50143
U2FsdGVkX1+RuXFJ/QpiLNhtiguQpqfpuUy0qmp1A7DbyXO16dCLacTXHGp3qbfg1wGy4qX7oD6RxQNHsul1UaEIx5R4v4QEr0lxZxXY294W8ag5f0oZA0qW4RTvUebKSwh9SCwxboKQ6T5yKdwpOnZyAwElmzskMf/+PPzKRnkcCTATx7WJgqJpKBi7yj4UujqfZakMPGrDFWbqsYfxzZg4RvbMufBzS0gkMgv924mn2h8Ts8BJ5hocrZyD8sTY5Xnawt/b2nmTL8eAtvGFRDds6Uyrlwjl21Kz5FlgU/WEYPl+/0ndeAEadfHfWlw0RyGkodjAvPhjg/y8KiGYSnldMVhvo1mOWoUA+X2gHxd77avTtBbMa5P6uXEJpCxVoeYzg0dbdghcna4nukXQlRYaczDfVNRLLF6u8ERjejszvaa4fNJ4Mji+BxSGC9zM34XvYvnlTNFz19lZAG4AZC/9Z3ZXfE43P9un7pXc7jUfJ3UyJNA1d5S3Op97ljiBNUiOjrePTWBxRqoL1pZppdSknFgkC2ZktR4Oujr4jGWMaXcb13G7oW2l8mDttnsYdjQ4N6se3ISAu9KEXmergWoIgfSk6NxiR7Eam4EIQAejxDgggCQgUyMZy9vMsUzIB4j9tQ589StwMqMKPS9c5HZrSEV2gt5aE7knr7lAvE1s5bDQav4MHlqHeI4mALF6fFsPYM26ptCQZqnBsDhp+gW6/V3/cP2V3JkLuXOQOl2kO0IF6A20w3HyVwZa5DHUnnd/7R7Uh7ZBJS4K/FMR9ipssp1+uTYTTwp3chQlwEWiyk5gzInAPy8N668/cYCt9AT/CdKQ9IZNSozwr5iupMqtTtZt3WaYAvjmHrqzHfozYtGYW3xKbgKe9K78I25JGDGZ9hyQ0FvZ2rXPoxfh/i+500pyxlZhBnpwBxVEpWHXR0327sGEFTX+ITrzLRvQ+DeXT3VJ6wQF9G1zdDaMlwR8FFIanQTlg7xTwTLJlqyOqbHbYhkZKgNDp6wj0T+bst5zldpsP3VRlwmBtlEwKUQdgeVMzmf5mH4Jiko3swt/Vt3SRCe8KpvpxkDm3UPQeU85hQ0xahgVVsmwL0A8AD9jSvC7Sw0mhnAi7kZJK3I+gPBIjWJmGty89myIeR7mFKHVxvbKVoJNKCuxYls9jVzPYA6t697GaNrArNGZpl96hosZm3V1Tkf1EIDM7sQbQ41wFkfh0bjpQ2J0a1whMmA1eRFk+bCkS1iNJBsWqZWUXPhKrVLj4Viw55yipVp1zQdVIlQVubiOCyZocO06U4ulU769/NXkLtzDeulcmw4AeB5/hyGSrWIo7eYPwS2Dvy5tqjFnMG9uMSMldgCvnKH5lnYKsKpcMLMd+BwoZ3VfbbAaxttwvu9dzYOX2mjVoyTND7bD0LwzhshfXz9yEo3esZyKOMFjV2odmASgl4hOHdtWJz5kyRklr0yWn40/5MAn89aYupr3Qu1VjC/Tb3HegI4Hp/KavQSxKwGTAZarMw23gz4xl5sHvVafwLJayiT9ovmM6Yyx5Xa+h00idAzjX63/3XsViwfZcDuq6gLPGOaHubY37lfpYGU5M6xxMwUoDsTmTAtw82kxrFZucIixAiwi7PkKK4TQLGd2niY4zB2UWEdXittx2/3S+8jRdXPlPlHlSDyTC5yKg9+DGa911PvtRhthLFaboXlhe0UJGctCnBYjeIFuWlhpsyq43R3hpf+6QA2HUD3QpSh6Csb32bSbMW7YnCaYSxEG56/GVd/pNGQ+w8vJ++2CmtyohVZTeKbDOq66f+FKbFrYq9MnTvcnrh8KNGi4eZ2GAYC9vvxQDlHASp+QnETl9sUJlbdxHBpLIyFOymrf3T9YYYSlcd+mpGWFg7VoqbJPqwyDmaf4lL45j0fa/aVJd4rHXNIUyVlEA5dH+dWJuYH9YLT1xx7BHjQsryYNkBnHOtiMgYLx8kzsxanPWTHDv78S44CDrP2A8eHtd4q+xRy1+uHVvl/pqhUCTWNKIHUFtzhvZMLhnfHH0ol+4ZhKnqi653c7Ijs79TXXHiV1TUQCy7EhOfPT3ydtWPVTTKciwR0MtU7eFS7ikUIcXWRRaDT5kGkfh9yT74ZKPFsVSh6zNnk4worxWf2K7mp6223p0SKlqNT4kgafd+llt/ESjXpLC4Neal7ugyH90QgVT2W1D3LIsvvHIYcHXWbws6Ffq/hdcIeIVadtXNUBCeE/lxI4hYgxonHc6mcdzzb2oQ+5F0ZDSrEJkb/phvMFGh6TtF3dM6PP3WcD3hJRd/CEdr4WNMcqA2AscDjm3oUpsoYY1CEJVrqlpamYcHSe1orlZl6y8Z4OrlA52Abjx4r1TGWJW9MvaSMiTL2A+C0iflJPVyGPAmy92BhRcgs2mY25WnULotVRYTTb6ljASihpjvc0UpgbsBTSzDDRhr5KLiB4JztcQPrUKYsX4Oc+LT5Uq9SoGBD3OHErRnqRD7vBreCG//ZVLJzAtRJL/JNdZkLq6a4TC5o7ktPfB1dYHwCdG75Wj9oTp+VXU0F+m2GDTi5vX3L1hV6IRVEDJyobPCN93c0DY75xEaePKwUXxeOS7Rwqu0dhUXZ99h3Xvln+Uj59Rqe84PcGSVl4uyVUKmXsQ02lDl3wmfLsPE1t8qA5qUMJZHv4vkSPSENJxCmNOzy4WcXRKGowTKz4qd5giuRp/y5+/JpxC+4HJqQ4bDLpkvIm2ajFGam1yzsZXgqmQ/owzO/tdjiKQ+lEct1+rK8CSAq7s1TIy4D+ZQvKkLLi7pd2UDwYcPkiOfBtNu6C4cLVIPB2N8JB8iU1ePtCQLkwZbF+p7iZBmowdledslNk2qzgRxTycmqyxO1f/rklEdRkmpWV/8ZUp4MGz6SXkxa3VgdNKvxy+Jr4kRGgyoUToqlUXfyWkkDfP0PTm5+8XFaBsjIl8Njz0XOO70wKJLWF1S3PQtwXw9uK8wex8Ek3tuPUnXy525OzuhARkQSqWmP7xo2fCZK/dVSW4gyIhlMKgixmqtcYwu35D92YrkAWn9KZrKH9iNkYUJaQyI2GxUZBg7kDwjXai4cAJHm6aNBsLDLOAP04WRuqGurmtjuxyd6rtzkp43A4Iiv/eSeHr91o8QH6kq5jkCu+FLDXVx4X3kDZ/+5dJV0UXbGDGvGtCtZiSyLp/eyCzcgaqDGUDxKnUQBgQmyFtivVMLXvPdMzvISjIdnwQjewpIuhUPmsmmoUy0g1qJ98Uf6TIjh7P/jyxG6ZeUwpEuWU/ketl1idbsOL31bcxIf8VKVabxQTj77fu/dIy0eatUvlEJnn1o5GXA/gf5lnBbwxNAR0KbBPWaRqYZ4Zi22jmMv743l5T3/HDX6AyJf/dmIU9w4Fzbs8OUQsCNvIV0e0fxFA38afi2zaRzEVjvyYG0da1xqkWic8I/fBL5rvbhAbIG6g3disgNPmT2HY6+QsAYzqm1Tej5gXxDAnBmd9QAs/hU4L1/VeI/+6I0aH1I/Yje9rQTu9uDpnYZ5FkwrXj2uxmW9q+YoaQ/9spBZ/AUuKG7CX/pig9vQhpzMIOyU+GgD1W9Cw4efUGFweEM3wfG2OUNbSbb8qj4sb2jxeHpqSD8IXdCsVVKRTkUniZ3q5eodTrCdUy5YfP3mNuFxGBIFwfYp/QSk12V0TNG0kOzFDLfFodAd1bPoS6iTx1hHALJu74DLAweoE1uMjVC9xa7lgCbQWXLwIKSblUGtZPKu64fuLbZmXHdUYhAUndao7bNFN1/tM7VwACHar0gzMxHahHk0MVIwGpiOuhag8iDPB4k5UG+ITT7b3OlOfRcTNCt/qzhnQl39bRE3XpxmBnsIx+qJbz6iVFQz/3PF+9fZmFZ4xq7tUgZxltE9GJG/rpys3mwQjE+wQ1oNZmelRrLsJxVScuw9/jpD+ihaWoD1E94fiugdScKcsmTZyfhE0pcGkKC1h4ZrXdzZkkAhol86xkh5b0/oKBAS7OuirqcDwd97zljtsArvpcxGn5QLCyGBcydCO/WZVHOXCUlMROmKTo1RhrjrEG7t4Joo7Bh1XW9ZGPIRIAtQcaoqFzYvv+TKtiBUqCFq9hMsruqhlWwm8oaTE9yZvWud4HqCIgXWvxJslEm3ZSuJjManS2Il6EVQJemxgWL00/bh2CkqdDfmh8w5+JEquOlNHLZ+h322vdrs8UZoACNmqlJ5yxGqmnkA8llOQI/ngRjbhnnhs7QcVe0KFuytGNt60tipAnysGykvDozaWd7heiLvUo13Pf4e+YsnMPUsO/Rvxmtjv+UYmj+gYkTu0dDDLRNFMMZIlxCQDEAVeQYijkcIBwhSet4wZUDmzcFRfE5P1bmS//zXH8J8xEMTXCTdWJTPwTdV8/axx9j3amUJPTVnSem1uTGpx4MM836dNG3GqOKH3VWlzaHeGGrkYU0CxNegPmECwo1E/cS6Mitshhom1FHyVdl0kobX/NX8QoqSGsvJFJCwQOea3Zfif6kfyv7GAdi4ZDUSkvLCQvCQpS94R4SSb8AEfGo1IoAiveWuN0hxmtWVropumFhj+uYM027Vnm5L9hQRCKKSRtuHP4v0rDMzJhI2BOpWfU5cjSwjI+hbp8w7pbqjeZ8KDY/ncHq2TL5+toBZhiOU+1s33dhOs+yKJv5KiZS2GBtbW1w04c3eLr2SzHfOwsxfbMSDDxSl6NwliRGZS/Uig4MNuCeejJhpnALAYvsyH7GKcOYMHGCfAImg3kULci9ebagoTe4EJjoouPDhDx/avF+qN5cBSRC09UghKUay7XNukPnNCFNHRJMXgdRan35U5cDbCRy5Km51GOICU8lHgajbd5nBJe+fvaoGLIoadap4ffbyruzz/mlGrvWcGtB39pAtt8dvFIKsrxDZhNYyu12ZIa61hNSIzEvO1ht3Y9WwmhLYbmDta65PbRn1kO4l5o4N8fMsCO39mfogja9DSTv2hP/pR30FbvyIGzpXsKqC9VUe6GXVZY2IqUNW5qO3M9K183sb0UCkkXHCt0XLkPiok+f6qhCfDV679SKZiL0ATbntPIZj6a9E7cGoY7TtieDGjjanhhLjRmjpnMy4lGAPqb5mJo2kjm0agf82eeAqvQ7mezVTMYLJDGUnq73G/SrhHVjLz9FYMpSkaXaLdduVCBqN2wjblAUP29HAR35K8yvc+E0KuFW2gHQOg4Q==
Variant 0
DifficultyLevel
577
Question
Benzin bought 16 pencils.
He bought:
- one packet of 10 pencils for $19.00, and
- three packets of 2 pencils for $5.20.
Approximately, what is the mean price of the 16 pencils?
Worked Solution
|
|
Total spent |
= 19.00 + 3 × 5.20 |
|
= 19.00 + 15.60 |
|
= $34.60 |
|
|
∴ Mean price |
= 1634.60 |
|
= $2.16 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Benzin bought 16 pencils.
He bought:
* one packet of 10 pencils for $19.00, and
* three packets of 2 pencils for $5.20.
Approximately, what is the mean price of the 16 pencils? |
solution |
| | |
| --------------------: | -------------- |
| Total spent | \= 19.00 + 3 $\times$ 5.20 |
| | \= 19.00 + 15.60 |
| | \= \$34.60 |
| | |
| ----------------------------: | -------------- |
| $\therefore$ Mean price | \= $\dfrac{34.60}{16}$ |
| | \= {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX193J89CtHMaQGdTKZXTaK461Tn7HAi99/5nq39rgQnVzFOD4jq+4QA9K7fXSgVfxA4caUH7vSp++YyjjcHW9QvJjUhqzFN6Oi0Cyb+aToJ2ACRcK/y38uqBViC98pIso1pXEwCFZ2pJwYahFWfro7P2MCjEp40gIdI8gmWNlNcWymwoFuqgBnmVYeepIAXcuKvVVIQrAv7ttnPWipAknG/LAGvjsCwgJddASOCcNc+JLPiQbAA1EUyIbBa0pwGFauo0exjKsYBrn45DuyHrRhXO9Qj8KAXhpxlJw+jPDCTTjbw00ZxmB4j9U/mRDJq9sU7i5bhi5pHeG0ksTrLcwXB4GOXEPD1FXqatbJkSFFRKBj/L+WzwE91KNmP+RtXh+nZiDK9o/d6o/9By1p1o0F9OIr+4m+U7cjdylu0NK5QmCflQ7UnPBRG8I7HRTWf6I59yK3MhxLoZILwQzUvY6VL0UqC4/jWoZooiZfs7xpFwR4XofKVpW+QsM65xutFBRnWTSOtMAlqCRQKfiXBcYnxn8Le/sBXxSXOLRczf5qhDV0fD3sw1yAtByrnxQc74lh1oGx/YT+m2kOqpdzuRcBbktF81M2amqaSNqfTCtbdRhWnaccKBuBKJvp75ZS0Zf4v8Pls84BAKD26dYPazXx+y9Lxb4sqwHCTrIDxMuIBOySaOKyeSQJyrdUyrIGzTvdFlMZwMg3yN4M3sb+bvzhiq8rVs2uJksLXBfwdRIoJXogD8hQnPjyHU7mWi1oNK71RzTlD71HFftYr3aKhxrNRJ29sKvv/7RK8g8bP5e8ADPyxTbQaRa2SvNeSc9ec2F8HNtKqcTXYOj1fZt82Fa5rS7bxH97HQbDds55o3x/EaMUaG4dpGKpepqSteIVEQDQ6IBI26LurQD5fy516ocwp6BHMAFYVI0Q9oHlPRVF8Bz1eHSK9I+2L4tyCQJxqGKc+rMfX8Dgq3vvwWlhlAIfeZkkEj9D5+k/DiW/3AeWv/IbY4N/rdm1rVirImOXlbqg7eu8aoe1JbB/5WKQ1RUjU2c71QYbRnUmoE0JgQ8T1pvI4SFtCeGRSL6UN667TjvgSq7hQ5Xpslg0Wa+0pjqOMQF85hCEJgT8himAs0AZ9rOaFzkepjh2RcAuW5W/rLrLiLTaX8KkBvaGx9HQg5+qxzrvO0BT6Kk0OfKrc7asSD0tr0EJPAQuQzf63Ss/96Qpj6257YqIDrFnEcbRPnzlLY9OzlEuJ0mzDjdspDCudR7gvPmU72eDfys9g7OxdEH2+y/4V66mowkDUnPQFJrVWkQoH61g7Tef0Ol53ZwQvRl58i46rDZ7bDs8PH8YyCk4hS2KL2g6itttpMEIsgtCVa7+s1pMlNjJi6d5sk68WHnJJFzdpVvIRYuXUEzSq9xEXgSFm3bJgGt31dpR9PNVLkN1tc0jBHDZFTpR5qobfEl+4tnqXg69CZDce9IiBWyo8y3WT0u+NWEgSEjZyKO9dCjZi1dSezNGRvjksJgyAOaRf3Bxe1fP3sjImFhmyG/Ax2PVkA3V5WboVRrUjupaZTA5nEw4W7ROazFk0QXjKL1OydO2AeFlYNIGnd0sGU1AVszgWIN5s2QKnwvKvRlk9rV8ye7n9AebLJfvHdBU3+4PY8LpAHjDbygMPgTPYG+TqLEVl/85Qz1BrdlU09yeg9Ov55XvoDnTUpqSElc6hrxhJ7pe3dIGTLQPZdU+sZ8pI9nnkTwfMk6bWLMpj40PbrsC2iBYbQyOCTTr+iayeDO2w4mLqGEsslUWCNyIGqHet9ruQodtY1jm0kmCgIxq2swUNJd6JGUNxulmniz0B4ecFXw42GQCHi0fwTEAkOU4k/qJKqAH/cpWZDFimndjFEI9sDQaVysoTVCoNJa739G5MUcFzvqjedzR7MUTpomLgKdfYCCU8AiweqhloEKEMAqtdxCAC1VZsvC678Kcnj7ohVCKwlUSNu3KA5p1bXTVaV3PQFOc/83TK7AljznxS/QXOKHAc31IFixm5yrM/CAxAoWa34r36D1bOycKmP52jTGGWbYzur6yueAmvf/hBqtlIeMK2u7hkd8g777dyx3rkC1sJZGN5a1+re/HDJcMKfkJHPBJ6KOe5XEx+bW4N8XqFzuOg6oD9OjAbXI0bYuiLJAIfjt/2hXN7o26IfhFds/+kP1oty9Aa+mf+AiZ7RmDgfn/98wADDYgJuEwVlgzIKmDf24WAhB3KbpPxObqRpSD2rxSvW7dyMqoSZzYOTdtfb1X7lilLgqlA0BTV9KHzyF6tjmqY/oxD4S/sN5DSpbhzrfdFeVCQ3scCtYCr3etFSn77IYL5BkI5MdIPfVBd0v/z/tFOJ5mRNKyQfQJo5VmiTW/U0KVhtgZ1KN7uLfJGwZ8o6QUl+LGSm8pC8RGk1kFUviM88t7rtFEVeCIcGNNfXsBmHAQVV+mfE1sX61xl4ctlb1qAwsMFmBGufTXuMRhZry/UFYlnNbOBXSkbk/wBc/HDYZWL0ycmfW6c2zgzA3o+hZYYuFoHoUTnRt/WYF6NP53Q9RqYgJ2s2+7mux4w0phAt1xJKTa/WyUfA8OaQIYwMDmzj24WaLJCNede5BU9s9HLLKg6314O9stPBUhPBcU0sd3BOCUwFnaj4KSJu2QG5nzY9tAw46z3UmczbaKvahzktZNnwrI9/lu1fmiMas+srq3laiX1Un5RAiSiQJECANiBMitEtjNQiG3YPdJlqwiAn9CAdynpmGRuzDrXhw7rh0JAIzLow4+wncRj1SUbG/EKNfciy8WV2B4L2rgxkjfqmZR+7uv0ST/rk44T7JE0zHxBsELAc7AzehOuJ9JiOsLSh+ArUT5qahQo+XZcDoSdDvOwBW2ZO9Sv87Ta7jXL/qjv0usXkCCc818KSg1NmuddrKwVqOmJAxqZjbov/BfCjVQ+BdoUefXbeXNt1NWlyY2UU7DqW50InCTpwDCm16lySkCLVwITceNaPALwDyP9TQ/641JutBAhIge1vG9mwaeE3fJXlkelCg/QGgU+XlwU7Mqdmz49y/Uf2aXlvg5gleqiy5H2tV9JifQRQV5PytDOYAReTHRW78jcrdoaKxBjRo/HzeZAwJLs8oFVMcxN7bZiBY5kaaK9Hl8ZPCO33/Es2pjV3zvWmvRh4e/xYf+1mffZaemuLn/0w1M2fbepUik5Bb6rV2Tb0VQJNMHqqUxagvtOJ2h8Y6TYy6CkzgYOvmHr0pifCWmbR9k2s02xuunKLxBTDuEnLazhNioKCatV7oOOYTamq0qNCuKtIqcbdg6vuy338ywVqTv+8PPpea+kL4o/7l5NmqO4a9YHwmaJHFlddFBIn605+C2IoPs1br26yqJchZFtdynZF603TzClEKDxjiPjRp4qvKxW7nKOfv52e97drmTeqpTnZKDPDJaAuQyQJhYVQFP4Knu/8BQ/VnTKy1jSS8v7VkZ0j1YBLRHTv6ouB/1Da3iavDEmWm7NnChOOVzIcQ8zIAC+LdPbltp6e7hYNi8fIyTDPQy1zAp/PzfrHQ9VCyF/a8i9u0wQu0CFywXPe0XWz0oc6bcpD93ibBQoK+aU8NiSkSY6lIxrXC/vPppGrORaIwiE4jPwvENtFYArLMpxsxXKi7/UPnMdBwgBMdxNUYezs96NGt0Ic6N9zfs1p01x4ewOfPiFOf2BRM26WK25zG6HifcJeXnk6s2+hBU21XE5XKwdYdzksKN/oihhhWAn0Ea/XrrquJ+QQ6grA98RfuRZtGmrQNoCefqg+vW8YbKlyAuvLqFBLS0oOtaef+4zK1J2CvGazDfdGiJMG2dK92RJA9vuENhFK0YIAG29EUm6gQLWZknBsu3jQuJ7vAxFvi6b85PlTfwqyU+vIZXCV0GxDmBF5upZeIH4n7bTLnodUKKsckhVCsdN6CsSF7PDbpbALOdw0WiggAuC36CbCJfG255+fBGoqGp9Zn9j43LZfOwJLnGSerWljuWj44exJvRZpyDCTUB28paNTkQb2zMoIoHvb6r8JNOX845QHgLwq4zNrD152g8gaSyJDZhKCQZEF2D6SuHcYtgW2EaSPWp/xn6GHok1piRZLi4ubQhueJ1TiZcFzhbF1i87k46vK681fb3n2w8pG7Yl0aqD6J0NDKlkvoPbNRj6Chf1SddKFyoqUxNFwUhZ7WdKhcwztIZQUq8F/6xh0Gznr13L3bdBLD1320ppi7dasXlcATxIsvHY2K4n2O1czgKo8m5WrW9ejMWWDlZesRz0Oj84hKbden6mT4OqiIu1RaWMBJhTlodyhTuBEEzaacz/fLhB1VcWsf2LJ5xHHgePHKIPS1VqXeADtGJIJ0zKDebwp1Q7fFqx09RGyyL5c9yh6le4k2kmmZ//HgGSGoOozhOvuKNpuSiA93B0AJvnV0Q12FkrO3QkEC79VcLxUgdhc15531aY0/98sO+B0cl8RFIUPNYoP778f3PtucbAno0+54bJAx0BG7IM6kW3V0EFpyiUMK6VZYfanSiJSbc7YPDZXWLcFMbaaTtSXVac893Flnfd6mBPW6s28Uqi4Pfe+UB7d0rCs6GRjZF+cpfJJRQ+PkPIpn11u8Vu/7UziMgc/ZqOA7ExdP97z6JvciAg5VfkWb3HnhYHWvGmzqDIXmJvj+XDx7g/2tbopNYOtlUYMetUjWKMVTVvfFbsJLqE0eaakbbzvVapQJNBnUDlx7dJwPHEW+AFAk9lsRfXRo0wGdkzlIyQJFlDUGaEHyrhnVjvq1r41sXMXKBxRMhsC5ENL0F6e+3Zx7YF/ocN/Cyc9p0rqbYzm9myE/u5xki3zoyPHP99kgxhgcawfYKejfiipxrUjWDou7kuAFN3WMl3qsb2TDOSG6XGtn04bKRMBU6xi3I3vZ9BwTrXgNDqsUgkmVoHCWxkTSU+TzDXhaGK6v5NlkCntH6VbIpA50pmrxPEaHfdpI0g/NupDhECNSKNKlP0IuiC4FyHnFZBimYYnoTnVv8BhVxeKnZE5wr5CUOnR2Ewv58jzuyA6Dv81pVNxgaN9VluCs62KetNX2odRQsd1Q4dgsu9G8JXdgR6IOMYKYksC3pSk8TmVwiM5z6t+HiCGK4k70e2dxIG036prsJDGGg5PPK47oIEh7GQclKtDplBGmUdpLMhkxDzSk+/R3FXq4Wfd2BLVSW1TFOLrtMMTJXRPnZ+YpONiAQZfedUvzplIbB+10GCyysUpMDMMfIWX
Variant 1
DifficultyLevel
580
Question
Jessie bought 17 sewing kits for her textiles class.
She bought:
- one box of 9 sewing kits for $32.90, and
- two boxes of 4 sewing kits for $16.20
Approximately, what is the mean price of the 17 sewing kits?
Worked Solution
|
|
Total spent |
= 32.90 + 2 × 16.20 |
|
= 32.90 + 32.40 |
|
= $65.30 |
|
|
∴ Mean price |
= 1765.30 |
|
= $3.84 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Jessie bought 17 sewing kits for her textiles class.
She bought:
* one box of 9 sewing kits for $32.90, and
* two boxes of 4 sewing kits for $16.20
Approximately, what is the mean price of the 17 sewing kits? |
solution |
| | |
| --------------------: | -------------- |
| Total spent | \= 32.90 + 2 $\times$ 16.20 |
| | \= 32.90 + 32.40 |
| | \= $65.30 |
| | |
| ----------------------------: | -------------- |
| $\therefore$ Mean price | \= $\dfrac{65.30}{17}$ |
| | \= {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX1+d6DWoJbt14XvdwjaMWQGAI3C/IWPmvOfvVr4ZJRnCLQeyxXpDQVjNJqdDEC2DEdkMxkk7A9FcvLY4rr+APkNGn/Q0CStmnJHk1jEslF66YWSNLj699mAV0uFtNPuVaaATY6W87l8Uf51Gd5ZsUDuivFDKpmPGUgdxAH0efr9yrg8U6+YyogZFkdOMzpuIHV1oICRCjjoChcuJfYfgjxx6y3UQJdwGWfXZxjlQZQBi7stBg7A8irxfihL93QXPfQIWMsw2d3xG0qtWuGKOsDU+5jTaTwH/g1lJebLMNk/rN4TdHlVh0YoJyya7PRtckMqsQB2TnoO0enEvJOmLHJYWaLsOGn/kBijMzQaCbFe7HkXO0qEyg5tl80wUzk7HGwGWi/6WHiiqnZw2+zCjhwp+WherVBcTPNxtmBiA6oZAV/GRyMvoEcm8JD2qGmuKZmzKfcq5de+7r+BtqMI6viIj/Q5r5/n87zYkJxx6UDVuEykbLsqh4Wiy+N0SS0N1fYAR1wK2fZLkUQM/ifq1jVa6ysL9u2hqv5ie9p/Zq/e31YlWqhrzBMVZPt+M/pbAmqLRk6jDTzrFNs9E5Ovh9lD1WqrtrMt6v3JM84l2Ua+qWlgOCN6KQbFFHjXwXaHacROFIiZdtOGjCLmw5Db95lFk9ll/gEJim+nXwjKooIRu8pKtygzjmmngpBDm3GV7KvBl5G4wWenliY4VJiYo7k1S0PEDaxLOZKC0O60q1/G4RpyoWOr5TbInDDptl3Mbk8aTcqo8WTbAuaK6pY6Xv5Mr3t/ew4lBhGxAkRMC2ZpnAoitD0lnQQfGF8Xr1l27xe6k27XIujmJeGqvXIpiqv2GhxbrMzkTAIBBcFEXstyBF5CkbyisV+JK4XatxIoEDTUTKW3cp5Jbhyffm3FmpfYtUH9GhRqmEDvKADBR1cKAj4OshTdyzm93fRjnWMxAU6rJp4l2Y1Jxl64VpqenXBNhuLyU4IZZNV+KlOH5XCucT6M/6SsbJknZd/IRDENS3Ac6AN18ETB9uCriCWIVxZzUSw5V0pyTEY9TQaIDUKC0Fe1/610jpcximUcds9TAsY3r7+phkYH7BzaGbGtJyPlFqmK1kt0Zst66ogBmRZOJVXvTyIppHOVYxNmYHL7leYNOerilZEyiJ3a56DS6NUxJssmi4nC6WhY7az7CcVR/ARVjJMJSvrHLc6LaVE8r5zrFv86xeTDb5ogI5HJnFDJdQwcH9taqYCS+Vmi1oVGfTJTvSVGBNXgFrDW5cJHTKxwK9gk1MQxRzDwFEBgMAzQejxevReef/VUTabdp3a5xb5o1/XoKcH9BWsBADkzks8VgpRwKfVdmHEITG+m0tBsdLcnHpqoi+wKyaxuK6XTah7aqBiOohr41DcLJ30FMxj9FRMIBRk1nY8OpwWjRTRrlYLUX2gyvaAPLPf4Z2Lff67sG8/njbhIyom5RDsI4lQ3D0NCpn45EI/CLk4KWqSmm3DmbHYYgm2sYN5ZF1lu2PoYC9R37ddJMIki8FFg0u5QGCAAZazXFv8a9bbfmgtn86Z8GuHxUo2DFUd8MQp1Ojq2PedmYWsKTIDtxujOTzN9rnPcDuS+YrBpmqHaCqAZLv0BZXvhgWwktWvA10c3R8PRmJQAXV2s3hzDm0bGXRPNvc6r6Pp8Ecwhb36S2SMSryUuaeSpyVH4aVArUM2XORW//oZun7TSpixaF5Pz+fsijs1pL6POeMvDXJfFh0PRhCkaMgT2jtLC7lygbQc6uchsnfwDDetEP+4f/GaBCzcHQecgiFxy9wuIdqSXzZ9pyzu/bMATyMaQOEuw2StUOWyZRc+IgI1q/kjfLRgVUcDK2ZkciKa9yTf8Ks0r5zjN/4v7k2bXi73dUL1Xaf1lejDE9KHWyAnvPEAE+II79Q7WeFDXqPEcpvU2Qa2NYFYUG8GXoTjbJk0xLMJIo5Gjt9BzRprf9N3mRMcvLEH6OqoTMKfYDn5kXDkRoLOa8o/d6ODkQcv/MSExqwjNdscyWqvja0btiXVRJBVvqK5ZK5FrSY3W5Dqz+2Jz0leF96hMdUswaBjBiHkltKOjK3FtlUQshQbXPQNOfz1KwQ1GK9E2m1Siu4pP7szIR0e/HlfNX+ZKaZ05Zn5R5w7v7A14YGOaaOy+XCQfFh9C2kacmDVrBfgIoEvch46t0RfTHSPPvR0VNNBxiixoAGqQfrdf8F1RViJrJDPbuImlRk+ktksQ0ECo28c+YsvltbOj6++t1RViDt6ukc5STjADM3NLpzhPWW5JHqKlsCD5SoBUgMs2fhXlLOSJGJjOUo1UjmrXegO++ckjhLCVTBMgkK/TV4BLqGfjk2/yGBaX5uo86yebvyUMHLADY0cIhw+TX/nVCa2iUdrfeGrpfgCWnP8r7cSXf4thlWXgpd5pfKwcDGL83VqjaY1A9SHxyTzkmw0stJSTaZrp9RhWPhpkT/IKRKtCuHlZ9HtNWgaUn56BiAOR81jwq2MYznHDiBFj3NXMyue1k9a9GQ7rj0ogygRgTkZxStlcTlnAgYz1T6ROCI0fAImwTVIeM9a9pmwRK9y55pYLDH3knC/VNW7+/Bjm8X8Srak/y0XNGX0eAmFdY+Jxpp4FMLneXR7R3h2YqD9K0LatyCLVCY7DQowf6Kvr+jhOZSPmoX5rzw0ptwITYqQJliHr2Dj7PGjCTEdf5iSMy84rpvWdUnmwdhO3Nw+ShHnAB5RBrctoTXOIAXGx6raoIqNU0J2ttPBtuV62xu2AjdcuPgovnCKAdqvFQ5fIYXw5ceVMO1QMPZdl3g1SCVkp4kk+iDbkouwZPvGjwHy9fxUi8CODocI1YBLC9lxsgqPqo8aLQxMmC9J5X0Zm4PXvjCGdjC+WsMdJvkwc0jE/mld3AMTIoeDPp4kC/10hVrBGooTv6aPtjzPQGXWs4l8iEzFhTRVTsQNdAsI8dEnzOHBNml+8Xz5rV3l52ASwpMjdcEKpPX1b5MU7EDdBwzIqgtNWuQjtg3txicLDUAfYghJxwenUMmu/1tZlPr1hr7GLVQ6O7+syaZKgHFvG1dAD6hPNlZ+TCUye0gdUnoi06Kc5eBbUZxX08rW1Wuze62V45yAS4eCh7TSHlR1NB/hSdOy3XqDp3084sln6zpiyFCoXkbA4lBE6hHNYQcingKq3yF2ix0aPRbySl03dH9qyh14DvKhbq1jhq2zGmN26XGrW88GkEt4L+Dpcuq0RQRipLLhEvMrtPJuIwzTspr43mYU8mPtBBJeRSvRYosztIuu+01Xu+XtJ6Ve20chrqcwdZ55YN0rT7XqPlc+nmL6uzVFe0LggE3eCJK+MXTHUDjQXpdwrnSkibG0178r4fvY8rw9XU6EavPubux9a/V/CjKUU7IdsPEY8EXtJ0OCoRNvdrda0Vj+JHmVQlfC1nW6t/Z/C+4lC9Q/Q9HL5+LlAa8eLV/dsikWJVC/h7JQyipYGLX3OEvazPEx4T90zYtTY2KlTZWTRLpmESf/KiQSMYlnbJ0wfVIgbwek21232EgEc5XYEwcrDKeshb2sthUBFDiK+9EstM0JiNbZ7eHHnXMreWwPLilVKswypgGjRBGDRRWbg5j1gSk0Qb9GnrJyUK33sRNp07TZ/qsVdhNRz7V319yjElJxiBbmmzziAYBlrNjarkVSbbWCXOCSQ8Tb+vo8aho7IgK13wZXOVe5ZIQ9MhcohFAdD7VzGRC4PXtFzpW5G5zefE6HGTZFrvStsAi7mANd2kUBCCJ30HE4akvTFDw5jVGy+DNYZ/wWMowQbWsdctSYZktKXrUJ8c/ysGXH/Jwl0Up5Oa+alkXdnwEi4sERhn2rJS5Q8Ne312DroVUYpEACPkez22sJNWmRQAd1aV/f9neI4+Hp5G6UZykElSvQLqY/zxftkiwP+Ghm+CyktcjTR0QqAp1Vmbi5B8/cXBdapNNsYtEEIsFaJNAt95wn1xZXnigy1CEJjHn35UYb07QW1kYZ8BShMh0czgEZOfVl1Xcuo8K8QUUDkuwJE1zmyjyF3dnz1fj5/PwUA6iqxLgKbcPzakzVCZeckS2T+3qtPmrA7CPZzTV/2JZ5ZRVXQ+NSFUwsF2IfG8Zeq7nWH694a3eMKFa/ADxchzxTUk0n2Q0UgtLitxGUCa47OyB3Pc7OatSAVoWeoHKSVai2MeqaytVzmz0j2yYgIq+XR0+sbvgykF63FEKlzl75+sVcpuqjNPlQZV0W48pWd9Alhfd9hT/6tbFvtil8c7D0hLlORLBtVL2wwakeFtImVlrdtchD/waRAJ8qCzWmFN9sJbJ+iBA62/Yq9XeEO0WPeIV1WIjUumRRlGGQNnFBagquVSmQiGGfaw10PGVJ1SSdSb/1YYAKMtw+WoaHRERaGcGazAWpc0l1AgJhzuPSCQ88A45tL7MfemUBeRV2tY6HKHb/dKFA6tug8h9Kueok+uOyapbi8ZC4KXLDG1R/1hXfMcdmqoC8uGWDRJiBuD8b9nBNMslpXfPlZ8Ik8qFfV8xgd0VvInP9Sf55gDf5AolsKRe7TAMLNbk4n/EFibuTs0REGk/xSArwVvXnaWpsgyEZCBfZAJllP+A1GCo1Dn6C0C096pFdxP+AR4aOYRSZH1EgJCT6mX8c4jcykbM2sRG3OZwQxwze5KFQdrlsV2l7FOGGxyfiAp7dM1q52LZ670Q4nRxXUOsRXj8Y8hBqKlQOKB/VS6GS7P44I38ktII+MTHUgimfuARBuMN5KSjPO3Pm99NKOsBCN6L6OO7Xjik43tUhx4LvSMsGcxCsUbz/hpDv/ONGqDtbnZfWeChm2M7tTxpQUDATi1VDIPg1+X5mldZAKm1WeKPuUBuTRQ5U43mh7p+tov8MNay9qjzj48HIycZvSg50ycwvdCXAbCvyD6rviZSq//sJLPGSyi6DY2NLkiCqG0wCfwXtX5QH3cnYsd78FPiT4uLUZT6H8JwENUEpQ1phLGUgH0kOss31s13pGVLx9TgFdPN4OF30KeGnQk8E03XRjkN5NexkejcwzxyQdsp/Qv918VwR5b/HDDYWa+ZUgOXqxLs01TazyOH0+6DQunj9W0wg892SqRatNdZHYGN7CRH7JkLOQb/4s8ZAHdPC/IQg53pH+ZOP9DCzIsNZTMoCXt7jNjPfiBmLg9f/QWufW2Py+El+rERHE0mshLXjYH0F2FWoBgT7g3fxkJ872/V45SQE0/PiVTkZZJ4n3o1QDqyAr9AbaS30KG7qbjTSQKY5kArILZEOAbVUIIEgIX4cv5y0UuNbCMD20x4ZNRI1BlDp6KEAtJKldjb770HsZYlnTh42eXdaFPmzHlQPsJGI7pv0aGCiEWJqgJp05h8qhxxjchtiiIqcYt6kK4n1AlOfWcf+0ZcvyowEtawhPTVBtIcKXBzn7ZvshbiwIEnwBPKkBIaKCKBzKMoiXIjx5geghW00Z4KfsdEFGLV04pzLrenXQBUEFohlTHR0uh9uUKYh5JWRQfC51ob0/939HRCT6YtFL89cb8IWDFjCL3qhD0lu/EaEBrQQzO7NSmbpX+MoM08dJEayfKFYtsv7nv7CkCI1wFHwPveC4GCJ5Ov+KaU82nFSL7AJoh1Dff8TC9KDtkQfH6dpzvmPKKMd9+jLS91yUZxgYgQ8WCopmCsRy25WHnMrG/Is12L+UYdTSZ2kBaJ4Kte/IBEC16BaDSLbgKRlnzudrJWFOHNMndWagiMYB1/I8EIT1IV8gOC3WtYz4KZCu3YBtjZlb9aLRL8ksfPDV/kBHDOOwWWpcfuUaUixlgA92PianGajp4ADSVPvA1PtRa2jyiliBia1d/Pnj0IKbXZSzyPcsIfLc0E0u1kf6rWmRy80mEFCL/TSbK3YhrDMwbBHvjmdrNyV8cA9ZVamDKN7WgwmOfro0+Hd9jCPkBUV5VbdAWEEDFsvL5tmbuQH2/ceDqOTfv5DgS/dA9GjUQvQD/arjbSkkB+KWLm6XnxHdwP7WYjySNSChxvO4FasYER2Ox9EaDsHDcF5hZQf6rxKuZYVYajugA2Si6O+ye/cZmIUBXM26yWBhaflrbgFf1ajcoVKonStw9e9QlC+qZWqfAhmQj1FawhJVwiUaNg4sc6uCFM2sUfo4QFWgfInGQeAw5CCQn4g8pHFewN9MVN8mwWLpylOF/3KVfEOV8TWofcQgvEgcEL9bUdgKl55vPv93P7tyD5fOuprK8hYSb/OHbqYdLf+aPB8NlEZRb1/7xMVLlpng4NfM0lqa3RY4P3NnlYR64p9cnkNjZa7qAaDqZ7hgtjCOMV0jvLfyGYEuheWfblzjdUehsQ0PiJMqSKIwZT2MYXa3D4FFoIGwcD3/HOifq9whjzrow96/KRG7phPxVe8boV4I4yalUptFeD11p3+NQv/vKPylnBvkzuhVIaY7+hyM/hhDIk3xdjUnYY/Oxxe/rKbMK7V0okzPLXpp9IoL+NPjeLYTYFEl3BdBJiIgzQrlTj5mVtIGxom/KbKwFzLRnLD5CBdoqOyWXIaVoEl7hTEJoQpj1M/jFc1KPlze7nWOmgbarG491aRLATSnAmtV/IeewUkvjwm4f9h4HXM/mz200LAZHSihcNP/zWkRMI0ET0ijkPR1CvAWxX7lwy466wRaL+qNEqqIjgKzWDFMkZP9hfnU2tyTlY/TY4+dykcaYr8P/LXO9zmnsmpKM60FPT75eF+5Exq6GTvAA75cwbtgUykoOoDW9Z9nXKPw738v173LlIoBtUjUpCkcOsPzO3KsMCYURIdZXAQLkxA==
Variant 2
DifficultyLevel
573
Question
Clem bought 26 eggs from the farmers' market.
He bought:
- two cartons of 10 eggs for $5.20, and
- six extra eggs at 63 cents each.
What is the mean price of the 26 eggs?
Worked Solution
|
|
Total spent |
= 2 × 5.20 + 6 × 0.65 |
|
= 10.40 + 3.90 |
|
= $14.30 |
|
|
∴Mean price |
= 2614.30 |
|
= $0.55 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Clem bought 26 eggs from the farmers' market.
He bought:
* two cartons of 10 eggs for \$5.20, and
* six extra eggs at 63 cents each.
What is the mean price of the 26 eggs? |
solution |
| | |
| ------------------------ | --------------- |
| $\text{Total spent}$ | = 2 $\times$ 5.20 + 6 $\times$ 0.65 |
| | = 10.40 + 3.90 |
| | = $14.30 |
| | |
| ---------------------------------- | --------------- |
| $\therefore \text{Mean price}$ | = $\dfrac{14.30}{26}$ |
| | = {{{correctAnswer}}} |
|
correctAnswer | |
Answers