20108
U2FsdGVkX19IupoVnoUmIUBkC2hOLpl7TTltXb9ERewnyC0EqF+UPSroxC/MYXxGL2qn4q31pks9a1d47nu64VXxT+ON0sHYtDvFoG71LaaHk0/TROZ5o42o3JUBLTibzqUHhfF65D2Q3t8BW0FHNND68vRu0eZTmDgyLasJh8oV3wPrSylvAKdTxQOkcUwQVCyLuIYvrhsmFcoIv+f4lI66MihFA1hESncCEHmhSNhnf0l0yObli/HKAjJKxLRAh576ceWLNny6L4Hb8k13S4hpaLbWMNs8VirRBuyDnxj3ZLOIyAKIqNnuBaPQiXtRcTe8jzKardwOv5KOKzOb5SiJxSZ5UZP3oFZfVBVWaywk3Lk6WRLUK3OI00Q0W9JNnlH8K1aUZPLaWNzwVhYrGWFC+F/BacTt7aqQ9FLQuUzzXh2cUURmFQl+pRtDouV7OeWPoJIIXJ9eoo/AbHiZ1L/TbemDupPAgtAqH3HlHDMUM8oHfDJfQ0aoYcfB1E4iRa3FBd8Hfh0Wgm6EOtwihXVlWTj4ii0TbqwHykcTbib2nCyLlC6EWq4uyHq8+vdrbuuJHlKbJjnqMXBKusr2P3IYJ6g33vEmBdzzSARh7sBj/jm6qXiYLm+tfKneUlUtszcyX3NBa+XzIW41+hMhELEUF4t4RqHIw2XDZX/Ehi1hIjz3fNZEmweBwpJCBTdyDQMdW6J9P8KtazttdFYqvAJHJvpq6syVeHU3FAIfUZWDGAB7+59uhPCNSxV9uZZ0kqXcU8EyxevROMDhgAJUyvd9gwZ0QpIOM0o9Ihe5T9RF4zQlkZWnKHa52ShxVH5VsFNyQVXX/9QnMh4CJjqfXydaptKSOwbPIVcCn0YVZrYKyy+CTjtu1oCb6BsGVJ93pEI1fjehmyOmrBeawCxEwnvU3vFj5BmEdRxbm9p2woTTMy1GlQ9nkJG70ACt78wmQoP8KXQ1ez+wgv7rduZNnxW5pbHmhRPK5iOlz/gpOXqlBLG2tCrv8uTnOXITN1qke88bvcTlp9g9F/tiNS1UCWRYEHNkiwu1QdUUqcxGyXaAifw3O4RXvh8RvI4ZAVZCzWt6ddMDYxNcDsQ/k0Nm+Vi7O5PXHgWY5XaL5upnfWo2go5pZS84nPrHs4fCnPDdL1MfP4I6kYY/ka/nmcI/sRG0PE4Tuj7oNIGj3CyZe67AOSPfJALdCZKx729L1tJkWBLRAAEWc/oo30DbTkIKSIoCI6GaJIZvIyJH+MYb+jYCGc1GZ5i+/s6PH7FEGhQGMY0UgAVMS5mAgtfSg5O0Elbd3THpv1Q3788VRN8tWrrVqJUT9z243vo2ZgKVOtiM/GkvtIg/0u6R+v+mpsifwQzaFymqavbs8Vv4jIO2ZFhX9TNO93tVOtRDiXZF8JVWrNEmeMJXsROebUCK0qZN7e7/wOGn9hiV39ymMfhrpeiT6mqDlys/jbd9jcH+wvXYb4YJIE7FoWLa78rqutbwrkgqOHB2XOp3M/hZBaGWgxChn3IUnB81GZqu45ZQJGmhJtl18NM5M+g8RDWUaSRfC7dVWee5zLkZYQ+yLB/GKjcB77PABlztAwXCfkNu9LSoBU8NtkJ6oSwtv4ZK6oWw3Z5A9ejtFFnl0tzzxp02eLxTrXUsGyEEuSsY5ZG4Kux5ylt3KMEvooRwuBzbGAfmib+tJ3gWOLgUO5hKntvFFH7jeMw4j7M2jhKtgiZK4d9WzjQQI7fg+QVWHoKowRCFbwOG2vIsFnJsOLAelLyKdQ4ptF0J+xxEEN5LYPmX9v5YkfOVaq7JdM/3PYxF3G4u5rjOlS0eHrAN/19J4yYn6oT+YGls1bq/Yu4LQLa8HRpPJXrE4fTs89LhwiiPc8IOmiV7MDUhXDL0HlPU8+Zr/cL1vBr7fioBO3xT1n6YDt1R48ufDzHY3/Jcfj54HdWPxxBOMhCL2ur18Qx3bs7ciPioyuHfqpiLL5BvN6y57p3oJbupZMdLJnWV9Krq8UkdUUu+Aonmt1d4P1D9kZYDiAKJAfNGLGrx6rNB7Du8tyLioXeZBIB1DgWbjq8sDeYKG6XD/CYzRf66wgYu8nW8REceUWxkDxup+IQHcmG8hVKAI17dcrAwg/B0mDKXkOWWUsfKQ04KgvnAQ0SOSmNGep7/vo2vTmDh8fOmptnObEBywLBXtZPc940voBqWqvlpWYgpcXOtUwc+2HdAwGjKAEfOvywIZ9aWwEwdcC/l74fb8/DGiPCFzYwS82mvE8WdMKq+Vqd0DgxwLAjEeMm3ToWGzvpdWOQQ0XkdaBMZeINH6uc/DzOBmaEbtNWqBQnS1PGGR0RRTu5RHz1XY8I03cRLzAgAIxZfv0HhApq8HoF3bAnlPDk0HaMiVNFW+ZYurARhn9Wg/b291e80g08AklWCiYBcXwFQR8cZHyG72SOE6nAGeFkW7rk1CxoyvE1BZyPa+RPZ/eEmEXMupHJNpp8JYcQZKLeiJDy2d8o2WFXILrbH9hXTYVtpgb93CnzQFqlPtyoE0hW/OTLN9p2OgJy62l15/huSNTT9MSurbjlt1jBDglwN3cNhOuqUEDjKgK+5m0BGMoSy1O2UAvViv/9f7jtS8f7AAOj+NmDnRnCkJDD3Te4z3mBS6b40zhWNCUUHxfNiflOTpbzazLc2qjtxKGCw5+9VOnkYfg/H6Y/cMDjhJuQw5xM00PqBpfyPmiVf4gQmXmTqsPzr16O2LXjSAMmOFd0/2sEU9vDaAIUIxDr3jGy5vsHoh/ZEvSJgT7JrjSXNN40DEZzNsy3p74GDpPTxkWCB5D7oWkRftXtAJ0mu6GGW9Ir8uaVnmQe6aSlc3BHUXWRSPMwUBLn771g9dL5m/lDvDTBpo+/u9ytetJ2on2DzJvFPYC3P+UCH2jurfbU2OnQOfAvpSaex1SY80cXe9+qcW79bFItE8bLjuxXoEsqxDhwSWD/2rmcE51yUoLtiIXI/WJriILKuaMT0iPtwFV+rBIRDb9NjnczXiD/izPyEAMUWodwuPPJuq4mkHQzkRfjz0oelH5IWBdOwGq2dWAd7Xtjj9baEYYSKL26W4GxnJU/tZmoicCQgIOZ5cH+DHn5DuiYkJP5Xz0zMuSEY8wJ6SImwn2f25/9r0zq/sXpSEr3qhgMSDsI625Kx67WwIVTQvHvJVrD8RNWbwVcD3Qde2qzb/MIWN1kVNf94DkohY6HqOjo+aKrSECyfzcap2ox4TykAaD7tkijq4kZEesgtYfGhhXLzKgoPVn16MYPVke/rPx0K6RrmV2ed9mnayEfhkxQb14RxlYrSthA7dsG7BZmHwsV5aaK8ky0Fdur3A6LUEuGwnpLZOo1SwjT04Z3H+cGV1r8IqLMnl9PP5GpuSyJ8SD7SJgWoVULMWt0eehXu7ruk94ipfh53rxRSy+L/1Ue5FpHyxaozI0SqSYJk3LK1qPkzrN0dZInHI+QZ+cxNk1Jq1pAiRziLoGqUvwOhv3vAvusgicXjYmk+y7t915WDIdxOFp6KY93oKycKqxg3F53FTzOCAShceqPNf7qTXiZQzuF7dmSZSTXR80/ZyTHAMlzIjipACBjSQ/mxWoIxLI9/qLWJWKoNcciwqenlB6AiZfXjTxQXimHFjK2a+HpWeyk4z70S4xSmzo/yOwpey2Fw0jverz4Xf7Myi9XQECcXYMm7XVOUscIF7LuyMsmjwbadMnzi07xj6vN3SrXeB66ziEmMCTgGaB4H7DGPgIGYdGWZYyUGhrcsC3oGT3VLOIe93f309qa8lIc5J95Mn0ht9Y0tI/VGGxLUGCRA9saHw+s1+/l2s00oPTriYMUhyFmC2wAZPHFsmRe38SvyeE2k3XMfZrMjZEGeUESPzpwbJ2Pugz5dIGD5tKK41eTpTRnN51UYEBaLZe/0BWnVqk0I7gpLheF6qK8EizxCcOiNKdAZpRU7g/UgkSnD4oySclMFUZxxFwoqwbWviUx+tVVQVWpCSDKayk9zKzqvB5FVD9J1DTNP7P+piNqOwYLW4bPihi2hRz4okp+NN35GWPEBhJf/lZqaC7cE7dl8mdtWmDZyAyCAvKW3avaB7EbM33swz5NFJELmUU7JpwpVVCKQZLJrueOeNN/jFGBPpQ+mBp6AwAjhNoowVsrlR+aDOftJCFQHMvQZVg5eRXX9PF2OVNZIpqRdpyX9WXaIFJ2cu49uFUaU1jK5iVgXRyfQVZLFrHoERGiCbsA5AFbFUWlloC6ExvHHUMRzVMy9YBSiBx4+old9d6EJw/rV9jz3qmwtMa6R/7I8rjcLfY0JIJ+sDLBXeI5VgURCmls2yeHd+sVsvBP9qOlYDKx1wz+p0ZZ43NM9i3NMDVNLS5z/XbP9lkI1Mrcvjtby7yBwT8U+qyaXvPH9MQT1wGwj0oX06y8dIe9H5mj9GMBzA/JvYpOsEkTTE8wJe4ZAo3/MOylrevCb7jWXT3R/xvEoM+lxEn3Bvep7nnrJJlDzHQSGMtQAno9f0QpU0kHcTEBEgZy14geaY2u0/+Tx61PhO1HZ/B+TmuGvHeWioQBswFGLu+p6q2Jq8mc/a1GpCwwUMC7mXCYUofQdw5Fi6FZaJ8/mEpcpeToS/ek3zWQmBNK9NQvKAqRrwdNZXc/WcYWH0QfxNsgQGhqgXuVGcBIG9/VSVq8OZJLoEQVG5zWBae/qn/CzZRnZ3c4DHZe6t2j1ZfbEXKtmhwdsOGbbZVZGP8/ecg+eWyCg+rzMImSYS6wCpFaVyCVt10d4dKPzNC+UQNlmOqMgLdA/UsI0NGReMAtqfPvAt3iXZpzl9zj5pz8EpHzdH+UjriaV/j6t5Me4JAv1yRTdDx2L0JeHptszwEE9y2ljYCoxOBeDAwN9BcAz3N0l2DXNCMbiDsYd8vNAc3CW562aesSP64WPXMkwj2Wws5VkO2Cyl+iAmnMP87ldACeWjoqAeOc+EWnySA4cio0cVa1GXRfk19U3LZ9d8+mZFmys2/qrwUiZ1U3AbXO5eO3BoF5c1Ry7GO06jlvJKKkMmKPIWLPXYQnliGrO9l2Or3meYhpBG2//AXtH4kXPE1jUHeBD7admFM7oaN18j2h7aODoPuO3q610enspcEVENMq3do9tpo3Imh7dh19iHF9YlRYb3YPz5VGYJ/LtylTDBmfr62cEXM1V/bMQs3q8J/Drd6YSOnLe1YrIbLhqIO6DqgXfjwdTONI7bVukO4Vo6xurvZM5/D006iKpWXcpe+NkNooWdShR7SLdoX+f9Uu7F18oO9jVqLraiwfIps+737W7pfXDr6wCjBAZ4lXviVhriEqXa4d6my6PMvvfbT/IpbiNQO502rlZ7nm/fliBIpmCFV0+lZPkrJjKKC9XSaO8ZdtId6s/xjGSR1JQ0oIQS69U07s/RCZjpnW/pNfnr21AcFczvnrgO7bRusIATRV5sLaAc1PRTx3DLQqj0S6NODl5zVKorpMpYAEVclsoi1BMaczUzLbBtKVXPgvUJFVDSYkkeC5ffpdzOmQMLK6rhEHQuxlmYSXMMzHC0zZ7Ql8sDRxer628plOkysKs+yHHuP5T4MAv0q9CBFu38mlc5xjKuqQmOqYeZynYZtGi+11DyjS3D4Tw/63WMFldAUo2/Z9dRArT4CVx1cTrkSF6rGLx9D0bVa/o3JV/unS1o4GqFEdG2zfNmiZ76WqGeqNBr5WR/WUVZIPHnYH3o/1+L29ljELrIhaEwpXgY2DvMaTJmICaX9g1VjXcpSkSrY3ZTaSkbbf2CGH7qOehy1HJNprNMnVIf8q7IIgRTdrkJP+BqXSrGjOvM80/3Ab/U8HRQY3sgi9MobDNQFdhcZJ3j13KFog+UTbQeBM0klEqR1Wj7ilbQHe2hqzs3LtH+mtW3pHGoA4Ewhh6/qUxhmmtjmSezDbFtUpjIAqzJs0qmQ59KHJ6fJomwzsUgYHE7V8UjObROJJTg51Xmy+GLtcZEyXmMR8lEfvHK2U2w8SwaCGLlltK19Tj7plceHv/3Y/p2X8QaPe/MAdmf8EWVYTU3y23W0GRf6YMIG6l4rVzEbpdni9LqgiuBi2JnY3UfgGHBwJtSZuInjt4YrCjJu5uDQeh++xIVG+Im8Q1neSfX52Vu2kat7k2N6MgRi4jiNkuDCA/RK9f9WfW7JnaH73kVwD6JfDJaTOl267xzBfF9DDVzD9s/dEjdtvIlpZAlto2KhXg9TCxpIEdsPJFkXaHhS3iHuMIzrhCuqQq6jkyHe9x0Ya4KcbCHRV+II/SM3gqX7yNCX2kMQAvSANT9BrSfx+atcKRnW/AkYtbFY5qAablJO4ulmgslG2pmFIAcTmik29jVyFSEq7hWUhOgViFVTf8mMW9CnawjAdQ9o34Hi9IoZMpQYvidchVD6DIe2PlH/l9ASLWeGXgfqLtaThVkhuxVwlPyd9eQZC1MOfY7e0B3zZ0Cv147XZqE+1ktGLQxRohtKamSWzfe3hzhYxANb4hbqs6SObAXsoT3HsC9LHyI1J/rZaekZAQZMqzsGdlrW3eA+n0I7SgyGzkBNpfiQGv7wYFl1963bZlaHBuqpmuhbSwQPZafiMLgtG5KQWmIt+V1djzOSMkofpjWRlFqjAKaY+FYuA3vISlVQ09viPLNKxp91zS0blKvgEJkwBk26MeHCRbiT+pajo3QH7GR4bIFX3zKqmQ/9Miseyn4mWL87ncOj5+1CQPIooAmedhKTI965pMIW6VNxVN31WnCyVkgUBDt/egcXbdH0rIECDD5flm9YM4SjTt+Q1t/JNfgS4FAG79OZK0FOLvA8w9k2JYzPWEM6R0rBnZYYfsA2fffS9/3vuZB2mOifjE9ur2nQdvt2XbNyxfjMJ8Sqjn8fvtYBGiDXmZBwA/djsVpP9hoPm77pvg7PimxQwrTgqLppdVqO/oMKOyO4uCXvWlUjP73WKd77n71od1qfYkBQgcVO4pqqHY891so/SqMxyp1l2c5d6vLxhJtTq+Xkv8IqkGJB7g3ky//nhCaF1Uyvx94aobEJm8BNSm4mD1HFVoTBKLR2xNGwFNGDrbM+vLZLdBPzuOgbQR1HhsHfhDkJxMv2QeKDTh9pKxNqHUPFBrEfqJ2dFIpPo+kOmvMjBMbg7o5xEUiauCf7Zen3q7y/Vpp8wKxf+XGTTQiMOYL556EK/9JwYzTm58QN05mhR5LRHzsS8ARIzf06Rc7NGrpZS+Ry4RKzXiDvqkbL86VR68mX1S8Hkbfpg61FNZrVg4sOKOkwpYHW5+gBsDGqjKqoMA7ALC9/xdP+t8dRPV4TaG0O1paQ6fkRH5ttvlJuAbZSz+tDSErPOe9G4lPgXIL+3MyYmG7BAS3WQUQzTNEc+gIIWUUvz9+9T5Cwt9PpznXwPIZVw6SDsu4T+3hadCznyWu8FBMT71NGwThtkKi9CMUJvvaOsokU9M47jHNSGQt/TRl6MyJP7ovUYl3Te1z2VdZQkOUUMW8YuyoJibdLekvveAWKdfiuB5vY9wKb+sZRkISVbTALxbYb+QbeeK5ZY0i8TwYYBLpeqDoQFNfc7P5kVTAugBz6xPiH7rJr9jE/Ux9Hl22y4U6jx44ZZLk631zuqIqQJpXazKvmXBVydc+8Zaqc0pKfB2DC0dqkSX/P8HF/1XtyVyTX0kLV3xFCUpHj8K6GHYYz/MEf1QZQv35oT54Hi2KkkSYomojSTyT1SquejFCZXl65HUuLU3sy+X9c8SBm1pXv7wmmubNH3pGBa8Oqtk3F9PuSwjFOIrRpGq6NWPqvLrZRNlRVftpSvep5e2mjcs/GBSihn/9YDtOA7fCMIi2gzUSXirI4o/QtNrW1ZffJYM88TY4WlZPBCgeBxj3jltcOb3sbFy69uwK9U4cjG3mAV5f30oXGs3KeLbNLCaU/YaYsvHl8omfp6nOgD8B2EQ5mM46NOKBUmxYF11TJ9Aion+kN7//++HVdLz84ski+LsE8O7LsrssTvUsjwibCwTutVHN3FBOKnL2lVzlus1AFNHNpZoP3F0vV8jR8pVwEsgHmYpJkwKRJHuD97moFzxK1SK6fdut7+JKguU7tOjQ8i9zOP10Zw6DqWXG+6etTB3n7mRAH2+QHjPPHNGo1tKHPuFy4B7ZapvsIYWsg4UMVPUrUBKZOeUqGyoL+m2rNQ+DGRes2s6O5Klng84wAa7o4nN2wmokGxfIu7wl5o0jwu+GUEtjKSoJuMvb7ehRLMs2Ey8NZhH/gTJjqi3JA5C8ZHynyqGgS0jLS7SVJg19awpd6xqLBm0aAITYvHB1O6rl2ElBzQBLXow8r+TKBVz1tSUaj4SvQSWlnNxd33jz/tuWy+zvO/5CFvAOws2jeFWa83h2je7uaO22L0ooIaMXsOkNf4buPXbaTxCZ2vrOcZ4cf/FsCSiz+uBSrvq3wSVEqRG4rVVSDgLuHIdq3QywSyebJb1cKlk3q5XCd/5tGy8SFUCgN/kNUbRz5orAVDglQOeKFSgm9CrdnHAftQ3YLaGFFcT37U1RKrDGYMuSftzPa+l0MdTY1IRGjTMvXRDJufo9bUTSIoVN3H7Dcmcmze4MNw3Qwrt5MhvMHINHICmhoLXcZTf+wlAV+iPfDjs/FJAwi2jFnTz7+Fcxu050KWkzm3eTrCKnGtgqhTM17v0a4idrpgqVVH0Za7/fDbyQk3uCT7OnW5/mc99t1CMhEnDxIhU5Ow0EIio3CyRob6Ahszhn/CcJwePdILhiyVJ6wxHeS+3TN62h1fk3mZJTTV+HpBFrclMEmBoChC5m+cjCC7G2a/ItGGfkIsiteS0/qtNQues25QetH5BtePAtcqzuJAGX7u6zzZUO/aTm9GOnCDYWYxc46OpSfCirHi/u221/ql9Uk+dThFFDY/tbeM9rRRYnScwdgw3PtNyOG7qWhWXkrF4cwBu48m3/IIl1FSAJiodMloVbivTPS75xqJy9jL4tIXZgoGjMfIXgHTEjE5GUvJ1PbblQViAVTecJBil+EyWRFPFHeLBPbz0/9DIKDWbofXqO78LgCqUj6jKcpHiPcLQ/zMjDpOaJGL7kQgdsT53iu8Q2NNgBLc4nbY9CebhpvDilcWm7rLB9l6TdG+sAKoW20eF6sFKFf9w6y9GzZG1wO9xrkXhVtuEnOoiZsseXL2poWc0LNaHKtU66TSg1oCzB+rrVujYcC+zSafssw/PaD+IKEVvyxXLZo/WCFilU2A/qAGKz3IJCtNh8UFvjXlVhVyL0QnbTx/AqX+tsAhjSr5cWR+uz2nch3+2dq/Q+8iCoTvbzEcObCQ0YPlF4TZ012krFf8nsUYhIXRkcgn3phfRR/cn6q2fHlGn4NhZWCBG7wh1jvrOpLBzavNNE5EuT5ws6xeHbFg+Kf+U8j5l2FiyTnzOg9RuBX4vjSc/7DXwI1hFuCDPbP9XoTiA7CJDmWgD/qMa9QA0HAszL9cRZceWk49ZmuLPlO+XCHzdWYHG4vRpT0DnmUi+vPf9RW9Lycjvqev0WzO9s0Q1E6aGo5QgoPlyKwWxMCXQ85RGNKFD9PbYXSCu03HsvfrwyH/6VJQlDJMWDl3fC8hGtiID2xDhfrRIXGaof29Yktbe7PSgd8Woa7wa+aOsgJMQPDYc74ezW90JvxgLKD4ozWYCLsnGk1RTaD/Ar3dWGmFUzsXmTkGEyjUQBi8fKi8GpeayFK6sFHRFGA8MklNRY0TnVwWvjFPkfNBAP+Y9buUadkKOOpCmXVr14AUkSnJvG2XFRAYwsjpiZd1azcQI8T+z5vL9olUcd4Kjhp6dmf/+KF3Z7/X35ckFWQhC4MsY7qZRlS8i2nB3d1Fm/IQx9PQNjtX3+tHeqjntjMTcosw0TanfMhxIzfOUtU6zx+PEUYg+VgTByomQOo7t9SM1cLIQ6fvBA840CpCBVkQ0gdSto475Ogc1SgiW/uXClUGce72nBZNElXWFb+IKjHSImH7LGpsi4mqqcn18gEz43CO8TlXFRpvfW4ULxDQw/Q6xbwHXW334Rur6jfc9LoR/bDbeTL9T2Cxz1LxMOZ04cXDmVZVhJcYrXbpQHdPPjlK0trhiur5Tox26p2G2WcjN0TPtmi5VLVHvsI2+tWq1STM4AnwsbnmrgKxXJEbgiu9VzUk98VpwynwxyGv3ke0Kkr8Bsoz8wRwI3CJUaZ2IaZvonleYodcus5olS94/HgnJASUNnZFkQdk0Basodk5RmPwMS1DFHWXRjZh7zJas0zzQufQgmvdRcTb+3sDpdoRlxPuOUzwsjV3msIgPiLXadcrag/VH1RsVRx8pm/jQkiEt0o+5ppKpNqwOJllaG/96eKk8xE0TK0vqqH3zqdg/4LiXziSm9lSTfv9QnTnY0d08NKTW6v4+8XzhbO2wOslOxnmIO1E0p6AypRo8jFAPSDga3LbSqeBJfSpLWPJJ9et/vynZJho3/YRsEfoJcMJiUAzYBuBd6NjUD41BJuNXRoBdvhgd6B+NdbWsrpKwOt33xzbH+lNsTuvy4M7WeqexOwB1WX4/QZgahX7hXrwm91r4B4DE9XJYvm8blOplFVcbAIh8Hc34eFYawWJswc+QIEqqfT3yhRXXYdzp67/W/UMnWMBG2sETHcu/vgmZgaOcu37eyRRBmdnBCtPgYWB/Yl5dk4V4ploqP1ofMqgg2V4vjlfar+50QdperyyVCY5OLiKo7vEinu9Sax0v6IXEsDF+R+AP95YKNNIHP+yuVAt1eKJshuFwe0swHiE0EPoE9ft/7zZvNGmaZjx1JwlsI9/h26CegQG6/vHJz3vEeoKNCc49OvHQAL08s+YRGu/jZHgslkbPOmTPCsXUwUgi/Ra0h14PX0IYEPkBwwgvwMQze5xMotOcSYKQD3CjSSUe64Y2SxexNAMNcqLLgdEt/6S6fY2rQ0vd1oamMuuEqMNuZm/Jv8mc/epRTOCA/qK6eRNF6JIEO3LIQapH+WP7mHO+RFsXt+PGgtfRWAgC3wEux78S826SCOdKSyOmufuGQfMhtzjXjYSI+D9tzYDiXptzoueMaaieYKREErADi4FhlMz6T8Tegl4dWZWdEDeId025XnnmMDKTXAoN45u2LpwFulL39TMuQdGO3x5bQ1t9XzjyKrF3oSUeCGaN6OMyU8GTkizLcmhK6/oO16ZE6udD40agZZAfVRLC9RxIkfIYnK44D/6wLvz/R7ZjbVp6+RhPkSVUL0tw4I1s849lMrnbXf2eSZj748TGFYsJ1gAiZzgzfjZ0qIhLh6Ar18I356G2O8H4/mU9ujjHnkA9zbv7evyZD5i+xcHFUTrahP8cchAvOzCbDNkgunPi2zsVXQfaMc4+t3d+4olp6uqAibe5clRc3nQiF9HKfebXodSW98M+R1RL0KDdAr30XvW0ctqFnOkQRA3H86rm4mNZLJdQ2fidWejICEHectVR4YTsoDU2emPlTXNpeXobnAHjJs/7yCTZwvO8+iSy5UMuhneKGmVo0W9vkRRvPcZvczBkCLwjA4C2yFeIJ1wX27p1rIB2ecawEDGWuCeKrC17vfLYYXpxVHFAY8nUN6yLKne1Qfd8pjdtd9gU3eBb91/QdrBfKjZPv0oTUw0zu6ibKkeqG+aKfpgymo917q08WCU3/FuQmS7cH+p+4pkERylaes3TzXGQTPn/MojUONn8dGhiIZ7zcsRGV6uLuTNKj3NIjvwuuKnmR9FZ/BjGiR8KJsY6reJTIjn6f2GUMpDn7VCECQKKYgvmRceQAQfcc1N9Y1Tynz9G1EmoIVCEB2yGCHLPzySyKtbBkP9MBPW+Cen17tmJj0xCI3WKhCoRl7VzgtyWHoIjxH19dJEjEDzdlzCSkIDgViSysl9FkrXKlwAyfOzcc/x6a68tvhSxhz8frIMzBaWB+FWGs4bDbrj+Tw9xer/pegJW6BIIo3aabennO3xdoUwC4Vyj998sU0aKM/sZElJ0daK83qY4WK9+wV97y9bzqU3FaCwg+KCAqw5XSduSLdwZsD+wFylPzd5qp6M+7tnpN3CMoFf2CdysUi9KNhfwFfim367J3on1LIpbDoB8IAHCpoUBGIvAvelN1NNx8IdKX7RsOzAH2EdNIAZrNAKVWk8gGnxWn7i1jJRSQXUplSjqMXLe6WjCvPy2Ybbd+/IwRZyfoppVzPTd8Ao2F9IG70YhlesuIquz+VFg4BhS+g3bHfVUKCe6VMcENf9NDhg=
Variant 0
DifficultyLevel
528
Question
The table shows the fraction of the Australian workforce in a number of industries.
Industry |
Fraction of workforce |
Automotive |
121 |
Finance |
301 |
Healthcare |
71 |
Telecommunications |
101 |
Which of these industries has the least number of employees in the workforce?
Worked Solution
The smallest fraction is 301.
∴ The Finance industry has least number.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | The table shows the fraction of the Australian workforce in a number of industries.
>>| Industry | Fraction of workforce |
|:-:|:-:|
| Automotive | $\dfrac{1}{12}$|
| Finance | $\dfrac{1}{30}$|
| Healthcare | $\dfrac{1}{7}$|
| Telecommunications | $\dfrac{1}{10}$|
Which of these industries has the least number of employees in the workforce? |
workedSolution | The smallest fraction is $\dfrac{1}{30}$.
$\therefore$ The {{{correctAnswer}}} industry has least number. |
correctAnswer | |
Answers
U2FsdGVkX18WMwj4Y39iVB62EFkYaYu1Sd9zghcPWtbeCA/SYLYwNpH7wXt+3jWJ1/Pl6Vt/PdEtmPcTi/cXcyo9Y9uBKNZhJOq+vr/6fuwE7LeHX999bdeTOsOvXXL/IAFzivkAF1QRGD7jXXjNGB1SCUQD6OBH2GQDLeIX43a71UA7r5P3pulxTxC8BZuZv9t5EiGcz0gAvbuL1G/k+Wp4j/+gSId0eE6X1Nhxd5VFIWaVMlVWDvTwjv0sc0B4azCZsmu4IX9RgfCvORe/+h/a7ZW/hqlSSeW7FqY1Wtvh3AShrebkzRRQOkwFOGI4BC/ECYq53XwkCX2vv1w1wxh47VrPQDotHHrTrcmYB4Ody7UmnzsWS0NNeXrsId3IdzmdFAmsYy139MwxXM3RmhOZoZeyAfAaOasFDhruLDDI/HWY/zxW2WsvElIeOZpdPIIw4zcR9A6hmsjkJP4YxuVX8IZ96n9QEiTH5OpoGwxdSYP+bMF2z2juXxPRlFcHUSDpN1EhOOHQviajwJ2LO95VtbwGXchsUyeZjrpiXf7PFZ6JAdos5Z4irKl2cenAerkMxYSXKQL9xRtqCHdQBn7qqC2xZMkRvL3I1Fvx/6ikH080P28QvrUxZiaI1+vuXWj45QsQ1Fo+u7OAX4MIFF040lrL9AAu8fJpRXGQbIS9j7F2/3rkUAtWZzmubY0hfwhieaPMwlhmicdtdlpRcqgt/nmgt2zxPfqXLm8qkSkJFnop3VraRLEdD0LHjSd3Mn/FhIKVaZFKBFPwZjCosAYJGeM+PXckkTZrhNSCZuJZaAWkBQSrpzqa0+VKt9UnDnyLKy++CErZnGrXz9Iz1vFKJQ8/dFy1AJNZtAMcFg5VVFH8EF7Q+GgPvacwp6QeevlGmNxeq0pSlpo+JYW9S1T61sEYz7z6uKKNo6EgSRdGMHBRD0zhzROwqPVxZl+W7rfa10aXVzl7LVDoITgqK5RxiY/ecOAx2jlwtGfUqxML4ojiZXaqXeYsPvc+OqF1hz037IZgKydNkAs0htaZJfdvkjckw/E8TE167uep6OGqbTnkMNH/s0TchPLKC+xXRCAY+I2nO5EJiHvH1/YgiULNzNgWf/l3xpLjMc28PlU+BSyYr8MGsL8augoPQ0VkEMAqcax9eCeWCBMkVylZRps6aROE27ifmqwQj8AEV7srucO65c+4grGMwWgLVoU7c4106kxLaa0kIBxW7MRLrkr2eP/DCnSqgtR8H7XOxEyXP4yPvLTr0EU6aSrSR6/PvaBjut8NEJgCWiVfZWyCbjZkuOt2Rw4jfy6f8Vvq9oiTrclzOHna+Btyfq/gPwACEmIg0Shv5n4GVXMtmMnWVgVhzhKQxhhTSzuHUEoZPmrXrpodJgjQaqQRWP1zQoBAYwNU5gIRU/WBFSKS/As6ZEU+oYGu5kHEheLhdSzwsZY61A0K+1IwRWeQTEz+oERmdioWGA/ThgKpTkOu3wVC3/s0HwijOkXvcMugq4fDzT10ntaC+i/NBve9KRyfkPZa2Hp4ZdcqeiX60aameluiBKQgIojqV2KCW3Ed9Hthdq80lTo2vSW+wDoiq5QoyWswHqB5GM0+vYJiLvhi6VW/YTc4V6U+Z0uRYqF/jG9hBeNMrvtCmoVR5yfni6J6OcTfQl4cSyHkK7nIoJc9eZtXkn5XDdtV+qXM1W3kLABPqTZzGd5lL7RYsGviPPNmpgDHluSVL92IvF+bTyPHG4xfJNnokCqBbAA1cGHCSj0OxNVcBEzz0EoV5SMwuO+EHauMSto42oQxYfyguQ0GyCRaiOtxjDPygNyzwBC4gZ2boYdVURaUw0KrSKUtDZ57ad1LYBQrUEtigQiRk+kWozeOxkGMuFcHGhLD2qtbIj/qvSghkf1vWn6cVn7hu7FvHUREGimNKIrG196aWNN3Kscs7vER8crBzdNpKNIG5fjE9wciy1TKeu/PzQxf8NJCu71W6s+JawVphj433/zBSAX9hGSaGnQuZTyW3mIfpIy/eShzMC0nfoDeqeJDdVjMPnEJzHbkJIsiqR4OUvCdVK0E1leSsK4J3Zviz/3ULIOv25dRSQn9oyFVDBP3bt67dUX4Lk8/VY1X5ad5fSZWw4e27CCNVJAZtkM2GYbVh17q2NZxUH5VXHuSD0Hu6HnxUVifpXm/rCMAiRcikN9UQwwcsbvZU9QCk0knwXk8PciPUyS+UjmuGZeTQkQrAKNqTe1uuCz+ctS3VNSAG9/cKO2cM3WekVPvJbwA6OYMYYHWLPVTFc6GIZ9FDhXLJnAob+aPR+8HTpTHZiPDQgteF2SidgnAy2eGr0La9Sf8TjCDujmAMKxz3S5p8laF8PL+7RmVanTsqBeCMqm6yUlC9Sc+AWu67wszl54KxuZMQV0idantVd1B0IP6fw4RAITJRV8xQqLVDZQ70gIdR2qonlJNDNQLDlgUPrQmAqhIEViEJGeAV6Sr1kfEUeaEgnLbjXttKCgQCneegDFbmiPvMjBYi3BvGxDMcb/tcK9P5U77Svtqcl5ZHRwx2pNdCRiUbs0wJReOlDlfcDJ44uVu1eDoL6ThgcJzc0MF/IX5wwgHDSFt1v1hZ3fubdfdatTxSW4ZNkc2/9Zbvo8Z2bbz/ovRBIsolsG2Z3/sX604GhENYLCOj1X9f2S8C5ChmxsFszwfCxDajJPmS1mH5/OaPXMVbx/NwV2Rj4MN908ImLKCAGXs7pHvP/0LbGlOsjx/mv4+qduaMNqcylzD2+6y0Ruq/GAACJEtc7VQnr+HgfH/TcdrYP+tCCqoMlLVC5vFnVUMLzXzT1hQkNF2b2gFcJESxfdULS0F2hya/zlSup4bCZcjgtWekPZHwg5UtAAqj0qFef06Pu23rnZ30fwfjzNFUYtP1TIekLKooWyhEwq48bJiMBXAlp0Ty+yiSP9eYWWnIlI2lcccoPWjZu58/RUlc3ApMG7KcOkX37+LbmRVtFZfH0c/367y3rzgbPsXONDE7ltfUbOcxe5CskRvtyo0COSGecxHFQGl+BS4ybN95a7t0Wwl25lFzTG/yipcN10fmnP4u3ga5YTyrfsMK5kGu/h6ZdknxpJjoYr9MMlaJg70r4Dn7TWvHjSdX+VeRyvLLX2D3H4RUbiaYYvnV/saJybhWb4JxG1GlB4hD7Q3iZVT9qF5AlFEUe6aKfnrlYKVg8HRiq/8ngaJbYMi11Y2kTixOMWua5GuB8+yVlF+SpElLFHQJ3N5NK1InV2ucVgks/vaoVtsu3KNPPEMbx29tw5LmJMvOmW7kbC6kQsKP3Egmexv0DGKcqZNHO1bM3MQtwYPWwIXwhsO0MqPCOl9rTw4GTo0meP/teQXbFHsU2yyvrM+9hlqu79MhTKZ2QhEaSEe+54BBzHzXp2P9GUv3Z8OqBJJNBIBu+/FqUi7fs2uEZNViJXe06WFvVECOgx53uzXdHV/c0EOt+q5Y65rFQMYV1zi1oeBNbjRNu0d6XQ+robHWd2NC8N3rUqX4jDCeSd2QLIY5Au76xlerAMshYKXNG/klU/+NM4MBNmpOkcCKWb3/4TYCOM6S5SJYFKfI0pUo9iv0fBoKnhPtqyvCqYLIN+wP9hwLWG7khwIpxxGsmIMWsNiDEMuC7Q3O8uEoNpeyuPl2SI01aHxJYxJDhmlsstzpR6QbPHy39tyQdMG6onnOkqaaZFttqKq6I02612ROmS9qtiLRAn/1f9V+bewdf5bNZrdZk7vV1AdUwgKhDFJXAiJV3IXB05Qnz/pjaw8PIgSRbq3E55yZiAflbpf2DkOBruxk6ZDU8RRM7kq3k3DhVU+HaQRvtwuRkFsKFf2EzDrwMi20uum5WrUkrcIKDLh/B6Lpfjj3OpghtWTAWukDSBWuqyi3SyN+A+4kO6XliJcIDGnn3qG5GuuFpVChwvaRU2vx2ksCFyzReb1oRSgO+fMd5XGehWysx05leNr919aBw1AF8AysyrHbYP5YjqYTpMqUHcguUnfTdDQmbodTr4dTVIy+KCgjkUVeMb13mKKeB7gwmMqcffLvqgkxDXhyArnnD3QxQk40Z9nHc5n685SfVhGBl3gEWF9elclsvXstpZXwdv4FfRr81IiC7QAYfgxx76AWsENqLNNZYxyLNCTvPlf26Nhs2sow3jHiM5b3HSzFAtmnH7aNgeZfojerFbtpaqVvmLoSfLflq0sY7K+y4lFhZJKGuhvTCIFyW841YoZ6/XcHj3yWffyC4URToa+WJpNYLfO2TXvbCd0olUXJj2EKkMExGuSvsG+cHs25T+Mvi2Gp5VQnIq+jw++yrPuYNiIf+AjLQPBOi9NsgqNw48DgSXfY7raw4MHw810c3ywgsg/dPpfsb74eZUX3busSR3I0529ll0rq/rlDOeiuEqUag7L11z1N2hM+83rNTW5t/ojbDLGDoMizgmyeqMu35OdsBpPNuwUGP2pYAyV21AijadDqxTzKLg4tM8cm/HnFTE48TppyxdLxKVnvJZ3Q/2qLNESBv1P+12UcPwxPeooXXSmusDS662GL9Vy5S2AoELcgq58sKSCxX9iJGmrHvaTp6trCwCFhqRxbNEADojAhNxt3w+sSGtpVe6JTwMiwwz6zTJKSlr/2e25brzfbo/EbRV2uFMXIVsddYvpISzbcwbACNteX/JbVWXN+/aFvxgQNwtdn18nx/xOsVC6WpHpJIGYnVI9vl/sJhGrZcoOMMl9Sk7UTqTo6S///9jyY32NMIil7SbRtcYG0GkOrBk8aWSmNhsVntFCPup3eRZbe+w1HteZWEiPHy5dIMo86Y+F+rSWbEdZVubnI2NjgLzK05bYOghwHATLNFItsKGy/92uI8X2ajhbFfApZ2pMzlKD8hyVbv9qH3vrUCLE6/ky+S5jHdm7J54yOLxRfe22suB4SW2Pw4jBZVfwvJlSFm4rWg1cEhtWcEvdH/QX3vP3uDW0zOcB0bAWR8o9uRo49yUhKmivrsDTKFswiMDDVLOggB0M6QGiVq7RdOa+TMySmSSnyw64SyG/EMD1jgZU1IiIw6QZQ+iTUYl24RWawcO13bIeyThtI8JDKF9T/O+ksxNx5QzR5FPjviKSJ0V4+VAwjKkkGFywbzpYcOOcMbftonR6jjkHUtpX4Jylbi55US/x8aEFNunVe1x6nF0qdjtvzyCRLfAwqiV6HYQRkB+fZViywdix6vS31nq1W/9YJploMsiccVLPEBYj5RYl/6UpKgn+Hs1+odMepkNky6uRYAFht+cO39/C2G+ucytASUEc+g5bNY4y7ihO7db3KmttNLpJQCh67urRh3fOXT9xUhjxFU+3TMlaKKNLE9MNsOY5A5aXKV9RT629qHZHitLhwwiYgS3wot2tt5FOTwDaBLVV5wUVz2EZdTZP2ZZ47+mHQIhHYHU28/gP5EQ8lE8oXlRtqxmhP9YScng2l+j7gl6L+/xkWU/jTccGN+A34WFaWLr/DsYmtzjCw0Q4phUQf/TZKcp9vig0O6AiriKgpEzoo5PddqMxwIk9DqqpWjk27TevF2x2OZVs8kIZeqHSLq8746ogvwVkKsp2IM2rvkvVsS6BjDSZUaktoGAHPmUF2lU6gSwYVBCGzTkZiy2rdsfCnNputOYSVPEUpCwLdve1gZfCCKRTRCl1LSz+PfQ6wB+p0B8bovxwYvhNf8DABBHZ1Rt+BrON8uCGcyNdqL9uJ0+VcRCVkpYwF0g5v9ET9RIJCjkJq2UtuEVkgo5r8kz7ANGvaNImsJ1ayJ/AmuH7eScrkPleMk9RftRqvY6d4sIez9TYU1nSaQGnyteStD9qA2EMp84jDZfQpfoh57+7dJxxudaR7sDX9tM9XO5QXNHPnFHsRjzrnNNHpJoXTDynLe3bg7LT+EkdpIvyCGnp29tqzWxSU/COz5yboHg5eK5Sy92QWBTsC5yCeTDzi2e83aEeUU4Q7hSF8l2K4NWaAbk2lOr36x7hwB8lZWRIsPA0Jpj1bHhYeUTdPRseTiCgikg162vXtpbs4N5cly9+OtAqzQODCkiFml8v7LCT15qgQDo1+GHh9k/g56lwopd1IEpaWSFMdIV5VqainWD1GK7Fv1m7HnxXAHj+FRD42KZazLmVsAgLDc+T86lnXySYBYjM9A6izExiKod8DzeS1mmoCf1+k3bS188ZkUujrOlucXSEJRW+SYyjSVCs6ofV+o200QOdrhrYw7zT7VNRZa268MyfMwHljRPWEsskG+t0/qSNMI07R/Cbi279jAoKgGEH2d6drPc3KbDjJdMTCr5/HJpCjLY6aAy3IR/8Y6AZkhCwYyqD9noSDVN6E5JZXguQA0nAR2tmioVSfPvKO0+51Fch8HlucuTRwXcu1eCxHy63jkYkwVp6zP/7Ycuqrv+8jHpSBDpXenBT/fW9Cvg+KK/PvCZAms7ZPUSDNr/9VYeqlCuAwaiyWKXfBbnfHH4ZgoliRXP8Ns2+nUIhNyV1R+DlXXy4aj5gHoUl5/bVyxq0vzv85g7g/ngXd2AqfTJoy81L7dU0+76AZa6IySMLy7d719osPYkbqocodtdUb+BqkqMdjnI2pHp9OyogKja6BrrE7Be1WFHRawZLupfC3usyfdRrOogApjkSkCPBuqE5XVajdYzB78x8mGPcHamW5xJbrwmPE+/GFTezuHb8QjlLiVt8FUNYikiMOGdM0T1+9ZDBJcMYyOZaxtTGOgUQVnmQ8KN9hJ2aU8cbvy3bxliSvs3O3rdrCLPAKaQW0GnhxHNkzUnY7l7ZuIGfPiyeBUUmVJGcPeeKAn7HM4RyOFmkIaxNodpo5H0tcVBEJEpas9lKJS+E+jmFLrzDc75KE52Rt4uU16CpR5hwqW1+FcP+PWCZWNohi2DPoClUTEzJtWZUT7a8qAoufkn9CTQUWK84wKfGvElZvXNeDAz1NICPYZlY5za5JNUlLsXuqIpdOmTpYGJVLhSxvRtnNsxAuEqSkvMD9IY3R+BWNQX7BNKKMCpZN7zcq0zdhEZx400jdhwoidmAblPj6pqQ8ZnExcd4m3h9fnu8J/GGlFiGek30fylk6YA3yFDoN0W6kMRaE0c1TL84l1uXbkXjoaWYmS0eUjgkHW7wJmPp7C8oqsMc96cYpG1FsK9abwvpHhmWITgR3XPRNqVE173eLCQz1lWHss1LEwlTIAVigDLFBvKb2oZE3ji9iwhuBmEZiKe5EXkjN76MV7SyLcZ/X3dUq2CHxAR9abJ8XDzNTaymkC713E1AvjrBpi+GAK703LUJUQRldSX/+bmdsimdCOkujz865gGVA8NsVQouBKHSkBFrH+3Ynb6ka0E2j7ixRQf4iFDKX8rMPG+kzkcUAOxGztC0RAyJtJO3UPF7/XIHcoH2ERzxW5tBvWZBbmskknlc/Hu7VRCtDUI50I/67lsv4ruH4Djfyliqv+DcZMZ7DgERF13/1xewGH/niTS5pAKa9iNCNiNN4OrnZTbi1pHCdX4q8gXhDWoVVewsFB1SoQNldd+CD2jRouneAe1tJtoq4UOW8HHLo3QlvG98532YY6hzaLNzrydWNVwvW41Zf37WMVvI7VUf9Bpnkkz9KVcF+g7rIwQQewE7c2ajcbdLRnO9P8RLHXPC7LaQRa+4ZS2XY2XBMh8CSbpmsMGTkvmNGKhhtcYq7xmqeZHrLNfFk3F990XdDwwC1FQrjzwqiAn3jy1pvEv9mo57a84/UfU7R7W2KYF4SZAZ/HetR7s9/fZg0WMwg/QBlqiEECxCQfOt8thg0TMsaEiSjEa7YUMOklwEPeopy20yCe8xM8bGWse7rKhsBJ+HHBeWeoudK1JNKnNWqiUJFestaMV/owSVcV+KewRpBAAiUsWkQjwfQKDjoTSuwdo7DwZ9dXByvm6p0Ww3xXclDC65lVZouAKub9RERdX71WSxhAqRUZusuSfMBwEsy6RHqurSiix30hfNtCidJSgV3IEuDMU0tRSNH89/rredX8PDW9eeuEZ7/g8M4cTA6dGdnJ5ivvTuBbVXbWR7HLBsHQC2jnsRCECgBu/iCG0ltd75zSTnacNhNh+r9uW+fyTHlVaAYSgNfnwBYkobtPURaBgmQsVOG78sZ6Y+uWKcqxZWnNjq0ok/AQA7KF2IxeWP7rhmpuk55yiK7QuT40zRasSGCBiJMkHUklz55UFfSPqUdkdT15uO50MeAeb9MITmwzK+RcwA2eRJHWFvywmGIhNsTrCRUX2aUQly/f/ssPj0YSlEhP+oA/z8uQYKlmrwU7wVWTiaDXnQpUSWfqQ8ni3g5ORfcbCbA3NMx8taokEExnKAgtJz1q8rQtmmGmzk/jCZQCmIjffyhaa/v/L67iVJAWBP10mlE/0nVX5aLCxDIjsOVUknyXiyW2tltIbBiI8PtSDFQ7LAWri27FJCFrWCJkANtCVEPmajTMTim/BNyVuWlX+is6lzmznOJZnOPD/c9gvWVsUIS/+8cBFtMqdzevtPJJCJxFVRSn/7eE8bSM1QaYZBYe1uJ6IKxTdsYFqajWfUjACzPh9ahxOHqaLsu2nBKcRNAFuW/TQ34txnmF/LtsutM4ZTX/7cU4UoP6yRe4fB9J7Oa9QnDMngdJKQW0Ib+kl+yHsHZQoyXrw7IWiET47ZExwGyGOkK8op3c8rBwhEGEDwtupm4unOmMATE5NH5PobI+FlYUr3v94mYOzP4ytJyrVIGIoGaLDb0GNm/W93VOgJbasp7XUwVElh0wdQYRLrVHNYSI1qTuEd1y+Koi3tLZW/arsd6+7K2/k4eFsnPhmh/roxrvlApIu2/7MbPo8my7JMOKJoABmNun7fPuVduQvZX8/dBaphQhEAWnRap08JbMUoKTmTde3KYtS3AwlrEOtskYbG9ge8JwM6sOQJjfIDt1R+CSfuO4HdEPRP7nSaYS/naoeFjNiEHr7PmY/m1DLIlNBlEniioNlM/PkMIQRTk4Szj7yt3yjtjq9/zggWU2n5H7OdHt2SbXLoeQNRAfaIB5mguEyNLlV9ZTInaYEGfGS5sEKdEolmNOMwZjumqXmKPHLL9J6pMzN5SVqOWCFwe4BH6jbk100gdycvDx0WjPAFfLaX8LCKYbEgfoeogJ6BKh+RGp5zL7hwbjteq1M7qv3bXhc/TvX7d16e8ohRV5cva+bt4kc7lSMDvu5YjZ0KCoGD2MkopJlK1Z/fuMew6HPdqWIZiuxrxkAyfjy//OLJoRX00UFdqVsVmPb7udGtNx4JhGjantCG0dNct52UGD6bFykTCuwN7PPb01DgBlJ8ThOBwE+4nXJk1UcxhFqE/8xsq5KXoORFPSS8j0lUwsHoR65sTmobZiTTh53KkAGzMYnT9K8bnd5dol4lmElaKz5dYWFnoxvBrrWGdVuHIQXZdDRJxDCsa1c2hTgli0F8uxefkFH8OadglXLw1d2ALkU3Js/j0WaXtHAialG9oya6BpCJrniEVZEnkjwoAJdPxTrNRckw4a49oc/JWiaCvpCeh9DB+JLmzJkRYzdw9ccecXyI0hrNE3ZTPBE7UKrlTzERrztN0jKff5eeDTd3TQJ8u4KyraHyzu3JgMU+sZ3cmPhN0NLi2BFpFiwwfKGgK5L6k1RCovYQ1+PewgYPL6aKdR4syRv4Qy0NBxgmW7AHeOTXNLtEsaHN3rIDHsGBYENwKGYR/WNyvnubDgB3GLX64uiHwMSnqmKuQcwgu6//zFeyn8tN86LRVEMrSJaAqN35kHKiybIQS1ugqHTgnHIN6Pxx4t0iSF0arX4g3CJrnBYx5M5/Sz72uUQxH/tEvqPzdCaxAMSNhRf2GMOvIJqEAtHS79M1v7GxAEzY/zuRuBLDyfUrKSShYOh6g0coryxJI3Ah6OZUo+ktMon81d25CCTXJWZryvFXAwYFyR0PKpIpyp4ElFIIIA3UTRCI5AyXIoVE1qF/Qs9MkpfrlM/fAYtOSMD7/H5BLjnhGVh/C2Fx/37ej1Kc02JFFgW5wUX4tUvq9cL0+JifJaiR/ljRdXhoxo0r89bqPj8ZDffusV+jqwS4P8zy2xwt+/dlfxXC1zCDO4jnk6p1ji2TY88cacPJil5BFO7Koy8Owi1pWOPKSyp+rHRKv81YwqS9D6OpMbC4cPX2C6U8dZz2I5eYqtth4iXiAGt8ZSZh2437mrnyCQtq7J6E+lipeDNHVhKhwKqOso7WAijFp+tUjk5ccfpSVMMsbyM2ctnvWhKCxz52kwn8AoF07ioVlxGLWwwzfrZ014KTNo5Su9O0tJB/eh3amTFYrR+ipy0PhO/QBTxPmDknWD2jQzSHOZSlLuTcM0HzQanNWmsjr1zKhJZmsOu0Q14ixJxB2i31ql5AM9PbwiBIRjkUN6J2n/5BJ2+9cMVjXNKAA+YPLl0OYN5+6Ac0ekKKvAOEUnfEKba3BWKMsX3OZWxmHAe7NnPJ0ZhF32QF7HB8khmdWQwweUnX3/6UONLg65ePOOOZSeMdgfERbX25/LHNS//+6niU1wn/h+6+2IRvyIay/ZRztcLweHvU8Tv819VSuvSs2GXDF2UIIRbsp0F2ovwhnejecTgUPhGTblzfgGI0GIYoobZd6t7ENNEl+AgVMt/pmI2cJclJXuyztUDLM6wFKXVw+XHxuyzQdF0PVm9qbj1/qXlVjZPjsuWI6EXlagNjEQ6x6+NRGplHPwGuq6W5hlBVWIuzRpPCsvsZtDSUzNCeQhzid2KjsToyMJFeckUnvf7UGsB7a+JEyxaD7kudne5T1adAN16P2uAtLctD1UURAI4OZ/481P+GvjKPmEwWBrqWf3LNgOmeU2wf+J63Fdd8LYRN9OUxLbkwYZNWTg2R7EWFG1ALHlzJvdTJwb8QmbvY3sqLRElIBV9J6f21tT+xYJSfJKIoE2nvOyzpu2g0HTVH8SohsM58l0lMTPy/TZQTxYQJ0e147WJwEsEpxGgsKQNxqIOmFU3xPDPwZM1fDSUchL7PQpNAf/sOjLT3G/QC0szYZcWvFTmeyGdm6x3moecS5INTOYMJLLshbhEgXGnAGrP0wTo7imMRO+yeAnwmeMqmdwx4htL0BZJ2l9+gbRszPjZ8RyvkS4uzeGpWKrC1++2ZF32EGZVrPuA1F7Nawdx9PucQSgy2bSRCM9lE2FMGYO8fm0OM6DA7GIzYsq7vh9drvG4egYrtJM1BYNa8+GBRMdTAoD8EwL4aUPcDA46i3Bj76sevrS9Vr+ClIeZlF9VhY27706H6PCfwyQTK2Q70jzObf1lnSKR7e8HhnwkEJfGKrA0OmO4/R5WXGXsyqm+4NYLO/LmWOTtTMms/WwBH4shmyrVrF5tLuy/86IivKE6+BcIUs6T5XATK8zbwHzlOMATUfEtJxNnZYYdoOnlJp5V2fDTXxX8xWcF0QvBDpLta7Lqnu7rqfun3vLSWm2XUJ5Yw2Zcr5DkEhkJWHvBHDfJZ7Fy01F5M4VNPmh28nphSQUxLEwVTGJJuwX8Q2WRksNc05jH95zmH7Qym7xXSA0wEy0+bXRyTvIs9odiTqekWgcW3SaeWeflXWubn4BWqy5lm2Hg+AvoyMuWquO6iKIyzwzTWWM5CsRMPL+bUYLcdWPjIoQcPcMUbWUoUGtVaayiDDIBckiA54Oi/jM2N9mhosNC4eLVcJTabg58I532DFxK57W5AxyQzndxcNdWTH4BV20N/lPM+ShJ8rSiRBoKYMNfQKxW3LItZzOkyBJNt6vQKXrA66lbUGjCPFe9YF13EQyArrr7TwtiXOrkoWgm3FBwsO4lMD88fEO8oKHntQcmCk6fbsPMFG+68hHXSaaxUQw+1LiBCX0NqUKqKuHJWPZB2BZUwyuVvLD6m/DJHawhngZiI4/syq/iltzTqRG/XVjsgmsL7OOA1rK9RIMLHje8kUxh8onMEhchUBXW4cZ/t7Uvj/1bSqeUj4z/1G9TN89cgVmrcr7uxrmk2FytN/tf9eRkTMSUETWn6BZMnTOlrNpzlOlYfSfZa2nWl4+ZIOY92BZ7SRzCJ/zb5cDVgjx5XeKCLPITAUwhOKzoYOt4/b1ujjP/V9TRVjl5M+KrHIloR5thllVQ96o4DTeONY0KTKJ5sb2SwKnWsnQO/9EhZnZalwvhbG4bNyhf3ZJThza/RCNi7QPxUYWn6ZtqRjlYciGngeRwZuHMdRpvslQdYxIPsD8auwBgZQTKR+ETGrSErUcZtzdyYKjQotPPYQ2mD+djwz/vCxr9eD0cXr2TRkAV8CuJ8wJ1AS0aqqnSgr336wmPG1HO9C7Lm/zyw4yW4lGtp03oZruIOoUA1ipzA9bY/CFqoOfw2zQO+QAk5P7FMieNgI3X9UfZpfSHYKM+1pFQFpF9nK6CRny8WQJnk+kC3+PK15KaNf2SVe+csGtPlaUsbnGZJQznBzZQzBUooaWY9siCQlHMUGcAdIRYxTdcajEZSGckOq/G7y8313BqezGGEtlXd/mfYbNO98HHcPdiE/thvjcfWyHHDxd9mt9jDHuYZhbnXnRJGkldQ55qR+vJTMqe6TzQyzT7peftM6gMGXGInM9Mcp52Nvk6LwJgEIWmGxGXzAD3zcNhq0Ku5NnXNABCe9vgf3NHUDxOf/rsMRnBH6y/ZxCiYw64PULGfhWyVzsIeqjhr/zQcGOCbm8kOtQBx0QNtsXnm+6y/bRVJHzMG4xNtdDEvRef0Gs1ofCSBYEm+bWXFLXlXaXuucenQOOfRqr4R3CKI7u99bBRZEEC58CmHnuDJ9RX7v1vtLJHug/Otb9hvZI7Pq7/rVlx99wHm0IpT6ZvMeY5iruSy1YrKhG2Q86uLjYAo7QxB7sz9PLiCiJiYC6ia7ChRckdr3WqLaP/o8tm51Z0ueaGqlleyTKvxqX0vHGJhFbOgfJeHDAWgeuNNfCunToKKln4lFezO2i6Z5CxVdbsHgI6gpZMoGedT6CzUGOGGbv5RO9z0IeJO2wBTWMGj9f+DJLaIUVh1VAFgI+hAUF7N7YpHQRo8ujHp08ObV5M6Pz2CxBijVOoSOqzHk72k7wNm0IvCrNCm6hlfWPXdSFqnZIYRKDx5eFOSzXznqDRZkt50T3jw/nA+gEvEjEV9O1fzlXWJC8Dv6e+40newwOuONxaspkXQ4AG/GGh8lu4RHKQAKGvDauljoqP/5g06GDFiz0GJZRvbQnzyvnbHmkyTR0seBSOzZ+DozD0YC+tLihOm3MOvBwcwovGHg5MYK/Ir2YHmFa0If0JtSedIZP240RUrdVOwFYYNHiNUgTGaOOcYLTiu6M48g9Tfxk/fhqEdyWW2wHPb3EyQDtTZkJ0FSzXtelE/sXsxeCfaXk7ENUP7yxfC49mxAwH5qcY7J0AiPY6bUPwEIkiNJOoOX39eMBUUvq0urGlP1MiODStEaKzuuxzfiAzuf+YMVMBU+Uu0Vecr6PCDGjB8Ktp1shS7y3bEcOhQSOYgWmjherHxiHDonO4/EsuufloWhTuxDFW4dnEJ/Hns3wr7d2wLaTTGmfjGKm2yaYjPal1Os/xXEb+jUBLjRxKHpHDTZzcejbyZuhKR3wr8IpoyL0Ay0/vCVDS0w9kK7xPHhc/NqPJgta3EI05TQplVVAIB9cEIb1+AcBxLfxOkGNC4hZ4Brx2wUkNls9FOY9OpNaM2RQK3puPVOUITkdhzwhO09jwyJVgbosqYn11gOF6VFAOLGBtEMaqCmxbsNEkZHvYcd/Ij6g2zysDstluzzJfJ2l1liFAe4DftAGN52nGK4CedBzpIMNUby4fKf3QMAw7Jrb8ExYbvDD1uUAnpZ0yaK3VAgiVI+fU/UEVve53Xv1OUKWNeR03eDlHxZrKy8zku8Uz8S1D8/RJAQsCmi2aIyTIIvtaP5H0LdfzkeLpRMvElJp5daI3LCLFxlOwsKFkNEe4pFq2NUny+EHQi1xQtjAlY2yU7Zrm/0VTaA9p10FYcPzgmXH11UGscCc9y/zuI+9IBWOAEoPBnUxFQC/bPBqNy4Cm63YYUNnPpvv+BfmHyxzLvpqVOLCK4URcGwbFCiB7xUDYtaMgHLv7jrDb4gk6FlninjelV03NAWZilZjr82sVTkCBIJ/Bu3Y17UZ2i89ROo2FS/0W/S8WuSZ998/5rTsWzJju4HXFKFf1RJZVJ9wctyqEudchf3LZJ2RYG26xwOrqeGvyv6bBz6cIpzLyt8HqL2X4SfiYRPkSfRVm2NeGw37QBsEJVv/89QiTL06eGDTDCAM9HHNSIebkBfotXl7sSZT8krws0Qfv1YYAmPMH/gqQUuoiT3Xa6z3397qqgnbr4iX5KGhiWJHAUq/QxHci5fK4sJAOW+dWsNdqzbkgNQY5ZNS87z7VhfgrnvMYioj5t9wWy8aKtzB6UeJ0Akf6Evh7G9PbVspEgJvoSWPevbwtik+Bz1uwF+m7H933G+Fo361vJ5VOaQH/37F/UaGuBs8H4WiqnsL69KJVnuP4b4YIE7NFrQUt2uD4xptueUQ4oj1gK1049N5ALap7dumGEtuQA5zgQQ5VAWYSnecep9blFmkaEqOcE/swe/7um2xNm50hcJKHXZ8BRZRbkSHC0Ad8IA7dbPuYS5b5igD8pvhXj/gFOFMBWZZwAgrd4BjF7oOxbOnMiGzUZGVfxmVXb1UC1eNXUMei7y3G8RKVkFsAcTNSfYZnJoqBXcRNz8DBLeNHVjgXjVj6L5t+k4BJzm2J+zEA4KywK9qmZp7r/53gGpr3bonsRz1zw05mR6JZGksHknDDLxG/+iNDs1sSdsn2meqbGChtp5ArrAYwxXoa1aTouj01S8TU+3+hk7qOoto81S6T6xlOcyGW7o0uibWp9SVQS4L6gkhgt/PpiItorsxu4ETc6QtTYBaN3nOo5Qh4J/zyae+qMaTNZrIajDAjCwUvaTGVkflywtpCg63qDRw8Qvhnajdp+Uci+LTg5g/F7ui1UeV2kTQRfPv9/s6Ad+WST/m6gMlYrKzjaWH5rKHSqVHSUD01r80rLzOcHKHrAdSZRoIWJkc+PzQ4wA6FgpTXFAKWw3g3I+ZSPXXQM10DcQCeoctPsCfdaXyLkuCl4pm8vy9jKMverLHBahoanLGHaIXZcjs1oK6qXs8GzcbsmrYcenGD0P7gUjY0Io8Y9jnfO2l48PVklPyfmaLJwAybU6hf3xhmi7PWPCs8FeoOjc3yLqt7CBkNgOJH1wrX5TtBj1ulRnBX4c/Q8JumTykKaTGLBX00cXRyWozzr9IAE8+jewcQlBDbWXuTcMU92hJ3NDHrJunZHYXTMZmJOXNHWVEOYxyel0qnUoHELRrBbw1t6hkfbI5UvGwvihcL9ekcedO6zfk/JGJuEapmA8x7GOYwBnjx5DzCZF3LJdv0uiyNHymQNE81NOcdxfzSIZQhWsuy10+jfYbo+nCLLDctCUMr3yvZuw+NiNXlEibhx98zo+3QPVBBRr4N8T5mhwVck9WfS1YK4brOQu+NxerUfM2zH1aUthQDkOjgsmWSLARJOdiUOQ09MpXH+19bEZ1ZEsP6kuP46ILtWzoYHkZR9xuLSxVpmSz40TDqujT4DcpCDMfOtT7s84P/urKRWIKykafZBksyImwxyjK+g4FhoxSYjNxD8xvVhDZjapXRh+LDtCXGsamJElyT464daTqNRWRO/vmMTkC4toZpEoayfiXF/eFjOJuzrJwiQfjZKx5BtwTP23g+wNB5yWaWqKQbs9e/SbykxsSeZiCCHqAgCXPeJryj17lWXktaIhovh2LPAz2WTpGVEK+5V+uyOnCHO+I6J8KCfeqQhEY2YNYsAvCwoQ4gKOp/RjxSAYb82MGVRDFI3zG5m7bA0507LyPVqVcDOgWuZO60diQYxqY3aXv4sKSb9ztYN7avpNLT+AKPbI0hex51CLil4MHMnwNMlNdm2IaamRdeAhANXg1LM2TNf0KsVQeoAPQvX1yM+bdDTKIxIXi8OmGRHNqCgdOL8kauL8FWXHcFw9pU+XswE517Adfrsd+Q4NkqkwyXmjYzVclaLX2ZF6FXwbYEgHrfkJMEbXRGwYLQwFbqyZhl6SSmd8L1WVLZyOFouGDNoZ184CQcnq/np38sytPlI5xQXUY2mRDoucD/3NJUZYpHoOuQb4DN+VypFX+yYw1qSUnoayAD1UHn7hqh/eURSTMRaToaLYGbx6Jy0lNjZWf8u6OZYh2prn2Xc34rhKHshr96XvYEV/weSis93BqT8AXbLv9HSS/voq78GbW92WBqX+RkRnLaIH5e0Kg+BWi2tFyXDz30nwpMi/dcesth5eCub8CKE8JNvTH9xsAmMvM3+m+YbR4WLf/5NfOj4nTopFbMTvKLO8c7Iu6/KbfrpqMFz6jDuiR30i5Kjer5gl3rQNEB5J9UjYebEU298H3AcRuIiNv90zzK6I4YrzcW9jQErGGFtTSUNNl4eqBThW6xxj+YyygQaUfHvLOUv+gBf3op+f/ZIAN5k4ZdXW4IKY4o5fC+Xtrm91CI5mQEAsObDwJFtuAu1WF4Szbc4yRVK+8W9Hag98S1N5ss8nMS/G6UGenI8qVtZQKTp4o328m7g7ryP7TNhGejeUfOITJZzjg7ugNlYvqhvEi2zz2bTewM/hAb9lnNUjXL2KGGk6CCiOKoZl+9BeFy0plXw6N8IkQTBqOpPqAKXKNhVE1QDF92Bby+WRzowXqLWknbLqj/5OetSoJAPPB1cml2nGHCkjs5oRRk5Vuw+8QzxWCrC1KfD1PGiuvy4tdJOCbJ/dlpBLU0aLk0z+a57vBv7n3iQ18DWoPD0oYNoGdkJHgSml/r0SWgKj/YGqhmg0LzMzoRjA2C45kBR32/ByRrJ2PleGuMruBtokFnHnsNkdet+vRo/etN2+Fz3hsB6c0bd9nxsHp7ky/5aUNgnwi/zFwORKqg8cLQ6FYhwadghTJb2yfOIuvk6bh/oEdQDYM/kD6W/nIKat35g5c96jQ/owHAA4nqKG2Bwm5sO6Gcyc8mKPAMfOwajng6nhZ1ipSHVxyBLbts9vkxaga/2bGB4b4ouelfdFCU0icELuwensUgFaKYHWXJqQZHsns/1Iv+kiVjD3UAwSiGDS75RHrqgr5AE69tdCwaxPwVwUy98rL2H5jgAiPd0qfVSGCS8eywcMJk9c0EBmAHNt1PhPAWFtvJFFgyEGmsUyLwSAyfdPkdJmqQ8vB33eWynJLwVv4ULBZo5Idl+3eQGcl+I1bpqiVJ3HTdwu0FIe8l22xta32auuD7ttq8GCD3I63FHfEqWHCCOohSmw7pM/Y4aNpyXV6GirmcJqyu0S0mY/8RXQRPy+gM+JUWQRED46OdmUQgWkohhPOe1QnG1ohARNRQE8tL8riui0MQrpFVL/RTSHXd/ZTYntGzhCFUSZXItKEQHXykUf7VCHSLSG2YuCCuOB0/5QDBfF5DdGSHe0c2KhrzVafOP+cA1zmTuVDdZNXe61JraSQq0DaTSLXT8hUfVP3nq2PEcsZBiz05x4XfKz9bnh2GCI9FHmb3y3z0mnbo1A5NBc8+x8a7xXLrk0MsWfIExAdb0y9Wyik6brPKdoeN3pQF+TnjgBnIJL6nbw3hsYk1J7Ub/x8Q3uqF3h3iGYelw8g/9g3TiPjH/MC+9DaOdgmur57AwolSxOUaq2D50KGfw8FchT1PAg6RBCqdfZfQQq8bBX/vfal4Q62lg4WDkTzHqk0ncKo5WxghkEum+gDAECtpcL9bWUf6ykhbArQ4iQpwdi79TpCj91FxVusJVeCGYojz3okUEyhHiEXlEjSKNXLx4XBnj+VH6VgxxlNuabO1hDBWjNN33ar2OxNufO6hEcwfWOpmL4pL9chUi9NPm2Y0hLdGHEBSgGj5ickiTkjJZrFRGjA==
Variant 1
DifficultyLevel
538
Question
The table shows the fraction of the Australian workforce in a number of industries.
Industry |
Fraction of workforce |
Education |
51 |
Agriculture |
331 |
Finance |
151 |
Telecommunications |
101 |
Which of these industries has the second largest number of employees in the workforce?
Worked Solution
Fractions (highest to lowest value) = 51, 101, 151, 331.
∴ The Telecommunications industry has the second highest number of workers.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | The table shows the fraction of the Australian workforce in a number of industries.
>>| Industry | Fraction of workforce |
|:-:|:-:|
| Education | $\dfrac{1}{5}$|
| Agriculture | $\dfrac{1}{33}$|
| Finance | $\dfrac{1}{15}$|
| Telecommunications | $\dfrac{1}{10}$|
Which of these industries has the second largest number of employees in the workforce? |
workedSolution | Fractions (highest to lowest value) = $\dfrac{1}{5}$, $\dfrac{1}{10}$, $\dfrac{1}{15}$, $\dfrac{1}{33}$.
$\therefore$ The {{{correctAnswer}}} industry has the second highest number of workers. |
correctAnswer | |
Answers
U2FsdGVkX1+qEzP1Emi2JUq8vHHnlLUiUvzdSQScI8GwnxQG+3wVTOHNmKuy+pOrNOmKdPUWhqxzdu1WPGyOC3GCSEXt4Zc92KDJUVwSHjqaN19nEWpA8YDcycqlx8Pl6MZH9flN5Zh+ygBYmmO/5u55X+2OnZE/am5ztkZV6+BRUa4jQCjVZEtYj56SlQo2EvTL2weI7S59MwJcIiFO2fs/62oteh5VGCTquv/yj9cD8CrhdEFzl2JI3fmWRuNosBAJgH5wDuEfWMGAYGYu44gd0kS2dgR3RnX2czZ6C9aqOloG96+qo3ZKSn5C+HyFkS/iWxmzKGBhWGvzCebuU843bm3DwEOxG4xiBte/e2Xx58xnCFoQAdxtSKHdPq4HP+s/E2R3VOOasikHHSEHmkKnFwV6P6Q0QWmiXR+M+AEeq8l/6I4j5xSGFJWNZTZ+8V9CjbR00MycO6Cy7RbAw5lYUoqx9i4tH8QF4A2TpaEFYJPKcQu55SZ5VMas/AtlKvGFEjivee1XRPN5DLhOnvyeOQLZqPseIdNuAr2ZC+SigdrS0wWJqDHUt0HUnydlBqovdmGyxP0HpX3mn6sjLp+Ak6M+4SGzf3OtEUMbMTbSJO2ldV/LAjtj0C3x3b+lK2CSBZAcKtUYIQV+0O1Lf1bikxoQGQEJH3lOjlf0SF3X43LvMSK9oyqcgW1/635jM7LftSGCbOZ+w6e/tbsZd/jzUkettYFecuxobKNs2lpj1u2gOvtnkRAmsVT5QL3S9vh17cTDwHVcFBndWpzLSp8js5fOByLo42LUW6sREh+3XtxieDWecaGCDIonMA6iN/Ow9ntrYj8g793CqHBq70Ekr1uQ8AEmcPhkdI0Y0C1l4gUoFX6k8jDv8/0NosL/Q7bSfnkT9V9miEKUmfoTESDswtwjf59WIdi6+Xg+o5kAaU1SDyQHJoSF1zjBA00j1EdbQ3jY9I2azl4JosuHqH0/tTTJQSojYeIB+WnMMpzrxOos5kcwfJc5HQ+cuzD4SGyCg0pXtWIxckTHhvx7YkqWZ/E6jXe6SGzF3RFFnli1yNpM1JSaqFuoJaSY6MsLllzdzTImSEa+T2W13MEhrT7MehOgcMV1eOHsbtg+fTM7famw48xz+JkkdZGR2arQ4ep48KmJVIfyWjsvTOD5TVgDaHT2kLjj5KZur5FyxKnc7ldwQHohcYdm+tqkfENx2Y4OPjftHpekgB3ttXcKw5YBQWJ1o6vS/mxGy8z4wu+GaSc1w5cexr75HeQSF1tHq41Vsw+ZP5zt4Zr4qMyKfzVNVVde3XOJi5awslyZZvPYPMLkz7eK9Axe/3yojH2Ed5ym8kR3FHGj3AAkHBa3AHlCoowITjl+sVvBB1ph2I19Tluv9ts5hYS3pqcf0w4kQduGxvEiNzVaYxlYl/zJIswH/qRq4M4ORYsEFGLE7wDwGjc9U+mMpOOChLlF9LjdByAbcBAhEhFuTrfhBhu2mIUCYoqjo75D9TSugPkOdNPJBHoRbLQwqcDbk2JuxnlnU1ZaruVtTLkWD/4VWUd91CEvKLOsRYOMEvRaO43XCH6UdLXsGmeoRNqZUdOTRhvMcOVxQdsdoG3ZeSGN8YZ4GsPQSBXoGN5kJlAo9Zdpf3dqdFDzwhofLK3x4+ddUycLs2JKp4mO0nlZMh2yi6LcBvzTXoBGH38vqUzIVdLvJLtCaxgxUaopylxAZ6wLPlOE3gOFQ3LA6YXKykwpiq9w3CfghJMED9BdlTy3jX1Sri3QyeYgHJZGxQo/f/Cy18mwwEnrMgjft4ROVfOjaH9+/OuqS7XmodiUXWVnvJ+OxPJ6twgwszoKXj43qRzfkCf+bpXUMEVY81NZDVg69VrVfv++/JgF7fLxErZQoNdgDYKJeQDfSp8pXD6MpR7Gr32dOO43TkHPpgRwc/UPPiVLfhHzue0bX2PBs3DAEJUvPSFJpKOL90QnNlscViTpt1qf9meefG7mo6+sECCGxm/mTYpDmUHF6pPSa+2+pukpzhmhBNDUf0MaslHkqsLAZqFvirXuTbSNmzJVvoeo8iPnWiQ9PC4hnU+cu/7rhuMCaMM+PHfFrtUTxheqE9JRbHncHhWCH8TTy0/S2NNco+4hGM4E/oO5myw/vA7ce+MyjuY4c1hAC4LAc23NjGuxAPdMpoMCbUBnBGtVIoRjHG1mII5LPi5ekQs5Qn9x6Zd9oPqqgetExbxdRvU/9nzcKYhArLQH+JaZrMTaUFDD63Hf6dMzA2YE5ir93bv4QmocZyCjvmxiaeDbYI3pUzTgRXn57qxGI6IWsh3gBfYeB14w1Eox4+iStozgnkmJGOdw1wwoxqM0VxlX717YP72EyKXRlqXeWR4B6CMS/pYTrWytY+TIT8vvOssyEszQDqTSLR1vs2Th6xDgvpr3ox3bnPHnnsHykpkkrjvipZBK5wv9W6IDtDh5vsf/AydzfgcJfj+fGxsCmNV8DGfMBl3XBB+2WivhX/X9GqpDtEQbC/BusuivEnuJ3LmvShXc4lE6lzYap7KZIiUeVvwWI9dCeY5QxvClOrlzsr83i7PAR2RKmCoT/9QEwYTOTIgT/MOq4aOcxBvb61izcxy7w/5DEx5kfGqvL5K7djTfmPkfPNdu/31jylhCD7ZyOOoxTAqE7O2b8zL5LMVwh0RWPLjPVlBBckzdTYbwEPwmRhrn+9H4ioBQiIJTFSSQZI9RgiPhprtwV/vhJhX14tkPS8E7GjMQ9KEORv5ipTLhPk7N72BoqDLAVa0itD2FWBdwDArNdCyKXU9uwYtWyZR9+dDZDRczR4udyF//b+hSO1fQvfWqLthno0O7Ia2yjgrawqqgZdZMkbSqJkBGzjQe19Olix3IhuR3yrxKnG8+6KhJ/28nf2NfnIYwSOIuL40XcfBEeYNJq0YrnIrayD4FdBIOWhM4dzcwoaY2w/GB6rEjuHWcaNQM+dlOxvEhq3r7Ah/sM7ko3JE4rrPHtWgo7wkf28vPpCqTg7K7IkTVJRAHL8mZuX+AorfqSMQPA9ID4cgcI56rDYvLDotH085qWNpax57lG8rF8riyw6xSDdsIgEWg295p0NaEU3FFRyWDOK1ump1MyVzgxyuFpu5kE9m4a3HJPPLjNqQWSHMCQ66AgG3k9EURtgidXroUprRh90Ul9JAXW5H6UaSI5VTNIoXX43Kd8jL17HV6HcBFCxFJ7Jx1ZeFApsr/FD7oXnY7/6LOhySOQ2uujd0Vnrq02J1a9yUHQNotB7qvvOnGEs9Gil6EFF55iOdYGV6zE7pQNGNEKJpoynFMdFZHiea2dltQCidmtCEuDMdEKjAsGxg8LzjDYs1vUkdD5scZDx9FLIB3bTOa3KTnx47hVviI+2E32AlEMT4ZXSM7I0ArfgAU6uVjC2Va5FEUAF26tzCfSLl9Kc3MRx6qRDStWjmfgZQUyW8G0NX8nXKHkLa3IspxpMEkqh9BR1g785D24uJXgCCojvYA22lpY2Y+JsegK9eTxOTjZB9DNAXM7FCloKNxFUIsQQIYPiXiX5tx+Xe1DtqhkAZatVVBxUFw6IpODabLX++Tx1Kj4bQ/wBZgvUa5l4P01Bk3iZ0mp4KjuH2Vn6VVog0G+GfDvEmj52EZJatZ9Td7qst2t9owQPr5/PCXZ2L33AhByLOZPP8VH4ELTlHD7jGAY2qChlZm6dRjo2WaXPyyicZDqhGhyBTwOjbZe0mn2ORYOl8LkA2naQAjMqw155iX4LBUDT8P0ELFElWQm105EqrzEZCxIo39XQm9p3le46FdOJIXrJ4JAFZENG2CD8uC+V/yE/HgIVLsXn6JoxhgYpUL4s1JuwQPEAynSsqGOmyeLxIfZPSrDxmY3ryoQcgjdqLLS/PN7QY76ktldP0hQVdMwPq1T7oJZVEBKF/HL7EOtukTCvDhajEpDqcJ630xQwwh8gj0G+prEe7quqEQmiReFIMK+MuFIFvAI6YscVKoH5yY+nFywul7LTn7azio6i1HJcbyEIqmHJSIekcyhq5z0Z43cqZlVb9ZM6SWz7G4SMNKiNhiE9Q+TcaZJSgpXAus8rFMALpLGuRQRrPrVqclEZEXO9/rPcwMZCeLG0SIVPybBXjPsO7gm1jXZD+Kcfj1XW5hkZ0JK19WHjeg7iyvIM2zmqL5VNngffYU3oIBq6/d8BfrUtbTrUTcqSTt6c/DxPJ8K5wR4gCexxaAzQ0jTDBSCUmHUKNJVF1C1IezMJRdZgutdjlxzQK4FI4x+IqZDSZPFzNI+OeBcQA3ZXQNFdbe2EEK3WmjUeRFJuUTzlnfQCDs50SvujQk1Q717u4NoSCZrL5VdmFW9q3b869NhEknYIvvM9SbYWDWrfEw5f8r2kdbppRy5TKW+W9UUR0S9RL1dbfy/NTX5DSoQgxvATmb2kpvab+hHuEw2rN94tQzrFsm9b8LepeVOJbM56y3XD+M91/zQiw1hDg7hCygmIAL+Rw8hxrCOCvQlYuW3ZqJYmldcUvHVh4Bm2gfoGnXlu91d7tnB3jSqbNqFL2qZPigl0NhYouusburX2xJkn+kZF0F2+KPom/RQmtl76DUFE+gs2RBGwO0yNR4x+/IDL8vgeFrPpcUkPQszHA/ZIprHBBNgpgs6gaHjmFAWxvL/ngdgpk5RtXUlDdn0rzIIct0ESzgEArkx/n9lUJnwykAzidoJ4sCvIaYGRFQBQyQUV5XRdQ2jrB/FPd/NlTjzOGtsIsKdMQYNSiVxt5yQOn2/WWwJD7WNL5mHtIQJDZ1ndHIDP1stiUwWebS+kMvEmjCbv6bRrjJGtQQRylv7ijwuQ8bL+s6lhH4aQMb3D/vhlIWSstj3OAWQcujTuEfjgMUVvmHaiG+0hsgiVWJJuSeqQxBbgvrtLJFz8vWEz4VSMt1qVQuNvjUMQDngltx2ubJ3wtDrRNcnbdULn87o9/4iS9V8F3/ONQT4CoyxnI99TO3qBptKlWwb29I/N10R6dbiXOu/QfzwpFZRN+IghWT/2tWDjB3Jz5YbERGEpCP8Fz29Up288CR3Kn0J3Mg6QjwgL3qYAMeofHJr/PUFCGvSZ7E28yyGpupzWGXNObBAM09Dw3gCQPDJ6tyTmz3+UknS3omgQCsSeTAO0PMHHALyDpKbEm7A2cTxUGqRdDGkAZigl/ZgUljxifMng3QZpb4Ja0TI85xdZ6BJp5qtyxcFFAViI0eGlCHqq4mqkQmYq2hgCUR3N8PZnA0i0/AdHe+0aEwwQeFAS+BQUkyHQoXJbgrIWl0xJxtiE7Ck0DQ8yMx8xXg+yHdcqIgvtktDNi13En63idp4k4UsTUo8LwLEctfedWSDV95aQdQT7MO5ohq4uUvGVuKxJ1V/FiuqI7kzHGjkw7tqgG3rw+tvDsaeI5z2efIb9K20CrF1noecQej2VNYEzElGi0OQ6OrJ5MZhpXHHYsyEHGcXUYHe1aBLcGyyz69M1AROVRz2Sd8GwgBgcnufqiWwiLCYFC000rHtZgR4UpGMg/moR6Oau8587+3+t16HjLTmeAHX4GjbqWXE0YIUoEkfs8Q+lvtkww/jkl+1PQcEobUf/sKmDMYpyJVnucvzHDXqi0DNWVG2XccKmy9sBd+ERNmKRCuWhpEkxuTX3vlVUPHwqI98iWTEnZ1KDkYB1nh+6W0ZTr+NkKos1jwVvb7wLRbcYC4ZR3YuuUZ2mSSa8EEwsnraw/xuKIOowo3Zvzx25cvWf2R+7R3h0STeQXh6/38ucreFtyw+UHDOmqjv5miuNtVAejiF5gmVx69cmv3Xnttv02DyKShpDN2loCe7DYxAZPIlA1N4LMp0EZ8vgtvcOqj+7e5g19p1UHZyEEPZ167XWAC82rLreQvl/UhYg05i1c1CYnetvyM0tRVp1jsHdV+geJSl72xsnSmuY9qdedJi9Tqa9YgMdP9Ri4n42Q6hV4CoBTkMhXx95Pe3tuT2h0f0EnXW3huzt2UzzH0D4HQ0uOmQ3VWYSl2QR6bVoDntSqVD9h+q7KbUDZmi0HF2veV27cFCjyhAYJ/xmLOYZkG8K72uMYQtkHTVh3L3pxQvl7mCYk+cBS5tXeuv67VlgV8ayXl4AINiwXvDhJEcwvAYeNQo2Clvc/YTI0sCpX2ONDOUQwRiOTTsrfEC+vyGRmSD8elYJb5bDDCwNU0NOeZShmsYt3JUJs8LMWCnzOotZxr4sAHsjotoCLJtSSl7VnzNYp3VG14zXSnwq1Q/0dPHuwKx/NXi+1eQpeQ/PyYHGxCObX8n48XSIr91iNiFlWhygrSZuQw5ouzZIcvPs/a7WgTVeDFqdgS+z/h+RismEao3NcTzyAJxB1cglHB1uhD2fDSPUfQ9C9fT7/JNwlFJ8AfgGsLa5UjwFdO0VDCimYhzj0T0N/HpFkzxtruQeB6hfI6x8eCGwWxJShTivQwbfM4+smKmf+pxp9/VdeD1+jl2L1elkiWgoUaITaxGmsw0SN9jpEc7XSKO/CsXc+YNsWThNuEVs/zkyvk2dZveghBaWgp5IY4xEwlq6VVV7OIrVvF0pT8L0CYBhzFkRXwW3wfL5jQxSblrAXIzlsCXsfN818QepoXtdXm3itYkPhHBjpIHfZC2TInOZdAaN8Ear2xssjQG1nSAxsUDNxu9vNgdFHjWDHZaMa5ZFFSWPlXsajzO44iskmaLL1YB5NefW2oRSaq6SSOyL/+gWd+6K/WvIX+LJ3RPGJz+F1ejNK349oMhn2YseTy9RDPqqASLKB0vHsIC0zcCSm9sg3b1Q+AUuLHkI/8nwilbZFOjHsxbvxyl0977V4mXxq0KV8af6WBBs0iDCVgXBEuA5dwXTqV6cGyDRTVYsDLBekZklTYguuqzrgsP/crxmZf2nIhfUYSv5gfp4uAd+sL0/CH+q/uRiDUZ4+I/Rs35ZF6P12Xop6rSbu0WWLxmqbZJFhx1ON5rtbjDUgOFfj5nhXdDyAZKbZGML64/NaOpVPa2NFa65g0wJp9S8w7jsuQiXz8AZ8k0jw6gjloX3jPxlkP18C2IPsPvL/asnZFNF/0kYNLuIcVAraPQdCLXVouwndGEMZdxS0x9fTfTcZcXstSF9nUNjHfcaNRu6Mjm9gm/0NnNu1Zn3QhdOiSWrF7W/F5iRd75ChMw3SFgAAElHTC9xVihaysQmutdlSwIoxVlQKT/xdxPDj8mrDQ6AmTw7DC3wxGati7Hn+DvSjG67ONcWLMC8A9pN50APYIOj31teyPNggC/JHTQHWntd98b9bVIdF0OfriruDqQrCEYFeK0XgHhpfvIXKOjbaTcERsQnD0ZTsC/yUG8GaO8+MZzCmtpwsN1PoDTs4tbQiIfBzlAOq62S3DIYetDggwscPAkMZR/q8O50KhFuxgk7Es98cS1lplYiRX/gSxYnqXTBMGIfBkt94FCmZVGnsPVfcce6i9/WQ9elmJorl02/qyTS5fuBc3ku7k7muqnq0Xf2SbKWnbo6yTAhLcU+uMlBsw/hAya7vLpBgMCOxBzyLIbAM6zrQZofoaXiT8qj8xvzCruJ8X/lXvnFABMlhMjV8ctObc+xx9lbjyQxu4iGCoj2ukqRWiTMpnI+nxAFFA4NTW7PrupM3W4+Eq9Ov1lb26JTHxM0Mzu9xrXvs3yfNgUTPGs9P5RgRIuwfRRcizhzCu2l3IWrjlPdtLpdMiVNmB0g1syjTtvOhQgFdW64U05k9m+caqaT/ZCSFdT3JRNYlrIu3VYY44+Mgni4HYDdqcGgbLfK+WIyFUIRFIbK9d021IEfSsADvhiwGuAl0vjKF6aiXwgKveueulcAI7fNjpOiYQJJ9guIUMzgvENlPZTE6tvquJegJEoKD5yioWWZlUzbmnAq8p0gyYL99nCItsGVQYT6Rh4U9tu7FqTZuj1lwYwSFLZrzxgk0IZ0m7KlB9DGd2op5k8PwHuIDVc0KvXinMA1iwJTjKRFMsGqIfud6N56BdhTB9pXjRSqaqsm6U7FcaJdaBjl2Ebez5hebzIFB6C8H3XkZh3tzC1mnN9aFX14eyRH8IAIyP5at6kbaqcordK29disVF9ct4CzGk7IwYSKRWa8AxkJgLk8F84xICL9ZQx+Vmu0Gl+ZRqDUCc6+hnjuo75IpDfZbhL6L7WakPtrnIWpPEcLzeFr4WmYNYhrY6ZtsLmMSbFZf8GTIn13XIu3OOhokAsbUI0n3AVyZ+V+Ii1wtRQn7cP4DEwuz9vYZqe/+dC+DEOVIfgVrQpZ8YyNYRyLgC9xTfAww0fVc4bfq9ufZsItbpOzLwVUnktn482RwrFEufQEVTLtJEnHq33Hsl78hPQfne/mAXMDam2vDIRtsUT9Ws6mmM2iMUdfDXkxmiAKIwjyMipQEjrfE4dkKGJZv8XVQFV0cepbQCDb9ZV7O562xAs+dBOxO05yN760DfacKP8IqRKrZgz8Efeosxho+LGJ0P7PlP5QQn4cQ7TZEq1DQFkStM6C0MdYq8lz4S+rR/XELnhJonrUBuVMw/Fa71hSQbGfi6vRO8SySPjJpnIolfS7N25lVAb0wZh/qu5lP+yb13kx1PeaxuAwgHAa+wn6AYRsoFZUMDF0b2vhquQzMDhOFjq1Qk4oKjUOtll1COeAlqheoaY3mpGtRMmfVNlpWPqS/m93SuQnW5cpKdWoZz58myTV3a1JAzi5vFKb83hSaaCWp7ybffyf08x9borbzUieIOaF7oiWNb9S6fIoGnJ48wD9DskkN7w4tsROdnW/IpDoXf3br9GHg4FSMMKSwTgS3/e44EeYhqjqUFVksFJlDm/PZ3YtS5Waz3gP1QXzrBIJkZ9fh8UXnrFcqkoq4yjhokv1uXMzvUX3XANIyhdq6vfnnAFBWOhySxu+AUmXGPn8iKMlw90SVCEU8/Y4F22UTt4fRW1pik+ohKjs6yP+wp3jDh55W2KMiEkS31x7upzoi5g2+CWWA2LpgsOrHaB2OR13EsKvNdGVsmnPaP5xcWJHh5fPkGiDmJ2MgBm2pklSqRP4+A4Ze9CcChSOsQoDwUPGIJrZ/wdQkPmhVuYJ3nS7+p7IPhLhutOp4dGl3vKF01z5adP7ZEAY81IEgRygNqiwTCls7GHJuSjSEJobMBmMkf/TjF25evIl+DLov3ibISAMTLop1DagqQ7NkwF8A6RSijfeCohE1gEcb15zkomtFbNctf1QB60BVjBTbxAtzkVNhxnIKqiKRkmPnCikVH1B0ceZSi7AxXTzTNDNbeHbqaAGSGP8R1qSm+ATdnYn3qsw1zbpTrqjSFpuU9mVTXQkr+qDJudaLT7Rbn6xtNH+K0hxA2HrUQNxWtPbzFrxJLJIUAFZHivkb0YEENmoGUS+7IFF/utaE+xXzco4Aj2ltTw/pwBFz0Tj4114sOjrhF51VJ3eC12Af6yJAK0IeOVZViGb0U4ulJDWTMRGiNkT1nplGu6yBmRvProCViOzW7JBWKa7mXiR8n5qzWhk3hap7EwLKUtzmxbqNBqrjtKeTNcVPtlVq/tNBjTHKDH3PyVwmlRRsGEF+n6jET9RMNaJnevXrcyHufn5t5TqlAhT7hTNJwNvHDqr/csLXtO7WOkuS1DtRU98DmvYsRS0DkTUNli7mcnSgF91epJrDL0SUAZkCLc393rTuOTlMtBz7W3dZ8j8uUwnRZDCsAk2QcXp2xRvDb5pnR0fgR85BeB5wY8SSreEg8BwRmq4U5aeM05QUc9Gw3P2LigEo3B5gcTWeafxUicDVxHXIG3KKM7vclk+Gbi1RBJU2sjroY2P0H6e3iqIWoseqiSPTKdvJ1cC9RfSj4EGaaOCj0mzrj34kmhIV4HZEJ2KENwHx310zs7HhYDZ6KShsmaG+HOf9SCPO7oRs4K7SVlKWNB7NMA2QfqJjyb/8zXTJjIdFLaY1ddBVhU+jJEbeLGnBfNL09qBWzjyJJAkPRMAyU6eMcze6/Q1pgZK0plkeIkzB06XhmUp6FlyzcfQyrC/ohqSKcnz5vCc5kv1+4G8qP+xR2EEEc51n116F9tPflr7XJYaN6bmK2jU8o4PNTiGXn/RqOc0pdPgZCZp14gWqyPL20EIsf+lgvGsv2TfcfMnYGOrjYNezoPCEGSguwiGByDwhFoiAYJBPTPBmo7rH8YsUmPEEHkxi8Ve/Aesw8hlCG9uKYfd5noxYr9maY0Dxa5dy4ryL9tq1DPzotfAUWBYFZ+Zn/Nd3qSNzeVaIDRRhsyltkpywXXvdJyY8qyGCCDjZK4eTER8/eCHnQRR4rxJa2djUAKU0d7/zjgHeYSjdhu6bMxPJp9qA+aurNpoR+eMp5Yyz7tB3VzIu3vFjywmEi6qu0Vtb+7V8WWQ0Ie7AcJu/NYhKGXstCaiaawQvd/Nx6XofrsVE1T4Pi2WZFWdRywhi1wLNNxf6gFFJ6yYZJi1leeM2Y7Iit7vI6qp7YvzIaU3HRjaoxNLb/tagi8XbyLwzFgP9zm/e88iAGP4qVZn1XzpyTGU4nI1jitEBtt1zecoYNteyCHlip+x7kYncG4p0uYwvuiy3jD9DvnrUwxiGa0ghjQAys3m38Zf1sTwlUSlJEwAkAcA5FZ9qm9SD93Hcbb6KQy9MmgTH1MiIYMqnAuikEl4YiGgt13gQ1bAPmwx/bmnVcKKBx5FUr9X+kIZ5URkSmBOn+heEUh8voEg/CssC09V5xzvrQwH832XzUtIPADoxjpR1GfoL6djs4mp1tyWhEJUHssn/FY9wNGkTRpUeHBJSIw+JS33um5D0NZzK8r7zyZQJtgA5swDuHiANyY99LFYCWUTTT/6QUg8ZzcOjjVSMFX/mxa0T0iCuImlsyxcHF0LksXdIpDocRD9hHcd18eHlustSsUvIfiWrsmwkEvAmukGrwTpO7SyEw8lfScJZSSFe8F9fOlzUqyVLiwuAj0zOaK8xke+KGTaLwQeCUzZBLzZFR46Zum9KOh7spfdMY3max6blG2gWC63odEnSYNNziltvECu89VB27p6Ti50jb3MCvSSuQ/NWO47nQmQC+S75CaFJl9rUVR4n58H00uTYIoW6BC80dB1RqOYY6LFOKj++ufDuQwigXxrtQJ6uXZygkfPYLPp80PQuTcHQF9X6QTEMuG7zzEkjuo8YmqQ5SzMVSZpgxn2gYujPeisG0Wv9oTka68bdRUEu6pG0rsdotgv+az4pjuUNku9EvKRo5MwwaN5k9kTUuXwnxEz/Q9vblrufrtKxlwx1J15hiQgyoiM5oX3bycWOX9GDWLURMDw2A4KhkfKOG6eUXQmBSnIC26F9w7YpVvxm//SALiTBxzqZ/cjjHilpazeuJgGTkYg7al5hvE5Qv3iY9RleQsfqSXWXtZOYDT8yeJtn5EFtbjIivjAPPlHJt4NhBXwFBh37s3GT41QvM2lRAzLxbotvuj2ZdnZOntGvzZJp9ZW3Iz+K0wksNJ80InQda4po5dW3QuWz/lAaxQEL7zHbTZOaeRukEgt9dTIBj+ihahXRlbnkD4LIRPs5Vl4p/lThzVXyAPp4PBcOZ3Bd3rpgfojWqxW93O654G2uy/99JXUAl6A7MmRSogMbexv/zP3gdlM/TcQWpon7W3djT+NXwO/UPI5RKbOhwm6iEFRKw4hHpgLi/8aYtHKBwEqAt1hoqZ6INE21549njYtoOc8eTROMQewv9cy1QoTd6t6VgCGYHg4CeFlMj4XRfbuwqubcn1uk6/jW/1szPUaqIAGhPO7QSt/4Lwog48BEvY1bGePPAotgwjXEFt3HEdSUXmpFA4CnN3J2OQEBU8C4/JWB3DDWwMw5BgrizBntUEKpLdSSquRyJAtL3yP6no4CdDTbjC0jQrViRhzBnxPZdehgxrzVcNKRU60FgbTrishGkgh2lWsEIfBaZFW6oP/UY2bxFMmV1YEpNMC9dtf16aQj9VFU4h5fLuwRIzcfS6IpPKECDdqDoQMmLG6DMqDhE6QlL3C6vFP+HWn8ZsezcDvUN/vUwlsf2edNwGzzbsCzaPba9nJIhhnV2tgk2sGPPKVu5xmCm4aG1bTwrPhEBoNm7VoQY3zTOVkw1X+6hj/H8imRZgGXBhNxnbYHKUpuHMNGtao3EjERZ9HeIEw==
Variant 2
DifficultyLevel
530
Question
The table shows the fraction of the Australian workforce in a number of industries.
Industry |
Fraction of workforce |
Accounting |
401 |
Engineering |
351 |
Building |
91 |
Transport |
71 |
Which of these industries has the largest number of employees in the workforce?
Worked Solution
The largest fraction is 71.
∴ The Transport industry has the largest number of workers.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | The table shows the fraction of the Australian workforce in a number of industries.
>>| Industry | Fraction of workforce |
|:-:|:-:|
| Accounting | $\dfrac{1}{40}$|
| Engineering | $\dfrac{1}{35}$|
| Building | $\dfrac{1}{9}$|
| Transport | $\dfrac{1}{7}$|
Which of these industries has the largest number of employees in the workforce? |
workedSolution | The largest fraction is $\dfrac{1}{7}$.
$\therefore$ The {{{correctAnswer}}} industry has the largest number of workers. |
correctAnswer | |
Answers