Number, NAPX-E4-NC27 SA, NAPX-E3-NC28 SA
U2FsdGVkX19SdMON1eW+v9W7SFm5wciphd0kmy8ltMWfavISz4puK1/hc9PB60uudQBeBlE4eov9a+5haV7UOb8PFlN8fGNctXNp2S6y3EVvKgcX+Y2isLVGn2o6r2QGw00BfKjZKgyXY+QFdBg/OqGhyd11iLdyKlzN68HJi30Fq2pMvq3FdGWi8chsZlvihpiW6ZSrp+H/TfyLoUSgrHLSgKZexU+wJoQKlIzjozN/tmZaw+vBcG+IOEAQK+TXnYOzSpVD1yTHp8Wbv3dlMNM0yO5/xPLZbVOX1ZImpFMw9hTIgB+RrMjooMNFTJwAzHh4xtzFHDQdhmyAQqF8nU3WrdvxJxGAYKotST2bWuXGvoZngTMDl/jGhZAEJVCTi2F5lAQuOgCogLr0HVxBw1rPMX/QDeBw148u/sRJWMfTTRhLAcaSqoxxSx1C+p8x0B6MLUO2BuOoFhRhsBlwax2OORVUWpwG4O6g+nUl5LyoNG1OXPrEGtUG3Vmf/2T5VF9TA1a+g6YBn6PTNVz6cHHW/VEGNG9dt9znJS8dbSQHyJtSdWg9bjTgOHlaDPiBpjpuM5bwaXhZNeHqqeQAyYWCNpC76fgHjbGtB3JAhX7fAV7zvIgzWQ/IrZKlqqh1HWpsEZ9q60PKl0jzvbnI6EcgoKniCvb7aTro3ncpmZhxjBFLXYQuJXQIihj+JTFn88kzJczEYk/jqIEp17VMhkAN+XTpTejQLz+yKUW+18j1d/T7U7jeta3ATwxwflY3S7Xa04maj/r7ZVEqAVvyCkxSXfZCtpsNUyonjnNr5EuYcqIebDW8/3hJi6pjwoJfpvvuinedln00UmjyjjTZAHSFWTN6ySJ7OvFjYUkw/eWilaxgx8u7VxvFtMTvJrn7BICdju1H75cy6E9w1A52uIMaUDJpoKKLPqULizxOKDfAZu5+oWPsFgo0XCH8v95H3KVRO/wMnov58u1lbz3KRxR2JhiF67BWEBg+lUZUcQOxeo7owpZ8RD5tDsqrV5DnAALPwK7u11sqxjDs+SPy4UY7O4FHDSKlsd3a7CRSwotIzIyZ7MNvNN/lM/ldv8B1j5vYBvy+nAF9Pe1BmLp/ZVciP1oFhNUmNzNlWxLz/KBj65hhEjEC2/7ehf8T8XTbqTFStkamQl1Wc1xaailnHRiASBzoYyp+ieDUrLVHRTbPDplrOEGCmmsOHztALyd9xYgoS31fKvbiat9NKNeRLXFPqubbb384D5O1CgAwnb4heuZj3bQyNrWdWf02vbdB6kijTSidt8uppr700iXYZXr33OGUrI3WZYLTte9dox8iu4UTNe2uplYsAsRhxycjB4DkFET5TRbhziCA9IuzGeWcHR69eNixlAKnfbrlhDX8NXfbPWIOfabczJS6vo5tsft0bK+XHYfBl+klMoRRx55rfa5x4fRye4oDd5XxzEyiDyASOOq/ghKytLSRaJu37DNgBVNKzdjZZjh3M08V+c7Hfvw5zgm06uftq1THe+s6CsSQd03niPnp7ERfa/NMBjzDYwF0Ye31kd/csE0Xt0j73gJPZXFTFsSzsS5Le/EoOV5hFVqsBOKAZBUybfm0QPp7fne9mymxsVPFlpsznMhn4kkOVRQ52HD5u+CdRMrDpsto3LSHMAUxEys2NKLvce3vD29nhS4UodH8jvXIB08eAgTMonwSNFotStu1/KwL+D1YUJ7mboZQ8N8pjIPdVwfVkTbOMup+SUfJ961PWprM00M+vvBuCNObnnfCJHS78kE0hNiVAowM1I6seIc0FtrVBFheIePzdh2m1CB09FseQooOyDQW5xY4srv6/4cz1Zur5QyIf+1/PF/dsG4l6T++rf+5dMPW2nSop30s6oyxK1xWCmF8jxZEnDUUOL+0oPeRNGntRty4a2jbOfUiRXALi57WQXDhw2my4VVW0a856BXUdRlntJik5AGDQUNVTPavFAcfLQkTff9SjieB7xSyreviUxXULnf31TJeh/vhEgm/OGcyhdnefeq4eM+1Xs72hxkvAU3hEcwnLMDUH+lrxTcAze5Lz/jI1kSLIQ4CAgZtiqSKTNw2lgs4kL92AGVLk/fu53T+h3LwD3C8QjQe0eYtre8Cx86+PlIPIZU+IId9Uk8jNwAzleTK/kKkd3RIqBnhBuX9ffVMn4yJ+D8a1d6zcbnPtY3lAbui69fJKJg2xHT3GvG1wp8LzMVajcRRZpj04w2/eRed6D7NpLF4yuouPUlcOtlqtzLbgLDn0VwRrpd4pU2WlfvXxgGx+cRoXePw8rjdWv1yb8zi/FXvCYU+yQP7rULD/I7zeDM4rK+p6HtFW6+Q9557W/afktJKFIsokxTRbqgZAT/gnKJFmUjw5ZNdJqfXW+4OgHZb5e/DludY8iQrxhhODUfRgjuXbbA8M8nxOA+jTjMce0Lqis43xQhHednxYJKiGGizW01pqV8SOXBHztYEVo1MtyxswskFv8T4H2alaJ+N9NymLGca8xBoHb9LqkJp9/yPOAwmiuh1Dgiagv8d+BaTxNEvm2PYeFnRuQPNA9BX80DKZBRzFa5x+JicU8Woeln8Uuj4XCCkQI1ft3I0yOFA5Gnj872AOXUGamznMAzWb/vu0Z5+oLdvfxh4d/3CjovEHTyAPdXjLaLH9neZpCk9Ap4KnhNFz2lYi/wSW9i83Gn9JUjQ4XZlvxTyc2A5Gyk7sLXug5L4dyU70Z2Qxlt86gj6HB3DoicsAGg3Af3hoCiVy4y2Ki4RGeZTOXsQKUqVoRoN19/Mu2aR34mPb4rG1L6dvx/YmxImHcYuywzTwdL1CoeYgb6AKv/U8HqiE7tTxKI6PfmTJwjCBM1eLi1ItDdGkdXe3ehvUEB/BBaeu+OAHoqzReVc5UJwLHNdWXoaWQx2NeLEkl4L5XTxhIqnr8gaj2R0omWjsLimC4MJcydPSzMtyvkvCG2wgBNkO9EDIqHQze5naw8SdaCB45J2Dy+6/fTi3s7FFEvSEP3avC0OG8P3GxtHckx0z49kjerA1YFqyzgPjw8Ly09lILOTRWmYbGwknYs0dhT4VCpkhmP+tu+EI8MxxC5UXZ6k8cwBYqnAge3yMhRv1gJUltk/x/2Mvtx9FQk402dHJP44KlT8C1gQeg/dZ3dWIZTaaGcmzb6c3Uw2h0d/Oou+n3sfOHLWj8CdLT7xZwfc+qoV7MJ1+BeZM326JwMSPlYetmVKO9sdHuZvy6wjE+l4cUf5PzwVFB3RGIkpWXrO+VM9sHPHaa3guWe5IgLRJ5jDca2QJ300VaX+zgnY5BpMYedJS/9AHzmRDLFCJ+Ih/LDV/AiU9Jdz3NfMgq5Sgzv0dKgbx7jqffW/4dC0lhrzdaDlm5DW6TuVhTkqoeFTCr/IC7WAg0yPMvNNq0MGxzWCYo0ipX3C3JDvkmr5bif3qZr7M5stMRJW9y65TwO142E/jxq+oKV82JMtKGKi90jum9YkDV+9SH5BmPEvZY4J27x09AfzZ3QawYQG3FARp3lEnQlJdrRwuV07vBpJleoElba+It4c2MwmQep1ApdGc0lnk2Djnt1B/mM2oIpGOOy3eN0Xc7eyv4RWbw8thzHTax1nI3S8FFQuUQ/MC2gU2fFwulOt451VOyyTF3UGGbSf4W4YMEw5j0YpeThNqmPh/R28xWz7JV9TKb26T5xlLJf7YMmXiD6nD5hsJm7EwqIGP1b4h60rbpqzn7ZvB2N95WGRZTtX9rCeMViMA9LDLhYWPZA5VUAv1A4rVhxRrhv4AxIIV/DYAtxRvPSpoXvPq+UUnbljig95ltxYN2xcYBme4Kndr9lQiRGXSRQiX7BPUNqfhh27YHh4/RjHYyxKw1YJwhpaMlLCA/ijMCUpqbrEfrag+IfLqUUujln34NgOPSUNYaix8yONe0V8zXLzlVaq5cQOm+MTU9KXeOWMvBdU5B+qlysG7ZXTAZMgo46DlHeaUIFCa/0IY6cA1gWgEf1MRf02eZxvIng166+qFGS2XkKICX6I6apJVrcUbCd9b1n56LKrBaJhLuLTjy9BGTpJ1nt3WCkj3CWZ4zzpJHZKHK55vUnWs8OD1TG5HJ7rfbKCE6Esq2nf4aes5IE/sqQj8XxJKictQbFP9wIC6Kcvu736qQzczz0HJj1Jnsmms+OHV+3572j0my26AP1Fs/8hfiWIj2JM31VvBxxiEQY9fajwDAs3y+zGjyjyK043JXDW+4wOzqTZDiKoYQtK2LotGaukXqR+f5c1xcKz/owuR9KGL7GO2F6Q+2IxzYM2merosZcJELttBn8hfV2iUCbefSoTW/C7vPYKN1SgRJCogNc8+F33YYK2gQpGMR2WSyVCjHirWxVOs4A42+zbbC9hsEzqEOkaacXWxJl/78Ms1s9pp5yXODnOOfGT0ggyyhjXMMqsSYUVmRbqwg4IdMZkHouL2kbY7iQAPGFzcZObafvHiYqT4LMB8/Kl/E/LypISWimQ7XIveRyZ5InmeERSLJ8jbiNiCswzK9I6h0OG5yC7UsgsXWGYqLuvmv/WWh872+Z47wAlaqkoP0aBYIjje4yZuORsGNVR8IGiOOEwEQNXhR/xWT34eqw3svXsCfMHhO7KjiR7SfeQzBxS08l5BvXFv4BEUCOmptW7MIckzQAxqFnluBx+WtKXwuZqY7s5HCEsEcDWmoaSl8RD1C85hSv8AMQnc9/BiyMalovLn2Oiji1NT9Bm7YbJKjP7r2Cxt+mjVDrD7+dVTAyktBpKR0QdBGVLQLRNBLvYQOlZsW+2NF8eDawusORKfcW91UZofqmq4bTlapo0Jy1NqXutqctuXq82HN3Sq0PPr8lX/rNjmuxWsTaw4hE0BO+MJVsyCu6jj+My2GiL+T9RmAEwd8Ie7lKENuum9Q+kmbDSdNW3GSsVuugUckgSwXRR329C6vs5HPrmB36r3s3Jx1+mklb9BsyG3f5RX8YDTvZiDQdEgZ3rwH+/RVbUC0Jmx0BRJ8f39p8q5dJoNf+P5GssNS/P3CkFYK89/MicCvPUtezqXAxr6nqEkz7rMllH7eZQOonAAsqcNDEPPybNfGg8pVjGlerxtNClFmNN+qoFACYQ0n03l8fWpZjGP2x3LOOX0GhbwdNItPeeIArksutGy5G4wTd2NxrtP55mldC73RZCe6hrSwYgPKHfsH81SYFLxY4n61Sg4ySzO9CMPqXx9xRdj64HZfh5ec+avfbZMt2gAbEnvUCfIUBG70dHt2LqSXKpGvviVuOzGzbsm/R4ti66CukB7nKeFgpPz8Jwhs2c6tXo9qAFgBMp2LPE/Ndol29IBa5GjuL1bRbVGDkpNBBY8pCdJ7ERw4fiGDElopLQnwp0wvMb+zGEJfqgwWJsDKlKCtFYeV+3bZ4UV7qE2KloYuW+28C1qoKs5UdqIMcwAkwhUMbQK9WcrraSPrg7q4UtI4eF38Zj3PVmAHE6nEM01sWkJONQaB+XMqZ/dD8I1ZH2xilAn1CeUGmG1KxcZe6Hq3QPh/dIAM5jN9unS/TBfwh3Xhss7xZSjWz8OdA1wz2fcXgIQwg5B+TBD28AjOtGt5zxQF4s5pR7pOMsgKgJkwvmmvgT2vuC68EzG3upVBrgfrhViCgm8fuO321FroZt25pysn948dq9i9LH+FQNBdeotLUBVTpe0K2POoaXZrTktSGz4cI4gQ5eXG3URe2hNYQYDPuOST3WfTc6/iSDeBpjnd/Y6G2bxH7mVS1bkJCSWyCpslHaXNynMWAHPx8h1nmHuc7kjx/lhAmQA6Nh+wIOoJ39WSAuCL7qnWJN4OjWi0BVhPW4J8mvC1R4qWMz1AZ7rw5L73z3jRpiR1L1p00E9ooGVIdwcRkwyMo26JAA0weEQefbwS1kJNqD/UsVVsOxaeLOlbSUXz6D77rt8SrGN+pLH1TH7E0eER45A1ufStxoDvNKImjW/QoqkRv0gH2Q/HSL9s5rw4WkKCzXyi1CPXKeClJllcgBY9FNLJjQGHIV9Vy89JkCcaVPjn/+IWxtu8NyJ4vAwWYMaPDkaSUtQV27eRynJyw6nRkOHPBqOSxuKYO83Lr6Sy7w3yU5s/563inMEfrzmtvw8bV7HymBK9tVUGp7xMnKBQUnCFyAFF1arZlJikCPuZJnfgnrqvmSATbVLxHWv4L/ZYbS5dkbQeog6ILdq+dCEIy+6OvzKSg0qpXg3cDHLUHPdo53mpBnbzzcoDTBAvy4m3s0o1qiltwMorjN7tC6+w0KTMQ6CQYPWz9NthnHkC/4LikTteI3fH/2xh9/ejr0RI7KPOYK6Jrb9a96k1ISik3/4rXJR+iPyUk1gmd97ekh8S5edRzFoPbGc3Tf2Y/mB2jvvmI2J+3eL56h7I8UFosKRA5Szy4tHpJ2cxe83+pgo/m5vmLDENwEGN+HImnHE/zyHlRT3BUx7zCqDN8B0Pu8mkLXkO1ZmbswGMEkfb9dJGIBAFYuqlbTLVTOk41WYuaLgqfIA47PnjEWT0/2sxM8pBDAVX3k/iyaraDi6p0HBL9zM+0pX0IGyxRw37aFSllWSbDj85yIv6eXFnz0/HHjOSbWAQpxgyH2izP06XBTNUPZvFOiSHPFfpGe789oGbT5z9S8I0t/jtcvVdZEleS46GwmD71Qv8gva2s58nGxjnsrxBEKQUYBUFgDPf6rd62fSN1yNnqsoJyJGSDmAkAGtE1yRnrKOrdOWCPQVFyvDIK24SqNKJ+Der0npTgtMAe9JudpIgPRH4nrEwFuhdwYi4iTjyb2aoYFDPeML5GXsve0U0G38DPVASQaiiG+huX8L5O7S8jHEC27DWSMi3FgDnlhtJt/uvFiEra0U1rIgoSgKgdPFikirWTqmzvrSilK6Lsuuzh6JySIylM4NjHAgB1PPOW9CFAbgkp2ouvExe6GpGTWV156JL+xdcWOj4Wc9DRSSRuDV5YdqI6cxVCqJXK/ONIFJ07WYs+3bsLzGLuDuxo8HwdZkfGGkHJ+uUwVaCS2V+aLq7bELBf7Czqr6FQGR4yy/bl9ACNF0Pg10wnqTcxZ3nCBqlsTGiUxZEijAsiWHsI9ue2C5EIIEYUWEj+e55tQ1PPYjyYb2lRwf9gsHifUQU2hcYam4cXUeeB/XoA7QmSDLv0LjPFmAgew9G1Bbgo2UG08lquzfkRyO5768JabrVb01vS4GBIEzeS/LR6j5yqTWxdMashNK8EEB/eaUB5LNe+/WfMV5pyjuskzDh1t8XzNrGkSTcpWDzOufTkQP1Avm1BzH2MWWjJQ/4znlVejPeio3XmVVzA12H1DiuSgltE1SISYqwcXdekZ6caPEn2WSylXL0+gAzxp0GXi9sdtaywx69o2ZYpPk0KEOzPsO9yeTQK9/nb50aE1s4jNElLnUNPEBRUt2Z8gn3h7rseZvwMYAqV7MpSmbp6pkBXNnrreeJ9l5EmA1ummZ+q5X9/aCfEdACHcjhZrmR5ZB4ZZXwjB4XwHYd3HFw/j88TS3eT4kouBmgNpgMkmhlxqpMHx6twSE1O0z/tustyWm5gF5yPDFrKKKS+yLc429bawYzC04Z84giQCs3bpxZ3sIaigm/QQqANj4NJW9hgoN7XbWHwz1TzuKF0fVwNu3QBrJSmEWM59JffI8+TWyx3IBKVyRgaj4y2o3JJa6rRkonZHWe5Tonfgz1fzb7x1Nr6RTh0r41cYRfgmHpUEftvtdAYAWmir+dxL7WxRg1lAqxOWuad807LYgfvnKkmxsoL4hlcWUngdgIk5HGzKvV7Cg2jWBQ2h2HOXQrYkONyddco+Thq6g1i3Z2CtnRBzHAf3iz0z57qUSZwtHYQvWav8lqj4IYXOBeri5qYgTnEJErEbFzkw6edJK0qUFBqz7488FYmAGQ9q7H1INrfoDHyECgZPoAv/D9R6KF3Kev30UWOaUQSGuuXlk0FBrNFXDnuQzmw2g1GEMAlCsu1evng27HuXeEkq/UX9KYkTANVxyOyzV9SBFYGRE6GsRDTbEsgZVdMwaYnL6PYq2cKNBnEVIYu9oN43pLmap6nGBBqPX+kfXwHCLnB+139JWGNrcV3pVDG2nUnfYjzT8l4UztpPMTz+D67ovf0MbnKXJ8KO2VarpRxztnDGnHglG6j/8pt3ZgJKLMmfH9lfwXQAjavSFD1X2iPXwdJK3g5sOTCo9Hht0kvbfViAFaKfy8Yid2FwvUpCPjB8QxzY85Tp4jqkZ6LacQfZoPPStLSbhTroQdCi7IaE7N3wAnc4fYXL4bjPHdrwopjouaEj0tOoetc7+DY+qepol8qEhbZ8se1BmQOzHKmBR2UtC58VuaoIEsG5PMAmpucXTgTM0bpv2f2DWgE96Vjfuc7lFvB0hFcvnXdIBFPNT/LaaiLVyqf/LHlR66PTIIvlSZKrqNDTIBBHtEDDYzCz/gHjTTU6WrpGaYo8JoVMu6uFBTGaVBH81hwL2MBh3tuKefXw+Wjv+eSfeWyG1CZYhgg8laG0T70npm3u1361fDG+ft+pXPXjV+bWSStM3KaGQsQBr3WNp8SzFgshqwwgS1+eXOL+kghEOPQBJlLq+zzou4VVl2Iled5aqMyovfXKV1SmYD72GK85xjjCmZt5sESuLO0mZPCspVCwAEd509DWU0viRZsL3+Vhekcq4fjxKuHXO0qQoNw7vLdW48vcm8/6xJOpbmjOgV8vqqg4WNJv6wlSfq1I4qismuaIJHYozWybBru9kUWEkiXoY9Y6tpvUI2471i/00fBe27K653L88b+Dc21gc0QLba9Xhq7ZauLSr/pBfRRquuCWzpbQMq6BPMgllj/3YIeTzZNB72NBN7ufXHefM2o0F1XIpAnpfhaTtf0MrVzNzcnAq69zsmWzTIOhSovVFhktfEDBt3BTxabKyI63dbwWDjqS4UV+bFEZz3mThIonRCpFOL5ylaKPO1OO6nGgvlQoR4t9sM/KjBDN6PYCIhhEymyjK2mBy3p8OMrNmgzeNB4ZXMqcEeo9tEPyS3JdKhmd5FkpOfN8eWlqWwIh0d8XJngKfeesp3o29diMQ+txb6bdDjhzq3XMDIZ8JV4OopTs0gYIntgMuQ9BY5I4/CkcMOWNYl3efgzqCbrRKTlDwI+fX9kUqtRa9QZHKhjWrNZysYsX0uO+8IsieFyPA2+3lTNZN1ujWk0J6jfi0yMP5PVgrWcXd+kGyX7e+dBuxsa8+nfF13FkJ+xkiFkXAewvQ6imFV7PSd85CAURsu4ucavYCdiizHcrMUmn+pP7kpmxmjnVVlgQqiF1YkjTcc+fDhAIhXqNkHCVmSgQ9iEDZyqXhMdPszXeuVyUJyHHQ4QsZrgqMEE7tatNYmlDo0br4CySAFteyiWq7Q02N2h3kJcGSSe1KI/SdNc8Z8VwLvSd5VWyimE1zzZ3zS7Z60/m23i1XukVExslMbORBuMPJ2DFhNigOkenR+Ln0kiUsZH/8eLYXQrdD0YITnJhJgJOvscaOAqt0Vs+9UzEWD+sKaLlIgR/ZElmSJbbM27SfAMOYNVqZCmeGQ7v4aNt3MduDKoMmmmx50pjU+o8g9DSGbarhtsvFebdA66SNGtnznkK2YUcBiewxxTPuN5ziql8eW8huboqQmEluQwjbvSyeZxL0ChSMe9svjfi1sOam6yvSMH8eQiWZ/lFWwAMIbjTyjiId6nhnF1hQSy7MKVx9j0tgqxhBDLl3UGP4DKwLqiJCYCUGFP/yxgN21BEI8foIixr8v5nqx1g4jIm0CgyR2ajgM3rTxvj0KnD80jNeG+nWVMhnf2WS7XYVcKNiUcXz26GG5k7726jVi3uI9efSZIeS07Uil5zKJMthbuEZS4eDWrSzFLQfp2qn4RgAdiBa1tBJrSlTDGBNETByLdAh3Bc5WfVCj358YP5vsV3LZs1kznrrGJwlEcUevORshzkYJ4FKZFstIJCqb5aQn5H6yRXgmlz4bAtmNjKmJbIIgAEAjgCxCfWs1+TuehHAxh+aUiDgxLLmjoSk7abwuGdU46MGS+A0nh6VRvixDJzngVK3TXEDDvjBUUDuzTi/G8k7xYzm6JPp7qg3BYmuWnQCR/BJUmSnXx9JB6gsJE9E1iFtMZOjBZxhkbnwJlZ/zDUn3m8fLyd9HUQklkxIejrlpzTxgDRVGIWLmHSfgWwU/fRFKjVQ5cziIijbUROjUnitLWfMhk9/ktIz1Dt8frnHfnK2VsUdyfcYNhQjxAHL2TMeCEw0zBP5JVoiVvHQftF/MwJww28caWD+wkeHQ5HAHPDiioThznT5cMQO4iTPig+bevGmUc2HDTtDm/cmLVr6vw9FgxyS8URIbFNzdBnpl24XWzMVDaVP6+z8mCZT4I9mMn1xLHgtOWKl+Ui17bPUhhAwMnqOFKOywpVrRNBmjM12IkXT6TO5PrjRhye9nkRBW4xQLiE/NlJCru5BFq7qs3SYSHZl9+HlkMLAoD/KDqMWkD6P6vkHzNH+GhUvCHCBzHtg0TyXhSchaYz6F9hBe+bXZ8Lq7Upegdn3kqOhx3jE2pXtUcoCT3oNoUWTBFNhjS/q7l0MPREtAr4zVzfJ26jhE0XZRWpNZAYdbKIXJPCQRsREi2YCC5epQIjKCbD6lm45D9X85F1obuZG3ERjzs5HvwKDo7qQKC0F5nOp04dUD/cO+A6pSzLnYJZlggsc9OvSQs8PQlRxBbjv4meqhZBT10CHku2JCaXsbpIQ6bp00JZGA/0mIdIFLpZIR8yNvrkGlcGY/hk8s7fDuHl5x5+Wewd9YU9o3G4xbBxGw41YPhSbn7Clo94McpXZJpsdpyFXOEY+Ylrcn2OEICzrrtabadlis+/I7cA3XlTWKWCjGe2XuPFY32fTPFCUs/67bkd80YzQNg5XxEf4R8Trlr/Z+DQ9sBqbStw4Ou3/cmWGJsyg09yhP8nkRk2MQarxmuypLPVvRfGk3FEMB7PJWLCfTL3vR2H0pNzikY9zwRRV7cwTVkxr1OFJ0drdVj98tUyLRj9osu3ibpkwtI5Dz94xjkGw8KJ4Nyha3nnUxgPL8cIVnUqPWt49qtvhGMog2hvev8yY1ROFc+LdQFo1nrafS/R3L0JwsY8lvvzrmgAwzFPvlwVE+GPwJvsNLkxnqTlVrN6mH0QJV7Wa6MvJXWYQcfDftGsG52Ma4mXjMihcLhrIyeCqcQdWmA9kfzwQ7D5nGZCxbcs7fIznLvd6E8YehRBdfJYh+dJx9RMJ3IMsv86ab3HrR6RGklC9EysemA3PPQMroMmYiHeA2ODjUES3QotCzJiMLJl7XFoZS1BLa+4OgTiWfZXuwyeFboVzFijaPa1qzGsYq/p8QAqMfeT/hkYCxRF7BY1c9voRbI8sP18LTvWunyRNTsD0wEoaqfR3dMqN7h3Z5xp4ewU1nkgx8b6Z4KWwA598vHi1Guy4a8d0drLjgv1DNaZ9yYoEhDsQT/EpF9Da+IdvSsyWsW+LdMI3SsUr/GTo59DduAsriK9CsvGwBCKxebrIrWnync9qgv8gFvB6jtsxu/aQ6M+fZdJwND+avo531NBNM0+fIDJvbY5O/LGxV7WEn2AV5x/wpsqFcQKWf/SXBbbFxmVyY/0HME8rFmeIXVg0RTFFwXXBSSyfSyu6yZo61J6Ehc3iAHfDQpBDtwe4JQm7WFmqZcAHPE5aPAxTJYfyy+I00GIz+dAL/8OFI4WP5B1aA5OHb2i+cNjURcgm4/aWLrDWh6gTVGWSfA0TTG9GBaMWJRG512EViBY16vlXVnZUuqkv1i3C7un7nRaPLo39QO4HF2iRTDD5By7Haw9dKLnt129B8f79PUusSOwUdxgV+nDXYsHh2VMIT1VdwK9mNTZwaIx41CO3ARNrqkEKMkq4HB9UdW+1vioTrWmIJeORYUGO3dpJ+yU0LGgIZVZT+zNhT66rcd9H8/ujdOmEBDJSnhbarfyYA0f/jFj44K3MG280B26c2RC9l0oNopJ7mpBbxN59+YnkJnl0fUUTkt0zHd4jEEH5eWGONeS4DpNhOuHFhWUQrAGTNpFM9QhzM+QSxepsg==
Variant 0
DifficultyLevel
706
Question
Xavier bought 2 identical tubs of liquid chlorine for his swimming pool.
After he used 43 of one tub in the pool, he had a total of 30 litres of chlorine left.
How many litres of chlorine were in one full tub?
Worked Solution
Let V = volume of 1 tub
|
|
41V+V |
= 30 |
45V |
= 30 |
∴V |
= 530×4 |
|
= 24 litres |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | Xavier bought 2 identical tubs of liquid chlorine for his swimming pool.
After he used $\dfrac{3}{4}$ of one tub in the pool, he had a total of 30 litres of chlorine left.
How many litres of chlorine were in one full tub? |
workedSolution | sm_nogap Let $\ V$ = volume of 1 tub
| | |
| --------------------: | -------------- |
| $\dfrac{1}{4} V + V$ | \= 30|
| $\dfrac{5}{4} V$ | \= 30 |
| $\therefore V$| \= $\dfrac{30 \times 4}{5}$|
|| \= {{{correctAnswer0}}} {{{suffix0}}}|
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 24 | |
U2FsdGVkX19P/7UudFbDpkq9NfFHr6Ej4jzOLQqtdrmsc2ddLlKHzJpsELhUCjssaVUINJW2z3QM89JtjfTg7KlOnF2vAI97miRBbCDbwdLIFXEjo0JrYvxGPYGo2Itls9QkqsaJZhAWKsIbUh0ORA4IE7TzmcSIljZdEU5LPM/O4Mw/kiHlbomQzhE6eUQcyyX5ReSuiXYOkC/ZpSvf38qd7uGsYah7g9eDQUq/p/gX6ZMS0jL1jfQxJPpcG9r3mc1ZPq0XT4N8cS/BBbaeWMzMDMueywxMvu0RY8aryHENckfUWPCpFIOpiOr9PuazpmOlyKuKTNgpUYQgsco+oDwtjWKv5U3Jyfz+Z/CmaSJ6e2onvgXAOY8vTbDsRGq68tZuVRffkvOYwziB1jzqxCDPIGQiLaYr/Gq0HW07DVN7EezoX8LzhzPT2FFlUBVov3R4SPfH86R3Ta0ov3+wOsCZGX+LFaSfKNFbDfUqgELstSRn86buQ+7qORCrdAJ3sjvWVmDXbMA12x3lIFhUbglCSKIftNI1rxIe4Am2mlbd9MHhMWg55nnGNsoDwSI4XHQC12CP1u3Hsum5nUDVFd1Lgr5n7IxyTPkHU1Sqti39X+/H+AxHlqmtPxu5RNp4467obxmya2jLhlzO+xMsVocRANhEx5sg8i0T8EyxCbqdTdkbDLenak3sCa5rGF84bOP+n7iWoRYk/+d6RQV4cpqRGdqh/eh1Akvq8SZFDvK3qTWGHI0JDYZPRWFpEhMeN9zURDp0nXpLN1hkxF2WfbLGKPNivtauBm8xksFDdH4sb9EujavEeQRmgACCuN/eip7zKH2IBnSY93ky7RuJzOxSBpXra0xn/NBogeXcNqMP+jdotTkxwBt3dV5YV35qjD/+dZF17mr5zLwaxDh9Qen99IwoYhsV2WL5AuhhDXNkwpgrRCLon0kuKhMC1tePUglD3J5tGiDhqT1Y0FfhpxclCHAgHERY2B6XvnPeu8zFywjklnnyj50Yq+FjjvbHV7PzzvpMmWSg6Zhm2rKCrF4YO13k8GY5m7ZA0feh0kGnfqwPD6/DEIuQ1ZowW180iEUpdDs1VEHeLzn/jsw/E0WQ7yzaAHIY4KSaOsKKInIl+ewi2PwnGvcFVpKo1k68o64oSm3J43BSUxL/UmrBnKcp1PAuMxs9IYwc7jbWh+6Ts5PiBf5Pzi2sYu7lEf9GG30mP/k4qZVAkWVav4g4iRyG/fgXNoMFfzAaGevZyytO2IQ0QDC5FGfka/6taVpsYOq1YLQeZeN22Zvy05MgI7lbmw/2uL8gKLA2tvoMMRV491P2c1GycOKfjmCxzh/qpIaKFuFN2MRF2Z+oijiKmDZK6XZux3sRsj0r8UW0/GyHeWNjDu1GKGRvK0GIK764b9iN5d0yoTxtlQsSYBleBl/g8JaZP4jblx9n4xFQ1iJskaZGVp12qCY/PUQnz6foJVUxaTTAoi7ZArQjBx7hDRsG/lzaL5fzVA5OtRfPGkUXtyMaVPHXKO3m23y58usiFC0u6LxRGYxaVeXSScfqad3JC2mIeBieCjZzCzNltuifY1j8SI6tCQ0zbL9OCZ1MgVW86mRncLaqkQhdN/mzBJDQpa7x7siIqRbF7zf7vnakpI1pKqWff/ox0BP2xCuC5ovJyuiOs42QJ3Hb/9X6s2vozEnXistYHUahhS5roEJSC40v7Cv85cvRC8uMz/CRqJSsihzh8/sqSGaLuOaxZBtYS5oC+zP+HpnurhW5ANYcz+DXPvzx2U9tEzXmz/Qil4IczEVuH++yoAQf4Eg5LLofrmHUiqP0Sp5i7D5amEjlAeVeLZ+qHxm82lSLdjY7bh/VZmY1L/duQoGSyDVelzffa8Jya4BJOIzsfd6nUBRN/Rlnw8kbe6DBgLzUnNLrtV4Uxb3PCzGOrO090YDleRY/D0xLkQT6QJJ+zlKdGWSgXxtCgZ+B7xMiBJAFF0bgUxAOSQk6NOLcxYgJM0YxElsCiwBC19dntRL4nFnP3MehVHAAGkXy8b9UFc0BIMM/85foteiCt8x5tyUsIjQ7WA7FP1Na9HotRnOtRQ7+2y2kkOtn95jHlu4WEFg6aT9+4HsomTE2/AhLKU/qNKKD6D/w05zQz9he9OqP+VPNrYzsyAya1v2NOXfdYdYJISil1thWohk8Tu3xYbPZ7STfmlRNOxmGxoJ/KyQb2AJANT4BEUIXXDxU+Nt/CX0N8x0Azsd4M+iqbkX2dugOIVSCGHDO9dKIijPgkSj/fSzYfxsPjYDrl/1GskMd2JaXIiFmRBsO5YNGo/j6Rq8qTPIMfbarOODC7Jc1lPug80s5peWo5nE2SwTVXloHC1nUni6XKgTQ1EZ7tbLKgBnoMNDXqKChBnDe2PuGRSQGRMuuTpGUzYhoIyK8G7CDw3FsjKtBhreBcVP/Fe81VS+PBR55JBbd7Bea6sCYVchIFLUdEQu918wEm2oF++mkuLn9+60sbfEmPTLhPDAEsSKAcsuyRGmq7e4SUocPGd4jFZ9h+A5VYGDHxRqDvSYO23kKcE3joLb+Xh1WJgLF+dQGHNm5f7TYl56A5FoDVmFQao3JLZRzbZE5K9v11tuExFwzwWIYlM3CIYOWKZf54ZLbAGHfdJ4qCTSLyz+Yu8OYTfLYXtuu1XbNsM6aGyIl0WJrckaA/AZVvNWzIIOul5LSm3CjK/Yvu/4gQ5g82NV9B3qY8bT59MWWaBo7Cp1HReQ1Df/8aMi+J/bWsBaihTvhRd4GeI1zqNnRgitfVOf/RCAO95UgB437Te//6Qqu9NUylhZ/MTtl8ctEHLQfiv89VcU2X7II2C0vfL9qZBaBG7HUVOO+3QG8WhG2maXdpInhzkyjgWehRGJ3kus+FNlHdRKNHC9/ADS6mVLLKV6ErFsoaBJ9cA6eMSlHOBbGP0Hzpkopw6my2FajVLH+EQIkltIrcADsn3c7u2OKbhTzaEL+CjeTwJbIGmlpMelHdN0T92WnsjasoqWZHMrt6WSlMe759ytt6sk8cz3wZk+dG/uUrL8igntTV3qAI5AqdZ6hN7wi8EyVd2ejtuF3ZLSHeC5RjlXo+GUeTJOGHnKk6j7SgyNSmzwNHUbXiNo5bb+/dOsikLJwMxcC18GmSDviqQRT7mDLbPd9jY3atSYURfVP2T8etzWj7goJDRZPAIHnv06Pn61Acxl5zTSk/Vc4XeQtzOMuKxyQT5A73tgf4Sh4bNgcCqE+ASRJOfKSDihGdpBTRIO5V8t55BRdnOWSL2xkqPXN4lEXkfkbf2lQYDxC2oB01byaNARWGhBHf3NG39UsMpzwdeb8rqxXgXxTgrlt+4z0wS4uw4o1Hk1I1lhNQc9x2rkAqqJwBsZv2UfU8lQUHBWDbvP00zn8HKxRTuljgTHT/M98OrsVh7YlOVLiyMO0ZXiU+3yTMz5I2Vt+TgMLsxEjyiVzqXSZx3ykgVTZ+/1Do07/ZgVQvuFve7UtLeiL2z0SggHUWfR8F1F7DaUAkOQrGL3MJQseUhARfCdruHrJKzue4u5HGcfbQiwVm8E6BqnVqSMx7tDZIisSa5W8pBdwWQBFzruocO8bw5JOmId3M3HhWuLAFwlVXAzwwLjP/r4/Pvek8rdGpU8W/1mYlzOFpFp4p4ZZvMUQs4AI3b1RXergZd/EKMC5Sr3jugHh1Jxj0GoaEDWnTUPVLUPPMgMnFkluH77lttVonfEZ3d5cawx/oZ1+PMkTlELm4JRZxloog0xgk4kCGMTFdXmnO1iZAWehfp7ZMrPxCCJ2pGh5pNZnhYs1eqUWqzrrQaIX7tGZaBVXM6sJnypfDdWr59Hbc/uUx7NEEYJGvAlNez5ZoNcOvnAuQDBe0zW9//WLzjXlrFXjqLChGObNbNH7zEPSf5R7HG8bb5wvuMF5YtKLFSS2l4m8SLwZhx8St+eT4yxqLvIbQXUdL1d3szbLditVqX26RtNnHe5YQ7PsGqZwoC0Qtql4CZBXwM7oKayn5NhLnVzsB6Ff7ncJTtIhVYOwX/MI1/E1fWFqYqKXV140nuI0tkpMAhKWJ6Ic334A+5UuToHfE7IO3Rbd+5jbYHuGADmZm6cG801mBAH3oG+zHr6Vfp0tX/JAAlkbYxb8xJ19oWz7iEOOcYACOBsOSJhNx3DvjkXPcJ8GU4QuZJFu0DFuGurKvgy7W9uFXX3Er8qHocdOAFn/+2V/Gkj/FLKuiC/Bf1O9PJvoXfi5h71NkG02Jm2LidGiQpXFczP9hrWTGwy5Xux3Y3DqOMViKvETRqEz8CFNB+a+5PNPg0cAlu4BlmMDQ8wEctS32er4zB4VDYYbszyF1ax2UC/dF21XxUlPFFCZgjlEfXrYF7gp2eK7XNE2HgttO7ynnRfNuhC4rr4yalzw8xOzh9caShuFP4dXEmj8m079KljR0Fav4O3sSB+MgeuOFW7Idwt7/OMD2nHl/OplxrJKBwzTzC7+Ebg79eP8D/7IgrDtIvzFp1BZk4ojoxyF6c0HqEeRC8ULziiwuq2IgQ25HKmCyp8s78pAtL6Woq+IghPr/mxuA5DCAiDPwM2M/sAT0VQFtNT4+uILMGiW3FZ6eRU2C1ED5NZN01f2RExh1WJGAmsjY2qJxrfxKi2hBDoQD8rUQUtqCKxquiWh5vt+TON0ieZXqZJjvcCtWLFsS6bXH5tpVj37K5ajx7yew9grdnXhvEn96sesFxxgSUMV7imxNQj6lybBjq4GVmZvgNMdsrzKua5k1NbdNa55cNN/s6QircIa9IbUrowBluoL5mQB3WxSWZ7dR8bflpb5GR+4+niaDe1hlqAaXwQpIIG/LFwPsp0JREyKJO2TBfgHXJEFvQRzRv+EGi8UalpQnDBm+UjfhAauZr9pnqwoJtSVW4LCamIx5DzAe7UpbZESiA/MMm7ImiHkPDYbXCEtTa34qxqVlUwcHzKuG/qEbSlDi3XJ7ftH4iW3UdNwOOC1sA3DWJsgV//NiF5hPeC5xeubQqkhoX3fAIupkhTNGSqS+GQzC5VvocoJyEc3SOCu/7AYm5YR1lhni4KX2Q2ywPCPP6zypTOR3lyLdzxthjkdkNJa2fpIPRXH4b1oYkQSsFxVycnpGZrJxN7iPqCWznmyVHTeZiZw9+4vKQ9ko5yIaJjEWuhD+C1D7b65+S19xD6UrkeQ8eoXZVd6+2OtEl1rUw2N6DcfYkHYCtgxQOGMNiR8O4f/ND4GdBNWB48C7Eq4/3X3HG5UgSh0ykVg8YkHoAImYSEH2VI0kwn74pDpvehjI1sdlQrpmSkJroyJlWMQjGB1KfLxUGMv4ljGXFew2vUog9HSZ0XMCDxHkZG1xVxVfgCKZFD0B/p898/RXx3YXZYkLinqMsFIXz/KoZqg3fThDnJIjkv1F82HjKq/UTA8466kwpiSFtx92xESNJY6hJjGA/qVOpOXBqsQiR90dr0R+wQYgVBTrEmJofvOWI0uCmBIC10C/kpfm68C4/ZDiezdTaYpzyXAMuMhPZ7gJFzGA/T7ujcDH8DsLrTxYhA5OLgOEgd5L+ldafuVg0W14lkk9bMyPsK8kcfmUztIbEFKJfx7OWs6u+q5ip4xj3icrsr/mvrMdxKjZX0cF5plG93LRyjUyRsevIs8HRk6PcxGcH/01GXo4p5VHjYoB12C/8hKTxCB8rjexkN2hA89mSLFB+lMx5RZjBA4Qdoc866reMmyp//5Vck0x1EoU2mHYS836p8CyhqTg02IEKhjoJ8AXg6pHM2W0e1aUFiFTVXjcc6hjcD56uygd/YRBUiWO3JaYSvk9VOwwdInqNaMWpi1Gnw2Rkj6NkxlOufLxZhomDSGbMblfr4V+TxaF6L7NgwuNNBxotr06fykOxje8K4Hc2gXQ2gQt55YuaBzqAOWQyvd4PNiQHCu5ByHzBZMIG3jGP/VBhp2WNBQ3uXB6mLhsab0OcTZebTIN5ejUO6DCVIE5RlOfHGqLM1lplgsUFzC/5mbcIQlSs1F7TYTQ4805ntIQn3ZVrQOs91yjQU9unFflKNV2gFIOGT0Hza6WNh1rIKDL466Va4nxBOtoDAhhAlpLTKdQQKa0q86j2M1wQ/1hN6h1ULg4oovmrRqHiL6kr2gqehFb7uhMBJgU4nCIq3p5Bc7M9YJWvRWJEh87K/ijSNPOoLVSP2ZFS84fWcKvGOH92UlIuh86H52bUx38WaN/wTx1Q5zrMNDlCOUuh3u7EvoYCyD4Qh2Bxy/H5ti14GLT7bVsopxvBq8BwyQ+ww4jQ9WG2dBEotAJztW1B02rjH6aROrJwZL40Es10iOgctg97Jpy9EtbjARj8RLimj59yU89/0Xn+S1bwcBZSLHyoSWc7y7k0DALx2EWbPTMZKciHsSeZprMG4mf1v5ggF96MlORg/gsqpcxvr59AXWDrD6pUFRH2iQvIdglZckaL7XTpQjMiMcvjrjrRgBanwnt5D2Mf5aFjHbEeyFbMhAmTFe6W4FnfWfPchzexFk4TPPCKkaFA8nR4RUO9wJdpw7yyqu8U3OPkoZSZlwZcw+JdbmslBe0zpp1uzM8UPmr6RMZ5vSr+UFXBoK5fzvGfKchaqrrpWehm6OpigUXAQboVMAPfZ0BYzDKJ+57ZN6Kz9UwvRLdFR7pXZd5nPRA3RJqyWKmDe48mo4fLs6cU0yOV/ZzHxw2P3uk9S+6jg+hhlAEAmux3r/bSZ6LH8jctUAlwZ5gZj1q00xrjcPhoZOVbg65wnDiqjZXL7lu5lLy+0kqOE+KxXhKEzK/4eU9KnM2uFm489szkpxMahL50yx5Y9zT2L4rxPAoe47q2Gn0g1Q605J2MdYadGJpT8LbjbpGNpF/SHZoE35CLo7ED8NkGc6xhaqCndnd4kS6iupaj9dhKciIyRG2bHg7shx0WUzUhk7vHz1fGybVYz8d7izEH8Fs1rCRYnJDCTVda5HQQ3Ooq6T7JXQNZXO36aiUA08neD4WWwCfyhb3emnIl0ufnvJ32MIUbvHnlVJxpwrwbrZduiSp8/fivkc7xlMw/Mxq72S23HWp1y9hjNZxIAToE5yho+rzzrAKhSG22vca10H6XJtYljZsbdCKdL8U3NZC0BTNHSGwWFBe9lFRHEJoKzGvI+fYz3FkDvBh8g1VBNkgJOTfb6BhGzDMcA1i7hYj3MkyGnkjTVjpVRRdAkwc1rVP6E0TrzaeO99TE4GjmonsAejRSMHh9J+JpXvfwVVPvpDEvTLt/Yp+5iVOrkki5GRA7c0Q7fxemRzBNnJakRasJOCcUwcfGrfGBTJQFSuO0NRJ3/9Xs5c1ehoybYG0xBB1QQUmvR8sV2i3TiKhZoaIQ9yaHMQ3YXGYGqP/smYWwAAB8O+7hhx0kp+cC8Thu31GzJci9ONtnTHkknCQ00VX/eRlmsEhrV8Ut3x/ggKilwJbPoVV3xO5NMJO5VKNELEh2+B9yfA+Yq2hY78943ql1wo2Y4/1wBlSMOXrGQHcaO7l5c/6WHhMRrcHZTlHxuk/KS3v7ftDor0q7YMnz+PP+loQ27/PpczGvxyGLtPu1uj4f6XEPRV5sr854RcAmylXccRSqI2XrOLRLzII/Yi+TSwFVaoSX/t5TCnW3RnLx8HCS5zAqzcCavGmwvkxoE2VQg10dh0uUMXcPMjTLaAQYxpRaSDbHW+F57hvBxc1hPiO76cXgVJUH/i0uMSdOpCdId0Tvk/K3mhwZL4aqiI/ABT+NPUlQqr2JFGNrNTUQfWiHZ/2QR7YBL8xCWJc1tDKpfmbICXzemkOsEHIqZZOv9n4nUKluJ1PwWFlDK2hYtIUkuJNR70fbEVLjGj8AemUNWF2M1x5urTEmyn9Ekh6SPiiwGMV2y3fIcfInyGTwBa1Ip9vuIim09/0ZQFr5hyeYzbzsP9Gn6dCW12uVe9oi4wGaTgnki3rG3uYE3sFBT8DA5C8fKa8q3RdsVkM1wUWW1fPs2muaTciUoc2KEpg5xK8aeq4D5hzCsIdcXHCYRYH5G9wIa7kOvMd81kVHyuAjr6Oz+iYeUEL31eGPxuTHswTs/LP5srH6ERstkpW54sK4XJhvXz8JMJNbv/PFkD1CUqQG3hdJ3wopQGMBTrBpY+2yn3/85VY+sqhmpw/0tanO41EWAO26i+jDf7Q+IHux5f/SevzKbPOzJ1/jY0IISKXjqLxqKDf7JqF24fFB6nnDwkiBqKc5h8LAqzFBc5e0kRU6Z6/VGQokGgfqe8HP7pJA3T8ofQPrvDapF6QtxjNquHuh9Aof6fX5vBzCT0KvEqB35qOeNOk4iDM4JI0bP38UGbEowJRjyEPE+MXmLnYUU8+UZATFchddlkkqjoMBypc8LDgHKz7ZqEvUcEWH2LfQ9hYbyivYT7xrpWUbYsfmPLd9uwipoPdYRQkCFGT9NzPLXTsKAz8qpcYt2E3LXQk+KhTC79Nmebi8bfinj5dBCczcG3EzUMOBV1t0cW8VmQc4J1Lrb8UJm3Eo3I5w21npYcjadqnuSZ8dQm9pk2VW+tElbZKmudCfmIPpHYbZgB82QuVhfUEV4GHY3ZrHOH7hyIff4Y7g05D6nXzcNUXviCMG5cHtbWsvbH7zOdQR8lWrXgVuFdKu9DqtZvNk1iiduxd9+BlHgwicWn/Oz0LVJsbkHp2IiBxxEAqzG875XUF57WfbqhazSPnyffuXqA1zdUvB/Irxh840psGBZqOG7kuIyG4F8B30VC60qb+yqtu8wMogxW7U5vezepf6BH1uwKhI667kaBVqdpf4fNGD5aoFxZIPdX++rU8agiUC+yDL/J4TEklmjGNPx/1dTNubvXI88ZrQ8CG9VPCY14IJ3I39pKCfhChmI6e8LDgUrbaXykQZkGinGgIuqhKhbD5RsNoSZ2nxeOhrYOMIbLjFf3yX/yconvl6r5pCyFDiELSht3zRoOagPjBt92d/cFUUbGHyZxzYgMFglVGxFb41UUaVzFTkVHfo9kceZeXPVmjzxg6Cu7zMriy4cDmuaTiIeEYzde37lvvnJBRo7TTvJye3bOVM7YYGEw2np0BhcJKW8Q1S+BoKEd9XKFyMv/jinRPrK0GbsomIJhO13jOpN0DdkiDVU69cSrQb3kTsiRmLg6Kl1zlHOVm/1ebjB534vsmaqikYEI7XhY8ajm+SNnOG+sor3njC+iL44BjSAxPEp/XHMLFrc96Vvpte1SeuPYfBJaeWNc4xaJKCOPk921E7icCK4Zg9yMoaGYa1mHgWe0d0hjQte+4uf2s4czJYYYe4PNbBUrf8Oe+X8KMJqlXJRDGLoSWJzV+9CRWq+G+xMYxCWNxLmUX6YY6Ah4qgf8ZFwtFfWrU9BVEMWQR40Z6oA60p5LXcIOtSqlC7kCB58iaFdrhVoOR6AvbOKq9tJbLezCF5uMjbatvwrQ3q8qoDQk5LZ2dFFM+NAyJpXSoZJqTkNC8aFBJ+8upnho+ivGsy8xB4NLv+bJZPuWcXNa5inmxCZO00BRsuKZu8drE18EyD180luBqNtlzQxJwIBA7o6dy5yn1uE4SvPqCwp6neE+lOoAbBVqHyGiDucZE+uuEA+ZClg1FXk3rp/bR3KEFZE9YEYi21jbnhMi8MLpb9sDGJOGo7BkGCGYi/TkWpy2a42LiZ6ZsPN+c7tzNx3X9U49cKe03TiTlJNnjrTZsx3w0rKCP7JA1iCj5sYORciMk1adZ60BXCGpXN0DQLZoafCOJ6jsJgvmniX/JA2Y2QYetgGSEqkxmFvEH3itLCMBYzuJ6xLEt/5KLlsUesez+SwopOQ+6MtHfdirVNfMjR0IPgWXsP2GWsFtOr2I8SjkKiDnLYnfR6y21yxQcLQy6gT/wj/APxhLOECJBDshLY/aPgOlSVoLxhbRrGMB/RpFuCH1DUmKX+eMgEdaEGt22pjXWp31l/i+5VzrMlQHcwTe+IhpqLPe+w0QhbhwAHLIWZzVEsfTq3ADlSK8trZgbXnSb6Z/C04w3dbRiNFBlqx2CWfMLsOeRAKePp+sB4jLdAWIcLPJLD5hJu2WnQQVBuZvaa9tsUCRklhbn63CEtktKEIV2hqL+mUkuS5vKf/UDZiIDV2mjRZfy4z1lIhkzjz3e7BAqMigNd0rBubOsDdr35PeCWqsxKnHEC6Az7aRmN5ZlcTiZpyQTOtfaqsass58ISwRIsTvOyYnzlltc5nPFoI73XZ4gfQEDC708Rd6TmTh4WEvtF2PI+DNkr1bVupG4jUl2AujBdJ7d/Qb7KNQ2cyygATzVMqgsLtCp6E9wMpZDxrffYSAiXOoYCSmm4qo/PCt8gIl3yUKFgo342E/a3HAJ3+Rd5azdi+8N6T0ErUdV6JNHW7FOSVE5ljLoQ5vM67PUKbPb9G53IOiwrNlzFFv0zeIZ8bvAl1a6pfOOteQVJ3okWw8exVBuUyR1OO6D6fH2i82JQX43zTUAtdU8HX8t53Qvycn9aBJ+FsAypNSgtJnFdFb84jYLgjRpZjCPEieWwjZapS2X+t//L0WuPcXn3445pWGM0TmRBYbx3Fx/IRGT8CkDi+UlppNWzqKXs39cEVq9Oi0Z8HPcGRuOkjtEleh3lv3F195nOHhMIVqjHD34z3jIpLqAC1lO8Aj0GhZdKDkfTPx40CbG/U8wQk4nF4BxP4z9th9NciseOWW7DriDmezZvrmLdaNHaPck7jeKPaLlIhKkp7ooZ1C9+fyVWZevrLkCb7U26knEw20/8eaOHkWJwpZqek7TmAjr3UwiSlwy7uzu3A8/bGUZgGcLNdZLCHVEwnJ9oxKKk43SwBNFcZzqIfjj3oC5QN1+gmTnVfrLoZd4dU1FKlHHFeQQBjPTcU7cEs8U1ppTmzjC86MEDnGEPRSOcbLgTO5pZiSqJAkraHaTYMzHCv87RloIxMBWLIsbV75xuH5yNUK869KIODd4TgLfmt6lGy+4wGv1S4GwAiithVl7vl6zPW/+0hWy39TOQ15y4woL6FwiaNi/apTFL5u8H93ON1AQbpn6gYYRjGqvPPL7U+WD30RejBZlB09d2dFf43TQLLawpcD6qLs9nihlcUJTBPFLvCSPmC51R3aVg1E75768wwqDJXqSmu3C6kbbxANEAejgytFFFKIBw9OLaiXk6mX9MpuzuBl2uzeIMwb5BfHLMvgF04fLAiGYjLkkXuRFPpPoisJd65Z9uZM3x/twjdOpp+EJt4303iIlpTGkT82D34NMod6Mmi3hesUYNfz3vMRr84/LAtt+KIAPcBnwRluWiyt8N3FmjYiNBJTXX1kwPRuxMKOkNXYP7gp7WRLEo6I6Ubjrv94Q/6Mcu7cnQ6ZegL3DcQQQHUx+Lv1e2glanwGG5YMVwxrgtU1NRgEOajAn8zxra+uEaSjHzFHXwYZLqTJrHNbePsKBgO6nx4NraM3Js+Ff1lfgTh5D597Q8X96pFNnXlAh9jB00xUpM37PafRqYZPYNjRCRVZLbHN6N2uLRKP5V/5bjyfKopAOIqEuu35DYK8fdzX4Pszcuxptj+6ehG+gakZp8xm1rW7Zh0yT4JZDmEzBfGfcLaYVWqKuIokeRhdaSYXpUuxdjRi/ok0hhxKU1wlmtXm5+Ca7p0tIuRojDf2l/gpav+7EyMnY1QgiSCetJczG0mv+uNR3Op9dolSUiHIBULlvif0Smq/L82KNBVzaSbq3u5/Sm00gzjhYiUemRVFceVmhR+eFidxwKucOqgsgGqkV0X8+oIKckgXuMTD5B/rKldzBeF15qrbaOzBYa0oO8EWJc3GPjih94Njh94OTnV3X8tf4RRDwqN3o5DAm23J7ehqYZyrRIdvy1VN5eG7MgusrY68SfVI4fFYRMSCq3z3OZNRPMYKfRv6Uyy90ZPZS2zNT2LQBRTiJeLZEzX5tPsho8alC5ue3iIUYsIQ8v0dc+XTOHpCHdyg1eaPFBfuSzJLmCI7XVqNfOdlsxMlu1xZJjBaloxQzDlZSz68gNLxDFMhc3XN2s906Kz5LQ0f0IcHTGY=
Variant 1
DifficultyLevel
701
Question
Simpson bought 2 identical cans of paint for his mural.
After he used 41 of one can, he had a total of 14 litres of paint left.
How many litres of paint were in one full can?
Worked Solution
Let V = volume of 1 can
|
|
43V+V |
= 14 |
47V |
= 14 |
∴V |
= 714×4 |
|
= 8 litres |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | Simpson bought 2 identical cans of paint for his mural.
After he used $\dfrac{1}{4}$ of one can, he had a total of 14 litres of paint left.
How many litres of paint were in one full can? |
workedSolution | sm_nogap Let $\ V$ = volume of 1 can
| | |
| --------------------: | -------------- |
| $\dfrac{3}{4} V + V$ | \= 14|
| $\dfrac{7}{4} V$ | \= 14 |
| $\therefore V$| \= $\dfrac{14 \times 4}{7}$|
|| \= {{{correctAnswer0}}} {{{suffix0}}}|
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 8 | |
U2FsdGVkX19/I5v4ZmbN7XaaZfZs0BDj+4sg+1db8wma/txuco01TX6jleW+RNmH6MxLlyj/5K5WxbrYR2HQwsyLnh6I57tzrCfmER0T+1uLpMt0D0dOuSq7ga35Nkav/9tKcMb8hRgI5k//9Z2Y9L7iUxLEn0VytxDfWBNLI/M0nA7DE0wWvPUWAGIak8FSI0Z+jzNFpE5eMCC8KrtNgpYgaLXEjOyNeDcI24GLhBf5CONV327Ar5z9Jl0F0si1uB8PsDfhRMb+gVNassvihfb5MWnGvt7NBMq1B0DY31A265X4G0mNq8U38KFfekNG49hqQeJnrGkKZhIJffo2y7I5FU0ocPSavtZDlH5uuE2vEG/JuOwk/6cIGHMYQh1TVMFabhg609/UWW75OYSoV1ReKBEzrmE0C30CgHvOo0TyksUpDJd1su++tFNAOajCT0IlW8wYW+YeLe9gswuBy2+DbFwUvI3oqAtCOBt/4tskw9oa/8T1hCU/8Es9E0PU90G8PrUK5jx5E4/4cu5a/FfJsMkIefniy6Yh+/H3dzbUgSsaIfiJMFxGcshiGb7JONjGMoRtfKhpv36Awx+Y3oAr5FPTe2DGmUQCdh+btbRcG8UZmisijCNuT1P80IA8SCZWu2SMkcQR97u223I0KQIcB8rInqntBQh+jmiHhnw7JZymOnbtfeKxIpMNM9lUowCahucyxTp9Eo2IPADuI4G/Navr4pGWSNRbgXLrUUMkCG3S/bxDBczSFLmmdumxla3yGE5NruKSjhKcB9EIjTCxNeVblNMIf7JKuGm80Xen0Tet87A3ZIdQDjWI3QIkp28qQ4Pdxg77NZIJghsT0JbF1pkHKtC44Dd+UaTZyGvLRKi58NLQTsAXyNFPvRyOIIuheaeuzdwkLM1SLUto4KXZb3b9m5DHgH+K2uSzMN1fCjzebMtUVHLBk9aRV0XQa90cn0ARPa4HUZdvGmfhtPWhlfhBqkteDMuDchu6gw/vgL99rCV1pmpSdiujuXO/XF97HdFxnK9Y+cHJlbjq8Oaa8/luXXjjnpYbvyQg7txCdsEgRFBaOwYlqWREjrcpVa5kMDe0l5BUq9CDhHw3LS9NMjKMKm2i/aGA/1dyPKykcTTGpiaSahSixM3/kQiWc/YAvgI5hWvRJu+WQkqQV7VsDnhsaQO9mOrX9tZHMKKve5XSCkSgHfMYAQyCLj9eSASxOlehwCIxc4HHlWFMTn9f3QVAM5C0v24/RxMkapK7NF/ToizeY6Xt6WybVDV/Wqk+2tSIjTwRWiPgZJ/SWXTKuCoFbiLj5Bu/un1C21NuhsXjTmAYMeEtn5aNnDbuZbLWmg2NugUTjuo5jopGVBv46uXx2UXtdoVOtD3NueR+j4qk+crzuB1kGin6be0oe9Osy+eJqAd+6GfoV4zfgxbVP2JFJhzYHFZ0Y0AiGRrjnf4g9LHXpw8JJiHIILzJwUA0VefRH4eqcoWj1JmAMpgbZIGZQFD9dPlVP7yVagFmvdnebhSRr02QuzYshZ6CmtoS5WIwTuTchSXIVRwk626PltcpGiS0qk9qmSTXCGiDyImj2bxzXXiLDfRx77GeWBywv5A++fkVBU7yf7AfNQUGbJNV2BfVKcPhd8pvJS+vwKUsYbDPipwzFFsUSzh6kV/xNGFLNoAAaThW+qPoPGwPIb1IN+FR7pChVB1SpF0Ni+VEqw/BhD6dDV9SnjiXRPeAeeqrY5nsN5814QgzFj0SnBVzNh3lRpTBuxznU5xZHB/en6kzXAez6exDGt9RvBuS0Rm/0He/c0SgrGUKurE7Lrp8rNbwDWvJctK1UcHlJAaE8LA8QIdC5qr7t+nvD44xbUWBYXzreZHiiXqR0iMnOam/TrgdJQzayp+aeq9e+nncsAo3omv+u8PdfvrohUf2qgHSwoUuDwMrXzNAqpwIYk5XrHljI9SLx1gOMKAfJcpbdudVTPszPOEU1NZNIdXp3cSb9Af5JM3veIeS4wuV7BH5dGBwBihOXncid+POIkUFNubo49zKBwEOCD6fLBE36d2x586A1lm/9/89z11MO0elN3mSOHuA0q0MTz9XWye4wOe8H1E7uJkJEwbpYjmlTdIIxTAmXcVxLo2dX2QbajVAOLM1iMyl3Kab/jAUdSxdET2/5P8SrCGnZoHete8DoDSpR9zscCN1cEVuzqkbmzdh1ALNuZV9KQY0jlPHL8le6qmMAdMzdxTrU/kg7/KKEhrqgLr+Mqhk5Q5aTJV+X0Fb2k/h5aMj1P8lDsRnyY1Knq7V491WdzjyqFcbRD64WT5+uJTkAqUx8R/VcusiuSWRI/F8i6TUy+/T+JEgQkA2JQdgGvBz1L8wxDqiT1gmogc6w5JTzHF2FUofzs/Z2yXnXV6B77cIrW8heZl2SHmZZ5QvL1SgXvvZ52/W3RDGLnlmvIFxOMwLKYkPZO25N0sxAIREVBSYMnsCCvqnisrG4n94A5QNx6t5uYw6al4fmI5qjrFBwYKGjiYz5KgeQpfjtQYDPbhQKSAEVLvQUMFlR0RVvEypFNGDj+KxvNOQmgWgRyaBEe25wHwked9bPqdfi1GGhY99baTwr/lrznFNAmBfTroqofzXYJEB2xSkTcZ+8vGfy15yas2gcxbMGZlmHCRlrRbDhVeuOO26z7p2FzGnH5U1pFriENTN1lTgCvITYnOFBgta63kFqgqdFDYoLmXnyYbK9rYq64gujsgSgX0oiqXHH5XpG6VVLe/VewyAQHXcxIYsmNShN/NSz0Hh9cYy0OowfM2rRMideQpZCgDfmec5ZP95ArZlJazgVbvkx7X2IkFF0mzcMo1UkVjfGsdcxHOa4R2JWNMOZsTe/8gQNP66LFM2lg1u6v6ykS1OiH3f7xjnpM2JHK61hViUaYo0tyc0Nz34Fdqf5pzUKii/ycLnmObf3TL6rHdALxIygNIGugWdUzXR63M55+MPlLbhvb4NdNn3QjWw5qGNw7R+fE9p+Ko38IRzD06DGWlHFOIFMYEVV8ZHyOC1nIge457hytY6iFcoH3Mntc+AkUymY34MgwQP/Hl6rQba+J3jENFawSO6MjImC72EvO6D3gANcruA044CV5FZ6O6vqFL7Ap5LSYg2brUdABMrBnaftSFVLz+bDg4d383mPN3y5B2vK6l1bvQbX0axkDvA+N5XQk96m5g4+GJrLGrKdghCinIReLa1vmv8nuJu/+l5xfvDBwTJjrb4P2reYDgbNe2oD7w1NXycf8fwRX1Gq7KG4IwL2xIPhCyvXvJSAl6dsvKFPL2Wcp1nCRnbt1LS0128vPLUrb/OKMI+5FtMfE1i7tVJFBLB8Hfd5GYo6Am6PxUkpBEdNtq4U6JAJT+E3hhoM+G76NLfg+B717wc/5EaF2LDbNz2KdKw2kkzvNeyG2FfC6ViGG3dureFJth5WW1T4aV79+7dBcBlvuN/a1rKSw0R2Cx2mvdoAb5Ra6uZsgwGqikiavFdlNGRqIhX087J5ZQv3VTxleXPOqAQxK++QjoRWx6HLCZ/OG3Iyze903q5LwFpLOFDDMMOHJ8jA9Ermd5itLvSbE+7WgwUSBRhCW1Yy8Q+9nO5yfHPH9KA0DBOj6GSi7SiS2hNzdC6anSfU5okp8RLt+wNXq04l/FM2y9wjM01I4Ot3AyfWnj+ad3fJGo1fy0hvVVfxyA14zVcfnRmGHvBzMl2onoGNa5AskrXy3hpyoQVtktO7RBcc7eaiMBEC6sjguU2A16qEmiT+tARuel6tzgvqcGb3ynxCLQKqD6jFmC0TE/eBN/sb0QxzzdQl7ncrMUXly76xPHqNOCH3tw10aKah/lLQuqqORb3WToe6zx+J/oJ4P3JSeABcu3gzQ4Cq4Klgp0uFohzbe2vOIVzxVv9J0JZthY8Gm+9Twy4pV0v51u3y8uGNu90hO2UqN42PkZO98RGd/TDOqVqaaq/Ejs/lemqgc0kuYjMCn5Y1kw0ne0jhlDeqCSkx6gjOoi9M3Fb4oGYO9VriRMoHzTKFe12T0pOhIY1Lvm2/yIjq4v8FgtCAYCDjL5izF47wwWINaAaZXV3QDBdhsdQq7x0U9VsFVwZRudSY0tf+XLsXvKWH74h9CP5elc7/C9qpwmwxccKAgGT4mHsoVvfjEQ95OzVAchC+YyXvXJ4b8smipqApdTQ2g8vOsmgPB4MTQL6hnwE+FuvUIedYunA5NlKX5trT8dPfCqYodYe4z9kG7SWpn6i9KfVJcvv2M1Czma9LDCR4c/OlYKasHuH0xk6LfjhcBNTLJsue2CNeYcsR7pU4fPUcj9ChdmJSutY31/2vakjRyp/TsyA5ic8K30rx/iUFZE5rZSqdcro4TN8PQ12gv7GmA+Ohqt9N/gbgJIbgQ8WJD1NjfFJ1t+y+MsDedcTkp+ZgWhIwQagXXlGrdEno9945RMnkdRbLR7I91mueqUqR27ow7gfbzxDAWMLAFTdW/DITiZBG8eESMXUmnGIqkqBLJTtqDNgjpof4tmWngjxq717UjhT0aTZ1EW3/mfjxcDDGjRAVq91FRiU5uatUnMcpqKGQghgl0y+Jl33cPFGy2xxOevmfnn8kn0NEPlKM+NPhRqdrd/YmQ22+ttf7pmL/vRuq4CZ4ylA7P/58jSTwWlEYeUe7wwlfV/I571wW3nd2/KQRsQhfhpX4E2XJuXTQsI5A8DxfJY5xAeSVVF8qWyOdM0SdG41Y/G7biu8cbb0LW1lwBftta0U5GFQVQQkAFNL9nb/2BbGOhJGIRxQUtTlZOq5figdcJTNsg0gtVcUvGtXosgwe4PuLrPj7JT2w6oGPCAKgvH6YDxwCxaUHKVf4k9rlwaKCW5aGbf7PBly6ngwG5gvFDFUF5hZk5KY1iR0jOXJvZlCb2eN8lZtXJ6MeHt06yiVoWiidv0rZviCHtoJSmF4IzVzW6qsv8EMUdseB+bNZD7yZfJeOfX+4lED693Et9plOygHe1PVqcJ/3BDZBhbjNw2xRNk+4x2S7C3Jq5TmAe0hFfDwZCZm6EKMweP+ET4JYLWTXDNlItnKjUsFTR/Kbha0FSEhl3tJX6IZh6dfINpzdVqxgg8OWwY1XqM+lxKHRKqOo0h5MtjfWQaVAN1na/t8vxzvvQtEl2ZCqDwHKN4rtJTls2hZl9ZCnfvH7U5TYpPurFX8kXnSzqP04ch6+156a2OI/Hpt3JaeS1rMtasPFWkFTc4Pd63/aAVBNOit3LUxQoNdzASXebskg90W0AuZq/YEd+sTUvZqMX052jmVjxh/MN1Po/yZCFbLsEqomqcxmtNGkV4e2Jo9iP7SauzKkLtZW1GOuVGOLBwmL1fW2HnAdsur5VUyXRVimVOd/jxzPaIvh6j61ImbCa37gT1z46e4fH9NkmuPAE8yw7AJJ0gWABo8sk2c1OG+ch0oYsEGGE/yq6UcUwDZFJUfwREcYYh0VDj19fXGgWj8Z73dTltFuMOqu5fXlbg3X0pqb9wGHwxX9Mq4f3gygAWeiBfezqJtI8GFCmzYMhlqYC58uNBJbbTiWxpv1qsoprRML7ZQEpJv2UIV9PkrOjBkLysPeFRFvKynx5zlhDJ9XkiuMkGIo9m8AjnBSiybICFGNOqwQwuWJHBpP4HQwSJeXRz1lg86UPkM1++RS+m6Nk/yCJ5YarzzVtKDrq3ThuBTcpRu5dQJVdNLMabQ7TCXMl5LcsSMA7URHi+g6BE0kjAYBTl02YJX1/Cq7waTbxc5LQoKFkcvIIe4T4IWQexdmvRVgRs6Mj4LOePLxR0uMor1kd9qGadoSot8JqJmnoH55oIUu/O56TSVMC/nzZGm0tKGdE6zxQecNIvq7+6u32+8FXgWia/lVmbQD2zWdIyQXwqUv/qiecVtcNC/d4H9Vc43m6FcyFFomgpRqrnFX3xWK5UbQnuqIu2TibJbpe50KZQtlc0HYgLtETeE3wXmN9eOX/uJ6ocPenpVPEzWf2qz1A0CmFojR5+X9sSgiLwewuGSl54z+rveT+9J+INEZsY5Nw6K67Zk0FVjQCTaR6mw7H+6KY6AdyHMnz4dCluOlQWcuBHThwcySq6mmC5HVfNU0S9nrU3MqJL+pb0sU/qmu8bLjzKm2qb8/qKRI20ZGWW2J5ZZiDt4RoL5UVkH+LYrMNN5nJt6AcU9eRKV/kzocegPYhlWc38ILma3g1tpzhzEtlyMhObEIdmDTd8iH/qVU7lMcun7faxiyuYwNX/VOUnV3r13Vi782562RJLow2tR/G89PwjuoSRZ9m11NLr0AH7WOEs8Zc4doWjoq+5uGvrLm/8ZNagdpEv7XFO/RPtwHlaDjcNuOYF7CzxLhZM1ZH7eqOHl1q0DeD9c0Sf67noNGxljEpIbGHitI4dFJCfQp0DIM9OpTekiiALyVwgL0eJMnyNZ4umlQJG6+6Egk0SsIWCtyYmgJniQiBFe51skE4hSi8yz9/lzl2sjdPkUGnN7Ji+AL8kNiEQ80/b7EHP7Qj0TtHl6hTq5iEsjUjFDxERVlr2/Ovgietx8uHYYBaaxPsX+udnATBWWAaaKDAMLvDFrp8y/A9+jpf5pOacXb6dEKY8QGr1rMsPagFGRySUX0mbaVFmM+3V7xNoQUN4Wu/ZRKRENBoOGrsXtTzCN8+m8+heNIjnP7kp1ZcHI0j043ATN5KW//R21D8C+SOvkQWoVlSaR9ytHHd9OLAdLqWGDLIdeDiV1AOZoM3i3sj+ZuBg6DLNWw4vKsqyPLV0zJC8assVpsRNxwfmasQ6BPIIwh6+Z2VKc7k/qrt5F0HDwAr32pPWX1By1yOrHCQI9unTlJUdTeDY66Poiwg8PeQaLc3z/0xno+G8xmsahwhs8XIZBZekOnQZuTPQrCWhGJrj2jZpO6UjXlBVLmgla9L0Py/TLZqyHM2c2a5WmBOUEXY/6TEMNC9TweaZQKB1ow8XDBdnC8Zzdmyv9oduMFEWbE3rB5pYt6vSOcTCLASiLKp+ZcrAkz0Mc7zwYdOWSdQejnTsuMUyHdXtotpAGUJOXEwuHEi2Yo2nIljoPc3Y7p7hmMG54wnuw5B2dt1s3ydNpBkYhkVlujuygyz6geBgP/hA8tiW+5RFBT///lha0NJzLgTtYpRyx2AjGcQ0ePcvK7Y/TrLIPGfgqx/3nKTU+u5fVwHB+UIa4SfTolg/OO+PhB3/KwkzCxFpGyXl8YeKDH9w5R77wi/fFEpmNJ8AHviajsql0F6Jg4+x8Apg2w1n5tYUcYOj2SRwn6OrRJx/CYDkCqs2sF5SkFmoOzt9XY992YU21vU7qXvL5Hoeociip2lzVbJy/NycgwX5SjPKMmHIOK8Qu1MNrlmqDNHyvLfxE6Y2NVjbXqG1NLrFJervCco466U7zcPHR7KDZbn2a0ghYu2aIyKVHkJ8JhIMMRf9VCfQmYYA9SUMOFcD4rute9BHJ2C0uo37HvTurS8y36VZ96epH3IvlzilcE+A2WkTcvagZqiTS2h/DpPdeY1nLKieXojWQbAA1mB840TLeCFhrC07VeVca4gpWaXWCjO5/uCI9+V09teP9v5ndY5We/3qBJTt2ac9EKrc+t0DBlCS71NUnmREe+4XzNnru81+hZALDkLPkEsf3Xi809xeutFtG9cV1meC4taXuPTrQIjGzuy1uwfM4inUmb0jrHeTFTyMa5kaTEznT4MZfS1z0oblBH7HlW6fanLN9NY+eDRAKqn25oPOFAIarALcvalkHWhZ4H3+S25cUdFwnrlQFCk6C6ItrYycI+3nr9ja/RjcgACSbFn1iPXoJldG0fLJaD6UQAaIqhvigJnrOcVBcsBLDBM9tHJBon2KiPCAVCVVwG6JmrOXzEBe3+A/dKm+Yvtn3jQ/qleTWUi47I+iN0YnO+FtCLa8m5Id9FBSBMymdB+m38SbDZkKeh0fDIUGDrktqDX7/t072XoKL9UF7m/g0ucoFxo7wHCiZEprILIrdQWDC9KBpAYG5KFQyfX0Ii2PkPuPlFiS0LBYlyxsIhzXSvjYY7XeT5eguwOOLM6V8SfUx356ihaCfDdWzA7BucFObclMSRPFLEhcFiuMq/x+A+yYUuBg+YQRqZi3BDZQvtYM+gqkiO/AHR47rJbYbSjP56/287S1dGAi9zzE8Z7ytCza5QXRoFizq4IRFbDRS0n97XPdLWIkJVuorjV+6VjUQ914ns6sQFEimOXyrMLIILIh7ge1mGR8lmuUB58n1QPCbCzOjwbhFOiVP/hH6aKC5Om5EjyyOr1CB+fg28hZL0W7AkLUou+deLEkdae4r1scIl7b/LEkn1icLOiy2heJfMsASwH+QSL5VyhRMilZZdvVp5KdKEuhHZqzdSuU7SQOAy9sMM5JGuPrr7vHY0rq9/7oKf/GelUXhbQNfjJ5MAMdPuCS/H3mQ9bxNvhk8+vT9rsKjBhHPrp8fzFEvP9Vemz1u7njicMbK1UFnx+F7NNozyodyvO1uhmYUmKtEtOC/S/Etj0N2agFC3U3TZq1vL+f3semJC0Xsn2okzj4W/FiDcSXNLAAzjZyL0MwLfsNRE0SBasm7p5z2njQrZyDGyJPIEIqF3VoqLGCPs4/OeO0xbCqwYc1UK7ReCyHcgrhyTT7WDKUU5cuPi6WcIJ4HmvALXQsm2Gn19pmIbHMXQSklVThdN7m6XkkaYn8FfOQVIVz+XNznVYo2nIHzuQe+z82GJYkwnnyNp3YD5078y+CeI5fbWFWr8wKvgtAXjFLRGkoMp5gTq+7wS7LDaxRfuYDNpJvnh+hirvaR/sN7cTW5jQyYmV+ohZh5/9y1ahuv67maksZmqGb7wtxGCvjDGCo/DaV3OoMkLUMySSUuVNcn2CV5RzyOJNmtB7aA0kZy5xms5vcoSeW9YyVUp+UC2jHFSt6MdofCQLoOMDxDrntzBK2FJC+L3IE49eI7VTtQWGZmkxM50+aBlxisZZdKcYdtTVvtyYnZBoJGoyaH8WtJqRvZ4tpOmcZnD1cz3rPdHRmv9w088VfK6fNviikgXSZuNI+sLCc4CrCccABjBFBVwh6QQ3I0szThatJDsa4B+csSsfrqyEo2glHv9cWuLr4mxd5IjILgP2q65A9D4dlcFLF1D7PAY4oeB34tR/ox3BNrdFHrcFGRb/l76NA5StpYLxXcbSW2KLnu/RXKFxxoDB3Ls9f3HYDVgjmKdXX45xltTzZ1O6W364shguI3j3EPlR2btYMCHWd8IO916o4yOU5TByih9yzdxrU3OUZX2n05uz/8mZSk8BbI+33hLmSC4hDDLFIHfz8JKBxqCrzhY0jOg/tB4gzUq+XG6N5BDj6SiW76JLjGJZLG3a0+fgP/dgALRzIgP+7Wp32QUSnpjQQqUPArdZQfqtSwDWVqSrQVfussfGoYq/PoB3tepQNV0LXzBAcwBubm6tihxf0neaxAzAxD9sLr3WKUvjKc0nnCeoA0zUEpobJE7sx1EavTA9vM7z/iBmROCB+biJE6A27tBx/PiSUXHV5pgHtRX2IvDzIOPYEW+PMS+Rmy0XdgHpzq83qdikAuLGJaDFGFikll7p9TmHZKknxOKolwLThjf/B93fh9CYt8AafJiumCOk93BJc+rZsTNsXLO3oK0LnfAsuLxyY/JaeT5afsEnXUIDrnpC09ByXQMx9nvBfNG01OTYAJfnq6t5jNP8DvQPmEsSUGs/mwFXTuY4ho7OPZ338bk7Bnx6cZnYqNDZbLlJlskFPyh3twVT/mzKkn7u/tx+TSc9fyqtuPtsSLz/Z+s9pT+jOt034Pl7mes20Xb3VKu11dq34c/vEBv6ebTMZRE2+c5a3GYXiCkdVkR1xBB6m1naSV0zXwI61B496rzmu5ovpSDyhkm4Ji5bWdaAzZU4/rSdajPKUPNLGVZudgnoBBP9tifYdoBpuc7hcU5HnCfJJZYppM8QuI9VGL1RSto9PDRNjZg2szqMdPhB62N/Pqwl6mHyPSP6LBrYyeTyPCnCOOQt6siDC/38YjDgrd9MvF5qPsQ7HMJlrRHnEW4qStPjn3MFsmfkElxNX2ZS1SPhsf9nDzIxB23ouYQrxAbwM75SvTuMPXvvEopJ5Ynovo942N6B1jv+qDjSfAIQ4hn5V6J3yvOBiYk9wqtabeKS2lmUdw+sy+kI+X/dOt6M6PhW0rqE0kQos2SzxiR0AD+mDFY+VRHsqKAIs/f5Y/yWEUZaFqHq4jnsfoaLK+E6lIJNkDKkxlCjti5aRlGddddgydkQcrxifGwH+rasZHpjR82JyLfUhp7nH9wZR22Veeqku/ZqE2cRFRGCsCzUIkGyCaFAgCVnDfxAH+hvc0as2kFu7hGi33T4EQnIDQ0p/fyvSNofIgPExpSH7nYI/jhxChRiqg7LeOruLqkGAeY62iAIlquwYtP0e0wdBURN0rlhb+zjW8oG6+yGi6ddyOjvhN5BxpZczsXCrCr8JEuJzYrqP8pVaNwLzxuONEB1pUJvacsBTcDbzz4i1r7b7lTPJemm48W4yj2fCrcS3xM712Nq/BiJY7RY/yd71y/foGVAdeVAzN2ockEb5l6C18h6rMRBKq4fwD4/F2pgj9CzQtuLA0yte+Q6sJ7ZAgzR6qjE7K2Jaeu6uPDg4A/r8e9LY7wNRzBVtaWC4IMlUL+XxWC3DiQ2wDT4K551N/WXQEbCzejMuursUoti4xmQTgW1YDZrFMi0JmelH32TIBDx5Hd21SVrAf6QdGUAiARmiyV3SesknQuD2PL6uof+fd5Kloc+tcc5A5k+SE+K1Z71+tR99jsL2WprnSSjExEfVbYuO87+RG2Lrt2OSaALcq37uT2S5vpVKVVHl6rTjk73/UOYWpGQAOtTt1ilL/gSaBfBQCNODmAquOPNuphrxLwLHrDEbVTDhLmjtFHxN+ZmvbtSv5WZRdq/bVEfdwljOIP+3racmqFknIq1govL5OxVbvuIz0AHNfYaDCAsWLtMAsYWhaTBQwpFu5P3G4lklCdhGZth9AvcBjnlGM99u2NnVZbeq7CQauOByEggG1DXhs0PLLENcPzsS+Uyh60lWzRCirQj+RCpWGyqZe0v7b/cd1IvYZ/anwb3Av5iPoB0bJKpdWJ7RCmynRMzdMEaMPHq54wEuxKS1p4h1pANY9bPPSQ39ghOJ2vxsVVzFWgxKwMCa5oVXf84i9tZNIUv3Wo0zfdRhEJxrXyh+/xYe9XNH8mmwdv06XS/uFIM5lba2m9O8v81v1yBjT/kGOPvTXrwrYatNzgM5rNP7XBZ3l7Dlwq1IvSRhOICloa4nUJLunoOlt2VD0GJFsd+0aSDwF/kkDxZpxlXc4asPJYtSEcIzOig1OoamThZtaYkW2CWqOCtZch8zkofPU+XyJkgg43is3yxMUjKuvtlhbBJhW2/DjhooPBNR9JC52/qlAUdT6SGjS1wqozTPPL8a2iLY/WVG/H3M6zuRIIloF7k27zAebKPmEkzuyaw8obNaUFVCro//IGQ1blNVWTQpgdlBFGW6qpBbnO+8lWmOlCHHcImCxdLxBV+OxJ15HqOX867fvfwHiyzwyGrwLnzBHvV5sBZp7g8S0Jtaqw0jhsA5Owr4gGVx/gglEVEKmmR16pv/J0rPymlmOJde7WRcS8cJZZ0cYCXGzlD2hwsH3qjetEJaNTeLd/gabiXgiruB6krzWs7hNgWMt6Quuu+8+Eq6KJ6dH/xV78im5At+lwlrxNenBHzAjfh8ayOydG6WSO4THNiR13PBb3N2TSAdy82Sj3j57yozpgVwBLpFBe6D6V6ACmrO6V6GEbP2u+72Tk32JomZY219nrsIUmAaf2de6AVCW2NHm255IZEISmVFNhAFThHZtfH7Oqr6VScbOi6H0h+iXnYT1Lczsi664RvAlH/qr1gE8C8Tu7RXmoJwz5qw4GQ==
Variant 2
DifficultyLevel
710
Question
Roger bought 2 identical tubs of acid for his plastics factory.
After he used 31 of one tub, he had a total of 35 litres of acid left.
How many litres of acid were in one full tub?
Worked Solution
Let V = volume of 1 tub
|
|
32V+V |
= 35 |
35V |
= 35 |
∴V |
= 535×3 |
|
= 21 litres |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | Roger bought 2 identical tubs of acid for his plastics factory.
After he used $\dfrac{1}{3}$ of one tub, he had a total of 35 litres of acid left.
How many litres of acid were in one full tub? |
workedSolution | sm_nogap Let $\ V$ = volume of 1 tub
| | |
| --------------------: | -------------- |
| $\dfrac{2}{3} V + V$ | \= 35|
| $\dfrac{5}{3} V$ | \= 35 |
| $\therefore V$| \= $\dfrac{35 \times 3}{5}$|
|| \= {{{correctAnswer0}}} {{{suffix0}}}|
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 21 | |
U2FsdGVkX19N4lHMIMwPoP5ERjJN8DZlAOLVLWUjslbGOcQdq/WCpVp5oKs4i+O+MU5btDJHGatndub7K55fUEqr9Jyzmsm4sN7vBlbRipyL4m0QNUZyqchmbIvtfACiMh3uAcTswFVAPJJMajGF6HhzCfeuvKS40lg6Vh+T9YCwnMo6HzcZT0aunmYWINMRECaR5mNcVrIxOfqRIdz1XsquWewZS65fOiGqlXLFcjWiOLW+Ki33enjnlkKKBCmZHzJAKfm/4feZy4kxddYmcicQwj3muD4ahnQ3eyPchle3B0XCBUNGkL9PTYDpF4P3g+w/UMEvTmyyB5/vcSU8DdVaJLikxc10xSojyjt6slLWOtVSo+zqGSTobri1eFXSylFG05el9xRzaQ/DWiWPVI76y+GpNFSYmXAEfTOMcMdRqmnqKYUIRTQguzZUeH7yfjmnEZtsVxo0UJPLCknSziZl2ce83CpPlV1zILxBpupfkXUbKLd1imuxkAma5KCdouEg9PQtue3HZ0btxmuSP7R6T1t5MR+kYrU9ozAawcGGvWUDJIvy6q3YqXMC+MX5KLDUiqlIHFjXqqDv680PAx/rfiSn9O/AdOA89ZFft/F2+M+6XBmT803qO42pMf8l3pFJNIiJVEmM/nvApPx6K788GIzBS7htUtJFdF4za65f+ZV955C5mwG7Xrgrhf8Kh2pycdVz0//CSIUuXGFkBNKj6eQasvPPIALcGSTHEH7WnPx0gIOJhrWd4OOMGKw3wUvASvYiHDauwQWZnf2XVV6c/RYweR/TQlUH8C5d1HWgj3x7DKDqTEa63hUvu/CFOiVvFacjW6NAopE//+DyUqfBGlJKDm+7iEGFmygaQhFaZnSOcthbah6kXWUaJdjT/1nLMZS60PxWg4qLyjfZYM1I7YV1CvKCiUmIa4zH5jKOWp9m3vf+0QmQSjEBBiGhj+VpbwypViIoKgj1pIRmK6/ENU7R1UyEj+D19hSDbyEsf7WsiAR41Rxhp3idlJmAKLQq+Dx8mc6PGF+bAIPrWbRBdKgFsuJWXoPRa99lVOZjTQtygEu00HSHfEVyPNXpS7YPk3QqMRwBnsfHwo54AMyPQzH9w4pfOaHmiK+mZTbIBr9vvbZ8YDJt4pAh+XZS3PP9SOrsrb3aQAsY7GEyMXSn0RxU7SsC2RwX17HD+NfXCc3R/LTK5a0PUwVz3v64DO4OlcPvzIIH+x+p6H8zaz10btm2IrUOydQJTxngzJZ3N1T6UoPemfv8WNXaYOtbTW/Jl+LbICqXU213TpV8rG5MAIhb3Z0fvCJnEnkQhNEliyz82KqLe2BU089wzcE0IyGLNAZkOY5HovbV7mpgTHgpsXD8Dksmva13CqQhgtTP5zgdhNKphWLvDoX441/Jn3N9EyHtdUT5ckxXLEMvN3U3RyDJwxaZaL/t8SQT1eBvgIopC+zzaCo+lMXiFl+k62Jhc5gS/1nU15IvRlYbY8J0DKVnz9Tb5hfzLaYbAxLkLaf2VEuiTm+rAd9EI0oksCrZHRDJWqXbO03R+QByUukiFnVmP1I3WP9mQHBrFdxUtjefSLgcXuNgAUZoJcIItAVr7lf23tJ7MZI6iNjbmqqBVl5CS7G7iiOGwRNlfy1UdTXNXsUupIJyK2SPvqnx6OPl2tcEwcuSpRMoJgl3Q+ors9ebxpMMgF+fx1x3JgFTWf5wmp6vT/UDJgZJD7u9shJweRVCZBsuw5oh12ofyiYP9l2F7W6vu3ebRh0MPheRyB9Pc+M4JqXJHq0wK8nBH+WWR+YaYf1z2Aj7JTTFiMATwAFuHVodeaIP3hfiEQNJ3ffXeNZmla0mJJOEJeKu2nRclT9zFGuyAwOZ/sNx9CvU7Y9dj6bS/O9E+sXLGn0ZenOD2zfkCAIz0QIxrAEFwVY85kxfV3Tv07PhDB6kGdQDgmOEFzOFuE15kYzUjXt+WbV1NGa5UDlluTRhA9mUHIzbR9e8K0jQcw2MgzTRFABGd38iqvc755jVjjpETY6ZxsSHSmDo/NWrD/4iEavpFXyW+bf32HJOxndocPEfXm9NG0++3UqludHy2oV8BMG9Gy9LFnvPme8YTM4Q1juz6cNWjK0INpE12yi6zsn31x5ybUDTIQTBGdHYXngWb74kmIC6CGoQDiV6VgX2op2daVcgHzY6Fzrw8HltzJ2AYqksakU/d5QOTr2rfYuRFdz6cYWxQ3ByZzG3xvuZRDBGmfGE7e+g8FKIO6A9URKWB0ClTC/4bg5yOrFrV86LW6SThJYUgA1qr7XdBabdIU3qaYf5J5qIp6RCq5viDsHf3Pn9phuyfFGFOBfoXgK+S41UHQf+ryb0NZVaBvQK6RjKuRAnWltB3DJRQhAHFdXYjBXvuYSvhuxn8ix+4qO+pJjwhImpdZ3nctrUMFR5yfEHuiFkvW2xNpBgPijZRkr4azMPTULKyCt8F0cdve/JaH5ftBu6cwTh9gd6AbZTIHGqY81iPhaP7Qqq3kCXQF7u0fAKQzqWcCYR79qchP8vAabVkWXixg3PlouOHIJBPGFa/bNo+QxFBPkqgvqYk1ykoVV51G99Z55guWshxJW3qtICKgQQfk/KmL0wPtRjJXO2GajOAcF2ZnvkevCzE7seI0Orsg2TSZgmGNdNGwH61R3y3fuj5a+BSApllu7uhBuHUAn4mhUDMTnNmznUZt7rkbg/aOtdLwxqnfJJvBGrkNo3sit7xkh81rYREqSUacnllI3fXH42MXCzZ8sjc2C69VT8xjDywu024yFh/R+jjYkWcBR+V3qYIoaY2brp9a1XRan5NHYWKfZ55gbUvf0g620lJ9/V79UmUHviG1CXTzEZ6h8fTtngOycWR0Qx1HlZmQ2EdyAtGPJxeR5kU2GYBtY8rczQuKOFhdWAtcnHl5sX0cZDGasJth2yRin066vlZyFxOPQjHAHvGtziNU1A1ZZvU/9RNaiYWOQ2SQMWtTMiVQfikLgniiULXrLVkbpWHCvXSwJQRs5KHFzbME+Y87tsKepcUyfhrvdQkZ+QB8JCDwFeoF6o5zf5YFX4mT50RVbe2wnBRN7CuIHLtfRCoxBiTlsgOxe7oSXC/CI3rS/Al+SKFWyLV1U1KCLPBGHW8CNqTOH5rIW6OsdmQB1lbgShW+vvvlnHX0DjH4glPlh2pe+pEMcDjsfgMEhfbpBMiJ7sisaW3ipAaJeX3ifC5ddcRgR+YRlJtaJa+6UbHAS7VbYe7hOJTlk4RxucTf6pHViNZVwpsvh3XWlvlMxBF/CG/8Vi5e0Fx0dxqWMhzoANJ70v7szttsq411jFAuCtelLNeRS6Xyqa/btPFmPkdGCQgVlKVzDOD1c+KmaQcJtgmXJ+oat/3o3/NdXpnFgnSk+JpLeVJZe76w9L+92iPR8HJIj2Vvf27e/QxdaBwmrzL9uqAbBamBgZzttKAPoLmrMqz65heDK3Vz4N9nZr2JZ3HVU38S7UcoKw+qfWYby3XCNBHtZJltHuKxb5ewUiMOtLp7SVbCUNChZuSHsb+iNZhOYGZcoo/HCXbzoheuDvxKYP7zd3d+R4hfHnPBU9e4+c7qOheTvFTFIaMbwNZaFot3/ctj28CiWHT84O9g1Cbvz0bzr8LiDuQQyVfod9jVI4KSngXcMfFMdopTa2a5c7zl2BAW8QuY5e/M/mOwxG9MsMyqA9TMaNgC3+4N9pUwNOobPRCOGcs950grVEOYFnUbpG95+Nyg9aaHgDojSkRJLGO25IVfVNU3Sip4CKC97YlZsb+8g1O1cGZhK4YNDvhhv66umV8BtNHyazB1xX+NrYq0vq7ftaASz1ajENQTTECNnzWCNjb1boZlaLiTJWfT35xXwMsm+0eUXVty8Kp3QOov3BLCtEKxDxeYm0BpuSuhJXezTZivKkJT5fcz/MCa1EJDTtLBivxKYkt+oyNXrtCuXtMNEMCwxlLRgNuwd0FszIBvtDW1a4aD5PI4J5aXIF1p/+41cK7+KT4p46SZnMx1EjS1dRf9Kvk0Vp/q/HYHd2/vnLKMEZuimGiCAoY0+wExgfTZ9boReg9Pgfh2ladG0KlQb2wJv83PC/LH+RI42sqLng8jYQoA1NhAw8DJnkZEST7+t0K0gb33Ugz2B6S5gdAbD+OAqGTw3MhsEA++XKakbFHph27LjBiWnKmo5fcnL0A5QRHDqa8fOYPBb/vvdEiuLYvFHmKctB0LnxOrcM22DUEI387O/Lj1EAYkt1/Qr2ZQGmY3LXGV6R5j6XZAGTaAxTKXKL8/o2xRE30jkCzi/3WTw5eeF9ResubKlhqgOEPdCfjmV3X1KS9qq6Ip85464YlAiyAKqOabURoVDqvL8+knUFS0nk8MRSEILNjQ2DIX4iMJH1FQya8FUtkKWw/+yLkygAxPg8stJlVMW5486oSYefQi9myzLaN4jJpuPUxUQEBamC3PGqSXTSUjykcPXCyVnMGtOK/iQETyVyUSHztTxdHvO+NHReRqQwHocIUvFwYKj7APJhDGdeloYwMX5P9n3KKAVKMYyHAqyffKF6vAKcQJkTYgLo+jncOYRckd3ejDUa6Q1N000tSn6gJ5r1HCxEf2F65144+qEwKqtpyQQUI9pRFy0zX/IIjDWLH7k3PcNr/+icXmMuF66orAlKe3rE2LcEMtXNFw+Y24Vy1jkOiZejpkMBhUTvSTVcA1nGZVDp+mW3l/H+Qi9QEwyIGwq1Xft6gFZuWjo0Ox6o/9+ClzM5HJyCHOUy+7eE/fWR++1AI+0XnMhIQe+G/ivdSx1clCYr17ArbIZ86OxZJUs256SDPTcdamX2UwWthkAsAggorZUsB0EkTopfXPaDlFqQHVWlFElFJFz9f57RJ9UNoHyJduguXgf/jOUhQEvoHkSmQ51SpArm0xIrmqqkxX9CzPNhLqgIKc1u2qExsq0XR7Pyh5ZaqKmRswjxbCp9Z0rRaSuHR0Rmns/Lt7u/PvcVgCWShj3K54eoRG1jRI7MtL+lRlWgOdUnnkNsMPxKuetiLeot8rQINqwK0wmOnhslc6sVQyonH3BUvR+nY8p0pFNB+pro4kp7yFdxGqCF9gOx/Fcbz9PYksvAjhhXSg61Y4xTmDtz7mP0ccFQF4I4gkAUPOqlTQOfO5ZcvwMGH1PyxTTLx0He5TvnsuD999TSO1hdYNIOgFRbyHbJWnrrVkQhpZ/eNNY8zGdOP43O85zSGo8oi5kBtnNAr1FlS0LRpzITao4b7UI8miJ8Q2XbHBRcIC+M69zT3SuQYTrk3UicfdZc2a1rAWianDZC36wzpmR9cWFCraUYv3XGgkc9Gd8XnxGht8hthcZg6stn8nScotg66xAEkJO+z6+dcd57SCVmkt0E1Upsefis3ERz7ofS/31apShFqOA3yzboyHdTG8AwTfvBzooMRk9OLj7n1llsiZwaN8SYq5TsbfvZ/P6kdNLQ9rMPtVCYECrX0bnKQ+u1P9S3ZH3Rd0oDBMOcee6VJk1d33gdDi1ndSMlXIz4z/pv4AGyXiLH5DHjKdcuG8df0yibu7Az4c/u7tbC32ZsD5QTGpA1h9C4gQwe8K2oLvUg9agQBaYiR89/kSKUZ9o7QykLiBNeo6qjHX6MPXbgL4gYIJn9kl8SkB8zoVmONxUSboCWshgDRXK75trBytDeQm3eb4b3gWOyzaLVAZyNv6cd+PiKT+l6DmfXuTSsnci+NOaEUJxy2tkT63NPi9xXplgvy0c9lqayb/EUxgZvnXZn3umbVnoISc+jv9Ycp/YFxf97nsF374Vobf8hPr1cxgPwmQnN30sHY/QEIgGRz4fW8/tf63VmvrjkW2A6fSwu0vIa1FBqSrMj9FSurMb7Hx6Yk+a57t9B7IE4WOXeR1dTfi3P3I1mXUxYVVd86PH7ar03sLb6lwW2kExF+Qyf9sTZ6mfCcttNceCaKxZR8YIswvL1QjFCDz8U67nBXOz2k+RmYl5VAxzilCCm2vYLmreTafx6fMDeaypbp0NtFvsGU2ktiPTl8v4vaDvLGjODU19F+T9ekDCAe/zTPKjP5Wk8NSySztXuzjIOOCINDh2dXFoifLTXvTq8btSuNfqPeRTf5ZhAc7J+yfS0Nt/kOFY/KuCOs+N/gE9ocR32Rdm9ogKblv8Mx19/1OW+WAkvrwwAXO4+S8iKwDRDNgEa9R8XIJC1ki5OP3Sf9LpAvnAb8aEKMoCDZJmui06xu2o2uIKM7guJ/1Ak+3C+jFjeNU7IWFwljQrF4odPJ14QH/FTKuw1lGuqVw0i6t+jUzz2AENnAJZ3L7Z2J49iiT+3qKMNzCp0JQHFBvWKPo0pRmFthTTK0HKsIZdhw/n/2QNbXw9+ZT42jlu9oVrHnyuZyafaRz3G7BrdRshSJAxihip0TOqXeao1/ztS/xaAHqkMzuvxx/puiwQE2QzEGzMMMUF2+zLrrnfJdodFC0AxCtlT29iysIv+EALEhyB58wHAcgDjMkdQ5cE1nmFrD1kKUqikZN+GF13a+RP7Cg0Xqe7RQo9dYlkeG5Ku5HVYgm5HPa0F8XWbiV8v3e4JXXOOHzlvatPBVqbSVOh3HwanwPB/DCjLAcOWbDezTBkvCqQqWraphwX67sD7rrN3PpYkfKYUN0mf4qTDlsHGSMcE+Q+CknxXqAW8hnKy+CxLQeB+fMiUMDfG7tlaToin+jBJtv25MAG1BsoDNz3kDIGN83rKsmbez8dm/s2GXtlhx47pebEvpGEM3h7XcZwtAZdsJZV5T2eh5ova2F/FzKpJz0bBJhpx68wkRbS8kD8mnIz/aCUzb/bzHlMURoxA2hcZ5Zb8wAvTLPZNwGlXOnIBeJZE7XqKdSC1FJbvW7+QD5rmJmwIdDXNaE8ZRkscC1FOhJI8TK7WHISH1+AYXhi8uJj8ZkAOppRT3LmqrRNnuBA9MOekNwiaAfzksFrD5MdmYP2RvaAzhAhaqSdxNA826BG5YDLECu1tB14gFf/C2Up77RZ1tKgVSPZzGEgpXKhJjl/yAWW+L8KoBrr+X/41y3RqAhpc1q0lTHHntSBSFsk+8X1DYkl9U8fC1ISrO28yxyxIf/J+Qluzl3O0C4lhROtLUpDem9nx8CmyVhXG7WENXS3Ed6De0zZfHpE2BGurObK1yOdEL0+Ee0WnEV5eg9b96JBtebuavO+iKgLZQ/PP5cMLITebaoH+lvkghieTy8JXbaBHJQhyUd8vNvmqgjqMFVckoe9LnTiSjUJibvvFUBmFej0ySNNFc9kdPD+dYwU0rVYkWydEfrHCAV7G7w67My34aRiEvy2OSAwZqV4w/BibDR3i179fny6N98VE7akKdBaF9BkV3ihXBNimGbZlQjIHXSYlrWPgaj5ZLvpS6f9lHPbdMQ4HUm6FdRhF32xg2frJkcynlVV/MRYJOykm3TQUkeeNpuD/jOo1zKJb+PkYjXfXWnXtPHnrdWMdwDMjJCoVCT+/Iel20vFBm70tBTAQP6lQ6O3g1NL73afVNX2xNnSFg09+4fCOUa10M+HUqlTpUHF9+7P4+2vchfBMKwu4v3Dr/HWT6td8TCjWujtypnnwkuIUsxUiXiw65C9mX3+K4L5Q3ovEKLIYM22HMAkgjsSkMGFtnCISqgs6M+SRmfJjl+qKgxRvdaLXQ2Ex9BUf9DDXfCqBmSlkZ2g8AL+F3mqGnad2H4ZTfVWptOQR515ItAOaYFmzgcScu5lTYcfBgZsTPJcKcoBAI6wtXCxt6bxCI11i5ooRG5FjB0Q1XZzUr93floUMFiHISMlLH0Si19hX2/eJhApefVN0DcKMsBjB0RrGSI5xywtCDQdML5Az5x50582k351dgg3bdJki/nVbmcgYr86MWCpSS6CAd3L2AgKqpkrPRaAM9xB34ELCtOk8A7lgbYzzwdsMCGGwfO1c/w87pU52GKWFMqisQM5jKvA1BVvYcH6i5vO9HmvJ8HmKa18oPrXWZ/qw2F6ukLCU0Md5QyPGM8yGR9swTEfnStfJhP1l07yFUNhiHcZHiBbTBQ9IEWeh7AxUEwBo+92BglCS6wVJdJIc9aoCcrSGBnZW/U1TI67rwj+X6VQ3ES5qtaf5rYf0G0y7SIdEYdw71zZIjM2XCU1Ez03Y5Jdlj2m/tYRg5DiPEowKsENnRHS2Yqyl/Cw8pY0OWSQNEgE1aJ8jxWenRPEbPzRPsBFDGl4jJiyUbWT9IN6i4eaXyNe1/yIxrjEnKVbMpZvAC6ICXBEfH9R7KNZXFUwyesN1Aul4myPyeIQPNI9YzQIqHLM1+PCsrEcf44qriXM1g86zImKGyIEZWyeumHfMzp2mZhhjX0OdJwqOqMF9NCYGmzGneFTgEsCCczokdoiob35WeX0axF6NBiWi2LR3DBLtJhUavczJyKaj+xDSsl20iMFNo9Es0sbP+RJLidsqzm5s1pb1MGLhooqHUkzQ2u2A2FO8D7zOqve2BbG0FUk3LltxT1X32LAWP4ERLeofWKmYW/zlIM5b4gUqrK/hz0oWnjVXL+78jZLzK1XuylAbvZ2AP8vjYgsT5RztEObfh62b9Cr1WufSGj2X3tLqaXNHkiktzI7w00qkfuh3Yk8q86KemKd62HeOj43dBH+UuEGDZWCtC2S8znmITRD8A7RaCgPkIeurxGiw1jNyMSIw5vKkHEYrDk+RG7azOFWLVaTQhm+Wnp4ZPHn2ivkD8ZKjnZURdqA4hs9Udf48J3Qy3rVy/KX8ZYdPKFuRadtP4fAjiqoh0aXSTvrfk3sy0aMtngli4Fn1LSAZblshM3byGOG4uLzDcZeV8ZzWc7Q+BQ2SDue2pwBPEdhKkT2FM5yy2/HHs7slNu86uv0yUpUwU9oRDbZ8/yqWWhGO6Bnva5z7FAUh7RORUjZNz8Kt2L999ISChHGRHuk+0q6HwBgz+x2QI1pN0lFjv3YyJXX2DqKJpH4wKr9a9c6wXFFS1nrQJuj0bCtbdk4OLKRUIIQwO9MRrtKPZ54t7lukUqYGbE0xWBWwqfh5n9NXI99BZWsrhwHx83qR6VbKoqFQGo4n8m/aWUhIbVcHhN8ie9cGeaQHgQ7jhiEnwBAIeV0FcY3+ZOyk2QrF11vx+M5ZA2Jf+u79zysF6EiIkMxEcWfhgrQnsu8eS8bHbiQkqGkF2Dkh3Nqk529P3Y7agBA6x6lr4bMLy4b7U6slLUnTtfM3mhl7BK+exzz19w87jZxJ/hkuLBFEiaRP8z3uJ1GjJ0IXoM5SPNeMtNhiEWXFSRnFeQVFDBECU7PuKdzRafD4DjSy3h8EfgkPQvcFG3ftdXnAPfo4tSBEnKUcMPbRk+kEW4XiY5UiIt8eVps5QOmq3udOfC97eZ3Zx/nNjfB6BNz5cgx/X+WEjbIaV0IYKN4Ga8vQdCc/vSilt+Tud41UI4VFeurmfXeKHyFSm2NXe5Is5aWddxnDyy42ieDzTDtNT5xLeb/i3JKCeP+W7edKmQeOZnRYwzukGJiSC9dqXpqvBZmd6pY5YjkRWLpJEew3AUk6uAMBYWJdjcexBB6FuikGHyB/FAbHJEJEeJoZPZv72HLUTLMj+VMiuFTu+x4n4wo205ufQ7mqwSvmJH8ia5TsXJe7Q4B/M/fVIWv8YljSatEslN8pIlPnSa8IGqK/Y8D/RCrd7AWI85EGgM1oGx6D8V5MywOtlbH1tXv4tOyinBgGVTeHF+31tnjgpWn42QCLhihznTOXAlOkGvE36wv46p9nrZRODCdnVJ3qr0gZGiV7BGITkc07a5YN/0HsIECIr4IAKtajlEvF4+1n9LoXcrzWfoI3cmprNA5cIuxQj1T6293iitDdi2B/+Bs+Q4Djwyvd/XmUD5CeZdXqQxi7Wy9UqcB7GtzRAZIFLlAJRbMYIKo1HMKCRN6ggy5v21cI7w6OEXYydvua033iOR/xhAMrZwzv04FicilJHbdWAWfC+h7PfxCpP+284Q7mazoYZV9ks/zSBVoQ5Qc4HdHPe9YkVILTqwU/+/Gi2AQa/DWmcxGO6W2CJBFHhppJdRn9FktFpVrSHQAef3W1QPvsL+wy+UyiFnYE8EGGP0EjrrZn1Iw/ucKTSIowAOZfQN8X7JcNYDJk1OjvCMYnqP1wr0LKHm7P0mJmcudAwCKyToT+UzzIdWxvFYN5b2xQ5X32DJDbeE8Sva2/c3dRjqZUGw64j28Kwz/SRzeLe7+nuc2bsHO1+Z4xc4nIBnK4xa+ZTaSj1tuAfFiF5Yt/zPW9VE1QNdJo8uRkRcv6XXjtE7yTD+pemm5HEw38qcQQ9XCDTEPFuYo0xBeDducFlByKzbz1LpN9aXNcnJdGDaFF59T+LvT0RP6LcugtNHBCgS0sXJNKOTodDjs4vFK7oB9KQkqx5iEgtQPOstFCpfMjUMs82CpmCYLm1YMQl2QPYIK2k+fmtJQLhLEriggaUahANracKHqEcFG68uuvvM235EeT3lnrWgE9NRHtB3ajwMLVdX35VhwyR18QQEOdo3fCfKhWMffapkUTena1PSw22hTBwbd9BdLoRiiqIdY8/s9Z46mPFtRf7HIJ3PeNYcQ59SoeaUc7IonlpsxiDJYGgzDgxyKoz1ymTJ6LppJec5kNYRUCtCnOADgJiFfIY50PYDusKJMcztU0hFZj1Rpg1eOTXwHYr+wQv6Xydv+7m+qV5QgTsOKO9Y6+vlI5qC/3tiZ8E2YTTAAMC8uDe01YQNUP+aaUrriuaYeR9nm3vWgJEnXSe2qMAm5dCVud2x7n1wGOV1OPxSzfbpdFZUoGyXjUDi9Q3FgNaV4/XK1vYhtOSGTRicckT8PS5pl4Lpcl19j+6GwgYS9KLwCggaeS7gFlggsxja3TfIZRwKk44gOEEuuj5HdCWHa5VMScNVNgqgpjVlyZdVHOAezviuJJS5AiPikBNqatOeHfzK12Hqe0sveVJxaYKFv4jVVyKVkPeo18SomQe3Jnf5IbU3WIuDcqYIair3IIbMjWmOXFClyicYb8xOgmlRp6avZXJOqWbVLEPPTJG0zcCZ0Rs+ocnsUv4kqJ1dNxpLQ41JHv2Aw80xU4iJDopMemr9VLqaMeJ9MuhkufnOpLrjuaS/gu/kkHicWxJ41ZZVTOKJUgMVoSY7sHfMUmHdxCCEkVqbn4ZTXE1q4JYMdDD6G6lLuyUsCbYyR0Z13IFFFuluBIXP0jLMieHE4ogZ+VWeYakrxn58BtCruUnp+l86VB/1pHJKcea8dBq+BwN1X5Cq2rB36lkstaGaU6nQcRnY32UASxmUY3QEHh8H/+bshqy026Q3XZ4mywPCNubxj14wAit3Yv7LnEvY3IXd3AfpemsqVAN1mAyCKSdvbqe3vv1KiNltnG1PCzJ2SSEuwJh+Quf9Rw1aNole3d5+l//yPZNEkiSnt7SoMenEp3zs0j4Gt6/Mr7bn6h1+KwaZRZUpMZQzA3amaTwV9kcQEgDd5IrXtOxNRQLxwsyO2owjPE4NMghWaug43u+3bALOcYTv5cLYCbpMtkSSDcgumJN2Ew9tNmlOBliR5wBdAhdYBtlHDEsPGR8MSyydrKAKb4W2JHaROXMdWCXgmr8a4qDP1iV2tyF52N7XMQ5zvwqdrkwXbd2uWvVfKyu0hArok3XGDD8dMVQMAbwYkqLRQwp6c/N9hMvKX5W42k5T4D6mAOloKsdGk5vJCKYVSQVUBYsRZE9McrtTaJ3/jzHIB0hUR1KbB5pho3WOeDeANmgRedcQS9T3iXfCZemJzxiHkBoerYjC5sGVbiw93IX5+X9A75I7U1TZfVulf/9Aib86kTzA5p6A5aWjIHvd2QYZtRzGCPGNbQ4yGiDSjXYY/bre08HeUcm13WnsCUth97rI+1K5XmjgZ/4L7EO4SruChI9ABoeVutrh3jAOpxN9BMpUhrLQ8dRzkXFQXxtA==
Variant 3
DifficultyLevel
693
Question
Susan bought 2 identical cylinders of liquid hydrogen for her energy plant.
After she used 32 of one cylinder, she had a total of 8 litres of liquid hydrogen left.
How many litres of liquid hydrogen were in one full cylinder?
Worked Solution
Let V = volume of 1 cylinder
|
|
31V+V |
= 8 |
34V |
= 8 |
∴V |
= 48×3 |
|
= 6 litres |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | Susan bought 2 identical cylinders of liquid hydrogen for her energy plant.
After she used $\dfrac{2}{3}$ of one cylinder, she had a total of 8 litres of liquid hydrogen left.
How many litres of liquid hydrogen were in one full cylinder? |
workedSolution | sm_nogap Let $\ V$ = volume of 1 cylinder
| | |
| --------------------: | -------------- |
| $\dfrac{1}{3} V + V$ | \= 8|
| $\dfrac{4}{3} V$ | \= 8 |
| $\therefore V$| \= $\dfrac{8 \times 3}{4}$|
|| \= {{{correctAnswer0}}} {{{suffix0}}}|
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 6 | |
U2FsdGVkX19AG0GRqDu6JDgheaH7TuEbv8firBl6dWDwLwlkqN9R08sXhUHnXMDWIAYLj4r/e5svSd2+U2d2NixuYjJ7kg/HUHofwQDwi6YT0nhKAr+u2vvtOr+/Qsn1VREZeWGsqmvqG8DBEpebv3sgAfDeF1gs2aKIGyqj8xxrZNDLLKTDVL9J4ByyUOEd5gl33BoJB1c7E01sC4zZcMJtat06EJ+Js1mycK5wo3flsAyymSZrozL0vGtp9bbEKsNdydYHRYMKXkm2WV8uiqj7rqGLfY6BQE1BHLjO5drn9I8D5lp5aPgHaYbFA75Py6/uQ9NiWAjzuNCU66M6rzh/ZVLqGwbHFJAIQSoBcuzqwvKGI9c2zbpMGNlYGQJ/XxUATqLSOoV4MUrxfGuzNkVZVBfMiRJJHe+/NWqMTwKJZ+jqvllLoALxFlYnNLZG7Bjq2/dvcQSKY58LfkhHIrS3rqGFYEESF99XdcMXTS/kbxDv0s48MsQAKLvEnIQrTVAtzgw4YBz2RJ4mxLIf5UoLmDhraLBb2NdcOey79Pub05acXkjumvBBiween/cpXCnKbDzaAQjCsvwwbgqsrv6QfzWXVQqmS4yfsFz+D2KfXctfULFV/cREfQhqdPhgzY8o1NJp9TQ5hqaya8nDGS8LpQEZ+IfMKwgAgubVRhD+9PT+r0OWo8DvwJ1si6RVIcKPaJRChy3HyXOCkkkM6PXcbfq0BIP7UfV6009+/gz3M0NXSdZybKLoBwKJO+D3hyi3kAP+P7W4iDpAVTeyzCLVzMqwixH0oK8f1SUf7FA4vlxdVatQTaHFMbfAqk+Z7xcHUTaxWX1KDXi53/2eH9WWob4/Tm8DM6ManOnCqdXAGWDGOS53dWYXW6W037ZDgBnSixsoEtHVKUcJH+F2hiI5rro+vbIthgXCNMWHmAnXn3TIwaOQ4OhY/5ZbTzxgXl8ejwOayJ8UVG7tEiqOQD4rsedDFOSmYar88GWCbl8Y/gHiSxp0cVb/wFdtpNMWUVhxhyx/1wBoyxF3F/mJwD0DEg4t+Imw62RtBPOdGtzjpJxeSoChkO2iyWTT7GSFKgdKQhD8CEOfo8z9zkqlhJSs7SZduFmZR87WnDfuNv7kFJ5BcU/Yp/hahQgYTNcHrPrl7d6fJvwvLN8IaZFkjxJBAFN2r6f5aeqmQK+YiW5G1z7hX1PFXWvsDxw8ALIIGXODwhy9ePe/1IYUz13bW1IxL85zCCRYiFRa9lSq4Et9mUBAh5pkbcQ6U4+qnpppio+xVRFxbNVk1Cc4V4iOgB6jGrW8T1DUQVrYlM1wXU9VPFDL0CT1Gs8KE90A+5xjeQGOPcEQVnrbZHb/Rjh1jz8NLXZuCXG+eRoyLvQiBuIDroZfSZKBtD8tRha6msqkx4evfYEbRsp0FFB6R3Zt4SdFwE+UZuwZZy9z9r3zF3f+WfLrnXe7TT0fA8rsx8I5724hlSanx5bb7XYVNNTqrsoSUkiuE0o+ILwwwHBRvo3BK+Jp4lKTACw8XsSnIoNEESkzB5tXBDigPLnT5WUoQGhFTqKODGYS9o/ckw/nacmpKbQjKAwUvtxhm6oCUlKDW71Or8+87L05VZDWvZhvMlLvtpoXG5uYs9UE5XlkW2dzzRnyx6Yy8wfROruUQ/vw5STB6x+bHqMPTp+pJnzNKD9f2dn3j+7d7p9xX/KmRf81u7LpRiJAb/KaNOTnY7kWudHRLFa6dFfoEcZ/xz907JYRYUKJexR3UNrJitoniUX5A6cRJITsnuCEtbdc0N8lLORn5Bu3KTt8XIHTFj5X7b1tw+bwzdGuDoPtWTf/so0OsmUae2kjyXNg6/DWl9g3NcUHjYzsrC6Es32L+xNHwz80vP49FNkC2TAxMgAZqUnn79/WG5Rh8VWNlR7E2o9/cFSwtdeT8P88w1kLIWGzK3GDmL9yLT+8xEoSRlHoeJfTL0g6aGjh0RoDb1ElDeia0ENCiRaWH4ZA5SJ2HWt+xpv+w0MnX0QV/z1yeNVkjrbxDlLZsLbbdUh4CePgNEWl2gbB16JY3OQF7qgD9rJgHSTM+mrUMShUEMtZBMw3tkvIS88bNSKFa5FmQEtC2eUij9h8TmX+3BZuLiRRVhR+LHLeyr2wX57cftdYX3vPrCfhcXX/u0MWkz/CYrV8mFBiZM37USud5mC3AwJuk1Oc1w4K/vDzg91dckDiWeufbMRvY/EGNupDktV3IHO3HahFi9QyfrGGAi6aNJ8nhmSNjLJCouFaH104M9i/q/kzSSsMChBFViqhsTMO+Doa7R2KK9E29XVjOMaz087daZTa4HrMcsgBk47NPz2zozJd73UWm9S4TpO2V9oJEmCxKVTTvL3xUdfBIMplKzQxlBcbyILO2Pd66Sw726s9+DexJ/7BuoDEl1XUjEUGVk5SfnCDmVjX15fJlDHYLkUBhJ4ooD5wUmB6WDEG4JPd9EiX7BVIhuAYV/KTDPGTS+2SZj5kOTFR/orEkKFcYHNXPcV6zo3TBaPQuiVvy6fP71TnbT22FfNyVeW8Ca8xNf1tmjQnBiz0qvYb+suq8bQNenmXQQsvi16qRJy0rew2TVcDUiw+ZsCCoX1ay/h/cDlYRGQ3q2vfsJAbAxp2t/pIa5nLnSIPfdry0AS2fmX//2ZkAYu1q2EWh1gprLN/k1npRLE+zHPONIyDnKwWj2gULosn9OQw+VzPlKH6n+s2VqOzusN8REx2s87GnQYBc4iifgcQZmclvql8M6hHFkwA6WU3pto40nv4Ive7HcplBqliN9cgewzItmuxdXxH24/DS44yz5L+c9oCqTjQ3KrnrhjqODmkjnIj/CnmfDV5Z/54Wnx358racKPwNWSPQs1E5dXDx+M6EoNCOG+MylNvSWvMoHUm9NE1H29EO1B8uJGUtqb5EXcUxd0Le50/DY/6tniDO5BUsjYgbKi5MgjmohgZGylYerF/57He9+W/A9TQiErZlwusAAnxS/i8AMT4pPX/NkOKQyyYl/nV7sR/f+2Eg5DqJ68aipYS1/C1rlD1b3l7/vNhloC+a8b2p8g63+fM6YLfuHGAxpPOiW0UeijSjEsfr26+lT0EIbSK5Wr+Pm+hKBa0ZJ4WijYDNUkclBpFbMkkFVJFZkaxV+J7yZz5BzD9n+Pjfhm0HI0FdmoSU5UrZ6VN8ta228cUlivFbSINQKxDAJ8yhNC0ik6Iwwwqt0bQM4wN4/GgGVzpr0TOlz5CA9I6BV6finCrXHcMVGH6CzEvDyLsvG6zbovOc/wNWTb1KpstWF+Q8TG3MFx8J8ySx2/uSr+tJZjmmZnaTJBktTPCetA+mzTfTQCUQJd4+6AXenfFqSKkwl3YzWLQQ8Dy2lqum0KC0CkHNWAHIypuD5uL7Fy6Eo7Wl+YTDDnu6Ab9gVqms+x9abQZu4xQ+GsTBXEyrY7VYUxaYCQ8CM0/IixWG3UQprmY0VUs4wmkWD4BUHwWqGrupmphsfLsl5xegYBP/pyxuCcf769vgnrzMKkl28lyMY/5CGleXPEfScn+S1okzOydBGf9n+ncvSblI5AYROf0PM6N6gc/7iVeNkKgeq4xxgIj0CQN07kZhonAdunLL3fWJsSNXj0CUbAM8W9thI2ngPuK6xzultTXukJ16lIHTDDkcCzu7GkMzCDP1v/ENkKmABz/WdOApTwmr0ZsRxuBJTzO5EgOzAETT31/GI03DwW9/mtBLt+f3ytcITk4dQrVtv8VC8JhRoqTcFfAKXHuSRMSFin+l9s3LjwygzKUh4dgeSF54LUHnAOiYyhOzYy7JfwexVFcS67F6czC3TA44pC2C46zf4HHiw8No7nmZkEgQxnCsMIIqOKYkct1dSStqdfkSrUtn4+4mti66pm0DcwfJRMAnUIYlQPmCeoUE/RWnP72fi+Uj8koY5s0/sfUqFjaeSIr+bFqziGt8fRLjE3avaXhgnX1iLoFl9vS8j0GrANHTZaLsNWIXAcAH6PJfqKmb85YcoXVDMpVfmpY9t5Mfhj50M/PhAjXjCTuTjNW1Vp6QFAYg/SexMYphszlFwCawdu1hWZRMN03Bp4CARjsEUS7kVTEydJNWmdibKtTiqIgX2kBPRIuNcASr/4ki8iyOgfRc/oIV27mLyxvXZhf23rvwtQEqnBghqXKmuuHAYYfAfTnMRvGz5T/CdAmrs4UPL1qFMpSd08hLmUq/QNqYceT2jE5ssxwkvnVrxymtiapdeOdzWKoTOTPWtgdoWx0EEyS+uCRyiTwLbniDgcP9d5lucX8YrLGqHeUHui57jNY0qW7iXAHe0wcFJ+MJg+iUAKIFLWNh8aOcfNyN6ojKABGwLea7iiIlVXsagdK7LX6jqL3NEZnycL1h/8uMZVMTcT11SSbN/f++Rij2RMLsFWtCPpnYJEu1XH23XuEQcTMnCgpxxxZpARB7gVsGhWifeX+R8uQPEpWvK86kh/CrbyEHQbXq7ALAtHAkbkQx12sJESB0GevQrDzwA81MMtE0F/0p7rPqt/NDC41vKcp594dw6eIZRHkgngWvxqKolJupaLWZ7o92OSr7rfcUl57LBFqEieg8GcvTMzcmN+gvRYakF0y1q8g09tkgo4zE+XDYizAc8SIEIFKQ7z0R56NO8flsJ6HRo1bhlMLXL/MAty9lDTLTgMVapwXaYeNWbZs9zEN2A5dWzRFOpchZHdpppdQn5WdqhO65SlvyiP1GxPhhSkaU46NDC9Yy8URACTtxHT+JNgvuVGisRMa19CHVXmLOFyK6FCUDN5DxS6z2+IagJq/Xm4YHbAfjtLADldFUSEqnt90qYIPuWc6a7zqVBVEejfOxGlL5Cps2xF1tSlz6T1s3Mq6JMsExS4ERFOoq8rx54oi3IlGOQFBpRv9AMZitb/Pitq9e6ewQ6lcFUECzIg6LluHDPfeU31uF9V7ynVnFaahwA+pb8Q1iuIZJGkm42BB9ByrU6GATbNB5ZetCtynBQ7qToAGior6AFHOtCcPoWeYY8e65XISa83HkGOZtlhFwBAl2trwVbG9UuG7DpkvoDx/MO24F9+FrMy0wtp85/QhlhhzKPY/+BAsPaVtUFDgJHAss03xW74zDweTLkGLt0A4cdCuhGurJggNziV2/JtTRILVWmr+G2QpcGj31W4TEM7dlWk9XjTcpelf5D9YIB+kF1lcjeM3ZaaqkQXgCCV7265vcCOHU2pKIyC/NnUaH4pIQK4QEGjgaRxoTBQZ6Fpod6ZMjrqCfgybewHgrfHT9rLrcHFmo56Agi++922KrSubYl8wYEraSMaKeHuzZ7X8OOZ6hj9NEkipiCxlIaa+c97m2OtE2DyTrmC9yypdpCwhyKHtjOHGuRKVxrUNpUO/dS5vpHLnIa0CXvrc7HgPPAlexKvJ+rWDajUkggNnwGKrsgP3kh7iHFCu4rt8AIt3iceOTo0jPQBTFI77M4izJKmgqEnpz8urfzAZWIGuBESsK4gc79H6rEc8M3mpW0cyAun4nRP8PlX2hKfEdkQ1Y2Wg9tvxs1ZNeSdUWkU4Ehr6sMtAFs+ayEUNb6EE+6ZdKzE9S09Q+sbA5EpNGjTrFoIxQBDhDLP6ofIct54tztsrdLWIv2fSSv+izNVpr8Oo9X8SJbKh/FLYJqXhF1Ac1LDW2CxLH8SqnATFC0A62qJtHffEQyYEg2wvAshtYX9JTlz2zqAalG1V7i11Kbrf1aXK07eWMBr5IEmKT+5u7zf9XGGxSjPyly/bQsETQQvW9CpEqmZFL6NjuyleEBdLASR6bO00BcmC8fsfxtGToBiGB8tvz95cwj3kZxKQE74u9fgiYHLXQiujECLMGnGDmTA/tx3y8Un13KIrt5IxKMkFAK4lIfVYk+W1YE+nk0/FcdsAWXEK54HSBmiEr8Gt1odkF6wlzT0kiO+kRDJ+67iPptka7+CYHD/gjDKBkjTRGmUYSHAK6ZcGEbQZ8jLwrZVojLt1mfMQq8hjDcBFqZadTElaDwpj/wL2xMQT1hOhWV4g4vESFDKyEJyqQAMf/NTci3rAYQZt7T3dqbND+bXD8UlMC04i9Ljgk/L2gJF5oYotbjE4yp5jJiVfOJXAueSVIhJT5QSkRlDnG5n6Eyo86fZbOnNvmETmgdtV45wVic/IiDPRQSY+W9KPxnh/ZH++19wZtT+YU0IA9WRQSJar5C7nvplpIvwOA9Pjs6jderiGTZDJ1tdAxhhbdxnZ/lLHR5SQEdlalHWa+p8LlbiM8n/qVVL/9DYjVwoDE58dIvAX5PiMLVTtnXQ0phAt4P1if5y9tstrAM6UHEnaSsDsY1/smpHLOUIrgHroOjQ8lip7cPohwX68cTCBFCbVcdECgyjh9wQfpRyFHoo3LZwj9+KT00YIc07gQsOVn7lVQlgZiAoW5IpHhDkyKEDVHqIXzhOpu0Nq7puz5n8ZTrLcu4xOtXGJok1VvVVFtAaKBrF9asFk42hPDyppbLrXvghkpaaBuetlIS+uSBaGQB2uk3phufLKXIgp+/LxwJAb1soj6Dwn/MKvXE5QdJ+qSTVnJqwmai1uFNnfLU8lHjyBvCNDHA4dwtVwWS14ISOPh5pToI0sYW8tvulO1n0Zip+fArc/0KmSNA1ef8EqQrK2OzOxEt7NNdR/BRIcTzIi2JF0GItGhT3KxfKFjRrwWzyFUyD4Mg5vU4a/a/2dLFP2Ac8qPNX87QONQXydqRQcjQSruMc5XMqVxe2ljI2+XpOOn3X90L7HUIFdqYrDJNrDtOir8GjhZvUJOhHV5eZrkwNImUMd0O2cLGcZ+LQrWwx8Gdbj4P9gv9eXZ2caU0n+VNXvQSHigC/LaxPyWfm2mW8ZfdmHB24ZQkteIAPApVhmWV1YSqJZxGsQuOVrkqRdhoDt3p6l/Uj94t0JB+LABPtBKAFg1vOk8R90d3fuSuKNbO2TI3DqK30g4L76RWAljQZ+SayGz+Gikxbbn0xt9Vi0kT1vjZysU5ibgBZR0MKhvxmWfcxQAV4/1l6eXe8Meync1vDgr6KV/so0TIpHDngJhhXEM1KiAEc8yp7cUKk0khwxZkSB1FiZV5hhb/9fAVPMG8DUxjHRoIvlWnHVg1TKb/OnXnB1Yq8qitNK2rZSEsd7La6V/0sizdKsvLjZESlsGcN7wS45o7kHdjQ765yQS+FLqqGSqEI0CHphEIGxkdVjNg3ISYZLIVWwfzGQJ4BgA1HsqwjC22JwS9bAGuDTD+gh34JKfvkeoudXJfAPlYXbegW7V33oRHqTyab1/52rfv/LvVyjxNtU7jyyzWQzLQ5hAJpuPl4Gt18RPUIbavrAkaxs2CoixOSNKU6kOMK4Jaei8RMM960slajjsUKux26Xtgf9U3tfezbihMuOrGn8KOt9b3iJGPT7TzUdfpuNA1Elya1P6+u5/xuI+eVj8GK3LphmpE7iFEkYzcaD0I+mroRU9qJTVNEiVRnQznBZAz2iQnPscGm01G60EYdRETcSVyrPZBbtaF5hkv2HvL7x8YKEewS67+M+RPBtpjIzMtOmBivG+j9r3e1VkSXRj1BzAqJbwm+VqAX7mJvddRUET/WKdq+jOPpicU5+FOFNmQLwviiHz4gP2uyl2Eu68VF9itrUcMxSOFUUM9H7wbr6z2jym84jDz3c/LVl+eaXkNtCqV6zQQ+R+3o7eOV/deXnKUHV6qWJNTSDJepzV6Cex9p9qsp32dab98irhCXpZ7JZkPOptEPUjhdUn2elRmqTScsBUPBfjXwOaq/LjeFueXt++U9Igib5QbzJ56+6eqDEmVbQdKaVMDGF3b6W7+MPyT6VLLAl//WFq0zfPKZABHUvkz7y9Xg6TB9gxkwUN+HC3MIk1akByr0K5DcylQqg3xIJgtUGWFMCqLvIuoABwmBvcdGADvr6VzeXbtBI9rdBjM5PBVZFhm5zGALK4vp4DNLRQmGUSQK6EK2vYz1pYvD0uCBe4R8rs0FsSP/G8sheyWv8zWkAsi3KGs/iFQrvUjt9x01lFM/phshfW4Rf0SqcibO6IGxAgIjdM3QLcZEErLFP/rv6AVln+MwxAA3bMgYx8lLSNZsN4+TLLSg49X6lg+J4w9y0Ca1jkvMEvQwygscvpkX2RQBPtw5HMKPPg4N3JBEyKJMuAqYRnw5mNxZe01mC4y8FgYWQA4L4YfO0uivgOZvSDdVolAOkJhtmEvRKf66JVoGGuUJUwvRwzqX/WB4p1zzsJrYuhQexR1rSpLRQmW7x/AX3BOjsi7R9LSWDuVFgQ/XMjlL1jeSIcXu58WQsCcHuuL7e45t1kf38/Lk7DC/Fj0tZWaFUHCuBwEopLxkWSWpgnli9wG906bCDgYOwVNa/2/g2NvDYHdyRM9SvkGo55xktTFmR0ep4uGSagAvIs9JYaT/55hZZRAVW1wR37KEbZLfLScM5cWbRehPw9WD3XjL/UUx8+WW13cN/TsYtQXuYNqrGJ3W/4DmhltovXTRgzPEWWYQHfWFoUS7aZHDEHJ+K41TkWSmpw0/YJjAD+inQyoh5JdWjib7bGXx/irYlMnLj0biFYaBO+8n0+ZkbFJApIAL20LXt8xAjeMLDp9V5qeeev4zSvlouDANdG0uP5d6MUU90d4ZS5NvsR5aTAU8a/7LBVwHc3VuUWaP/d4ItYc7Romt2yLf9FLefACBdkLR1IHlvzs7UDayT+6pRrdO2Z1xpTIiVVXcIBTiqXqGgG8qEm6q1rPZueL5mH9PHOU+BXgkuf/K24q7fitZY6Eje564EuYrncUpqT98J6LH1ffxlsI54My+ySWeeJibwcMhqGp9G2t5dmyTrxrvoIyvvM3Jc33rz8RkzYnSMPPowP9EZjE9qif5XkJDr2uagMSo4Thnd4cIBEv+Vn+avSPpD87/CgbGt736JDaV3+UQiQ8NfrUL+2dIOCZ1YuUWM/iPImsNocxE4MKHXzBWWth0sFrqdWTI7zKd+4EGrMAwWfRHlb7QpdpQKABdIbcTOt+oSUJH9vvG5FG6A6m3NA2Wibn4Od3UlyqhqL4mLcOzg/qAPCF1QNuVcu+XDQM2HHxIi9ZUQUWuhdrcfg1GIqjDrErw9zrnIQvMmrz8iOLtWsdFkTmb76m4RUKIpNnR6HEHKGwsnHPpwGh3SzUjV/j8yXUONgiAXLnC2FMgWie9evx5PZEe3KgYcy2aFMz2b7rMlmus71G102HbxwYrSW6ggLgbkzWgkVZeHKgeTU69bbfYQ63PcdQvRizPwcXgcwoRjm0c7j45DMXTFm+KIKY720Bhrut3cBgFB77+wVJhU0iKI40AsQmHc1/E3xvAoQ54bdhiMfMLPa+bM+i4730LLrt1maGjfJ1p97s2SVECCxOcLxM24WVN1dUuNXbpgaZF/n4CPwDl6jR1vBNMn33mZ9U3Oz4rKWIkmtmahm/c4Ej3tnpPqC7Mjag8+ROi4c8Mq1J0JOpnAWBnTe8Kw8pwBe8vKQgU//F1Xd0oucCDlLY7gSxIrZXi+kuvuCmpjkrb1eCMguF7EEZFPuayjVCz4fJmZneRmZF+ve6bB5vRmu3749Y4DdIYXaB+vlvt7lk5rUfhneL4g+thxw/J70YktswSox9deKKQ1oh4mAq+2BjLtUEMYeE7JwtpdfaQLg6Uvwkak4N3fmj5O204exTeIW0H0teY/bOWcKTX8rRrWEIN0jkPH4Zn769K1/8ZmmvKsi/91nYREqq724qrOEqb87arHUVnMWdIXyl1K2NVKHOsjC98Q7bVV61EiIM1oy10gl6q4VElUENaZ1kgDuVlDxR1u61getvx7WPWp6VL4C6Nthf1FaLtC10pVS4MEy2QcyIv/7iM6ggY9GxWQwvdCn+nrXcvpxj5IuAn6+xgfC7NhwSqsK1k41JarskywLKfPfkdUpLPrdWiVE9aGIs9ndc5b6zpx3ll0Yb/DQh5tNKpMXcBqeht69qGVZ20s6OTNnF2OVE2KAUO09Gp9tF5ZSlG544bTZCB2IuNEO7Va8oVouEQ1SCTFYsI6QPx8bNX4d43si/vt+FUcjucER2CAc/geXryuRJs5ooEV5shOHyT68impudc1ttmEq0lxjgwVil0KNts3jXEKHQjJt3YrMVEjvtLMJnMVca7QdzdCxZXpuWIMWyL+MlmVqgkM0hS1qZiF0rKLFORpJHQbkJZf8E/HmcERFu3wJDmEIlKdcAHOkL8v4U8LQjlBg13Rlti2TO+YXavVO5VDNdLcvXEneHTxtmtKl4N1mZGcid9n+ORdMHlqNENZLsn6EjNAtzSWt8h+m6XnhYn5lhVZFqedixWUPDShyxG8iNsvTdAwF1AMJ/yq8ch+fc842qHLmi5ZlkVj9aqlLprIkBPkDnYpeD7GfE1UtuCwFGIXUNpgZsRKHrt/Hqfs974tQr7vtFXKuYrdcoXyj7aiTy5vekfssjPPWuhs10mW0p+NZEyrvJRMNr88KaHj4FB4QE5vMmM73+St+nIb31OQEQuqyaN7aHvKlqpRVjlU9poIl+ptBd+Ps0iUy7+Ie/82ZwDeyvJY5rLDITjH0tpvpbLS23T1kvfW9ZzY6BiqjzpO6eltAmsKEaJgsPGU4ArQOgY3+d1HpIpm1IQxjtjO5Ljio1v+W4R2kdEunVEsp1lTUARtSeBqyzBJBUrtNL9SFGmiR3EL3/voZGZXsNkdMX9Ly2np0Bv0HAxWurpr3UqZvOAF/jc66+gYoLAZ8H73e+ofoJDWAwXRteXbr7uFumdxeZRxfWWqJyZhbAMn7ceRkbhrd/P0h97PZSTH3eZgIEDDxyd28SYBAOZgfX81aLdrHH38spCMbAQwV36PxPWe+uhABvjp3oLoRcJzVHEVAcCfgMz2aG0W7DFjXlaLdDXYt5V5FzYYghyORtUSabXr70QhpRDpYGlrPFRgKhJ6FCiEegpsuhgrzS/Eo6nQyFv90iFPdlHIcCmf4SZZ197x7cuckU8nso1laSYNmawVb15TFDQqEnEXV+U9ROTYO+YZpMRT2wAMXa0zUtPR3Ocuwok8soYj+FLXrzbTd5263dpxKXLUUzVkaRUDWmNZj9EV0s067VeNnm4fdMf6Xa1PnGvatsQxBqZuc+ruI/f7I8uPpG4p05zcakdpred7x02vxfZAvdc3rVnocR75Ntn2KvMmGJ48NL1LYVe/tlrVYmtknLM5t3TdxwlsjuLAyx/I0mCDPkQliZ5mPDhDhw7WLDK5rXS9NJpUrHBBZ07nfbZOxsLp5YXvf2bIp2kLR/m4q3BPhaxie8yN9HlCluxxy3w/xGJApJDSSG/rwrt2M9wJqyw7EyKK8xiG79fMpRnM24epUYxEaCac8h7CCnD+C65MECcuI5yPAZKPcDzsP4glCLCLBVar2as0eNRnIiUIx++OJi5R/L2805s2BkHU7cgQWusX67m9nxbra6QP/vdoD9214n7Aw1ZBL4kuRo+nFV5QC8GQ5h+p3HVmGd5zram3qB8byLErgLjqRD+90WrFd1vUrs2sBZGUUhXb/bD9kzkcIqg7/QGFlbF+4YDntUpzpFMRiIKm+rl5izac9mtgZlqgi04Jm2CPlKk5f6HBbEFyycD8DgJ975P0o28A9ROlmdTlezY2JN9+okjMZhmoXGWnV0Ospp64ozUBL+oDrrPOWBs6ZfTYqHguAP+LBD/q4ePFqy5IqJLebQtjq6NXptTPtZ6cqvyfSwTb2i8/2VWYJ+R1vzIWavdCls3xFh3dLLDi2JVFS2eGFMdO8Yk/1W1svlMApf8l5vlGf2rsuvNb4DMEpq9RupxJC9+hsvSgdmZPYjrDsdktI80BTIPCvBUOpzbeqANPOko/SB2rDTEUoTP86Ud3yoBSJXeC3OWNfWwiAzQG8NtmnydCoP2YgzWXI44Ry9BtwSOy9nUDv5lL2d80S86yc4z/qm/tZ5bRgYGM0cjThN1XgrejZp5WhGgDZAzvlLOfMj0CXlt6
Variant 4
DifficultyLevel
689
Question
Brett bought 3 identical cans of paint for his mural.
After he used 21 of one can of paint, he had a total of 20 litres of paint left.
How many litres of paint are in one full can?
Worked Solution
Let V = volume of 1 can
|
|
21V+2V |
= 20 |
25V |
= 20 |
∴V |
= 520×2 |
|
= 8 litres |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | Brett bought 3 identical cans of paint for his mural.
After he used $\dfrac{1}{2}$ of one can of paint, he had a total of 20 litres of paint left.
How many litres of paint are in one full can? |
workedSolution | sm_nogap Let $\ V$ = volume of 1 can
| | |
| --------------------: | -------------- |
| $\dfrac{1}{2} V + 2V$ | \= 20|
| $\dfrac{5}{2} V$ | \= 20 |
| $\therefore V$| \= $\dfrac{20 \times 2}{5}$|
|| \= {{{correctAnswer0}}} {{{suffix0}}}|
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 8 | |