Geometry, NAPX-G4-NC12
U2FsdGVkX18J898gDQIHGZNLpH2ACO42EJkxWPukDlC47VnHnDdTbybZh2Wu4+IPX4kxx4tewo713jRDgSfnhWX9+nZ7QRMV922Kf1A2Xb+26LBUraa/1t4CTF4PoSpzTnRZgwzH4eIb38yefcssfU7Gx8vuefB6TIfYSxmDEmTcacedaekFQdrDyd3+Ji3ArtjSytPa9B8RnOCc3aOKCOrvAwGTI0lRNwfcZR3yY2QuurD/abC6jEMwR2O+/VHgx+JyPJgBqcdTXc0fSOCarVLp24ohNnjmZemlY32ijfXBQPAdkYYVA6kIpelQCbdiroX0SA+18ga4fM/h/bgIpYiuI34hjBv8nKJV9ZjRUGFlCZSSKcxlcpCzrubiZeXKJMPAlbrajw96qs+S+L8Zth5SQSQDXcjuUjd2cSfRtpQR9+KH4fwPzhaCcRiRt3vtrloGHoYbNdLRqOWKfN3hBQpn6RKNltmlZ57GjBa1oT+b9sfIWW4XFswJqJm4MktrzPH6Mdw/wVx0Mlt+CrPjcLOttZEPWdaIwyEjciYAJFDWJrYU/YqLFtHxFghRyAoqHCMshVSDSe5U3j1MmoPYthqFXf8Q3OaLq7ztw+3jTlSl7DaVyDumcZArObVUCM2b4AMYzWlFXUZLG21OTNhn4TH/bCBZj5QXtniRhCnpG943NTHYt8t3al6DQgP/hhoo/JLXBLwT8ccISBKUDMcw5OvY1aMRowZxARsdw9gJJXWoBfFZ5/6gQZpKL3pUwR+bhGjPjW5CyaeGZgtknpSj+iVRLfWx/u4Jq7oqBFjBzRhD/SRJ6IyLiGMF0iKSPpKcQEpsPFqBnowFxabEQgxOn3FHUBpAxeiBE7mKB18i2T1Let/bHZLtYeQQWzI86arJAqd4nwivHH7eHTHI59NpKCqi09fEydx3ZcCB4wJGYLwoeh4kxocV69you0HnLcBThdtAEE7KytXOegvypUC03wLL/VxCx8BzqizC8WnpnYsLMpfCaUjaJC75lOo56UMeFkhm6zV1ZsvOuDzIX9rOuiFhtf93AUesTjy0LUXWyPCklG1RcWsfQj21RYfMGGjzd/1IOLRz9mkF5FciA3y/5JntQ1r1CAUCZIfRsAYU34QdzVH95XnF0s6C/hBpi0LJ0zFTPd/ptMggWWvn675LHIfgUB4l5alGsmWNRlZSu4eZBrkt4WZ78jnOk77CREmUec6m//0HGBV7jOpEdDZBFpQVu+M0YsZG3TG41ZGhbsVNatY467tWejxnQdewAdloz2EyaYt6410dgV/hMR3/GTd2xtrJSSni6/NvbmMDk6DMpFf6PQWQj6I07URmtCFWLHW2XmbgGqNuMf047S9c4s5R0upNzYXF+efiw5tWkFr57QVHGcqd+ne2nzi89Ane5Nrcdg7m2kKMkYqIbOZJ0MTHz80mXCR9Ds6YT98C5IZqcSBr109nfRCfjUIALBGwUZgzyGcdB2sslgetWKyDWU0rTeYjuOwhNhe8LRNTWdDtvI6YK7QfA92Xvjnn+aQt1Zze5zmhaOewzbmFiA9bg0OWx6+ufSUH8iFpeuZnXUs8Kkk0tD2EoiKQaGy3AkicRFgw22qKvBcWunZSd0gRNhZkE4uFA2Qu5VtgyEOCIy0+dhErgToS9yQC7iMs45re9L1JHANlatubFc6rKnxwuuV1TZlW+32Luqsh1BGup3v8Do/38R/YNtMYcGHc3clyqHuI/KoISoTKJBp/O0mtYsyHQmnTdo9AvXd2uPLRxAEYMeFEu5/pOfvjht7QslE3hWMiV7YGLXyDe1QrOznML2s7k5+L+RR2f86EN4nkEvFvuEqCa3mQHwMmUbZmWGNib3W8C6MhoLgh2jD+DGZRDoZTzzn1afVHqS/tHtms6qwPhZjIggGzNK0Dr0JcRxLNNa7Ka51/S6NoTk2NV9RfFsSOdY75wkweMuuLpRc4iKk8gjoke3x3vhNiTXC58nKbB9u5Il2f64jOlS3x0lHcew6OiNDt0hChaj9cJ/VKzD+T621EnLUQZFammEgh1+Op3Hr+lpJVXFTlza28N8DrlprF+H4a9/KTE5DwBBs0meWiU+xd8fb3lku/KEKNpt3wUXHb4nEH4JCjQCB6gzB+ImK199UE+eCuA7nsuHb5tTxBKCYiYaJYatIqhndeME2IPffTLe7L7lVfRoRr1cwwoAVYuiz8dPoZfoTGU0j6UOYojms7BZIDflyP/qZkynoIKDYIazZjRylxZGKgRxCmfFvpQ60lcyCK6y8dt0q60dbVFSR5EzEXIDKDV7mrU+gIGRCmC/jBCx/IPysYDf6EWVI3N7reJpOweav/9rT5EsX9ctoP+Qout4TzFPER6t//EU2/dcrt3fq6qpPHzG9UeuLruANOufbTlLzZWobcFFtxmKBvDswxrhxp4yKDk7ZFKHqpZ0ER/9N6HGKbJ+QhuKnHrBpCNTgyQqj6iEC5M9JfTNx5xgAn4OUGLHAOlKU/t5pRsWCX2VKBJcJwbrOxAz/HhmxtXNR7qgR35aIv6t6xDC48rfpklgDuL7i2rPy8X3Dm2gYRqfzJb+y2GEs6NWNHoMnjHYsNXtoRIHrgjyWn7njFbEXRisONJLbUOWQRjGdqpxL8nluqTBIp1KivaiNYOJfUhit347r+W9drhI1UaSR03qzAwrnlh9GAhWMcRiU8HTJH/b9IfpQYGaxLBB9YBYbG56TvlmcXeU5FXv6YuYWeEtLxCGVDkTLN9iVuBTxZ+1Px8n5wkW3rO11xbajNlrnX5mCEiCqmYuEGah5HV7GVxPgjdzDa3vsW4+WEPFXEy8hcumeIuX8tFB8VVo3FUQ0RmYr9eh+P98V1TcI3TYvnf3YbeZWTMi6ea1P1aKxQzPF8pV5aXtQ5Zs9Vq+Wa93ljZTjWiaRw5mrB1+EkPEtDRP8dP0nBUaZSWQPeIj/bvNDUiBhJtNzRzj6i2Cqh+BSHk0Ck2Jj9uqWu1EZtKIgqwMFYMV8zkzR076cp78U03kxlaO5Vl4bRMMz5P0Q+iG3bl3/Ig71SH0TTkJ8z45apc9QunuFs/pevRpTNYovuKec2/RuCGZv9Nzo/oLJJFbLvwbAvfV9qVzHRILFJPkbamt4GJc9RmxGNQHE4HSZsfZKrTYy9WuLVz3TkQT5LkPonByHID45jedpKz4vIBKNyvB5jEbVI5kpV/BIiZFEY5jqpOjBW6i1Z+LCIBDcQSwu11WQ98a0TEsp5Wqb0wef2BZ7nnZneif82HIdKvwzF/jw8qcrAO4eyq0X7PGVOhHxjJjujZMP9sJlbqMvEq1lK26TzbkKTOFOOm8AknLlJdtcBs/SlAkV2AUoBsfsCF+Snn50dgfz3R24yuBXscJqvrDypoga4b1iSQSBfpuKQugI9S4bdWDWu2ueSMi3yTVjkN1576XRDxqpY7jnjfL7XylF0++IN75H762kExPeAXjoDoNnzl2aRYLnBatmlb7q6rHEcEeQ3Q1nuychjAyCpvpI2TUly2U+brPi5sLgp/HuMilgJ8hS7YoH6B274szdbhVN/YxXDBC+fMgIpWRS9JN41f45tRCwJJUf4xkh0jSGr+Hvjegtz7uavrSHRP5eo6RLUKdOY11NitACFYYRfanawypw5v9cEmF/FLeOm5euy0hulxUNQUD8u4Innf0chAuWrmBT3PYxW7RFZK0l1UXvRamKXbzeDqNcAOqLupG+5Uu9txott3lBYYz+KGcFct/9Vw1ea1zFyYzAW0rIVadRcVeS9lanZHOjPtSP380CXwCairpBN4c7JF9iSUw9yWQR9n/71qi6yADd//At9oI7y3Fm/g+PyfurQQ8flL1tEhi/PBBQo58v7joEKNhXTiVLGe3OsjxkCYd6bPOnSiDHYs5GBGKjE9a/UyG8nkPsfhmuv3rMe/1/qDUxw9fdbb6xSKBAmRUgUV9WnfZg48uCqsAciHOXhdxT7mwsglc/FA8+seXL2hyoR+wZXa25HaVFqe9EmXT+8jUZ4JYTXXXU7RUAlUy3lUSLzFJRm48+1/akBIIlCGq2hUmZz6MF8DhdjcsoP+wniAWbQgzCrDri+H3e7sWthjCKcOSmS29oo0Ey9L4Eq4Ul5EqBAD6+tKmHWbnVNIaEQ7zFQIzA51aPpv9OThks13IxrUsCyEqboigYDnH1jD3R2HzjOfVnCu0x3fvO1luRD6IjtVJPcmCp6tFaFvE/jHC5AZsywYG1GgRdYtFUjlecbSGxjoX512WeUvaOz1DAH6YPtG/mIRIAiJEc9sHj8GC0aMDV57KXvmfIS9DoAlVj1ibc3hZiBVUx1y2Vj/xQlxk5d+UVt9xiMoPWKl0QGbosCZgcSzGaC6ahObB0cFIsQ/YzZb0V04buodHoSfSZxugnGjDgivyruPK99QN363j4R0hXf/gDBYjFLmkzrKiHoEm3rou5wxs53S0ntOaMvb3EWQidE3cfZJ4YDdPmNdeaw8+pIhcTdWqrKiylXsyY0hmTwFVyDKbbaIGbg5QAtVLydGunnvzFgTKm5zWWKYleW8coPd5nLSecKC1OTaQvSXNFpFa9UW20VeFrTNJg9i8m+CzzuZs6iK6z0KirYsP4QdLSvRyLN65itpyqcMRJJP0bjYqdyCbXwT3rHnAvyMVzvDjQtVtFY7oEoxjaG575xa5rVIDk4AWMgBIiRpF980ENqF5iDoRXuVVo0jNf27QEP828r5RmVxRO9KakL4bzDS4YUyK272+I32qlqScCg+A2H5xXykeQz/h2s/di8Oeu1vMaOFzMDlxA8KDljYyPsiaLlXyxGkeNlHjp6Ok7vWyhkeYUiAR0Ju5diuKwdkNTIqFJEiT9foiFSqnb6fJwbp40QSdGZr8lBno4OENMKXs87pbd8Iv0m63zStDtWiDqWGHNgFgw9uk0vq6oEaBiNRE75j1hO3BLs9osJESIZsmXEb1vEAjLpCauigj1U36+FgpetFUDNEIJnjTkqIZjWrJTbIIWDWtF97TgxpnadJgBrtKqdPeM8FdGJfwWxsNCXZXwImg8+REwpT2ZmJKtMvcRKn01ZcGNPzHGW9d0U/S3NzDOQOLnh34yolXcc38PmGxtqWQRM3qXRg3o6ZEWTHH28H/FwSitAZlS/9OfLZu6FlhrNENKjpNG67fsgs8dph/UkVgMatmHgIYyncutxEi56gr85w9shwskg9efd0dviLJFR2l7js9MF80iaqUSJqE7hxG1tvFEys0Y1Vxn2g+kqDzZrTZmJPn8+mlHdV/RvKnS79YjnGu4lJkcg/2aihTK62YOv/7Gq9by1cwllvm1zSkLWc1llV1T7kJHwPGbyBbjd3XVqf+mOlnyCExk+l9/lqKFpHVhUYui79lZR2lppzSS97R/nTBy+cSal34LP+iVGhncBwJ1FDWSvg7VWADM7RpoN7z5gWcTA24GwFnovBJxMeMjn5B4LzrPz7FSL04fQTwMBEBBSep6a9SrS4i7LEOHhRFAa14B91xdqSALJBXqnPRddFUWPFa6i8tFXDhvBd8HmYzWUaSsAJyclx76n5d+IDglTQe3VyTS+eT/DsxMoxANFTagWhWiamH2UWSg6NnLrlFNOw3RKCZ8F2V+JcDSIyNeZxfn09mKD3qpreUXb6dxjKhrFBXjZw8XfLUlbkVeYOFq7jkh3TTr24ivQDg+BP8Za4q+lBH7sIGV8CFh/nfV/1idZDTnAptCH3jqTXusF5HouEPof+hiIiTppoJzNVtZ+5E3XKZTgU/MdubOu4EkCwJmRcLD1ou1c496C3ptHAu55fjQ+w7jyZ+ew7CAKVQQGV77pGvmI4W+yRHdLFH9K6F/7bNLdU8smP637GyS4R1w0pUaMPR/YXWaaWyIBxE8xgkoJl3ZYlruuIgk37vR6NWZlU6yRy3VrdTCQ7QOs5CH4Gn5bUj0LLg979gASflRFP0nzLI3QJJi2dG/5Ru/twWjDdHBaFeiujJHYdT9rdXsp6BDoVz1QWwE0R4AhLrSRwe9WypBEY5G3VSkZeUZ81kgnaiH+5M63KY24WXObkvpTzp6WR6X6ZqeXyR/mavesv0G/gA5CdIPWzznIlwV6XZFdVkV03CnZGUZe0BIyRlAF2wz5kTH/31jaBiERX7z/Mmr8B5WmwZo5IwMw0IaDr/GGrTs927meP8UoxeHYkfJln+GUfDr6ZbYb6DGThzTVHgY9qQBnjM+F7tW/MxkkAA0OjLTPDN9F5hNWoxeA3vhQLZJzooq/D2UZNWNgV8uhN9K7dRh5mZTnsxl/Wda8/PEEVwpP2b7xznAiyFNRLcBC+zp2O3PaNB7QWFY2qkAqZ0T4w0zV/BXnLXlVTb+x6AdbYeayxupBc0l2v0pX+X1ggUuwi+e/D8zKpX/PldcIM6QXQD/fjoxigr5vPPGMwJgXSil+XuSoJpFSz4s3hlMaZuEU+aZL1tUl9Zyw9g9skkOEyqMGd2Jv2LKl84p6YF/p1sJXzHM4FDFR5LOcjkCaWYTZYPEjXVQmvcp7PidYQfLPjbj3o7CvPOYxpSTVCg8htBj3cJ/UZtQdB4sPquLytpzjukZQDUK5hOlN/sP5o1XZWn8R76FHzOSwuX+HELJ4ngcx13YxKfAQaaexXt28EIoJoL4b2loEYiGN1CjGhXOlhINb7zKyUyOyX1+XtWXVNSZNKZ3qR/4/O2xuvMl6wfuLQMphcx/qSQME2F6cCwHgd1FQXN8I8oc3TrcfWVEnesVcc4a0F84igXXDH85Oh93p2NAx8avrLEoBBf2oQV66xafA5PqD6JgBRi2XWgJK2yH4m9bTUq8lRu5VhOyn0NyjnRdyuNzyUHuaz/SCHI/qWwtwwoxiP5w76CacY+wo1DeWsmV9cgQfN6xYyH0yqMnDiLOrgxOun7XXVT3oLrMmDvTPeRAcS7Zii+rhhXJvZY0c6oLtBA3UeNk7hVoePwkMrxzYQvHsGf2xKMandsZ7Kv07k2XCd98Yly3Wpe76AoCyqReXVmGOan0FwfVGfqt23QTMxy8ayB3I/jbvpf1gQH7GdBZPuJEXm8NSByVTb8uZ9DPkTlzQuUVYLRF6wEAe2dqFfwN9SfWpzMVh6H4JV9BgdhhUNKJrypymm61peUfnQ2TW5pHXu9Et8Fug9g2fFeHacxuVqEGkeoYxhbeWjrTy8WMaYZ2AdV3kDnb70M5V6s8GyxfiGfq4i+Vl2KyPGJsl88s4hrsGom35q3Qwd94JPjjs/+Z0mHwxR7kkKCGZgCEKJ+y8yyvrUcqjgaWUOPKPatM8+XwOPGSSOsqNcQXN5UTb9SFmBfmbzrhBKgyEGQscROTcBJA5PBK9nBkTCiecJ+Zbq+B+0f0exJxqI8QIZ9VLHLUXDYGJPJZZfPUdEBwcSxC/C7eSkfWPCB794QH3loe28c2h0FVLOgQ+/U0xnTmYAcfns0B1l9jjl//aKxghEq63MDqoWOIvHWtqX24GFVM9CH1K9DDgjiPOldRRMvV6MRry9qG141dpfpemXStLrabqQoo9VCC+eQi6lF6pAUajUXeC5I6oqbQQw4KUyR0WohiNkq+XfEUfzJlg7uGvr9qAPQt72q27UznKwF56tj5l3DCKoNXqZ88/CBx0/OMhCSiSEby6GC1tosOc2hZWSFFb6RhvZSWyGCB7d6CS17xiR/+ZNhuvvFJCOHDlrZJd3zudGm9q/e7PfV8KB+0qzjEvrp2tilq334mw1XQ1pA6+zX38D9Ie6c/nkD8lBQnuL/isQ0FtedRlbP4plH4dU1MWLxAudwCjUMN0e4IYirTwfn21OV6XlGrUZ1SrLRiABrEJ2gibWDXp7VJXR/WVzx+SxkpYBRwuWUWjr4jEZLA6edcCjC/71egP/vZ3mycdy+IO3ujfTpk3+pnxoW9OpAjTu4F5Vtg2HrsWB1LhhOTGgxmifEbKGi0gU3N0mbu0BX3N4vmITavuca6SYJv/ONmrLduIt+IWqcMfUCqhbyg4l6zdSTjyQZSpXfibiFT13cyRCC5vtbc1mLvXGOFxb1QQ+Wjuf9jCz1Ugj3w+Nf7m/bRxg4ICgsmKlAz4TBEUqyelsgIHYmU7WQmmbgFNAEXh7CowNGpXDdcRgNis2nE6aNHeul7QL8jBLhrm9N/BqmvXaTMdCt6ovl9TxGH83+NN+uguRRpIVcgnDHfZ0E+TNtOi97Fy/qaqnLLDRxQdwtgg4zhSwrBd+p0+yzWdYhZlX+5wvcqaipMYbFUJCaWhuv0EpdK/31jWKAxV0jYcuTvuPQr3MyQlydBE8G1MuVCIuM20YRzmM1rDjcou9V44v35PnuQGbYtnLZDomc/ayQG79XcpeFfTb/d6gSp3YgvK3P7baoo9wYRJ1q1mImGJ9axMzIo1ZVY+BOBfmEXLl1A/gK/j4vhgwWcy/o6vZOgQauIOZU44VUIbS4dgVt8V6CfQoc52ZnzlMtLps2xSRd7DCKIKMyJp6erH+amR7jp6ZrctbAEG5bw+CqXY1sGuP0PUSnY8YSlVYPtw9f1tf9R8Z9RW6+J6x9bndGw3GnWcWfwrv0/M1sYaNKk=
Variant 0
DifficultyLevel
572
Question
Lance drew a trapezium ABCD with 3 equal sides.
He folds it along BD.
After folding, where will point C finish?
Worked Solution
Folding creates a reflection in the line of the fold.
∴ Point C finishes at point F.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Lance drew a trapezium $ABCD$ with 3 equal sides.
He folds it along BD.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2018/06/NAPX-G4-NC12_1.svg 280 indent3 vpad
After folding, where will point $C$ finish? |
workedSolution | Folding creates a reflection in the line of the fold.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2018/06/NAPX-G4-NC12-Answer.svg 280 indent3 vpad
$\therefore$ Point $C$ finishes at point {{{correctAnswer}}}.
|
correctAnswer | |
Answers
U2FsdGVkX19V22lb73KnJt0RvFnWd2pFRqvu48Ppx3y86+C74kapgTslgXrV53LIFNh3bn48/rwGRve3kqo9/+6cxI6qiWZj8j+oZRgMV2gJcSkpdXUXpahAdwMvVKAMGW48aurwxoewAjBkCoHukl61N2mT/DAjFGmtGNWuKJ5zX6mKMwLDQq0kfGVPmLiWFrV7/ka2d45dCHhZ3SOzPTFgZ3LqUPVjITs7ruPLxuxChSMhFGWsvrjohzu4r3cy3ASL/O1EcG332e7GrzUPtsZlE5m0/rs049oMTOjKZRclOCzOlr8FWiHi/BcdDwRzmN/WuiTAOrEuorV/t+VTxtTmp8l9lzwxbY76GNSU0hrEhrR7fg0H1SkM5Tb+Z0wMhnCQeiR4UnDZ6MlUxiAsJ4yFY5Jt6w6IFjmQRnFjpUBhHw8fU8rxLd9IJWUIP9GAG47GKoW07r7H/8qVaG/q2IsgR+hvGVphvAuPpdF4rYH4ColOXKZktX1UZwtGh8I3/WI/fyYO/6bgEubYoOWIBR7wI3rCxorNX/H3pAi21jiXoeJYzuE5/mkAkkaa0JBA/a4BpiNySh3Bczv17JUPLzytp9mNZXpwdjgANCTMZYb6o9SybvasJ8M/2dra63G75BrG8jlF1PSUfbrTTYIG4oa2hw/VJHF9FLBdlvdKqzQoPmpehS93ZWDdobI+UKHXSM1nAdqn8dE4NJzTqNIL2ct3yktuL8z97A1zp+z2o1V6mJYOD8NA0IZSml53ggoWRDXMOoGR1Bq8odBBdpBP0snQYd4Z/ylepvjqrhHJUWyemKI/OgpJrNYfM3NRmiqXfhnf0pc7L8MGvc59hZnYOkkZLY94XrpRN7r8ORjH3+wH+BdbBomTqz2hU4bdceyELFgOK+WOBbPXpbwwYQrllRLnn0bkG7k1jdG+/S8YPY5vcT1L6lw6q6OgxOntD8QDUJI7o4Ln5yZK9amUIY0fvvewafD3m9rMyLgCBdk2e7lw8fWlIne9wTqFysO9Qb4y5ynUlZMoMEAI+LCfKgrlkUxOAIx1veqX5RC0JihRZWXnGb3GovP5GwwDElDQKaKI8Dhty37iBdQLCd4bYwxGANdV+Xmmqrd5VA3fuQRwD/IGZCzmW/tvf6+riSvaaMCeEjP5FVDQNSb808EkCHXAF15/cFf2AfpfLyzWqU22MCKHL67aJ9zzOdN4SVA/T4Kn44+MoRpzzR9ywCvdJ+x/NIGhjiUyxqx4fWcp+fbxZOO2Sn022Q+XoAV2WMtT4xHee00zQjDWb59Z/RVTCBXxU7bmIvb+euLciQ9XZMoHYL5WU2RbhCMjNWoLh4xED/N8eAOPESAIOrnKIqM9Spz316ARbMZQcMubdarofEiMKOP6Kg/K2DNpmF0THIcg3m2/Wus2CmWHanT9LVGWh/Qb3znzZZNiaokZwU4zs66uEuDWezGYKVLCqXceRDQc1ArpcvBPilyjjSChwqRStbarJsA7OnsvtxzECvIBHZUH+Djz83Y8hJBcvhcLoOZSF4EesklqXtqi8TB/FfK4EK9uL3VjF3mWRncxx9z3QaVUt+V6egXufea0INmwo7yAMp4pTTJuMYU/WLxBWZsZQcoKOV3fQX8bLJSUpPiN3rpGj2FCKdRj83Gvpsk8QksWW6Ff6GoJCbe+EYydlgVHPiF4SUuKkf2uiFuZ52LlQCQ4Q1rRbZjiZBKJeDwXG+DcedgpKRs0IHn2/+Hf/ojOh/ZsJocRcrrL5C9B6zZSrY2f4bxa/Aio+kuC2yKaL/X/7P0tSSKLcA7R+QI7g1vnqc5Hez7ItYWFrl8ar1eY7pXXZ1kdOfIlCiMEMkxLPNmrjuLYcsR8TXhjqOcknEmI1z4LznqRp8VvmESHbRlu1q7l5HnbTsoxLTL3Lh5CYnxR6jfREiz+KaLpLQW4p1KiMzpIDH1GVkJCbS/e78mCpyQ8InjQP4KIP+ZCbFyX/7fGeLPRoMIL+Dk2M28LSNcjRwKffNf+kn9kjWG86tk6s/C3lBKINJeo7kFIuygSzjP5CYBQj4xA0iPli5mrZEnqSp9QXBxb/hHqAyqr64oBKlf/uPWPNODLecA3yEhGP0e7TDpeQlCMu6cLpIW1ZZOkKowNr3XbHk+f4BgD1w3X816P3MAf+Jvxw31jyB7Zkz2EhM1Iv9VGFVAkKtRengmU73/uOWT4VqKkL2aJ77ZaI+2TUH78URuQ8Kh7er0jvbtVx66akB84Ad3UTn+RaPmeuU+ZMMPvirc3QAIjAyLtwG8/t/5FTNWg1O6aHl/MuFO8+YiYgzzRTl4gThPrG1yjiPHVbpR85zSSo9ZvOpAFuit6Xu6ygn8R+ZqyCEqwRJsKRvlAPqKcNx6Vij2I5nVrXpyrykQxFS5ZGV0rwyVKdDyetIQSnOICeLiNnnjk8R68HwQL7Q0sOB5XpCq3BZ9828MX6OlILnCuNXKR/RJd+9lWSOm2lZ1ZC70FjKALypUbL+N1hSu52SQ8q8qEYcAiJlrq+9rNJstHfYMBByVmmVvL4vGiO9uvwjeWwbIa1HSPCIyhwvf+p8C9KvGTswTvAg1jgIRR9GfWc4KaeS8R51GxzfBjD/YIm4AaUW8LQ9p6Sgt4Rdb7l8o58ynI0XS7UhsJWJl1lTTdZ0WTH4wbIZC+1zdgJc+K1FvsDotBRggTfh+GdF1PaIp9qdRuA3Wdl1eSXN2LQQYDSj2ZmiL7RvB78o3DnULK4HU1h/U8mGGPhQyad7l92XtOxu7Lh1IznT5R8Hl9Nv+/v3L63iXL96WzY8eAZNyzFSpSbejrni04fQ1XBaQdo5V+HrkrAyiIBxq0xGLYpx++efUJV+5lGu1O+Dxzp4veQNJMoxu+MM455mtosCG/v3IOR+v98Zzx9HgBLKP6rssRXdcYJbeDOoJaeadYCCsc8kWSOx8qAKD9OWqsB0d7TLqyq2KwwRPOuwZEIM6h1PjDc6HN0r1AYXB+UyJ1M/fQuLHpUKhNtB+cj/oN8q1YKLZ7iudxnrok4rVybhZqTbnGhMkUh0/t3pp+mOCc9KyJjqiXWFuaGaeOgPwnAHZrgn1D3LJwUuz52VGAhF68kbiuEqkj/yOyFiew6izY64du/tw99OOZNJ0KgSh8SrVsPET/WKRerei57E67swEgrx3lVHqkSpNcYa+/31ipg/GCEq2c9hjaeIc7GWwZno1hCMtChp9j8Kt5tv9XKGdiciddd+OraaGazp7sLNkQ1egFZQuOYrMMrAAXKsnkmzdxpLtvJz4dM9cInK9XsvsxtD7J/Vm8w+EOcSQeyjEjpcZol7FjYYvR1WePtKTqgqZLL8sy+A9adelisoxNVxMRUL5eMolb3yoiOTBNa/B2GmZfaFm01DLWiJ2YnZn7TgFVjx03Ys7tkkW3BB4DKh99+PBTSC0UW+wlzxamdKiq9ALP9Nofs/kplUwF9wf0ft2rBLOUGr7Wy23+6TnEPluwEE+P7LLNLD1SXv0/pO9vQYEsCoPYx6//VkAQRIa97k4ArvsNaFGxljfr0ssranNLwWGlFvWvzh/ICT/wMJPpkkYD/0vLxVjcexpkPvy3+SMf5du1SSi9X/cfxLc2zEOrdi4JCGfpvPYvswElzNnaPu7zW+GXDIIj7j4Y5nAYJTVMXGjlsM/KlASQjHsSURghgmhzAnU3OLhEJB2cVqoNLHRdN1GjmrEVRvTPcgp6t3iQp7eOgzqROzOq9c/UVlm9PZ+iRojZwuXG/uDclQOteBzr/P0nOhITpMDgtGUZuITg5VyKIrEs4Ea7YbVP/sUbt1IFGHICNLoqPcKqkjl7/vs7UqkbsWjPVlPAhbV6dTm7eGTJdOSqyVWqrrDD4HaRz5wJ8FoIjLa6abhmqpkM8QbmaT56hls9S2SoJbAJLmEl/anMIouZHl2KOCaHt7XK/7kH8pSM8J2TV6TtDKgAeYhjLH8DPR+Xljwh8dDXmVPIR+LpncjZu5TWgTxFAKbVJoXMxOaif/7U3uXXDdMAsjZ9UHuf5tyNwZSYyF5CxyPdZwoB+qAqC8Nh34pwrmiWm4hHUMzWLmL+YXZrtLQjWpc09Yr0Z4HqPtL5DeChQDyXZWHNsau+L4HCw+IfZKdphbDSrQP4M8Ll2dr9oqAxZRC8eyuO03lOp88rOojaOFaSleCBTDTxLjnGiOH03/Yu8uFf9mPZ4QRJesaUL9ergMfnpf+oaf7oaINJE42ESDs9r/IAlKNjrzir5//us/ngAixS3p7MB5sH02PNoe4T+PKuxOszId7FBhPhpMor990CvSMtKz22WfSt+Up6ypeHc+8/oDKLwvs0bzDSvf/PQIeLlWImRDn8s2jJFnzABU68KaTi2X2DSAtxxPSnPDwlmEMcArS6bwCGiqkQDDMw2Qbe+XkaC21jQSKyItJycAXV8uWx65jhD+kpAVvUsq0XDuPnHmvprXjYmB6GnsUc2fSizj3toYQsYRJKOAtdLT5GKK2Gnu3hVJcmCqPnbE+iHT7KyhXpArCRYZNw6Gx4W72+JZsM56QPMvoNnCamnnjqADrO3kOgqj6UO5ppnCdn2VUhx25qtdT5tVdNafHmGENbwNyhuJe8Fd51k8er/nLYIqwfKeBzDEfcH6DEx4DtrF+jL07SReXfPrv6c0wQ80w0OcZXFv4JYPN5KF+oSc3frd7JOwYGQKvTHJLpWPO1bs3eLT988uEK3XnrRJcNotrCI1YOs3uH6GREWVdAqojkDGsDii6Wz/NUxGqgk9Od1Rq3krFzzEscYeheBg3j59IbmS7/BfcO1rhfatnv/ESTKMZWfUkgTdRm5qEXxhdcGeIdiLiu30VhvJECfUhdgDGyMbpg2oXQUI7m45cU6kPV33If8nPOCiE44wTrsnNN0MzxyiLVU8Axomx+KspEgIHZ3y92DpN38bK+m2UO0nBokihdBVb/+U5TM+tQDS6oLrAHJPpvqeyZ7piWB1zVcv0EJ7QP87SZDUMBB4tzINFu9jlnBaiyvkWB5otQnfYjlP2j3bSjlVbBGgXOBpZx5JE900WO+H7mzZOOWMR91vcfuG56aRndc8DpAait8yfyT5qTxUoocJ15PP1RZO6HVESkFdVTql6Ltirmic81dk7CnXlMa3NAM5Fn+vmGZF1rRYiSC1QTbJQYYZptNnA0oSeaYALukxn17RWaqgJvTLcrAd3T5fdv9t1X6WOWcoxVDtvhi8ros8hhkaTp+BxZB1U5lU6vUYbXoq3IkESpUuUERtdGrSKyEtFckfhyMGvNHmjFA5YUTTxz8KTHanR/rnB9WXNHLFHfbAbe2HPy1i88rMWel3gVmXxqSc6ThSiDR10myqR4fs0s2Ay5YQKRyGYFNHmp0TvpCQiHpJuqVGNScoLh9KwKZESjwEdbhojrhmT0yzwKtGChMHPapzdBKJJjMdGijDTguKMWpsfsUdoJsJRfSWCauotnLBZ+A/1p5eQqaqu/hfz1I4WoRTXWCA9l+wQNUdP7n1zOBBDRT0ZKJ9q+sojjIln/q+Q5Zx90suqCpnE54WAtT7AEKpBSRC+aqP0A/qHSq1Ah7yhQgfZu3aQbgYiER5QWv75oSygpn+qvFPozW6hNsAo00V4FZS93wkPCf7XjugmLSFWjhuvUJniS4ABuGC8I1YaJsFbrX1LlUMjsJdjvEgDAD8up+ptZJpcY09E8TTqt1IsuorEhtBD9teDCM0AdRTC3MPZxqsbc1Mz9Tk0HnyZS9aUFuFvVBhybo6CMso7l+55dkQdZtqrdrZNw3mCsvYE/1XtpcNqCSchUaWQTk1LVSg95GxzXrfZrUUWL+J4pXaNl9ygxmlRI2h8yrTcaQ8zKEfQ23GX5w7N8Zy5OCqCR5Jhxa9ZSthhh+Lseuj1MmibpUbSmIspCFTmdNWwNphESywp1/h9ZSG0B9fbIE1Kfz4zf7YP33SMJ3CHfrl+0lS1B0+wQ11FIm4uaqrOT8b9HJO23wUe4KD8fUJozkzBGYx2aqp+knr+6hL7Shfw6Wdo9GDHo8caQmFttUt0opoW8z4yd6mlxGAGtRp8tpDzEKt3KFnoxwJk8vJ2Uoi69y6REoYrEPcrsO36Uferr6kka262TFFs70tUcVMHGObYBVtNmBeaG0D/njUJ3Jg0PIdeGaef8hlPEaxOHT3gR8kr9mjJDM70oQns2Cg50JdLgUjOAK3YJnuvqMRAOaoaWSq+jep4qbWiMS8orOV7rEXIEMh67hfyHv5C4fwbzSiQUAQA2AMt1KV14Y/Kg2oyICmjI9IkfOCbJC7FJHRUGR3uPp/KYL+tYlbtfS9S96h84FtZQvyyKV3ow5dCud3+TUq8s7HUUHHJjv0j7zPOpKx6BL30cVKzncoO/pZQKhyq0JThaGviVIfrF26th8pevnVSMi5msgsHqbN4MvZdgh3wtQnLkNj8YCXIvbCczwxrq6jxyKWw/KDffPoJq2HKEsNzZAKlx65UfarRI/QRfWqI7+YSksfdRpPpW4C/tGVE2HI9D+wst1U136nEtY3vJi+T+Gri/mCbobaS0kAEI9+VsBJqDn+Y8WTa+fwDWmMniZGnABAS19EJnMVvYSV7AnbraVcV7nqx5kyHX9mNxWygvtlNy3XeAEZDvT8bPsY6IL9T41Qbj3FpJhpmDziUVZ2heu+t4Z/3IPs8hg69o1TH/uexdk6eOGfu/FOJu2GoSwsjt/wQONccWHBU/hXreQl7/lafvAp8xVWfRRgRqwciMDH4mb0LdU4Zw6Glly7Wz8JKxasaSjkMjMfaQMggFwf3hJBfIyaF6/TqtYsXe8Qp4InuYLSeH3RGTSL9UjUA/ROVAQM4DMvkD2yLEODXiSBGU1eVhPmz9FW+YhcYMQvdIfE7Xb0QYCUDneYrNbZaV+9DadVqm+0litnNYvqjN1MTjSY/z1CzPGq9HiCfTDgX5wgo04uqRVtAEBRjYY3XOVxY8Ph3zg6Tuti9zpxkgTV7AgiVikdxwGcJaaixJFY8iqN2fbDOaoy+2dVhodzuGwSTOfa7x5vtGn4JrnVgkHQD95dGLWiQFUCzYCqAUQuWzeq2dNj3TqPseTe/K7aKOG3BxffE46dsR51fr9f++JAPkF0YtUIdj63bfXyR7zaGdcABeKpNBUwLNl9PIsiIUat1U4YNtlPwd536dJkOFIUF2GheP4M1sgIfYRcTazKWqIuZcK4oXGqAJPzJc7hQBWSs3GWBwd9o9oyyK9WlLLRR/kHnvH2pZPwSL0MmsEBoxRPRX8FzIwShCjwC8plBIhdQettDWJcuRVprYEWHlQ7ZLV/9hp8l7BPkcQ9USSrp2/iBI83IlsTmypN0Jrey09eGTIi/2a04fM7NMeseA/CvZp81ne0gPc10SFhKggsak3n9DwKHnYf4rqLeKSDj+3H+LEFnvDJz+qM3LtI2KItj7Oyf7OK2I2tHdZx3H8s+Xs0KS1AUdlgglue648JzcWvZGuTIif1lCYG+4Ip8P3eLUAdVx1DsE/PoT7+0T4/9GOCHamHP21/EGjjTEkg5ER/lI66mg3bw0T5i6ultQeLzRObPPk37yYR+YIPYKraBms0MSCTpfYIXBJMQQcwFHIasRzv1sK4dnL8pttNoyvsusKuoaX4jwT4LjsY4ZSvM1B1nDuAoLTu+s+frMStTfghb2/pp/As36w41J3wxGNNUYKoLjXGvso73OGAqsNVqwjPszygTBabJewhKnFOan1NXRB5G8WIGY7hkIiVb9536VI38rEpgX3Mx+p4NiVn+leNFgM6JT5e/L/HF+mXppv8yJW/G6Kq1WiGMCdkETR7pYhG2llLp4o+HKYBkPmLnrV9VxCUCsFJLM7nRn0gUbwCZfm9pSQGLmuloLpXVnH1z02EzTYYfg+KKwVn0pAysUwacmBg+6t6otcR3DOvcXWSSPJHuiPbYXC57mORN1Vy+7Ws3O3g0qaWaWhdooxOXpy/NRwh0xqSvZqeYzQZ+j0dQZfvXI/oBERS394lI0tv3PRTazVQGunNLWhgUyRw08c93+ppNXf+bzmos/wFBdfcTY08QLpYeaWoYM9MTjQVpy8vFCR4I9XnG3CY101KOENJ6R3nsobE772g6xyLm2fpEbUQvxhOxVw8E4e+WeHq9F3bKI/hWMxh2t6ctPMYrJRB+c0QaF25aIkoC0UHBw0YRp0HDKSPZa33s44KpV33JEtJr2Cs6gmdGfGQ48/mICKFtYPD1AgYwDeHL0Az9twQwdl7HqhRSiPkeO5kSYRzRezQe1GczGBltd0cpEKF/MqNF1yOHsbvvvfqLqyqeGBAaEWaigM8QCR/BGemYwfOe9WS9kUeMernG3VKMn7nMZhKc9+pjLcLS9xJBmio13h+WS/4E+V2eF6WpKjLEdE+xOCZOClC8lZcTQWrlex3BrrDQwpOZlh0olFaeK7/YIKEiURxZZ5vokhBQdz3HalOltVct2R7pDqC3XgoH/yAOXrKKwMVQ4XpMDo7N4z2GqCkSnIBC0U+Dx9kNIqo6ThxURPlCkxA4C9NdLx96FBm+3k6RGUjuaKwpopBw08GFKas/UwVvUP1ZiSJcPSlmA/RtxkClcVPjg55T1Dl+XKCUUP27G7hyYE5c8Z3NmBDgaPGo9u27EKnDu1CHtgEm/zTd+Mkyh12hnwzmubYVYbDKS+PCSAfeICykYcdB+22BNCUXp3sHLuW93B3s/edW06i28CF55HLUh4aNTQpaRLgHLriIYM+/9ekbilb57QdMxMn5a/tgKvPwGv7hxXjDLWqO22EIHNn+rBkURzu9+uuJueP75ThHPoiea0FbpdhO2ixG6Z0j2vxKxlZPELAUH+wXer1dTb77QFkDWh5TAoFuu/l3UBiT8KtirU88jNxMstKfkLG+XaJjTavGFYuMTT1CJECm3sO1i4Ew11eNwkxF/sESPqDxaxfwODNoWThOiV7er+IkkNU9nn6B51+JBMyAMN0oYd+nRQCvtxn/ndbvI337Ier06QpfKWwgA7e4G/g3lvow1Pysr0i+8RTYAcuv6ouB+FHKBELQbhyaaYOXljQ==
Variant 1
DifficultyLevel
574
Question
Lulu drew a trapezium ABCD with 3 equal sides.
She folds it along BD.
After folding, where will point C finish?
Worked Solution
Folding creates a reflection in the line of the fold.
∴ Point C finishes at point M.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Lulu drew a trapezium $ABCD$ with 3 equal sides.
She folds it along BD.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/09/Geom_NAPX-G4-NC12_v1.svg 350 indent3 vpad
After folding, where will point $C$ finish? |
workedSolution | Folding creates a reflection in the line of the fold.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/09/Geom_NAPX-G4-NC12_v1ws.svg 350 indent3 vpad
$\therefore$ Point $C$ finishes at point {{{correctAnswer}}}.
|
correctAnswer | |
Answers
U2FsdGVkX1+F9zDrQMuSkdDA9Cr0RL5Iqt1W4SfV//Kj82xgjLS1sE8/ENeIFZwAVH7+1Bai7SwMmX8XKgUIL1u0jXqD5wx1Kpy/VIAQuJYJ+ova/IuOrP1XNUkUo9OjM3EF00K8zDZV9O0FaIDcF/KEQ7YiibSDE1oYT1LIZS8TcpyHbcpfgI0Jd2IRS0V1Kmjy80M+hLvj4N2OYBGzJaHoobGnOPKX3usgZOWUX2tEFMXo2cBI3mK/jSlrHlL+WaFo/ppk9j3K+6YLvDSOQrwTVS1Atwzdodc8/baz7bz2TKkan6NtjVK9GGMAzhZsRvN3Je+FyRnhGPZkCBn+QVeas1BlRbCq36xgusxRf7Rd2+lMG4ie3k0CRKG4D4/wJN9u71lGxV5M3+UWwoe+jGawc83iJBvQ0v4ToY8VNpmuylDCBMg7pMB7e6VvLYTgoZGmP8ZHq+jsEnWXkJYNGSLkESiPU7TR/7rRLQTyehhHdviWsRDW3xrhykLOeMvjm2VCPwmTcz3j9XHJbgXwn1QbX1AlTaGeZ6sHcwoChgMXXMexkUm1Ti8FqDtBnycnVbxelmP7s9QD7nxTiYhe2rxc26JPjDb+bubp3bKSYErrQAbwEJgJxJfA9lvm7Xnu8nXT9z1Ecyc3ASMOqVgf9a2a3i5IOskMcBgrsVANjexMO2CoDsdxhpwXhYAdYwBCMQ43tGejYI9z2TfqgkA/JSHBkKDvxLFWw4ZbEMlHkQtCzuFB+ue5f7oV4NzjE9ghu42covv8SGVb81cW5NTDsEP/s4xKOePoD4C9tQS9Kspxv3i5QFk+Mcc52lmFmkQpZV1UAQTdhvFL/rxE2OJ/BK+rAwBr7wQXz+RSdz6ExULNoia+WtT+5q/UDdox0YDfDvsIAEO35rovSo8tAhUhnhV9CLcmhD2Qw61miOxrXhlu43LQo6no2j/7pcpMkNV3UR/XpZr+PUdUCjPU9FCST62JqOqsv6SozUIVR6NAtT2s6VkFlvwk8tndIeqWzx32YoStcremXUGAbuas2eyGMbcFBjStLGr4hccwB+NoC5iLeumbAfPdki5qEpK0uiFaBVFjuHmp41+x3d1CngRG1hfCzJFaiPmaUrC4Q3SnLJ0DQvNHA6K1AtGetudAuLh4FU6p0s5Q/7DkUmUNO4q778Syqqe3yIeePLit52T7mse2YL69JhMgQAUY2gAaUiT4jByUd4m7FjIHzkDyEPzxzly2dnoZj6BTUcnxshEe7ubLO5WMyP7xK0oyFGbMC6lmjJzbmT43u9flb4GY3qNPV1+agn6p454VFSFTF+xT3ZWvnJgxTPbrMlhkP+g2jOKIGrHPR5uSoZJMaV6LueZKWFmpTNXvkh3OgrEIzEvmqgLNkt5HmRMSOU3IUY62NMLZQUOUKRPLyy1pbfDckF2UWFuGwRQ/jKhrnvuUojf4EHcR+BYMW8gIwcCnZ0aWuKy7Q6GMAW5P7F1Fg6QeoPYRUuuRrL9R14Ddn6qYQmcdhKuZNk/6LEfsQEb7pFOIlt1TjY1egEiNUZ0c3JrHWfO5F3F1lmp54NX8+Ic08E20oSIGY6sGFriSldsSUcpbpvrf8Sk665c+LqjBhS8b6c4aj8lHBmPrhMp1kJM4oTASZlKKQh3u0AVSUH9c0kKC3onnOafClRbugV7MeuYIpasrZ56bHUcSy83C6KOsYFzznud25uCg5fpfomY2DhyZwCUnmkiE+Y6oLSt47sAw0wLj+OxUOFmGkt8RFk73I6k4U/k1rtG/MQDJLcrgZoRwDdU+ov3ar2s7hYFHgxXE1txqyyY2jS2QggKzoccFIG6RheXKkn+U97TxomHBJBtS2LKnR5kjaREWSZJDiV3orKqtJC+17Zu/LURupYxWiDbPgbB93SP0QtkyNMz8TgJx0C/cMMyCVEsHvRfk+3Zui8ELVfyeRUIXhdajqEaN7EC3DaDkMm6DfQJ7bCWrjhdNYlz2sIHuU5FVIShMj45mfVkDYKiyjfgSbVvHd6k7O9x7VMhfz2K61WECJYpdOOzYPtp/6b4PP9sH8PzT9HD20XpnQpCvxs+V8O2ZaM7iA2VZLOGkKqi1v2MnzkOrIH6WO+HSFH4CPoaw5V/rkUIIwIZ/BcXIbxUoGnN8yUyd4A1AliWQagdPgbWJ155o7Rag4j2bByXp8ExtqvwWt3KEK2KhOb4sI1Wms+8wS6maC/wAERtx7jBODqrzr8Hr4mjCIqOJHc2FjLrkwKl1ydcz7mmBArrsf7HcFgEedgU9nLp5DJlK93Vwi5k5DmIG/KwPc74WIwf9G08udyvMsgaa/6wPH2I/5jr8SKU5kcpkK3kSyQLYpBg1m1wf820+93B/Rq+vHuObZrR2inPXM9W9gcJHXp9GPC7o00B8QIwEnxf7WMEBzDUU7OfGvZxU32xramceemkN3iFM3H1HSk2StedNjawvxVBDDm5iKa5OZEkwIrzvcjYsj40J8iWNHYVjlDndY7HfEzadgGGY6F7ay7YaxzxDguPHGVouN2O79+UNzXjxRu1O7TgNnNXCVDgujmuFfQpprhVJp5FRsT8mrlO9dG8FP1X+BriWb83xvrwJCikz5KCLOwsGPMdXMnv//DFOvJ6C724REGky8tbP5A2O0bD3bJjuWIHePA6GDOCAIiAXyj82tskpTaYOcG2Zelmy+NrqY5rHLF0+rDu/LAzdTFtfiD+CZoguvKp7d8wxuOp5rHKk/tTwHMzZ7iHDOHtjc+Hkw9R0VcS8R4ND/hD0sUVgNKhVX3hfl55pUqcWOfAgmGcJwawnO555xigGGWSHVrPhfl+E6l/EgTV3IS2W7w5n6Otwu/WY7IyU8VGNYwpZXm9VmFpzYZc0tKOn/cQUl3WN0JO+VMuNUnOGrI8T/9aIF5k6cF6ewz3ev7tDRVZ+V27ilhuDTBZh8ad0kMTt9YY1wqRVclD+FXJXqi6Zdy6uEb+u4bV8ma+mrGuI7EC2rGAGhfqnmAKfnkCO+tOQjPS/f35sityK2Q4uJUm+YcY5Tza1s+hhe6j3E9MvykAP6sQVyZ2uv+BAOVVSE/+FKOBKvdT7k5nbHm9z6PjD5MslJbgs5cMQkQFSdx+Z5V1Ip3jvWc8tJCWVEBxYdkpJOyxEbbqrLsunrHK4fAHDrDJqXxdd5WoGRrdtTyen4JHNYeO2k3+vqmDk4pYBh0LQho8T6gFmNr2YsGQLJHYrtdnxxblK3AOFycuMGzx2lTCTvE9zSvYW+c4u+t1Xwm40U8y8LbC7JjR4h0EGKB2vpa08go9ngw76doMI6yL2NS7SFDqSCZSro6a+U1o1fGEUpM+oj/J8863mtsoTjIzkFpPTtjTgTpdSWtYoGa35wlEWZQFeJYYdJdlWIYpWWs61mCyts3GBtIzxCB3+tDNjpI0N5DO5KifpzKx6ySgDRBVt/jd6F9ynueDPtLRfOpflkqglisgxZuEcLHmlXVVbjYdk7buujlduHZaLGJO9tlSoLUxi9ZK3Oo1NUiRMCbNhTf101b1SzFN9o8rsOVmYYa9SNBVi/Aj1XcA1x5SPLZrYUdq0u77RImlp51OD9epWUcwUBPHTFHPoGqAfYd9F0qrmRthpc0+LJAs3uhtpx8THheXIysgjIekwCu2E1JYPPmVSIbSwIkhxda++K5TTlr8dpBVVDFUySGQcKSw5KGaYmXR7HQR/qBGbOfKkydAUk7x49GDFfYPxc1PJuxT4Es9gzs2mAcI2M1vgSJ9bizXR8+do2ur7eJRn7IetI0IRdtnxslue34j9RvQ2DLkLjfTHtFuobqMZ66J/G3RfhYP8Q6lwgtW4DN1kvYzjy6Gx8ECyPuigovbbkhVuqCWqH4r2C7KJz3BuYrBdddgR0tcYIFGAac77tNs/AK35yrd3JttFz2f0XdibowyixjlUw8yjG4SLqbjdtVveswu/oYw4TEK9qi+PM8sP4PGm6+CjDmQa9zsa2mYpRNtv3BdJEIjnDO554O5OWMNzsUvriqoPTDJ9RSsecwZL1Fr4XJiYnGPrvf3mdpXmF+R9mwJdBM4iHEOcuA/F4769eSPhIoVyIO7WUczmj1s5wxSXUZbftVCaj0PQmW/zw6L6+SbDmqxQnrAUx8U/tidRpBEQ5xyYPOzORI+FdTmxIiBp5G8fW5u+kGjUh4y2+lJ7LZPgEq7SiGhJ3Fejc5uKGyfcArM33bGA7XRCYb2A33y+XjyStPRggjzJ++N/JDEgDJCLHkbabYHflim6jceyeXaCW7PtNUCbtYWl+qWeDKljZsV0mA5hBszWY52SaCjKLc288q9PGFEh+WNHqe875ZxRcapkWdN8jI/7bb5r68ZnlkGT0kLcFMob+oMdac0IJWlvyNte3DMw2MBDh9DvJtr6xWDGNHYy4TK+4082ZDgWwwAJETyYhl56hyU5YqDVytPSIPUMorSrI6TtdlMoPztWfpf+6Z/yO8ThmrWMvL00u6bvRw3tDj7iX8Oj7AyTVZC2Wi/7NB88TT2GAdWc0Hr2X8aPL7SvpXhffJJuVXKbZf0oFT9la68RGe/wicu7O3ixK0Jab3QP1rB070gNbnQbPZTGslOubL6PxPZPuFJ8zQpVHrtctTU7suRR9EO7oe0+mFKXpidwI7twri04BKKL9E+mCQ5JkiG6ZJp1ofd7V5PpXsT9SdERV83C4Df5lkHJL3XODboJbpWd2Uj87X5nzJI5A2Jg1tUda2x2rdhTWQ92ek6uUivtRQMPqSe7cbB21b5lAGMAV4hK98cxqPmWIpKi1A8eSqmp2U2475iIGFjradC4dKbTfe8+iU1YESAw1C52XLSyCzk2DZZ9CXW2iH+5tGsbqDaHkebN0N0LaPmVHtJ06I6VlFP5suAeVA4UuVtICYUCgabR10vmimIbMZkixivY4/WTIBOZtX/a40GKP+zo+YTu2piT3wgOhJewOt5NGXpA4KRPfP8ag4OH4xWl7dW/M34U3AntALwW3lBM+crYktDYfWVpaTh9EcSIzpLlHk2Kbb26zKTVE7zecGw7Y+tdVDnwEydiGIfHH2JqDCL5mm9spw63OpZuO1jJ1rtSLGn5pqpuPb/qyrfovgD1dLJ02sTkaIvIq1p87RE1ncscq1RuC4vtGPgtVroQITrPPvPS+n9JgO6PRIwYy46pAakVtnB8Uu7RdoPsvX3RvqyDHCZBozXdQ9VjIeOBAAUOdBPgIztN8lfkUeg2nxqWeZMm4yPlX9GtvoPWSJi3rbyMTftsRfUO5K7vbJA+GOOGryu2NuXAez1HbVWT11Eyxj9/ZLKKIokUGhiEXAHAJtt58/wnBLAkz20YdVQDb1VHSS6IkqFTEHkxtO8LyZq5J/1H7KuBToDZYuqZ1mACLOsLiuwc3ES8CmWeoP5d4gma0TnPZnpY+wWyTWQTtf4i8YJKEUmJMDZYyRa3BbSwwrV4nPFJ1xsBb8IatO8gBpHfmEDoO1tPmsT068E3Q2ZQZfodGMWxB2JYmhsfWdleEFEPdvo2nM6RxIdmkNQz6Q3uGtDGpyte8mgJw1yli+yhGa3XM1tzzbkJf5DGHZmWpr9a7ATalYRnWxpuuPyXcx7EOCwvQkNAptDZBi1lY5ttOQPwcLhQEuNoYLMHqECEtuzdxoU5TsHku67V6AmHShSosj9v1vUNXfak7OzHquqOQyvnsVb3YWgSH7fTV3DpgS5Rldt4owc4l3P+SNgCf+LbZPLuCakx2PBgFj1mosMwCkFZ/Amyo962UzrBPbI3R81Sfde+DcV2+3V7VXlfyTWcP8av705Xglir6H8qHdKcCBGyAwg5JTiX8ax9O7Sipih9sqF8CodnOYszvTVs7B+8o3b5/aeHkrkFG6rXmNqCGRhKE+xA/9sIr9UjKn18+9opqi+4VBAnBRqd0sTTIsuObH/ZFpRnyY0aPpVSIRpGq3ndMLKqxty9dPFjnrmNiV9Y6XSe+elq/+f46O8lcA0FhGErBdsWmnpU3hzcJGok796mW/jktLuCVkmyq7ZHKkKVNzQlx4uNzwawgzNsTG3uHclxWL112gBkb5YU0qPFlUIdMXsp9PYuPgEkFoI/JHinhaFkvxchH7ZOzuLs0AF0WJ3fUMxY2vNtdpqWuyvJBH2HCOw/SzmcJtdzRLuZPDea/MS+pIjd+hSrSeiOu1b/nWMKFrMzVWew6rA8PX/loyGkH+mdrxFZajvWh0GUsw5VBD6mNOz3zLZ/+cbFdkx5lQSn1TGbVui7b18Nm4ugUAznsoVYWBQbxU87vFRB2JvGZ/DuEyjst9kDKWe/DXusryLfyS9KyedvA0Hqe7Te9jNs2SL61h0xZrKW024jSS2FtS7T0Qn4KDEKy4zCJB0IJ9dgnVe7vGWcFqjQ8yapUaclyYKM8QilHz1N01VSfhOWlEX+aqSMpLeQ/hn/OKah+dev6rmVMAjKxlFXwzSUrGqO/udT5r3CqlmxH9MjzMbtycywaqhpFUzB50/eIqAx/GWe9DkvppvZ8LsTppCNfVKshqAdXfyeoo3ckTrEtV922ZJULRm28whkFkDrp1zAUqa+iKhb1DqK2qJSHKh82tVyguXFTDznEFWxILv7duXIjwDUdaqpuLzSAsnuwgKA48Zu5a5A8amBY4y7oYuYOgCzfUUXy41tB4e9WjcTisyj1+FaA71GXvtPZU4JojIw7AQ6F86a0g1pSjd2yx21+Kyga2H5f3SJZnZWBfIuwYvin0KKMeh3nbVU0ozIFZlknpYRpsQpy7L7pS02HkCfKbz/R22HJEs29GM+Jp0+s2ZFT39aFRqKwqpZNalhlGHjik5TKx2PgIYS7wNlGn+x3g5L8xKCBYA03140jwFW1KhTCL17U01yGZjpgxc6hqscsxF4+IIGjdqFOwGtvBmIZHvkKJEcmw21vf3/5o3jNlD0d4LCP+s0OnXs0rjpy+uuRIZG4hLiZIC0mxmjpQRtYewpxPeVqBaC+AUmHuxCGjVKr0VPuKfwYyDaSvg9vrkrAsOHxqy55CAWck7hpv63EkyLSEz1kjqYWW/0Av2YtOkbXXNL8k/RsU63qP0eF1mAiGNIsoaexoBGcsF4UO48H4yuSXy7kl5Sctues9A+JVZLcEnVRJrG4242zvc9l33Wj6Sx+1SFEEnSFHH2adxVGjkb7VX6AnwtlqUF01xFcaoyzAIet3cgrouDj4rbEjA+OXaDgpkLKi9k075fxYveQ2eKgJXyz5T6spQM4Vryo9jv14lhHAHU46Ru1EHNwvHTOs63k/ZL48EHdqU0oZ7wO/Tu1JbQ0a9IHsN9fGplRVPl+FnZR5J6wXcaHsXMqRXKUvaXgj6KXJlXBFBaffqnk/OeU8pfKKpJk7pGaFpqF+jur4lTNNnDzGrAp6dGfFaHeqfsSwtBSpmqX2O+ma3dihV1xyWYBgXn4U2/3/1dU+uR/4BZJnpj3jVbV5b8oHV5xqs/iKoNjyiW2WgSxNGgcQkCjYwtSBW0+e5mbuUN6C/373DCTt8IFizdNWD4VlfnrtDwNoThLvgzsLoXupDrqyy7ZPs1emkROqhgkJXo+IJC+K7448cM/xEZSpgq6T+kTBZPittDZH0E3fYUJ8w5WKjx8Eb07eetkwwf2NDLUz6wqv6GfkeEjPmERU83y/j95W7etGcq01iEhLSAX2zDT96edoZ9nJ5xs6AY6zz79W0yc0QENfgaKOUpo8GptWashjHCKh2nowL9XHlMFNDuxubiJJN38+noD6bfydFGcdhnf9igZ3XgOwF4wi//pt6UvXN5nJfsv1pM6g1rz36qSeQOK+xlkdo0keOgHD9UJxFC5C+DntqAh3NhS/0zEITmvFPaD0YX8/cHNLsUviqBa1H/+OgWkCxRKxDLNwJBqomrSwemvPDNBXPu237e9qUmqhyK9OlbsP5djThiZJDAvQgpuDu513wrMKnriL6Z9/tXS2I5mboJURHsmNnfP4k7cpRcOSz2Br5KWn3o3weDxWutJVOsHD4Y/SDVhZ3O9L7ZfhLyWKAovzu4E/g7PAu2MgK115U1bDHBAJ2lNvCwpdGmM89dTMYIFUoB/OwK37xzX0egAODh6X5iiPqFKIV5B5wjrBT4ILo0Akar9Coy7eFoSRp7SfISgpvoRyZBxsdJR316ujfzliixfKMHxZuI8+48frSv8OtqFU37u2D3JkmMLzVZT1GQORLs2howRqwqiqDuR8aSK479fzmjqLxcxqZQB59dVVKqKfeoaW+f3Y0LLxpBJwz9oWe8wizeOVaUybc18ZpQEZcNsrrj54PLAjRZxkryBWpduNQmLTCx7k9NxPhl6McMSAIH7jMy4qA5S6SYlLCzR797wTF67iII/Yn88YLRuUmb4gaKkeac8y4Enn6FnRAAXDe8mew19L67ZyVIhe/GyZeoErfU+/fAq2QuTOFZq5YMh0486FLh+YD0gHj0fwyiwgDmLL2pHJfU2J5W7vaAmLNgaOSab157VRnbVkAeQp3O1o3bO7NDhHpORpbk0GOxA1VtNRKHGk95gCky1964ap8fM6RvEL/y2C7Vh/L2j7RWO/KsTGHj03hFjZu/nldZtQO3qbkB/XrhOT1qxQyrH7z9UjD3Dg63I0D96XM6QMmMSEZ5/8yW/AF5qX7Vv5Od6GALnoHmIz1kYLZkELTcg3aVm7Vmn/qKD/1DvvTo4LiLArByg1csCaEvvuoDCf7ngdApgIT3+wccxhiECxKxGwOhN+GsaW2T9DRxnzjpw2gPwPB/d5KEO+Ddv64TjxNUb+Xpl/SEKI5O0ThGi6t+njnRBd1I6mMSIjhxtYbV7ZDXg5ndUWZ5UK2RMXSrGTbL8KZaicaNpyKFUn4sFeCu1kJpGKg2bn7SJwWth80InxoHLWI4jCaFgvP8nnQQLx4ia3w+YBGXvMmtE/HDE+/A4bJMxkQEUg==
Variant 2
DifficultyLevel
584
Question
Lincoln drew a trapezium ABCD with 3 equal sides.
He folds it along AC.
After folding, where will point B finish?
Worked Solution
Folding creates a reflection in the line of the fold.
∴ Point B finishes at point G.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Lincoln drew a trapezium $ABCD$ with 3 equal sides.
He folds it along AC.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/09/Geom_NAPX-G4-NC12_v2.svg 350 indent3 vpad
After folding, where will point $B$ finish? |
workedSolution | Folding creates a reflection in the line of the fold.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/09/Geom_NAPX-G4-NC12_v2ws.svg 350 indent3 vpad
$\therefore$ Point $B$ finishes at point {{{correctAnswer}}}.
|
correctAnswer | |
Answers
U2FsdGVkX19DvpgCLyHxJMJrDLDFaY9UZr30m5WBFXRRgfMnfC7ph+UG4shjKZN9FtMHNjQKjgszuW2pG3QU30HaIYl9Cd4HU0+op7XcdhBB4wEvOg/pRn3cIiNpkTSJdvFmkqNRo+Ga4ZIKjm8KU1EZmictVkUWvJx2vayEt1YeErikxtqx/Y40+KEDW5NJtFA/kUdvJuO7KQw3HHEY7da13V3ScnDhazQ1c/SYIP7yHuxVlNcg3QdVY0v0p0rXCT9ZMHtJdcDD/FE3MhY90kKeLh4vR/VICHD5h23Ph3N1sopvyg5bYjjCZAg17RhrQF/XmxCOWmUtrAki3GelR+vVmGex3BV3O6T246EI48ApmWYTLKqCg8B4ES1wYeBZTPgw++YjVpXC1DgFb+N76/6B4Y02/YLoL8uBW/gCpPFphWEmWwdY2f8RcUdoz7noOhqSYqQYrW1W8ps8efhDYiWgfN6pVsomMlwFmTCkUZSn5SV+qO8jbtBjCTbIJ81ZDsA0SRP896H9f7iI50ELiF9gYokT1lR49vLE2qfePMx8c/nvxC0N/qsXzmcyJDqAt+aodonrwk47XqQeD9UPcGMZo+sl+I8wfeU89KjFePvV1pVSWeQQ+hqWBSUSNZPU4ZENJJUKWPhH7SN8u0n9QzGdtcliiMF9XzWNgKWdUQH4dlLixrm/Jrj3x2RPZ/x4kEg/r7DXZyiNWzj4mclDhrSDpB3u4uhxdwioNNajojaGmYQyLCGU2Ogkw+++YXw1RVsopFHN84x5YV2/tDCJlWDJG1RxTC0+uBIvIpLmCPgNuRVDpnu4aFcfb7ulInw413kwA+R1MxmyQENNrYusaz0N6Iw7Z2WldV1EkqCTmghtSmlGD2vWRBbZucJkOhw1VK8zzQf8Fs2FqrID74euG1/eCfzvMMLWHLtDupNZrvZnFOMs5IWA1wYQhN5W7pC9W9YwDB9MQhYT6KsIiYyNP1DZgpKG9oIH5v+NKGejDssRoPxDVRfHJMzcT/KYI1BC8/zVB4TT/rRNYDsBGDrKZxVGbs7+t4R8itHY6wI3E2OQY3dxm+MOyIc3w2k3Oyla48wT9aAe84Tl4IganVIV9W7ZnAFU74LF2qjf0IFjdp9iSL79PIkTT2zA3yBDItvQaqqWv4j9+s55e6igWrmmWPzpB07FZR5oIu160nZ019FiLYvdD5ElWahKo9UUaIyaCLDQfqdAmrYIzu/wtAeyVpzlZ2WJDSbJrDUtidVoYoL95QhXiz9UhftcqDzToW4MnwPFgWdaCbeK321eBdDZtI8Hod1Hnr2vYbv0W/aOHbuqHPaNwkMdcdFFKzzf+ReFniPLb/2giKeYN+VfIVZLVjZqh1btLJNOVN6Fj5Wc89wmygfiGH1qQAteZRl6gL/1maNUGWmIRPafaSHe6OLlH2FkmQDJ0F8teg8KNebZbs7EkuP0GDdOwo4GLSdYV3DDz4wqG4gF2uWzLwgXz76JoHnW/yYQIKeBuv3nUfCllQvxKh9OhVOAfPpeh5E4medGKHi3/pVmVqjiKSrxU0JaFFODPh37ZPY6Z52LLckUZZ2uNugBmPR/892tOv7KK1W6X00Y/enr6Xr2QnBWh0XAzARddx9Djc/M/vOV4tMDg5oyV2fpZXQq9SIQXJfvADlg6cS4ZfeeQruCSvybBWNOp9Fi1w1slYt7mKgHTsUGIdg94LsMVLIkDgCmZFlSR4+sOJzcgRCAtU+Mc8nQC6CDO1sXkG1+mem6thP1N8mB6TD40M6polj4pRZj6bzTaMll+hGyXhOQ8drto0pBPT5GPyGkwszGPD5tjg5kfyL+hP/lnH98pcDIG7N70Hc/SAfUxwO1wN+dAH08n6vBYYyK2eAjnaXiOtdTMemZ/03OeX2lcNRI+JkDp8GyYwlxkj+q/KANtajsn2OpLZqoqZyowKNBGLLhyBWfmPFDeClTDCKSWs2oC9Q2KMZqRusGqJLqgavXr9IjFr5FulC2peK2C66mPP6w9qA76fn9VqbbnQ8h2Dyb2z4yxXRua2GNFtHhZBgnFAW9hfoXBCGlDhUNEp1qiHHO1JDxEgQ0LGXxiRhHvQa8oQIrsDtfo/Ah+KtmC6GstVv8uaGKuj6CtTn0KTdKKCAvz+flqcN/nNuEP9Lu98uszMzz8zbIflxl9pEzYk4DOIAnDMdKLFA/QcgFXetIowecRvbR7Xkyj7jH4hUbe3bWf7xCrL26e6rwCUGFxivGap5LRPA/wHMN2NJfOxbT7cq4vbKBsFHN5tmGD4d+m+6L44/+9UmRRSz7wVGPGnQqLbHk6PIRkEVG9wgMrXop63DDvzl+fOHnbRKY7LqjNcqr2zJIIRu2aAdteLVFjPPXUQAsNIcu/HP/GFlcwQ9y4XaSiqtXPoWEY9z4oek6fC5M9QRp8p9J8Hid5+9+fz6zj5bqx+xTqfHlxyU3hS8MOMKf16sb60+p+aVPITNhHmk9AyCPa1IRUv0o+eBrLIxlGmIFijlY/KvcqktL5hcY1Kwh7i46zqOSMS/hhrZVlFYjGZ+wyC5462ZxIPyv7uBdAVoIVMOtBJyc/GVClywZ/tSggeKIzU9FhAEa6dnWVW8jHSUaZ72EgHL1sfw06btAo0++Z6CZca/KDbgANFbbhc7xOd1TOD6sE8rq1Znf0QEvbeUzrLCqb6l9uOd62ujvfTBPDTjs+vfodCuH7f7gzemEkA8fCwiJrpGcxH1TjT2V2JHBK7L/db5ytrtN+Cw1IhySDmX/NwW97YJ3IxlSlZlBw1IOriTu1qiIe0Ca/Mt/N2wM3GBI3S0MQ8AnMj83AQ85jhNnqMg97OzhDiaX085447fSQzRke3WW6DSE9Ea368Y3MyM947r0/cjIw7eMwJCaVxwa+bogOPLLCFtvT+U0R5qg7M4Kbft9ZkiUvmiuWzggVjkPM2IAkW+B+fAgvK/luCn4shbWNrCc15mngaknh5V/LGIkpEAM1GhjNR6IJOcXKeQ/8GOwK5LC3KLrtoHRgEoVooVBBwY7X5D+bwQNC5CoxVjrHos+yAd7xcTtxQlwpziMBMzpYJ2Q6B288mZqc7u3BM0z/sPLOTXO6aJa+Yo6yo78nPtDMd9z411yy5+MD2g72oAFGzNLc4mveE7J7jPAEm9UjGxIJgBNkvv45tJFnH2yCMgPgqo6s+F9Tnjjfdu0HxO1246R7dBO/NDbJDLMV/cE3yaEwsf4op3NdlGtQMeN6QFc7UA+JbBnUfPoVtKjtA2qlFxle5wuNkKKsfTN6VJoIF4OGGjvA5akz4wKn+YR9zZWRMzcFm3nZp7L0bovLeigyDPPnlUWO+dwwW8krEbpSF5o8QlkJ6Ydwn8ZcKZ/BNm91rX+iw0gH47GqWXQ7OfqNRciqd5yj2rbYkQPBZLFvHKoHqmdQvu16/3Z9nU71PX6J141NtUmnQDog7LRayR60V/JPycHYtGpQGpCHa4+G17jZwV+2L3KdMNitYMqm25QA3KQREypZgoV4JlvliOMoWqUChDu9HJ3WeQBIWb37TYhdKXlD7pBQb6I4Pym+bxehonXJpEauqb+5boXhbp2VqXXjDXfqLOzQb9DLucIOBrtUcx5GMU8OT9yNQgvEXOs4IG/iZZd1upoc77aitNQ6vL5Qo1+z78DE5a7cjnVV0sN2NF6C3MLUAWO25rV6bld0INOdDdoimItV5D1kvhqs7g2QEDCLt6Ab+M78qdFEC1KQyFmQ0rBxt2QZ/Jt9bCkXRj3+nMUECp9XATdejwKTD5F6ynoPJcuJsqqCPxtmkG09TGO0uWYHnZehpUP1CXik1hkM5wf5fc4dSHs5+0nGKcsUbpa5oIrC6Dgce2ZlhPK7fhTXpruHCKgZ5QtWAdAWoPmZCWeHUpX8EL9jKeFBALeFjjkBmNvgrEh0axOisuaHX2/JfmKRfODoWOV5Ip5N2J7/QZyo4PbJBYE4j1u6uqPHytNWggz6vJN1FmL0rMvaq6WziT/dmzL2v1Rxi0to5uCONtC+Gr3IF6v1Wj/d4H1MO9aCRvKE+H4aHx20UOzgUl1w+LKvHhpNVc1GbF4zd7Ol97uPJAINFPOs8fW42XhZFcNH6N01UPDjhsLV5lMlT1KdxMJTjhRJI78dVQAMzd7diGISM8jE094devclGEJsfUr+/OJi/7BXNfgQxXpeBgvd0oGbFe9QD66HoGWypM9G1orLwfYGE0elZlODkA8oZcpLYoeajyp6I1EfuRc7fE/7RFk/gXn85r8jK11R4XAktCoAAVVEQ8YWUKjgRfTBKsZSswoWjVYNX7Yr7GauGO5dnsQq9hFgEjlT5f6TzksqSdwt/ts1Ks0mOGp8KoyhOY2cqaOc9RrH8zwMxJAu2/LPXeru2+2nIETmW0Y5XjNqhksbTga/4WI0w6IQLypIEqCyNPLcWfoJ0PAou4Tp0YhRRYN8nbxmELpcpIUxDPCXAP2vJN+UADruxtQeIIA+/uUZZsZS/RM3Vo3WPTNKUmxBnZujLVHU+nVhzg/B2mzZAK6PTbeCNz1DRS1XrKn7vwnelG9DEPVdmLDi/yBGvYiafXMsd4+m3YVKFHX/5MBm1PJnHjxLocd/pQ6QCDGpPqJEIsRZ8DwbXq4RxFyAr7HUerw8dzW1lKWOw2tOD2zEE0+L8+jZ+9WAB/AKM0/0fW5NQUrL0n7JxuwmY5yVnQ59jtLbdaER/1JgBeohFZzzS1Vwfhj09nA0Z0XipCnnNmRKPZTzrdBUMgFSv5iMbmJcf532f4VOkA9oigdqrwsKTt1oLTK4K4o145nB8B1mmV5LbW3qcliZ7gGYE00+7RAob02edXej4xzgLaFizLj/+oWzlon7e52SXn/A/+UltMMXkJ778uRPIhqnuNho9X8CTH10GJNw7H1MAmpd2xLFlHrGjKbKZ8ACDvU/nYiDa7H1vYoG5ADtBjVEUY4h14l5d0oanHSlqfog/qjvXaeb3gtgvygV11PqeKjcjLy9qMyAyKt+iaz/eUCd5r8B5l/Hj5dxQmVeYnYZV6U/oqMNzn9jGdJ4ygfwbjPknsCkxsV67x9vxa7kMGOCR/IRqgUmviFCEvjFgOrNAJsQ7++zOM/+lDH8sSAk1xR07BlL2u9rN2x67/3H0eHgF1qMDZkv4Ne7yyUhOA9Pjlj9EtMP8I4F3hhz6P0xxQTL/DtKUlcQBh9QGcycwy+o0RgSgvTRKrhTteIYE1T/e7Lo8EvDDGVegrk8ZzdFiN9jiInswBITUn/69oPTKjwzIkD5B4nxrW15EXSs4kG1vTYl26bkcRwKbKQMCHI5vxXIA6dQpRkqJUdB3iTqSbGcX3cn6A4qsLWvjaXJgcGtFQP/aX2y2FA1f8r4/haBdWLRyjF0htEbXGkrAF7qvwBrDv0srZNzBFt9YAJzG398DBkZgW1GL1jw7+N8eTBMoUsqY9VT4owITVKDvaPiMHIHL93/oKD+hP64LgMT2FlSDOGhwsUCmD0ijCqFRPRZzSuWibmF4ZpoWjMJdf5U0nvzEYOsQXQaWQdU1lzyHO2/LCb2SQfpG55mdw6wT0nFLVpOzfXhA6jhsgRGy4bqltllXKq0d8a9rC3lL0rj7xDqO7ceINO3znTIbWB9w7kJTAPnzaXl9cA/W0xhKty/+VSeAigMrVLAyOpjuR1bUuIWGV0Z0xrVQic/aW1E72b9dY1XyxvdLby2nl1dXR5IDtcot84GC62Y8+3KpiFbQUxFOvkyVik6SXay982ZTxsD2kjIFpHtJ7WkuK/92uKMb8pBMnOf8F/yTSMZT7sbYHu5N+04YJux7MqxUMnSx77L7CcQvOC4QoooKi6b+qt1unlO5O1qaTlclLRhcoCg5WJeL1fwBeQms6o53PNrjqJHJcZBcYqENygvcF+07WNgMpuOl5IeFtSFOfwWWHf+sPo+XDlFQCXNIS2GXRAzqBbk9Z9U6s0tp9EBdp5kPx7+pZ8fkKxrbPMWdA51lfMV0U7EsYk9KoRe4roSuv8AWUTlFaa7mTmRbqGSVzJfPponHaxPGNksvXOaeBBCskV3654C9WNO/8tZClWAdaDmuuZEi9eQ7D5vPpsMQrjCbsAX9zD4w0POw6+3ajXBseWTekpkoP6VQSIDnwgT7E6KeNZ+O05EcWzkSzvEkzEJ2eyWF6ejd2AWJw+Zzpt3LwxPINUuuNsv5z3LAi9Igf6Z83K4ZUI3mpf8TfaDDVLbHdYp8Rn9q4H65gHuUDfa/8trpvM2e6V2u1OKMUzud6RbIoCrTAvD47lEl+vxoKRlq+SP0WMGMo5gjFcjfdbiarhMGa2Z3Fj1cTRRFU/UbXfyEV6iJ0hKEH+gtCwOAU/Angz41zUQ5qlOCY/Ye3BYi0msJAQjFQqLXQid9zzRGCdg7ccq7xqX5Vv4o/tQr0eiBvCs6em2m/fOJG365jaGhpKi1a/R5YCtbHjXsTouTFbt0QQ6hyWA2XiwV/ukzLj57JjZphB1v/v+aS2jLP357fqz9R9DiLoeC6psJRmexdiwy5E6rR14b6dZcGVYXXieKHYCPSyBp/PZL9inMZ5QifixS6pqkOU8tObaySNHlnTVEWLAsqt68YlE+YzqXCZMtjCYWC2r975maeuCrdSOwwRu5SLj0X8t19iS2XvRbl2vSDVRaS3xfsQS2Os0OeXvXJvfBgFUxvX6KkvYY57IaM3zA8OHrjloO2XyQpllfHcdM7n7rz1GbBWpuLsWbSOMKwBRpwqVhoiaMVjtCq56AaDb4KGpGjIT+tOjSrGm31AFxzEt9/q2E88uJymOomv89WWAg5gFhBXuOPeLSfsh278g7piHjJehvAzaWcx7FuJwivhBbJcPEtUY9EOij1UNOE5dfQC7ERR1Y/vnpp/Lw2DKL4IUFgv7HiHJqvUCfXfc12kC2u3B50YmYAwLVOO5+3RFlbIhEtSASApro46HdqWJ536fgApxYD3Ee7LUdqlxq+43zvikuO043S93JcZRb6p6IlLbpgUwg7K4/iTh5iG3N2V13xw+fzf7uzOK4kQgoPc8C0VFJAuO6nrbCYeeR+oxnLn0wUcKYguE3XSzYoP7c9lQWE+X0rwHWHIez3b7JRS1agyU6FKTuN3v49pl9gzNry1XHd2ASCeVb9DxZPF4uWYgGSONOKXpHfHZAeTPJlNPvTQgoLk7SbYDhrPB09DN3+RJh8b1+Jg0tfH3rIz+6uJR0msSqhFDBkBbEBl+4maNTtrOdF38pBZKtKwpfklfxLUxVzYTItGxVv+toZTRMbLi3e6YRCy7wHxOI7JZ9UjIUFBehTC3BVYdvJgUh8Fbw0RV4QcOLPBLB1fnfpJVkHRsnAijMgJf2LK3bu31mwD4VqoiMEF+yCiCXlx/jrjdu61B6/iGAN4u85t5Elzf48ZK9KAyl5gLWh2eC4bRL20jgh/AYv9qD75o8rZN2X6WrCc5mDPS3krdAzvKQQz+xqXHjXEaMoyVDCCqTAXgA2DnJY5hYcJ1aMmRcEUWf91pwnBqEplJUqjoc6AIiMf3yVbPEx+CbJBwunJtXrTAfwRXeFinaGs6J7OgYRgAksqrvMPgLFJNE2jiTX7vV9+aYvTOYy5T3Jhin9VIFtBhxvJv5c3TjF35/Ej560CYJ9thP0IscRzEIdnoCc9j9XEl/1rXjlt80IrxyE8D1aZZwjIt1vTM2Jn7xZ1DIH70NRp4t87PVCD8knWmPqMJ4JMfMBik1As5tsiUoijFoIK0GUVFpNWVztiRlc0ecKOQpI8fryc2LDhRVT7Km7JmuMMSnHvfuCNTYULKxlLelgdWIEy8PVlXqkPqBMITYEsyECF+vu3LWBHz3Owsy4nYt7Vd6WHULHOWXpOb7NM4IXhokEE/ySOAVX4h/rEK4MzRg58plbpAQAn2v1h6ARP2D/bT6aloYeCUYdf0vVCJSIjpT8zy4Cs5MWAebfGiH2pzM2laKQXFutxwllgIF52nrKo3NjWsf22DyCX2teBdl9mY/N8JpfGx928I0/ejd8LmPHhdIlq267LS3SHaEBHfFTPKFgUcgHPdO1famPxS2Nel3H5JLjWbCk6xv8eW5Md73rHXuUkbWAKbc+1r0uS4A3KUaWu3zlVGLXLvj6AnyGvWiImFLOyWJq6w4bSBkxSc1JtTDHx8H2xA62vHKuqmkDQu6VP28GPcm62IsZUbuUSoFNODgcVCgzGQt+PTKLreaGI7uvs4oVkkyU+cGWdc2Dca0A1w3CZ5ppAM3ppygyCP40MzGBsvj3iLgHdkCp08ti6j1p8j+7uhDf9oY/2o9Kpp6ueczobgaL0eIQ/YNNFr+yvk6jcVhTKJ8kANHn0oKYsV9YKnZmCJK0oxGFVNCi/pTqBdTsckGSgmi0HqIIJNPk8otH3Ptd8BtNiPCow5tTo9nums7qU6Q68ET9McyxtTYNxPy43W04o7oHEXMxKHfdwjBRR4mRqoAIi8SLFSpXVFwBvTpEmNcQRxd/rzwX1l4KZhlqMBY9i6CE/PM6/Wg8zcX9dGwf8QpGdpex56mPrSJmBK/xwkFxkyf2v+P73w/DFKhkn7AOZ8hLY6ZgGQPEDulQtGRNZm28kxa3AFkEOEF5At0A7Jb/FZbr3xE4kG7U3bD0nopHWfq3as2EhOUqzFsChpODaiUWPr+3d3/WxRQS+jfqZzfe5h24b/Yt/KIy39HCITYcWWLYuyAffAJnmgXMbSUfonOGfimaK0xik2+gnil2w1irX0Xvg2cYnr8oyJm6TnE8fvWmGVGvalzqfBTVhVAS7UAndzfiTTEX10VdVnxzuyDn8MSubLoySiqWogNfR8/E9WlDIqskKLX0vr6dqkQCjtyN7O1on3ER7ENJhDbIae8EEfFdA3cOkh+LD+fcrpNvhssRhwvPvVJSoC+Qt6jw1rYdLWnRHhEZX24j11aIwCNyOUc+baAbMJZnggZ7qtMYukAw3+lSZfhFBhDm+4U1kRv0sh8yXiQGEtW0doICwcbF4Zpgbe23gqhHp7JhGrbjz7rPXzjy8Gm3K2JMWNBQQhNJolTqZX49/mYr5pM8UL92fnx52udatB3KkVmdeuPnW3U+dpXSnwyFDls+VCUUk8J3O58sBe8zhENu7qzsEbx9oRXSTg3z5wT+n3NgdHVXOKOtix/3bUFvZD4p6ilBq1yMjt26E8HYmqXTAEh/C9Ixh5qTv51LTvT3g3PCQ3lkiiCsRvIIAItQlWHRlVX50DH7juonx3y6cLV5UXHWDKQ==
Variant 3
DifficultyLevel
580
Question
Lucy drew a trapezium WXYZ with 3 equal sides.
She folds it along WY.
After folding, where will point Z finish?
Worked Solution
Folding creates a reflection in the line of the fold. Extend the fold line so that a perpendicular bisector can be drawn across it.
∴ Point Z finishes at point T.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Lucy drew a trapezium $WXYZ$ with 3 equal sides.
She folds it along WY.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/09/Geom_NAPX-G4-NC12_v3q.svg 350 indent3 vpad
After folding, where will point $Z$ finish? |
workedSolution | Folding creates a reflection in the line of the fold. Extend the fold line so that a perpendicular bisector can be drawn across it.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/09/Geom_NAPX-G4-NC12_v3ws.svg 350 indent3 vpad
$\therefore$ Point $Z$ finishes at point {{{correctAnswer}}}. |
correctAnswer | |
Answers