLLuV57Gcc+QwNEJaWqd0IW+eQxh51NefIqfPbggWcRD7+53S24zHcQ/20RfgQByohZiRh7Yn7/byRONWN7dCOnMgDYoF4kFr1y6V63JgvXnfe1fyeRhr5gszUqu9sVUrtGid9sZZIMBN8HFP4A4U6rRa6lBrhb8otEP0ZBewmDt+ZY883Gh12Ys4t5zJXdxUr+WkTDettBI1UyD0pDw2UrfZzZWBfo0pkNw/t6247OJr9t8ezPiKLbHliXtkC4j6tp4mERNxSZ7fziQlRv1bolFxTILd9mej68x1A3NopbgWOSRe06Y++rH7fZjOmRnh5DvSwc+PpDunvESSIDEf4LjoXY/bqfWBOcqBId3RAZTshB+7mPXO55LcHtOONoqw0y8P8WghmUAo0QUehuGKlunb5zvfjudLTBjwNUH9fcFVmw7h1Ri6A4JxnYksjBHBTy0vZsTrGTWXQhKpuGiDszcJu89RFHLWg7BXCY0MCqlTRSTbqG9LQqtbuKY/N5YfjPd46odwME2lS18gbjEWEmLQXpRqGERN5Y7xCWwdAfHzbuyHLPpBooh5THlXTHzmQ/LRlx7VK7Sa3WOw5l5qFN+6NQxghve7B8w+Z6TRgY4m6FT4r4AYspxZX88Zp01DS42ki4ZpDA2KhvlWQAlhHkKLvVIGMoOAzewYkVUaWJ54YV965QQ6vtXBTmyS3m8tceNtjPgitF6O1SuABbWdtUPrNrR2rGAEyqDPKd5zNOaInG05fCs67zOYE/FDFL+ao3hU8PqjQz7oL1k8LSToWPYK9IIp7etbmI/xkvAhjZMZV7IPdCtLWhMaoVoFIA/JgYPlaDwhe50HDF8RAi+AFX43/NL7ThEZlc/A9Jx5OEns8cIUx7E0EK1OGeZuh5z9r92dmb4MKvCEwX5MnVUJ53JwP95eLr7D9hMtxodd9Fr6K7GpmrDrbxrBLlOY2vJSUTOg14m0ct+GcU9kYpGcIGH7LHodI8/sQpsIDygzUktm2Uo8EEhAmroTSNFT0J9g9WsTrZLeSANbYIwG2VbW6QVTMxjR0eXXbEFNQV+3ojOgrBFuf9nUDsGEt3+zuBo7zt+DqErnGkC6nk0br4jr4ysJ1RLCKeIfjQz1C1xyp5pt7CNCyBUbn3fxLZYrvK4OpoKs1BIWzGb66UxBLSvjXN6YyaPusOJ0xjVOqDU8ymdyk98bLo/61JADQMi9b39+p/vZfrRJ3j/BMvT59qMew0JQ+ltLBJab98CZ7sAF4bvKxAAzKtyx6lyckpGpz0ghLQpiwcPruBUFjf7ujl0xek5Dfl1vmQzKmnVPEmJQ3RsQSWdC7nXcuQ5QPM8iqZ0UU0dza6oWXTzXDCinZzZJ8Y37fXxbDXlYvH0ZZJ52Iyybvf4sm3NZL2CMl42l+yBekKEF6CcGGIGPsaDiWRt4LHGAH0YbfIjNO4mYzN0eIvHPZbuDuwoJfHmjFrKnYg4Zxbvi/kGneTokVwLBTcUUjVBFNxMNz3ORDm7A79b+lT9ecYr9VNrQrG2dSIFvR4GmQhkioC7+azfmzP7jTcrnvFAddZtNMlkcI1OuTqrd9xb641a+SWh0k2EEQqUt3CoCwPYx07oE7SpuHEGKTE4i9YSwf6LSu3ljzfx582jOiTSnxu/n/kpwf3v29sXSEQxdgIHzoHXj5oabvnTdsSHn0nmAdeQl8jgqXKM+K06wDhtjYQsF0dVzXMsCBiFUKSNj3ebhL9zTRWE93GtkfasCgTnBz1jXhe/Hp+BRMXkKPpBr+zrlkVsE5SJMMYd+w6ewDIZ+6xzJ9DgDk7MFDiRigotWgdZAf55NFISqJNx3uIJ4ed+rD+0bwJ1ODutCmHzTonEk0y3rtt+f0exhvvuKNX9ugwtv1EOCH1X5BiLviTkS4Qi98fxD22DN26w+NeP/HlB5MDhXd0+erlliuJBBUIpmuF/ov4N0bNp+QLpMv6zBm6O7GNNfM+PfvozyY8XbfhhKdixcYzg6LCKFxDpnZodpG2jptOb6jTPVSgCy9ISkN+CIi5wBJ3raT74yHqAqY4CUwePvtobtULI9vsN1OQ8lIz/v6T0xmXtOrOZfjnubTEKk4myXLhalpNhLrXosWyy4GY9RsAfEcw/Juu2Aa1tLh7EGumpn8OUGSvgOmkpJrqwpue/RSR8wswrcu3hm0LaCR4yOe0Ve5pcOiIVTjImDa5Z6TvS+ES3xxSgjx6rD3aNGVcxGuO7+S/vSHviHVzBfOoZJnzmtDBfjmhxvV33hzoDNJvWmLXVcF+tRPvkVVysq/LkF4U420V7zKgpSjYvAbMDsOoIyimQbA3uvot/Y3phQtXwJFie9ailx/J2+anHXokLFepvdmN1Piib4vBtGYkcnZIm9KEIEYJSZVClKfg/S1QDfx69N6suxg0X+9DmAiTDDXOOfwvYV40qWz2f3P6sFho3AAjYR/3kRIK9aoW7+3gl0OcZRL2kZzlorRcP1VA9TGNZHtaMgypcT3Xx90akTTEpzxZTqvdZlD11aP70YM8tutmrAlLAFeDPDu6KflvvyvD72r21zdmnJal5k4d6GYAyXxyo1ewT0gPx/FxWpK2NA4FC2O0P8voYorbEIrdLLKDnm/RNM/IGHr77lIQk6EttA8tn9fcWl0R0OxbSfcBB/TWnaD3u/yFbfnAAECGoCzfYffDAq+Q10IPuRHePzsLGAa5M0W/zM8L8CTwMOAlS2oKxqspqCsCYWp+IdeLz5VR6gGpsCv4B6+YSRbDaJ/25oHqc2CYV3QNRXKGvw5+WHGCAXOJSh1ddNVF+XsnIP3DrghiLJQMWB1WnnzvK6kCBanp+oHqOh0GvJVlbvit7HZeSZ53IqhEtUlgSno75/8iBkzxieSGQEdPIq/ovxKHNG+isf65udhcnW2fM2qn09blwAWzKk9n851zJ2a7y498ayb1nDUfeIzcKV1sFJCvs50o55oAJx7RxPI5gITeqO6dC2vYIjUPSXmzynvkxAnh2F5S197ERrnhi5lpBqFf+sKwd2wvqFAuPszPAMJduCOvG9QV43c5fUJNn/xZzQXef1fqt9TW770eUi6r/blvWmXZaUw9Cizpla7yEjRnpNbevA4zzUDrxWV+FImfyQ4bwXG6DBE6e9h6ypEbGltUlPJ3T8v+xaxhmMrcSN2X3ODClk2xNIP38IozKvK3EuRxxFOtA/QMgdIC/GxOrgpldkdcwDrvyNg6xqsWfgMCCMc/Drx64l3Fh+E+EM7cSpkndHltT3SEuRc2QSeBa7Mv7bIxwKP+iJEi0Wa9ijrvk+dUUKtHjTeu6i3BWGjdWqI/f0Wu2n6qGFq3GuiO44ZTPYY5j59zxguWO3tlpDQMLSruFGnAuW6GK0qIs3R4Kcz2+D//fnGW37IHgv5QUjdjqjc0T3Ad+QJGSqom5BBXkEpWP7w5qi4bkrgv/EbTnWNuprTnYTPnmHe8FQV3RmAnl+D5QC7VBwzvY/EDJB+H2xAEwfn2bIwCEl+xA3hhk38FmdkKGiHHQCIObCyBUGAyv6XGlLUdGkEJR3/qPeNOXfgy+6sUKSYDPCxC/JoC75xi+sSFv2ClnUXnwt6eVmPixPp/PhNsAd7FNoqPezsVBQ3Ua/Wkbi1TeQyVgFGBimAfYFl4VLQ0OGJztrk+IVLnO1c06F+pSl5DQuPZnbB/JPQNf5VVZ4fqXCdpf07SgUBrqagrobJ6YonG/x7TRTqLlAxq3tcyVAFi7/mhjs46IGM1k1tF89h6jTZf6PVd+cljyDl8qKH4yBk4yhQNvyP2KsPKsXt67gMIpQFxsUyMRyXrIrofptGhrr63KkPXhUikp71d+S7A22+Ht9hBO8zqzWTEVHHBDqFO6GC+ad2vLV5t5RlF/q7SuQ02mqWCwq8JpvlFkLLfw82Gh0cciY48LgcbeBgGGcFxTQWJKPsmhc12R68H5kJtqAHRmgBu4enpro4Qwp7w65nAum7N2YKGHrHCKxDXY+cmQut2Fi1U2dkD/4FjVYFRB7L1+GQXOIUi6wufeC3eqR8YZwHgGUOCb6NdRJUu/xiFd1pHUlmDJDx3lvQ6vwy5MIda9vRyZegOfM7aXGxRbmYrLdaaPKg+QViPYy9HMNMkY4jYyNXEiqpM6+ydicdUQzKZb/qslOSsHC7BrHONMWdgTtgVyjORHKykTwxkGgoFzwXIvPLQoRjA6P5hNlUSJxVmn7Y9tgsi6QYWwZUrZkc4MOh6Y3K/lcZ+5QV4wAhkGXHt6/+QDOCG91jR4tyOUKrGrFWKduhT6iYiQ3SELTGPDLrIbHgULH+CZxTsn+KOtqR99/u0VNUa7AQvSHEbx8PrEHKqmcNM0hYeQcIh5ZL4YKBEjHbOxhX1fb6luIT2G+MSkdpdj7tofLMOzQeIAzuA1VqPExpxW3K0D0hQUqcno3WtIMX4I8D1VfJ24LnHAqI+v9tzfmoT9U6cR4KNwsoLYuxbYfxXmYexQHR7Op4LT7Z8wuNxmQR1C92iPo/5zYHG70DCkYzgpwaifzyyns21VW5PUtZeEzaIUQBmS1E2ft1UytINQd22akMRwsz2ooU8aF9N/PdXO8jRb0ASKrkEH2HdL1EumEw31gyKp0Q1BehwEOcTYo2haSR5ToEbudPUHQcECY4sS6Nf2bqPd2ZAbkrkyzsAFzspFUkRGc+qliIb1dHxXdiiUFOuKIIFEwSg7Urus/hV3bHfTKHRX6SKPXxQRwvdT3RRZAxhBRy+h7Lmr5P0mJEmFEAsIb6D4RJ5TkYBIcfTyHo5ZIdMjrLRSJKHmSOExDl+9aJrP23Ej+nfuqzJJZ+UWrptLWgOmS+wH14L/GbLVM8fwGdjxkBnXpSSJsEBc3vvNnWCojXKZ+ivdRQtldslcFazXrvQsiyNr9nNHRqLvDRuU8MBlnDhmYpWoyd0JgZWB2ec6FYc2NlIilJt5qM4urt5np1uI0ezPqpINrp9sUg2xYU5xFDvY9DcX4t4Uy8GqdDdZexJfR2Q/lXnQGq80DQDRIB5JuSa14KUJQlnyfSxRBaYPDalEMSIL73SPTzL63R1ramMDWgbW2LmDthjbdvKoUSzibzgotsNOc90wZChyjRRVEf0nTfMFrjyiPXIDu29TLvHdWn3VijMDyXrqxWLdqLuUCcrvBHThcrDqQDSaqAgr6WqobosC71LbxMxe+dUWskctZ9KozNUYProFdEpBg8vTND+avoAmpved8V06TgfVRki4Vk5WCV/oq9yEJEVoUwGfacidqOnEv0S5afFpSoYPxcOom+QQTqunbi3njSVwND0Qpc78aKmjaWL4kVnRwlyaAR8LEw0ldSik7pV1/sui6Qf6p6XCtFMzsVAJZoWMmDQCB/Fo8ELEcs2nEuVJLf4vSb8W4i84wxR3xHLbfa43xrSW66OokfRsTwogHoOBf1vVsOSDtqlFXApzQOBZRSiUJ+89+edZK2xTtwbNDMFWR7LGU205tYSOiPU3Zno8pqF9p3ecITdP98zZirmvsPPDX1V+AUp1qgPwvjiF4GgPWyjMJFTkPebjEGooHb0/Sbb6VYENWAyAnWSuVYGQTx2QKFFM/YmZhMXNXkhtofWfVz4niYKzIFDrBRElAQYF4L4Gwyv4LHiKx4LatUIFgs4RKJEOJ/nC87tH/QTRDN0BowwD0gshLiWfbBLCBrQbpvHEMKnsL/Rm0/sJsuM0Gdw/JgUbMCcCPlzFVEVeWMZegwgykjTQJ0qN23cvB5fXff76Milu4C9HPcErtqLEpBqyqASHHhSemwEvpMEV9GGIk8FMD20yVsYlkndX6QQ9Sskhoy2k7yibo1QZ44haGhPco9aUBy9mTwpx6GSvajZKVXQe9C2H+pCx7TTnC8VGJ5ktq4yuNF4hWXCLmiPjd7iQ4Hrv+E9qI9RNtYBiI69EXgWFMBAN06WLhT4yZcr2gbXalJsXlZFkPnkFBEgjf6WG/QtKZ2mfXz+85nKKxU21TcPQP9+MAUKWg2LiFVDIy3TUoS3X9laXzrEbUwb0sIXZO9L9AmV/kK+74YyY060DSzUbzFzpM4dUaNwRvCeMTdo8qB2dzg1R/3wpcVDKE4iDdenlVoPxnPOEziqsKjhto7/6YxLY5Mm2yTjdgC4327o/wL5tuqeqf58c1U7o2PaPnOTO5cMlaP7i2fZv5hDxuUoFr6vloBLmmmKFZDhBXyx8trUz7TZoxo0/Gil5QGQ75J1MGY8IZfEolue4CBEtyrHw+9lZAMa1hXyO1hePOEN7dtIiK72ab1XaJy6+pIY5puS2+zKtQJQjVHcJG2on+QviVvsvljcg0TtWaacJ/ZQdvUFjcUC/D4seX90MynPrlYsgiAMUAB+cYNkoQoez9DKbVP6xDLCoPRn5V3PTDvFj2OSC2GgDSlQxkZIV3MqfuEhBJtEhkfUzKg89JpXixzcZ8bEqFXvjbjxWrvqyR9lTJnNpWNZlpyullSwBZKdQb0U6VOpvvkBXVrQekjTLdmHBX6FcD9THwuxhKBX5v0YbyK5sJaqThP+K3UhyIMJHqzZKehI/vSKoTC4MTT7+TXpgksfsxSfdHLtguT592qWYYOIvVQvArTz3V1FNrNBCcCDEfsZ0Jahmj0OGBANZx40nowy5dtbFK2Nb6Ppqn548aYvy+qB4liaDdQuWIHNNw2lvsdsXytBcLhqI/9pJckPixxl4WlV0zypAfqkx5EUoNUn7dJyX/TvB/luwI9s6EKfJ9bp3LfRvbS29H+ABFbVD2pAHqjhPP27NkhYPpOdjF8FsGc/z2CUpEg18s/aH6YbJ4IGO6ymKZOYYTXrMtdkoMe8ekfwnJXK7EALMaSKd0IM3jlad2YR5/KilASTz19sP2lLNiIMyw44ODmOuKFD7yhZMvz712YkW6tsvdmH/lQNaG89P8D9O8XC8yN/drYYkyiojpr5/6/oyNs5mDIcbaFreEgij1KrNYl7tLcAgSlAyDxkdJFUVKcoibTrVOpP/TD0kWp/dlxUytrhPIYTBEfiCkE08FuZfJrVnWi2LxZVlnOQpoubBt+AnKPDRsvFtIacA+Cn0HJGCbpgz9FbJSZi872wAJDZxM0DysbAjREd9k7Cm7EXttJAHuZ33z1RQkBoIj5mYlfnzPW0YxQ6VuEETWaaJoZX8olcocfSPWC+1Zfv1vC7vvH600eLKVJZM1i6Qtf9E1lTjEjsFYhTHMbUULUt0DieKIOf44t6CFtHTbF8DTvcyX85fhZkjqHmSiDNtVi94H3RLbzLEPybi5oERuB0fH9IWht1hV0GybwEBoRNb8zCHPr0I9gZju4/me7yeaROIE2mmp31wxWIDSvLGHpx/oq2iFTS3gvexgqt6YPJ7IFwgT0g1rZidj8rBZIS9o1GayIAFzPMk3H9ZNXCeao4omq72ovk+pQwJX3CQHsvQAitUggDivNnbNPMQQNiEIzKLFfn3D06fY2aats8TohlXsH33tCpWVGcfQ0GRxidyTqt/Tz5Zj0J2LQo1rro/IX3ENzo1/d9805/clWCw/eQJUaPCbDj5i1ncbdOF5YXpj10BGZksjPuM0lRCBPKnD2e3xQMhSjUhsDgXqilAh1rfP1oPSmCDMJx/lQTiLEBn0YgmFOQ/yHwus7Sm9pFwpQU3gv+8zTh0gEUfayG6+MeFsqcwsGg3zdjXD1tQ0xb0zT6y8oKQlHnkHTssWYMJVKKkglxmsBEpg8FCX3YnnrZHUM+TbPd8jvuogjZQYcMz/Axy9fbHwyas7KRy6L7koQw5nP4heJCyM7mgCWbvY+dU0cA41HZ2qDmxddwkcP89J/1l0C5OQ7q90gu71NMvwhZGVtVGBVq66WrrMHPgYL1VYM5e0N3pmN6EMXKKc8rCawnnUadS773RXKgQ/xzIetjfy3+6zMQSKfzK8qlWGmPP0pPeNWiXhro5+a+t8MPJOEmF6IeQceENF47BDqvCx6t+1tgFb5GHlneGLgCX3wMtE8d8gX/ImDL+pKVXRloqV5tyfPb9r5QkAZiAXW0Mx6xGfeTgkM/l9YqCmL1mufSvAaqwH3J11YaZQyT+D7xH5RjNzMu/rHqx7QcPJQncwyCZUwFWh9aXnsLYtrtXwTIrd3MZ7SFDVOobBwuVVX9LABwx5140NXGc3iUFc0IDGQ5QfelOp0PwhedVLWShUfNQQkrYxtiN+24lWDx3rp5NoVQsH23tcBG2p/ySYwyGtGf3pZ/9XC72Nnx1vUjSeYqwvNGFQVXwssZau98gdHwuPLy35ezkgytjYvH4GBuAZZZoPiIpct1uQ76tvwWVlwJuV4B4S7VcjUa0ssZ0qWPotNk1Fc+11QW4Zkm+VkwOMmrv4JunRm1hS8o6+88Uie3ri3iEY3ya9DxvF0Sw7RHfpS6LSniexIJ/EBCaNMeY1yXAwbESL/yEC7A+B8eZYeWEoKGPTbJ2YPs0bWecXiC02o5pUS7uktJ0SUSOpfvSWi2ET7c0SKvprtmVehtTd9U/hVfC7qHFkKRuzhfKCTrxHA64iPOdl8/EYM2TcoeBbBFwNp3wepSWW5dcEADak8lyanml1QPmCHbcJ9Jzj7C9YXpA=
Variant 1
DifficultyLevel
660
Question
A Cartesian plane is shown below..
Which statement is true?
Worked Solution
Points on the left of the y-axis : x < 0
Points below the x-axis : y < 0
∴ B is located where x < 0 and y < 0 is correct.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | A Cartesian plane is shown below..
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2023/08/Algebra-NAP_20275-min.svg 300 indent vpad
Which statement is true? |
workedSolution | Points on the left of the $\large y$-axis : $\large x$ < 0
Points below the $\large x$-axis : $\large y$ < 0
$\therefore$ {{{correctAnswer}}} is correct. |
correctAnswer | $B$ is located where $\large x$ < 0 and $\large y$ < 0 |
Answers
Is Correct? | Answer |
✓ | B is located where x < 0 and y < 0 |
x | C is located where x > 0 and y < 0 |
x | D is located where x < 0 and y = 0 |
x | E is located where x > 0 and y < 0 |
U2FsdGVkX1+qoDCOI+sVuULf5Wd3CoIR1iTlFP+jWviGqRBrPl7nQglHvOYJWgZ6Oaf2aoTRP9b+Wi8YHNtli6rL+HUqyLE4oh3SevKvv8w/ZZit5B7JkRdRsqmZv2qqxSb8ensGrthYsku3UHOnay3LREa/CctN8Ap/mJnfCq9KaPK6vcKwaqVgknZYWpMZX+wJb3eJv6CDVbYbAPnEqeBvBY6JT+IAFfhisfalWpXi0Kc79JbDQlHzWbvNGsps8VV78UFrtQKMqBalLALtgr8ljPo0pEez0AeYT4vrTC+LAacNSPvhsvXRwrmcUbcjxIm2MD4mI5F+kr8OZIc4SEVaRrMM3Mfyhm3rxUpPZzITqgKWl8oj4EEiEvaKcHQ27RuMD0A9KA4ZX2yJ9SPjiHIzqci0qVRHpifSHTYH5dxhlYKYyk0smF3uaIS0R3a8Js13Y5FYk85ExboBp5lrldHNJqzK9AdUTCBM00EQ+Pxx3pcCycqXFF4gH/mZUYXhmjvW12/KCcuzCeqxEWT2niSaAAwmmVsA0yC3axCNhrfqg6/rLgNvCNW64JFAhVM6LM3lGihTR++e0hcjc/sCLwSUoYfgHsUnTHt/GOBla6FIYo33/E6maypO5SX+E6ZOM/UZtKYQlb2epNIJeRdGAB68dXwGT8azXiaW2ERfJ9D4Pt2n6KFdZNlohs15bvfEZrulqi7I2WqIea72/KQvclSNff+sVDYnybSOSxNIg1cGOy/vAjeLHyNS0/9EXMwdD1C5iNO06/rcXDNr0bTMpg9BLrkaV9go3CNCvcaT3dEFRarnAsbdV2dYQGp1/6ug9mqgcY5nfiZb32LH2nC/PLl4fvjHO8Kk1yfxMKMbc5uqQjR1jFGH7EodlJ3zMgYGdne4tbn3jUay+plJDRziT4EvoBVohw77YhLwWQjEO7FTddWB9Lka8hShQgjahAzoonkmnZ5n/SQFwLhH6WGmnckSRYMlqY9ZEj3hZfHCsVnTUJW5TG/91hvHCoj5n/eYSp2rTHwYZuX/HpaJPhr1MNd+R9BprC3XbJ4WYbAwuVjiA/hMDVWN+R7riuUcz2SMFtw/jUmOCw7chR+XG76g3gxCUbrkF32g1sVqXzLUstzJQ1p8uBTbRcUwNMhZ7BGP5S80kHxzkjI2mC0ZbdVbsLmynKNtH+ZOhu7GLyoqQrGneaOQmynQM9tPuggRweA1puOv1tEVxCDCm2kmIfKqN9mSS5WE1h0bLBfHJqz0DSvY0nnwyPxkABN7VB+vPzOuiZKG8T+5nn7VuQS5PNxXMFb5vk71/6b7Kjt6MNS79fY32LN3SAgqOBOu9Q2/4T3GYICfbWKfX6U9WvpeV/UmeE+BQaUc8zMYy6Mf+VaHnM9kAjiCpEYvuJHpywheVtjWCyIYOOOf4cAVHIrdG5wPXhjN2qP8kOwN1KHdgTqrAObFs7UfJORrErSeX8FqOw5J58PHVIEuXFmLdEP0LDAiS6bbtuRF9846ak5HYkCbU9xmd9nn4d4N8Fo5OFPqNjIZRpmNQNsT33UoxPBuRg+IWwyiqu8lyRCsZZuGiK0wlnWsTvgHK52LnY5cmGA46L3/5i2mV2HCdOM7+lWSLkxdOVp62dGgJbn+7fIZe3rksmt9XnReuusztXawItYSP25myWIrieZwBtp2WmFzo9GmJEcj2Ymv6A8w1+WKjt/gk17X4u2fIIEObx9YfpNfBNbpaO75wK7TrNAzWsKenAiY3IztBgqmXOOfRzPrSE4GB6a3dMZcCmxEORB3mao/OOzhp0b3BQT6tyIDdO90MrpeZWLL6jATkNpoUU/dlWU1iIpedM3MilnLkx7NYl91skoJcAjumHq15QiaXcg1svBnikH9fWORclS8mUoHqnl6HWnJNyOXWiYnZZWDRrkmMDdFiyWV14+eH+Of5JCXRQONB55WKawHCD+e11H7NoURwt2BI2t+iSH/nUUR9M2GizHvJuP24FXoVMYVx6u2JpdBuCxMq63q27uKH3pl9TSKbU3Q36tW5QOFBVbYxXHtL+LgvLAo7rhqvtoCG82Or+FS7OFAWZFGGjS0NXI1Y3k6C+xbdnFmvrvBXEI//WzBoNFKudjbgmuxkTXuMryu5nSuqJNHbv97CVpSe5KCGEB7FgBJTODi+puD6yP4R3GKOsdwxMYcIJjsGd0sebwdi8ZhbsF0qrLyfzUWtpeJLb8Ydi4Dk6IQ1SKvYpaB8CYwPVHuWjeH9cdbCYOd+4Yp+djXZcEqeD9jnjAzAerYZ2TaUo6tA0Bz9dEWjxUPe+iMETwlrlp2jVCQ80PW6aw7zAHezWz9czrD16rBRGeL6PxfzhJPTAOoua9H4fSsqxtYaMAk42sCWWGZ4k4/4FEBK9ev2nQP1gcYdYF8VcgwTiD/0gexcemem3rpOdvEly03q4tFrI7eCCkCYRmp5ue58PwcFqPEyj6DQcXHDjgLw43VIdUsCvszdtTncYc8i8jiWPJi53gaxd12WiLj4/jwaMVnX+yzS3U0RSCK0cISB/O0LxCx8hM/aVz2/ZIp5d8XteKmxAZSiQhLehOF0vOsOK73auu782IQL6bQGyDowMxXzi+J2oo8eIO3i6nMNyM4aUGX3vHCK+4SVQI9RS6GNEM1m7xu1RlEi23cOufEN97iVbOMUKF/2zZoCPrHND455sPfs02biPevM8tHRQE4v5vlxI8sszvPI9RUs5EHHyxQxu6ATsTDzOj3hWNHxv/QMOdNdUrITeqmWS7xhoRCjtqAAjb/bnZrRzvjpXfAu0vhJmF6cx1or/x7im0jAhddCkO16LunrSYnEX6ssj6lP6TUtUKO0G+PUE48KxR9UElJ1KhqNDSwcsUQmW60UP5BNiutVQim92wgxZgtWU3XdeF9ylQwj2SNr200LAyafgGXp8bLiH7QYyMegwYlAB1tGvckx5jxvgFXIYTi0zeOp6jPsLAjWFtDTyhncP+Xphn6KgpSlI9nQRiXHDwlsE+gN2/vZ+Na6HTx8jQ3lrE8LQfEM9d3QGFz42YWJUFQt2sXxKOPRycIXRC4GlcG2lSF82DbQ8YcVRQTqrxUKimbHrbs8SqItmuK/0Z5iOYfzcKMrzWmyYs6RVK25/dRkQJdWj11edmcGI6Gc7Ll9CzYB6X/u79T9Ptbn+3Wgzx5PQ2imCJfl4HQOC7O7XcR3FYavt1hG4txklMj3bmHXnt+v4a2GCxDU3rjJ4iYrEmaD7x03zeWyIxewTQwiiAQYzhWhCp1CGednfTpSAIWpRq30u6HOJsaPzgth3kS/RJ+M+FeSsKuUKZWFD/igkCPsFmLalpUegkCW8ZF8YZa/+i0BIYZUoClaBUfQOdpUmnWuSsIpgNLDZtnq8tGEEY4OuQ9HxgvwqfybiKAXqnfzVSwCa5lNmQYjg6aW3QxMGTZdVl5PlLUzUAoMXNyzBKj58V8IpPyaawgJXq3AAVf/JvCnnoGKAj/iGzCYzph57qjX/vvGOoEH0jPMGiVWXXusYksVjskUWK8DrIO9+857pt8b5ddqxli2IooFJDnEqcP1VieH/yHaQlKAwjd5hJX0qgOZO+1bYz9hC+kGxioYNBA6NmtWl6eji7C/rG710Qk+FYm1fn1sySCJTqRKOiFxoyfJ4Sce3rAUR5mRLPcBJnRSuq37ZRSKMup7gv1D35Gg6TJkUqwBh7sq9ML8rCwplGp41mPr1G1dLT1WhsccZUWXbdppvbsEvGDzkEsk3PSNYrRLQZXjWkuznRRxwTuJMWmHKAjGsDhLAb72lhTWRrQnplB53VmEoRkV7Mh4x0CLcZfaaQIugNsOhGHl8LtmBOsAsTkxhiLvFJBpsFi1FvbyV/XfAANIDQQROZqNswmJuWjELc95ZhxOUTRNIPd7oZKWv3l6vqGSin0+abO0WrcNZH9iS4rR3gjnEXZHLW7Xx1eLkDrRa7CiKA4S7ZFpcwBkHpzLQH9dlVYaLh4KnsGSjefx1WItpNqGNywmYsE0C9A1772sc/9X3pc38O2iAJG2Bhpblqf55EgiEfRkMDTe6vXKBuSVjLQ/Gxb4sGH+MznPfdZ3Y97B6yIFkxLgh+bRrAR22I1ocWEfBrMvnd8niKzC0hSXsoj9bKf2BF7U6AUj0LhUbDo0j8PQEiR694QMdR6mTQeCOmokWmURYZ2kykz9HYTyWyTPZGf0HBgkV2ZEoJjKUyb6JjQhTg9s2jJASJrt7MOQnB2NdXKKDuAMR4fFdJZ/9T1xGom9uQzDmqfK4nT6f8ssizAXRX2deXnUkSxG7ZyLbHPKE+8LYUK3OSizQM+A1JB33ZMJ4HwFvBlxoD1CONiXJdb6+wSRdrDqfHFwqZ2WInETPu90RciK8nHMHK5bhX9BNMHZKPKHBe1kHzp7MJRCQFvFdpLPcWjouObzvSw2PTpJYep1YoBjFOolO4FKfe4dPu9KWD9Ch6aK0swh6FtwkC8vqUVp1iBtiSRExq4paRVLm/5Q48IcGM0s/AiKzZMTSeKDZBSvE8MBa8j5HKSTQIgcN4hvor6hOVzH9sFv/MZqeJjvwqoHFe5SbRNRJsnxDRZoOsf1kXQ0nz1GU/MMYiJtXCMJ72aHEMEblrJR/7VIzuV24OP9GcGp7903kkfYVkaVA5eQCmKRL/nvx0we6qwFv7LLqgL3yyzdEp5mJB+ec6kKKydCVH11kAYk1PgjDbworUoVXfBEU0OyXlqbmBtVNREw+hq0vj9sAXwjTDWXy4atAKDICin8jZJ1MwxRneCadEKM/DGifRZyn5zpMt4qNq+eIMIGaqHg0iowrYlYsBjU4C6LjmSeD+17cz1zoP+dgBG2PSx7yJFOoNFWqwYtrOVeFI/CSh+s2ijIrNvhSrYNfRjfGq5YWgv9WgF8nSKO+V+3H50gFHBzz62yBkOSmZ7F0e/K79IT6UDc7NgMzN8SmY8L307Q30IY5W3MS6s3RaJFe4QmaLzjfz3aZHDZq2dVxqkZPrJzGOiZRdTMoBA4bBD2oOGHGJcADG/wzk7jC0s+GdENmudskvlXRp9wVpfWofILJk4LzS/zl+245Msz5w9WigLygb8MvkCVqA8pRvZPHlB4aKUPgzFZeb9IupuXFi4jrIl3EQ+4bbC9K7PCm5xyGm8H/hswK+ZMC3e6PqrWzU3BMOIRofcFzJWMgnWzIo9U4+jVYfAw4XazVfdN4fzz67xhIAH7d77v51r9FcGHPvLQdXNwizhbScP4vV6UQzoFnt1YzNiNWnlqlOmgcD7yK1hucoVPlmUe5ECLt/o6PJT0Nr61ndT2DpYnsGUhjllLRuzPZCUGIi87iM1GNn6pz/3UnoG6O+JHSA3TtuJ9fxqs8Q+2hqBVjuylPoX/gkN+dd6luB1psaDbnRgw2BV/cHJ3WyDJouu5YPTTqWEhr2F05tnoqKWMm1C/A6XmH9XRWbxB95eEPoo/2G/xoH51x4GvsLslwPa0dExeWaSuB3SiqT/C6CIY4ImMy41bAfDR8xjMO877CRmfjtRyKFDSBnSgWdYGQJyn4YeQ7HzqJWYp73Cyub0ws0nF3azUQETl4wNr+dkVM7qVfC6LH/ev8nxyCG/SUXX27YECwurpiRXPFkltoN2tqccV2+N1A3iAS/W1uegDck7XRj9KccNCb5fdJFnYSQgVDAUS/hcMG2/D4cPgO38ln3kl9TahlUByGTDgheiGFsZ+upRL88NmfHaR+bAj+CZ+4S1lDMQ2PHj3/pTSaVWQqr2qCtL45yeMnoBW5EPZDZ+ztJHyGxhQC/W4Xpjqsqms7WdWxQBQT9h+3zZOfSt2kUUsoIFzE8gY4b/9bfi0WHCUtnmlzjacuhAQkhG/ImhD2Z/kDBVEDZ5VDkprojBlwu8Sj31ItoDhiv8ovOpBdNUh3Asvay7j4zUQ5jZjzIcv2y2XuSyaIwhkYR3bcWg4suvmVKZirQs4azXymLpG4p5+/6l6Vb4NTiMgdcPKF2m1wvoaixMu9Etsk+vCUzg74CxLueBjIAJRj18wL6jf3l1gx55yrj4Y+mMso3//Cg4H7qkBVgWGXDpQ0gv30GLsjTUaCUr5LUdmnkkYS+MstWzE9frjjcklyIhqsIf0KJfV3RxXC1LCnF0J4yb71mGQ92YQh5Z6YsN+850vS8u92FSMwpADb79MfippOfigefblJ8D6CEASx43sO9jIyW+ZfhfZfRpbVsW5ZeBjXrUa0o/LvF55qZjhXXWocc0uDLnKodobGhTzsOxPYndKgInV1AzmIoifXKBUTrhai2pVfWqoeBSNHcEnfJBNPsBDCKUsacVqco2NXnVqh7SrMnKvdSG+FP2n6YpDmibdX5MrhazxJPSNxuH6nDBH+/OwklawGidBfixOKxCjD1ZTrhiaJerhweew73knnNLafPolYsH2T2EqlRhbF0zWvjNvxaWXNskNAKSutfENzK8KMJGXP9Syu3IkIMDI/vffaTIq86yphL6NLqTuvXCcP3yEp0z7p0uJZsVA7VsHDAlADw3bO54Dxgpz38YoTyUVinWHWZU7A3EpQHce0zeaPuhPpIkLWNiuY12IItRQz7v2aD1ipJEOfvknNypwWyjBiAb6Is/dkoneHtD/dPvZasLA+O7S+9LrOYACBgaX8qN92IVENV4JXVmBjmdZnt4dWX7r2Pus0LCnWavwmanVw/6kQ4GmVrWSFdntf0kKcvsCpbsm8SGK9DkXBvumBSt+9WSETUVlhiJ8M9wlrMSBEIsS/0oN6d8OkaNdjYLsB/nAFMJxpjl8doM49a700+sBQ+3wJtLt5lYpa8NUTwlmBG51S5eTejCOCXlDrBn0BgL0qyOexJEc8j2j0ONqgzAfVZy/4BZeSWmcN2lpm2xae+w55kwUQuQG8GD06qaNtXLjV/pWUDD6WBzOluGFtFav9/ZiYmbXVt/3nvinV6K6u2DbxjNd/cdcEFKkfszWq+zBi/FhOycTJOTuS1qWw/SHBsD2fPrmO4C62GKJ98c6O0Y0W3mr2gZro5T6MXGPDAGqfydDwb36JpRJ/68DrHNBhPEU5AGnMJTtvmC+du1cCSnNxUR2w/enZ8IZ5pn3jNBirJBmX/zOoSHI76PVEmojFTEZJ5CuFQSDJVEPT4jQDYdHoGYsE6EGZ6qgb035lU/IKl4jXU7xBmFrqR+P946+4djuCk4kmOqBvH0ojlpqbO8jcR0WZBULauKPTDkExftDc60ZmxYSUSGEXdmvw7gyNcl3L/F6Z3+fNt6FdiDfWsPW5QY7ZNqN+sINXgwnXRkFy+KRORkxq7CSpesqHalFvsBpLqrV9iWU5KU3OBAangh4eV16TezgCw7yvibuVl8kC2yTpzus/ZdX2phnSjSqdV/8efG1juCNlNbAHybgaawSpvWYAZqyH7HCElcTuCX2J5I0CUqLmzpVJBEU0k8yso+ydOn/KCQJ2qTmc4J67FpVRlOsCnpZTOXT+XyRr9Zc60Pm50BsSvRZWOEbUOkfw2Y8VYf1Fbezs/443ANpntfXHSJS84vmj9voz1TnjhWgLlkZnklMsk4iE9rk3krJA3BStKeLt+miYst3UdZX2+BV390OM9a2YFDLpzbOZUjR78/3hKoC3AgeNUmqDLfXMSLpVuyoHXmIBJ2yU5DycS06J3EdQlWbyzD52JH0zHgAp+EM46zL1NgaKVu1Mr+I/bkj8bJo3Y0xne65y2h3yFCVVQS5cgZM4j6ggiiCmeHr0uwZDZsFkgIq83ewFaJSqbPqd3apI2SFsYlrt2ZfhBHL13pZKa9Br/Kq4WC1F26QXOapmBLqS39nsCMZMMgnPnHITCPXLWTx9dEEmmZpuGDTuiW4vZi694Ut6rzU10ZHhm9vqQvqTgLdfwUqd5dWiRnEfWuRGEbnqN8Ersv81pIYunk2sXkm632IBicF1lBa9Tdeub2yzKtif7322pf0gQllPtZbWcO9cisWpbCfilEpQ668hImtjPhy/0OtQePp7SWiv4LrQ+YiLNIfWgcxrow6LiMkezvJDgv1pxRzCybBccBCBARCQxRh5UpBNAQe6mWjCIIV+LvSXfaNeA8xaQnuAA6SnmqvfGKj6+gHMtgILKsjX518XyweL8Avy/ZSBS4SdZ/x6c3QSAcHuDHxNG8A0aUuo5OZ1sX0WLgq2J+FguY6SIQGzeEu8OGcxOIeJTOf5eEpHCLMfhtrLjMDSkv7kUsQyFAOOC6gL7uDli4cPfb5GRDyT2p/Z7DPpO4+8mH6KvAa3ZZ2W7501P0KXSoEBSVDAl8zaOxiUC0qXvM5TX9HAYNZkmpgVeQY55V43qkrrZE87+kDMn0XfmvElACNvBKo/JqZR77u75pKIc90F3fH+JIh1tE1RoIRE/wmiWyyLU6eEDf6FwyLKbYa9LH9xDJddOar7/bNqBfc9NeTaChB2Ev+cdo+0JdhuIExKAd63PR8yji1OYPk12JtF3PdIYp71DObBFE+w1yMWJAN7AKZe9EVV1cZ8XF61eI5Zbrgi7spaNtwC9eSBqwtg1Tec0jc7DyLROXEmtSxRnOZOmzng1/XRTChOXZJRYDT6Y0UY6PwrO6uei52a4hOsXBN4+3r+ZuvSdDNzSGMyiD4ODi+WcAAlBu2c1KqjUDvP4X9n2USKQtjtXwgRC1TlBC4kGdCfJssKZqyhdAehMOMBbnrXQnMfIHbCaRx95hAH3jTp4mqjTbliU/oHo5A/cHf4wnqzSuSHU3phpPRXJ/5Eznzw2YFcU+rRbaLDPb6WYTPmeJ/xfbbMo6S3DcnpAXv5mCMN1aKGVtIxq0DQ8dnr2ozyUtTFc2cj5eDaBwYEXw7VQV1SrNH0Krw0c/OArWYbW7ujPLw35HYbUyvCXd0bdaxjMVax599CRx+1X+ZuebJBVCMaJm1+T3n0NNbOkHVD/RAKaf3FSJojhEIviFJPRFBJ/OgDiLfcDSVS0R/rZ9JB5LxRxLrazP+NktkV7myAUrPLCoOQC+wUXqAxmiQbG04LUFG3uwYHPrcWOEvqOeRfh6QCsqt9meP3DHE8Bg/h+wjGoVOnAIlZmVSsVgQyBNERBcQInVZHAGjILVKTs4rkRf/W6/OGKNCnP1WGmioQGMaxAahSvEK04+kw2J6b9mvvx735rABS67Nenk1R47DFscOI+cAScMwezxa1VPvCAIa9zSC5I6HAa6TTIfnmPzCUftIUW9qq+lOJlZJ3bPJtuywzuIQgGN2kxH82uwp2Oi0Rg9bY7vMUctyZE9fEwOezRWF2cPfAuLyyUEbn5LBe2JYOgsZRTxBmJH+4WmIWCCfbF78FL43MdlhhEZFPvsvGWZkn2aytvo2U6sHwhz7ZiPMocfW3CokSA97kHvMp+wuSNjpcyoXCgy1JA06wJoIQtZHyUOwgoSahsmqMrbMBjIPHCUhXk545+ymIcZEAKc+WoD2+QjHmhsovwvcm7VVEgKfsF8LheA3iCoofndwDQVTb+c/3KWeepsfHdbka8Bof8pha2i+spbGoAHyp8rrStrwcKUogFI6VBuQIjMC9fKW6LL3yMFDUMLsu12kwBKMbc9cT81bZ8iSf5TXUWgmcxPLVGMvn1WI9Z2RTnNHi8Xe0s6lJWvo0Q7GiKZlibGVatvetUpsyiofuF3eI3wU56eYF8Xhv6p3m8WYhdb7XvWvTJKsq34J/u+ymYVFUyZFv4KQkCkE1m9uOUXSqut9QYuhJZWW3roTHfT8mSj2mHKIiGaI6st9nt1y73n2IsN5Z9w6do3nCw17qA6819f70CZjyUCc+Qp0JDOBW7UCPPrzKgtBkfxcoFJ1EYwcqNNHXCrrVY/5GgoSo1nedWy9gCoIElPMPGpJ1wKHBs3qPsjJ+56Or/M5hl2bwfdjysnL5T35vowkUHWVQtXDESd4C51HjFXWHZrCmMIrbRXgiARBxrlUd6cNmphFCqc5O1pjQG89Xnx10ZAeRihkbF6oDQD4djMJv1RNKA4epUs3eFljrO5Fk650kMdGx8STfzE9ef0NB3Qnn+ZbW0QUWvHRIX2S5V0C9aGGSBTnms6YDuzEUsUdD/yvag7QeRSyqDBFGtgBXB1OFnV/qzy2ZntJ5JOXLE3w1gnjetIa37zg7lK+IokonESuoZWNOgwKIxVI+crRx93eTn1QZtCNKS6uABXoRVECPVJbwLZEhc7DcYsWDHSpi7WFknlHAsgPuH1wG2XBVKP6Ku924CocWxk9CGAbdrPXNvAC/GRmUVhkSjWs/9mhzboH+oCY5XRpNA+r94uiJMx2n8nHdQ4FhNhKHtPonQiNbt/SB81R/r6fxSHT5DYVy6wtu0ersT0uIxAgWTbTySW/ZHkAN30mTt9g+XgnDZMfrHU5fviiFn9FBtayvWNQ9WodtdSoaziRIMXoO85rftcsrhBHY4HrtBqN8kmkS+ud9bcnzUfyHpjQFi50bBNeim4+VMeAv3gQ2xqingC/7kq+YVAx+csbNEXKxTmuue6USgFRV6NOyI3AfbBRoWsWhmzZrr7wPQrdlbcny9qWnD2BvNE4Jl1Jd6fGHbP6lAhjp9b2FX67IXIDFTlYcZDC/dE4oEwX+7oRD76ayjBEPcELZTFgNX1jymr1oMdEEpUq/UXj7j9dQFj1TirTqPc9NtFBvdJ2ClKUJdnX0IMArNtKSzbhbFSBVW7mKyGF4hvjn+0suLrJPuQJRpKc+qDHIJ+ESyjrKm1glg9S7PpoWgoMdwzCQVDJTWqTMeqGhag8R3fn/4Z8PCGlhXGSWoy+4Ja7PvyOE7oVq7VnGb5hYgqptV2gvPEATlbngnEHFWNpqS8bYn/RSPIamdzaz5TcwzQR3JxF4acIbeTjSmMqDUxaYzhey8JzUHDrnBuPLL+PkiNzjt+4z4kZIKr1wd+icAz35mlIouQ0h4q1jO0AEbQOrD22fhPIcPMet8XbBHWQqLh9reShmKM8lYXHhGwUH1a74iNBKvzScL5hBJY4GfCb1i2s2OjeDYlBL3a3bHezg3IEqW32qtFl3VOZibznLBLLyMhRSLJCNvc+IIEPeLmzAe0rtXI5e1DD/Mr4T/rAAzTVDIgi78Pc9aPHkp+w3uTNlzFNDIraUjZN2qQCLeyAXQocEWWp/J+wcRyOPzLMytXE+aSp6i3xeZb3SDoDJcebas+fMHThLJwV3gHTToxW98cocaKJgf8Tr67j3srnWAfJHvd1jGlpBK6bkOFhEPmVTAp/8mKw5kpL1p+ix8uWobZNNprUcmj3NmPOrqEK4vo45sLKX4JULx/KExQG7jtW+rNWwLLE32v4EWDY/b7zn+BrgCXY1b1dHkr+0y5xN+BI/QSc8T4uJaSIRHivunQbkQX/8FIRWHzScTcEDyFYdN+JSOlt4YoZ0Oz6AjLYMYn9w5lojI4rYpnEo+rP8IPG/81dh5AjP7EhL2knU5GyBPE3I0MrwOeJpPjiL3tf9PnAoCNhsaC8CeqzXWFIj8ibGs3bloCyzdumCb9o1Eu0lkXNUNJ+LO1/cpCL/Y3GzbRFoBe5lNqChnoBAxyJCHse6RAFWiC8XSy+iAMB9vRvja8GSVNUIC0md60faD/7WyjRJnUo1ez4IQxZNxWeLS+Cr5dMbEaP6rGiY5L28ZskazokIWJmsTJMzF0Bvs8VWzcD6q3C0LxrwwCFlgIzD3cUFB6F585NXhB8WKs6O3mhCkJkfeNtiLShy3dvCYn7CraJjIx9fcR/iDktOh9CnXoP83AMcsnj8kj8l8C4Ga4YhIxqdENptghzKo0f4aXgtZGSaY6fQxmK0DTL/E/ONgDCWRRtgVMsU9eVP5GT5wk0UHSJnQK2ZYyKwmxSHlMWEdPPuVFJJpHoTAOGE8sPjQB0bjMpFWsQxvBIeP3OWEBeAi0SwtyDCbovRHEj5ekKZ0djh8KAzEEnBJ/P+ZLfXkbHpcIEOd+hxiU0Swj9nkl7wokYv8yd0m5vsXKP7ncMBBxvEb6J151DZy5CEssB1nGw85QgGBkLTsIVgool1+z1U1L/hX+/q18fsPclGDdiMrVL0Ax2Uc1svqo614PDDdL5QNgSwpdfp4ZS33xQkUMGCooj3Ac/eFyDeQT4PqeNcM9YZTmGalo4CAiSw3ERpLR85tpL6sfzWlpfrxezPGBjiAGxpxkKF5wWneuBvr5xJKHI5Udau1XUiPeZ/ot39O24JsYrSlLIXeEI4eLc2MZVl+SQmpZUus8AjHraCe5wf1qbii2O5q4Ymf4nOHvOsLBOxdMZOG6Auc3HMkdsLsNHctFAM+jf0PL7OXyRwWwUBhmyF3DCu2FPEw0u0fMJeOUBbjfOHsEUPEdw1HY8+PYHPghnZN8+fIGlmm7Jhu/TmVS8IFQ3GRIStNxJ4Sb8BG3XLUQJmRSIhFj+9rwOpzz8rP+K4YNkpbLuz/PDOcazy9s09oNLbBk4w5t8BunzOJ57UDH2LoLdDoWdjVZ1e1iPKO7rDx2ZLWiTyqRU1IpHmIMrjJHgoTf89RmRmv2HKQNdQZLsv/XmKcmML3r4K/WqF4FAAVDji6JFBzAsuvNGEFAFNDHMBbxE1M+K6Hqe8kjuJoGhUkwV9KjMa6jLX8gXMqXAW4ndyLr0WqbgXLsPu/rn5NB0T1NvrONO3lZ/FOaaOzjM2Xf5KzgAqdQkTzk2FP8JljHCYVaIbTyvjiAhxSs807qG6EOWzzxJmjKZhUkF5uk977AJ+duUNGRdhq9RnX0D7R0YwV1gkmjtoNwZylmSl2cYqXsO3TEJqmP+6p0PuihplbINS4iD694mJHgQAQjEtuj3E8qyaXJ5MmN66+yVVVpqVGmKSNDcL1zN+0pExI3MHk4d0GUP5SQMkyQ1fGJ9g8CdCthfdsV7iRTFy2tvSx/J/ddcQrE8/Vd3MKnnJS7aJOAeRGqX1hg9Aq3DTH0snXz3+j+Qna0NRtVf1HU3rPlv4VLIxwGDo/avbuEAnUoI+6aUEr+O49goDMWA+xZJ8sqGa+D4MaanqptfSZdKT20IgKXgJPu+uZOFpMJn711IVWjE1C9kIKd/gFIkcZi2YdBtCQbh/KRYbxR5cEgvArwfu0J2tQXhE/2esFN8Gj9CVP0MyLxNN4uWNuNva4nvzfRezhVscuuUMsG87dSr7T0x+X0OKTprhOalDHEXwcaX4Sjq9NN/v5uUO0Y2WvCUnKsRUrVGsQigyN8W4AQZE6wlTKRKsnKybV7CIJ63Bh3h/wb4l96Uld2FouM32+jZMFkKqa4ZmitYXJO7Vv4blPM5G2E++L56UaLJAIfrff3qNAxanShvd5hx3mB3GPYPyF2LZbHAl2wOiRGLagRbxhWPAnsUWxIFUNPRpyI57U9WXGeT9fYzbfLaqa4ZbvmJxW7oU5MgCeva/mhQ6tvH5GmQbG4qGAO3bLeE7HPd8YkVgv5/HSb2991R3NO/EUV71wK2NJc33bdMLThd+cosu18+di2q1W01+FFtbWgJiFmPt/OnZKkTdajY3+T26MnddhBrvz35kSl+u3GYQJIEA95RpwvSQ/6eTocQJ/+5j6f0uxYSuWATsgZRQj+h4nMmYNzyAJec+2Epf7ivExv7xXjRnjCQqdiIdymhHj47/XRfz1oFH8ccQFqIm+7BvmNT5cgI2jwj0VIitEa/iY0I4A4GJrViH80b88zepeeD2DNbm6cgEkRaqU1pfePpub0vh2/KpKv4YVN0wGwWUM6WoQyKVhbOuVjK4lVubTo2+B77/23UtghuGMyBMsqFI/DLxJcIUh7siOS6mnfiQlu4WPd4QnlpOeaO/9hJldBMIIdrxvFs4qbshtwK/2I9F1W0xBbpvHx5JnjlK865uoX+aCFmFTOglqBM5sCPFw0rCc6A2vGYq3rSWfeozM46fimv0Ohjv0PbrQbRi/ueDD8etbdnDoDKotDm0B6bmsDVSp3GxMUc5XEBlKGEphKF3Dve3IHJS82Ag2abiwn9pIrGwVkpvpsL8JbHE6MRjU6VqJrrNssYWbRkciwkJdaMnbT6Wpvfkz9k1PDFKrTCvoKIkZc+gfUuswQ/osInTM5EehFR6OI31+akauIPMMCLal1DiJWqcTlodTwc9UKMxcWRaU8U99V4pEXndVRK4HRggze/x4VMXCrfmCKJ0iteAk+Z4Z+g8f3b6/yXo49j5q/mgT2lrrlxfflPnXj0Ikcor5oafZiq9KCIf+M/pTgw8geJorDazABdX/eUJKXD5kFLTonNobhBwVxu5/G1iRJ/WehLzUBlrehCWmrkAd4cHp8W9WKkimImEDP3YG5iTWBGc4qZrBgB7WALVlgi4lgCVRlzTrn9vKzYTGcYBuOB2DSzSeLMYZCxKymOdJCYiUaicTaNYm7yo4FGL+tzZxAp2NHBSvjibDbRGxpnQ2116f7EMJ/jdtj3IDgIHQRSc9aWYA12ZtFI6dcmijF7kcIEP48/zthZD57DRFfmKxeeA/fdh3L7nHQOg4X1WDTE+H7/RxRl9N1lB7pF24nuEYHeqtUaPMDvOH3wuR93u/TPVMCZkpNBsmahY+0ihKulHwByFfXNMGvuvojs8X/eCcCVBE7olY7vbgN1nBWCNgVFN91ohnNshMMHBm98IgK/eYX5FFhIioCTuqk5npUb4N9EYIlR8vdIP+m6tMiX4MFBVcbto6lMjel5dV3IccbcOEYsBz8U9C/TGLf3RaLNo23Fp4HKFpP/AVqGqQTsEygQXCAqp+9XzugNZYd5Deku+y48NfkcruE1Bkp4Ff2J30BAnO3SbuXMtoeVvXenOQueXAUQ2ogVPRP5Utf9L1yYHfaSHwbMqsS9x68cggRSsa58JP4SMVuNyH+xZgv8LQp2iinK24fq8XGkK86/uNh+mpl5Re4E2/MmlXxbEoitrXtGTY/kuscZDOr9wQD7EzGZlrrrVyvpG0IXdo9+oix2c7zM0Sc2HFKaGkP85QUMk/b98zONKN6k3guebiUx9RNLJ0+KHjNG5s4sa6176DZ1lA7lNR4prOusPCObD1jmdXsquuWCqLWBufpAIQ53MOXIKulaCV0WGg6ncTTMWU6klOuymTsFj0T/qPReEhqbM1nuvLCqByoq6AWnRhZknGYI1e6nJfXqZEcH0VB6gFRgC+78pNwQkQTVFy0fs4I/7DVb+RssSfaomiA9Yq/IgPEgS2wesb2Ii2V+AAgyCU0YTcXGJT2RUKTgMbE48A/SP3fPHopQbNTdIucZ+x7lbofZUEsTQiFDggY22zHH5bRr9+6eyoqtsDs44qsrX6Q/nvWqrhfx1V2XvH5HZGA12Iz4T0JfEzAHBxaA4VrEGKtiyDBgJF0gexMMubwXfgsASGadAHUEFVUvF5HvH4oIuai58hequK+aZXDhkX+CtSvMVNrdDjhLdjm7CJWVa0Wh451ANjZ+djdqsWmJ98wosl9gS+1lROG69G9ODmQVLXlg1vVvhgIXtnYf8KtgIFX+UWd/boNGjNWcnLnJ7xmBzP8yCX0vmhEjFySXy1wwhkgJBSsqZQUKDLeh/D6BVCZJGFS/ngJpN+nQmowS6Iypw+7X2XrmvpD+IEclY2mRa9LsZ+tldFGiozqbSeYP4wZLjh8kTlw4UpL2YKF3f/zPHsjiD8t/ZXnjNt8BgxqBOXen7m1PtY7RSvJlEgRnc/HndUaeOFW+qN6+1f010t5400fAb1Mpod6SVWVoR/PO911KtEQBJjhCH8WgCtIaAyzu7hLktAjetghE7/cdL5PQI+e/hA617W6Arvlak8CzWZlV3r+njT46GXAbR+V2P0Cq9juQxK9roXYk8hWIxXPLHAMCy1jBerxnBcluyX/uB2Pi56duQ7uHx3Z/kpZd7U3IZhLhrq2
Variant 2
DifficultyLevel
662
Question
A Cartesian plane is shown below..
Which statement is true?
Worked Solution
Points to the right of the y-axis : x > 0
Points below the x-axis : y < 0
∴ A is located where x > 0 and y < 0 is correct.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | A Cartesian plane is shown below..
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2023/08/Algebra-NAP_20275-min.svg 300 indent vpad
Which statement is true? |
workedSolution | Points to the right of the $\large y$-axis : $\large x$ > 0
Points below the $\large x$-axis : $\large y$ < 0
$\therefore$ {{{correctAnswer}}} is correct. |
correctAnswer | $A$ is located where $\large x$ > 0 and $\large y$ < 0 |
Answers
Is Correct? | Answer |
✓ | A is located where x > 0 and y < 0 |
x | B is located where x < 0 and y > 0 |
x | C is located where x > 0 and y < 0 |
x | D is located where x < 0 and y = 0 |
U2FsdGVkX19Ub/OvXBN4/87AFyVFcfVU2NBPjRuF0W7pEcuYjGYmS19RvGbhm8cOgyfmVcSojSWZOmNURfU0k0PUFjaCKtypcUDdfUnHBKvKKXNDk00fYO/3q/BZijfak6QnsnqyAU5XfFu9eqeOPFL/cNYiinRh6bMnyJYx7doMp8sahcpqIpSRxYRBzg2HjX1NIu+Jetrshqzeb19CQUvEEzn3ECK79drtUkpV3Ykk2yJPB/9NdGBQ7JodRuJ1BK7SdoAU6u8Sj86jZSbh6gs+z/zIVq3ktZ/VZEvLDFBpUh7scz/E+m53YLhbGTIzUoxZ+Aj0/eIJnL1EAos7guIrNBitbSBMw9KKXyr6Cskqq2A+k1k4oGRlRh3HMj/CjeWEuSaHEx+3d1gXOAGJBL8QNkbLB/AHShQXh6RS/l6kFFCIQtUcWpqt8bEWYuujkWD+t7CxbdWF6Jn/GHCCFn7xuXY5U8G8HFlQLETZ8ZRIBOyO8xBrzsBo3DmR7pgz4M2cOu05+401sPkhNb77jCwN8jg5qSKQpxgcw+Td0Z6+GqPmhdLXgidwEWqz+tRp4dqr4fdQwkAU85kkGyFHipMU1O79LFRHpSPUxgPv8irwnODMjWSoe4adC7mz0+WMv/5IzRV7yKTQwSi3MZGSgp3/9Q5+G9hWsSo86wq9UGdHvPhS+898OHnU3GG6kQyyKdK0yiHsfXJ/AuGSQ8rYIdfr4zAKmLVNy8CdlTd9UnNRk1QfXQYQ7dtB2zGyO1Ozm8WyC8xUZ48WeAYFYYzPxYDes9tW+UG9Kcim2BqxlS4G696nZumLvwrptWw8V8Q7c7XPL8b01/ZuzMnMJDNIfH/ZDO/Lgh4h/bYfZ2UngQByHi7B1f0FB52gpNWUoaAX6jRMBuGnLMh+v7MHiVzz/dVqUvhDVcsXA9UdJ9bMa5T+zJhH8A1bkvbJbZ4v/zSmVqc1/8WAI7ej3lFK250tTJGj+8SenGT5sftUWExHn1XlUIpX+Nuj1EHl2FEvX39wp+MjCVTQVivYuccFoEORTi4FhDycuIZ59GG+P70ikoIG9PG8eQNO17wElLwlViYZYRazduVXzDDfgT3DY6jEHxGYvlaA8tqq5dZKz2cV1JmU7+zHjxnJbG96LgISlqM/zLJbLt7xydii8zkm8a/MdDEpYPmjezJHkapUYQqYOxHyfaOPr+lkCoKZunJ5n+qJ4sVs3IkfixvU/2WZFieNsQ6pCwTUe4evFrVbcqOfO/NxSF0c9wVu2NEYCFMvzOjU8vOcSV89UZ3dn9dhjYdl3reToXxSb3zrUURNDiDylZyin7Tf8QNr2otJ9YaR5caYRirwdM+hlSlRLpEztEJSmT/QtrDKtggSrfvqblN1HXP0rWFGWeZ06DHmNhegw6AFlxv5cTZl90kv3UiQ95z16+axlu0gUmCSo6IKlxO6smiShh754mqnayelBEL0I0vbiZqBr+Q7IqD+VAoWbvsJtsvP+htq6tVyyhM7z3ajjm3Pn89nBlhcyXaBmanvi5iQCUB7IQ3kZXVA/JEqXx8z1igtvEDUrTNuFVnxOYXe1a+yRd6oHU11Eg8owHo3WT2iUeDEQjuUyn/CmxYZeyyhnRTyh/HnVsSD5+4vBg1XcUymSdVIMe0qrKVAnI/DbTviuG4pYx7kuTHg4p5k1hYpONGopXULyUsOIzf34ibv3WdAU4vMuIvUKoctjP+MqqSb0Bp/HRl7YSDxkHE+YSYkfABEUXLWneSEZvJ8Yi93GMA3lcO2UzHnpGCbznrARhNUUgCUYPnkO6WObz0BSmlBZc1PHrrYrydaIHbVtARfhOcoNcVUdkNyFhghYdH5iSkB7M12kDzwgMk6MG3jRUP6rOixogU6+0WU4kKpMsx3t9IS6AodbaTxdxbUCU6FLKB3J3qPJAjE/LjfZQBydQAyBCa7REgiEQyhr+jscy+uOsk/sViM5TTxn4MAL6jHpCI7fINT9TCMOkPm8BKd76gCbGA9GgfBDOI4eU4b5kJBFDurVv0TEPZlWSeEqYcZU8rS55yKX9iWyFctUweFAiR0+DUqG+0h7V5/it3mZHlG51434r8ONBKIxYcEWxu9TT9KG3X/TaKP9FhlmSZeSg5U7DOCG8QrNuDF6vfIdwLufDpAB1QljoIQ2p9dWAhcGnrvxwQEvt1vzE+Zl0K99bgE6pywMDY4zX6H0tBBbx4neiDFelHAw6N6laKLDkd++yNSom+08ftHjhXI/my7VT+zqQ1+CU7Vpv9BhLJAEwa/Hek9KR31TKFx6LQsRP6tjba77b6kXZb8DbE3pYy8LBx+mm+CA/3Ocw/Q+hoUr2cC/F5rLKobBPFZlqOhQR0jq2TsP0LOaXI6Dv9gQjNWQX4asTE6txkeu+FT3ZZjHlM+9CG+sCr5B+bDCa61kTi/PHptU7/2tn4uL4u4jInolcLL/aUy+xf+B3P7Eae9WhUc45gU4q6BYv7zUzdo4T5BJQ2/2k3H/0+RXzKiL9jX3sNY77aBArrRLFj8893HL4ESNw5QmD1p+J/kXmbsl4VJ/U3EFqQnFco4NQKTNT59axgl+t7Vq4o3SD+QJrj3GiykOKNE6c2YT3YmWydCSV0ghOX7byVpRwxhOAdqt5zDYe0SiGbeF1HcpBlfBOMMQceyTO0MRTeln0yFsiGXN8nBlcyz93bljBuPegftn+bDKXyJR0kbjWfptF/PS3IEAqX1D+A8A9ibtyocc2y/3CoOCAVYCU8mhFqkp2U2uNxwKQnk85NxnBxw/64RqyU8JnckGapqCDSMLgtAtxZSwWpzjSFCpAiPSGdhWmUjvcv20leQjwxwtQg8RInZ8QhzoBZseEtUldMm0JZhWAgW0CqWx8Zsn3Qgwn1tdWhrhgFOcsRj1QPWSEYtN8zc6uwmyqr9HDHa5jvnNSoU1kcFk9crHdW01PDQYk0gY4qx/XT3rqW7mzvYuXB2IQfs3cB2jeI8KUiiL4Kr3w8xdbF0HnPsCQodi1690Bgr+07UeKR9/jWMBIDIoDkJYrltrNr5sm3Cyju3L1ufH0GlsyMs1ibR6klYvJO4ZT2+QwNgCLneFGa1paRirlOO9R7kMpnN/h58FfSzk8UVEtpko3ZN3AzH6ngybGa6/Qn3SHflrXq9UFjtHqhZJVZtDYc1Icn9BYFn1PTMYUtsPb7NFttdlCDsn2F6JwYnGnH9KPDrsXHRQ40jfsUj6nRaNohZLGqY7lh2jJWAbk4SiwHQJGNOXYY9ejBWd67pD8sxQ//fS04W1fFAevcDsKsB/EDYe/prn7L8pmMqG67B2Kwy51A+O2tV7w7iKlP3evzCzPsg8i5fE592bqXDWRKXPkLAZ/Z+Y3XX8piwJntn36BcIJtsSqSpc9+EeREZvF4MBcPuD3JlgiHRiMXcb6E0Ed/nO6+khd9/hDcQKpCVYcC8nnhM4SaIFcGIdseA3epcF0i/Kb4wrexleEWE+4ZK9o4KMRZZYeq6ZuBSsJ7pBPn4+S2pOtEaaa5l8HTl3c6pye9YPvPZXzp8ime70xIoCIqj67XA0juVAqVT4rFukbxJj4Wm7m6V1avqJ1OdpWTFpPY5wsN4+dlYR7AxbFgAHSkhp/GRSOlri9hdA5h+YEOSo9fd0FaxcQLqF/JPFT83+vFgXLzPPZBB8NZmDopL7YegOmkUhgYfNRr/K1rnCIRrYVpsGlylv/gzAoLRA+tM/B+SkY8Se/rZvUvBHTBO8l+91agUD4HxO3H+YE0EbSSoC1I0ch/XJtO6AiggSZER26H7fJdkcC34KKh/XEU7fhb8Vhq4KOdmCXw2MSylNyiis3giWnigCPJIdfjgn+mKK5Pj/4detHc0v92W21A2WpNM1gB2cknESB0PBK6fN0QeY+b16YdnE4aMfaJNv04mL2xj9w/ip37z5bYScyYBSunjo4/y7rSBeSkZnfJyVwIRs1GdVkhZn1Edw7YfjxgZlZ3VpjWBkXBznx94P+NTVdvUDc+luvtB798LbTwGVeTJQzR7XDdn0xUvrcUcXRo+rDcTTDi/LVnAU+23wG/IoSMQyNZoufaalKFyrjvNMpuuZ4DGGTwyjeIdaiajKJs9jGsdeVH3g5zr/o/7D3iEsxgiwhxfx2pEWTbrQmzhGRybr+YHxXq+KxkmLtKX1zUCutyrwaYAmW8Am50QBOKr6GULhCkwdS7iHof95d85jxeYqOJYw4THLTeMnRKPmh7p96Le7gp+/uOlmor/jtBWGv/7Sbzo7p15bzwwaz/7oEc1fwmFnjLMYatjClw1U1ShO5pVdAEVE8bhBjUBVXAkSOVe0RmgBz2rd/Fux2Y2xH8jKQNuBf1J+XNUSmTdlGAUNa3fIFK+rlkP6oSb2dgRof/Ggqq1t6Rcg2I69e6Q0v9pqeKGwexjZgaG8IU5pFqtfa60AZAWvrRaMkZft1ENKyKjzkprY5iDITnHlvdQiERZw2alpWFSQm0okwqitx14KzjiN9SoRiKmLy8oKE+KqQ3ZhYEM/bHAE7tCNRpAMs0OCNNXXUxvIhLfy+w/+BfLDz+UG64qMwmQbf0AHxYXQtrxxSls49l6QsdzR4s+UtmRKhVLPGbP4UJB6cQYA/bGKpNmvZ3oNY2BATOYsCEDrQJgAk1xLB1Leu/X8+2j+NKduXYE7saUelYWiLuU3nckDddlivnRUW/uWof56skvDHTfDvmTDstHxmmmU3oXFMpqAQO0IjUKaKRYr5OezOFnsBg21QNTUURrOyraYQzw4M1XUhf/WpdEPmC0fGE5eq5xjpPpDEdoGnaBQ8V7kisPEz2PpNJ2fkwpBeTmzTGkX8/oJK3Tetn2Yi1CmGFchEVbMiTgSLDvgJIjdS9II1fUrfyqH7AcGKm3Hv39JHGJdO+tgrKf1x+5y1C1IAYz8hrrwObZaQ2ImWktr56T7WIggqodEXowid8QdNsqqTh3FLp3pq9XOueCgc/TDPp9Uj99e5VDruHiMKg2eYEMgtHP/SKk7DjrVDusLCO4G0lh40HvUU3YnuY57IehIw5r6+oMDRMhH4GI7ncBMwiMvKYvP7ZFy3C73hzKYhgL9UXDo2+811lp3DB2bODHRcmrjwGA3Nf5ztT0xXmflC96TXjLOMiD0eUt7eapYCFPBYEwBEYZOcwnZDQD+MdpBJjR1+hnIVyx3ogEkX8pnS+s4oU/KlY0pd1nsLBnwrJeJEndJ6WYad83FZfw6GmPdpAhWeZogDkNRbUTOiFLihbZ247jX9zG63+Xa6N/OIfkYAPlWEBalmuFpdB+F4Ec6E0wHF0+50VZAGqIrANMGhZBdpxk5pavne92HJWi1NwuwTC9ABdUD3aPFh5/fVydnSOLaa7+c/CtRzImprvQwHwRKtG9NVsbpTphlXuo+ZwdkN2L89ZqUTdjcjwt9SNy/k/DAJR2+xRKRgsIm2HC0B2fJtAtOcKUP31JnMbM5CNePFhUR2LFfVDAeCzgftG+BSTyxQ8kG2xpsWrCnw4U8whP1JZRMXUa7lPY7Le1QoQZQX2fvPyDaj+89yEcKT7t/apYVEkLdpeGTK3hyMVMO8YEO3Hcm0d6u9ThjuqxOjAu7XJI0ZZwgKDO3wLqGPtpHSh5G51Hrghiqx4SkS4jDMxQhvEA4FXZNrasrfoBs4SOcBrjiiY0cIfzwc6gfN7ftA9YBz1hkI9oVpwMClKZ809jcb4wO51ksjWh4BA6EXH7znVj00XY3+EB2c8E+j222Ujlfh0fq82mhka86H457M+bkADson06cT3zGwNnJzHZTcILg4ZtBmWDwip20OpCRfSrhTCFTYMbssIRLJUzYXvdhwiYxJnvOJIytH1Hbfq2biG+28t/LY7IeEBWjWtBuzgN/d76WrlbWqotLDVWy2JsyjMudtytpZ5Ln1hVvR31rYa5MMda/FY2RmGoGIDhSIW1NI7OhZt54ZvH0pLXvfck/qTtRLmfB/MxjA9VQvw0OcyfDOKBrFDUZKqhVw2AJ2+OvBqxxnvuJ2DUz9xEzgrDStGtHE+Nve0MbCxcsOPsA8pw0IH86h9o2YFJY8TfC+bNMpC9BSj4mpp6Yd6cw2nfskQhL+q7n7L+4ecX5clCZTMiD/tgSGQr1e68+3i606rsrHuD8mYpGsb7XR/Xi77o4DOPkUGRwhObGk+XQ7HA1r/SLnrtlwycAuCkwzKZWwFpT1cY808VTPFLwPsxZifuXZEmW3iU/EJY8gxz8H1kQ2PhiEpSuKZQ8G8BB9NvmFwWtfdBEhY5e0WooWikIjcLrWDdyF875u3RNa4CBIpS+a0NDmIVgUHJHGL/Xqj+mMB7BXZhBrIlevNsGphwnSaRG78IMvkRvmmYtTP2lMtJCDjmgs6AkWQiVmWFXpdaq1Cv/xYHO/fzL8F4qhd8ZMChloLw+hDQl9yLYEm9xhSG9WdCojVbhWCsOOq3ieLt3d01PPyxxKfWZfPhZ30zrtKlGONEZiuGntTZ814FrLz43gEllV4bodPDa3yqFCcpGBO1Hk3rWCpBoYP4FRVczHVroVPcbkFpFJxAlpfZJ8TAhpy/adDd75g/El1mmcu7uE5uZtSKKBwIX5Dll5TQSi9kJrQKZiufgnq80PD8QAia2mW2VPoKCsrVUVsQ6r+qXULQZDRoKm8Nel07VXe8TAxezIB9/nCjjA3yzdFkqtGZQIjGNzuTJk2l7xiTv2qr1+ZUMwpzvdFD6lbCS43Xx0DUMzvWQqWIVWK+a/CR27TnhFphS0CvYlM96awx5j0CiUrlLchn80ISNphARK4AjLehoZwjg9dxP+bppBXO6uhv4Kk85O0CSU6Tv0WIZC28XxdzzBZe0tGFT+w4WepnIlBYO2CmgYKQGqXyhGHzswAZ/WnR+k9YG/5K5F4TiGL8HQT+G09yc/sIat45PwMtN1wfsro93+FvIeIe/AVhm0z+YMW2Po2d5FIPnqS5IZlJvY4LQx0UjJZ9sjGQCqj64pwB4SCTT5O2MN1u+1T0bCneSGw0DvhKU68W0zokcVOZESEWbvEEX9Y2DvzpFT4HjNfhwbkQjNdNJVJxaj7oRS9NuD2n084d3XdIgsrnsArcsyiQU1EAHdgF34Wfami0YTRMh8cL9DxJxGrKjdlvwvwlJt5jW8TX7JdZePnRDVvH/Eyjw7g5U48Ma6D9pJoz+ihiKFCZzywIUZPj7nnW6vcDQuA3YIXOayhql9DvBgDS1WS6/XsTLXAzmYqnSBXs5QIOMCK8ptgN46rqmTA67Qd8pVSGZPHx+3oQDyCDJhNSoSjZ2y/bb5e/tFVrciDiOv1ClfBMnxv/VLC8ah61yiUEf9yo0c0A7deUT+i5w1m9hyaGxb0lnIniLcpNKj+dD8v2EfjPiV71YEW+QvrAH37zOC+6BSZmBrhXlM2xRLJVr6K7lqxzIlBeYZ1xvh0nAYCA7hD+XX3YTgp/Oy7/a0BlJe9HDEjfuazmDR/PEsWsidbWz+/KzUG6mwFTkXpHPWBhiZjWgaOWWjaisVIY92ww1Dua9XVTLvsDjPtucW48wgnc2meGLkvce+ZAfOCp/P1Kr7s5ZaRb6E0VSxuLKKDrH1jTjqlEjXQ8iWXvkgydYNngzgnR+BDztkoJksj/bQC241CNPNEQvC9bWKYaovO0uSNzc1A0wgXDfzXFfVmj7xJiMED8mYQf1n82lPTbI3ATZO9WNQ+ChZEz49gL9WP9Wko3yjqsFryYejmE2OWwZERAGqGzJ+Vk+dhYyPAWvErzNCJZyMqnF3yJEHzqZmGsVY0jZW09Fc2/ohj6FLHDNj9BKsmRM8oXOpFsH9W6zxJPHGtl+cFBgpyVXJ+il14Rn7rru1SDeXgOhH5dQ1N6O09qdjukxItd60zQ1dSPQaiLFhD4xhy0YZqAhA70C7jCiKjNpujwe7TtPri+WIoogbPjOyZVul5zyxk6CoAaybFkZSFqYijSLdLRr6Wg9r71bWhHCP7pGlVx438E+yzcx+QhtaXq892NR8dyBUUHdXtoaWh122SgVrPV2h+QwEokc9lF5zxt24x4syUeKbAQsmx6OlpQC+QSlFsN1IByvoYpu6zefLOzMTy7R0ohTfR7RiEXpmr/fnbQFlyB5RSDpUb11eBHz23AFjzD9N72e6xgYGNU9ZejiU044fO2IIWPyKLDJUFTmLzRLa0qMM2iH7A1aDWeRKyLgL5DngSddzqVcYwqTn8sT/CMJS054CB6UBb4ttIe6hhisloOlAkfBKmS/Fev2EFPdF1f5qhfoOj4Jsbj5SrUGMcMgNgAQB+cmLaOTBnivQu4MgHUSJcv+EaLx3GlE8PgiI/X6W5B2cn5O6KYfSqYm81SACjcb3R4sEvuntrpDWHwgBBtnnB08Tkw5h32lGGqWCzFOPpYVuw71Oz1/m70rgHGV37kqhrIt93SnyrDeCYrnG2pO6S1G5anhXt8HPXnWdAPNifrA0Z9D/6lY6Zin3xGH/8Dw8X4edflxYoi6lQbNpl39ELh9j2MM8cXjNDgosjK6h8ahDeXnSTCJgRfVg9uJG6PC6bNBx9RjDT03GbNmOxWbpYllmR/ydu7DAz2K8H8PxrNuesr50ZN+PJBi3RJsQhlx+0blYAbMi/LaAyZNbtITfmAGk3R2sO9G4cDk+qD86PplCwqOUL0Lw+k+uo3G6Hxa2NthLP7u+9IsZw7Rxx1CLY+gHpaMeVdjr1fv0kfw03LQ4OeuEuo/i7QC1ZOBZPQ1zlI+e/DBk4nEUP7foeUhQv0ZLMQPB8A0YHmnLodDipw9DUngL1/4ya6S2XVD/aTht2ZWmAcCSWbDZOhlgrCBOiIfjpIR5kh/SYQ4+jBYRcFXefZz9SYij5VUCWuFwIckqtl7x6pds88IM61azlj5JbQseJHME7I3eaN6eCLS2erRMsevekLdkMFO90X0fZ1Kg6pI8TjOlOiJdo6pGv1FJqJX7rhymlbPrPfa80Z2/XfPDwFMdGrpPjtIK1/EHtN/V4PM9ErojL9p2VQJq8SXwEoVJPGQObSM5buM6PfNdyRGT1LbFpiGMQpCkfX1u+MwKVtBVYLaOHY8W/VbL3js5UajnGwIzuSMGyzUnIEbWfjJnDlEbVfmypRbT3TOpWO8H/puPbeNUfseIG47k2eLCQ9tpp0F2ak7SH2kBFrYUDTaczDsEx3qRUKMZV4L1pQgqbK0VCoA2yjhiaw8EHvKtdXhPbCGp6rxqG6E0xxUXLq2bNA/DVsss3GZjsbyax8xuCIl/NI6K+lSR6VzqcS8fxLGWcy61S0tLDDd9UoLWc1BDSIb7OKg58LSGyBYqz5w97gRIgzdpI9FSQlTez7ae/RO7bRaLOqVuv46eDaoynKrJ5uDBHNgCDdoutGQDPgUSyMMsjJRk4ePelLE+u748K3xvTxAHP8Xdfx2nnzXyCDHtg8QXfVRfRmBU2SBCT92sXLXzyZlmihtPbhP+kpFP325A47aWWYCUWlu/aGO+5CmV4pv9CHTzlA47lUDRighH2IMyjSuiGvVr09wpZTb/6F/kDQZzzpj3MprOvYEg0TFxMJk5TSIcUECnotHjfZLn+fkfNGNLh4RHuGRYKNv6jVWLtQ04zgfh3tbP3NSTVgwGQKgjt6/5ffyQBlgpazypNlVi+yrra7YdZHIYb70XIPOl9avUlU2kVaZO5+bwIItxTCauRXe/3yrClCC8g9l/b8LQ7RHiHVk5/+95wdpEUprhOxULTMsPiNrp5/U48sIwEG+udf/w+IKNT5uqpbdpuMZiPEIfWPpOkO9OWE0+8jiHf7ad2D7fWEJ8Vto/y69lQx/uL6Uy4/rAJrJK3b4Y2mNBw6K4VlePLf6+4/oTPSnSZhVsMP7B7OAMqiC+pfXsk/WOAMyXBAredsTTfSDHU+y3djU0VsrtllbaFLUkMU3JeAurMSwf3FZBj0aiWseNLmsS5/VPhGoU8AE+0Dss3h3xX5TBetcD6tf/8C3X/vdTyCUrnxuoMLNyUUxP0+xQLaKJCkAlsd2PFIujCCuDfN24YWoC/6kLRce1+SbgzQTAZNcqrHP1kmbiJsemBP6Hd0axRospeliCtE5zxNHoulZylj4sWKcLHLOAeOBtuJ8ckb7eUoDtvy2xsyrroFwom9ISO64LSreWFtMbF7LvMkTGtjKQAHZJnBGEXxqRB+zSagDI2GmDeYsP5RfsCh6wTOWgcdsgMtCuQwyMPDlbGzStK+mvjCCaAW0To1SSHKLcox+WAYCAJ4Wm9wdvdSwSyFPsDl7rjUhTDQL6XhUyIdc+HTyX3wP/W+gPcQfLQOCDnin2JJCZdZlfgBLHnREdw/tGvrLkWJBs0i89ro50uOKc1tIzP98qWQb9+Q8AtbrCB0F0XjaMyjAkT7crG+5vyzf3RpJZjHGRDEreKsKudY+q3DAfT0+gFJyMa00y6scPeMxQmjGSTPr8tvNLQQYxUuRjBUtXcgD2ffa97BUtiB3cgSR8zEMGLKkh8DW7p3I/L+jlSW6MSujHuMTdmexu0Z9TCDb1RJ+gOTsHI+MlOLfSXqWmtJjqbhesZdWEuNuVL0oWyoacLqW+sqKuvIv4U1B6+0TLPpdIAVpppa6pa1PF9qP3abDVAh5CckXEEaMzLv9fC0NK4mQGbrX96BfGI84pE8mZPl6urh9TfgJ6SCFP6VXwK7YUFQEJ1rcKhiBr8Lbqa2Bzi0PQ5MxXeyw0sA6E/LPtk++BBiQ0vDGlwzqmg+HDXU1qjVgFW7f/1ZBJ3ucZAre6SQLvyVNSqjgv948owu6WIpesTum1wgKxmvsCtPYVuPDsnFU1vqgEG1dWJrfZOYHlbUbKsd0TBD0Axcnc3wDGByxY13DTJ2vcv/nvLq6Rf1S+LE4Pxt/o0yWZR9Wc3NZ64Ti8J4CIABohdXcyJjT/4083SUlEOEiMCLJC/zz4BONV5OKiF+NewLo1tmOx4RQxTiFBoV+zYoR7r9y3qE4lutT2rrh5+dzPuqECf8KOyoc+W7rlfE4Rz2+51oUNUrb9V7pveikmbBEV9me+oaiOxIPOwVGapz5/leck3EJS6BU2A46szjLyM5/jOYa7lIz5/yLKotwvmfZ09eKg2JFuSBuN1PgjkHTDJUZvrL25HaaVI4ilittH3ExSADVppY/gTy4h+K0cDuQ/zIUr3+Z9JOnnQxAwrckLqQzTiapLB/EANgwYgB1yz5Bc8xgs3BRoLrSdrqaI1zUm5QVDCqr8V8r/SDcxttojYreJr8+ZK/QMFmRE4mbhaQpxDSS8niHkg/ke84VIncnR+kN0/X7njRAjnQvrd+V277Hvn5WaWcxRn+5ZhvFZ4dbF9eAt/AznHy6RxLZFDQHERH0UZGfFT3dGt2WJGspb3poS/Spgjs8diQyhigN9Asetw4itUJuazUMFit3lYlp1d4a5n3zZHu3RygLFx+DYMnNFYofc5xdi1Zb66K8wR5XCaBBpr3orgY2Bss40yDlOn6BxGfffzqe5Rz24fWRc9Diwrjt2MlJZH0HNTHgE1ee6YM/1PPGFR+MIRVn88x7d0dAOspotXi1cOKmku5Pf1ICphlzN1BVrv9z4y69Fqz+gpkYDgI3ifFHdGFZkfFDKFePHtqbshxAZQeGIxIB5rT4BYkQ9H5C0Sxjd8x1uX0iMngEsAOMtxjBYxikbPTy6p9U+L7VEQ3pnGAweXIu4wzz6G0NuPoTefRpvMGSV2RTYqs3+5lbNKH1ScOFg1pArQE8OZJRTNfy8cD5YxoqblWkeG6sQnLhbfUgMywl5+5IpukiFgy3DwcAj2Rys8bDwqIMaX3/h7/ULJjnS7XD9zrjgGmerOOCX6CZtmc0sH+agTjOSK15N8Ssou+pdcEm9NR2QaAOHbxthcyyDA+/877EyzbkX5/Sc/JZsfXV98gSGSsukW7gCpdv98VGBUclZdtHMHWSXrYzX+IT+cTHBAb7Ks5tZLJQ5fpJq+wtw4J18tZOU++MiKNNM8q7WOqT4RLUgkhxCKth4RH0/IC1u8VkE+jLBV0NiJXJ+IBqFeK0dFnFUpFWK77F2zHA8N3p8ki6E9tsVGxT1K561lRSesE9oHQPH+TTTGWCfeibDowvI9AAgqk87ad4Q6Fc+ZcCTpO8z+D9yfoSEeMJmYZSmIk6ONwCdxqPSKDtaP+8HBaDWdmeE06nkiB631LXHuzyHt9JMCHcLdGNAIL2w1OJAuYWiIlc28fXnqAtOANr/PH2MpmWsASWkJK8n3STVr3mi7e6yqN/8ze1BywHzq0oEXy9bEh2+D8oJep13aN33zhdR6ohMgZE7+wwwkrRNiJ/gjhMlrspdqkQXmAzzR/ogIJ9Mc5K0BXvMzDJwpcvw7Mf6J4ReW2LiyGREjyf/gmnn+Ntj8bTbKhmURkBIdelcWiGWdZfCTmbiKm63/jxYqXbSDnadug7Eigty3uiDi5Y6njhd3c5mE/kZ4eGdilwJRvPjs847sBaPURLjLke/lVuHIM/fH2jsQBjGGxToDtrdSYHQwGaEmrJTFptR1MEYMuV19CRvkMM3h4yfng8PG5hf5+iQrwei1o+OSgf38Dww3Rf8CqJJBR/sVAtr+NRiEEeNtV+zdfHyzKNcu/QqKiyFjJRLlMm1ubwtR9zf0fRkvt8zEEXKEeUhNcNW0BbriKuTJYVYJTKOLl5zFxrOXyuAbht8auRP7A4nltXaTOX9qgLZbOGInMkYpfysBBRgoLJ9XVKQHygMW24c79MhcqCF8x4GU9MwMvQ9JiNJbAbNBXJpj8SRbWAo7aEK611bix20g2HDf+CtE9d9IH/vuYIevOxmiJiJSRsZdKdQ2C2oEnraHWa52W8poo9daduArAtEVMMnplrSDRfEG1gh7A7vaOLcz96eg0EarnwoUr6N+h2wtuVRo7b/+qutcbOfgIf+ZSpToDXmpmy+q0HE6r/rvnxEzTJIKABS9L+o0zkYcVPZHKw0IgHl/x6rQeZIb8+Se3CCa5OISRDKlfM9yybGkRaO7n2t/NiJ1Fo9L7qh+MAoph8mMytv6B0xxTNYv4J6AdUmWPOJyt/5IFT23yN7sNJwXk5tCA8xxPMLK1btyI30RtFS+nWWYSAGfxE5la5c+PLkQu+HXtW56JZT/M0M1AU+EC4lDclFuO7a9FwO1Y+jvbGpVujCLNM4/JfxLabokmKIqA6txRYhaom5b2d8ZEO4xCihUjw1VEiiCLB7fSu653x/IxpuvqerDwE29f1PNwqtMYOzdN3TNRMKXBMrTN1aOH6OoxmKgKX2hNtNHP3/v5A9KVeZtrOFvEJOCl2VYdy6OjtyEiGsEGUPog6gy2ZRv81jv1/1R08B/6IvVfLG15lztGUnpllb16JwELe3r0ZHQiQ62AYDwd0DsMuvQ0RlIjyFIHpsxEJkVvbLU2D0xG6JRgLFbRCH1leiOM5cFrJqo4GcFzUuBRGnas81JQqnVCI5olmAVmPX5OrBte64waPwuXiKolMo7l41EyuZ394l9EZSnM8kLdT65uehLilfKHHK8/XAE9B1YkXVF/bjdRh9kXpuuRhM55+S6khBzP5qkf/9Js8vDG/Qm9YY75NQfbZacLq0TQQ3pQOk/Akwl6YtErxGtFjzACbeR3KN5DtH+POQZuVCQ4kf95ZYlmV8UNTqdbx1WGkY+jHHbg2Hzx7+HfF7ubj8w385ekHgS+/AnluY0F8eT14MbBrdujpGdP29qcb7DDLO1pa+fYXdBuCQ9lHq/F5Nzb5dC1T2AVfoN8eUFou1yO+/QgCPwEy/+1TG6aYXtuntnRakPMnLkjadNGJPTrJEh1Q8yRkfpunCC0YUvpYFLARws8gJSIpx1GHiyuHG8wa912VgHPqkspGSXBKaQSTxJGsHI27LA+SwNmPHAcgReMP/Mz7pSbim6zO1d8O1ycyEpRd7pEI1V9M+swXeVEJiN3QVgmUFbWKoGlbvisJCJXW/3JkNLnIp4SLeG7JUz5Wlan6ZimIiBmPF/aMv5A+11EpnBrov9wTOnsC0ydCIjwnHLx5qnd/uC2Zy1mZsEA/nEhQD2Disco04zdSwwXz4NfgldZsjOKrCCdiU2ePNvHhRKt8Gdk0GuwV3H1QKrZQGxuiQUzRzXx0oaRWtMDOlyV65ZSQ5jhS2smcfw2N1D7XpRgTjvWSFsVlWn7sacxFsiIrbAseMP6tTwEwTjgrPzEnu1sSyjRCX9hBUWycd0A1zAuz7Snb3aCp+bcZEw4JeYJWg0oJN2uHAzR5+1kMnMyY5LJ/Y5KL/SCvIAhfebOjY8iJdpszUDvoPG4gIWlTu//Yb8e3znRiFrwmY+QmvSRKHvCzWdBtmTm8GSQwx2vpRHEbH82SDkz9LE/y5/EuxHAAIuskT+SVA4CURel3i1HD/Jcs4ONjaXMAgzrZbMi/U959dD3htOMzjft4BhcYeP2TY9COgusXy2knDQenYEESjWAiKW9XlpkDB7JGt4mgFq+pD12rDcKI61e2Uyew/2rq7OCJpmtSRR08gO3Nb7Xovr3boeSfSrXfzGxd70HBiZKvG7KQ0UyhQ1vpYfwZ1DEtFwkm/bIiUA/jUdK9RIZq0alJtQi6QqF+5OISlCgCST7LTZJWMTpD3eml+VJ44c4r6/oCd5G+yPMnAaJiMf1U2NYAxLy4SFxauh8IwKCutngaUgdVhP2WzxSEy0i2bOUTQdBYRhyFwpn8giTQ0kH2lrCn5BU22rSp/nwW/GKETweH1H35X/Hso1KpgQowU3Uu6duWkic5AHWTkHBpoElhVtzyRTLUt89fRdKZPQbKlq2VcuxqjC4hpcebs+xIGG46duxk5Ddrs0bdzv4439gt5n+/ILvwiIbrcWlJpi05kDfwL6i1pP79DZ/yP/E7H4je0aQe1z4fbK9HzfuTUmTcg1weYMA3Lpfmbma/+PqKp4Gvyhdp0UlPPldzEOiXyB7Wkv9nD+xtrGX64tnjiu5Xs71awBU4mA3H4YUSzwNv1SzBjZfLGSg7bkPaiA1ZQcPL19ifp21F2PORzw6B0Dh/O0aAfLvhZWK6BjmsVXIJiCGLjEZChEWqEIbmQ9sl3l52exESwUJHBpxgeLcezGyRC6SW/YUZWptPuQobz6yx3ELfLXKoG1YWaNkFXCjIflyBdLc8sZOVcHK9yJ1/+nn35dmIbc8ELqt2tOM9jz3o1mF4UJx0zY6pTTuOn/+mkYwLNSmerCqmWyhz35DmfLSUwZkQH1agSkkG07wMdJNTMLqGK8wbQDm2+5y08itDytjTULoSkmOU7g1BNiA4vjecM5RnxUzG/NBEvZLe0sH1jB10MCR9PJ8xJ70yQuCTmeLWKLgxPplbNKHJMf1tQFXlOJOQ5mEivF91TzmgbiseSx/WPGK/mQm+NAMAuLpL0khA61kOoaZ00hF7/kyyO1yDZsgAAjBAbAfbJNISTD/vQkXvcDYm8ALKf7DpbA2B0jdbQyWAdPz0p8GAr5cIJXWhBqIUvk5T15BD1UQ8Fs7ky1pBvsAxHqESojxnmZtYnerVZcsSQ6aoY6a+bBdwRQkSgOTGteVlNJFlZoFGOS4OktngMSSYqXWsUyUNQCJRXrDJluQxT017A0CJIIWI5ismaVNwvZWMNtEJso+H2LJYsqrXkVe9hplzTpAsYH3jLIbQ2mi9/LJ1YCz1cPCRvGIFXs1KAr1MrRcHowN1lDGWZ6j557RIqrrwDJrZ0F69YQZ3I3b2P45sg7uhGkgt6KXkx2RDWaMeE51tWVkA8H1F+cG20yormukoBvBmWpXfTj6NPFD6EktVdQU3QbrOuzJ5mdQOB7D3nZZnWqKzBOwLpM2P10gDFDzdDzn0wNKBgzlxS08RYlahIM6JYK21+c2Uy+p1HMrGxwkO/JKmowtIKg=
Variant 3
DifficultyLevel
664
Question
A Cartesian plane is shown below..
Which statement is true?
Worked Solution
Points to the right of the y-axis : x > 0
Points above the x-axis : y > 0
∴ C is located where x > 0 and y > 0 is correct.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | A Cartesian plane is shown below..
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2023/08/Algebra-NAP_20275-min.svg 300 indent vpad
Which statement is true? |
workedSolution | Points to the right of the $\large y$-axis : $\large x$ > 0
Points above the $\large x$-axis : $\large y$ > 0
$\therefore$ {{{correctAnswer}}} is correct. |
correctAnswer | $C$ is located where $\large x$ > 0 and $\large y$ > 0 |
Answers
Is Correct? | Answer |
x | A is located where x < 0 and y < 0 |
x | B is located where x < 0 and y > 0 |
✓ | C is located where x > 0 and y > 0 |
x | D is located where x < 0 and y < 0 |
U2FsdGVkX1+Lr17ubztKXGZSTlexjJcZ1rPG5+p47pIu2dO0jbswVrE8u6O1K+CHWs2LkZDXuq8bV0wCbrtrCUYExFhJJoEiMgLFhkkP31dBIIV5x3PbRhYktijJjmtaS1d2kdoW5HIXgBOucVUzr8zMfcIKGEPf04NQp0rcVX//vONyJ1fUmQVehsskNO4jZS1YJL2m89M1pd98sl5ZE4ifBp21vFM1DuMPFbHxDO1ZIZxVtIvzNPxkFu2MDIHWjhw989w5gHUacjmRpBvFxYs4tPCLV7FDWL/xdoKCgAMQWKrqHU6fcc5nzGTV88F0VIwSrv394kYPnkGhhqGeThxxBhS6S/4hssgTp+O29QCTIEE2wn0NnJkSy54v32J5PBxsVLrKGTwXyeCMcP2IxA3reKTuJmcTNHply4kAIeZKsAlXkbo4LkPoW5mpdqLITrRWAjN/VadvpxkKsprM90wRvpvU5RXMqu9e7kjdWZUzKxbBp+KJULfzqqSjlwssgzvdfxSruwN4LUNE6XkaAq8/KrhsOLClQrmiaV41AeBCRdOYIhBh/5yWJV81HaB2gXhymhowsI1evgIbmfif14XSHCBP4K46EZJhSsDTvasTKOlhKKp7nprA0dio6pG9kEbd5ALPi5FbeiSpYjI9qtDpfu3rTiSwfGccS9YimfrSMf/CsKxrBJ2Ed+W2+F2nN0xQE6nyV7DXkBTzk2lZHwVj+HjRIN5EueYrOoZyKJArMhCVLvPsbmoP4arA93GHgyihNkdmAhJN5L82qg8GeJIwzcHgm+yPAm4mqcZZABAPcVbsfg4UR+5litpjdsfFXvi0bBaZgi34W68AvJMLfQ2Wt5lUv6fSzU5iEj4nkbXRpy2p2wMGaJsRbJ11k676lxPx0vTlHYI2lcWap/1WvzC5iJbMdgFAa95BH0J6M8yWJbjU2u5dHEiWvXoOny+vBXpC/RbJdnZJaDT1eHDWCRqSwXAKYMuByDkThirq/nPEWtns28MtC1+pjxOh9AaH6GkUuUP0RJqUfjq4aG6cewM6HzsMPtYXUU/SSKkFIIHjoyttJgOUeHGeUP0Xu1zlrI+Zi4UkGP7L9GU3swO3+ugyiHOBqtH10zE1mT/fLxEExEvY6pc6T2P1EEYVv9DKPHPGtRahajSMOXZg/A08m81Bx6IeJUMv02BUTWdXClGB3ssddc1E0oUN7W618Qu1xF3/9puZ0+dYQgj9cnPdpEC+6hyOWVzgtq2ZZuaut4o3PynoWJsDZoWlx5NofBQHu9Swg6HcLCgfFYA2oXp6KnBUMuYO+rcG1vnpxi6PXQF6ZmVCl/cwet3t//2WeQpXZZ+Um//nz7dohBvBV5112miCuz+1nEn6/b8CGUlauQQVnahizCkcs7+WOpYPNr9+XKSl8uPlxsrPLnwEd8/gzeVb6ktbMOKsn8XTwecOdQmea9ZHNdED655xPl6n9E8zjxN3b5bGbuJqIOgug1pGlI5SFocQfy/c9KEuZkiBnwT6PqPsCL0x0tsECtqVTSk4BtdadZuf2hn1G2PhEqzHcfo4kzRTgxPXB+5iQLfS6Vwcl4sWkhTHoRxo8+sWFpOxySUmVRhesA/AF7vE/nzD2QeWb0CDM2yfUdULsmCrM007riDQefMUj0MQ4bAzRO1KZrPv7ACJJ1daagYFW4ZWTlLesdKhZ07cK4u4t6BeJgkBN/yNmIj0J7prxe/kbt6RyV6KuU2fGk2xEk8U+bCjVJcy0DK/EgVQcVbWqsGBEJpclHtjyKB9eecp6LFqUwPsKbpx7LWgD4dAXjegGfrhLOzEA933jVHE9vJWPE+Rw/Ml0OSd7EeNb6to56urJradKh41uoGtSVQU5DlQ0t3i7ZGM9qLlbWhMIIu8qnT2GK+aoRF/GaE//gX84WVmj1bFpITxWxcEQHgdNUGE+5+h2xT/sHx+wBqxrGCIsupHrkCL5bo5VZSEjSstTtLpSlxSPyl5N+bnTIkoTeb5GIYMOJOobPqWLfJfI7kbLDvxbbAUljLd6L4D4D7/YpIZfv9QMYgzMVGoHz0QOZBNbLdKagMn4s6QtqW9h1/GZ8clCUct8ugsn/FZLRv7lCsGYpDhtEAOBdVDnaZJdDeW3K2vVRJoZllyAmS5LTHic2laJr3CL2Zs0C/D7ka8oGCW8Grg4jt1yYykZGmaeEeltk2FvgieD18gUjBPSX2ZpZvIJdHbNwIXuXoOSOWRGey7SOMEsyLvESLi6FXnZRy3vDEMXVpoOw6/t5lLoYEKTyEd2Z9M2S4FhN87BWkiNLrQ0nP6nlJw11aIIwhnctbwg986oxIDkcMcpU7XIZWw6nYegjxcAePvc/3oNQTNRLsxFs3hEDWQ47VyKLYuX6qBHmKp0jD+qg0i+4gufefqfeChrHfqiGtTr60Tx0ARl+qnRTURVwGdztXoO7qZBxoTPo4dTZ5M3d9CXihBDSvXSH0v4zOV69jsCWbkoiNS/2pgRF47b6fpOwGYXPXK8QFtpaVxtDpyl2HDvNlKWXy+MVKUnuFk58Xmh9I5ZNwzz/Wrb5Ji3mEqjkR71OU+YsaFVlOb0xMFEWZ7bSuAKreThSyVm63Gqh+YRGSflIS9IJRhCeqm/LTOve7Uwl3jDMblgi40jemg3ro6NP9dNn2piSBPzC5ICRCouRYv4uJAVEiyX3ozbciZp05nxAtEiF2vY2oTDYo5I6/hzWZHz1qZ0LqXCRWk/wYc2yX28oYenV/fcLb2CXCoQaxszfxmwmBVWPAEdCv/uk1QYJPuKLya1gaE6wNggBGjfJ1bbdMW6H7+kFN74aDvC5vZvSgdFuK/3Me1ArBl8nqdi7KbqnWrBgCbinRGMKcFrxk6O+ilDV0xBM1+E6L1ih+hUUGGGmCgOwjH5eMzSDGUMAaudKW+nuUqsmzjJOr9UGNEMzVMdVyu9o0ojTeU7oZPUj5RvUiYqwjhkYIicP+YCOZfRcYmKrYBtwZVW8zY70NWZjhxqhF+HfMCNuAoHukxOik8n/wTnHgFAIEH2UeGPD0sUu0WDaNxGc+di3qZU1EP7iaY/Qvs7Ev6PUwbM7rSIwokncM+i2oncK4+jLDO1XGUSXWReRJ02AAGSSVNrKsWqLTpjR+jPuq8pOFBW7ugWdi2y3c8mEnDZvOUTE59WPzIuzNZGb5pQ/DLEjkve1XghHg9ttcEbaamDC/9KIR3NS6bxy7Dab7ZaogROeQgB7l94dbkPpYDwmHYgszTToFwNUsM6Px+CBRtBZmiEKIL7mg1C5MRTUBcrDIEHw7pNRhRZmqEHmaijmAovcFf44aMpdjGvo0PRIX56R9CMaE0+vLNAFb3dY72Yxu86ZAtA1LGXrh14C2sXnpHIHcMaZRPSI+kDIZ7k5kFYEP9BXJzjHy/GBufj0724IuUUgKE2/rNEFXOnHiS3eGecv4vmeoKVn9IRZItaZnGp0II7DsBd9C1Uj9J/zlQrwL7+DiCW2Ap0rJAKPLnHS4xODJ8p/F3KcL1txO1fhkWBq0kQv0a378w16w5pAOTWBOcK6ZEiSjmUTStVZBaekQSSdaZjWEC0vkAe01So3R8uY056faBEMQYptlyRdE4eJ9vowDSwfs4AIB8MRm5muoipCT+JRIxA3qAn3Q39XieNhuDJLUoJb55qtIulQ/URd98zwidsVbayuXHRs5WoVv/WqUjprbv7xMgm0rr7+NiMkfLcrG+CHXew9dxabpQDuRpcVgEOATh3kx3rpjPuCc6Vu1uLU9f9hmgTmRCVYhnU4aexIUDko/QAn+CBD3kTHBxBjQmiz04pJzk1k3lbYLzTm99eOT7eTPh5XpygCnPJAZlFbixNfDtcTHmsCGdNYy+QHsbDK+AqWc9U7ozFuIOxa8+3d+rkJQivdwFrAYbboNhTQuwKx0UVwrNPhu0AhN+E3g7hX35ur3Te2/PoZpyEwnLqR7nC5FieDr6xL3IUichihv5+v6ILyorq48Er9/mQXIPsdFVuvyKlaqz6vZ7DnTHWo5qi+fEiAbfLywqkQcKJCI0hjyyN/AqCcjhmoOpWWDJ7z7RLuCMSZ90uxrYowplf4cCtjHiOnizPzz9QnsS3OmtwGC9e2tpSSdRgLNzYUTv1UbYjDKw+dUlyujovs9EXIcsLbXPboNKMfL4TjuYePFGjfilDrWfehQ4jc46elUhmfKyl0GgzbcHWVDhsvOXy/qlvmt/sk4urzSQnw+ISv1dAROVxJTfrOVP0gWTTDqGuZKSXoz/4pvIMejFLjBO7RAuE8phUL60YdoQxOhkH97g73e8Io96lcpexNn0Sw7Yb7+GW/zCTxBiPZNvmxMY/sHbhb4Bhigge3RO2v8YRpvTw8vbBsW8eXiz4At/F7nQZHyt+QZ9W3Rm2mVcPHafhiaxHmF/1pLXDGM9Q+1iKMFuc32INTbN959l1rqsUUT0fAKP7jujRYlLs4WgsEfl45aKOM8i9jbEHsGqoMeLjZkuYvGDf4N+a0li7dQC1J23Rf6HAEx0t2/TLL+7VvDCvnafVun4zuxgzJVhzaLBH1VGcbuIxMi3vd5Z0mODmhxDg5kG+r5qFt4gayRZvwnREB19NDVBg08OgHmdjb44oCXV0SKBN8ePCuMVQK9+wIIKt9Y/LZb7t6HZntCxoAJicRO97J+bH+rTTsHSjqBIVj7Bnkw6FU7ZxdwceiphUhgqTXvwZE8RE6InVkVO2tUbaSTQHI06N3OunoFv1yMCWN1KOAuNrUAKAa6P6zyX7yDtguLXcehLqRwWu3SnjXERneiD0JTCrsz1qXx4gkwcbD5uhEgttsdND8fC8uIuog33qJp29zRzLR+JG8lNysqHsrsZSIdBBbBK6epWBBm5wzodG9bLORjBy981dSbhZC+Cvv92F+06ugbCF5jYVFmjMwqG3b+FKbjgvknygx8dQ9Li6MiGf6kvyhhkMR0zQByTyw9NoOcB69EalwGexLBtR7k/cc1D8g+XEOdehnzS5akbHmitoF/uD92tgzyruV+OlvUmMnzEhsf3L0Oq6LhJJaHZPuBd0HavLNcZi/Rg3SfW9JBNrCtQMqRokH8qgZuHyIT2NsqJiGf0auagZOzy+5wHpscm7S0YR9IwJo/lUXX37QH9xptfsA8/G8Z5OZfPOnX0qMd9IZ42dwpplYvaVUQ2s4pwUeukJ4ooY+9jvHdvHzfUM7L1SOqGRp/nK87vd7Kf6GoCEzROYPg71qbP7fKb11qLdd7hMR9NVn1KZ7unQfmnsBAuXeTla9Y/DU8KfYb71+5BcfLtP7Sh0yzHIwKd+BpE9CFX2nzESK3+YzJ5CMx9f8fMAUmeW4fZMeBYTWEoFFUZQaZ6DBKWD141qOADOkn4I7Xfr8gQX6R68yBqNLp+rrYFSe6yNs//ACYjj0KjjoCEvHxQVPM4qp4x6lolAGx9kjW8kL3WWXm7B2w+8VMJkU34n1X7N/8ZVUUEll30iSLuoEyqc5jgo89TM9T7g3MWlqlanWbSe8XUoHe2wj9UxoYq0d42tL0i0xPetBURTospB4FW2hobDQOJYTLfscbpeBvEMz5bbNxwjduYJAk0hcEEaA0xEOxrCS5vIGDoZLiUWWA+7aEifWk5hXTyTV/rMwvOT9byPc1oty3CZreppS+eRF8ocx2C+M/NwbvXvEhejklVPMr5Vgy4vwrd7z+OA3ZX0QB7OUfb+uUe+rM5mxQ+3wY/5APQ+KtxfhcMLGdb9mqdcxWnwnKt3CDPVYcUYWyoOFhJNl6h0YcEUtz7+t9Kabm6o2R7GmJZo+JPRh9o6JCgcsjQp30JP/X62Ws5XGwW/6FHPZVxoWJ6buGLNt4CM7azXtLqGuLE9Fl5Z1xPOr+CMFtAFgkA4X/fjNzqreopVTL4c2VdE7mwDlm5BKUHR7oa9R1aEQaJXejsWOYxGS3at9vm40LfqkOKKq5tp7IHT0UTBSUQcSRSVC/uoayDqRsMJdHflsXHOjA/vjLp0wCyYdcwW0Ad+BluB6VehU+/NwFGG7fyA9kG+FNHfPLQ0IJTq8kUbByUy1VsafisUsrqOq45wLUEkID47I3rY7gJwLzN6ywX2Tmi6Y6azJpipSKr4/SKtYM8n9pFxBvewjq7UPxkTvnnY/NsTj4VejpMKOcklL0eHK+87TimXVexZ89SNqzvD9Jtb9nYLZIK1CZT7h3waaVjQxjuo2TVwQz/LR5Ykvb+NBkdER4eqOO9XnZWfJbmsrMtdVGbLyAtEQf2bBbS6hbopGYpxH//aisoibeobVq0s0OG0rD7vcG2mZD/qbOIAtWXqhg4zSsMhDFcZbnA97SuLHRqUu6XsB5pRItrTzTPhrqHTFCqhv6LCU8tBg6E7DTNCTMgNvy5pVW5JUavatL4C775NX/2spBEmEepro7aDzq/v67TytLXabbzKYBqxUMoAl3y6WLk3JKPilOQPpMDr1+n/zLROyFDCjKQsnnYvSbUReNFDNMawaIC4jUWL8CXMBolEMFrGxxIWPsHu49jQeT2YRQzZh5jQfvfKrh/brF+DYqFh1TCV++7QKrN026s15+h0E5Xmmptj0OdqrxhkMMewfrXaUrXaXqtzdcDyzpD8bs1Wa3EZBQgDmKKN8NgQQqTqh9Ry/KAjPZ6U94L65rXknYOxglnBaBXfqBrx6GNaAb4UPLtDmjJfjPv3OBtdHIwDIEBgdPcy8CU10fWCQL4nabyQZhdNi8xuh7ybW5Y7hpYnmAMcC5LuV8K8cdmicy8Nmo3Iz2F4uphSnSRFQA3lEJRLfRS03SM4dAHkn1ED2It1fXfB9Nt26LEnEDkhbbAYzD0JwYwSd9F7kCxL+g/Va44EEDdFAkuSsg9Vua6FDY2Y41h39JcJIuRxlU+yffIgZ4ep9gMo9vcPeg2FVwd09OA5Dvy/qjWTodaUVZRciefiaD3nZEna26SsyajrUtAp4ECf5HxeePio934KJiEDTA7JBQVxk4LUT4SWW+FhT7BgIIh8HGWMvjpNIiPlAV87arJbm2p6ZHFhf1fEwOy8tLeWHKySHOky00wQOy1ET+wbGMMqBH+5APWOBWEMlu0y7tmtSml2debQo4pZFgvgVM2rMVxtlmgebB0JEcnTeK7MJsxiwwHGegbbquPDtMye84Wfw9BWgm3iafsvo/k2hNSE37SSGeS+ard/5JT3YbrING4EK/2i4P6aTF+KWz1ya+uy86WZcN2UcID2i68bu4VfyQaQ8ZjHWrQCgCzTbs9EN/XTCy6+j4bmPp2M6tC3UTFEULTUG0wK8Dl9OBGSTnNfFIfIN+pgISDCgtYPnSrV3yezoUfB+M7969cdCWFcEKeXKc2wPJztplwLsmB7OjifxfPcrDhSuktWN7d4KT303SpohElIJ0tDj2lSpGD1HIL+6mkpqiobuoPk1laK7Vn1lb5uwyCecXGFfa8njmhQtBh6nZu4Y7DOu7MrfHgnmLwXjlK54/hXpeX3kUs5/erzmguUC2vSH7wUncb4fZkbZ79EAlRudXSRKkobcreNKoO5RJswoSRowA0w3eYWJFHaPwzBFtSKpaki6v/sTVhr8go4q5VLm/tLujyr/YDrKEy7cjYxGhBBByv2V06RJ6mEi+JgTekMRdV9H/qrOTFR5dz78kndudJNMl8aIFvNi6pwY+znoEAsCqSdOOgGKtpEB6Hfzyn263/cZV0YmXK4d5Vono8peZf4Lj1FX77reeUrVGfL93CyW3O7u2P1k7MgXLYuF6TLA3T3vCApVh58oxyrT6pz66z+x2ZIq4TgVe+OPvIelov+0jmJq6xLU2BQSfC54HZ47fBJhsEb46+liyH4QMOUuMnsxBQnCzpT9QHt+GfeGD+GSZrAir6A/cXJx/IrTU36cMuTxgPA61M9AtG6jQfQsSv4Fmxyjrd5eeU+GvoVGMY5+t4opP69hyUvdxEwIThpLMZRN/H/TzmqBi3vWOAUodU4wZcBiThGlztBc/7fOtJVIgCpMoJJHuO8xUYLrVGByrnFLc39nn59jZIuKp4LMK40KLNv7Ale+I78OsXjRujZyGHOEgx7Ku1LBzI3mSeGL3rMF3xr3JI15FsHQLKzYRtKgLuM667S+8Lnr0ojYHOAX7KX8OCNgshhY+JCo4hh2Ale+hyZt/IZG7mbhi2mtuspO2jtJJgHH/E3B7tI+UrYoZnZlRB8pJE4SLBpJvNNz+IW7qwmp6xHxn3a863ZCH4EzI2+wjejRsZnxaGMKTXQCp6dwbUUuMnrK8LcrgaWj5PMF210mArVdbhNU4GTTez1fllZNZkCIYIKMRC8P23jSA7Els2NrqY2zz6TlgnwwimxhlfiTiD+UqE7Db5R3ePrBlHlzAOCu+Ves2nLnijwX3GFfzb2ejpxxAlUt4n9H78G3eC/DyamubcTnmLytp14VHcHyQ9i/LNyAZJmRdxvp2TZOb2NTCvHXrfoTWe6vkartxkYirKPKM37M/wkrgxaSsWogB5o3aWbIzUVNcdP+UiBYgqsaMPyJuXgaLfCI3K3lv/snuBvuo6PqbytGFnragxJZMwyci7x76VgHJN9kKVfhMXH/cefUWYER+xAddyfDi/iUaGttzHpONBQXYEjQD45XZSHqS+7IKzyoKp1bq9KF9QiR7Qq8baSNQTW9HBSG5tM69qr46MHzAZQ6jLtDaxE2Eo6cWGEEYCl/bwxari0KHDwputCyEeTETpuiiEAY7NbeVKBB6dbk/BC3ulh9ZgkQWfhFUhJc50ffx1d+xBS7/gAsQoTt0AUaO/aDGyfs4cHOK0KDSjX15JYt3RfP+atwfMa/Ex4fBk+DnsQ+TH0U1K1RWeVJQ7MyNmdWAr6+LwIfTCoqCsUbG9w9KGLb77pn0Us6Ki8SXx1xcokQqx9N5syCyr39x2ag5WeAdVADI4HgumjyzfGepAP2x7Z4DtP4vin83ZuuatuhuWHy+KwA9ANTJRg7HoIcHC/j9km/+foRdqWMalHcFbpOLGRyrWS2IPrGVfvpuXSqlRFIzh+fn534yofpnioFreZED6AmKVhDnXzm76Q5YQ0jHhqMhb/r37y/LX6fbsvGYWyPdJp+l3h6Cpuk7G257tw/h/Qrz0ADpgZNpyTtiKQYXQb7bTGNvb/mbDjy2M4ZE4vwo24/LhRqVcXsMhi93QojewFB59mmP5XFLwTLCQF/vQ9/IUmUyvCkF540x3mcQxMB4DibOkSJt7vX/aJZDx6SvLaaLf1sysh4qXpsY3eG3fgLZ3okLs8WjYoMXK6kL4MJravQN9SXaQNdjaawD2MgRA9W86fu0cAnx2tqoJiLWnH0vfkEnO2ZUO6L3egwMOSTbnvzB/Knqdax/YeyCWULuGtZfeWbXrhwOEcI7aBnIlUavb0XZk/w88jzPvm7YCJb3UiBwKJT1FQ8hTvpP8ezrs7r7ohgwOQOvBcap2kiX8kNBD7l7T8ZEeIrGbHIihg+IJCjrpDsUUqgbXULjq3687X31wfKbceXI61R6v16G+J+oyf4B7UUzqyEed77onMKyxFlV5te/z3empMffzxei5eGF5jqau5usW4CyZ2djBIee3fj4qKnHBmlLvJuTA+CcixpcCtxXS0V1etkUiaBGc9ino+8yh1GaJG4eVaQg8qFYFNNApjK7p8Tw8NxpkqmVhKTNJLGuRkD/vDoD45aK9KNCPQsDSDd0/pO4qEjk0HueI3LyS/F4lNHLba7nTtQkS4ggczWJ9U69tBQWJjfH2jHo7g5hH6W/TVCfrgOB4atiJyes+yJz8j4WdbecZPo6jOuahZcdkzzMoZeFN3RZT0UavCzRpG9ZPPTd5cf9rVLRDBe9nA5bvyybv90ddeDMY6qJh7UoZpiBiMjFGFuQOT7dvVdd/alIwx+Aj1HZphB3LnxFKd8Od7SwK3UR3DXg2Ewlf8J0YB3qOCGWuTkClcu7R2TyYnWC8w/fg2lvb00w6sJiFmHit6aDW3nn6i10rF3fUuf06McsF6p8E6oO5OZhpkjHB+orz5Het2D+Rd2eNdHsdgTdjdGubqjXqLVviTXV2wDd7Ft0uQP6dJsn9Om79uBT9Mb/RofP3WXoGsnvqzga+FEsEybwMtx9CUX+k3mtFObnTkUFQQQtRUsk+frRgR0e1d1V6wnrRlQUgNcaTPHJOcd6Z4gH8TQDVXts5Ap7bRDEOcl8ndHXZJvtDlHOUExt+wBzQMhu2TgxzF+RJRrgZ24upeIxF/e23XkQxvtaFvLbETyeMbhWKozHDh486kSvW0nsSM3vp2rUFpZ/MTAiyWSAVtYJT7Th/Ktys0KRaQlqiVWiEI1kaY8bIHi7vjfAqSd2wLGRa2U2NlHh5WrO33zTZ/rPDOreBxG7/YZThtooEj/qS5G1IRA+8zTUZfKuiwdk0XM7Uw4qNu7eCpBGFZnAE1Gp/LDLuwneVI/1BqcbnoCF5Jrihb/+FHsh4axr1Iv7fcWz9gMmT8SvA4QljQNGKPo5nw/V071GJtxDkuNnuqstEKB5X/XgeeDf5AA3SQ9EzK7pXQ2K3SJf8Hfc/Do2xBqyU+TqU8BhQCFbs16Kfx//BnykxWHO60BwK9dpitpwKPb1CErrywdlk6PBqxQ8J1h3e3fMwHnPGCAJZJ27/BISB+c+eLm5/P5FmSBzLj+0czHWIsAh1YOAWm33eqEHjS2WpHcnqpxuluuF47RG0IdrAcBGzc2aKQvilSQL8fRriij5fyXbF7lWkzK4IfvwvnXdztdVYe6atOfwzuTsMxGtI3duT/08XJGrVJCga87YvbObzVM8m0CIJk4pyVMfSMcG90L+GFdLQ6L4gg6d3cS5TppSyw9vLVc2kiI/BcJZcozZr0t6CZV04cbP2J9N6gw5UkAzzvlLGp1vE09qrUxO4W8wUcCL/yJWUbOz7kDw+wNJzL3NRcyPImfX8suZ+UyBngbnssAvT3Aau/gEuQ8UwacL5iZvWGKkpeX++uauyv8Kze1DACQ7gpq9xGKLfxFDTm14Iq5F8/OIpHufXBD33TcCe0+MBFa+J5pa7n3QSIDJsY9YkaZ6K4mykG3pdwpPj1eNNIYtPy6vmXSbYcvK2QPCkT8lztXSgmiNAOEsa+FPIKXGHAbH7PakAV4uJxn/cqJ0aM2/fS6SJwCU4MFhfG1My7vey/KbZW1fPj4dmux8d2dnaTBT0PXM0W7Ob6H2eUPuQEbXW/UmCl8Md8w6DrI2PWbZLJTz5l58y60bO7t+cjhB8tFDKKqGqVzU3Nijayb4sSitgXj6cqbs1kw5s/z6p6dny73GwSpIdd3+SpODUYK3WTTHjWTNVWt91BU8bU5QF2wzfjQQBC6YSlnnrJbXUyn1DDME16JmBG4UyaHZOpcww0i1VUD2o3nKz58IidDqgVo8eRqgPNO1deODhuWRAAoJ9gcg+4h0lO7Vm8UZRSFSABilY7GUEBTuRoERiHJ800wqRK5U+g3lucC1TGVSE7fZfmSuBQI6G/ypndj6XxZSqEmvOlgzAy8Ljwob4gkS4ABXUhvPdvyCk9q+Xfhe7ii2e/uYNrc2Wtjgoz5E+Yo4KjuAcZvI98o+XTomtRqJ74DrurG1xn1cWbkGsUzmLEbQnfksOevT/c4WjCJx0fi3+V0VLCpPdnN9x7/69kMrJ/HbsYnmRBSNeUKsjgvgu8aDux4cEBcKZpx2FJRmjGJlt4mb29nIz9dnIm0ZEw547thJE2vuQTQzv1qNSWpWu6EKEDPQ+p3P91Xma1oDuvIXsGqN+md9cmcRWPS3ZECm+CUnFoS9akDgIkVVZ+XQrbji9UwIc1Q8iIEgo8ZZx7n3eVxpb5Ykz1fABL0w4SafbEKibzTBCBvGcux7E6dAEO98oF3w0ka83N3s+9g9By39KtLLMN7ZnzM9jQ/mlZ4RpBDkgW86O4ndFRmNJeFeGhSknPbnMTjt1HP3q0zhDroQ0sJwgaUra9HtTAqjrN681/Y4sJOaiAB/0a9TF7p/YowUdX4LseJgf0dPWEuon4ZYFW4psQzhkH/xxWoE+O1lFU8I51hb7/71O5mDcmCC6jaORO9vAKfUCzZvNV0JD4P/kQhLo9LYezzHXYv4409PByl1Pk4CyR1BZD29nUClGOa0VvuF0H+Jv6CT+SuqAKFAIMz5BI1WxDDiY+WcT1MauwsyekJuVtUuwpTIZ2mQTz6Cn/eWtKPiEpbYtfjYFyfrFzq0bJ1iY29g4TRkWsQPiigWU7V8RJ4U75caXvW7VURy7OMHruk40PiW4KJQ15Oztzho/zvMAY2Z5A/k7x1H/WFumZ+kUjYU2B864SphwdP/sep1CDhNuvaxPGmTXplxlB4yER4Xi+Z4WTbcqnIx2SO9bzpXM00Sw/hZwpoud2ZkAdemsX1IRzqSBBiu/E4bNLUXc2hBYtq20QpWy4an+bgBujTTnqkXaaoQHY1UhXDD3eQ7fxDwnwpbgAZxVhWFGLg2B7CE+ros7GTdpDavLpDPOJBk8Bc9u/X+1Z+G+ntT5BjhBNent+RxfAR6fTZoWEkKgOruEXesjJFstq9tyIK+xsF3+boiKnEIf9o/DzycpkoGoMa4fF/InEL3RSsM65M4MqM3EaWDbByXJ5z0FDBkT9JuwLN5tydCIiVqPafxvkGtaYVXixjJ69mnB7ADQPZwyJsQcIBNoP6JFVhWviVIRjnBsGnC/BX6ZsrF+XAEHTkem0Bumd4bTwek4Srx8WPdfIu/HI7i4EsvUZFJ0bahlf89CD/2oirQKqPeNepvfFciUhB2GnrHYPuVBJ4QYBTTV6kSO8c6uVyZiT9/iWUTcZhCjnwCKKK6H7D/n0WW68Yt2Mmi4yMAs5PMGTyCwV9eHmbEW72c81PL9RxbYKPuZytW6h9dQSwTLj5TggLy22nJWdT5pOcVXDA8dkga+YWqgvRfxLa+Kydnbk9XZPT3DNAbs/qZNlCQekkqg/SXez5yAs7+jlNnIPgtBS4VpUcx9oJFGfFd1SjdOgTpvocPWUfVc5dekfL2SG8stg3CzRFf3h4MVCzdlDQYRt/8cfxieFeD/SFpYmjzOfuz6ldhKOOEFcDjfUgNMdV24r+vnt4jcM6F1+9mhanh6lbBxNz0LlSl8rKXSnBp/Ne/0sQnV8uiCUeivId/p1KRx89OFADnkavU8+sgJbAc8hxW0MydnGZAQXtwjOK+/vAad+yu8UqWhekb2ABzFpac9w/klbIlibDS/v8WqKGmQflVhoWE9jOaH+xMoceteJW4jpGx7WfDlxx8pBwR2zf0GR7gyZExcEoeRou0Ffhxie6Ho4/53lUmIQebTkoMvvxd7M/Ag84ITJW2HT4C4AbnrkQvR9byvHfyqYjwi+sfWBUizM5GeQQXLw+/MPiTSBcJcQTMXgFmDzodnnuPY1We/R1/VVtbFeQJdINMjQdfK5Ut0evLyFphn1zeA7BJsZBmdZwrrVouUelozqAaBVVK956G269YovM9xsMY/kztdXsFgSFwZk9o4wOn7dGYXOqVFrY5GScjsLkJF8WbrWCQBbidJjxxqFI6zvzZL14VVmIV4XLY3fiP+zcqx9NoFT/GSo2XIBB4ovHkLXBTS2q7k0iOWJ4gWEO1a2+1hd6UqSJBRSRABJjdZG0TizKwS+FKadhplH/6i4oojZFITqWfI3jXv0ZvqKIE4hTMaWdRRAxVlj5fUrt3nxQEzoi/Ec1CubGQTW4JqRgur64sOyXXRb8p1MlHhxgW24OG9Hbo4blA68zyx82bvKI8ZcVMffmUzQbpJtCb56Lbuog51EOYM6tpD6XApJv2NRU3ujihMr0Idj2UIX11NNrcokpZVrCKEjL2QQBtz7+SMxc39yn2b6M0eOtZaHC+YUKhsy4B4JKP83Sipm5CAHVAm6uIQzex6MQz88qNymI4IUPqsQifq7nUH9ApMW2+LulVdVoxvMW+yKCulU4rCy2nYKo7Ja9kcd3rWqqxGYEIukeKEbd0ida7AuyTUPmwh/+Mn3rkgA34Rg7p4Ta0ljMTrm7SEu09qypOjN7Gbwpn5aoGqzVMVOdBBqorS6OHUZGFyEpZDTaR0YxdBE0nuHltK4Quu31vO1PNwIaVwNoyABpgBddybbuRnr/vAxr2DQMQ1tUfhyGPLWWXtMMkXODw8zaFcADn32jFeM8Lgzln/oQqZUFvnQSnzkic4hw4fmbDqWFjNy4mFoGl99pagdYTBnWZJGUoDB7ryaecOlvOfpFQbEDA21vgEYQEdJiPmx7url4nAtHO21JStDe3XsV8hJLDBEp0OrqZlZ+94ZtUdgC3MWEyHd7ZPyoCRYprvxJBDUQkEBTRkt/eipPZc8k4VeknoBm8jVfD6Tvv37+wNBv6i7BPNdbLkezsAFPAsjf8sFm6xhzT14H1V/wwYDqE9yHC00PpFqFGKfqPVXTTdZoFL1ixGjp+2ODZIF3q6HChkusscIPypCCiDQ3SE5lQotQRuGCK4GcLUtJMgk6Izy4ENn/BXMP3oFyQPQT/h4/g05OBIFhphkHwL25WUG63fXKwL+fYIzgL+uCyJtpPWUPq/TsoU6ZenDSDEbVSveLLLmtLPWjYvHEI3VPF1ep/S9R7oTtyD+GN+JQIcFZ3I5udFuMmB7hjBBDgolSXXPMSRj1kqMZckSoBS/IMLldKLFtUBrZRe65I76Yjc3B9lk2VobGgLAbrBC97NE9xG9SYfE7pGm5pPIRq+lm3Z9UjdD8+hdOyizb3W02OY/APoRH5JM2qO7HGFHwn3wCeXnO21mwQmjqHXZsVRG9XKOWVz0RQMzUel7xsSxv/uYlNw3siZV7ZH+fAV435LIk3Nquxq235gQ5o0AK+AaPNz0YkDmVzuVgxvVfbLEXHkZS/H84t0GMr8R5CsOspr5qI5y72TWyDP1LoDl2vGT5cTyjLvpCBh9YrSAgVRUV82tQ9zSI/HbrT1M0g2MHTjuj+ZIeb97Clwi36WvaTFsmKUYTBLhXAetP3OJrQA1shpnDbpqIjb1rC0LqmXuYsrucfL/Uble/xJAN2HkEtVEFxtFMEzYnwHG3H8a+o3SyQqhf4Z4ewIAkZuQKc6JrNSZR1RiGwLgDyQzbV/qfFj8T4KErUteO/Ls5IqLKe1erbkQO6qZpnUaIVXw7RT3u53G52FNfeAItGJrCXBytXOtARxSGmGdZ0iCaufMdouQvzFvt/YcjXt4I7hyp2ZcZblPW7XkVRDl1Rcjtj36ZtTxkm73U/rz3M6qruvcXe6JzTvZjrKcNsLgk3Ek+aNo851piK1QFuRM5/30EtmX/YyUqlI2iK9CIHC0dHCublbP+NIPJdjyxY+36XWFUmpq2SRoBnK0GWylI+fjPKi+SYAOxEhTBbtk2bwLQEakxOJF+d4HbAwHVJr+d+Uewiru1NKSA2yzIULWoGLvJ8p75ZLTLjp0HnkgNGpQrifq4oMgTVByxeqaoGaAwlZje5YMl9rcE45WLA3SorU5j1GH58x3ilCO9iBrZI/Nz65Dw+gmMn6l+4ZLQ4Qt4kGvPEJK8dqeObBea2Cnx5is8fJeYHFlDQmLgQih9RPRIqx2kmNbwNvF/Z0W9zXlFSv2IxqoEvZw7bV6mraWU/QCowkcQwURvHLatE5Z5AmmmDeGrpqLgW1gLMHBlfch2zXkfpebP01GGkMuzjEPio4ZJYMy+uf+DY/4f5FNWMrYH9Iu2MWcxMMxynEG4Wdn05d6byY+naWovcEq0SEW2TxBiHnmCw68SKcB5zMz0hwA+v6z9UKemP0Stvc4sxxOaHk/yO/S5/AYaLyMg9+J5l5Lv90EPmzIpMcXPyYIGE8eCF0qYQSgRzwQSDosf4axS58tGdEtRaHd5gcv8uI6EZQRWOvLNHgg6hWr/EqfYeIEllIVfov903MijJiQpI07OpU4e34ZT1P7qIo2/GX8i40rw==
Variant 4
DifficultyLevel
666
Question
A Cartesian plane is shown below..
Which statement is true?
Worked Solution
Points to the left of the y-axis : x < 0
Points above the x-axis : y > 0
∴ E is located where x < 0 and y > 0 is correct.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | A Cartesian plane is shown below..
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2023/08/Algebra-NAP_20275-min.svg 300 indent vpad
Which statement is true? |
workedSolution | Points to the left of the $\large y$-axis : $\large x$ < 0
Points above the $\large x$-axis : $\large y$ > 0
$\therefore$ {{{correctAnswer}}} is correct. |
correctAnswer | $E$ is located where $\large x$ < 0 and $\large y$ > 0 |
Answers
Is Correct? | Answer |
x | F is located where x < 0 and y < 0 |
✓ | E is located where x < 0 and y > 0 |
x | D is located where x > 0 and y < 0 |
x | C is located where x > 0 and y < 0 |
U2FsdGVkX1/+1DGsRd9jt8Xo6F4Nv21ir44j3jfQABV808qHzS89ezj7Gurn7daIxvNaX2bIY13V+87H/966Tb1Xcdm2DOFxcW88k1jtgARCVEZL+DF83LXYBONwZ+b8QsUMywnshuBKcHZfcqQCbbLyTzpK7YR5PyQ5Gkvzpq7FTASs4LK+GLk6XYgHR3u45ucbv2FRAadTF57CgJW+dujTkd+UxXEzL0oK17SfMaO7/CBdhc8F+YXYyOYvrWueYlgl57n6wbiwbWQ5lqxY3PCqQiyiUnRE4OWZoTEnQ39zSVtAnmF0N7SFwW7go8egbU0fNAsqIjleSUPo8kKC5gNpIUkupBHtbkBBH4I+BDnyE8WnNy9s47eseK/Qm4JlDEJ4EN/1QjYJIFcxRM6Uf4wZpht5h/l/JriZrXw054NooiUg9FjteTQwnL/Woa37NF5cZgn73cH3StyS9fX9V13iIgbkUlDpkTvNOmv3yX7tgUqK6RA2JqJ8qMam4E2iErxnDmIPPUJ+aDvhHo+mjKtB0Zp5LE6A/uWeOZ/XO0K4bqUvwevXLfKr0buYbHLtOZZMWlQic8h8ySusUQAAp6Dl9cqWjYGBzyaYRaaPOR8KhWEXnUc77Yp9I0EFZP+L+SrcT/aV7FwvEguMUPwBER8miqIXgEJB4uS6kjF0gPUNretW/mjZr2LTA6Xd/c6Qgxgnb2flU/UGOOeLiK6UkCiyHfkKr3Jx5KYJqla2Wveh4XSEcTnISfj1tEW4Daq7Il64fS7HGPNoAIp10r0uaJZOVk7/zHxCkTmIO20ufNvSlaV1jz187qbFxwYkb7VHPdZDiUz/9NwhWpnm5LtrOpGMO6OYS+2n0ZDaM6PNyAbMQrbPrH7YcxH0DaMvzkt5WEf1F1xO82Ly5ZKTGYOL94QmaXtvNjp2wKmX0gpwfbyVxiEw64/MlkuhII92XNpG3Hd2EY4in3VNjq+Mo9w8Hklg0UPUM/sdtoEU9g0ywcMkMzjaELLwmTXzbYcbXWyAWFBEM35N7ZuGvBXptM+gEaB0AVGCiA0DYbSXNHb9BxuUaW/5oHqR3zayrK6FhPM+DQsBqK+6lEaq4X0PcfReRHegOGu+SgpicvuiFkMCg8gyAtjo6ftaH8Rx8hEAZ12hvytQtHljGZ+HITl1/zNHNnEakLuF2yODJO7/Aei1+T8l9zAWsP3G+1f3obCq91qzy4vfonwLHqMUxrFs7yUVZTN7VeniqvilJbtv30S4TJHj2uXyor5zWMS3HCR3SN+mVtcCgvWsx84KXa19wWtcuaGHSRzn7SDgnWqnQvxjNj1IDfLIln6T2I3iUC0JFaEyH/NifNB6QYvpsQRq+kgSCUUggXExzucuQ16ZXg1EUdOwwHTh22/0QVIuI8rZV0xJ5hTEYG+LFPDK7pz+OFJ7cMHlTUntAnufYe/1BvWwiBSyfZyMgKlRZ0StSlKdatz9Su4xcGCt2b0l5em/npbBR5dzNLDbb7XIiCoV4ukQmP4i0O0CTfqk0/nY+VHpBlmmOl817cDqivcUqQJvoljtE/mfKPWySJrNvyklZgeJtKoQgL0hPyKRmbyGb3aoQ+crLy+d4bfPNro9+rL/Qd5XXYY62dkSEqaPxtwc7M9Ykt/LjdT931Xuxg4rl1DOAoGqMivno+bRnNJJJcTHm6yILlJKa8ddCkXvrf/KnshwqTur4SWfowC47kZetgip406tzjQVk+LjgrLAVoaRs8Ozhsu1mGJyJ9SYL1wj4IL3yED4XBcEtW3L3BOF6Gd8JzIDaXSVWIQhnNdz7o5rt4QYHo2djPZCN3f6elP4yKmsKaMWulNZKr9oma7xlkrBGj5q6lC1k3cAUHLJlZ03DwiuS0qsEnhPAQ801NUWadMFA8lNob56NDnPhQeIWIDS2w+H5ZPs4uFmzbkJFkciQTZKBgwPHLJQqISH4HXNIj36oQz6HMsPKhBBluCOIVzmZzcHyTpD2JBUdcIIYQMwdzBYzL3Q2pBBwiKeXdcrzC6pAuhIAt3jILb4KFfdGdNwMn3uw5k3j0AeW2oORBvyA3aX+UH5fONrGKC7ypSRpH1HIYg/CuDGwy8fv/eYpQkMZNijvrKslwoK5YLKP+XEINQUwEJPReoU0Od1W5mi8Mds+AxBdO9zlZ33FoaX1CypROvisa5pU7g8qmkt3RIKGB4IMpbNrSFTOgZ8l9rqHa1/GIl7AYIqSjeM1+rhqKG673c4dioxW0BknRuGW9DBxN9md8QeFO1IllzmBfA3IPd5ppgtc5jk+7Y4j1C+IaiuU279a/y5+uftwjzIc6DJa36D7QscOqaTq/Ng/R7jCoV6OtjPZ1hGedji8+cOoB3hhEzSPvrIL30kcZM57uVSfDXFB01yCzgrVi3ZUaZr3zKYT4q2SNbQ9dCP2g+kx1BP9Mld/bj6WpL4Z5NIMjUMtOW6tmJr9airUvNjKD/RPolnVbBD4gpBOhlWsnugyf5BQf4I2/hjI2mfcEQg2tfn1IUxaEeyPqECK5qD6x8mhN6j+IobJxNLhXf/fOECTd80vJkeFwy/AiOPeScoPZa1WeOtP+NqMTzKquLhdZLYH0QMRQ+NBYFLaWtnW2+JJ5Mb4/j6zcIJhBvRC3IT5TrYdANyvOw1XiplDA5Rwj5bJApHxJnQSGYibiaTya65ToaF6GUSp/OtcoEMzqG74W67YLEOnFdCHv+bJaeRZLYRIUiMmlYYqkBMkHwNy06RJZfNc+NzY1LrpgpF6EZ3SFRKH3jQrwo/Xdfns+AdX2GUgl856x2u0bHFDv7UqDQEOACvYQve0Y3uZKTqS7B0TWCZSPT0TmCLFSLQGS5pPkXrjSa2vvKbneai5a3IxX5n4bSszq/x2WhT4yQJ8p9Y+vxboJC06uxKg7n35gJgApQciNFE/Toik1pHG0iDUFnZQLCUebhBdJXaMVdFXTiHcEsuBsm6WcqPRzyfQffCr5RLeGQEr+6rhKmoXcrE1NQ6rvV5hkDmIYGv+yQNElOs5qbH1606I2lvTsE6u+aAMrIOyosiPwpkNNOJAOWDyQDMPhEj3KFQw3UjMj/7QS7SxdchdVcL/6mVVrXJgIV5ylNavhRItJVfJbcYvei9oJr3nbGHp46X+neDwDZa2cNS7bdmKA/sMFmt9mn6dpXQzxYRHogeZZkMfvUD0dbPBY9aCBMjmyA96d2e53WPENRszPIO+nvzrynzV81b/wEzOOQ3cgSEgPP8J3Vf1bE4XUAlJixDt71LP8A8vdxenbQxfnzx0YprYl37chp4YTmy0VroAfyG+TXdGrLGsdhW8dq0Lpuaj1mzeT7aExmCrZgIPPQ5KGmq0gkRFmyKH7+0qR/Wde5qv3arhLZgo0ELMQ39NjTmkVTOvnglchaqI5CiDBvMDcSo4US/E8mcLQ4N1mm5BOK48WUIBx/zjWUPCujQ/KC6eZx88IPyDP06MqzxMPRHysXjnK8nayKKqUAOrzX32Eqco4DFl9UTK50zjrr4+KgA7YVORF+OwpZqmZTM9tLbR8i4IsmHwLO1w1f0Yqp5I/D34HZW6bblxrYFOX7G+3nSbmtl4kI6/Fnaeknoq0Vf8cs/mcAJotanlCp3bGfvXNv/ul3RG8oErR670zK1GTPiCHAaIEeJ0dVJk6XFBDNw7GXDoTsru0QDPfQMayHlvH3lqqVbWS/rml1pDQH/XtTfqw/lIt8I3UjJsD7hbEJ6ghQ2Ptwd2WDE+EOLTwolvOdbGCiujWYnVxAj3/J1Jr/g3DT2ImfUCiJb6879zWJpIUb36qCoqrYD2QaXS9uggp3ZSHsT7RbLkrmjTPH9dCLLxde3p4xolsizE26hK9vv5TVHoruK+6dusW6VnMCcl1sDQYwE+Wmh3Wc49aKvhXbktqS8uttLs9r9hrKFgXjuyFPNAV2Rgos4DOwc/aDI7uJiZpKBmaUxNOr/ANn7Tmg9pYrmM25PiwLIbcYemxJmX01N2Q+MvPaAUCBAbK6YVgZY6SRNdEZOLpwCuIx0B86xbZVyeoagKyhXuoFCrKHEYusgTQ4pEUh5dg6Dmmv6rdIf0wEMA60R+/ooEl07euwG6Gp/yzqO1ICsbO84hJ9pvjnSfW/DqH+sCD0NElU605d1uHEIw9/7N/GV+mv7H2Wro7YJw4LnpPpS0f/6blLrRD62Scs/Y3PEEMQ45pZWQ94pae8NJyYaZWMQzOagriBIO1L/Jho4/Qp4RraWl28+1zGisSwmwqTzvN3y1+ePky+8nKPVaFtjbbtKDzp87xzW1sb3hXnEzX3l0X/pw9+YwHjtk42658pjxFkFneAf56PWtHyNuU9pjrqwfkKgilkO0D3LIB/vHSD1KLwyv3fOjQl/E3F+lYgYZhhnI2XhfFPSCW1qtOeRmBswWdGTojbwKD8DM2NYGZ57ZLiG0vJVXJnQagqSPMgQtoEgi6UgU/RhXPWX3M6V8axTnGQSupwDUFE+BjdXu/Xv+Yrz5BsDa1Q/0lbnU8yeFrF2rEELg2v3EHGwpecz1wd3F6XSl+TESP6aIX0vg6CmVqrpzgfmgkbfndPFKM7LwRWooRmrcie+OQ8X9gWdeuCdHRTHOHuWbOQLnwpqFSqRgJCqZ3ovDGhaDGej5kCVT1oOGbdO1GZffbGWjeVSb2sFSGt/QJtGBklm4fJux0hjZDWfq3lLa2Hw0Go7wIp6m8IaSZg9rc1mA9e9aAkp8LNLpeVVBv9IvbwNWxcQ48J6kuvvO0r88S4U7/QJIUxGfw+9QG2NlvCCQ8idxvJz2IaWO2ORjCWOvaMFcM+Yx1Cv34S6Fvtt6jvgojXOHjIrRtSiIblxPEyQrEdLRxO+ntt/NT4SM7usi5TpZic4V2Iot8A8E5zSyov9/yPzbGdLnWMAuRiJn7JvWgDJ1+YeDIBxMpnH0eo/qIbAjFpvE0DR6g8n4qyQLhD+cYejQ3AlN+EC/M8dTTnZvdDtk/OL9mDXKiZx8o87dpzV/1CRJQPouGa4ISQsRL8kTMbRtIA0a4XA250fVxByUQgP8U5FwuTw2gLzTDvyuPKtFMgCqAB5SVUcvWVw6CMrtyljdAraBXKGHgTUE4+2DpWalzA+QDbJtoYqXVFHIh2BOi6i11DM9bsUbnl9Q/QhNPXePm5/9pRBTg4HcHb9yAKGo//2ijKh1xNmr+njlpGjg37vXvGFxsA5rm29fFoX3EPO0KEBCFUaFf5paCCb6QKMbrvWdsSM0EEUkqg2S7n5SPQ4NcTwrOclon2k58KqXgPKekKOXE06zLjMIFS3fe1iDJJ2z6eNBqWyY0dRY4rxtGJ+wYAbltDZvMyUW0Tk/DLTcX5rNLdp5RpJzr3flxXUciEnf9LO0FmVo9NFkfj+yW4JsutecZHQCItqSv3obytG4udxT2EPmjGgoJVtJrQLmldndUt9wvyZs6QbcT97XuN1n5Yc2qKJKnkaXAKEbnHHxfDHZRuQTwQBandsfTUmgzzAGph5JxVg7dLqlCQ8HrfVqxOsYsClDRqcqxM2/dM/GPTT4hc15pkD2J+F6v8q8uqO6rUyKNEEDAGutNi37+QqKHp1fvc0zkmP7uv4C9xQ//hdcqpnlIUCjFS1s8VqbsWHycKgPbfjLj8G04AVFfHCpF1ZqUDFvsZn36OOmLYMe8wlLmpVW6Rkr7doxucQQJHWUIrbSB6jZP3XmaI0CF6p/un78Fp+QIJSxwQUlfI83ODw73WgeZHNDZkDflWwdQgSkUfP/B2sNXOdDWDOUhYBRa/wdMAJRTEOYIr+QVU7jQQtWs3gKM8nqfMOapvLroCkDqJxKOahhlD5o8e8ugzGWPeA7PgbVui2PRZcs7xZc7Upu7oXur35l2Y6woyf7u3SpUS0BJAc70UZ2oCYc3jMjczzs7FkTw1c2hDexCyeVexNmzNr/K2q6iZ/1tFDpMhvN6PFOKC0oq89+F/scFb060MrqAE4oaX78CCqcahhEigdcfWrjO9aKXTMLGolnFwP7yGIiyYll0eXj53byB+nPQgtMXbXYPiJzJJubroQdHv2tDaKDKDClOW/x4K1t/c49h2wCoI4bzTOksNshmseuF7wBqdTMEMK0sk5zUn/FFqG/wu1T6PAYqt5Uj2GZfENuNhtbHMXFY5jxEcu4EaNI8KnsbBGA58rZctMOjkYRYmGJ15d/ampNuTCS+mRKvUILEOdC0ma9DCDrjaVOyReR9cA5lvKjV2P+6rq79SfPvqpSnSwhrO1GXrmSNRH1u/H948vo38rZpbp9sbG2zE9/eUpkR5eG1Z7h4p0PAtkyJV87mFdyDfskwZ5iJdf12FvtudDwbtUSHyeZZJp8VaymCJyUI1ltHQYLcMUVrMnKZ23fEivcDAGGYHn/b34ibPv65B01veH+VJZIyt+/Gwbv9xlv1XPfbbOB/oRaXrMwxlYmyF6RQXQ1PHp87UU0lgLUbs9rXPtPNKR++PjGRncMsuDarG+O1JOWCeEmsxS5rIiTRRBQzvZCOJlDVGCQI7QSNVcgi1qq+t/MXUdFZjZPESGk7yQFXZbSFJJAPOt5B4oAOrPDLU0wVuDL+A4uElx4a63DtluqGIKl3fxqVwI1+c3Z0cmp8Ts2PXbWth/9NIPc4KOoJiu9girwY+7ORarXrpMgf9VZkXy8SzUJ0Le70aaiaG9JXlsGwYfEpCWCIzmzkI7EPjCaHfBghAwr0Y1YMZZjKgFkyewQx1+x3tW9VE4UjeQT6Iq9Tc14K7VSrpRPdfqrvYrAvfdfhSG0obUdAjNe2M6/r+VLRyAXpNPzz3Z6ZlmiEKD3eNwbGtCfxZS+qb6J4H/KwHtKuD50wPUyhxWE5ywQoeIxvET4ISFWw4swqkViT1Igs4Zx0DXYaVNP4+rwPy5aDvDZmiGJTSuKKoB1U5gkmxmmrTwi1ol6UJuZ12qcaWqdAaTgl3aXWreQzZhlh03RNS9HVDLSkFcUhwgRBniYdQ3IFmczDXAJuKgKFga46EUZNSq8nohUlked1BR/9saLrAIEuDXyPKEk7bvfYJTEOk3L3CFKQlJhlsV4tNhD5OCeDLwWbpO8aSHiaD2LZTNFUUmoMcnIRLVsB+gQuWEyXHjWDUDa1r6F3LZNkF7IzkclHmfq1720IWx9K6tpGRkWJTFLyLHzQjxB8sPiZ4LLp5AqDT7ZlcMaoCbwKDB6mWXw6B9wkwSovnluWjEkrKsgx8NMQ3XqIz0LUAkBhFRaoTpJYBXHCDepz3hm4SxldBouODbWUhpOTdA137qdhPvEbDOzhi4KgmtjHi1GQ5AyFgAMDJCW6qEn9bXvkmdVoZ0zt6xZ/4LxLcrTvol/D6MV5roVYq3kqlDwAFGAAMAW9awZkp0mIjropuyp3R8CSR78YoS4Pfwzw9SnGYgBXExGNeWwW1E+4Urp+nYZXPAINJwj2F8TsBRnOJmC2dIPHUFaQCa63Tl09F+mTuHfyl832MGBbxvEjF9FG1B6tVj5SGA+BKvkIzhVsQX1DTaU3efiy/6p1w2eZ2kb+Y1honfGgRQkBvmb5o1GhHRRhE3YsscdEuIcJ3avp7A6Q1yRRykbZyZzaCmCMwtu5Z1AwB1tFvHt49Y/AAogjdBa3Cx7rpwSVrbkTuCngoPwElLmpvbyMQcyqU/LvqF4AOSSbtUWTppUQ53e8qF2D5VKt8nnLGWNmPZ0ZqOhyNz2awkpJoccyYF6pAdvVhsYL7AaH4Q2kXx1XlDWAOu/GhMcUWtoh8d/zsiumGiPHcmSB9RLUNn5+HKCKUK8e3/avk2SRiuaaq8Zs/C1cw7KkE2iwjdpAZM0DMgv1SYd7v4vSx6xE06nqGKkqZ+RAUrecZTwjDNOu0eaB/9CTzYOUCdeuEri2CgiHfGFZ5fwTHPB8G6J/T8pmlGsRaI8dM5dCen4SrFb2WUaC1wp5QsA65HkqVJIXq55KVipb/sfkJ105Vd4kMZ4y/8JVYCVFV0oH5UEbLXbl2J+CYOpMJp1xfpq6Bd84HpraPtqZZgZUMQGJODEcamQkADKY0sWeTBPOyiENGyMjzHtf0SDWItrvAYlGasTHpzXlEcWECYD4Wmxx/mel6CFVC3Et238zWmhxVxAAKF5htpoUtdAO/6xaAm422ciML201+n3szRhu/6tVnkMN8Qllq9jte4moMMZP/lO8xd5PMJV897vDq0q/rOQB/cTM+VxLFhN/8HimDFis86nNhX7h73QDKG9moRX1CnMHqDetUO5fJICXhX8zjFTYwWyDeyL0X2Aba1LnqIAnA18Y6Z3422fU3u+hVN51IUyaxA0C4p9J6+I/kZgrrTG9Y8DRYo/9SDcgDDG48xQSz8Nf8H7phfuI+d0/mMwJ3elj917xSWiwq5NsFrxDAxPm9WSodqSXZsQTDGpfLhbQBkeRB30mOCLnZuW/VojDUl/EcHeHgVceDMDPFrTib4pu75lO/gILLXi2Iwh/jgLWTZ1u6/SMX/XnmAL6bmtdzg9o/dFhaqenxHhN1ATCpfm/aQTGxqApKTOddwvTNBLWWAXjD6JXM2EY/tLLQ/HGoze8gkht+DkD8A8MaAnTvSIWBdajHFnh6MIydq9SxoJH2otksq2mZAMSpSLyFcjH6cAlQlo235GXfLPwhdKVsCMqa09YCKS+97X3EYMwfDSAfwa8MLoK0evpqVRlEc8cuC1pJfTg0Wta9+Epmom5Z+nSAkffNHVaxosZs8yMNFG9ybufKbHB2LRPpwuq+WwjrknNMChJ9hSPmM79jC0XMq58sIa2Qqr2+wHATo/XckFRIJfBGB5PkvFJihFUUjmmknHUEz/9hbpGnIU5WG6N0p+m1APvba/beY5OfSKhp+B5g384rzPi8bLQ02L4YXwWxXkSdW2iGd92d+LNL+oHbwJt0U0Nl5gxojNYfxA41+k80mbLpBFeZ0Lk7BohOQxI1myg+JVCcaBeGj6hH6tt+otfSDK8nUTBQopBur/yySaR4cmEXlwgoJulYb3xdHpn5djgRpcHSID0d9IjktiZAy5QBEu328rY0VmMPYpxeKUN+q5/gyWT86MpBKFUIsFIcqIf6E/mB7eeFATX0S4HV1uGco0aXifcFbUEzdnxIUOwwZWf+oOt9ChT4r6H7yhf79iKmJwoCrNtLi6bm/5QBebVFuerbS4GoBOy8SJIHQHXlJ4+dqSk4D6gCnu1UPQOwo6QL8R6BxM+WvR8gYuXjWkKCiOwUosOw7Zi4YMSbObNmP8uH2dA/KUOH7KFbRHjrSe6w1ADT9xDlhvOTMSYh0zsjY+xZQWib/8/1dmXvZHDaAvMf9gMirbpKA/ztF6ZqtYSWvv3R1S5TDFJW00ySH9NX7li5/vlB9mMm1NlMkB6lID52CWcdNzrtdnKKxUDfa+gsIM8thXPd3l2n+uS2JyxEWa48MteA2PNJWBusnD48lm1GDTst1GVj7XwmMkWJxKnG82MyBcsIBhfUr9xWtMx3r9e22rv2LrH1WQ/JCxXLdWDuRVYXmXfOAMGOcgHWefwpVhMcTrX29IfVsRCQu5hktxLOSReGIhNjwC9DPeR7mga96KeC2R6YZ4zTRijjG4HrFWuXUk6ZsNGbXKBivFBypSjszjm4w2GZSAUezDNmvJ3RgHwJ/575lgpefotvmZVo9FSiCP1r4aXScquDAV7kSh4tw/6u75eU0YFshM7wqNU/ZWvNfUyE5FWr5rlf6vN2d6ElfZ5eG/TI2i8oI3Qce799eyiAFndFEAlBiMPmt0KcHOzMlKHorOtJAunQk34Yn0Ta5MSWn7KyiN1ieCpZUXV6A60Vvd9FxntMuzwsxWEXYVZZSPsEq9TPNAOA61njp+UYQHmTYcBL/m2pJuHPgOTUhaVumkcPKHzPoal+bEfyUUHSoklc2ttPKNC3wGRaZkcDKZ4wyV0tQdPnhaXxn//2KqtBSYE13CIEuycVoSLAl2Tl6OohrRXzVzXhpc97lDS98pNy6NNV8vs9uvoETk/qGNq3JBwsIZxJqeOedB8XtACpljzH6uLcGNJLfSF9whQVaRvucRJQcrqeboYMwlydBEDaGtIl1BmAL4v+IreZY07zrAhOP1/G17eGC2/GWFk0XNaeFxOiJeA9RlX71MtrLS5qKdoywORoIr8IFuO+qE++iohwcVTc8gDaWYWzqNkYlycinrm3QvgTZqLGvHvtDXfdjVX5YwSnJwlScGgNBmTW5uW14nVNLfxRsUrYasSEQLszWIyBSpfcSuaD+O3CVCcDYg4ch5v7TRzj98pmCmzyMCLAfVLEOPH3iz5lL08mWvvr2UhSTB5ItI4EdIl1FyZI6hBJP/C7TmQfFGNEjgYaVgLhiMSCfY5DHMSMFn5ReJahieXvgKKbkleBnQNYF1LRfR5Y182cB2h5w88a/5l8hDU60bF8IMNxwG/qrSwzik70VHyxUncML7NlpXzBMaH88+qQs7F4MrSdEMWH+y9cHqV4YhrbRPQtrgXzpK+WTtFR3UekB8P0zijcpsuN23UoaiOZcF/n8mHrDvpO6r7tcj/0l1+ixnwDx+qtQ0efaqphB227meNZtIrNK6sIp/VO6kNn7z+3kEnb7Crb6GeVgC+CB5crXTmq+3bKTzAMlGlfwuS7aeo4C46KjyvohYBylDcKsnb6aCIbigufBqI/Ip+aKMOJ1ahFTT/98po5t6L1zbGyUlljcN7opRTrhjwXxrdXaTrNc+uYCHzRPIBw9e9ZHWCtwR0ytJJmJ97j1muWLWcsbw5RlyATlBo64XvRHtZ8/brZ0QiqnIFV67mGxZLRqW/3qWDmDoUV1WbYucE8+3gncxoLjTPlo3D0MeNu9qmqJHzXotHLMvfHPQ8PezHcDOHglzY8xHSEYJIgIP9jw49lCeFJReSpiaDs20GMtNNmECG8AKAfeOHoCs6uZj6jZXRWl6xFTpUlMx9UPDiAR7EqW7SGs5rjSZDylQ4tzd19zhV11+4Oa+EtjmQmiFykklVnS/vxeT4NFyw8MKhjDT2catc8kbEjzxgEV2aHa5qMvS4NDtHgEFjFIR972MczBbtwLagaRONlO2WjPsFqLOq4upMBHP8BTB+5+UvmLv4oZzL2cBKkvhvXOs21AO5AN2hVk8SmEp4MBQoInAU/VXrXeZdts0eNDOdxBmzFsRaYEHSJ7yR62DEhPlEMlpwWlxQwAoPu9Dz2K59iGSfX9I+ODDlJXz+05Emz9DTJP75m0QVuuhWcwnlPG4ElMJyWGgo0dTKlcLpzrS0YeJZz/nbJSba3CslQFVXkU4fx3e+V1OS2fdQ8Bc9UtjgpxebPNsNzqUV/WnO1cmujXMI3LamDGec7nRxfmT2gmPQFy/8qOqq87cCCRYvRkzf+YafFmmVfjk0E7p5B5E7XVXIEVP+cGnvleMEAJ9Se5wKfwKGBku7guYNrpZzVePYcpH5t3PRRZdqIU1smHv5XZL12lfjBTy4m/QGJS44mELjDZQ72589JERNtWjxb1QgjuZUsY7G8ePFjUQOQRkrU3IzNFkuoLuEMdQdEFOasNtXylF/HPSTHXl2LdEI1YgX53HzKaAEOsrBoH52L3ObqzoxTSiak6oqlCzmT3zi2xXeGtGlTly3jqYoPFLSoIfts+o2XvPQCPKAcX8KCcnDXwLLbO2iqWUDVyM1x3LoxdvoLTkP6SH+D4x0qFVbhhDBWIxdgZ5WP72S8gsyavMZWDbChvs+VAujpEQ6XbkgxaJYrJoo1d1Kxvbcdf2H28Tw2iLKebv3fuFAKTKo9pPNwncmtHb4CJHF3NGYJOhX2Qo6GXjXWffv5mkGtH/syWIFmjSLyizF6nZT6ONRBT/pIAI7fIwKstE5SsnjXkpCcC8c+XOi9Jv6/hdTjATbj8a86KIXKI0xrRDtxK59K8ZTp0mHGaSoZL7EK8S5k8hpZi9GSxRIleJzswGAhWYwovts47PJyrpgoZ6Bqpq9SQz3AdB4rGLrHOToMs/3te+cidQUqD+5Av7lc/+h+jQsPZJvjnrAh1o4pcBfR5hfe/bSAib5CwNvK7btA90eE4qG7FFjbuNOdmjvCriEnOW9AwVLPT4jXEec0TbpZHTA1MNco/mpSEAQA7Gx2eoIbMWasiL6fBvekoCw/k4PlpioDQRAlu/CMTaRQ2Dae36E92RKF48ZGab58UfEKVfnkHmq+sQg1DzVAgtYvrKXMjd90Yqr0Ts10T9G6AfT66b7+vhy2z1GOndQSmDmODlwHdjy856r72FLwSblG2spI7HBwl391gxJ9pQa3v/XIvzLC5iDHGnB2qKzDLdV3k5bjgcliWvXWJVnbHV1pP2LETl+gk5OCydTrfC/WfirM42tmtDVp0D8+E0tag84j2ZM8wSQKitl0uo6i8ee+5EKBA7ECI91oq8IGTch0gzKYJrMHG1HS5q4hGUfHiuIEIPsRO/DIHCdlGF4N9KO/oo5k6IhcGUG8j/gKaP/uj647XhHdcpi5QF03Ux8LIO/VXVJV1IDPPXVWm75KL/r6AeevYfFmHNnWEuxIf2q7jGTUiAxXlZ0R5riBJvy6ZmyPYDB4ABs0y4JPBkMWJoNPVXlHTqqzq3kFbXpcMo3OuCA4z0/Ud3eyY79LaClWmJlW8MhGAkkwccBesTWlyhsnV7+yIeHg2Pipmm8caRJ+pElqWGU1ZhGrPcYyz3Egz0sb7EMicncv8UWrhb6PjlEZN7dQwMuZuqn6nLUf6UnxG6K5y4gr+1J72I48jAmeueYjgQN5FS7IAU/Qx1Zwx5ImPColVlERmNXL3Qux3D2LyCg6aaOOvcGp1JypokycRI49Tpa6M5buBZ2sBGpW+L1Syl92U+KIcnybgc//5ShDWaRKkqyjdUV3KJ01EjWXIDnCLrgurme+SXm3zY8pTklISgxe0zhmR6AlRmG9Pn1YGDH3dBwuocKAUHtnkvSceEsAmjq6/qDcwGTTvFrQOEdxD618rQtDyirGt+ogft9/kVkd6+FozRbgaOqPuuxhbrhRvC6dBnyYOQ6L2vhPjK0uSUG2tOjyhN37lYxFY39s5dv9xMJnvE3uYNJSahsfd7429LYi7+PfftaznI/UkJBg0essgSHrxgRrwu6kGnaFYwDjKypX+Vh/4hcyuFsYVGUcMQ/jYanQ43qa9gkDTYAMm9mqU6i4ybHc8E0G/nPQpvtD3JcuRort1kqyg1bPcg4RQVlmJb/B1f3M5ABcIsvg44IFoyS9G2X8+bUWlPXSQHvO8sEgGFIWKXBmubO6xMkcKbbS9ZY827UZeUjGhibqjzfF5aUUBAb1p4PShYctIgSdUYMGVfazWH2upHaW4Fah+BYJXZbPQdypGSKoUHndFA9kggc/MtxgD+uu5oQghQjp7i6hV0x+zU10bpTpJFg4TWMDaC67jJX3ctYEzfNUJAZ9zs12AC4H8VNOdZOnNAVEOKn5ukz0TVb4c80hdV4L+JzqI7Nt66dU2ZMXd5+P9/OX1WMEL8oT/kwMXy7b9fY4t75mXzMF9eVPCR/d671Mjp2UWee2OZ+pjI+uAQhz4do7QvkgfQs2YAnl8rBSfMKhEdUlgRAb8Pag7eQXZ06KN0eEDXgTClhMWR2Or3F5biJw7xu4t0x3FlOEPvaVDqoY0v05K8eC2I5tu56b2yaaybtqg8ZiUaPyFYKmjySQN/26+wN3TQ1r7O8ZGKtk/LLtyAGNXMOZp22B3ywzB/8poHAoubOlRhIbWr2XtrjW4aCYUGuJVLhQKcYcFIn/Bn2w20fK0Og9OYsAoJJAc7a9co6ywo4aexfbUesWif0ZIim86s4upTQsjhGsc2OUZ5cuZBKi/8ICPxKNmEQwQhQfgBkW2Oxd+t48fPQnC4izVDle4+R/E3Og8Lr+fIrwPirzrSUgvGoPOqFiPmes7PWWfCOBo4Q2/h6xVIpzMbhXtFEVpN2/31GwHKvposmzbUdpH3tk50yj5LveW9WWapZoYa0fnZXYol4E7v+d/YHNmNGCHyhyYvaXi+ppCiGjIpzgoaG6dv7YQ0qRorTHMHumnrbZchhfJoO9njh3JnR9nXkZOkInw7i0+AK9NpeEtpj1QMrS9qJMprYUtQcwsPpwKZn1YN4CeDzNHwA9dl8xUsvfhHr3zddUcbPBhPbHrA+1+FRIhCZjXI8fGG7CSkM3fGnBBVahdZOm3zGY6k/c2QCa43Q1oDOh63gLpPjeox0s5w/awegHT2eQBQ0Hwm/qYBD6BYE2JMPhJbdVhD7vkSSspE1g1bGOSUHx/ZYzj/+ZPP9tTAn33tjJHopOkmyv37AwVou+uE66jy6beFHrGJJo/8cft/Vo9L7wPwlhEkQzcj6/uvqO9BtrbDiOuSmAquxMMi9O8KLsRMKx1uf7SnBY1neH6bq1YnNqEZcMcmiinmsbyk58cCjx9qzcZrfEmCcuv2fLckg2PE3MFRLBBqI2imHzoOJlwe5rwCRSvPyjoJ/3oi/np/Xizk4y5a6IO53jKYllly56uVwwN34LZe/kmzOFg+fqrlDL7x/F33FkxggbO76Hpb5bKh3fxnRzMhQ2ksuLubRWGdQXjRhdnjZfJq/sPcdzNh5EGWj/bPOuujgMwdA9jzfrXuhlW2xjmO8LrbUp4AE8OhLL0Oz/HzDFc2T1GANIwaYr7ubNR9VX2DLzaHeiflbB8/lvGlW27fM6akysWkkJgh2XpefzmRArROOkvADF5oQdW/JO/1Svuxdo9hseyNwpLwBMliAifqzX8rbw92wMx7dBVZRpJTVqK8aqytiYR5sj4quSTIPjoDzGErE7CjuADRwibOIh21sK/6Z6e3fejX4XMEVBLV8PfTN4vjuSXLMkfWiOlySS1qEiyfsBdkCTofY59Ofeh8y+MEDMRjUM4jre1phgL5FazWKLK+oBbeh4xNvOBRAz4o3APalw092//FGvqAKNqoZhjdTLSHoe8G7or2+CE2iOfocRpU5IfBLBnOCVN94ydLoS0LTPx//9BfwMcaMh4+Egxvl1jKiQaKhdy6cMQjlsJRCklI0q8dcEFc1ANble4P5UWISzisI982SyPR7xYT0c4wqll8trCzQU0+QwA3FHDE/Sy/tV35JP1wzh7llRpo6EvPxeD5eomRU6LNTg/tzYqL6WBhoYTMliOsZfpdcogTtgA2p9XGLm+g6GoCv3RSItEOpyalzjYQOfRD9xD7RHIXumobMKLxTyLyWiPSzgqt1fK4Ui2xzGMq8lYJrXNK5zz0GToyhdKNLXwhJmEQNCPMRj1BvLvmi3leuONb8ZQ62CQ5VlpRITbZeC3IZ1aBbPlhRNGD/+9PJLnFsNm4gUfW4HIMNyv2abSGqXE1aowQiLnLgO13fdipVP6JWXSzR7UG151ZNeAQ+OI2DZlOOwDr9PgSbzCunanODoEFrDN2bGFn29qyfQNJHiQxOVrep3k1e7WxtSjQBZCpnUToVgLdeljg9yy+2Ygg5/hSVFxq9XBR4mLOad09pscZ02MUjOmdaqhseIM2/cGUsYGcU328G0TaJzD1ZjjTOtzsqtbHRYr/8XHyvF0Kw4PwQyJo00U3nOi8d3YpHKKVOWHHviSXUiCjXi/3eCSeMTLy6cgXMg8nntiWQsrtU3of1/TNBOnQTAzo/iFLBGDC1lLV22Tl+2f8dbUE/fCWbxaH5WRDrn66yJSXLtH2eapqC/YyUL7ITzbXtq5y6Stqpdi/LJK6lx2tRJLzyS06hW2NwRcqLcdwY1kyCos+xkFfZFVAGpdfAbotQ0mL9JToip4YWt5fQIUEpa7ARCDpKTr/hRQVrDEEz+kYNACLAox4o6fpn47hLfBJqIwyzYYR6sXB/VE46noMdErJ/3RMzYZY/yv7etUWeCF+pDlv9wvPBlwuFzpeMNod1OVyGHsMMABNAbAbU/qK/Fz
Variant 5
DifficultyLevel
668
Question
A Cartesian plane is shown below..
Which statement is true?
Worked Solution
Points to the right of the y-axis : x > 0
Points on the x-axis : y = 0
∴ F is located where x > 0 and y = 0 is correct.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | A Cartesian plane is shown below..
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2023/08/Algebra-NAP_20275-min.svg 300 indent vpad
Which statement is true? |
workedSolution | Points to the right of the $\large y$-axis : $\large x$ > 0
Points on the $\large x$-axis : $\large y$ = 0
$\therefore$ {{{correctAnswer}}} is correct. |
correctAnswer | $F$ is located where $\large x$ > 0 and $\large y$ = 0 |
Answers
Is Correct? | Answer |
x | C is located where x > 0 and y < 0 |
x | D is located where x = 0 and y = 0 |
x | E is located where x > 0 and y > 0 |
✓ | F is located where x > 0 and y = 0 |