50133
U2FsdGVkX19pzH2rsNhiFHBGLNWGP6g3zMJK9hJbM0b53KcmdCfFIH/33uRcOG0zxP/hR7mQ/JM8SgdlROdyduF775hTqXmX96gdW2QAN8PZyX09Mgp5yTXV5IOlLnliGLvMfhVAor3kwbzLVuYZkRlthxoZ9BpCKBm3Wy+WNW3OCBz4jKlYEaJl48VUKcNcSktqeuruVtx3kO6qzeXE+un3t80qbYZbFHPD2ZfQrORbSE/KAwtmXMJ4L3RDJLlaCXb8tl2Hh2+SWaB64JvsizcjYUWkjVUlOs7VELidzdrauQYDO15MboEYcXfqH92hpGRLdpCISO9HCIzvCoG0k+sPG+Q7rVWMZsDxo3qwZXvYRApLvNlecgg+5jii627KGRl3yr3cNiCWjwlsvtgbR/vYVBnxL5oQ/Ncf087nRvUDdVz8ZtEbNezDYjtSx1F2ODrFjaQ2rBiNVryC+JgGWcQw4fm2+ak8K2/Fe2watOjJEm3uOu3yIKcjTlaBJMIqA3phx4TzTpjlQBqe8YNGsxgdNh8HTfNjBnK7mX7TN0C6HOK9ki5S9uoYuwcnNUzTLPdzGeDOUlwITLUYutcYwZb4xBap9phQMWk8JOvpRcejO1wZupAIfH3b7oqRl9XQbo+LrpVb94f77Gc+TmKUlxQsgkyYy/ad1IZMi+B7YGCDN4cNjndYLsUn6dHEGDpkALxw4UkZQ6nZB2bbgBRjIa0i3ausiG2RT5wgBHmcA4P2Kq3feD/FyTkR79SP7gTp9v1rg3TIrB3cTqKBpjAAkeHYK3yhPqLXtSS6fSrfQiDu81ke9b3OkT5z+jKoQCrE697/uXMQ7atHkfnQa2PQnlGsB9JkfbCQEPlkIkxCxGKq7KdRnRXm5JtNEf7sOuWMdSkFSVL/foXeCX4B2D+Rj7D1o4ZMMwiiSiv7XFpIozcqYgAJB+jvJuMvK/mPTQ9+/yr+Pf7KyRG+Bj7o7lnHzmScJaeJUjHmBkitKNI+ILdRFCZ3T8HCvSzbMrpFGx5By9aQV6h2ArUnaM89X8Dt5sNxR4/wTEQnOmLR7g1WkytabEc/qrQf+8yqYsyndzYrl83R4s6NovV7wo3aUlAGgXQ0b/G0GbWZ0hwnXZa/hRHV1Rc7xAnVn+FGbIqL7xbYv7OOdymF8rtof9+qBl1QjWXNxwH4OhKkSetq2QXk6JN5Kk7AsH9IAsJNNFPq+ltMFR07+24P42Wb5gx73WGP4OP8tif+HbADRDnLsEClKVCtrKZXNvJ1IK25yh+GmWaR4WlXRofYY66XjvObvGdzX8Hm5fx/0pTpSqiHCdMH9SEpqcT5IjQT1B9ujsabLBAuaURk91CUOQuRixm8A9iiVs5QsD/Enb4smrxe9lM86cqDBGPbQWt+t8nmM7dVoD6awNNm39X608fW+Pggefz/B/RvLLlV+m9HEtzr0aABBLm59TKx+TnJJTjn5SHBYsSJ2kA3L1hxHJwXZVDuJOm7mvvzEZ5B0S19rMs3JbLMGp29tXrtZZzi4lg9Jy6+BtDJZhJkuu92YjvXYBZtwdT+BOjFW7bpOzq44bBEiqoxINBavN8iLXM8KTW7HBLAHhhgpOD7Rb2dxaxg2NYUWagXD0NZbqMkmknQQOCxOvPhFpMow4Gm1qTviSq9baTW5F2xyMnYDWdlkKVzqOkfTk/0SUvwWrFV+vrMzarYiACt9Q95QVve2KdUfTptcBK4PEGxsRs1H4sqDvfJ+xp15jK26xlT0IXYjVb5C0Z35LSHsCJlFZ3NkMrnHzdZu3yfM3IImYT+/htabkTGRx7RMrAhwyt1tH0FXHB2ZKYydirtkkuMfC0g/oMpnqwzUiJZXH6wqTxy+tpzM9P//yQkNU/hegbkhb5azvsBjgmeHgl4lrpHjHUzGNOh+eJ0dz82Ap6Vb9FzX7u+aY421mJwTmprz4Z4whjdsvFN8/8z39GjrDYXg83ueU56r9bZlvz0XUWj1/jLTOdlkxkSn6s4dKHKqNane1/6PeexP1GTVIVWK889aDt15p2bf5Wt9dfNXwLohMJyDfMBdnbicXpwybgmX6MydztPkyZsoEElI+K9OkMzZyvO3gOgG+D4VUADh+zsKgVvRTSfIYga0Ib8iznR/Govu/uSyzfNQiXEH8pWmbwsQE241mjPMIcDuLDIppNjNjea3SWnhBPZoMUC50KMCda3oObXni14onJQXc7qNNfmJ8dBVUVWx9kdO6TQU9THMV5IRyJWItiCuyHxQnTp+6N4RiXDzvMMSFxXQMJD0wlyOirBhezYpb9gCaJ5P5braNrQMf/uxiYXDbDoihXmqPQizWmq8AojD1N09PIpAzlC/nBBDTzmjPbgzvo5fC/F5lVXTD1clXhZUxUNEVT2MMtZTf4pR2Q3ZJdWwXWL7nazAVz1WUf5glrDmMJXWtJLgoTUJxfvDHOC1sFeZRyzNV8sQRmIIyvrEaNqjYxEjhQF8qkDM1HcHtW65R/c3BaC+CGwFWVz7MZd/ZgZisfdjeuiuK48lqXFTtHEnwYTKp0I3OG38eNnf/NE8mO9PApED/VTr4qQ6QA/3ceHWAWxmzp82Fg5duOW/iie1QXQuwYA6S3p+AYGbzhFQRV78SI922AKBSFZOlXKQsSH2JOrdjgGbuc8ANC9/qIeWjrvMAb0FfMJJni8vMSbCFWQE82QjjEgzKROCL9pSR7z+0bzKQofK9FdRLA0ZDC8uGHe6zZm4J/Fn0HDsCXXQlLrnQ8UFTNJg7GSavC3q+81dcC9Q4iqPzuOTE9SE99tWvINBEXAAyTSHQ8jZ5rAhKgFky6224mXel9wXXOu23lJp4fG+hEz8l3feVsNw0niYz54ns6e1H1Gji5SO90HwA83qkIWcCxPEHlyzocD7ExoahmKrctVetBCMvhQ67/pkkzP8DdqxL8GU2dkEuGhETfRzjQFkRmgb8Rn2ydc0KO+4TS0knBNZcsQjnB+6V4+5fJ7/A2jx/z2/jxOBtd1V0gXvniao1X2rtnRD8APMpqDNfhStsQ1albFrGcfI5M68/G1pruuOtNBnMy5hCGxcBCE9Jv5nPzuc8YF2tYSA44YraD93UrYc9luMZXn8YJxk4Lz2YsqKyZ8WymVS6MdcmoqiwQMLHr1Le7MYM2pnv2YIY7KR+TJe4EjgvzB1pXt959uV74F2Cy/n/HCEBOQPoflSh0IVJ0pnsvD+cv5u5eTYlglmh5WoVAReglC4ODVR9G8pFHPmreDX5DzqqHyZKrMMue0S5C7PJDGqM7dizmbckTt8W9AwP/oy0MVYGVX4d0dugeSUg7IDNlozhXciVwMlRVnoRG3nBOWzAAfBO/aecJsfp5N1qL4J+GneR3W+NDCmFllwcgrQz+6fi5bBXVQnWQPwScMLIqmfPK1jCB3ESgKjCFjdZRbu3zAMIKUsLuelkQMoFAtCT73cscroHH2cJIhrDUjCzqYAedTsWiGygUJfr07rVp4D8/dxuMljYAaL9b4TgGU7tcZu27zigwFLqWLBsr6MZ79K/98C6H4k4P1sg7jY2CJvnU379qzxyBd+KYR0tZDAuQ4B4dhSDWP8y1ty81w7A/bUT+PRrkga7oUmtgY4sTtZku4UsqTbzaCOGGs3ZrMkyqWN7Te9VJ7vXZ3nJTUcddQ0+y0eS++5LkzYctZXjeFPR+9scjo8cCJ+6VOPvtdXAHI2b9xCG91B9tnk2P5uUdZJ2Xt1TsvFvDB6Fkcu9ncsC42iWpmTcrNYADL98j3Ny0Eoobt5fiIKeBjbAF9grYOW4Wr8SfTSGKri1pDkc7FTcHIYJRqg2cGW7v5imom9O5TMKNyDYKrei2zseYyaZMNpuT3bZoy3Hb32TvHIcNqrdfQXC6BLt8HkliOyRvIJYe1AQVQ49xHS/IKA01XRq/W/IpCrzd1hZoC53xj/OcEECGEWuD6O3hdQ/vveOqjFQ5RrpMubiqsKQXbcs2pnA9ynVkxJABRIkiEGIxlx5ZRvjCggCirJEGBrRRtGMGXSPEogCMffQf9iZk9Anl7ZKHkmDi9WRjEPOZTIziEPg+8lriM2B4fqvmnvMysTiY78iCSAwakC7Qlrjov6E+pfdd+EyZi1sGGEsuVEhBlgPJ6jljfpfCNouiVZVPSJh+qa7y+OibrGhko+btI6jk3jy7vus+baEybXlqUAGinsx+s20y8bYXOiI2phGNm9l9Ncv28es51rb07dnzfYI6a/9iuD125w2XndwdWJJGGMJdoWVy2gBgtcvliPGQ28qejDCwiuBgz6/FLp+lvHfqIFp893x7feYkdWr4flHYUg/yBlNJ97PAQLE4xk5hF+tkkbynTw7AbqoIG7uA6ledASPof0V4dw88DqIBX3TnOF77wwZ9d3xK5tvDONhg5bXuHhthA69VIuhyOUQi8bVWuijTFB2rABk6XRwgIBAEFcYP27o9Lk8cl9+e3RNgqrA3n71L5yPUu1IXiVWMHqzn7IHtSpf3Sl69nJl/lX4mvHojZNToFSgw184LQF/oCi3gRs3JVQzaXOtkeo95fbP8U5eSXo6gxedrzJER8c8VT/eLNEF3Z1jJYy3oY57N2kRH+Jr2dOQ5nIKDPnOKz1W/2imTaYaDxe2CFJMyt4o+ae9KWufY3+yefjUGigd4CYbogKqTkuOBBNjaEshGSGraMgerJoHwUsoDTNe/x/b7FiztckITQkbGrB5JPcuVBc/njf6Xey+0mSrg4XpmNylKDEzVClJ8Yf5+/ce2XgfGxgBIyu8TpMZ0yQARHS9YvuaHcKuoghxww4B48ypFTVAD/XJk0IzrYmC7wDg6yEvJ9UtOQ3fQ+aqSPMM6BvfpZUEkzvXtrmDzP5LzTo67akjgWsYQ9HSiK7WMToD6my4+VdmQvz5E+a5AN3qMv+GDvojnvzKFWKW1BaD7qXDTxEtkd7oHNqEjWNdObkgu0uLfJm6VbkGYdEB73gEcrtXuUozxdZtgW3Ace7ZY87vBbmrk/XEm0fS3pjfsRzGRY/ZdQvBCZnOWFaDQZ/NFZPWqb5bW7WhdPbUdWCqCrQ36f8cNKm/mLiVjFzzn46NKyS62g0D0V/7pH0CdxT8atlEtX+HpnaFxZTEtVbZZi+eoZsTZ3KNiTk4h7Z6wWQyU7qDizrT9om2yDoKFsCMws/8XgDW/IJJv7Cm3OztzHcyzOe9vofAeSNYcEsVBBvalGE2WLOcxb88MTYXuJ2S7UI1FxfZ7Z/qYqM+wuL9SkxdqOfm4ImeSlVYEuT4LSxg6YosjQ6VnOVFkcssz9jHYoKWRsn2vJIwvWOjx+x6UhXtAAeQLZlqEQAlzgSozTtzfHscoD29AX+oPOcKqPXvcxM3dWt0HjQPvqESJHZqQBMXSwSBKeMVdjYLY6x62ajP3SOPuwho8SHieR9QHIi3e4jdqWnuNPwmlEKmTbTFoP2ywKOQZrDfwbThno4w0Xf4x9nsbpG0LFukaRswhACVyT4Y40GKxfvYYdQ8UyuxZq9WbFKo1buDNuEy8lbZ22g2qfRas4IkGmrHL60G9Yaer1tq4V+kgzyV8ZUCCxB5w9edC5RKyZv8XenFTxKYdPvJzPhwM5Y9asscAzvFNy5Y3Oa/0PeilNZXQSTC0RV4GZu/Yka2xbCCGk2jTmG75jbGcSbr3SL/BYb2kQ9kQ4PptU6z8bjcEhO+kAY5xzcJLhFQCMfUlViNGcm502s9i+mnSheZrppn/DnuiHz+w03HADBqozXrnMOprinchqoBWr33o9g4Ob4IzHv9x69a8dXvMiQfFBLZsZWYIF1PUf04wh27480WHHA9s/bltn+eqdY/htEAOG/7vNhdwc5oAG4NaD0k1G7TXSrXbxH5J/32J/GtiR8zKBRGH/CecUbGjBVKExTywALzvZlqJXS0ec+M4HEzlyXMMZyMbJiVHY22COcA40Akx7tRc2NaqAYIYCpt3CFbcV4lKs5QYNGIem8iGNMa8zVDDgLzbSskJ4llJ5H5OEuEK3aRzIBmPXhCn1kFJyB8ueNyNFbGKMmTRkEhUeUXQXx5mP4q+5p2OgHQRyF00BDjFMVkPgGvqANmq19b/cvOzgS39TY685WC4iwrW3aaHwlTD/Rlay/wGPm54f1UPOkCt1w/fLy49hzA8tQ6D13T7eqJmg36xRFA1kOX487bzEAjsBi1I4gTahpK5bG+Fny0ssdSyf95jZTUZjZM8aM1fjPuscAaO08BQkknGsnrxuHzxyqkS3aPnvtA2NeHDgLGPUct2rM/RAuYiDVyRWBHm2h6sAc9vKvNCl86idFJr0oFKZnN6KGSuN+I3I5zGUuho4af61k0+CGLhT1P3CzvjYjxjEqNrcVhLcCF2YQ7Zp+zvtBwSLXus0nI5PsHW29bXKgsLbfbEEHaPjb6T8CbrNJm5YXU5fs4D2IST3IFixI60nB7pZTr1AMk+9R/tZTetANOCAwczPJRkhWqkN9byS5CXpp5QGSCzioNtkJQZLKPPCyciG6KPx0Zi21w6nB4OWUcSRTbqUKeiLsI20OtYSkMOz8za1wVbJykzcSXz5l1Pi68kq2K+w+nn34rLXP0W2tLfFw15/iQnfP6sNQe1C9l/yHnbtKhjvZnLyoo+xvp4ooC6bSPo72v7xR3MCX/0lhh503BJiJ2CyDITA4lfqqa/+d/oDJn7XwYP4Fi7OD97ZAYf99kiGqzparlvrrgD/Pa6ixM5fsNEudf4pbjNnltErybfd3nlwTh1ILeiMZXr5UUkAbjTGBs5eq0ZucwrGEDI8O12KRNZ5tfrVBBEfpoGL4+Xsp2qQnbFoag==
Variant 0
DifficultyLevel
576
Question
Aaron went on holiday and spent his money on accommodation, golf and meals.
He spent $1500 in total and the pie chart below shows how he spent it.
How much money did Aaron spend on meals on his holiday?
Worked Solution
Percentage spent on accommodation
|
= 1500675×100 |
= 45% |
⇒ Percentage on meals = 100 − (40 + 45) = 15%
∴ Amount spent on meals
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Aaron went on holiday and spent his money on accommodation, golf and meals.
He spent \$1500 in total and the pie chart below shows how he spent it.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/09/Stat_Prob_50133_v0b.svg 320 indent vpad
How much money did Aaron spend on meals on his holiday? |
workedSolution | sm_nogap Percentage spent on accommodation
>>| |
| ----------------------- |
|= $\dfrac{675}{1500} \times 100$|
|= 45% |
$\Rightarrow$ Percentage on meals = 100 − (40 + 45) = 15%
$\therefore$ Amount spent on meals
>>| |
| ----------------------- |
|= 15% × 1500|
|= {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX187ZKEkra778dcuBCB6mcmPPFp1UIHuijSnNypofzmqyKlK35fEcn8Tq0gRFEmnOjJPjCN+2DdcYMwtbweM7HY8hr3WsYNnCoSTX5XsDbKneIVhOF+4yIdQPNa7+a95ymbicHldFDWPWJkBsA1+5q55YR0NXBpekbZu1tO1Fmr4k1IlhsEywSn6rk7/evzN8RfS+6vU+x0sarWxlfT0eJRXBLOBklBY6/i0eoybBk/VDokCUvTR8xyCAX7HITMgCuiAfJ7XwcPsnS3kAYlFIz5anUq6uLwhZmYJv4Rr0ZMRaqmdtdrRYABaxM/c6MJyHMq1LoIbXXIlPWalCA3NmAH+GlnmhXpFnI4hL5KyBx97UYCLZGsB6MA/VYiq+RgsMmhYZsdPNKieKZsFu81ZUzBsmdQypcTBxf8giVMZitIFcxAljhZBV012SRy8K4roClYIa5Rju/rNMnu7NGyd7IkLjkKoct/fsnAbw0pJViCAzB22oDgcxoxI4Wd5HhbV6WIaPCAlajdRiI+4nYaGVecd03rHJXuisnMTWhtVnquenKWbM5nRXVzI2y4sr8txR1etJxyUiDip7nR8nexflkmrHJ2utxIdQeHkBXZEtB8EiNSNMS7Sy9YA2aDFs7QdlXi312WwF4nrB1yYknhJyc0OnXKZdLrjFckEZ0rAnpQqRzNwpaMg8h+ZWg2rMWz2cna8hIUhL5D9kdkE1wAMoZEXCFc1Zq9gjeUPNoh3+ChieQO2QIBLe3gwMDLng5BT+fRAkwcRFVPqPRv6KpOu2Zz77V08uTpWAUhixaZT5IzBfO15oFGQbJnIS2iyN8tEUlj1uQN+FuCevnw8XGpOB1rufwrKAQ7TR65BWzCkIE+ceZ+m0tHX1yjFckl6CFvBDb3YM1SPJFK3urXhJz1NphKwtQr5NyJIw8E3SogqeO4nwqchqWuoU4JiwmZTVi6QGOmC1he/tyEPWLNLUNVPCNwluyfDY0wdfFBqO5cKKu9m3DyIq9UVZlK9q3BBNMug2K4eU/FzG7VYsrMJzd5iONvZicW7HG6cEUptxxpbDVbOzmNILTlK5WBlCBeua7qBPZkJDBd5GWF7eV0eJvpxB4+FhwDACv6kNLCrLTt848q1bC0jw59qwiwDynbzV45PcTToC2aI//NifvE0uNtbPwOWPNiWB7JzdNeNRVwBZ1Nauxk0unrPVmX3DlpLRTuzOHNaMpO9jTo35WT7tV4UMuDrkUmzlM8P21XXIoxeJ0SD08W/sY+vH296IUDMVOp98hE1uSP6srXP4ED1PaJYGxA9mZyzPbDyt9bSkK9OILMaoq5UzdBCYaFMCBXeUfwA8GgqLvAXp3ll6tI8hD2aMHLnjCbAyVUX4zssSt+qAl1WGr9V3Ak3xS1m9+lEalJ88yGP6napvEpRvoO3FW1lGzgfojNMQj7arjJg6UhdXHYTwInnJ9N/E+qpvyYIikcUu38I1ZiRnqUteVUGES9fqEeb/nmAd3EpIRRE2O4kXCjYwv9XHtgPgHQRdmV6r3eYCQhTmzU/LAwq4rxgRXW/+pEGX1cdKbcJGvW7jmugyLvlZ564dqPmyAYRVBK3t2cUesp5wA+5jzgvN7kroOk9MJtw08bvGEshYAN66bgtOFIhTvAopHfe9hYupbyxNikSlNuPzjJL3e88GIc1pjYgld6tUzhNVx+z5gXjdQZ9/dnOeoFLd15+d0ms15VIWaZJ4Jq4pPwknNduMMHhurI3O69KYEox2GwzD6A1K2xPq2bbHhLoCtnh4edT9MZ25UBNMnVefN9yWJeRB/pnGUmDT4XqNpx0xwUB31aKbBFMbRnC51lb044p4V7Wu2yun3p3FKRCrjE6jC9Dt2hIMvVTWvh39OuR9kc+pRLzns6uA1jjhofRtHQ7qoEHz0yhg8aoPsUOOWlaFVYkkq/KTehQCAR7xXhsf3g5lHmct86P82dc2gOzOcG4v66e2US+DrGp0LSMntPArEL1E9z58S4Cr8WZAjwtPCFlepKhIf5QEtwTOf5p5ffRNg5RSOAXZbF/jcYHYG6p9L2KXnSEJH7UQqs3G1CPXIghmTucDgtYQk2xVGhcnBgycTPkrfjJr3lD9RvDNDJ746ntvNVjwYo1SKOhGL/OJlEXA30XrAHvk9x8jbPrdcCCXXXGoAaHr/uPUYRcBsvm0akZVGlKUVjtn6/8yqfKv3GRGQgO4+NtEcGmnuqfrD5EQMo1sIkZwMkPiKPQKF+eQr5g781w2SGNuDEirP09TVd+S7VaGWknMUJiXch7iMDjKNGAMT8WZpN9YN8z0MryG9aY7eR+qcpVsnjlWUoMmFFWUijqd1vL1DP5JwH8gHG6jyDKi13cGpPFjyJWV5uYL7f2mvlTr5UbxOinEQHzTQavuPH/PGDt6aVFNQ9jLteJelgYEbNkIfzKpPZxkWgpnzNUW4zVonmNpf+3No2x8wWzwOcs+wcMRD6piCiOmuPBtzRclPLIabk4VPRLcHSfthS2sIMx3gFrXvTNFg5kgE985kz6aDK6HSd88WSnMOC1Xme+Nkd/eYgdkr1Ggq+nInRMpYKB5zSBZyRAxK8hTBlzvqDLGlYfn9XqImvK/Hs7VGztqwDr79YhHluVh1Htx1k9/M3sEbnXFhb9NG5SwzwErUYp0ySRUOjvHRVO8zf4P8AhHc13YssjTW4J0ftMrsU7cw9Y1z60dmucIcCMBVyYbDyyIHsmAotSOiL/clg77QuVPOEX09TPZ+llXNAHPzFZ8uRfN484hRKC/eSQyhhA2ujLcFiyf9Jt1jCyoYeWh7qtJ0kYnOX3RQRCacsOjpiKtKgnjXYjXEecIbj8H8iO7UhMhhB9NyB45+KGYfjYJRiespSd0BprmCiu9EGqKhsYdUG0sbgrvIAkmiqLZZX5GrguGXMqLSki4JN9Ilh/8LepEsFRFbb7jKQKOj9S3YDlJoxdcaAW0TC+oXBjGshYVgwzakQh+A0bmCAz0zwZmqmBbeQO8Mw1iMVCIofRYA90O8OS1Qasp0AH25EzYp8OXI7celmCptlEt2h5MLfsHJ8K8aXKCSSvhFAfO6tmIufwTMjArA7Aa8KkSVRe7zCyazPpmJknkzcs65xVhcrAZ6vR8YugeFXj0EwtuUhCB1RiKI6npeyt0kPJjzeYRs7ePSJWbd0AXIna2oD4iL6e2Xo6KGo2xOjx60FzXTf/ehWL1YgNKL5GJDjrSdPblinxKPnFOjWloSrXqhNtECdV703koTW/1MAJTYoPwxQAhlmJFW5x6pb9zNq0NArdRnPOK8GhUeq+2P7nIZThrIhMsH1HHLoh6OyXpd1yUH8//CBSVV4TcY4Q/SfgUj+XZfi9TY+kNMd03eI1sNCb6ApRc5jrDrOuDBXc6yuV4tRyZg1JbO8l80gz2/ZfjfEtkqS8OzaBt466d+mmFdCIslJ2rZMfQ5w5Pc+5qPFF8sRJ6kvwWOut+uRVMh5NwtlSQKl0veOyEgkEEnJRDlLcOla4JL10ihmfbvowOYUh6esWNO+UOYsEtHuc0yRl95cbmKSgsM2pVHIhTjfqVyxQ8NgxbjuJNl/VQHfSO4swid7FJVQHedEYv5SDzXbTX23OGkbxZ9tTECvdrhw61g79H0pd7Mdtcy1q2Pyj1cp4XNoehBVLcnyC5G/FfUz4V/fZodabkM4Vl9vF5dgR1OGGOfxWCq39K1BC04kMfLxzP7SDb23KE+Z3yd2JCHHgaOPANnyqhlqo0hWVmVSbc7Yby6Ri8XHrqxgRxHw/H+08VjE51Dl/SlW19F4h+KEDqwuhjuE+ijrgc8n2Oq1PphjJusSm1rEM9JgyAcHGuUsDLwtkt6EMGrKT9Sc6UPEG14w+QvhM+Gw04BLgWVX0oJOzNZiPL6aqihWPQKN9hUqeRqGhZdgmwonaKa6+jidUuROoHu4kaXaHmfZUyoggvjxvHhYBqzbMRgfVr9rCylT1XVWVqr725eoIOuCrwdybxCtVLXqV6quKIga8Iipfc7JPYQWpqGbNyP8er2TszMERJqRbVux3H4Y3FgHwr73WHbOTCe/rPI62ITrXp0ajUxcGHqr/1nVkQv9SiLnPLOmgjS73nQ58155na7brK6f2EkKPdvwtAUE74scMk5sYdZQ6Tq1cVSJGokyxDxLR/Rl4oJXDz2iGWbqsAlcoku21quMn9YdQ7rdzna8VinFHiLd+YRnxQ1mTRlZkvawLOP36aWEP/oeLiv0nxzKWQbByXKkhekvP+D1tY9TjVc7vIyxFHwEa19WZaTTlQZggQz3KtjMzdwaZ6Ek0pDcs1JQN9zTlwcOeRE1x6y9ng0X4vk4WgJYFGmtFgnv4CaatXwojzfsLL9Gp7DEr7cwjOFnLT/yzbem3w/9YbKCmN0iPbN5BzoywS1dvR3hfz36dtYmJa+4ooittim8u9il/FRtvuGXXV3AWxC3U931tFOaUQVJpEnC7XRU7Elkic7pyDWiyqMWBSkymZunWzVQi92DTO9q62pBIFHErCA/G0lDHVJrj4UvCZaOK3EbMcpkj/AePUMCgvmuI0zwiTAmcCLvM2b1XNkuiQ12yfKfWCIn9GJSdLUbdy+vbAWM40zo+YCG3UXXItmBZ+eRXNOkVNU2QeUGWdDwXtzauDm0Mg/qvlXt3xV+Ewxjg2Ee/6xgPpuAn+fM9VoA6jTeQFEz+x4fP6FjBxH+zz7KsNKQz3gXiJAMEFRGTsoeFO2fB9Wq7uQS/vQoFwrpdLKv5nGpprpNtRZ6kwZIrSmMSkNp3Gr2m8Hic5EgMKxZE/PaGmTSv6bDDxRdVFYzND/27PFV6m/6jp7V8XPBTCjn0lIXNleGBNc+ZILcp+bXgE7L6TGO3FcjiYMv8aSigpLGsAxMBPuv6iM2Y7Mm6H/SSCQqP4no7vnxnCv5PqzVZj6lW1H+3wX7r2odb8jHkb2ieWWswxCc5Y2jpaogelREOR2ubi5m1pLPbSc6ZOtOX52bgi785yopp1M6zFpkRBOEAsbZTJsBB13JNa4IiqgvAZ7caiWfQSrSSv80eswyQd7rR+Cs9cQcIYIR+2xFa0CJvd/d1ds8Chhdve4d1JIlUnTI7XmN9OffNiSjWJiRBfCdTpzRlnVL+O/nngD53SpTMr3+n4Wh3PaIz5x265BeuZn/I+JOuqGf0nneJcGYKa8kn0gtnnWGSv0RCcS+rj9+2JT33DazVcPHx26CtfQzbMt36cYBalL+br6Mlsdgxy62g+aDpfXfq89a74Q2XIQ8QNQY6k8BgPjgrr88mTOc806b9Z4sNA1cWxVOr5TEdDqwm43k5+Wjc81nDyt6Q2v60R1KGwp8Kt2oWGA2sQRfF1Dv9BeMvtZ5p6XJCNTbnv/ivGTM8v15kxX4SFKSlcSPXkkkWptPbqEJ3zqW5e+AigpVNcwKWRcO6uQlezEkkUs38BZ25H6A41/fTrB4sVV5p7w6QUYzrPRPiLMc4WEp8jnqaHinUT9IIErOFju/69iuzRm5vlQNa8/22ft7vnnjMqFmlocleGUMejEVZfjCSv1wtNTpyBB9HNwhi0702d85FyuqHjZEBa3LZTA60pEjDirQrxh0neV7oiTPTw8CvskQDm/RpU+WFgsIumoGSPpJIeN0Srs6Zn5u0JmQAs5NJjqB13V565vZeSSTeiQEGfYCvgmMv4ZB+BpVD/iVMopsoqssFU6dOIlWgXSWQ85B+GCtsakZxAckFjGoq8R88uImw6EIKO3iR9aHuwTte0mR5QH/C6clyM2MpXo7yqsH8JAa9/+1X2ReRt45umwvvamPi8fNHaFF/pSSq3+HTUs/Iaj05c6WmX3EUO3j3XmNI8bEg3EqX7j+wPiyebov3CnO8K31moOZJ4HBZwQn1b7rtfkcRH/iAhVzUySg2RE/XcD7oHjebhv04nDewUxTORwOt6anHZMb9yrXkEXl80u2d4Xdrjd3bRNrPIkpF57m/XJM+ntj4QUMq+aM3WoNdc0XZPDaaUyW5EPZyyJlg36feltilkZoncOCf25EOOKCcHIt8KAFwoMTtompOiXT5xDdjMsI0S2Cu8/v5OE1wr4fTLs3+c80e/11fSudiXXpGGu1bHwAoQorLM06qWLMFFFHWzpvEH73T8kcn1egiprOECepGDWOZrWga+zZwdxDkYPVKgj05bviSP+T+I0QSD9Gasj4dyzTjPu2dKJZkQ1JZfdkdO6og+uR3QOX0hLpLzgUkfVywH/a8/pqghS0eFpPm9eMRijo8nuv5SMsSwl4rjocpppNNUBYDqcYVcv9SlFRxPXMkk8UejTJWlT82UKHE7tsW8d/o8cWqnO7s6COAgVZ4GcMpPd1f1YO2xX1s5SOW+MB/25p+DQymaf/lTRf14FwYMXt/Kna2ONZj2fCARr7/ZaJSXW7Of/2LQR2+hQx732ZmrOdmZ869lM78U6CeTqOgdOrDcUOwqKPlx3Xh0/yGioLfLOAcyyQh1vmDTiVGcGrw7kSLj0YSVwldwViBzqo72Z87qc81O1PD+W947W9xz0BTvoPH00Xme326UGzOPgfWGH9PsGy8ZSJLgnONlSaWc3lXO/kZTGCM+lDg4hLVRde/gE/bZjQOb84oBobPe/5FpUlnO00ZPVty2ESeQ6iOwe1gBeDCm0PAzAmt1GXP5ZmdJljX/nD+HlUtu4puXJB61/TWdQhKX7vUTCTav5gHYV57HYm5VeA9tZmfFaRXpJzLH4w+J782xfM9bFrAeV8WSqTnC7P0+2gzlWm4/jFdFMpRpiAIvfCEUK3sMn2/XQI5chToexp7e59mGjx9ujl8ztZRtrVDp2LQ28C6G9n055l0Dz6z8IdmFZJXsZZHUiv5/YJOzeVv8RdIO0If9+J76Ighok3y+CSOqvlwyypNnKwN43Bhkns0pZnWQdMQM5NRQUDRJS0wyKXzbaFnCVKiZxQ0odZVfGA=
Variant 1
DifficultyLevel
587
Question
Ian is budgeting for his next holiday and is allocating money to accommodation, airfares and day trips.
He is planning to spend $4500 in total and the pie chart below shows how he is allocating his money.
How much money did Ian allocate for airfares in his holiday budget?
Worked Solution
Percentage spent on accommodation
|
= 45001305×100 |
= 29% |
⇒ Percentage on Airfares = 100 − (15 + 29) = 56%
∴ Amount spent on airfares
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Ian is budgeting for his next holiday and is allocating money to accommodation, airfares and day trips.
He is planning to spend \$4500 in total and the pie chart below shows how he is allocating his money.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/09/Stat_Prob_50133_v1b.svg 320 indent vpad
How much money did Ian allocate for airfares in his holiday budget? |
workedSolution | sm_nogap Percentage spent on accommodation
>>| |
| ----------------------- |
|= $\dfrac{1305}{4500} \times 100$|
|= 29% |
$\Rightarrow$ Percentage on Airfares = 100 − (15 + 29) = 56%
$\therefore$ Amount spent on airfares
>>| |
| ----------------------- |
|= 56% × 4500|
|= {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX18nZwGdMH+KoDpSGlUeHYBk4yd1goAshqBb9c1PqzoGVjWMG3qvdg9+RWCfZzPmLOqe6ot/Uyc8yHi4iaWwSxxbLDYIvlny2j1wPPRNvUv+BLkls1OFJPGVsp/yN3WQE2eltVYcRYdbEsQcfmk3irD/+kjAfqWngMeVVhwgCpftoq6dXwXoyo7F22P/heuV3KNAj0uSRsM51cGfUb71xTEgnNQgYqTmByyo+WFH4Rbzj/2t/vxYcwdQfXpytUsjHZqW4LVgxdhudhI59jO5V5UgiVbsu/rAN3GaSXTf5jyQoTX48NQPMBvNKI26NgPjKLWEhgxd0LeXz2EwK9B3Jso7ZUEhzQR9Dkr4qAIsQwkyJ//RZoC6/mdjrhBVAblBr96/dawKnyRu/tfBrACT+mdEaXsG7qGpcB5gKve1uVbHY/nv+LLJfG/kYXF/Q/xCm21kcVFii6VPMsbys9KbMXRsjXrZ5Db9W5aqCkz/V0kMW3BuvBY5xiEaOBvY+F5mzv++LE0o05c5ECGCeSztouwx/vwMFRUlITEqlwuahprorpm0qZPdSActNVwr4gacL4rV6Ce6BYLRlTFLQxXMBJyVUGqPjrhMQaDAXwKAyOC/jjmGv+pSxOuhuVkECNS/UYgMaYbdZiEsK2HN+qD31Di49ujkVZlsDY2hoGqDTc+uN+PR1ITHMGQVg8SC8+G205+Ex9ie7bIWNy68mfg787EZ58ICOWLpl5aIa4MDTsydKopjMIMlPfT456g1UWlLvvIMdhMKrLgJJppcUu4AnaNvt6tYi3hk+nblWEAPYiBSIftx885o7wXdTYE5R/n9gqLfaLkEXvSyXu7AsNN/Mcpdz0mYc198QLwOXR6iLi8GNS1RFL8igTdWK8OufyxRB7b9F5KeUm9GO2+bArGsxCWx2FRkxtQluV60u9GeXICAQ9ZGE+PcgMi/S4a4NyErkE1lN+kvi9u71oIizhA9IvtBF6QfMQN2IgNINEPnWMjg3qPmNlcV3/MXbL32gnQu8Q3LVMROo3WqMRrBkCQM0cz/7saiWyhc+S1/YCbd4/6uvgQ687KVxFRABJMlA7chUW98xwYvjMhjMKugWdpFiQd1depBc3w4waZi6OYYOkS5cjqCyGrjAPYMh7NYKCzbrQ/V3jiepgHbL4toP+te/TSwwhCTaO/CvqXTZiqILFfe3kmlIhUZ6urjQ5WzTqVS8KDG0ma88hwyrxOFescJx9TG6FPw83HYUTC7mUZEspRUGqdYVoRUk/i3SS60/jyZobzvnj5bxsB3eTMFh7tX3M0P39uvZm+ePR7byrzn8tBgj6FPwkFsjJ0mByWGt90jAeWHoaNULkf36Y2VuQNgXLat9VwuqvLj8V64Gm5IxH4Dc9tj/o29HThyLiRhLmR9WiipQ693qDE3FUF2wiUcP6X3sk05Gr7jtndDtJGLoiwlh8+zn3EQrOCQHfTEKm5jE+zHDXnNkPsf9hRzP+fwR2nS7Fnq1pcw+sBIO0F74b6GNnF5WSC2xm1IqmOfPDiqBHpQsVgpidHtINUPmc84f3ekkU7648L9Y9/Tg6BHZdk507wdCD7Hj4g9YOlZSgDoYGBUnwrQmYQ3PMYFTD8mm7gZ+RTNYz50ZaJdX6agr3cKMpDrSr5QPDKRidI02bpEajlRi8M4+W8/mT86xb4LrfZ5uYCxcG7bGE/cdhRg7PXw3ueEmSSujgP/1crOALRdquPHgv96X8ataBxIH9WvQe3c7KPGvZLL/SAe734m1afVJcXolFoZZFwwLiVdLRogV5L28LVPKmRCvYtXYunYmj691A0w3fF9Nw6/q8BOybboyyR7bAWZfi/jy/m/hgjnMS4JhekMiUeB780SxV1s/keNMAfJmpYFtUEE6BrWMTBG1hakcTme9pVHVLA1zP67H1EtlPOlyD3NYb4hJiLQozIVVe2H//gwLEVdVo5ykAhG9V5Ph0RGp6wElo1HTzr2JHEWWCDjXAyjn14KmsKwTsYBuPxm3a+xGj+t2+vzM6Rc2I+bR46Lh9q7w6RQcCf8P3wDmQopxS7Anw3LE1tkrg12pHRS3ib3Fgzd89svvXB3mSQp8HZjngLfbqq0xZ4kb7vKsCZdD68Wbxy10FPzgGO7F4CMYs4VRfcvOBQPqQFX8c9L0m0v17I4ObpWc2qD1MFJLEN2MezrMcXHndz6lGcODfJuUmQycKdFXNKZhkbxLOP6x5iX0ObnJobGxe0jMD+MKy3Zk+OQL1oW9/XnRbokPK5l85+4SOC4kZqIoHOv7WomzjPU8nYJxFIuQR/KJjFPVYCLgLzcAhOf9wIk5Aq+GeSS64m3ENPp4R1xG1lsvCUPbGpXjwa8qWyemFA8a9eoyEuaGAnNvQ95U3ntt1EqzRI8ADTAXFUJGq+J6CMwk2Wd62XrlaTGIap5/ZJRBC9dYO2ipBKHwgN3IsB3uEVqBG+NREG0gl8okSogFwt8yxDtuzsCwaPpjTHX/e2zN/4BQzmnK98O1nDr2LYXGmY+vd7K+Py79NV4gVT9M7Vq39Vk4C/t1Nz+lnerzY6tRl8l+UxYFkkjFh/8znm04IXeycPgKQneI8/0mtEIU1bJGo1BhEY4OHx8TM3m+aq5x1RRjZFkpoWnfbg1KTpj0SspxYjRhdCWiT5j8/JVCyWzN8n0PVh0c1hHWNbJCp+RS4BKkmy1/2meFB2t7zFNhGNajx6IS/DzAryzXyLd+E+5Wle0WMbZ033/MKdC3dvndZl6bGA+4/PPujP2Tw+qWicsK0zQdG+P/xyOC7W7JZflE0Uuv6AN4B8hiR88gldNncTK+nu5zw5ROayC7IehKatlHd3KXh/n+8GdCe+oq7X3QFt36n6d4mapsxzFbwwhNDLtPDmTC5Ko82R+WKovm9PbxBE8EBLnFyx+Kt7X+F1IHMpii/ROR63m6bzt5HEHKpeLd77I13arM+n5ok6SoO2m0d0sVNbyFvQN/95wy4yp9CQ/KCrzoFSccGtJUlvDgLeBC3Z1hQHdeBwbTVo2d85bVasvGiSTJluWqRsWWcrRhpzgyn7e9WIfDEjaXynezfKCZtlko+zXYMNONIlMVg28+Eh1aXL+fVeI69OULkf0uYxi5ndct/8LgfKh+m1OFQTTYCrLSp+2tPhI0C0yFtqY8cBQnIUbYzY5sRcHZLyBWuXJImU46g9tmsmorq6GNdLA7NOyXVa5E5EvfIcj9j9+DoTbYSII0rNMKZl1r1Zsm8FiF3Pn6fwHq4411ATIScgsErdAS7F4Bdx7Ql/mmeDdZjVucLW5mAZ3zK4ZAfhlVpc/pu+LGGmlyxTkIvFvP9JL0Ue4ayCrTlO719aBpBF9/5tlbLv6M/RVU4bQ3+8LnehOnZiIG3XLE1yvix2rQyAPxzUNjPNfm1vt8U1OOE9PAX0vvz2OHu3AeTjqBseeUZt40EzTOqOdj8zS2/UnDA+cUBmv9uBaIksX/WkxfvCbpNS21paoTLns7w1Tk0bx36oGVp0bGwNpR3A5/vLZW9iOTql03dMtrd96ouNNmP2solowJQWos4EO7JennuOXE97NBgVWvbVJubxjQzZA8G49zA+8oP0nZ/OJxZB0cbGWrOjPvRdL+Sd2zGkgEVOVxxAGT8PDH4PnZno1/YFekk5iaUHHeT9UQM56mr5LXy31PKAukSpIy3j44qo0q2LNEBLres3/6fOmiwTnsaRNdWoBX8mKiR8vvggZgAM/HoL++HruuY/aHmXHI69DXtR7Y1pl73w8FtJKDOTD71DBUeCM5FtN+jZWJat2yxwY/aDIvfBpaMCBzWGx8soliWjXHpvsmClaCNljJOWFdxboyf4zwLOAcWDhceM4sebkO27OSv5J1Q1KpX3pMon+S+tW2dWvtQHggAzXophlAm8Cvpyp8cKGurvJkd8aVlyOy8HncG2VyH+9EoMe6zxANRZ5S1g/LP1KO2CvXytKhy4hAJc3kYBlpxxdo54LxV6tUY/1eJVzvaBix25itOqAkNkuISVCOlB5GuQy21DXS8uSTm9h0GWdlSfpBDM3rXZASpdzIfH3q0AE/jq+Y0LfDXV/GeF2SdIdfj5a1NeIu8wAr+JC5Q3S4QefxytrhBQqa9rhq1EfK6Xw/ilgNUpuhVnP/7Z2HckZ1HAr2yKEgyBlMTo5eaPzPk1BxIQ8VXzPv+XCucpA+xv3BoHwe25vowJiv00AnMBphZHolwE77Ll8tUieuTFihmoDvCnmL7BSxmC7PROUMJp6HPDndUei5DL1ImNjCVc+wVP7UcDP+/9kEGDS9hr5wNAPDSGU0dVciXFgQEeT+3i9THgiuvwVzePMM43KNNMlC/dZFQOOgtEf8Svl609+oNbcQtZEjp/qwLRKrV0veE4bmBiCy5Xyt6DM7TFKeq9fX5UPSS7l905/EJ2jGFYa2+7zwSLj8O8CwednV+l9RLbfyX8HyXBvK7BBIVD4XEiDEa4gmZRi/nAq7TtQzOs0pb+RIk0tNxjwi5nWCwNbWim218BhxFd3DHQ0Cikd/tNnFODQWdikbIYukirLK0/w+zA3PoyR+7OhLFZuivCi2t9FuP0lM2jx/X/l5V834+AmUh5ZAGhXIPkyUP/b71wyxAK5j9rdBJdMVbX/ozjuBjeY2JKTwtiEFgyiDl9DEhdud5hc6/rK58cgfScE4cs93DX0B15emKKkeN3kOkaa4KhnpVRCtlKTl5Pf5sXenHRfxFlYj+S3vdCdWiZJyyvQLQa4rtHD1eNadxFQyYnXFsoYoWWG1KS36rlSvSSTtkILmpCDrW/nr7EIO9fluev73rstNkCRmnDxmP6cLYVjMKr3koiFSJST38sXTGp19MSF1L0xDxGmEKxnD9XmvD6///+hQeQwU3X11e551E4Hrs8iAZJ7wX2yexn2wpGK3ePjBYL2MTFYAHFTL9U0Ij9HQ7WgQgqLXDUl15SjdZ+1GxVJhb5ANYWzbHZeim/4qUNY/596Q7Dk3K0C81z1aBwjcYfzN2xTc2HpK5RtylZfDfPDrL+BbIDoqoYYmS3Bfe9lxkbRTs0jXkvba80htwwfYI9WCRD5sH8bso/cCa6kRuz4ABBS/SWWGVLMe8u5f9hFKRhEALoe8BDE/mZJPi+rfdlaivlhv6C2pDkK/zTVipyoUJrmcyQl2a+orlDJLjvWTD+VgyK4rYQ26TZunE9WBnFqFk2sQH70txr4Z42blYrUWfuJQXG9mgvCI4WxDgS78cQ+2iIUhfjc23RBnIXaaPOufn3r0b8Kjym30fpAfUKfYBbJUetB9M8ldJwzcWiY9XYLK8lTs9XKNP2Lnru6g/StoEDO9Da4slbyAY0C0XytN/P34wHEaOvzxIizdDltJI7iyGc5oO1EYPDq4/w2lWWWD7+Ppb2H2rNv0f7/0ix4jW583zzO7BK42HIBgTeGBjb+sm018c0nMrXocTo8YEwcdg7i0HlGfanSduMHtUWuDl2PrtxDrvRpZ+8yFphDgjCQNyjWc7Wy8ttbX0pGh3u+vBEw7CySc6T/wWZzpvZUYq5WUra8OYt0wCyU0pOawwBLdBjZqDba4X1MAlT+nAQJXoqoYRO3jCp4w45T2wFh8U+Y13JqaxklPZUz+6mv6nRTRBpgHfF9G0AV1fWFy+bw7B+ianzSkR8N21jTKYHlgwSOyfrJfJKN4Bq5ccrOKKhGj/x3+1Xk8GV4LMCTAnLNTGQ+AR8zdzuAgbyVyM5QxUG60qB8PdUrRF25hJBrN0+5P8oUZ0qKsyS6V1YVt9Z+COOM/3OcO7KoQmlX4AR+EEnb/gfBN6sGQzgDG1ZWQXNU8bxc1oEHFz8OxKfAhQVs7AIVLJ4YwhwiC9p3UorSeD1JVkIwbGlvDBnwm+m0kXjiW9++/1+L9pJ3VkYtsHkZICKnkBK3sw3S/3ydFYZVow3QM4wSCakODs/bp4QSr9jAl4QTj9yJI1qRmkLa5RrLnNT1V1BqZDfFf8wCOhD+MXn+lZv6rIpGgjYH3Ku4kCqKcVO0rcIynlK/MOoa5TeTZKklVDf0NZ5HtYsbVb8AZi2WNMHXriv1IyK1Gr+KDX06X3EzASzEDBXqHHhy5VrulUvHM23w88U4wN+/qlf/SbSo+kF5Vh1WXlF5onw3ENog3U15R478+ndkJ78RELkH7dyMfqwqlwxpoKNl1JeKqs3hAw9mCdLBk0ULYggikE25LYAhT8pk910bFN4GP4WZn4oS81wLpTalHeA+Gn5t7X2KndkrCKc8o2fEMcvv+7iNvxeAkEOfhnqeU5xplsvxhCQ/lf1JrksFmbBs7iNdQl4T/+R8nEbMuVhOfYLdtXG172mZiCn0Id98il6tOM1LTb8MwiZ5fxQAZ8DYvitIm70VsoWenRAQalUAsQvpQFjCZqiAWlwwuKF4zHPIDdvV3ld9sMEj0gUfNWUcdSnA4mZVD97TlSCwDBDacq1+r1NhhZgDWeIRJVTMpGtGDHr4pmxoUgQSdBSKLNMkQ54VKLadVA8q41h1C7lWh1o4pMrhyBWcm2yBhagedCaZkWrWLTwEbTPI87sfnn2SENxSHSehGuCaSvzTVQO5P29KW3nX/18TcyXcg8eA5pMqD6ylrt2W4aQ+YKQEcZ+Jj/UPAM+kwyQ1gm6AkzpkuTMRFCyVXB8OA6FEJZSS9H9+qxWJgCPlxt0nUpBA3uCIqMLOEGe0Cr9ui5laitBdMuoyMTQ2xZcxP2Mw5grSIF3I1BgnBiqADB9Aszc5RgMag/pvlbGduwrvMl7ry6LW4AoHbjxace4xWoBfdVZ7FetT2AuYOaQ5Ut6OJWnV3uMM7VE47w+BVWccn7tuIJG1SHaOJvCIzA1lX9T6eAu1nBDZ3tEZIsrlAVKXm1joliNGmLNF3F+NVa22WnKkupHH0kcoAwFiTniiCwBVM8Qq5CxsUWgHziJQPz+MTDykip8qJqDgOFWk6SakXTKDY49a/VrvJWL9yqpnNKewdRt6DryAzLhBmAcynz+2/zCnZFMExlJVyhM=
Variant 2
DifficultyLevel
581
Question
Burke is measuring the amount, in kilograms, of each vegetable he has harvested from his garden this winter. His garden harvest is made up of carrots, zucchinis and pumpkins.
He harvested 400 kilograms in total and the pie chart below shows the amount of each vegetable he harvested.
How many kilograms of carrots did Burke harvest this winter?
Worked Solution
Percentage of zucchinis harvested
|
= 400112×100 |
= 28% |
⇒ Percentage of Carrots = 100 − (40 + 28) = 32%
∴ Kilograms of carrots harvested
|
= 32% × 400 |
= 128 kilograms |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Burke is measuring the amount, in kilograms, of each vegetable he has harvested from his garden this winter. His garden harvest is made up of carrots, zucchinis and pumpkins.
He harvested 400 kilograms in total and the pie chart below shows the amount of each vegetable he harvested.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/09/Stat_Prob_50133_v2b1.svg 280 indent vpad
How many kilograms of carrots did Burke harvest this winter? |
workedSolution | sm_nogap Percentage of zucchinis harvested
>>| |
| ----------------------- |
|= $\dfrac{112}{400} \times 100$|
|= 28% |
$\Rightarrow$ Percentage of Carrots = 100 − (40 + 28) = 32%
$\therefore$ Kilograms of carrots harvested
>>| |
| ----------------------- |
|= 32% × 400|
|= {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX19vUntfSxlqKGSozmOGCahNDM6PZPPXOMHfOv9dYdkrD9tyE2WvXltNVNlhpuSZmHvo8RlcmYHsz8Sj27rqNDRJJhTLrXakx2xX+QdfmTOyLz+kU6MW7TkBe+OrNtkyZjFkDVp3CKXVed34EUC5uzjw7T6DvBwrj9UJrQRR4Kb8uRuRhfQ6mHgNuJJztOuiNw/hYEjErWxsz4li/43oNae6Vpxv6XMc0Bo1b0PvyWwBPVjH45Htme2kMJGvVoJdq+sk4AQHLKlWy4bzMOJzR9NX/Z3HPV6f3YgIUqhsFq3DdtiHfBR/IaPESk2ci4IgrhPW4gfutwTEsHGLbit2531jkbSwPvh4NxSffjBO4byyvY2W1Thl072o9N+iSCr7WuDDDhDKvQGjqMsjSrSkmahKwuAPjm6//x4tMHZIKYuhTvCrh23ydE0M9+Z0+lVWWhiVyrwHTxiiIPgRmDnvLoEvkqt1ZduLxjO/Rhngn7/sqQGoql5OVYeFsnPTaIA4ZB7CS6iyqw4XyAgdqt6Qynt4B0/aNtANtn8ZC2J53eOTyYCiiUhwpq+I6TNGvMYFQQoK6mdwHUzFwmjXZa+m+uZQC9ss4JjOtI8icwBIlXmafmkD37ky6CmwJxaepYcbeXkFHzFBgSyD7KQmwgG21qDo459pkEIeigdct/65f+NB6OjBP9sZecBdggwltgJqOeWDtFEzbA5qd/Bk4Plyph/2lGSj8czawcPIa+jVeNPXWWZp9oRX93LQcBd3ub+2io+Vx6nKMsTQFoY7Pa+krm2DN8Td9e2gE8UqCm4xoSuFfUN6+TINJSfmRn0D/9Yd2RTVhKUmh61UEBsudGPn89tpC5tvfXwjWZ6dqtUXzGGQcszPxZYmuqkFGoFIcj9nhH5rErksiSGqUIR5hOVVhMa9ycldkrxQ2fahohBYduFWYMMV7PveMMn7u0gTK8WNRv+wJcyOEkyjGzb7QsZeyIgeU+EDp+JqHsSGBqwbNZIzb99nCT8JrQ1M+RD3wIAORv6sEm73N2rKXeKI7EFZ7nYgNvd5ZaA36PxCXdBb0i4KjYSF3cJEWxMthnlI3uxLfKDvVzRv8Z4b0Bk1hgebOqy+56LU72cVT9j1PO3fTfbBOdeo9rpn31sfOvLxUbmyQr5CwLCCgrKaAijqZVDFiV1p8Z0SYfLQJIlKujgnu4rrRhqecmEZ9k/MwBi85L1GW5739gj6dsjI6PR9AW71SXND9tzZFd9aOzpae1sumEmnOJkr5G/S8qLBQG6yzszOdVxyXBVSM6khGH2TiX4ifv53oIHwI2E8w7lUxVjJvl+ShYAaz42bF92cn8K7jX/Z6MBsQgbb9da9njSZ9AU51r2Mj8sIV/S9FgQgwBvsiGvO3fY3oVefd7qRh/irNfx7Dq3heWtw0vJ5fldqndn0vJd0DTzQF7/gD6ElaJp0YYyI4U6vKjossuslqG/7V+LEg33J59bpAODSqGgRiZb/hq1ZjnufMKTLEBlA+5h264NlYc+91dt0+bPfAbK/yR5AYA7o9kiwoYFu7L7biCZ5XzXvwsngwV8W27mdJaCDzoLUgGIMEmSE1WdNFLhaokXcq6rU27WqaAs4HOVJyU26fuJGnY2dGRXg7sC6YXH4oBu6PV5jhyuTC19n39MNTNoBZ/AEoFEiQRWYnA+AY1kkYPi5wopH9kLRbe6jaFmGvgjKIzbt6ewa6gmZZM9UU6X8tOBfvyYykaQg4rHt4O4DTDNGimoKomGNnutL5cFLesaF9PBN/qliIkGMb9rLmyOQ9clyu0H4QZMMAUThqziEkGqqE1izEfxgq/SZVzqUTQJVzvGGyBwTXXZO15PqzNjAeTp9Mn6qu/4h5NuDHSfRqXBsLe4pb5PYqjb3iWX1ytruUzcA14XA3YPzt/wqVtXYNbKqtWD2VZiA/yzQ4hpv+E+soA99FrkbPgMzF/dtBoyPFU0Q2Bf2mg5X/OtUde64sLvac2gFfcrIg6uwuKLCCy/v0phE04nQ+pOkKyqfnxwoaAwJq4ZJLlt7l3zxCXDIGIlP9hBPX8MFgFce5B9Qjc1M9GJbFJ7Qkr2PLuG5/ClwbsqmVVKpK5Ji0tRZj1yeFT/P6xLzRC9WB9X2Ri/mOPAuYyXtkN91srEmKpfYo2dH1yqDZ5rCBTs5nSroVuhtLUZgoxk2XSS7c80nVaEhqSnQGnk07B0mi0KHVJnZ4xE39MFvHST8o/wAMaWh3xQbUsDGhEH/wOm69cf2c6XMq13J1IYVR3oWL7Lf1VSBcoUPTGqXe7eDsCSL6aX8mx7SMheFKm/rKZAbqkujeR3sRXaa/IrAYChaapHNTLFhopL/OWp4bKBuS0TjeV/UKlvCbHfcqwWF1lkp/lw3dom1oFTjrKsQVOVHRcPOE+J+U0PskNUM4ZjDtMurbhF2pAKcnzSaxrjtbqSqieX6/Blzd/+rOWQM/wuwHrCSpK9WHMsn7iOfA5JxNxtz5nVhYhYuahI07h4PjF6zHW9u3+sJo2pFyvTIdnogNlryylakDD2cntZGqpH8OyZJgqyLx2Q/v5X+hfR6R6mDOlnp0MkLeIsZ23TW3xfkRQpvuiCTe20Hc0m/iYBgnwr4UMO1b3tAkyKmlQ0O1E0bufzaDwnoLc5cFvhOki4CN52GtBFXyfhl8R4CuDeZ/1PkSrT+kjim9zlkaYfNF6d0N3NSJC+LFHzTLkyEfFU4/idMqGkMgSca8NNBFSmF9bCBXCnoTQu47P5/NYNDNc8Whk9ZpSKYV5e3omdd729yMbK3z/j4Xdfxs0ZiJNbPwyT/z2F3dTD0tRtmDwKSa7TAbnLJNDcZEU7U2tT8iz/rufB8LZbLJGNwaaeeXQygrGfUhSDl0tKSioBXgO6SfL+IFoOlP5h2RugGN7xjhTwonCJQ6D9x51zB2Pbvv/XfgaDR5c3x7mv022sVXHtjLPn6BR7gQGrEwxHJ6tGbYHdz/6IbM1KBQcopmovIJ7qq4IvHGi6zgD4MEKlo09+wl7HhgIupxD77nOXAZWru/Fv3V2iTkzkrWBr2Uz1ami2F3ILtzv/mX/j1edzoRz93jjXoElZAB3AjewFXNTbrDXezHrGoVn4W0mexOamDDZb7hgy7VPdlGIZxCvYVomA7JFN/tOLBvGEc/tAMe5DSaeIllxT9ek6JVAeW1uF9XuC9Cyz/oDBjCEB9p45R3Y0BhytkFFxd6ZjlGvp218W/BlX2+o4jSs30J9ogNw7w4Rq5bHncg/znvGFL/ra4AOWv0fuo8UQKnlLnCyxfzjBDiE3BF/rAlQ1MaiQSMXP+VOn/HorCNkeu8QHm8HDzrSo46k5EVWkmcu9aX/91lLaK/M4Vz+M4P4NW5exxpXyHfvNKMqX/OrmDd3U7P3aLYsZU5NWVq9EH7eDFNdUXu/DFQ+WHrk5ZpUfUw21w12wH5HfnQdMqKH7+gMKcyiN4j+a58wmJNZd9rHFEr6cjroWF+/GPqMOiL9h9rixXPh0tyxohK/93WU0hTNBUNck4b4w53LoZPo38vEkJBqJrkEtTagbh92pmvHLZx+VPLkzNTQleX/PBxEKBeQKlvynZgSXcc8ZNMm7fqZUixjOG1MRvqKhIREpR1iSJYGwTWvqrqIyDS65PnD/q4O0cY3xzGAyW9ADieYivwcdF5uOk2IZM94azdWUa9vOFGMMKlSDlb0jIzKaYvFwwzIqZdmr/G8ChjC70GxrN3VSLA6EvHrsj4GXHiHJEJTQpbLX0PsjTZFMtQKc+gJEaCPm6+ds2DeMARAcpwUTQ/1oVMWhgIxIK0cBVSOC/7bKmbGIO1y3lQcjSPB2wW+6atwaE+RRA3iGcQ/tYeI/ynFNGXIMRmNpm86C9pkgK3CbYhPo/UpeAPAiMl4RZJKv3TnO+NmWM/pCZXEDIZfuMXZW5Mg4acenT7Z7ttSkPCbwnn763A6wgveWqkr0pWp5QNlB33A81G94ziNO+DgVcik4icU8+vZTDFgGuJPlB1tAotFdVN6T903a0TUCjR7Sz9IHs03Ogzxo9fIuhWP8elkbAKe7xFX4cricPqDR1KVxHsLlZ3NqD3N/gY1vaU+9aKesAvQXlUqmX+Horyge56lYUP5VsNo0iLuVU0qL/agIpNFcgyaJTamiWCtV8xfOEDSWVzSzeUCOwOmyp2XAOEd4DtSiiq0MzmceHkUlpNnlHY0nBXmLgkOw+EFbm+kD4R7+x0OhjtVSwHkgx7hjs5zEd39hRaCcStLRHURcZhlwv3FstKn3LzXs08sgTblG/RHlnbhtEsDFQXyqWFW8MoD7DhmGkruiDrpWVKhujuvlO6abJGJOdXFp4xyrGgOqWgM+DFoxj7YogQ7pJPMxouZz4vwJOz4YjBwL4PHp1LG7NGCuCe4wN8Uyp6nhbSBkzttMUMOJxwKqORinbfQk3oOEdd2LImDlU5vyibE2GXpq3Hh0BW3RPqedMrOmgZpqO6g5vRJyLpbIrAEdaPdm1lb7hiP8Q9qMg+BcoSMdIcRTxz5/qUIBZ83uj/hzpaVldEAursZfOjN3krSJXojhmmmudpENnk9yaogTrCj740G1AFG5Vz+55XIGTCW7wNDrLkU4yC3Jcp4h3gK3poxOMNz5Y5sbFtrA9h7Uck0BEkudQ8KPN00wtZQpJWZEVK3IcxHh12Ke8j9CrNnN4TzkMk/tNws6nBZmLHQLOaFSn8gWyaQxNJoZT2I0Sn/NBiRDtLkwP7zkou1Sr7Ihyrcu0PPHqnNO1h7l3iVyFyTl2O6sNvSczHFg8XZs4MnuYHBrgx1L6uZqMA0MccOH62gwCG2gdshhaAI95XN+VFRv9N16klrXbI/qPP2rfTMg9xdEL1a8ZGCU1vAoM0AdnbaJf3NGrXYN0MY3HOC7kQXNAZgjmr9PAMDBWIqolWb9FLz8CpeaPF/KigN+NXkWZW9RQ5UlrIFzyYz9HWbJNCXeQ7bYi3SqSMd2ynYF6/jzm1UQ4w60VbYPpANgvNtLOOa8Tbfs4kc9tlOwEePYfXYAKyXLzhTM0qD2jODK3f6RhA6ziRw7Rn+VaA38CBzC7GKGKjK7ZSNxUmx6keu22IlJEnWwyETv86FAs2yAKEgjQ7ncbY/fcM2dLGmn5TkToeU7IghK7z2eTaJVVWI4JRfvCWH3MRsWwiwiH4sFS0yzwwOYnOugunRC9SvQ8xkvsbolY/qFV0PGshGen+pR9TEOANhnxkADGP5tUnJa8IGxeZ1ZJikv/w1MWDbGEpGX58C/wwQTHD6H/lH2BeMkfd3BoLTIX4KIoMHOhHMEV1Ao17QCa/fwN0KxDzYChnp34fSmWVnMA2OhrqAbAtS7jkDzDf+ZIBpaaEEpLjsl0quhSPFY4Uzl+nADEDOQdrKDfqnkaAhGN6Ucv3IFoVrE2bjpVRLdXTSskAJrdC3acdevakluctAmq1WwNeBwjlQAGhwDPX9bk5/M4wbct9OQsFFHLN5xB3bUH3V4AIjkeEAxCtuPCwgQ4lF3wcZvJpCbYlQecc57fbAF0q5EKsDnO/Bon/r+js5wqJMqyXXGjwIVpTO5miPillMVTQB9TWtJ/JIy/LpeFJKqlYO7PmTb/7mXMa7tSROczKSOCU8uuDLf/I8hL6mlq4zXit8bzc37ctqXXCEwOE0Ofi7Se9oh+s1QOTtKUMpWBbo4enLSwih6NAkhdi6eyXGvcXRe1guW1Z+rUkKTDrRGvTbfQ/1iBOsxYmWpJ8Th7DeVSUgCX/lK3GCP2VB4a1H1orOyitkJrJ6Dfre5oIvq5Jji2FtpxT2VBUJONKPfdBLf1xUcO1m0gx9m1FxORby9xjHcnkoXGg7CUI8CV/kiHhJYPn/UZowIGKZ2SUEv++U1GB0o9xA67IM+6KFSQk5ajyui2lMN2TUleCAEkWxC4LH6VOVNqwLuebN7P8YuaYXoj47zQfrrEoYe3nVxo2hlEu8a5/9mh1a1QG6IIZ3EpbIUHMeoKAGJ5Yj/JCKxJoZwtn3/pSTVN1IhwQYEy3+GAMrYuIQij++aZLh8PIePbtrIHxLayBvbg+vIzx3x3Iv+LVotKA2l5q8/V1noMK2CkuNWF8/Q3PSKkErNmaCpp4aNm+fOEgeo0PKeJPecRBh5yUWQ6JiDJgazx5/TmoLZJbaLto1dEGe/qveVCfUZeiYjpDUgQCWcHUOIZ5hxbKVEgd7/o0DRhyv7LHptzrJNVd/1FYLhuJUXgmpdGsKCCcfh5jgBIcNBurkbeM58QhayP1erFDhEh8MnOF0MRUQxGmtsa5qoiIKrU3rqnEiCuE4tVs8uCmne2ZqeYJdgf3NV45zaxFvWxe61V1CV/K504XSO12wQ7A9fWVJ4BaLo6rJP9mqselSI3PCxaIE35+mbr4yNcRO9zsU9/ZBPWSlbCA8VhPrDIHy2QlfBqEwK0mwC6tRAPJuRrWuoICKsbu8glCVwGIIvyDsuxLbFfKfykCDdjW8PuN/xYmPhISfQ4+tHr4K3ou4oqNF2XWVtJrTA0mQKNzVVgPHWrW+v3+y7hIF9Igb9Kt+yME7G3xsOYoPCBaI9wb6OqkpP6yfWKfIcPq8ZLyVsfmWLMOJAw7EYG4hK17WYRfIsDcKl5fDfC3PLtK85gH3puFr2UynE+1mZPFurRy/scaGHm0e83C1zcjh0EddQRpbYOOPqZRhHVEMw9btWWvfHFPjhMfeWhDoTRr42obm9Y4jhhnvIwXodsFFHZexDluRg0IYn9qdSp8dQDzCiZiyEdMdvppK7/nd0FSE6/+CK273mDEBxh6p17ttlH/EAL7Pm/CG69ltaJM9/AavMnADfT2zptcDhwR0DEZRspGOY/u+NY2/ylhU5gUQknFZlXYQ==
Variant 3
DifficultyLevel
579
Question
Karen has allocated year 9 students to either tennis, soccer or ultimate frisbee for their term 3 sport.
There are 225 year 9 students in total and the pie chart below shows how the sports were allocated.
How many students were allocated ultimate frisbee as their term 3 sport?
Worked Solution
Percentage allocated to tennis
|
= 22554×100 |
= 24% |
⇒ Percentage allocated to ultimate frisbee = 100 − (24 + 8) = 68%
∴ Students allocated to ultimate frisbee
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Karen has allocated year 9 students to either tennis, soccer or ultimate frisbee for their term 3 sport.
There are 225 year 9 students in total and the pie chart below shows how the sports were allocated.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/09/Stat_Prob_50133_v3b.svg 310 indent vpad
How many students were allocated ultimate frisbee as their term 3 sport? |
workedSolution | sm_nogap Percentage allocated to tennis
>>| |
| ----------------------- |
|= $\dfrac{54}{225} \times 100$|
|= 24% |
$\Rightarrow$ Percentage allocated to ultimate frisbee = 100 − (24 + 8) = 68%
$\therefore$ Students allocated to ultimate frisbee
>>| |
| ----------------------- |
|= 68% × 225|
|= {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX1/mkKqreeYnysWXwyvN1uBnNxGHcKO9Ho/zUL4xUzGKtaT902qkpFwtZO0YkmYnX1fJ4n+xojtFNQVkYN8YMX+5sBJGk5gTTWeFK5leWD7v49Psew+NqdyASraCywocSR/zNr4L8Ek+QixxTKUgnIWwyOAZOB2rnvJkC7zgJgbIOB9DnUkqqOhzkOx6ZJWUiZ2ZfsGHhfoaLB22rCEsIaekdr3hlQTPZ28tN6CWM9lbVACcCsJlAaR49fjQL3cmIWMaU/bT+dYxcZD4OtqaD1oZsvzfsLRJ3A+7tg7NjuDTNtpFf9vBKCgLQ7QRaAIK6NIQ5ArQKsvyLjnz+JrD8S+p3AB6cFXmqR40eC0OKTII9/THnjukbK6AQmw4Gve3hbpxmWO+0Eu9ZWOMZpueJ6St3BLnJcrWQEmM0cMXd+7CknZ4tMt3aS2bry1DVYN0TFYLpnLhM0UG2g0vrf/FZqEhZNxFqGUzngUvvQ2b4msJXlu1AoQseeCv9noaLMQW+V4aqpnzRdxqKkl2Fi2S7I5jvPAQT/wik/5milv5hGYDlzhCCXz3oBQrrMlDWplLSYhRlzNRRe4942L8M1lwUtmLA7WubQKxNM4JRGEDNca5YH7ZPrF0XLrbrNY6lBBPTRIc6iikgsxcGXv49oFigxI8f45XzkN8ML7QtLrTQgmqUI/jXfnYWlxIsyUZ42AWsJ9y8bX95RYoiwCSUEcrhmkvTA3an4gk6fpDNliVnboE6vLk8o+54/TqrhIWM9QrMYAbyzz/RWlBtcrRtJ7Bcy31zgQkwKEjOZDY2whDM58r8s34/Cf9NiXOwz8xWd3Kz68L6Frh/F3g6RlKWpFLHMdPssR3oFcp1R0xBFQd0IVbjGL5G80AqUE7UzBogDmvrOj5r8fbnQVt/BqJxbp2vPlbqCSm9IszQ0mBKSvP61J6kWw1s2NfSyYuloVZ3HqAcCld4khqjt3I3iG4uIpmz+LR30B3OdNcMkacc+1AkAb1HqhG5FfcotuCoMiQNd4S0/qOb11+GUy1qbomaWMedG53b824nmGj68NG0c43kmIvEsKWVFl/gpFqSPLwDWvH7ofVT61cTcbvmdAljk5FykLBezrpa+zQkQZoaubbYl6zSLy9pLxzrrd4P1KpKedOVNfdk/8fBWr/1MCNRt9euzvHTnq8WgsMuKYfH3LdOxvsQviPoK+yN6hyTNTuXuFil6RAdzU4JCn4B2qj3Ih54bFIJz3NzS7sr3LkWV79mG+I0tMDAT+Mse/ZhcLAxHYFJuEbdaOQbkN2iU2406pw0N1cKnMyxxB4EvpF35Tqr2ko6s0ByA5jb5sKB6ADx5S8+yUBL9p9jgc3NQ5FBBoc5TOA5Ik3mP8ZbQPdPYIqKXZmKB6nKGhpQ2QYem9MuZgr3nzWKhpI0ISYqxcG+9hxzRzWwJvuiqffbjjvwCXoSUTlmmQzeGDBvluaGS+7kquRHDpU0oGNEYfO/s1UA35NINwDSPl7wlb8Bb2YhSxgs+2mxQygjzhxI02dyjsMXdjuHJI31syWZUIjtyxA51Hl+wbgmscLDJTr7BhNWiihSanbx1Aai5r1L2MlI4BmsGPJXtWmk7RbQXY/vq0S00M+e/2dbpV4ILbCwTBxL9nkPW3lVmupEwY6/+qvO0rNfRYviNX9XjlwgFbsNWqi7GMGkSA4tdswnoFujij3NhjAyctFkDA7cBHwAi/edQJd5rpaD0XCfFrXByWEM2zKxgc2Gnnz3z/iZPKYYk1urgkM4Jz0M9wd7uI9thNDsogNmMwiZCmQl01hZCMWBljrEcIB+ijl7suozj1fr3nItlqAnQyIfS4SQan9tYhSX53/6jL+bVpQ4+6W0hbgZXn2PxawK7tSlr8B7A3F9oRWmH5Qg/f22oSge9Z8GgU2DbhoiEVKchfKhbVU0fYbfwkkELbhE3op2dYuZqeNMdyblUQdmMpYy0j8NjrYPN8MjY9a6Bce6ZmjGdspsB7ldGKt2J/dxCUEFluwiQKcmp64jRexM9JmCMG13pMpSYhgHCEDezeK3OJI3nwLZ0A6aAZN7Dm/qfnk/kISJChxaPZ0ZIBFYKhzgahBpfRoMYlOHDmWWMRaZKCHL+Jay+pR4r6UfET5zcp6NrXbyL0VdM5Yc8qF+UWXq5nPmi6RJQq6970ccg5ybVNX6rQvqQ7YZprtyR2p8ddlETYzFQtT5oWd5+CHfcKynqe7UQSMtlGq8vqbOL4GHSmBgMELaiOLGTu4XQs7fQj1BkGVsXP14jSzt3jr1Eqp93FuBnrnVAkENJzR5xbaiDb/nMGtQMiLUACLHKphWCXI7LX6t9ey/GcrySQyiLNq+qie/kZOOqbC3wI3WtzIv5OKDM7SHThWrR/1efSiKkWxnSnGe6ggwCF9fAUGEJ0zGEJl2GNC136WwFyTtoN8UZJzYDA66JpbOQaMzQkKSzqTfX5MiQjrLNXMdC3jD7vm+qPmKm9FJCmIfucK8jX/JiJfnm6y31wlPJFd6i/M+CFsQ97WrQBpK7PmH6KISAVoPCIP7LOBRyVVtAO9gQdh3OGe1v6hcEeMNHsYx3TFIX8RfXDBcLjYiIDnngYMHpSFI1iodZkwn/YyZIhEKZ5SHAR6mT9R1wRH4yPsZJtkc8m+nd5S0eO6dDAiy5QjWimw2rEaaEAndPtWCkA7bvYdGYI6qie+e0lDH8ln/Thh0TdNALGAzkHoi9MB66AgO3IMhlUIlmj8U86ezB+yQQgLf2e11G2/5tCx6gTgCuBqWe8+cVNfnHBw02O8AdNUswmfaARwy8BcvPX9V8OgPoCokHMfwfk6fcUtFKQLR/VLP25W8o9m3f714O2M+giRtDMF2iCBK94Y4pmdfoUh+70N62xQBkV8qlA9dSotk2aF3Clgdl6WlMJuShiKjzt71SnYiubeoMMZEOjFyB9rT91Xclf0sX38f3bbpq+CUBiV89EiMjDe+Ndi+kZZueLDKW2P0ihMw8Pkqb9zRWKGZUxFasrKBA15fZXgIVwIptAhGsGZ7sTyr5jNzPvbUlW2V3/RkzyGfNK4UEm0wPFztcsXioN8xvWTT2QxQjvS+G+5Ims7AkxbqHMpJu9RbhzJYTzvhtRciVJ1omQQkr/+IvBxd3SsOmR6RtEXT11pIVf88xmWbEXqcz9D1ASnrB9M3WDVZxho7t0R9QUr4mGa5osCn60yXN2mZMS9/0LB/3riYXm2piqE3zYvkDuIH9K1z0rHSnIqtKzK16OtLAqFTM1krM6ogoivpHZbA/X+/LpW7s41FeJpTMzFyA9XkCeRoBTEq+9ua8c7l9h1xJt1wHSIdu+p1dK0bT77SHt0xBCJhGPME+7BirKJwTZn511gRGJdREmoKMyqvXrc0yhDY/D/qdXN6vC8DnKmLkQIGW/c0o27LQ0WF1J+soFhw+s3m1mnldxCad26tmFp+69JjiqyVycNjYQHaTldjLg+HJ/ShLXnPEOj7Vfr4ov9RI22l4VL+BEp+bWtDwtqnQPg3oHqOB6tJXLY7T+2QnTtXCpP2o3by3PJp8atw1tbJ9gdsXZZ6OJzFvhWIJyFfeg2wlDua0MNxRVMBiw4TNJn6WOgH7YjafOWoZo4dThipM5fjQV8Mka3wL2IK3aSkTDlVYy+xrGl7YHoCibElHza0s9lkqC7XjscbqeA5inRsyGzU2U3xWCMNJ3/78Yp8yulgMTmvDtGDFEI0aPa9fLABVnziKzxsLDmO35/kJCWdLU3xL2H6zfP/lpp9bbMhiN7RYJVG+MGyuB/QLvGtPL5B2Z/WdWIkDskAvFFNUKUBTD1gWKsY+p/aRh3XJrR/6qH5KXi1uzOSBcz3cdPyGS9ITJiyWIVImjwCr23PTKS2CMk6A6EXQhQ22c8CjlXq0aMDAp97t+f5I93G5jNPdjoyoW/jQhFf+DMGqFl40T+Z2QwnubR8LZAqPd7ZOhhBSDZxS3SKJuKb5cvteD6E+KzSVzGlQOqzdsoiyPqZUoLSEbLGBiOxKj4iAvXi6r2000cPl4u8xb24r0diUCGjeL1aTMrXt8KlXeq4K+Tgn5F+S9N0je76V4twucQXbCByiaTld2X2u+0GG9Rrz8KBsUkWU01LLgS5wnlen5+2/jFzOAt8GpR89MjX1OMCgKoIBW9WpS19dA9GAa8KfuZqUfR9EnB2ftjnEIwhwJmKBnOvsZDrvnxmv9fGCjP8GFiTbn4dRy7m2QiXpBjS2GUKIYhyWUKERLvJBHloV9Ocuxd4jUfU6VOSqF5NVmNU8nSZIh2ft2iYUqP1q1Mq0oibXwCNtB7BRLKV4qjHHEBM94RjXOF/CrzylP/3v3ZRv9mCg2ulcb3kaqwfYwAlpMx7BuwPlXdn9bzJJj116J/lBmUq0NgVtPQrMT1xoi/j08YL4d54AcEd8ZPeVYcPoix4Eu8FutMEQ2C2TpBtHFQQ44Zl56LMcfj/965sCtHGIEOj+MHhmXZaxmUBJIPo2p1s+vw2zCqTT5UNJmCTz1e+5WEDiq8vwQAPMIElIylHacOOljdi8q9R9LDGTAdpVbCbNJEHz74i5psZWSyZLDTgLUJRw870vbgj5MlBuSUuf4QLemAifF6Kbi/jT7jMA5lqqwbUgDsmgr7yM2tOll8MKXIZDIJ1uT6OCRdauu4iROzwD9PuHYhUHL4r//pHdXkNHu4MzZQq81TXo6BvvGHpo5X3srzj+pXLgHOZjfHgeXtxBk027iXJW0uU2aVGoiR4j3aKRp3iY8OfB7ZB9V4wGrNsGzwyIT7VH9GkmtSTPb04uDyZhnRBwOrSmBPnrH8w9xkUtszFCXfQXY9nsyLsEPJ77pdCurP1VyMb8PRv3fO3pEuegTdfGDa2vfHf+YQIl8dfqbJ8axvOculr3BERK6mUKltTvflnq8LPIMSJ+9rQNWwbRfpmTXv79HqkD5KBsgX/1hsiC7yE8H+45nN/vRbLCAd2WkyGUDCyJnD405U3fFmxT8e4p42tcKm5NtypElYtYGaADGNm2dQd/CIBRuLMS3f9BrI9rcFzt49hAAPGWGIrlKzN91SPZJ2trmE9YhCvrRuN0gdX0W2+qa4DDXZuhyKvNyOMhaWKb45fSzTJNgfEY94mk3Iz3UBT+OKK7BVkg03XE2BNUfNVSUQFaYdP+HNlsEXEPEiUV9RdyOT9KSL54X9zRNeYL6NLd5ahx0eJ/BC5xPZPjxj04f53jm3DJXbn13OEx2JHgLmUf1RV9nqnngjFuxJ55M9NyV+g58+Yyyct6HjyCqg9tbCfx5JItjxjXdDAjII5w8Vctw701GvedNtT8dPNuD2CRUXPImOsuVvJf/s8Sd0ZU78EUTo/88wP/kcBT1am0imLNkpCvK7oG7JaH8OIHog4C2hvlJ6DYr5gohiGmaFcik8xNGINZQJU5d+M2sTJq1W+Ax2AgSmbO6Wa5q8Vt8kIMpCqPngSYZavAx05t/661z3JfikQsshtUBW3aDcYXKHyHsaZ8HBuefG9g1pQmxaVGn/6GO8YAA4DS847R7pjXmXS4MMg4JddWETn/wlVJnX7V4cBGJOffMrbWlnd8konzQf/mncszXQNtCFjqxhVVt0YuIV/DXRNqagG6PMdkpdNmkljJqPWJgY85L+37nbsHeGx4sOj0Hmlh/hLy4aOTI9xwEhvda0SkBIEs8AXgsGh0rozui/zxSIOJC3CWJwh5etidFcj7ChjyrzxQ1J7HaxOvwaD8nafoScD5wRogT4+nQ0aFQKp8KltVcgV3eHxsQnJ64qznEdp3tO3RYQ4+dc8V6xatWmgM4fsZL71yZ8QAprmCnj/P+NHwewZkXdACMxEUWiSc3bRU2kIvHaQODLN1PL8Zf9JrL5rCqmTkduhWjFatO/geovMlXv+t3nPR+2FoXgy+l9gh7K9HwQr58OAMydNgcJYzgPBgmnzIuGG1VoP7JI10Xne3HD378iZjs5z1FmwXqQ6aWX1C1zJ/5ZC3t9Miuq+5WhgBbwptBsJkksUCKa8bMRruY5IdiPMGDmAl9XvtXSjfc7YTbkjy9aOtiynxDytoMgJxcszznZ0jic70Pnpd8+c1X2dqODpeE9EkUWD0y3x33Hszais2UsbAFjP4KycqAPxz2j5zr6QS7tOoWOpdYaogo1tErcG+gZx0JGEi7pqm0Em3RK8RmpFmPHF+x49UtLV55HGVpLJkHGSNpXM/Z40lsimY5lV4biEqKkewu8qIwMwVQfZX5SrTIC7DhD7XSjn0uqDycaDDGA0tN1m7mRhEq+Ml0GAFJ+sspluLBh2HohSpmGr8DxEsJo0cFTJNxvdNN8c6bTqkty/RC0Fi+h1r/IJ8TNu0BpH1vq1469B6+UGZ6Zps84LWODH4g3aufSWCneKVbBOloKv59x2Y8If4/G1E/1iu8vv3x3lqOL/3gi7+hV9rheMuWar5Ql5AofgtPtjoyP2u99aSCg2lUlEIBdJEvzOr93xfKHJvGrSyBqEdvUxfUp3FqnGs372Mb9PzjmFj0mwmPWQMtZHiDIjSHU4Pb6ltoNsjAOGYtZ/Xv1vTXvg6AUtrCt9RnnVXRI4N5jZ/b/wwtjCjvY6bVFU3CisHFHiDBfiuZM2baNfmmgqcFtQM3P1gnvNpBlwJPFHS0Dq4rTFVpG7BdSyV5rh4znclWm33TOZ553S47Jar4KpRuD7bPU0eOau0kCwahv6S3WxHlSrgalU7XU3O/nzLCTHg/jRGg517PlV557eeVJUfqHl9EPGczRwgED2XSB9DGnM4W7YYcsnw08lykRVX0SnyYbEuE8AVHSRTM2WJXfC5oSwllmG0A4MZv+HZvj5olbeHRf980ohkyhRNF3A8gzmsJxR7V9LrgM7Pu1cj5/EQQ5z9KnMSY=
Variant 4
DifficultyLevel
580
Question
Joy set up a cardio gym in her garage and purchased a treadmill, a rowing machine and a spin bike.
She spent $6000 in total and the pie chart below shows how she spent it.
How much money did Joy spend on the spin bike?
Worked Solution
Percentage spent on the treadmill
|
= 60002460×100 |
= 41% |
⇒ Percentage on spin bike = 100 − (41 + 28) = 31%
∴ Amount spent on spin bike
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Joy set up a cardio gym in her garage and purchased a treadmill, a rowing machine and a spin bike.
She spent \$6000 in total and the pie chart below shows how she spent it.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/09/Stat_Prob_50133_v4b.svg 310 indent vpad
How much money did Joy spend on the spin bike? |
workedSolution | sm_nogap Percentage spent on the treadmill
>>| |
| ----------------------- |
|= $\dfrac{2460}{6000} \times 100$|
|= 41% |
$\Rightarrow$ Percentage on spin bike = 100 − (41 + 28) = 31%
$\therefore$ Amount spent on spin bike
>>| |
| ----------------------- |
|= 31% × 6000|
|= {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX1/xHF/YPNPxLuM+v92Bh2cSoTU+K0eVW5YqUJNQCfjBKPdCnwXIFYI3WCOiaceClD0h4kvwyi5Mj7Pme+WQP0IJx7fWTEv/lhcW/fXuwuHPZ7lQZL1KGfwBhFfrYzbLgqmljOkdepDMGQYv05PG/TM4mEsW5sPvvJmh4+RyUYl9PSA5A9cJfSTtgPMP+uyR4QNA8xe2LhuJVYRfOom1sWewpoUa80/8x7h5nvrKTtkdWG+7Ae1MxPzmvAtUwS5HZV/gCgxeTZY9YhJ84UeZT2p/o59zsctvLQ0Bd86I58CIzRJzAuIeI2gItry4TSnAsHYTp64lN7Z3l+7ftxXlv4SLIAGki3xebVYmB4UiTaoooX1NoG2K9Thrc6EtL7o33AIA8LeuB9cQ/4Jh3j9jRxkuTQzYiObhEPiSt0Xv+3csKc2hvpZqs5la/KOJevM2s/INcoshcLE2GbEDGqOGuFBqiuFm+XaCm4iv1t+2Y0COsOjaud/heXlMMP4s35FSgZ9DosZV4PSc5/4V4LBt9BWmnjWvR0WJ7mb6UTpbzupCNdYl7hlF748l+S3PF0FbxNXbbBPWZZVZYzM3CkxykpxSXuRK9zc9F1MN9f3TAR04vJ+/fV/o1rs7f/6qt0zdZkq4vmkJbwPk7l+e6uWV94UFDuzGf5lejCXIBCco5r1Kzp1hImupdoFMtH3dq32vs0hwNBfanlN8H5TYrrWQ5CRp9kpkbjemkX31DZ//ZDqGYKhfc5nNnGCjf/iKxlPqSzkaCkNYUYB3Q81QBvfFm0UaKONnVKLD5Im0zMOTyluejaBgIATjZFxyMsu0BGyQv5AtZYMUUoic6V7u4qKZn8R8vp33KdgUeuRpKM/GJtgvfM0C1shBH+cPecHRCoShlJO6xbncZ0Y1opTrIhjqHHOD44kb9U7HHK6ByXhA/1e9ygna4feL4DlMQjV4UPHBwIZ9pAEOTNBYbQKyBv+CqZdAq7IgstMuWe/4cGsau7T9K6A9f+lhl3JPrj3M++ugW7niYFHkFs+f/TIZFxa7tzu7gGo3Ek94DIvMJz69o0ELDaxa6G7jsAHSi8qprvNo9x8uiOvYxd82qFgf1xhFJzEZMGAP66NndMHbtsBX8fmE/SfkmIhhQDPaTfa+LJrBcqGJSzdGUoOxOGCrvz1hMHh/jhWfl9vM0yfjf93qee5LJtZzf7bdIH/C9FCUz3XmJYKc9GKW1iRcfDMiakqkdqIQmhfZg03jb34RVGwrg4CaG9FzYop1XkfKtCU6bAHEsZLeCcT9KIZyXVkWUpLcRXQ0CvrcnZDafGpsfKGSMbJ9sPc3+7BKD1NreOMwEVZsWCBhP21b9uep1VpOhV6JbQ/TNbWgrCOta2NXZZr27b1oZ4IW148cJBF38eAHMtEKgqhy+ZN18tZMY/1bIQQgFVc7du2AgLbrsIxCW9jn/GXlfj7TS5szkA52SbmJbVzCSZaeOX0i0OCRM3kw45BfKNHnoAB4LgoGB/S/waMhhSHvR/yeetlulJS3+1KoYZJ6Xh2YluxhHH+Xhh2vxApK6UA9/rjgI9q1J0LUEf3t/L13li0xKRF2+uFSB+YmsP5xqyd/knn8HmytZhv2nVZ4rfGUyq0OOCPhFlDQtTCEgv6VvkwRQtmVXzQ+7Q8AyDiB/rw2hfzuejAvGtwr2BUGDFF7MQU5Tdyq1l45ZvyDcqmEwnqhfgZ/lbBINsfTRn7ercSfqopHwwX2bRkn1GOsoa09RjE321Jb1kwp9ZwQIe0QZX8NR4xEp9q4G2gmoNSaoUnl0ltP/+AwiyPL0tohHA1S8GgkJtT8Ew96M3sWv/fSWwZo0RHh93RqEay8oWvmGlPZBsFd0kBmWdo6taL49DXj1HslPMf9Xxjl5oV6EUC+LFKcEHSibZL4UV2Z0OeYZqWmzQnSWuh8Ck351Z/9XZOlox6wwWIVs9cjm0szLkeYZJy8FkUCmIkdGrjAk0Jp0vGDuDffcrUwyYcpSZ8NKuqqtJ9xM9tWLrgx1To8SbOSYUHOccDbu0QW/h/KFW5+LNFUDvzX33qRdyQP8/km/S7njarKxxTSQ0Jm0SuPN5OWP3mI21lRgvK+yuo5Fdakphv4qyARIsRdqiomndluYTmXISEnl1bgiSjc085KGlHGRLRpGK7ejTXzNVSUXEWjocH1TtRGHaVw0YYCGWgi3TAtdYr4/Zol4zjfobV43bleEnpT+qoSDcH57fhgk0Aqpra9U3/wjmWKhwkhsjMo7UUuvLheG9OoYfLkeKaZXob8kL5YxkJZd779V/mwGs1YVO7+7IdqXnVOawN8XOhgcRJr8Fcl4sS1nTXp3qx0N0XZFk6rhfwBjbcMV0ym2FHGMiEHKmXWjiz1tI6D9NTPN5ZJrv5c/LXp4Pz2ubW9FjIqe94srOh1uLNnrYHRKd53TTjdS4x7UeRlnW97WqppXJHxHe1jR/ypkVyjDUv3im9IyIHIhZ7VA68C3kB8+5GQGCxn2O69CiUQmltmcS7HHXsZOjPqOSWeYBvPe4lzm4XCpmB4chjjM58Of+fyHdF9E5zGiRPFfhbhTRYz4/7Ra9rofXkEbFLYG1aXuBl2KiiCYP+fB2hPOcDvyIp2LsGmeynHNjk96N4On+eAdt+twxfexkBzM595WXbkzfzzF6FKBT6Anh0mqnpqMJ+Dyi8jzx27VPj0WkzNU0BMSS1l6NYcogVDqh49CZwZOCJ9ympX1V/+2879RwG9pFOfR3Dtm2EGFXbYDd1j8uiCYNJKFcnW0vIt+Y0Df2Ydc5bCmpwPiu6HTAeGAI6SQa76q5/YivYTtCUG1b84jFe+KveOaWVkzuj1BhKvjKMvSWHkPS223oP/B52Xc8xtlecS2hhK1v8al/Vm/kG/81/raAd77V0Nb0rmdtWQsFUsMKvkcxWLmFL/FC8Yl52HYx8j73/eQSDhijoO/Or9jiWwq8ApqI57W0XVeelOiCosoIYEJYxBC2wUAJe8bH+AxPNBMqqDuS2ssifoG1vDCl6K4hhn4G8N5N8pvjQ4lNI+EA7eYAx0zmjLjYRgFHb6MoJidU/P5ktLOBv7CrvA50Lf4XtPSVwCndk4kEkJgRrXnSnVTWWjo4VIDu+O4dXUEWEnje2IjSisTje192Kc+vC5LAOBZLL+TkNW6INaA8ycj+i/ozUkvqWyicF4EUWOg72oAenO5sswzNGca/3/y0xf9AWCv8EzxVY8ywJeqOlBGDwy9y9UyZauwBMXIA5ofG4SgFpS/x6YptQCe19Yxt74H8Uy7N4j4pxQyfa75deSmsVnbAWPFUWG4vF7Tj2D05O0OcmohwfelAwbPJCHpUXKoGnQSLKUNmW2IO42mynyQfcY+Nm0WDM75d2FcQjvkzIzF4SnP3LjyyV11wNZPVziLgrdiNaxSp1XC1iLmS2ULvy/HyrK8jnm7Iuyje9AVfXZ/l4AY9/dK5fd4SqkVH7F+hCPrDHik9nJ+3W0w9WrwlF66ASO3Wtaq2kbuTPMr1E8fVMV09iMl99y0F5fetHNahoHsSc7wEOW48sTfjsFo4dFg0UMR6wvWFmI4jayMnjXvY1zqWLvXP12u9VYB03xYpCu0k8J4PlUQBMOGpHI76XPHw6JyefHg1SIbY9qP2KEf5tZHk86k0nxCDupNkMLOoOf7Tzux5HyvnBZt+fH2xl0dYDlCr0VBxkHJhDs17gYrzY7h7r1e81ZbkJR3BEDiBgpSaCTLhCS8y0dZtT3T+X/SsbfMTEwlVwaJ5VEZJNrPy+1wT8Vw4eHA3FGng+gE1eC+1kf+uFsM4F/e9K3tJIyYw4EYfLsaaJCwB0NYorO+Rb3Bb2CpczmIgIcN9gHJF/L2KBTn/8smKJ8CshN1vhW22AiwVzNh10xWlwyBn0pZWgtdf0KC55GOW5vlZcjzODRDrLylRZOAMWmyMD991wcqjL/ooVV/Or9FshO1datvvFJfbcX07UK3aqfC/cT31DASHS480gj5SKjgRX75TjQi6f82OdA3ncrC1WiQ/PqxCx1VM7YxSY1gD/FQ8P1ZKGsR6as05A/wp9JK4dzjMRRLOfMSRZnaWxvlFFaJ/qa7AN7IKCKz7/0TjCIbM8GIe9c0HlvSroy/mN3F0VytQnaaZ34hYdP5r2epjYEc90uCRi+mDduX/1iSv6MRBEOkMyn8CJm5Ae0MKjZgMq4viSUbAcR25WpRCL7SQLI/cLmYrcWmGQmAKZv0OuAHxgrTn6ZcuOBhVmI094oZbk0aOBuxca55ivwLqgkHdCz2zYQ36RQuIbJqCUkJiLMSVyciJyZiQPOWGKXly8rw6DR10SZQtKe+yG0DJKK4Xx+SjZVNQMt8UFzewqbxPoldYCeFiUXdspIQRSvkOG9ye73Gn//+w9YRcJyeL6ykP38oD6vF4JX7GLXvUJvYVEjGVpmL9BrKqX4KK0p/2VjIn9DPeMTK7NcpUCYGHXdC9w2Q3md/wxxZ3guQn3ssqa9n+sw+1Yn22KcXDplZDCpRlqUUleLQdResa+4OcJqxhZ3SmSBLKizg1HzblZ8rR7kCE5yJaS6p48eb8V/8yC78JcRrxSRP54oUrJR75E1l8Zd/0tNsDi7GHMfQDssIUAgeXXLzJKMyK2FGjx4vZwzn4i53K8Fh2PWpR3t6HatPumKUVOUr6O2HcE6TjB/Gy9p7OCCHGHcT37kSlW7oYtA6OY/bnsTQiNh4IAwGzMeQBIFJGVNAmXLtkXNXEC+8PtGWP4MMol4Oyj6ajS+by6eL4+U/sS3vuUx4XmO9IA2uTLt74RLR6vpYLaKgpsAny4DMJBwkG4B6Mqnslio9zrX1Q6ajSZjqGTLvP9ivgDPAIt3H4a1Chcn6dHyvzVELd0TUpSMdex0pESaWoEcqL+xkyB40nODP+d01FA3vyiyV5JKfLiu1Zu912MY7eRCpTdHFGu4jFuUxlX/ZRk9x3VRIuSVuZlRdFgV8uJ06BHHv32JdMGNJTmxrzfaWIv0D6woQ5D1bRltthj5ngXuH0NJmmaacdalpWw1D31O92Ceb7upxsDRuP88lnjTjWImuFjOqbnHcPAqnCVLBN6j9ilKiW8BadqSOP24NoDv7yfi6KvPeXW+0pEPu+JuUAsLzDNsBVgUA1vOKheNtMrO+q2F01UtKlmHmjo4SiwYnANQliJ1Tbfh8DK9/hzqdQyhBOr1P5uc++9+Cnn240tCQU4k/LOlYM5tI5NeVWHO8gD4FQXuSXWKIJLfRhhMuQL9s1co4QbodoYltM01AFbz3KNWoHZt7+Ecj6L2GPs/3aRGdzB9uNNBJwFQnvlGWrMAM1CuKvF8SgbRAo3yi35oUzHQSUMcsCJL6+b7IPvxkivlOExr8gmFHZmA8iIpaPggAL0Ysx4gm49Y31Hpqv9vN595/dlC6qP3F0EDWV8/Mxpct2YaITpesHOWjMIYPHjGIoovMcLv93xlM2HGByah5Nxue9ZiyYSZUK/JnRs6Z8C0Tgr1vSR/Bruu7NBQr1HlHs4bHtqxaStBVqBIIY29pbIRTnuIeWBVwhKh7STDd2lxRXeFFGpj5xX6Qr3U4EGkcJO8e3Q9poTJ5Dujv2+Aac1nphqcw6VXKMTg/fi5hV5EWuFwPb6GuNI17yqnv1PrzXZoE6aAR+uLVDxxIbXUXni4vI3WT4inedRe5iqkgTGr3cFURp1Rf+QVvmP+M+K5XIMn3GtKTuSblvaLGQ44oFfpQ4w0AlNlgi7+hyyGuppNAd+sLMDIANc2PxlSQAvNK80hGiC3lhuWfXyHbYBqNgfJozsY4VX6kKm0k9UJjn6wWaVlqDCqRq/19eky0WgyBffPVJY6kg/Q10dYQ6EUNta2bfE/HOcJ+SrCDr20OoO05SEnCdqR5RA9UcIwVqU/YZ4C2FNzHaA2XyjlQNXf8yZIHkqKy/O+LcWA5EM+y+A4mVBB77gJqmjocq8vngnfp3LLCc5IFTVqkeHbzURlOpyEi41k8qnGuEF2W5+r2i1cQjDUBRfCtPDlPjXgzJ5Ao7P8H7PCN2743F7l5+tyPrvLoq/hmxcoZTo1XScBGELifozkQJdtmC+xNpRF/02dyMBHhRGVQhgCAUriaqplmOWSr7c1ZUp5rShxiBzJED8VtwEc5q43e3OSbd1ZfH+sO20my7ZlYic+oZgKMt9xKdYzNQivDWUygl7pAmqIyqqh6VsaTP1u4xQenq+HJqkmgLAQbfU46KGR18QOLqB8qichU6B5PsZ3tUu8erBLl4AzpLLIlNRRXk6f+5c4Y6ljel10FCVUOiVwa0D6GcKXSDLnSzcVKhX9vitHtHStbMBmHd366EyNpYSPYYlI/8ZKADp3JoXOH8LK7YCEozuNVCI2XVPLV4HHh31QCg/XW6Y1TuUFsTDkMi2YSFXi3aHxbGTFwPYcFcsdyOWYGEag3jpIKoYgGsoZQTjLRgrgycLB8XI4j3S0bkUIawxumSH9ztryq6L0OTkW85SpHaJ7uH5l5tzgdZdW+Wa3A401+7O3qsw9P6FF5+SD5u14IsUELh0PeMBbESVs1/+5h7nWxVVBZqOYhX3ZwOYg2wr7qYJHeXkDJIU6gxACPSO9+UTrPvEnFUjjt1hRR6x54L1UI9MrUhjzsD2f4Kx6fmD0AXIiPE+UWIiatqzBehCOH+ezxU+U0EFhqPbjokhSHmgvTJt+tD6q4qHklnMieACPp17tIeCu8jcX4azoDCjQFtx6cv5PjPd8rO34f9hOUbZFs5hg7/7IojvuCV/uKf9ocR863O1t+Spj+ecnRf7pd5tb5Z2TuMb+1aNFEmXzxypNe6mcU3Se3fwKONLexiwdqDDKi9dL
Variant 5
DifficultyLevel
573
Question
Jye was checking his phone battery usage and found he spent his time listening to music, using social media and viewing YouTube videos.
Last week he spent 25 hours in total using his phone and the pie chart below shows the breakdown of his usage.
How much time did Jye spend on social media?
Worked Solution
Percentage of usage watching YouTube videos
|
= 258×100 |
= 32% |
⇒ Percentage of usage on social media = 100 − (48 + 32) = 20%
∴ Amount of usage on social media
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Jye was checking his phone battery usage and found he spent his time listening to music, using social media and viewing YouTube videos.
Last week he spent 25 hours in total using his phone and the pie chart below shows the breakdown of his usage.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/09/Stat_Prob_50133_v5b.svg 300 indent vpad
How much time did Jye spend on social media? |
workedSolution | sm_nogap Percentage of usage watching YouTube videos
>>| |
| ----------------------- |
|= $\dfrac{8}{25} \times 100$|
|= 32% |
$\Rightarrow$ Percentage of usage on social media = 100 − (48 + 32) = 20%
$\therefore$ Amount of usage on social media
>>| |
| ----------------------- |
|= 20% × 25|
|= {{{correctAnswer}}} |
|
correctAnswer | |
Answers