Number, NAPX9-TLC-25 v3 SA
U2FsdGVkX1+Fw8SNvSP0hE6TDyG2IPOBN2Gb04q8Vh2qb7+Wql3ATgqvA7qELKcTyMj8Fslo8hB23vkGU4odfsmMVX71OaGTUsfcmTJ8EY8VRNAXGvDP1laUzxU1xZ/P5Aq5SDLOOEQq5YNLT3+SeQ8s5HNa4vNfA/WzQngDs7Sijh+cid0p7H4FQenpnt2CJIDd+27SauQSjJfNad0TJDKEV2CgZ65dz7ZAHc/bDFxQmcRNZ1P7V7coYb6EPjMqq+jn6OHvQPsyCgSUJWsSLVt1lcL/8y32wTxakq+y5C71ASkJFefSHMlatraqw7jAE3muOuvjO7LnHgU+EapMdLunNva4CTfE1nRTtoq4WvmAxcYis0Bi1OlMT9nHkoe6q3vd2GY1aFmdY/VVxiHa4inCAFUTNKDpHlxrKIOPCNmtxF1Ynd5tvDYt2h2k6zdLHgl3tkxjfS7NQ9BW9ji1r3pm98LqzqDZxRa43XWxBrYHzWbeQIMpzii/sPWafgAStWyqw3XP8hOwBSMBAONgsK4pmn1A9otAnr2YCRXreLuR6WxcehCqVlrTzKMOSkSTxlrIaGdo2PFx1oAPDL8VSaMN+blevZcnecDzQsr4xbCkpv490zQg9Qu5WKvMLKYWw2p6pQ50fWxvrD3HOWt7RlB9ANoptZJN7CkHPCWJOzAmrNb6igHO6BSRhEjYMMjSrxlsnWFAtBrEIz84FF7h8iFlxPk/IaBEj5vylh6sQ+GKZwwsU0ywRglbwMRXHyV2WZjhblIyD++9D0S7TrVkr4HGOlPN8w8HoBfobSJHY1GnfhvYDlsk8ZVg0qoFPIe0S3LhsbO0xqYk6/3YndoS7WVeiNpzBjL+gsqGxAhRR0oBWzgquNEZWltY17wph/5lWq1Gwt+U706NOzHFytnWn0z8+9qAtv1t/X0MLwIqY6k+IGPqAD3QvsJIvnmfCKQJKr9Uwn1IHffkKUOOQfnDQ3Pm3LDzWU+UAg1NX1gyLuIddKgtH3aVBlMBHYsAGNKRzpQQXP/sfFlgnU+xHGKSKy+qvZ6fPM85kqWkzWiVgwuvhdVIrDncQzJ4wbdI8R0feAHrWBImvt49ouZeaM44yYCM3NWN5ePPKcfl/sK6mH2JC1qMAJzzV2Biwv4H8k+yhLap8qP2O+jZjrrvdwhPUD6VGlwMLjCM/dfF7PeWp8seZzY+UhZjGY+mFLCbvrluq/tfC8P31rDXFJr3L1yfWtS1h5XoBcTsSVZFOPDEiDEPrgZcI/pmZJ9Z4aB2Njk+2WSBBHVvOCwY0MHjw3zKgYPM0mRbvL9Bqy8Mxf2wlGKLEKOKzE+VpKvU3eRiPYo59Yo12ibt6g3dx/xeyi/Vees/7dZmmZH5FLdKT6lA+l/GJX5HWnRma2ZF7u5uUGrzecb41z3SwZd0xb7A27t1jm+B6wULqvn6mFZlAE7Wi7FMCmBW8TnYmAu8LFb+TWP0C59SkHRISuYEHxRcRK157za3CIux5KaWau3uYTTsqFydFJcd5kIM6kJbyTDbZ3NKDLV/2f5rBFVJ4p6I6eg4+mtWzHXs8MOtJgU4Mw0j3NyQB/OEX1Bb4bCFuRtDblvoS4qb9dFswkldH5782/McY41IjEe1fNQNbZ+K2aDEry/rOIsqw9JRLdwAeXJ9PjwS9pblh8HBx+4wMDu0frnLweAdBo4YkBCqU6sq25rSOAsECzLkc8yKLTyiu2PyV1Ao3QkNehHwE56PbWSrGagyjuANaHCIVGUGUBfm9I+kKuAV8U3jE3UyyRRguW9LzzlTcM0bY0/qscYHS/w+HCz0GJ/X7uLVaJnBRjkt5HbwOmUmNOSfYB/UD7wOanVeAEUaSu5nU00Lxe+L3U00oSbDzhLoWyd7jqqv8Okxaiyqr81UAy7JxImX4/BXsrM5TYc0DsV5pKLUq6+6zY1RFmTB4DFSOQoI2ggFB3milL8fXH7GY9LHXG57iDfZwqo+SVd/byxRo4qL0o7jjGzaE+xU/cTfZteO5ormKATr4yoohLlaDRZEsUnInjnhj1/EA8qvf0ld1f6I4XORlowl0SfEOdPi7fKw8N09erGBOWPEUEVrq1u85CvdljNyZwg/9nUEqIL+2kY1rKJHevWff7xJ7Mb0J8HxU231PEBHAMg36cQIbEziCU77vWHswqR00D6NTp1SYNMFJSIojdiFBqxbskzOe5KR1oDGZrp966j6lBzYmIKO2skmcx6F38r4NXwElK7uNoj796ZomAKjqGghZ6P1JXyTBBBG00gQBxC82EtVLt7Zdwz6D+k92AN9jLpQ47SUMgjsaJZjA5nu4cwtdLHewd/QbLcP1SquKlZt1/qmK1GLSj1Ol2bU3+46odRK9VezBwJx0ouM16UibA2okIH4E4zBq6ByK7C0HKslnrYtbhyeHM7JB6L13Q4LAm2Phv2EgOQdGHFnQsyta8sieTP4UkKjV4Nb64pCS17+InQo4PKkQBe3R3krQdwk/8hU9dOI7zNiPQ4+m2TiWl8HznL+CkaIeGux7TLxV3c5a7RDK4Vq0r6b1HaUMDJCJGSJL0gymgrydWWdB3didPLOfXy6f3Sn9sLocmALhlwlAwcxtW1mVLuJIivf1hzXhV/p+A3VYF/4Pb6PsjKAwpdXFPAO9KFxPQRxfcUGBDnUEGDbRutBrCLWth5+cwZp7zaqPqscP65TC2gGrusa8XD9+SMM0Z9ZYgkYhHo4eCdm1JC9q25aiMC2+Huwo26csN0VfStmdP/KJU0m9LiJGTpDJD8/1G89y2SUfC3HwteOlC4opX1p4WE3Bp/y+sDTtP+v75KQSqAfVloDYC/gn6oLZki+N6eX/cZpWaFh8M4zPKklcgNJIQG2544opMsAusk1shiPqqtDhabLP/oef5V5HYk2YJbuCw9ZkjhNxD7hQS09yzXY8iZDpDw0zcxkB928TycMWtQoi9YvgvUfDqqWxuGhzKtZvEI+LanbZt2hutqzLRk1MLNug3HZjELkVSfHb47ImQ8IJiAhJ6K8n8Gyb+2B8r6WWbBppDLEqsX6WRvFzoZG4AAHAwzqNIHh6EVYEpXzjZSnOm5bMnqy8Ry4EWSaaiHncgKMCm7Dqxz0yIYXm5HWyj/4J6iniBHq2tvmQTK59ebIwnW8UwSKO/bxm8iUezAZ5EAg7NUSLGZcJbp4el3vFjL58/pvTZV3dOFVusWpcFKscYykNhvC9bz9rCaTvBDqBBUlWa47ayjF18v9+uVb+PY5pP0n2G7KXH/YBdsx5gbSkkwVxx/BnzL3vWoPbmGhODzIUL+2B+nNLh4GycgDEFZc1u/3EtMPgZ9jBm2VJsy/8gk7Wfk2oBT54qnqoQGBvRWfTagwDyMaw5ubZ53ylCS05LccyYaY7FVUHhipegQw4fnXiURn5GkZAkAVi+TSWKucm4DlyOpESGDmkX2YBbV8rYu16bisxWhY/55zsuMKsUX/ACKPVwP/eX04S3Dcp7wL38Bf4Pzt7Qn02wQs00giGpvPTLaaMnY3lH4LNGVANiDJ2rwtKbOS5VnhNzXQSXf5L2HLy/XQRJaPaDAYtnZr/ejH4tkvyrGyCa/fpJhRXdWvGqnnhs71xhY8Vmss6M0Qq5QmwHR2X/NFyVd87dTexJZjBmjCIwdTEiTT33XBnI+u5OSAqTdxlb+TxRxFZzSCyYfSD3W7m/R42pTVr5RtUqKNQyOFFCEyJAIsy3eo94kqI/bzk69nHcB7lS0d+NoOZx0maHaSNRTLFp9pZxSkL7v3pX6/Mln1dT8BVR0HIsRzLUsotWswVoNKuC25Wub1qO2QBmUGAk654jqc40RQ47dguynCqm7smqh8ltBdwPPccS+vKZTC9WxlJQzOOxiSU/JcsyBqSV4m0sfcOIo4g0l1cM4VDG/CJBaVka7wqXU3yxj+jruZPJEFvbeL78GeXyF0nxdQ6zs1yHv0CeVy9jTWNia8VNxuhZSJjE/P17g4n5r7Cd+wrngmTN1MoqAvYPThL4XaK3CQTOs9AYmTXwFm5vx3JLx5UnMsn4G9SNsclsAHTpFGJh1hWqF9PEk7U+4UKBjt1rs1GjP3imelNkB4bCIVRc1mBmtKJYWdXai+vK1z2M37IqITGfUtXn6YltC+8pC59BNbexFpgZw8NJ6n+dJ9D2FDr+Fy3I2RShntRgrmpI6DyKQE8jw+T8HDCYbEeR1xqaUsyAUi/Uh9i5ilkIAzOwS3aTnAgWLO0NIoTbgr8fkZq6/NVfYs1/5+D+OIdpsytONAUmlBZMbQnx9Nx2HdPyxwdwb/l3X4tqCpiT8oBFkzhvx/xOLvJ9RPnjL8EMyPcqppQCfQ4nNpC/16gZnVJNX70HVDBz0UW/qYtbgoFzNOcJt3SdsFcrnc55K4dxn8A5KKYuTmPE8I9bodQ4AlxsATFf02Jz8SozlZpbv7LW04tCrWR632+Gb34GYk2XtJQ+pjUWzqio8eGv/H2F1BipShediEPtOS+oG6pJKZRpAyI4SINnrXmfKFMmdzUPMlnG8kHTWasZzCcbJtQhma6tCrqd8df2eG8LI9LTooTgmyWUdIo3GGewKknyZpKbZksn4qyAThRmhpX1HhF1XO+0Cb9W5YD8+fLriTC0EgGlaMSm+IDKMZAobi2IHUruuOELGkhwk4C5fVvMPkaRuwa+8siaav5UQ11ubP2c+8qNQzsuBXF7MMvCM5HOCqcwuUGispxqpe4Z8izQcJckusdNcXs+LoK+/VZBwcYCAP6AtgTxWGUANdTPkm/mV7IDKDbpwKUq3ykyB1wkdTppdzOUuY+dFRvXjA0LnpyupVbTODLsxwMbkIM0X+lWSbjR0EDVdkd0BuCdeGB0SevDOFI+b88mwN4jc4tvp5jsDay8wgzF2surx3KYH8qX+39aWTLivSiVp3ItSUPDGo74d5svSu0ow7MCb3iwVHZcPY2yUCJKGu92Owy5wEwdzExD1KBWp5pYgxXOos3Iuoi4ZUBkyj3Ah0N68sscRQqFmUNz5z4vVvxmYHax30rsI7dUEI3C8uLeWvVIptTvbvSYGsiVnzUIMXbAJ4ahatA3lsMkjfr9/2Ovts21v7Nz30WcY9oz5Ny36mVanMXznvIXN2z2LzTUqthwLBFa2+wbsQpMbwF9eAYbuabdLAvIUq1jV8Cgevnm8rhOdaOEK4/815me1yzzGPQdoVMkkUwgvVU/NhO6bRBSEg+7OiwZJXqNF74BgO6mbVGtK/4b9vaB+tlJUSbHdCOEC6Mm4ZgF6ZPf6KEBZ9+nr62My7mV0vPSa4a5eJOMSg4BdqmiZwkY6jPwQa+TQEjscPF1W9Uf6h6QOSZSJeySNZcV1Fknei32qlcjZkTZggDn5uwQqU7tFGqF1tuQa21F/JR6mJFtiCdTqCeJxEjMtujxWRxuciX8mrO8N4cbeXXjCYjDfhpbsosnwDtLyyQBG8Wj6Kmp2/+e/G32tWJ2zyb1IA9AYVGJzc0rac5QD//lbp2zUtbsRTQhyiA2yB/4vTOwVH8j42NHAL3/WepfDMt1ZQYXje5nwuXPYg6uQXpI2u8qB+X6wYDl24Cqsy0qj+q3eNDf+UBqughZaZGcfLYJKgAWn4sOSIuoKd1CaeLcx66YXgS6YaYZbDRlQD9kpXavNqX14Q6noBnR2VuL21NqGRxis+e3gGRcs3FvGc7o4gHNcDmH3ypsHS26Zm9nJaubtH0lrabeQvHhA8wMLpPIFeXRmmpFkd7lHfTMwXJMptu2/kSw0LBGNwzoxNrLio65+DwKtkRM2h/JFooe9nsAz/KhVZyvOqH+LBY7Qjg1cxTaufm6i/4gHVGUTMlv5hlUDs0qs3Vbs8VI9Do6iuZOqvmwCBHRSFVKUdnrcEgBEPxuSFEnpoNFMmmOvB1CgqQ4kjLDFfm/fF1RmILGY1mtKA6VrLivIpgja2UxmbP4usaw0XMeRslRWqOl4SmVdGQXpqaTj+dHHqZh+7Lc5vCuBuaZ6sju0TSu86t7po4Wzl10y5GPUUcMsnY4rTdq8/RsgPo+U4y18v02PoJGJTNHKtNpBRtRq9196cXcusXaevxmKUErpk/eUdnZNvlZPu1hY3sdNszc6cZhhNUsNSKmNZNESmeAHz4Ly5qcbeNFFeWxgpq5WPFEGrxhtGcS+aTT1WntPW1Fdaf8c1cX6pnPvkvnljxfX9GrfvlvPFWMv82zGpZIonQ2HKKJwpYERcd7lxIhEy1pwK6famlwaVsdq6QkAcJ0+lPo4VEwtOQc/KO2b+YUJTep1ZigkRY9QttfxeJHlV4qq4CXGGdjxkOyHtHlF6yf5rO9BaXo3P4tfVaYIuI8NJL0uVFjVzvDMUtpo241TE8fMYpnVg4lVgQimgYDzKOWapWuurHq1Ju8OusSBCpgOa1/N3H+gDG88801eQ3HxcPlFyj5T2HyZaQBu0hAmEmRZe8dbEDo9CH3RXj2UGqCAss7nmMirCS5mm8MeSRows2o1pwq+vx/FPlPMr0ClbuC6yzUOV+eIcRmnHJ+4V7xRX20wn9shUQ4CRz9bsZ9/EjD9ATo8KEFZv+kjXJh0o44qz3a4IQSm5jdhSxwnAMmanc3IFYXsuBzG3m8/6QgwZO08m7M2rOVLCRrQPIht0sr4eGsffJKYoV2ULIWVEvW6czLUiBftm9ZxJE+MeFbvj78q1+BeEsxP7QZjBliAcrSpKytgrUaFZ6cF1+viM0WrcplUsUfMHMk98ZtXbzr6Q7kqQaW8Zm93HMhDmrXxwhZBcKATinTJ+MsMO8tdKdaog332yEEX7SxEsXlFGdFznqfbF3Q==
Variant 0
DifficultyLevel
528
Question
A couple decided to get married at a resort and sent out invitations to 120 guests.
If 53 responded that they could attend, how many guests would be at the wedding?
Worked Solution
|
|
Guests Attending |
= 53×120 |
|
= 3×24 |
|
= 72 |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | A couple decided to get married at a resort and sent out invitations to 120 guests.
If $\dfrac{3}{5}$ responded that they could attend, how many guests would be at the wedding? |
workedSolution |
|||
|-|-|
|Guests Attending|= $\dfrac{3}{5} \times 120$|
||= $3 \times 24$|
||= {{{correctAnswer0}}}|
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 72 | |
U2FsdGVkX1/yxvbW+4F6+ZjtzvkwriWwz1bZcG7ho25PvTwsM4jJ763DoygUjXdVoVrvBB8JZ5GGcjMZ2Vh+PKzgP9m8MJhdbJn0A3JKgFNZVDjorg37PbbOJB1FY58SZAryL1ttOu5wVL5boEJvDtd6HaOEH8af27duywAFhfSEpfB/WhUoefQ9Hx79oiLJyxj4OwcdKyKHjF2HbVLQpDn9zHokkd0686FLq0FnelLw53UlDCROVeMeqvl7hITUprrqqHltd4WWTvZA0qKpFXjjVPhk68I7XgfZskGQ585qrh/Zp9D5QcfwUVnkgu//YLs0sUUn46DyZnA5U+/r+89mr9eNxGsQe8/vRg/G3NXvNrsAnxpoVLWBzd7Rdul64EMJpXqjJ0zIwbMI4LFLwsJzyx47DjH7UjyErj6KvoaX64xmffkOLDRoHth5de3dgGqGgv2LJpXphuGYBq/NCCUrCJ/rO0FFYFlQtBpi7nEuUQDyREWSEzdheXp6E3xyeHKFCM/aIOJkAH7VkEeG4Lu7gr3yPxgjYQI7/DUaaN4Qn6mjzWpOfsotra/9F/XtKPxnFeMkW3QTsBJuunR7RzPHXBs5ZU/jz3Mi1NFcya6D0DDPLn57G03Pruyk7wcNtnKrPOBQ4Pc+5Yja68hQyFg9shqq25o4hjpcC28Hl9HTr547ptsrar4UYjFjGgLXk22Kp7zMuv6dOYHCIa7vil9sUHS5v0zg1I1gFeJmwq/eelx0a4eZ/x7zJ5a5fQbQx1vEjgv6DosBljfcRGJKuMun/EUyJsMuBRqQqo92Uu/n7s9LXmZ+WhGB90NFwG8syqkEImue3i0m9LYhdDfqw8pG/c01U4K+3bl5olpccNGAiGucwFeLaUrBFk9L4WSNI6iH1JHB4fJkXANY4ScZHDtTdUfUy7VGKHWTV/pwry9CKZKOg8R0lvAII2m8cyzLViwqbZa1OxAkHxfsCXYveqQkQoSz4hOSJqvj4/YnTrOf9fBhCM7UYUx78fzCz19OZF2Il/rzl8UsYcF6CAmhkDywI4cZ0iv71WDSkkn+XDGcbiguzuBuf3TN+wo77ENjotbUv6h0HskHqVi7NdG7tyEYjs/YUHCs8DskKlzKqG0mKa/6CpeefFlZp2yoMVFuaKftuWaRz9rm/b2tFJn7T49v/trccI1QhxHH3ZYa73CYt/GXxUiJyCiDfYqCIAnnwtNG7e0KJcb9HoVN8yC1+lsmr3YGnxOYVGaJgS3Q39MHUSHL2lGS1RkQMu3UpFYQY3WXYXJzbUois5jWxxTKt8M1v8oO2cPf3l5YTyRo633ar9AkQDNJ0Ygz5mFGvybKT40jhOSMHv2ONGl+/zizWbAVQmY9fF2L8Bb6SDWN1Mh7aKDYZhMNbfXyXXChnSLFhXdCouHXd2abv6ICpc62B1gGScMhmy0GI6cxKFnYUtiyLwDYuTsE2fzkZt7kDnp1dpPS5fpfgCiZFTXX5pFjRmofpUqF78p+h9ocsvIiss5Fo25w5t0BBlE9f2RHoHbbamfz5Sp4qtXFNM123Fgvj9CcHheMKQ/Wzt3PzsLtKi9KrrI3JsxJmUm7w8rdEg4rweLZZUqZPXUP0An/6QacblpErjAJqHFJ+HzKLwi85gVYvvkfBa7fWAUGwp2YA2nAdzekA7hUMx/e8GZql0+s75jnBtfC9uggeB46I9jY8cOogcsCmFLFxMQm5ODWMHkP8HOAmF0PWFcMh8Ah7dvKeX59HzKNyZCaBlaf3+YEz8vo/XT21bBa8UUbyXgQ+GgVo3iAvGmlWcv2485hleNkFWBNBgVE1ThhJWRWATJ0MT2KUtGqD8KEbijf9iRdQm33V3OSOUOPUaTw1IPMrJK+N/3ixWZTrZNQogqpK68n+gJuCs60tS4+nbE7QhQIDSiZ2oyGWU1585aEqJh6GWWLNnlH18SMXQ8qiYvseFDAru7oxUnsZW3T32KWsfuwxCXpi98veOazjFzZFF33FXMF5+E5kZ0Dc+BLStKkhwGty9FwV3n3voeG6HxO/JnVKzeLBVoS++FoS+LrdGfUzqjycOC3uCu/edWLZOxp/r/NZB0XZ6XiD1pJfkMeYCYbXXoGaQIpG2mt5l8Fn6NWOX3NzZlurBETN/FLMMrND9pjjfmNVjxsd8qkMS+gjhFsFTBPeX3aqmFSm4NIj62MCs8mNILU1dPt39AMFpXC9x7OGUK1qAan6oGZODWGAdGFK1D/TKQ6R4Bd8hojQaE5jXH/QlACvWEAub9JgDYlZhS0VqTSn1mXmP6Zk6W2j2PkYKidLMTzS1NnrAfrQc5kq6V6cjkfBWPxlgz4N7v85UYYTJBtCbJnxwPWwVtmlisPmG0wR8hHBquMroZoiXmfYbbB/8gtapPJmKYUAamTLX4XbbY+s9IG9z+jxMyv6nNKbBWx6UKNDcdTk5E/pQpBJz/+2Cr7vH3WMegKh8+LmvDvMRl8k+yKdCGq7VrW4FtDZXkraP1UVdD2yzGGZXEqceJWI9tAacRavyzgjdOkIIQO69VvHfCFbe95z5ZVIvr2c/cMGTJZpta8Z/TtuJL8u4VNT0dkV8lXl5qtVisFYxsrFyZ4D11w1vIqxZyITzaaa6RW3HY+Xam6fbWoQI+x1wDdzOVrNv66Ee7MVOEoo+65E2G7TakxwWUSfzNTSQ8aWD1t82Vx2UJxh2eKKrg9lS8RV+kL7sm1YvbLR5zMGOLEhWyqN/JsCv1YRhRFNgVC/ecEBQed9CTQLo7vjsktKTttiTQnvuoZxvPoGgGMCERFR/wCzHRNuqflYRPkFC1ya7iOxYBHy8YEftFss326LLV19q9JLp7TPXekagR6xmj7yN4yVZ08cq6aJV6du5LwK5pxSXJeGl42AZoJ78l/8a5lowboJNPvyueMnB0kn2vN3P8xQm0LLE9wsZxDwUznl+A7lKRvX96TfIDlrPSPHAm2gZj4m+YCYpK2NuazcnTowyfQpuNyIpCAbxfegp7S5KjdBIdZLNTooJ2yAt1+S3r7pGfgZS84fOeSdzWs1/Yq3nlqg9/Sao3pgND3EhijHDsqYUwOmR05EtOBul6cmxuC7IWTKN/HDp3uQK8PBsIvSjUsdZsoWLrLYnyKoYEDN/c0/xmZ1LQJaNFbNKCiOYAIT37uRY/QBXj9H9vNMqOi/ZEiklbqA27fn6FHTfxvXI/tMMcPYOVh9y7Gc61mhbrWDR5Hudf1cJm+VLIhruEc9cXGmVqmuokvqiDORmL9hSCsg4H+If9DnCefycSs9qhMF6Q7KE7qlZOu9lE7T3pcJTVkWWLz18y6Zm3Uy4xYEEFb1BVzZdsxSfUdYTo8QX6Pq6WhMu05LxvBfcZ2U3H49H3c+wXbZMWSiFZAdU9v6XeHHb2F5QXitmX96jUD82D4lE62vg18BioLVYcqjU+yFUgzSZ8RrM7KPjpoBSRwIyQ3p+a20SYmVdPjAjYVA3QEBxZ0yHsW/m4ulEwNXvl4FQtVYCY/A9cszZGmFqMRcxcxR+gS3PlhVeMY0cKajyAuju52jk5FFFdGeTEUgqGYquxslaCup0Z26GhppcAL2eV/u3mliWDZsWQxtcq3KTXro8T+KkjMvC5j2j1v3Npn+9U3c5HphiEWaWKh1uTYJV61tQ/OaBk+MztM/ba0NroodBEL+YU2i40/TashAXyp+dqCWpwa1K+NxLn3cxFVm45W/bkCNVWp6GD6gdZwVvYiSvf6P4P8XghBwWBqeBGm7fyVbXRQRfORDyFmSKAKNSNyZ+x8UGfVSLmoX/BILT8AASoUcy7g6ohwjhRGq2H/x0bGCWHPQ0fBYo+PHcQ1spV/c1AxepQHO2z8hxs44QgcvbKXYINGojjPIT3Its4P/o6PiWiSt7zIS3rNHBRl7AhhQl3Zw3Lf1Cnz12zUgJsDTOQp7cI44dFneimPE8bnBDfkBrdVNtwbuEkkhbMwcDuchkd+MIxpE+Sa9cU9BmTeL4/cRNbRD5IJiJBnBK8ms/xPYBNA522+y1cKP56cSbEVUYRd4XrnLBySdTcU8uqGzo7L146x0s4SGIzYRrmAbsz+WPt8nVqGipwxbkIWi8noOkcUFogm+VmglLlt0EXX+XIEMoutH+qHgsiypykyZlNDHgxA4WWANME8pYULT3F709tsEsFBWlpxASNEpzFcWTGTFdjjhaVtwP9Eaq00l7j7yi/drz8IEkLkRSlc7LQ6Ol3tzUhflbD3AlxeOXpHlJC1tJnHfllh5lyLpY+ifkF8HVyYHxwLgDdoG9sqCUev5y86V2sD+Nk0XpJzKX06992vHFHY7ncI1VOj3oMZv4KlC0dTe3QfoEvf4US4LYEH/oIVfUysHEdMGlfBVIGWGCgq1hGmItUiJquZSTjc1wF7cS9GlV840WIY4BfK+DdRzCSBgtEZKxUa2WJKRUDSTkWtC71dJuFTtOZObPeKFxMNyR1kP35RyS7qZMeqhfQcKFLRG5NCCopMi4QMe8He7Vhz8OzMYyz+aXLfNxIGhUj70/Poop/0xRJObnMCDyAEM8QlBZafzOWwAipU1vpXqY7IomZXcAZ8kgh2Sk4zELG1GtzUVZ2sveERcFAYEZ0T5XUgXEGZh7QACMOC79zh1W4pkSWzaqDK1P5KwZxf/71Rq3HjpaMJv+l0aHIjwea7NWwRqMJDEVQPhC0dwLifyR1hEDgDWZ9gf/rLJDLKXQRIronefuA4TF5A4vO+cRStTB0yeflbHjZSsFPNx95c17fqivChC/RMdLLh7l6zdZb7mV3511Ge4hnMQx4rGLPumfZFtz8bH+jSdRmeBhfyq3vkhrQXaJ/A1Dc6MiLnfAukc5YAZipnCmvFTil/OrtTt1icvGO2PEe5VVoulCWFQ6+VOqyphOly1eQl7XTqgna3esmtKVwO8hSJIMMdz9iZj3WDekKafj8Ne/tjiRFnFcPhkIQKD+XQa2K4o5QH+ul78EsxYM39uX0RYQzvHpP137+I5gP5CI0gHOnq4ao1eByGTOkZcu3Yup8Ra81tQawlS+FRoMDvJuUiYlKAcvGCm2OGCeP/YgtlhjzxpMGj+k3B+UKQtId2HjG62BlpZrCui/VNSOXsOb/DWUhV7WhyIitKiU9ifn5JF7Yl9Dwbs/ADcRZtgFTv1RfvMgYlioWNCyN7uVqTORwmB3rAOEWabpbjm7kT/ZDzF7GFgjEMeMM+QhXEHpvebHfkbDm+y0D4VGJN30mPhGcII1PszbzeYVgGPXsEurjEOdz53ATJ0a1jrCUR+us3taFhX1H7vntnDJZmBOLaGiR5HT2W9TU3VEMzUcdWEpcvHLUqU0TTJnpB5Ko2yto0zkPS3jwdFXpCHioupQr/QwPi09HH8DfRcSida21nPmn9CB8cHUPtWZ466VdgRdKzIhvHUH7JLrHtbfkdRJ8CtKkpSJoGOkTv6qn2spFdhuVF+H3PSeFKb/pBv5nHwHXA4S+cNJClNeEY2EtOzBKZuvsuoKshZo2sNaCU+Q6LNZo1MEqm7LTbOikqVRwfy2/1YDip8SugJq0nbAYDB/kqC1KMkGfqwpMYqTd0qr9AOJ7si8oZi3g5eex7UC4FDXv/tfQVkGHMde0Pp3x55wYwIr2aKH6A+aDzIZ8Nd9flA5nc0csOtIu68ObfmnXCg33sNU/Y2pzne/ZwZ1gWLf3ZSPF7ExI0T2o55RNGaZXOGbO7guTv4Iz4ySIpMt7G3Dd9DdiNffA/e5kBrkNrIz42XlI47NoEeJiIesVLbJRgli49xbwx2VP6L7T3MtlBzJxhrBBb6ZjPjJgKGiOfRWmXetVvzYZ32X/5KIHuL1yfH6naq4PEqZCEivrCgzzdhSFDzuLV3INpRvopzGbXWSkFaKl6GDBg/hdbIKD9LK84Mp3oSQSAhm96ppk72WKCunfRkU3hcpP+MfJ7AV5p20L++anNXYLnuMAOBIdskZMbn/Xlb5c6uptGIjvxfsQ4dpe0j8Vokj24GZW1Z3/lWx/MtjC5sahwGTc8S+ViAXcFqQSWQ2A16u2kAxgNT3/lvWqGmxI/ptL4IDsPRZHT6UzpWKU7dosTQ3+2O5BT8GuQiO2qX15T0cNE543+RSqPDfsUZALBBLNKIG/AhI74j8ykh4Gnc87FcM44tnZtdr94izro5t5+eMknA53GORydS4L39Jm8pk7pt3aqlyV6lNbGwvWKjwXg3ldYvCkE2h2cYJEpyB/UOpAVeh2uQ58d/pcBSFxooTGaQ88Pvi2pe3tnYiEg9OMJgTT61MXwPLxCEy8nVDcgCJK3EYqCHGQrKucihZ2er3LWgXB8IqOfaS97BQrMCpUROGqpJia5lmIwdMQUaAlsQy0U9cqrE6yVTpS9JyA7b+bz7TKQXlJTJr3yKmzBSltn/wLfGs//iYz5RF/AFfPJXCaRxEKu0X9bBwFf0fQusLm9eQceOabm4eQrh0DXpCKDC3XrP1OT/hy3jIe5wB2DwgZ+lbvEKbGGesyYQ5r9Xkc4tBcsRQSBmK93C57fOO0NoP07lO2YERTFqJqbGYc43S7yYjHPNkW8q8xUgPPFIv1vvQ+4PYo8qGEflD/6+8u/GjJsyr9mcgzne3OenZI5VBZFsAIlHSxPRkgnWi3w2j0+U25MaOzI8ZvqK2DpbwyBXydwZXiWFGyVQJeh6m/pONcMjiDEdai9/yNxDfMj1KGzpA2fBiPRqT8GCcMj4wU74nt36rglZT9vEj2ud3jCtghwLA==
Variant 1
DifficultyLevel
526
Question
Bill races pigeons and owns 80.
A structure he built can shelter 52 of the pigeons.
How many pigeons can be sheltered under the structure?
Worked Solution
|
|
Pigeons sheltered |
= 52×80 |
|
= 2×16 |
|
= 32 |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | Bill races pigeons and owns 80.
A structure he built can shelter $\dfrac{2}{5}$ of the pigeons.
How many pigeons can be sheltered under the structure? |
workedSolution |
|||
|-|-|
|Pigeons sheltered|= $\dfrac{2}{5} \times 80$|
||= $2 \times 16$|
||= {{{correctAnswer0}}}|
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 32 | |
U2FsdGVkX18x4udZtyg4Yae+cVUx1vxPBeMtQUmKLi2hB0FZI49cELXJN0PSkiM+3+cxmO1Q1a3qKuxbvoyus8SwAqkVwxtuWr5N3wLKcgY2FAa6n1CFOpocQVaMIjfZo8X4XCdbT3zdrMPMz4V/IudIiJJTREA1auPXfNYt7cTHHdKXOYS8ZnKtpskdQuRo5xfoH+goqMPE9/XvVEZXl5UHquB1iMki0XiI3dQZMpsox3whSDbnrdbO091cot5KjCANgzD+GgdbKFwYf5Xyi8Xf2Y9/rkEYj5TPVKkuzSO2O1uQySbfW4dCXJ9x+K7wqoEhogyN24o3O0f5mpqgij38CxtEY74SMLey82IKJWIUqdTA/nu+pDirTeV3pQBm67tsRmAwMTjjkFcnNoGHOTW/KOww6meQLrbG1EYShTUYdHGN5gzRwjjy1jn3ASgjhtV86dTURi9rCzEGZrPmjb9g5sZzZw0OGnURCW339ReH3u1KcLvgUdV2gBwTaSlUHW2GaL/Lpp7wdD7SIGg1R0668Fv01MaUML71dcwjf/Z4hEk0nkfWT9Gxo8ULgK1XFIjaUHElCGXGdCqHIJWmJgYOC/PVT+bqVlAf4RQ6k7tHr7lvi6c3AA/krdFDa13mrmmsEIkIAkzianP5TSgXMPOv0JxjfIVSdiN6QY4+uBnMHpVKQeaRaQU/TRkdxWPzahNAYv/34R4lithX4WDvdbbKZyOL6dUhz489Pgd4+71bF8bja3TlAXbh8FnyEByzIqdpFmq9KM5WBgOGAfrLeBlW2edcn2rzGMDTpW7Hokr+bgQH+Z3EPRz0vGT3kjqbOxDH+gowH8H4WWklxEqkO36ejzyUmHlU/Oxhu8ltvrPSVhExHgIR8+vLpAO81kwJ7IxLLGjaGXCnya5Rc9LivsCpsCuH9oP8ZDCJa/Dt6/SeDEId/xdvAQt9lCsWsv4rg6Tp8SOBhHaWFok8DnDSe3K6g+FDeeVyfYa7aRjrOwK6zI9FYmSmO1SDSjhq/nbbClcDDD70vk3HotmTDTy203Zt75I82B5vmz5RmVl5MOFwxE2rzwlmIHrArbesUjk+hWuIznFMbqoSxKF14SO6Rov29QVHxNOiWiYbdajyYBABHMcvXIpenMuYS6dZm6lrYxoV7J8dY0coWBFYLatHkxBcB/ySJZUHJ6oJsctu8fBd1+XwMq+TxdEQ7VVXTuJuEPENDUZNeIo8nx6RUNTDCit/NbycbDz/PZ8E/4fAkvxbv/oXyfHZNbD/xA+B9YI8idLs97u1udTBu5M96QWczXuaP1Tk2V4tyysZSN7OYOjVAZhcTD2CZSZ/pnfggPqxzce8pYWD1eIU+er+Y4giD2Kc7tYlPV0EZHqQO+Tap2+e/WzwEbOaoDe4XLErQnvAYSUwrgCdkIlyFVkVyBGTHlJ5dQUsoVVREpf23g6PkLVM6WbzSgu96h4HXhhXq7suf4YZWTZ+iZE8ncEGzBoTcWl4fdpZKGvJ9vHivEhL7Osh/dG3n2tYK0+AuIuwibbes3vpdIwzBLMZf6BS1a+Nt1bA7fps8ZBDa8sUDfsBNyTy8/L/eMDyUf3m52QlGJ0hFaIKswPKbpj34+n/wi8ft6YyMNsoeTHl73EEoKdDGWVrifXAzQD9vLWxGCVsQWmCQQV1bS4o2HUwBPSjghEP3pOxuTzyBh+a+fDA4hhwUagLRkT7pI/duFSKwinXvWAI/iLYvj2N4j4pygnFonTnqBsQZRWvzLT3X0aINWcOIvxZwLnxzUYfds/WrsDW1LNv7WsTiBqy4QRloVSaiGDNjvrqqf4E2wk9hH/HJmqcNI/jh7P5LEU4RE11CMJOI5sXucxUPsRZpFfITkJRrY9yTM46SxTU5gSrtbNcen9CrbN8rlhlWyvunfrAa2FBGz8NVky9MPgZSder6fvuuSgpuKPo7uw1pXzW7AMre5sXIKmoJgaLIXznS2M4q9kcnsrbjhIcmUoqbG9ejsRvEMYKGMAhSJyHhNT8eLzM+o30xdQQ4MIW2H1wrEolRWVwOM2RhHDTNkThtNfWqM0lmFuUNtHlbdN8CXShVUCyzFbKYbYVInk3dkKYe1N/dCTM8Q6/KfPkRGQ79eGuaUgDloyiSiCGT/eF60ht+LBe2/kwIy9kp3P1/hlin2OkAi3qw/9KVbKz7dss/+0Y759aUSq4h1SBJQfwwFxIeGGK0oZhrW2SVI2azVPtqQL+EYIbjcKUXggC0XxIV9NeLUl6PS+vUF0rv1wHPsq4ToRFOhIBDoGIt1TbU3m4HAnxYFAUjnDG1048+FRgqzMYAbTTzMGwih8BF5ZlFEKg9h/D7LNCZ1P/92I8S88GJDf9eeiWhyhJREVglmLZYr7oox247nNzEqoNGZdnFe0Mb8JxBOYG4yw0Td6EdyDp+Pm7oSqFKF8ueCtO7MRDZ+esJInbNnUG1hPmYqIviKGrFazPF4cmV6kPZ5+YtEvsA4uDfAinA6rT2rN2iqu6Rg7+piL8+yXCGZ/auliHX8uPLGDwrQH6lI6hmcqOTE7Wf3K5LarWeawrBtL0LW3PaQhme4nU/f8TUFTNAt7pL/phPSwCqhIDpd8oh6fDaodh76zkvnzI2Nf1iRuHQtWhEWnl0kpDj/xvpWJpkigH6FssDGi92Ub7M8ZY7jWw/FcqPMbZbZX68KCeHxHEV7QXHOb8Osbtnc5V6xFaTlQ+W4XmEcX7BslS8sGoeJpLT9SBrq197o5h4KAPWgkrE3xCX1i838iX7mj4iN/wjVxNH+336uPtersU1QFzHHDH8EGlUagGHFe19b2mGN9pqoEoUl+j4hJ4acG8AjITrfq8/XsHRrqWBpREqDVQsxEaSvzy2799qiW6G1qpU9auRzeqqEBF+YpbcHInM4cbmGJyp0Fanj0DEsnDecKmDaXQwynUgVRkbtqaK3jOEQVjkIXJjecJA1TfMqg5FOF4VcmrrFti9rWSZLsHHsQa8UokYqqbaoOYHGhsfeekM15WP94LJhmlcybQqWhN1dgSdwswBl8lGHn61TGIgBf1U8ZvmBvwjHF+ENyahO3f+4R+bOgH3qYrYcNl/Dz7V448pEPTjVruJCiBOzl1PS3hNaOCvtolFxGpQXtGA+lwa+qdr/hhiXhv/ZMRpOnHIu+vyWn+4TXq/gjuJRWp8VJ+38NqZ9F2GxtDUdKMyFUeAgj2kI0NMSCyk/1PYxy1uFXgEAYfVGC7y75co6waYbudb5NIcLICV+DZTmd/k5hYcCSwaSfBqmCsAKA6ID75umln5ZZQ77ZNkFgZ10s6bive6rbO6fvpOYdBUVH+c1bQzWOBGb8ubDDo5i4hqpf0r2UAmsZe4RIazUS/+a4/vdeYcDHfZ7Got4RgMDsmoi0vjHsHNud67Abms2SzOtRAmLSuL9ZVTnOywXW9++QC5JwD9u83gtcZKaL7bz968yEphrzkmL1p3uQar3Ovhmp4FCRAfGZQ3F6JvH+uMVm1p0MqWTmduF6s1xrue8mSLGzj8Lx4cbAjcfhqxjEnYSmTA0xD5yd25TObU1Bh9R/TUMOK8cq1a+lZe2Gk52y4oSzrFtJ0lP8m9qvBdXdP2VBIJ3K5xpPFP3vacWbh7J+30yzTKouSMnC6DE6ECsTohhJTyMacvYwrNlMNYU4FA7EpmlZ5uspsb0dtQNIYkDqnrytGvgsV2LxvFpmZn74mbLlJGo+r594AiojTiQPGQJZwqGDAKi4tIyTAFU8ZwMF/rCKp0rpTAZi/QQdsI3oAjpbCw1sstf20/Twk9vtFbeghGlZ7ARn3yGcHWGrLbw9jbRZgSXmW53e7ORua6Vyj6z40uxLov9qCyAwYGe0CVesDLnUFujHdR68NuuwnemQvdhpKBdMe0JfT+gpKyLDpFXjcKpAGWhHAQGrvWKaBC91B3CPEcOJy+prRpDAJNyRVX2J2zI0imGvm/8oahHGGzbIiRMTcckhnHuSj+Jx7tGME0Cqxc9Jpaxv8qJRGjQVfxuG6CTg2lVgSeESi8EvqPk+ewgVzqYy393opAkpMlUg5Xvo+xm1Uhe+mShZ3zrtH+tBl1DhWVtJhjFOkrANqXeHLxFmryPps0zg0/4GQQgCcmDVhc/KGqY3T9MkuvBTSxSJ5Xl6qskngufFjgT+MjoXVKSsxsRb3+fbaxOxtpSL0ZOL3bp4ocBoLM+uWrvEp0uKHq1y74l0QycxnOtRiweJqYoMKmbXMOOCyaD6vfnqI6k3PtsaRDixICfxHsEe9lRdPWV8q913VkoPCS1tWla40TpSQcYrLZr2qvJ6zaT4+MfyffFa19X9JXpFA2EEiUdeSQTfiOKq9mQOnDx/NC7DaXrrSkpCtcQj4sQfAmoRK6vHjp331AnvuzENGA/3tebhRXt1EbJMB7rO997u+2f0ps6/1iq2svTPthw4tcjNjkp6t7f3rBwM7nE08u7uMHOrP7zO8qZCXM47ai5u8soYgqfmiL2vRMuhxsKy/MYlj3ZMJ5u3qBlYx1NLlk0ceJnqa0ABCBgT12/USZ9MQFa5PxLFEOBQcpDBR6NHepeuhBWnKW7uN1okobL0q5FAMwXG4YqEIdAJAE9wcuWdcKJQwkivk7y+1FtByZJxzp1Evf2Lb8ADjVsGk27S2NpETMg64Fj5IapzjGyTX/kopW6G3b4u3zimGhU0Ag1Si5VcLDkOac1L4hF+ZNnALzRTX92d9F/ehtg2cN+8JXVW1K8WGctiS4hT9oTrAkENdZnfT1q4FdWh/cZfWo5X9nS0suZIAP4SD4KXb5Nl7FJfeKYGOayUrPmh1ZTljLMtb7o3bjPAF1yuYdLNdDQiakm84FBjo/yQ6j9UGOJ/yq51VYtulrZZfx7FGinUJuRBiAv18j4mSJxfPrDykyc96rWj/yf5ILrN80FzMRbCeR1xjRxFSrN2/sfdaQHYBVZuaBd19S8eqDSKukbLfWOs/fhmZ1Zijqx4Su8o0SpuPtt0mrVrnJxa4Ld/Zw/EPzyOsFqAPv+7IGk7hmSbgtMYQFQ1HAeAyHOKvBVIksTaFreeRALgxCj7NsLzvV7Cky6dIwFuc1yT47rKNmDf9rQPPA2SKigWobiQJEHI9ZAtO0+TLA4GfDw1vtl+YXw9ddt0zws1x+3Yjk0YlhNAqrjrLWW/8BqA9/UAjua8PDTMOPBqN/Ua869HKMp3+7iYj/p+4zfvgsg6vID2d3TdHZ4fiDnHWqibRJc4bvzxK+z3Gj105pQl7BASpYxcm26rctG2cbI0agEHX9Ix0034oR/SE5uddi31uW460OXUrux2QBmNeH1vq1EXOJUhmVBLoZAXRRUbmV9Aldg/FrJs12Wi6CrVRmJ7yfcdwrQKNkWXyXzqZaNHrF23wliwM0HwMyqMnPcHLwujuO5Ef5y06PwbAjt5aPGN32AdfqOSzOgPki7ANWzlWI2fl3BF/TFld6YR7+4eFScIITonDVz0gojhEw1wWrixid1FGJNSbD/8fmR2srD4MgyRbPLKNqFBCe6q2hoBMZ/DaWqdpHCRveyoXkXiYsByzsVcdx9RS0LJyZC/KAkO1HSQRnmHJr7Nvs6LM0rNZ75tl5bFMNiDx6IgVZmdxvfmscI+Xwu7Y9yh7ls6em5VVF/ZU8cQR58kz+zh1Q3WqgHn0ZVdkTGfdqd4CQiNtqqKPaZw+is9SVtaTSfMdaASiRY+9ilQH+kHmgdWNPmUZ+znXNcNnSQS8CjqpNEd1YiFtPKqPncBD773vkGefsc3WMjCUo05nJnQfRBFXWWhFv7N4Oab53pvFeoan4hGF67FxxEs79e694Ccw5nhfujd77IW/uoxDkVX2whCNA7HrvT7KBCgmD0yJ0I5gY14S6CORd5mIVty2gGfeSFokSn4K2mBrAb5mYMokor6oImaUSn8B6EUbXxKUw3n1hZizVBRCOp+CWN0VcYND/GLJ2hCAuGwnb4xTQXhR2eSLMOrBdC4Y5GfGhxrZPSdA4yrORrAFG90JomK7A3ZdLrUuTEzJdXbfUe6mHD56LP24nY5CCQNRhC7FAvVulqKLuP6Zm6dFfmj2CLVrDEzHNT1GTPv1MP2EtO29PwMfZ+WXGXTUcIADDXZg/lwsf4cfJT+3CfgumEONftjDKtQug1/ICO7QoYGvMg/2K3LNVauUjRUTDYg6G2ZaZB2/F+vS5UAxwM23aROqtDjyayIsGDfIlmRjQC4jqMVbt9jwLZCCK39tMjC9HZPBx7WM/lWZBJ3bgejGDPVMnCAcm+q9qiRSTzK0cwlL2DquZ8jOisQYP9zWRq6NTNAL8ybLCKHER2+BG0DyBUnfSKMRxc5yfspfg1NU6qG42K54nyEs07qeaXX8wMlxgYfAql2wVVShRHo5+n3F6z6tiT6JviTGxgoB2TbIrF5y3Q/6/6KP0CJ+Gb6JCQ7EUW7PRuY9tJN7NSgTgXQ3RCsgaHcJymaQdwcYCXrmPjZmxhwK8xmVSt44iyNNuzaE1L01HvK+Q8hv1Nvo6WyneNtmvcTqaByqK03JBH/k+g3fJoFWDX3TaB5hv4qYAnsOq7zGXPn/H/frtEcR7ZIxrV9RbmOyBKaYGGkwSLUTw4mI/xRcu0tyCoflHyZFlbxwnHe8Wt0Pp8O2TBBCwCp2rTFEK3VtkAmx+yM3hIE3AprsCx2RR8F2ffhF+Zsh+tUsmpXilsq2uRDz0p1P4qt0TAvDMqwQpC91I4Nuvm3jQG5Qs0B7LUDpc+uBIhHQnlNZFiNLUsZl8qlQKEqPTqfDB5ggSGQG8QOI0EFSnGrR
Variant 2
DifficultyLevel
526
Question
Alvin and Vivian were batting in a cricket match where Vivian made 160 runs.
If Alvin made 52 of the runs that Vivian made, how many runs did Alvin score?
Worked Solution
|
|
Alvin's score |
= 52×160 |
|
= 2×32 |
|
= 64 |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | Alvin and Vivian were batting in a cricket match where Vivian made 160 runs.
If Alvin made $\dfrac{2}{5}$ of the runs that Vivian made, how many runs did Alvin score? |
workedSolution |
|||
|-|-|
|Alvin's score|= $\dfrac{2}{5} \times 160$|
||= $2 \times 32$|
||= {{{correctAnswer0}}}|
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 64 | |
U2FsdGVkX1+z5o9NhP1Fz5ybJdxV22tGinlNs49cTsyv/T0lWkBYpCdPuPow6McoRj3sMJji/jaJ2C7SqeHOjC7XbFwcnXGy8P6tG1/utfNEkES7rV8iVBgOo9gBoZ/R/jGDk2j4zW7skdu6jFqdptXuldE1MdPfp0DjfGXxgm3YV7UK271hxTeK5lAfo3v6aXPMlYJ8CDeJ8s57yId5oETp6N1NV5tMTOzMfDqG38KKne4TJler/uTmPz72KgpKoY/OXHn67lbN3FQXSHvrufrn2XGIwBW4mbM2ql2vsc9+PkngjuCbu8b1YpcqkRUmcSwEGosv8P0B7lsy7b+a46HCeu2IUvD1JDbqwEJpe9hYk70IuPt8MmPoDYlxDwAnvPNm8IYsWeDuC4YaH/YYooRk8p4FG4BhTr3YBeZlTpMNclKAfB2OgyrN6TbDyFoDvNADD+GwBTMPjlHbjM8GaIdVp8nUrAZauOhtZ15gtFz5UiS5QEq4J7HrnB2kwC/+9X8FZvIwmB2pCO1CW4B2dFAsRar2TqwTZVfO4aB0DJHBBlaOlkrjQGTWYncaC/xEqNNQhl7+BpXmtWVRfa+Kd1P3d/0Ye8ESg0zt/pLZRgMtZmoYS0IZqUEpYf/QS0laJ9V+y+f4hRIFAPcVC5Jg2t71HW61b2myv9RmYG9bDDDvU/bLClkjZ2d/Y6CBs/MimO6FChYTe/QHSXkjv+eE0BAdR8IsC/TjpATS7bPVw91zNXL+OuBz97EZtgTXVybcIQ7CmXdp6PZHTT47LtowLaTQ1ZqzHFmVMZJ4PnMjRJkqvn8PWSCSGIMV1cbNJJfp20lL1G+02Gj1mNmUyp0f/A7hDjd376+jxj8pA7Db3Ggf0LOKW6hDeX+dSWVhSkRPz+Kk8Panf2d7bnI+KKwAwCgXHVRhjTy7U+VI5L6GPH2SpDlUJGLKtMSW7PLq0zEe24kxyr7oDy5AwlgKhmRVa1Aa+vxj5FxzIv1DMF50ndsWBhjlAv+kYMS6yIkLaON7yCEuTdl9fkwTWRfHONYIQ9BnauCHpbORQuoSkcIHI3vvpjI+mHWODmHYJsd3iNqQF0ABqDrKKheWOcXz4OUQLGzu/m0gcmqvSuIJRQjEjgoyASFC8yKeAzZbRzWN9Dj61pYohDOhJT+kcu+USOFLk3X+lIbKWLtgnKYG1/TB83Quf5tH1tZbH1oNBNFRsYk3nrk++N4gMxNVsKZK64sGAkYvxPlbQTTQOJWRSldFylx9PgcSA637Qon0OnyGPX4uhaMiH8tWb3jDBQgWXqzy39sX3PvL9XGMCZeP7KyP84p9+uElmriiQjW5kjjEVq550wnq5PVuoqILttMApGsQXAMRt36GwPlOW24EfbpqbfMqXk8jVT3oE3Y1a+aXWrCEq4TIqwhuCoUwUjNPDDNDNt2VA4uQDd9fpwPj3rOGWVzJRIDddgHTHpz4UQAEEIFsH2RkhTW611seL1xpsBdVxtP8ILOd7jKCj1V3S9npSF6R/rffh8JEW4bxsMkpwAYBM3nQvXQAcPqPM39gepbanwz8Grk1FSqhjeg6zNreGZ2expSSo9wpxEYUkmMeQfdP/Sx/pv+yhlExFnP27H2bfX8/BS8sNAkTsqXFJGG770kPfHoajP1LJxAF2sukP2CbQXOm3F9lgrXcImgRbQ1DTK004URLcqVqwb0Y/GF23HX8TVXK2azusmdmSuWms/qFCJQE3LaOGy4GljjfO915HqTOOtZeHjPJL4NbXhtJ9bMkzl3ZJ+4WgRseEr6kWsqXgiA5RI9CX+cDRYYBKW4Y4KxkUjE1fiMQO7+FFdmvnBqRJ2dDTI8aY6qxgjcnrPSkHD4Th54SwTVhp6rZFiMFC1BEMEubFZi8oNNOhKGBIbKvEa/vBRV++7+kfAmyfkIaxtR/TtfysR94WzWw1tR8VKTv1zofqPsE6p2QSrkItjaQ4liNs2e2Cvy7sCfdTQpxZu87Ed4P+rkND86aB5NtuWHjKUrpQwU7r5Ll5ISgPU3+wCls7KBlTWCznNI4z9p9lftFOq+fvrj3mcSKhBC90qDsHq+hAy+QBqoiPVhRIDDc9bVVqZJ/DlJBiQq8/yLVCI1R+50vdsdqJh2HoDnudaI6w1S29ARSRCgx18L+EUbDnlpDqTsJypH9qk4ByGKrBi6ElOYeubdHI06lbx+P0skGpCxjJFJ9MVTNvMbxIdPuLvuCjbg6LK/tw2wJFFxdQELxYGb85FHYpy10rLM7eXLu0rzR/jBxHk1SF8JH/MpbfnYMDGWtDUQ+pkEJmhomLEw+S5SbMK+PNGNdHg+hvkMml10N/3LDbum89/XV0Arh3HhZm23wJjs4rMgQWIU0FtZ6ztoFpekktXZIhJ/3EacbIEte+rUjuv9kgR2mAw7hnHkGy083zoo99HoPr23FXZVPOSfDN3+9V7habaliI+dffST0dpJ4h3+DebWebFYbScZiCNYHwPe4wPgqdTBMo+ak4jDUA+DW+qTdWH6p0Sxmv1m95MHzxfZJuJmbeem1bCbOUjQxJ/40lLI+ciyY7mq+WmhAaPWDrv3hoN34n88PCRl9Db8Fj3jeg7usPkv1whlpxqqNGJJZJj1v6kFyeAvVRZYsKb+v403FePn4QtV5yavAiL9dXdUqMUOM4Etu/5t+s5jwM7XASrl5zUG7YdmGWXnBNL+11H7ouZaLPOmFbhfIRvrgd18UYhKyGQZdydxm5YjEA/rffqo9kmC+h49xPMPZhDriNXc221sMSTMEfEpf/TZt+sLGF5rE2ymKIMrt+B9gaTEDUlUvRHC9ggZ6C+QvGHagt6f/WurFvaAa2RU7B/RMzuRVj4Gk6NXBV8gGYBw1RER1ny7sMCS5ePkEvwWmlubxF8f7FUnZD5MLsr0H/aOOfc5eadNchVMHL1vGIk6BKvJqJn0pHUq7b4Kattdau981bFAOOxajpHdKX2zOcBeZRFyHK/LxMyElHpFxKdsVYrvu39zJtS701DzqYKHPCgpV2uSzDq65tvN3FFkRFoqSHONnDdwPD9U2vGI4eEMb0IAW7rGeP6mUQjwWAUqAFDvRF5H5Tb72c/yGZ+7d8AKzc/yAF205FiLSHgG/rr7atSJxKMblO1m87k9kJ+QjxObellAy+sDUXjvlWbT3N/vLvpc2JEuXRalGni2kXeumGo2t+vP7LDeH6CHwXiRVgNnaaJQz+zOhfTPNPQCRe+JKTRzmplU7UDG58FB8fDHX2zTreOG8m6VB/z5TSUi5ee/d73zIM53V4XdjOnj2bD/nItiWftJau8h5V2cm8gf5FHtM4Okej2tqDEoW+Lhy+4JAzu6LOPYhfvYwP8BZsnSzs5e7GrVd3uunBoGHRGDj63l4Uao4SDm/F6i44JMco6CJntb7Lj1Js7QiQov5TCoJZPmxlkMbbiKbVlalLs87qA2DGi8+4isVEdYA9XcOvoybN/UrYMc7J0AqAKFHNJQC3tmM8a/Gx6NyJm6tW3hshv6QDnG2eGEznMpTJCUYOQb/KaXCw7o4HTc8Ww/ZpWael6i+ot8epiHKmrOMz6qeOM4Z+uVyeGVvKI3OJI5z0JF8TJx3S6QKnsgpUOw3NaljVMP7G0D6ONpZdjoTO6y4mXLa6KZ5w62wXigZdeICSYWexylhS7XtNl2CNesYX9iOENZHj+TAqZA8BHMBCK5sA8qyAnfbdIR06g8WOs8+vJgqme527WBIB5YeMz7wsqOEI5g3iQY0ZFhboYM7iKM60v9/ZMuEdbN4x7ksBzyJvvcC12/qwZOClXIiXsFrDjIvrDRNS3LLMv4jc8J/sJf66osCL2lOJJaNOBurg3tXz0LNVIbLQwL41gP2ccBaao2bbhxuH3pDfKNB3kqQdhLI69STFEcM9cecA6mPEGSxInKq6NyZ4RAqsqyvbt+bY2P610Ajd5rCOHJDwdMwWi+G2ptPSwoBtB099ERiS1505gCPFTK5G5P3pGDufYw/U9w/pjCidnSfKyJ6AdnswM19RHbJKh8imwsxc4yAZZy5PYf4IVIxG4GxV31rW+ieyH+hVOv4OnK/GVfZPQ3xvomOPsj8YNBud5pVAdl7qSGxO0/ZNmiNq9JkJqRDWuaTefsmDvdok3CIuMbYjj9+ck71Gzx6LHQaEElWYcFRnR+o9FIowqfr+ZrW5Ut1RKUJB4NRgss7gpVZDAwQCz5KZ+yIxiBsCoK/PwvJCiFmxvisX/wTuSHRAXfHzMBJC7iLn1Ij1ELmqNfWN4edPLLLhXvaOx6xCuZipBM7i0KOW4GSSdh9KyNWLpJJbqV/gC9i/Vt2AspOaQN0egG7AE5ybDjryu4K1Zhv60rsdpdeZct3FCm3ClcrUI5LB3QD8P1WJEh7p/PnRWeq2Ksm7h+cBHiKdfYB8htHT9WZ/RDOChGOvOvxkB1MbDaz7B8pmdMxJtqSJcecT1OPgXo9R3DDJTAoYH2gZQqgiCbOMkFd2mbmTbjSs76XpDqHbEA2ypXZYlE9oYhPiKhXARZ46uLXi1F6ukPzkUnRHkhV899LvVgEJZ9T7DoX3IkGBlW6ZJ3w196CUj/i+hGFWAS008jei3orfCNsGdM/ndW50+FNoWLvH4TOeJN9gLaQnx85/Ps1OOXTigBD2neeqcQByFFnnkyATNFz/LIojglTs2tcB1ni6tsNi1XhaDXWGcQ5mC50LOanzKPTeKOw4IcqAeRZgXjiqSOFVScavIybcAPKHN8gP5WsJwq7VR087F+DPuuHXNOydY52xdPMNpDEwfkgaNKQWGI0E+OkfvrhSi8djTxoFSa7bs+kwkz6IblQzHwGctnMYg2WcefBS7RwhG9cx8DpFR0sMW3HsxkkuUf+zCK1v5KSd6utMSSAg6mMGoaCBXyENrc2zwmPb1U43W7hcS6UIcVIxsTK45lSNIBIat6yJiq215Oe7dC2AZXXcKzMZKF+Z/wXU/q4EhXeqSMToe+HAvsLOWMUaaMqslvy+ldbQvqNqnoPSwn6FFmOFnWmCwxe2aRNE3Iu0uEYlG/MtfnbFqbbD+u2fZWE9mmIREHT3ZQvRDDcWzk96i4I+LRKbJJMynrD3Uf9/2Fci/s5/JHWK8Q3dY4uiMlfeZ/Qr7b0QAvo8OKtGntvR8TYd6FFkC6bj0yrlzM2siUsTSsKlu0xGnYMFAIib+e4OzFVsgQDzvQa6TlIPq64AnEkZLpu0ZRKt3x30zwuap8QpAKLXPBkBDdwx0mPw04jDNRLTLH0dDZRKmZjLO93HFaNs0MaAj2Ui2bujoxySwbqTrurFedNpNCZyM95c7IP44Y7HzSjC6COuq4h9OGWsJ8S62bR4nWjfu+u1G1DE3UbSeW+2IYJf5pYMmD3nXFMFMvMwQ5gkQ8nmavUUzw42YNs+G2mRY6hnZtE8zcQlfNQqXIxMJrZJbYEpkDxxtVsBQeBACfdfStb1/sz+uBSVX6RmSCjJD6kFEuXAZsA2xHz0RnvpPkM0krAgkp0/d6KI0WAodT54lKjxmWC9NfVepC1/DikirhRaLCEdl4iTnl4I+exYWdS5TvsLT35mPGhB5mNqQI3uLQCbnxnvLOnA0Zw11CbZvB0vpxQYxCZqnDwXnGo5qfh7Oq0SILK7Qjl+9hyNvVezFmiXdGXeRDw3ubs4knvUG+W15mJkpR3tBSqF1Tmip88Y3myafHZmc+HrgGBcs94sWe1aWVtLHCM6sp4JF0SHQKiNYUT/J+jaGX8YAWJuBXJhBVJFg+35sjfKWvcRIBiKJPgvxxV7oPlZLQVysvF1/oVWlQgKCCT0NkmN07hNRUlCGwWVSQtXlXES9eiOpDU4stHjKpeRamYcv9vfyObj4FkdOrMan+zzley5EhO7txUVswJ46sFk86tFveftYcOiMpnLVByB2lk/tj/k9PScLRedyzaRFYIAqVp1vTwxqvzc3oeoJ3mkJeDB3S3FI9FvLT/5f9ykXfh1RZ1Uff/4wQItmdvvIFd1DghVaoTqGiRx4k//cIsFkx3l76a8wHJljb6u6dGM/kf3l2ezsDXsRbLqxYaWe2nPeZWTMX3wzrXAikW2eW67NQ5EgNNRNR08iUJ0rS+tDCanQJ29EoIQc8nAjfCtTGnjr3zV2xax/sRRUMhcT4mhJTkDqNAI3dWQn8PJle9QyTk29bCHhtQs0SE3qjbSwqpzUuMjwReD9vS+WKQzXKeyOHRtWe+qGM6bEOpLGmC5ukzEYN1RevSyLK7XQFVPQYmfB5CJ9Z+/gjndoJ75j1RmefP1q8j8n4jN7LR/+elOO6yll2g/l+edgplMFsa7m69YR0+btSyfdx7S497BwrVFUc0JXhiGRfU2eLMWI0gTqtQeue/q+afHsKkJEC2LuA85hcVoUc5P2g/cgi41/RpQBqhKbFFeyWtlFclAQMjIzH/okwWkey5aNmSXgq44jeiV1zEmnnC2w5NsGN/b4/KZdmhaUNx6S6Bn4y2DAEL/Tgend6gDByUtQDlYqPHivGJjKccE4N3TeiN7VD1weimnKKSsa9jesgUz6zUw/l03/KaGOUp10J710jRSqvzCbNzIm9j7VIE6Od3eduOKtTsWxPHwSlF5xSsS70I/tXNulO59BSxqa2+yFjIDHldmMLgYaqeAYjFYvWJkQ1JszbdTd8OeNENJn/Ih1sSNd3YMA/UK/3sftJQuWOPtZgWJvbnBdvouKWkSTidv2zyoqWUEP2RJXGKFSdnoa8ytk0asnf4bfuUW3I5uz65T76AwD6rrKMTLOVMzuAM15cVilgMHo3E
Variant 3
DifficultyLevel
531
Question
Cadel cycled 140 kilometres on a long training ride.
Leisa cycled 53 of the distance that Cadel rode.
How many kilometres did Leisa cycle?
Worked Solution
|
|
Leisa's distance (km) |
= 53×140 |
|
= 3×28 |
|
= 84 |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | Cadel cycled 140 kilometres on a long training ride.
Leisa cycled $\dfrac{3}{5}$ of the distance that Cadel rode.
How many kilometres did Leisa cycle? |
workedSolution |
|||
|-|-|
|Leisa's distance (km)|= $\dfrac{3}{5} \times 140$|
||= $3 \times 28$|
||= {{{correctAnswer0}}}|
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 84 | |