Measurement, NAP_70035
Question
In the figure below, square ABCD has area 100 cm2 square EFGB has area 36 cm2 and square FHIC has area 196 cm2. What is the area triangle BEC?
Worked Solution
|
|
Area BEC |
= 21 × EB × EC |
|
= 21 × EB × (FC - EF) |
EB = 36=6 cm
EF = 36=6 cm
FC = 196=14 cm
|
|
∴ Area AGF |
= 21 × 6 × (14 - 6) |
|
= {{{correctAnswer}}} |
U2FsdGVkX198TviR+6K8XXWbKf2u/TTp+JdMnZJGQ3+8D1xlt0l+dfdVKeSzDbJv2vTl6kjWiDDWGt0jWvbuz4DdOeAtTlesKEjLFbxuQL1FU5FLTpaugtVSRvshPUAOUpuRuMDoUqLtM76GyVEfemBwo14tt+uogfJq4PZ5TVmmR7roLQNhHPDtpF7tR4neHWW2UzrUItiuqQE8mYqOOTt00r8ioBKWvMec9AY5egudvAJCu8F8mr+wZ9xLc0i/DPkGulI2aSSOD3bgapg9CQ++ayySYsp7pMKvM8jVyo+vimRt+86f282pCYuF5FRmFqy5FW7M1xtHItenJXe00w26QViPOyy1MLorJz2tzc6gkW4SnR3ip6VOd0hEY71c8fOmhIcnqNvbszITT2i9fKbYUOBV9f7I3oxnYxpVGfXhzInssCamB7N+K704IfiO4Pb/z9+PZDU7ZgIDnwFF7fCQFU4oQ0iMAyn/clpkxfVndOszPnaVZ2GF+9CQecTXCHR9ujRspmJzL1lVVDtQC2Jd6orgAMWX5uJv344q7Nl9xCge/bk72apae0AM90mhnx6UOIIklDWWwWIp79VOPuis1UqjcS4sexJTnn+wVX1EpVgJEm3fQtsQfjXrkub8ka85Zyg+bRk9WVuH5cOphKhqjaks0X/aiFK8GAm8xeG4xoHUe9EJOqe/dZw2WnfTYlBTFLOiFmFE12muVa1URtIXWsBgcwIrxBBR3gFYxVyAnYKb4NB9xEymZmA20RQrzbNfhDJTdYxOdSeI8j3/dzV3W+xh17qXo+6hUWeL2p/AJH//0yhDt9OQg3MUnuewGtTO9kbQsu0KV0Tu9uIiD0//zBG55NDr5Fi4O4F96vE6u4nNLte28Kr50/R3ukqGTy0Sl4sZPgsgRtfcy+0sWvNeg4BjzV0Y4yro2AiHrz7840ccdRM1keKLzF6kNvKq9HMyuwbrBhkk2wbt7UW+u0eqk1tgChUk0MvYcrlHXrQJAtMpz3+S3TlG3ysoDGiR9KXyH+j3H6qn68F/1WASUA2dpB/Lo8LkzD6aBi1ikEdd5Uy6bBiv6oTOo8CLTjecGvC2d2t6UStG2MIqvUpejxFfhSYYGIigkGYvYwMBOrSHyKEUjqdAq3ZSPNwLBlP2no2lyCwbFW/hfK0CToQhwU6RoLp5FHHpFcb8g9a1aMAvbjArxr2PhukT3byYJp4qgIlY7yTF5+zwSFEEZbWTeg9Hxa0gqnjh/3Sr3A1Z8zJix8JN577gu2fshle9/JzKnkJVaFsQVJpskK2TGkMxPiVoLiZaynhSZOpw8WUgdMIIDZSFRAsTH8orh8YQxURuXqtdq37raZ2A+KkuSQsJqf4alz8w3JNVdKdCdBDFZgP5edqc8NhddbN5oOGKPBobORYjlMI1I6id02Dz7YTNe2VGzn6xBkUZE4Uj/1N4uZ7SIUxOKoMa7KBwYcZf4T24dgfPFC3jsNBAwAgoum2Xpeq0iLdw2/Ftq7kYSrcOPLETs7EZaELqaf5M1Ap83wVA5HJ4H57R8KHoEudX4e1u0wAmIyRPkRysHL3oCMokwYfFX+O1hA5weo0I2u+k7RUyEMOu1+j8egX0zNOK7DD/JrTMXVvdtDOugr80T1Xf71iYKPa8jkPqWW8frQDUsBgNMX5yay1KMmoJzrRbxH0ehn1i2fXL3kX5yAKsU1kFpwNhcPxGHKQHoyWSp+ioT8Uw22i56TBrXQBXhoTazpV3eaW3EILBbEPk54uREBnm2E+R5npkRBwPsI0HuQJHgnt6KVJVA5TW86/7rfDhgou9z9ElkZfh0Z4DvylImViAMHNe37SfgITvzMQZkCugtPt5lbCwV+70KAoKXE2I4D6zc+Y6WCo/QPDS9qSG0+2zyRLBr2aw94xtYz+ikZKIRYXifOsP4qJ27YquVGuGDQreplydBe58S2FBK9LG8fwU0YRRR1FUKfsLHR2DgXJFufScj5L+X9eAhk+UkMTrOuuHyzAdtF9J7FpFo8J6OCTFH6vQNFfi7adDF+1AniUsgTtrKv2ICfE9tbMokBUyoo+yTfBkWh6eCheAvvrZw2CzjrzPv844bTcFVf6sNVF7elO4WdnyWhjbQaSjqH53VfhGLXdPYqryo0yg4mzI1YS07MonLsF9YBVCXtGmAfW2moYTJvqFH0NEN9FCJ/QjlWTIffYKGHFY6h/mGCalyxK79xixVhymI1NRM29WK9memxXJEQqE25gmUdS+aE9L54sRqQQimuORNTSaKo93g5bk1N/aUAo4q7aIUbSm/ct0NkcStL1diL0hILUiKG0ctSm+xIyZI1UdmKVTeqfVLcKZnLdGfV2PVxW7kpyMNzooHI0lYboWE3BEqSn5lFfcnqrhSfuLaIT27tnZz8rbkkLbO+JfU4fVMW2P/2BWDBoSUTGY+6GAHK5N0DKaZTnPWygDCxvb6iaOmPvFEfFoBlxCLfczzKGxR7SKBaDlH4sl1nQt6fyewe3NtfIcLhlotoBOJrBSTPFL+1HIMTXZphbHeMQVTw2P8+wgOAQ7AufO6Z6wMqCRrKyS4W8j2R81HMckbr/fkoDNM8G4qij/eNdlipqffwrB0ZEK72atoYe5p7kYw/hm+XPT8hTTu/3jwqKIhGBe715aft+KVkqvUu5KkinLZTXK1cnpg5o+/00jAcNTxSLwVvYBh2RuTxhsCjVzdxKszqXKSdqrg2HiwPjBZURSWFCA2KCOznlX/tGksHpCZvN70mNZf375AyFCm1OGVrItevmnmxQNkSCSXqMgK7rCqWkqmwhzPDwu87mL7mSXIm9qTES2jBY4ARL0A9pPlgsHhm1xF8yR447xp7VwrM7ubQJo2rKr2NOz1cRCVBoXxnYivUdgOfX+v+gIUfwDQfn2Wx7qefPxP772YRMHnnFweRocDpaZ+HXS5D2YUkp2sd6j1dzhIaUrXPHHUVM8Qb6myu9IhUMsKUzvZdF6vPPoIum5gYeaV8jVYKlPqRott/6iXLzMpMyKB0VOw8f/ZNQl9iKr2a/x3iVyJrKx/MJ+quATqIxzxGeWH2HBqeDeXCO0uTQiDSku7Nhs+9N73zlO38rGmdEpO4eSXbWnKm1EUtTmSgyKE1QXs6VrWOf7vzYRbk7+08PXewgNaB6Q8RR1c/hcVk5khS6fRVb/Hd2q8vSG//RCWz0FuxmYDVrTY5HyQ9CeyBxeJVy6jkwFbRS0/ULJH8arEfuFlk6x7MPGK0r2lad2YMV8y7PlcsK2g86XrajXZgv2aMESmAx/whoQ61rsWrotSNRqpz+6Okjm6R64ZJ6o0e22HaYYbkO+BTCUX1qoT+SdagVqSBJnxrfNp8hFvjHtSIRQ4OIsXofiBs9KzhlypbjtiUZicemiqTWaqDBKA/1MbSlrSi5EFnB/IMA0tVnn7N5IjbNUlFHj3Bw+PDHqGazhMPMF6XTUmZ+JIsg8rQ5UPy9ksvZAWGcSaZXa65SMqNDEPf0+mJeh0qBb5PBcdZuUEiAvz/9lUKTnJsooryTARcZbR2K5q/cKyW099AvieT7294O1WFwAE3wTzlzcAM1E/Kzgiwiih5lhPgcmJQjuDfBZRA6UsTjR8d1t9gfDmCimwdPRZRZVJuSgMkfvjVOUEsS70F/tJb9Jq7C683l1JRauAQdq713X1stSFNZz6O9BvAcnKJ9S4JMYdYF2ny6aUAtRbzB0BixYwzqPw9HonvBZDDDbEu7ynVfXV2EThZZtJu5pzu7hdxG0SxtjWY8eV7biJ191N4lAaocTYrlMXUB8rWZmVppzSz0b/DnLyOMgJ9rkIfqbhwW4GZhB2qQ8YUweEJT9+TUlRwURAgNnE5Ox3E6cXSrE6AUq+eZ8FqESFV9yKLVvdQXuWq1bPlZd9tDtAaa5rB1Iq0soLwEtwY3rSrKRir8xBIgr/B4S6r8nvVsHIkNu64QtS6tSo62S8Eh5thFj/OGflg3TKYXVq7WWB37bJ4Plt+vqejwLXbY6LWyVvl2D0xxqfGjEnYqMbmY9l9EtRWGuwu6Jha9YbpEqooHH73OE4smWLeStkufID0d71bmec+gAhWlW6UHz7my9ozMQi6OdmcWUsyfzB61xOb/GWyNy2B46d7UQLmmvtqsqBNJ/7HkIU1QSXCOGHG22O18At9ECuVjfD+RuSX0m6hdwzLlfUyGbu0pPJNWidW8kPk+xKkVGLNbfuda/1ev+kloMenhx4BTClSCfdJF0U2iyeO+FaSHKo1/p9lhgAV23A2Rc4i1QP2dK7jXU1OOfqPcfWa3pKBbi7fR3XzoEfmjiX/U1QCVjhF6aENKzDtxliLeFSdnqWpjJ4aFFerqBPvZTEMbc8oXk1r0PzS+9NoGy8w4kzLq4/i6EKVeojhwG69yLiRX3r/T4Beo6HmDA9Nbh9NyOiecLYr1zhAULfgRjY4lRDOWN6bY87MH7S/Ntfv5/Byx63z6KpREt54tykCy9NoDLXz/9apCq06CbsmeAy9yX9oMYi/YF9Qm7S6exG9BUVDlgN+jKPZFLf8/v8q3rGpKY277W7UyPrP6PS3JW+rOnHh7iFWfvc8NJCyRcXV8u3sIkZztcOFJlwlpgHmqJvawdZxP4Sm/SbQN4yiDlCajYCbHB5rhZUmoghwiL0mKPKn+WROMB7uON5370T6Y3gf3O3fCPTUShks4LVjxXyqCeQfzpuCucC2xybYIGdfKsZlWvbB7ybXrEln6L8v3PNgoKio2XGU93XaxFCInpGpRYLypq6q2JocR6YDI0RMbFxn+HJfT5CSFjLaQa0vC+IcN8TIyc82cQyZBv3v8Hr49KAOnGOW+yf1pcrWn9x5+IdNcrsn2U12hhxFoARq3HSRUGdv8vA68WMi5oW1FIAZg2MsaCior9hgy/5TpFxfd9V8ulYWt4YuidiL4BBtFO8S4w+q011x9nkxfrDfpKAfRYxg+jWMq2wtMHTSVirnoy34sFKFT5ww554MXj07tE5DiNb1ue12CYorG8isYuGasFujngdner/wVR/KIbAme/49OLHel4fIU+yiCP/np0NxhSergDllsjS1UaojWtoaTkAFncdOV0P9HUJtUJtNxIlao8uMr3WyQFRSDQHBLwqRmFcaD7q261kAuBOnS+Y53RYNKK9VY4ZwK3OA6hPEHCez/gmqq023vKN8I8+uvGaShTp2fmtBg1vru+mFYHT5mjOz1Lz7KAMMe8xcGIWysawiXzbE9kdCoVtwvDe2HuFAUXLLxRAz5iZ8Mxu2UL7BR2uzDqZqE+ptjSEigKscNIJ8aQWKD0fBZereRJeH2sb9VM3hQn7BnCZjN7J1ufDblHNregRyn07sYff6oNYQoZ4+0pnTS93CBL01HOMCrsavbrY8vEmcobNG6jXb8nPXe6eLyV444zdddc7u48bgEjSXoXYcz85gbwijhCMIp7eRN4+moU6kKusjq12jGr11r3jKZPmacb56WIfxlRALvnhCiwi0p7rhFNXg1yh3j+s7BsaMgdwTzq/vmF56Vv20gabuwPe0fPO7QubUZACMVQbnGB5c6pcxVdJTpkov0nei0lq70yLrpj/2WVg0+7FFdMi46/huIiwpstnjCIYJPPI0Hw9hrlQ7Sag21nQf/sygtJC/jnJ8Vr7XeG42c0BzBknjR9QrXbqx/kuGyS6oHpCb+r07LiNt4gKQRYIA1fgxkkNUcTntZdrodbNnFPMlmI5OmW8iPSIhSCr2zwdykMalxFPm/3nLK9Up4URZkueSKzsflhaUcoy8YkIP1KogPip0vXJJ9Ckox3WMghLkDBmF0hQjzOPuP2k3LTpO3sHHUgd3NlXC80BZSC+SCvTVM3JQJqipMYfvcA8BQ3h5E5w45tVUmyaG8aJWClGKJbPtbPpB/Y1rOB1nkcgyR4jbvcIUnDsHhPsD1dNoeQMUxmAQSHGdcBPsiw89sPfxTVJR3Y7oDF51C5HK9HaOGYfi6355iQlimGwzSABuwMb15iojywYr7ya7KnRQpBbItpOyb3149RpUypM1nKEOyRvookBHEYKj4nBM+ljUo0cEMmonSJp/Tu9Q3CQZ68o+616Tu8o/FmHN/4IFgh8U5GVdDe193+ZZ37PlEljfUU+XiX4oP6yDIY8ewGycZEjWtlqDv5sWfNEF5gShDpw/gIZOHmL19IJutec0wcEtuvFmfhzi5kt9sv+iFoqOkMsyRi3+G0Kp0cwOwffubWgae1NZndMsnjBz9BDiQdmzaTS1C5JNEan3F02pC/pwohpnc07uO0Cv05TvJ96T9MYjB9F9Ay8Jp6S5HAemjT3UhkUUM1ANtnmts454fwy05JQRB76nen4whPNGqLQkNYhCwWDExI+Ul8kDwl8D3o/LgUUPX4gNL+pCSmuVE1jZm/zYjoDf6QuMv34XCl7rHzBtwj/1jbuMMy5qGaVI6zq6vnjYNGWOyub80a2H+ra1GrPu1nqtX6rLlX94T+lyH1UenutwgGJG0PwvkQb8LJcKIhy5/60KZRq2KiOpUhtsFXQfIMu4nG+KdJcopRjSD/cP8NSHO6FSSoHai4cG8p084QlmI1qcdC2P48zoyID2lHC6cqxZFYpmapx22EMjnaLojZKJnp6EUIWnrEKxkqYoVcjl3qWyMMuP4Zetp55dnqjgvqhFZuaMpZ+BQ5k5/uA6C2UZh3DjrWmEhEjO7DgxlHaJvG3mYrGuvHm6bzWQX/DyVF3qvJaZYr9wssMbxdUZyGBiwO7kkC9G3UXgfBrxgzrUjBKMtKzN+/rVwUJ0FTq3zNHTN9QYuW2/Y2WQ5zzNSk0OkcvoSwmmgASkie/i4USVNVWsVBp5sy21xlt+Dlqfjf87mP24yvGRXIfj6ORtj3ahwxIavFL0isOP77a8FO58gocFFbzsvk1ThlkGwTSlSgFJDYkDpMlvYJRydEbyDapjZ66SBzeuaz4sctwTczWkH9iIdsVRUlOHF+beyicOuFw/pCq95jsiEwD5ovisn4SWJVL4sIqzAFpVPrDiXfomoV1eRNuxXD4ZRZychDHMkOsii3Hh4xp8JflGzcQaA+SgsFjgBYDS5ipIiC19PiTpYqYHnBSHQNZYEIt4H8uggxwwJb/kURS/1MoGaj3vnse03bZHsiIMrI189c36D2yMYNUJvKivfC9yTyvxCp2d3ncn7UjJnrRv0DTtgZKUAeu6CkEclj2fzaDzrP4EkJFx/+LNZNAn9GThYhuw2PZc35wzpCW8tbIW4dtN1a0sDWIWktM4v67xMVbIjxQn09j+Z6Ndjnalmc/e/xbQILx9kHFIUFzqmMIKZtHQt7slpD1VNkdqwQ0auK+3l3eirWncPc3fA1+oXRIsANd6WRC8w70LxZsIfRCH4ipc1OXR+F5MiuxLJGrisyYgF4VCpNg148BPeT6zLyYLf+YhGELkRLkykNDpmiiZeI+EPKY/jybF0rN5mCsob8zapA7Yphp/1ehcMS37np69cRwkIaw1BOS8f4KxbuT4sTIMuJCTwiOLZREZjilApWUtd8YHtZ0QwLNI03i2MAHiLsIAYBYxle9wloVoGuCONYXhnEL61II9ua/MZHeYdCUDJmDDsvBqVxEp6fNz1g+7n/DU7HXnpMvJUxA7UNMs1zIl50v7UYwQGEq8MHUwduAtETlFBk9SdxJy+fnNTpaK+qhykeEc7bBXh2srol9uexWuf5ITLPTmbgsYd/XG2/SGGfjgqk9GGHLLh+riSPd7NpiFowCuwGa73c9f2JECiVZ5OxUiog6QKXho6tJ97fBbzQOjYy5a7N4iWMpfGD00JrPlpPKcxBY0kde77TFZDNbqJ9HBoxa0dxpwWIFBKuOvgZDyLjimSsVtxRofUBiL2ke5AfiPBodNIUoK3z8cZ5R4mphhYcjKqG2OV2H/UxM46NXSjdENV+AEx91tJ1cHCyrkFNIrfp2CzBrYCpjEMyDhNHDWaM+Nlhdm4w69FhbB7SwHzghYxwLmAp3Hk8qHduofhbmaYlD0qhpGheUQ1Pj0vjujC+cuK2E4RQHCWW6PK7tMRQ0+OqhTMc7B3Mn0V2rSYEpYgoC2bRPMyKfvKDUs8HnPyPfK/ovKP4Cw7+sBTZjNxOjrHi2LEDWz999SJAZAKi8moLyhxWQeyzmoJe8h0ql4NLlU8OiyH4RgFYjnS8nY/6piHNOrGYOY4qeAjWD8ajpvjXYdB6atnJ2uX6Nf+/8AiYpzRBroEr1wY1K0QfrAeG6pUrVw7Ocf2I/J9xID51+ic7BxCyY9fnZtrB5nKHGT5FNcuRNIbZBzJ3MDEk6DV/ivSTT9xwbBRgjwo/RtLXPe46PAvsccRZnkoLLLj324AsiPqWLskmLGb6dxsoJt+tzZY6T6DTii0rl6GTKg8TPKD1ykiYptV0AIGaI7Rx2+Qfvs/QK/xtzEPoMcjAwCJBa0KlWuhgXbi3rXVLl6Xk3sfuc6yF4oAXmXpjnaltMVQlSdFG25ZDgqegN94gJ9Ij1CKVi3+OokJ0Lqc1e9bZrLvhDNwdUYul+nZzDAr5g/kTnxjRDJnvapH3bUKk5SmeVc6JGSHjEoy9ZrXq8F/Ipri/w12vSt0z2meGRb3Xrt/Zhg1ZwuTM7tmwIn5qhrbQUQeAvcWj5LulpZXaK1kDIs/wbrhT++Bt4pjcP9WM9yd3/lAH0NwD3LLcAQW/ie+L40LResIsO3LUGsrzARfJPQQNYfjmKPoT15CXSD1/BnQ+4o4ubpCYAGqx1IbxgAbi6/khYeVl3ToaZ0sKVP1PgChyCCQzSel56zXNJFstuk+OtonuBSSCbh+D2flLCPhJHgOqKAh+jUI2FcNs+mnd/+hdr1F+Umc93ebJFa38L9R+3kpnQIGiC/JgKC8CoUhqFrE2IjiBxCbZlL5HDAwWAPCfsdof81zWt0jINGcP7Df+UdXV/5NKtnwbZmAANUrVwMavKhNzUGUOznzVvwH706p6GO2TGkSmxtS+H3OEeSR66UnqdxWuBKyWd2HI8hbgIWyK9t1DUQH0t+YcL6mBOC3g12qT7U+YcNYl+BQMOiUyaPppstVZIUfVqNvrERd8uNmCpmAWvOghfEFKtrdheWJSY2fFkiah/QLAio75I67E3iOxP+QCyab71nxx0JLZVafLijcOHYy8gPpQlf2AQc3CiwCQ523nRnJL6w8qfDjUw2rUr+VNRSD/H7ZI16GNhfh8H9OaVWlj5u2h410vOMbqAT8px/RESJbd8nZw4cFRaFVgIzARDtmyjWHa/lqQgi0rA+7DhFVCRAMqg1WFFsEZWHOcvtoSEQxI2OH/ZUkTyPMNdwm/p5jkNJerahj45Z4rFirMc07bA4oLVvsoZtKvqYQ2vHFEo8C5dvsfkO64pgkVWG/zetTaFzECzkgQtE77Gj6+W39q1J1kCFIALYVAAd5IO6c/IK/xvUcEqFiZYq1UN53t/t3xsfDf9zJYx6LXtzBcSxPXJb+LygkZNiGpgle622PVOA2i9goHpPNCbrJPSw3sAEH0+ltwOmNFeWBgYuMYOq2Fzfi3ek2EA0z1mYv0WYjBsXxgBtZaoXdE+YJbP0VmTPnL049jSa2ck7WrOSPHsZWAY+Aan0FnqtJPBByU5i82LmthOl3bn0N4R9qrNPjvm1IeB+DxFQOu1Vc9RhfRuYrFePJutzZOPnAA7jWiy7O6sH8H3hccWuhHjsAL8wdMYBhN8akei5IRDUA8MyzIaNkLLwSpL+9TjJiIfjw1e3vf0mRSXXyf8ATl+VgZTU/huqZ4Cv9ouKNkv+pdnfmMi6qSjImENvl31YjjczNl46Ou9D107ERxzlejCjm2H4A+hRDAOmnEOQr4nUIGHq3Wa124854qN7grO2iVeE+69hTBtAFCOQEsBPJTOqMXbJmypQJhtV+rvEPoT9wCitgDC7H3cx35S+yLqEXFkLsAhF9raOxtxs4oH8CPwEbDt1WjdyZ05zUBzQdLJBV/F1UYdVu20PdT+9jrOWky3tmdot/fep54pgRMElXlSwTfW6s7Q+RrxvvhWXIFDmDiBOhKepJShjbRhXhMBL9/5yjMtlZLIhRYjwyLsZWCfESKQx3Ep8PrccR+nWZrWiNaXQ/Rxfai7b4J7AicF4NqbN9KpFIB4yWXJIwMgnH60hx9nMCCzimJmUYEukz5rkfTtJ+3vqLJmqeLL4dvToBMOcJ7KJc9nzoIhUFoyVSjKjgXHLn81vszzeoaZi0WP/jka/u59hQ+UcOLTdR5hYRl7HjzFud07KVbrPr9YlcDWUJ8tkkpPk4g9+lDt23mn5B1i0blocuG2eD2sAD40d1izxFVC6Q0g1Jj4Ha0cBCXpVFoKi8g7sNXQLrp5C+w6+dc0on1ocyCQJMFYrTyOfCfK2HaSyw9r+NppCFIsuHbK7zSwwEVVyhMJ4bdYNg1s9SBjCMdkG/iBEGHlmvP2unIP7H1l9n0l24m7MqqP8SNt2Od+GhB5wSlzL4yOBrEUd8fqmef5kC64Fw5MitorwHBN60Eq+191GsDBn7hz4wyavhDtV5UtgLLwc/8uG+mUTpsrp7+p7/x/ccnJ31VfNGlCvAnXyaKUiaDO3bjtmQy6Vszw7de6iqWDFVSU6gu7Clb12NzX8hezozWrefc4VOq/JFh0os3EIfuN4ZhT+I/MTeP/G81nR58clYuMcopiepLwhBATTqP6ARpH5prb9eT6lY2zIYbK2dnJ3FQoKOwc7wSDYHqc32MOiXWbc4JlDpfTctUhHHUHaDFlFy6fgzPAsPMdLn2Q2CFpQSUCuD98YzW2HDIJilZRfkGauhy8GrRUdrs9hIll0EwoQoMOC3p/gHPBADkgjpQ/ovzG7h4nkukXgCDwlxa+n01rCmuSB+NPlN1ECSZlSP1q2i8A04omb3bbBdSrmzbT/jn9yaXRTLugU232g+nz2z9LKENAhGLJZSCw6Me1WSnNgB7s1fp8dqYByqKS0SRuul465aVUqWiGdWpGL6GIP1S4vpIeVgiTLeJMkUpXkuBG8NlprPllPa0qozFMJZVZLTSDPl2xQm2z1tLzA5vXhOP8+ZQNwhQSAOoiy/KKwYs2kmNwKU/Qo0YqCVCD2CTDEDFXCfnMM41l9ORBVCoLXxh/3eCu6RZ6C/VmDld0j06tKRiV14n+M/Lm9Z4DEgHnWSIzy63hopqA+SKU3OhuvesZbPeMAQnG+Rem4CZsloQZhcmG/NoT2xqWwSz7/RgjqnEup8QnwAK2ILj5P+PCRObPLJcf6DB2pj9tmQ4zsnOXmRpmw2PFU92Y/8T2B5RKh35h4ohJ8nX9l6jCkWXyV2+aygLGsjrje3cGW8lwzp6zGYBIDEjGvfxfKr9v7QGZHjmWpe5+1NePXZr90bfgodug376rzeX7fBNPGFVx1N/XrHC8q3fjwNgX/ook7bapBUabV0IWYxhJZpqfxElo98877sBpPCr67jQSKwWiFEFdRCSncnYUTLzCsAfrT5Ban3jNYsZH1K6gyxsZxHgi6Upqr361REHfAp7Aw54/tNSt/UnabIIAh6uTbsrOGkIvVc+8em2SQnfgdlYOwf4CwwqioHJkHtJHdi450QRxTfGrkp02yU+ETvW4FV5Hr4fbzpOj2yPuHCmeW0XdRfjA1/t7wh9redoIaa9AsrMSBt9AUWhZ3bivVwVpEXoWczdoIHqK0ZQyRvgTLMGw78k33XB2YHE49yaeyKvur5kLrSFHhNxFCd+N/bZnLVcSSHo3jykvaXUGa8ACh8CG6Dd74EmruhC+9W+VAqK3NXyMCw0e1rhRkKBn3uPOZNndWfoWhGp7CWJsZupJo8J264oGoaboTd0wAd3iSjbn0J/tuAbzkQYOy+MWPDF9jpc+YvLulzDu3sQ1z7+VZzY36ubz/deNsbdhDhFgMltOe2ENbFpglSZcT0tYWLKo2oNzob0QstyF75eKPtuEhsgaO3pGnIis7oKBZ567fGWtZpTC8IdF7ZbZD9/cpFZ6W5xmF80vEyCmMs/2I1ZZFhbHQqOmkP3scFFAUwvEPc2xLXsEQJVn9SiFVtNj89Z2N4pj5kqYh2zWKi0u/9j7jpI0NCwLN2YPj3LxBURHoQmndKCKNAbt7rYLZFytiEPe6c23HV0ynqi0aq/9yUTBbBaT12NJ3jB/ZRYw8n2Qbv/bBHsORdPjdPWlxuDIrsfFHNQU41lcUL1Tt9ZYSpljDUtz1gCnit4C3H7mcEu8aQ7qKkgg4+Sazs/U+LWayD9K4ajCtiRLkT5Yfug194VS5NJg8/ezpwSq/e1yd7YVXPBd5KL6hC4h42hddQEJpnw+IvddZ2G6vrFA+3vw4qQ8WrriHamIaftrxSPggl3FiDNbFHsY9tEY+fK1xYcc0VISsKecFKjAaOInCngCw9hs4VIUw3QD7GShotm4m2+lu2EWHtorDuAXcG/lXQW0jONFvQcUc1KYptZO04mUz6Nm6+M4F4hXmSvy1pp/bO9PYXJH7A2h2Ity04x+QSYWGdCS48D3QOFdYamUxQw4G/ziSOTzQXTV5yLgq0mqhyItoT7ywbfkmpooz6uuCtRZdBMrHglO0whYg5tmkMiye+mxWkrgpqLCUi7Y0S5gaoBUO8WQ1yC4HLnDz2vmquHD1+GhHxZCQLa+9csk6u4H4fEhJrbtIl3USgKaXLqtH3El7Utf1FdK1VNP3XDOaiZ8QPgYCS86jhJ+7YR6W098+zMadlnRF6NVs5FPOaJbAnKqPcF6wLstMnPTN0R0tYXt1KFKbvz7OljhqHUObN7iDirGVhAXCCIuxGuVx/X9Vz/dZg4PNRcu70aXLkZU6LDRjtkMHEheRXq42o3gWm4p18WF4VHTdLYETo7rqqsKS+1upjA7TEQwxw9W6ALPNpad2gVmLY7h1//UUHBRUCIdMlM4QjY2+0YBdpuErdpUeQsh8VaxeIdlIpQiPeYr3/1dlrSBq/BKeJ/dxNNRSR+MtSskqghMTa/wTvEShhdi+x+GSmITCYjORt2BpkGyqwNjKBNMI4blB+zWDDE0Pq976vdTQnl42h6nXGB8DQafmPm3xo08a6MRmMSoNqeXxrsT0Ypa9ggNhV0mwK1Fyjj8/yGhtWLu0QNp6ckkKjFn+Qz+WaqYD3D0N3TnZSjbg65msfa59BNuj1dIln8RJYqoY8chyrL4UN9TnNru80QaNjtNiQC7QbUEwuhOCpk0GThD8D/xOA7WTlIvAUt6VFZlgZtaecIWjJhQz6uam8tLoefGjIz9a3etXf7WcTQWCystqozfGvn2e1yAV1HCN9G/ata4H9JA3LtCjRW5TfMEbKuR14EDiz8yPFKFYDr8lJ7u/WpwQuvuAFuWSNBEu/LGKCgeA1d1CNGF5Ol2orK+IC3pfOBODY7/NB9uVTKEjMuBsjkLrjam0F0Xn/Sa3XcI1Tf1Rp4OcD0868+BCxPAHNBqHRyVvchGEGwBikaWn8to+5iQzy5FU3N4H5HDVEWFA/j9Q/9WDDYefUVfUoaSnTkntCviyRONB2ddlLbUGHyEW6S/o86n9ZqzumOwiua61kDjqahZEHmr0r8J8trmjcFwVDBeTeWFr6v95h07O4mta1xCclQ8xgHhXvh/MkEd/vVPL3eL5S++TgfU/sM+vZqHrB6gQMMF9ne5KlweOa4MhYPtvklyDaQ7c7U86bqLVu/Q/E8CkmgWBylwkzjCeflf4gao+kMR4+KwKGw0aFypxBdcLBOKWEbGZ+OXA1XIonjvRVYxzG6E/ISS9StI0HqIt+FRNY6aYduLqwo/XWo7RaXC4LnDvjHij+JNcp69ktkK1odRACjBqN/yquefTGmxad33hsZmbo2o9c2DpZxDpjfVfq3E6MHdC6T0t6ruiOuNxPIgPV+bYy8TJFsMgVoCXLZa5jPib6zWAkURKov92RREiykthbi3FBTzT5tkavLKzZ8qMY1F3DKMIwvkT528ZtIUGEDRUo6n37GtqykiDwcE2LzS5CfwO/iboHBSMcPScOMjvBGWkh4LUFvD2rxGN4PIQEHadU5Wbs9XKgX+VVRQuYbJDwH4WwFDN6QcBaNCU1UGQXaR/1PJ+cbv0c95tTryw6LwpmahOlgdJdaslU90BLfO9BIt9vbokrsuP/kW56rIEwwhL4HKS0TPuujd3xGXXMjPDcqW8dTa7AhgvbbkUy6GGiQqvTWab/OFECm0aAMQ9tGZ6w2edjRdLWTLQ5pKU9+LgnDNt2nbi7jDeU1oQM12KyY5t4jvDNT0ogju/KymUtw3Inwd2DEeJcyhNFEjx8XsoWy2WfoZx7xVEPGGZs3KQxgVFDAlJFPmnVkIJqGK+HvD2BT4BpmCU8aONBEIoDFXpHQCyV7W6Rms8zBKrjmVSsfyhlVUnz2+vcbjkIZEkNmWlG5IcylCFVEyZDLULfiIqcmyi1CcmsY2Atrrqr7X8x2YjfVkkiHlR51EwKgSBqOWZsg06KWjAx84eigOx5+Dly3hMbsaLSc00dCMWegtkwJB37R0EJSj0h5LPIzJqWsNg7Mw7KFE7XykXHN9iZRjkQilZtECjodGUeQjbRkR7wLkIePP614BjS3+Jzf+xkGIphjH6H7dgtaNztsa51MEgSU3UrCse78YibboRlE6UsWsevma1LzVHNHb3gok2bLkBKIgdTkIdhbF0Fycgm6BFoidWWf7lgTtZ/JC2C/w8bHUtb7/5/D359Vf+4dX5XecCJYBFv0JZ7YS/rJJkUD33y7Cm8RhchAzt4Vk2lP9YNiaBTgkmsVJfFLiYWuJjKbpJ2OpTYEYEh5lj3oVczSy3PeJ1tbPs4j3rfRV8aF9Ib0qH3oa8oCAQ8hxGBPLp67yj60e8XvU8Rs5jnvhMZL2wqhrdOaJd9AJZOJMANv532vANovd2HneXyFqbKNdHwGe+siq4wpfh/VIvJjCZ0Y8Z0xVnFeDCUPu5lQNOkVPiMRunvD9SGmNx+oM8gjxZ9MgMGkXjX5/GE4iNyojfbZgbPd4slfHyeNXFshvnzXP4310OfS1ssYJhmqisj1LKodbMvUDr8kxRIQYoFaExOkCZfnmefo309mU1aJeg2Rqpi5yGGZ0X4sbd3huum8tVSPuMVSX/SvoTh3Sl0R8Al7Yw8GCLrfdnMllHgxAdMtRptSWNtfaD/SJ90EUDgiH5+sCL0FzH2FHKXaOFoBPZ9IWzT80lpEhBb3+0CPHVlBDfBQN9bY5XowljafNjlQyI+FcHnzMBXGl55jSiqba4uoDSla2JOrWjpZv18zA3iRZkRKAFWwmmLZr9Tzlhe3/iAAitNE0DvzQpBITacGKp4T0dvdqAbBzG3EcWTUDanaA2yX6EsqkOEj8uIAZiGOtoeiRZS2y4HLAZSzO0d6UaomFFHAVdOPPs1trmc1e61xoyNuPS9u4O9O7U0baodyp9X5aLbYmbmTxD1S5yEvC/2cEe/UY9UNma4xR7hJ9RyEflARLhVU4kSYsH4PannHGaQmyovD0Bp0miolVjzRmxVvZkOw+QeA+v2azK6gSwKUNUDyNMP7NUywjfVRpWM6/hOMlHGyzZFQXFr+l/jHXHT9vfnLBw+XGGHNHtedJZ13d+9CY80PTbOIOYOJVhr4B18brluIIRIgOdxt2VQ0+tOzy6ltGaCRuA5zawklvvzHzKUoZ2GQybMUNuohp0BpOF04q6J3GwuEHoBdPLViJ0hIR5QilVYyByDM+WImCDwufW5Lr8l6cYnBt3l9gxWYyVE5p0aiNnRJLJYVHBzrNA0HZP6fNABZe/B2fmErtOW0ljwOz7GI3WWawoci9srkpRa6607siofLfv605dchlk/lCpGJn11Mzl9eC8CmR8g7dufwdufU2wtJL1e2Lj3AWkbu17l2XRZmuw5s9EocZZKK/YY+7o2Gstf+O/HGeeZQK879T2U0WlLwo+uFbSq+Rx7tdZNaEeMJdTm/dvFL4aIPHZmXLm3jHBOOhn2Amzs3+TQxiPRr5paRO33dV6PFwsDzwCPYjeHpoG3AUWtYBDwdUTuW2rIlxolqNdf8WkB5/nLR5jTw3ZWsS+0nDFxfVXbvAGV9fU8zOvde3NL0NOLQA2/twuLxpaPDtYzxBikgLFdTMSBrpxtmgqy6bCBAvffQkiuECBXXX69AyqnuT/fpQmBgtQmetV1JV+5Fp91rhj+8P4Yl3+lEwSvhFO/VBg5g6eBDMM+rnT1Kvli/G0s9bU+HUrSWrhzMXz41EcIUk3pYfHdK/rcbQCfvSBIhy1VX01ofuMoA/gwjnILQE+XONGnwDeGiN3AdfgBIEbsUmzNYVQZiFQDVgnfL1VAVSqVA7/iKq5CYfVRTC1eIVFpZrtWfRMgYXY4Jdyjrh25N42irR1//mnw0JCm9aQLFroE2X2acoGzvY5T/x9hvV+JewTsKb5OYgcu3yArkPTIgI8HI5VM/1neajuLZS3SZA9L8zDtnj7bAR1nKZwaLjQpDMWHfR0/QF9x3GHt2lj4pOmrLEwwjiBQIo/UqlIkjDLcl15KIUvp01RVAoy1pHdx+r8YbROlLOAlZeulSUaGpU20QNJS810JalKvEvYomY544qrHJniIUIGZic6dRhrEszoOmPVv08MG9MEgyd5d3bTOB63XFQw+ZFDBbgANB9CJzb51av60wXO93NIq0sh61C7EUs68Z24yetqwj4aMxDMyHc0lxfT71Yrdm+GWf4J5vij8jmR08R3MJCoIO46IlQ+sTx3YxRm+OvIKTUMAopIlpOr2+poeBYZVlbevpQCirlc+maMKaI1BVxPcewqwJkpMR72xEjjO+CDvilYb3k9FC5m0UuBEVb2W5+1Vw6WW35TEP3RJD2wjqQL2iCXBIWvxJFsrutD9d9fX0HmvxDTBNce6PYFhBqBDjSSG3zVYxXfE04VI3Y+fHrFNY5h4sD4todpFfzIAxbnE52twRVGLcDYbgGqD6cOTEQpYDkip0IBYGT0QGyDVwGUIBnPLTjE4WLrnbqgEy8WJ/IoseQDiRiLLKMeUbV5KTAGbvq5Ufybh5sb4leYzhr3NDMJoFuNRp6kAVnxLB/NMFn9u7tzEIkaJ3qEjJtD266uI386NOLPSW4BZH0kBuJcoRoXu6qg9yelXwB4u0JfRI+Upu7Z4fSkFa9TCPILXn2n6TrZrq9TFEC+wkIejRgabzEgVMBIgKCngcVMHYYM/Fsua+j73fTz6JUt35+x4deZtflwcRh8N9MCVq48NGo+dAQw9nKUX6FnW0C4NQpRgHbRor7Z4ydIWZ+7q8yaAjt3jtx6nkGj6c0d/qrQqmcLMXsAcLyeBchGlNp0iyfeiNNeRxv7tGjqm4IL4Jm09P1HjCl+Q+B83V5Hh2ilTRdApl6VhpQnMqnqv8xS5rUi/NkhtrExoa5VHLzUvzLrK2zhrgbg7F362xZiHHapAyjEzmjIbA3GSsehS2/oooa0NmlLcLjok2GPIqlFukpfMkn+AbQeQkpDZRTniVh3sWWK6vUWtcTeKqo4S1veyLwx+5QcjeT7WqQuiuow2wtT9uzroqx7pd34jrqdrTfj9Mx/9qKWllJXwSF8dHv6ENIYONUEQTq95JKCMHyzFPPCvYxNG0f7NLYznsWM8ola8E7NsQ/niKxLhxkT5rcCPbRx9IZk8eNJ0QYn5lA4D0GWpqEWJY/VdgYwhAkRCeDEJfAxnn4gPhzePWet1dTke+I6TIK4V13a4mqCU2R383iFvrtn1dZsx+mPc5hW7ZfHlsKO+VbcvUiREqWlxp3iZzkYVtMRqKxRyaG9hy9tJ+nnEJDvPKonawnZBpNUV9me+52CP/JRv7IRvuHau0ekanu7LsaZf5QfE6Z7wpDy68f7LnCx3KHQoIle55weg0Bi5OtaLXAM+MnfLtlAoLPGxniNlWyPgBolhAWxUw9tPOoJFeJi/XcgxERrDbmMTbojMTu3QcmYFxyj2D6o9WbJiLUUIb8BV3DABW7ZDLHQLI8hnka7Da05+HyfoVV6Rk729auYPilhE+VZEoVy1tuKbybAJiRTR0k7r2Ph1jUzrG0hjIe43p431C58a7glXpLXR/uAEHb07nIubvl/La5r0XfO7invKmwZq49rJLvfh0LW6OV6Et8bbmuA+/cEpVThSLG6Ig/Z7DSKT/n1Jc45eMxkaBDn6ZFkfDqrSBqlAy/XTiTmsqI7K7IdlbxJXiHSW+6tTR8CpKmZG5sYYexoZ4W49/Z7Y1YY+dTCccBZJX6s1milfOZbgufYnivvo1jIJTauWzJaP/dk/jkbJltR9NhXMqEHHxE0+ZARvwsgcizcu5tmp/Cq2+s/YSTKzIFaLWMjIjoJ9gIZ1zRgkINCDPVj0D0+ZSbQHCha81HIJ03BoYiSqfiypeJCDrTc4FhqAUs9nUMNVdX3WME0OLX0T5hqgN5t1alRgQewyIezjmCW6kFGNP89Pi6xZclioC6FEZMWc4KAXAAZ2W58mrKb4hn/rVJrEKShJyj1nPqDZJlueJdPADpREFSIUriSYq9DaPDliWstCvtHXwxat1q8iTUtuy3brg5mX7O4XM+G8kqRa+2T7uSrPv1Cb6lVbzZFCslNJqAyEOOuavpXtILnllApEYbxu8OxbCKZD3384y3T5GdHkgflT+SpACLt74Fs2xpcDrRA+ZWAkY5sEgnO7IcgIOQkHSrZJyUUaUaIxZDDSt3TuYnHvHyOtMNr7FotmwE8P3wyiD++WHkTs3dKFlsV6umx/iBqV8oQh0eMNb5C1zcVhOVrahn1qih/V/kqu8jDNSeIp/b6GfRUdtjzi3vIklWWSBFQdG0+O9gGvrVKxLranPwDIX3d/6q+jKimMZ+6Tq6sBeoy3YS5zonTJH6nVk8mmwMcEkV3wOkhQuIdlf/nNhr9gHVc9NJkUJYcxIDiwo/ehw0VS0fijNdhwBtGL9Q8SHoAaCN9UtGUMXpEycIWaDd5l3rEdqCJBmd1VHssY5hNq70PvrrbYxBnyi0KFtHinL+yAhnKAPiV95YmcopLEknEAmewmrpXQkk8C6WjlTbN/oHiZUshftjaaCp1zxsi0v93BA6MOjkf5ZgEfsHrykNzvDC42kofU1+jfl1TplxH65PN5iEtzHf9ntI03GtjjgPWfkOIkhkyPFF6mxHoQmXFss3RLF21M01OVUKL8l4Jyk2mynkZqvqJqwfAPp0dN4UXahhyOecYp4sZZ4TXSKItECSHoxN4k/Gg8wf6T7I22L/N8U8oru7LSikrecCzQOodfrgIZj+kwBJqSbsi+7OpEmgvU9PH0DACSsFGTg+v1Y+aiSTpXDzMSTF3wz+UjPtaJKIUcd36jq42AROztMy6ZLuRYuCM8ftbRQIcuwSze6Oaw4q7vcYHaS4xPvozMB5rOzIu5c+J48se1dgcNwEspHhLrjDj5IJhEDJMzvAcI8OJUatlBCqF5HvXVuBMpS4sbSLkRn1I3mnI+mhvk9rDBCfxOn8qv/m/E600C1TD9RJWeT3cPSR9h3s4vK2purEFVC8lxCf48xU5gZwukwQxHfQcvliJjAnB8BvgJ5invHCxe62DKeIEAx1fuqwghPJ0PMA6WJ28EEOylEj700P3pT5lEeFumCj7kzpjI3YHIkRKjtFMfL1t7Q1mnsKzNs2U/Ioa+elZwSjEt9Ne3BY9NYnQ95AsHeGEqZh5hm7FbSBaJar+bU+HXwzDVvzb+8MY2oL0skDpR/s9WuKNxss0u9DcQSmDftbVahcdV4hZuX4mD7ZGFmGrblRkrc5YewzBj4HX1uuh26t9XsrwSalXcGKK5oURlYALbd0rQFjBIe09E5tEofOdTyqw5AmvrcFz0Nm8Zsy15GbTIeb7f9Ow2yioSNFrTpYsgw5jrMksLnEKL7R5KMmClNircTFMn6UNV2ReVF4K7suV4yiWRz8739yZHonjTRPcW/2LPus4jGi/kgSeyMXhCDEIVfKC+60RJ/5oTKWOuXjpOvsAyeRvpE07sLLnJR5Xj+l5S1FUxn6vI60UTX+GMYernit0LQgJ5n0Mg2q2FN7LdhENX9qiQCqbOehL0f8w324lSd2HhvpIIOFIGwG21Fd9OKiGnOG862ebJyAvMHa9ET+xcTdBlSshsnWj5MyVcvOKVeV9BF4k/NNvR+ytemAjY9DncivN58CRSwd0wcg49EeGGi70ttWx2/HfABfageSy83AMF+nUxo1DnhDb4HIrGokx3pEmiCy3Nby6sPH3xdfJ7kzmKJaePWq087YjsB3zMVvTpbiz233cQjMxeI3t7UU29dbndCCxCRlvUgql0YPXSE9V17ewuRhvfJw41qjxFUFyR8ejYqxdssModN298WZwPdR0uzhd7+DAM8P/y1LA5xxAB57rHxsiqRQDP5Zc6S37h3OJJAqDOj6bKiaxODuhXtzOICa6ks7DZsdmopbO2wD/EayJaNV54jJC5QSf8NpaCwziDDiIakm8J24uI7s2f1GeJNRDCvUsv6/QHsT4CZLBSke/UsYvqNGrDRGNqe1YoWogiD8MVUPTbeU/3sH5G4uUUbyghk9Z0f+ns+h8ZBIAIE/9QnlN+3M6pM3itsQxm9mBKXfnU4unRSKpEtAS9+pNf5pvZY+wa4CT9OWj1oy8UpnMR+TX4Cu/R1aPq2wRUjefwbSS/sV6Z44h12XMrkm6di88fq8LymyytEYT3JFyXz4Gcuupv5JNgcF93pPnb5hvIUMAn8AGLniDoYFAF3PVJ2P0Ar8YILjHwHj2abl6IuzUFB0LVTVTP8eKES/TDUafStWMMt5j7XKahJQ3Mx5w4x1HCN7Wt5ZfD9Uj5df1VeOXy0Fk6UZ25Lv4D2rKCJYgIg9KxLhNP/79a4qQtNAMTGHPI3YvQMJBNal70WiLasfnLHI5BNgQu63uWaNFN3Cdpr5OC0g6FAjwIweXpGlC6ybQNOhmYFX2QSDjDk24uCDiHOJKlbYPZybb8qJuLBBLpIqqRI/MBelOhJ6poGFoY1DsJoPaBNYuQd6iGmSn2Ddj8dIYpbBgZMgKOLp7/wVAFUpCN9+MNYY6NIXCwdeXgl6WZ6ZTMRxTXtHDrO+JdV63ETMEKA3/cLCTRNZfEh3sR9DKb8bPliSGeDGGEL64a0vmkvJDxT7U2izpH1PGybdWQI26oaUi6o5A6Td4GJvOGnKbBnR4yjlJ50XPkitUG4xv14KU5UMyBdZSdGf1aPNSbeILnCrb5rFsezfVlIBVO+0w7ketUNeoXoAfITTaNIW7aUhHe40aOpbj+2Y56WG7Z04zM3hJ7nSfwgIEBEwU3oUo71n0fNL8MAQvBjvPnlM2BhkmywSIETePQ7nYoJ1eDXwXSCGCNSh6p6+caQv8rLK7egQlXGFezqQBpi8e/2K6qTy5ME4EfL3Bg9mwIxavc2P4lytSlCg3rZUMSNP+RUXXYqAVQr9QZSGVwvicYrn8xHHA1ulVKIVM5omcOR4winBBNqZdZoC2PXokfeFRKxiGb5HjO+yAScnQ7i75D8PPUEoidNXo03IDO5Kayt7O6x9osOGlGW2CSk8NRB9L33npG09qVYEGXzemnmb05gGuh/W3Qk59NXAfQk/2smys3zr5QdE7FVacc8HtDGP/vqOX5reRtlwRb19VpXlBjdH+13dQx0XLOFEvcpOIz03DjwPlI+Lrc0h4/9nI2hTwR8zCDS5tJTPMTQxdhUgM+oeY2vuzJHtOjY1IKDgrhc3kziUSPuG1x7ejU+oDdHyv6RLf8IBaQT9JqOQDC3uI3RtOMPYUge8rOAwpwD08s5lx/3MbzzbByjaCxxo1wl9uBf+hlD2jIuLcer2LN617qQTHHpGeHt+qLvUrpSEVbux0H7ysmavOtW5SVZGreGHdW61eaZeH8AyCxIQhvYWCWnbAhNerzvtVMcVBprkWsZvm9DCFEN83tmxttI3aChejxsq1Yuq1J5G/0Lq9PiQnFdjRZD2Ag+oLbMeLYagCV7xdrebbZX5+PLgKFJnVuB/94toiZMqN1PrveRd/8Qxe/lmd3w1GRxHOm8gVeMiWA2uBJZI4BDNhjzDsx8SLyTba1b3EO1FaIF7GjXsM8fgfTZNn4cBgONszwhqDP5yoUlv37Irvuy1udMOYsxJXaiO2ZRVZgfSCK9jThX1JRUxURs0nsDFCTi/x1u8FoIuwQztiC/IOGPgDBHA8EbqgU5ITL94icZxgILpyCvWGJ/agLjZoXKp+IBbpeyCqyrHQOMr1+q/HyaYqPR42AGbRjbqFulAEQoBF7TES+HWEHNnWPVBQG/6QnsjuaPlS+QwurzTpqhGubj9g1Lo4zlxVEXpu5y7m+e308+v88m/yMl6Rtn5Hw6f1n6VhcLfzawqQNVUhA65XqBci+DI/UilRf+u9xqfGJsua1x9PjVpt8nmMcAte3c/0nWz5dmJrsDoGzrqGnhGgR8ZpGuPWfqPC5zkd+I5N+hJ7Rbn9cFrli9b67qMJrku07vz9M8zGw7D3NPvDBmLpuMSkDf0VIaIlkhOwozYtxyEzm1K+9RDacbKaWej5SpyQHlUktbGDgE/PMlKEQfsbjTwgnB+mVb08Fzv52FMd4DyxhLnLLxmkGrXO4WPn9mya8W/X6cqZPQgrmV6SQuVGnJLH+m11jZMNMT1RMaiAPZSyVoNLYsn3myV3A8SqkSpuAgzunq2xGYBHJIyaxdL7FUem8Rh4rIRiYlUCInqVPvDiIP/s5mErzJQd+mudZbipYD4fTg0wlIqnCp25T8rJrPgotbUxW8KIja48mYgu0qR4mGZpasmj4TG9qhYYXkIW3LrCQok4WR6uqVTzTM/PDc0j0aHF62ZGIAgkZO7EEpEOQAHXEZag5n05PzRvF+uBYyUFPf8uh5g4+FrTPyzsv3xGMdoC5828dYddqB1mX0PAuyzNfbAWCqX+3MkQSDtBHMfxdZb5p+IXQS/dgyR1Vm18o3WBTX7+IK3oYQ/8nmQL61nPMHm/Cr7lTDfUk7svHkn664X4TgaHHc3YTL8K7A+AyWsihfLN6Sc+KRjHQJLM37N6d7aS1GPfkcSwv2mL41UptliKIT9x+Izilph5K3XXDU0Fszb+jzIq1hKhKimtbqMMEZ68sv/OMnsKL+H03IifLH/FT0jaOe5+CJ8ymhP8gBjDA6/SB/gXmk/WMQUU8zVpl5dGGhVIBrJFZS+8QVACiXlAVYv3OJp65GoyuDyEle/Zpsi/MbQ38FJnqlAG4sPYAhoU4je+DCm2OglRvH7vXNpEaLs5eIMaSLLRnDzkImsMFqK6xU4f6Hy+Qp0dtBO5/IIBs7OarE/QOU3ziu1zTfFhw73rl37puqMb4XsTz2VVfqk7GsPCpYYkONIgvTYTYkkEXOYL7pK2BIiq/gf9n3NOSeGsSXCYX87djjfS8jgcuYgA7n3YdoVNkgM62SpT8fVW+3BV9dGVen26mPr+pJOwxn6QW+m6ymIjzqd7H9cp33y/qSRMiauDbglupP39uyba7ovC0g4u9ys7UMoSCkrS8vgRk3AbfvoYOfpHOY+2e5VJK11CDGWU2Mdc6Z50EfsGyLeCgXa+AM+m9Tpk5ZGleG+NsEEiimpTaBMTIKe1gYBqaDbSIn3ke5gbJjS19wDUrLCXZlNtxZKZZUJ/+4uYtn7h461oC/xRPXaEetcIxZfMkmCPKQzXONVjj2hMKTtofXCnmFmw4G4ZZ0uTbfJ/Nz9ma7mK3Z6xEC37tOogLqE/euTqYug0yyxN0iho3UYImNtV1JbFglMWQm9kIxkpAJGgBSju6Lkolm7fAuqE5opUf6MA156+foPn+E1KtjMpAPmm22TZ3+AglSVS5hS/frWXN0z0mPkcjF3bngz/lDJBbZ8ozEg95IE0Tixax4VkBqsPJ8XmeLZqdNzxNJenV7GoZATrad44/27w6liqIVr3LRRKqCGKWDH4CJVDyp9ur/rM8kEWRr83W0Ru0AM0hBBcXLMNjKzTkBCw0wEPEl6Lk7FDTt/IyZnkmKUxnGrIiTmIV334k+9a8+9egzkrV+DBX3t0nNm5Z5ApRdqPG8SOjqrMwck9rnvXG4MBzuB+yEqJ1T/fabYDV4zVLdvPP8250wOpT8yh+2yakwPIXCEQU8DpfOpAkQyk8Wrk3bJQ0t5tHCatj0XenZl4MCnVOECDygxukN9r4e6APdPEbNHP+MJD8y61Eb06dsDSMNkKE/LHuDIMjP1eAUx0GQL3zU3KD+BYdO+s/PG0axIQZcmdJNFUpwu68mBonzhp97Ct7RHseuhR8CSFB/Yo94/YjvB9LOlNqKLxNsyIuI5coVxqSWA4ZRPO7imA4ZGj+LRNYhey+llUuydHlt3D9a7u74HVcZVQncoT0SqiYDqFTvSa456g39FO1BZEnJO+Bag6Fo/erUjKb7276cbgpvH02TLWMlww0aNPReUoxuNIjCMKKR9MLf1fzd6HZbiUTdIc1jXIaGMC1lO9Ym9QtH+V1ZWOwKyw663lwNt0SwNlLKdgSQRvf95xreetUQki/oO2iFyn1+DNcfGGqbmp3HgsZ4WqeWMV8mTfhLI8G5LH+GnbY8xzONezBUqqbI6WXqi8YMTPDHGAXi75vMrZTkWTcbh6TocpWSMoj1OwnKSkBfMwaB1Xo24LBBuqLjGszzWSumgZhg9p4P6u7xwrkbAiK2cjgmilRc1lrK8IQrW8NjTduq1K3N4OsBIYxgazSyoOFFCa91v+XFzYaNDWzTuy+RE5cS1zq8FO0yfAaW2hFqGPDhVrSXTLQ826SrMh7b5HFPdOmFkQbY7ZpNbKb4oCOZ2Semjy2+Va/LKLlfUdzeHV2XHUiNfUM1mhi5Z98cKkmWFYMFjqRDd5IiubtKZTFU0dazF/WIFM8SZpHeUYInS1kv8tHQ2tASDAS+yNShikXIRjzMTijhIEXQM0ZsPNcnQafg1WkZ8GFzJrAvYHez0TPPdGBZL8nBz+WaqQpi9baCGZf7H98GWHf9DaVda2xjdVJyGaK15FFctSHm5fTPe4F961dbWHTC442EwUtFnixA2NaraLLgWIfGDJIMxXTANBrJy2LbRaafFhO4voFAhCJ6DtMBPjMabldnE2rmS5kzVg8vxe5eIuzgCFl6ELoK397dcr0X5JdD4su9u3s/P6IMzr/b+5CHWkqMWMqtx9SkgXcIuJXJO+grZx5yMxKrSlQZFPLwIBc41Ih1UIyOl+0BgiXkzDkfcPvV3wyy9yPTncpISgxuQ00x3J8ZEZ0GC0Z/Z/y6oeky1VOM5NCk9vazn9PlboRXvdlJo8izR1jh8/WSb6RtgpejgoLKI/5pOwi8R2KE4NtF0Uzbyt3aLeyXPbOPuf1KZa73rYTugE8NGJsl2bCTtIu3hg50uTzU9xvsPlAtzgYew8lPBTKCws5OdppYvgQ4hlhQJqDC4GWOi6LKCacdSXIMJSnTXAzhqpzdebzMZJcKNnaxKLsmolYrYRhrTa0j6kvm9qRtGmZzQPbnH81Lqqo6QEoR+OQ7n4eDq+Xe++2fl+FTi7KKwKNua9B2Heej3o6adeEpdgQUJ/jAX2nPdaC2i7cAPXwWZaFEDMJg01SXVkmJiJmAQnem7bwZRJX5A9jHGFmehvF6Olx2r6t40Y5QWzyME/3jviQltTyQvyYWuEh/AtQSDUE4ea+6SAwH9AaPQy6H/Mi3tcKUP9Bn4cxJwn5Aw3QuFhnviZlSwbaWZi3fdMp/pdJk4CEkm1ZuShDsuvknazUz1GothceGPs2jOiLdPLksNJ6+NKjdmVzV27EpXAsz0TEGGdBGnS4cTMrgvUxYFShgnNmyIojQCPHDpQbhVEwoG3bNZs9qQCiPj1Wwqq2nPOgo1zHx3xoA4xaVv683+MTL7DM8ikvk/BA3naEJlvwCmpcUfAkBeZjL0UonsnCf3KYLknemJz6DAFtKhYQJ6VPCFlWwX3OvzQGcKE/Ysypv/7nz92vFqga824i3t1D3WyL4/PEmEoxHkrDpbss0t0PHSe/dLy12LQs5suuwO4F2x6EIAiXhESCpU6Y5apZDOg7fd0Fg3495/WSxkvGvHn29hoezxCnitE0Lu8K8oSKzTI2NiIrZHq5nYJvULT/zdJysuXbNvFP1pBFq3opdzb7Cvd03ts3INho2i52kOyLiFh7ShfXiZ28xmx4rmm2ugS1sqs3tI8w4Uzh8QG6c2jAVchGcCnl1kJrF8PH3+3fLsp+gk1xFu98+T9LjgROvU7D4R6oB4/cG4w2hljnebUzzHflGqaHBCInVUwRepAGAZ/PE2gzfUprzR5xJVnwtdWZs3aCjsYe4esCTsBJcUlUwMDDRaqBWWE49VRomXMlv9iUYXKUjydbIEelg+pBapqUeHoSDJNKYsneoN4hETwbR+hssois5NIAbQRoDjHoAE1cQr9WU4e9MmOaKHZwK+19NJ+7ufYfkbJ8WSnFW6GW6SJ4L1euC6w0iXy2TQHoFHAerH0WjlVMvry9MPyD2mFaGefX/eJLye0Uqnq40lmVOLvjQNNWj5Pr48nEbb7ZzrLpH7vP+p0t4uvRromLTVK3wFTbV19IXmSWRFoVa1bRxMy02N4jS1+L0ffE7zVNxeyBByHG3/p30YWVOSjFpVry+4bt/vzpykMy+AWDjXjADFzojb7XwL7YwC2Hdi9WWkwRI9ICjw0cF9JLoJ52ssh4DwFitsbIxWQpsiE4lg83UqjFRBreGy/v5twFcG01UosPbwL+SdyNiyNHIw61c84C7FskZf0OEoAMXRdl+eLp16ke0p4cau5rUm/sMO5lkzS4t5Ic/009cYVn7uoAiuKz2Vdgp+GbrumjO9nZe8lGOX9HjLqL9+B6bSRX2/ohstwSa0ivBMguEhmE+6tDnGx8/Yv0cAwgaqRwTnJHNfLn7A9NtiRhA/p3l95r0vwSQ+mfGO7752cpLNv0sk3xgo2wHJ1I25sxOE7tNB3yZSAyJOqnORXWX3Z7pRCsQw2qNx0FRTLiZXSEIa+lk+7MzL3AdgjRdJGFRjGJPOL2W/7iryinnO57/SkYozTmw+seYnVdLXgw8VLcfTLBn1wytGNNH8z91L6m4gyeTBfxBLeXtvOi3Wcz2CCj+vm1N8QrE2SwLX1Z2cMLKm5dZ+N7bwTGcuZWjcXiD43RD8jHsOYzlHcjwQNgJ83G/Fm8RUXQ4yYs8YHb+Cwk88xwlgrP7Larm8/+k9K5JQPZYAMmuHEaFvqK+wtoEMhlO8uULcnqDw/o/3eDrhylR5Z16K4AEOqbeKDki6A2UJ4K/g/uC+0vQYs1VBnCsT+H5j0avpdxz4Wul+5lNcvl/aj2QrbLm844CMljySaKR86IMyd/Fyd1tyJt+TaGZoWZRDWLkaBP9iKFoyR3iQXD3Esu2o0PJ73Yyuawy0Pa9kwLu9anEE7KbFbtNFy2Tcc+mEUvUV5rxFAUsch5EO4/iIqXf+KmZh1YmYSOYzzgi3eqAMHap4N6Fe7ERofPDQcm26pMIqPfYD4mqJ7EaeMhX7gogqdhz/hko3UTxoKGfQWCdcpyVekhT6mNsliEtAgOoto+Y5Uikwsd7dPASMYDbH9CAjH8i71S4S2GWxA+sJyJAVr377y8H2etvUR6rVNmZsO5SHR42Wd5LuHFANV7a1shkgxmGRTFdIGahFK8Xge9NgFhfabvRLKR42F7c/hjoIHcCpYPfHKcRBNIyfyUFpkyPbdQb+XhH54bmfx8lsIazx/TQ48uYZM5mtBAw3Ok7zsUqDCLkalU8n5ZtX9KctmOJEwhKGjup292+7Q29AAjwYGvFNRX8XY+xfbozG5b2avofHilhLWJmKFl/vtsXhBKKqoq0APJiAvsoxUoBfxgm6dAjd76wQZMgviwO2C2A4/jeU3xYbLaJt5ij4XLK5R330j0r5+Sw5MN3nWfU44JNQmJDb/QwCeuqqxEiwWyMt/fKF1dtOQqihnyXP/0as6ZFV1GSdRJbQf3Dq1lNJI1Am12IZK/pvT12Dy9MLxhu1jeEL8vCV9/x2lmDPq1N67tlFPBInpRlLqVG80V24JWdOX01pm/dnMc3q5C0K0jKu2HDMPv3LvBXqgeregGm02Fb09beNJhgwbJCQbqaYyj/WzAoin2YGZclk777DLsRU+O0/U0LDrzpYfV11HkaNTTGN5pXXCbBCjRbp8qrorXEuoo049ATU8/deFX7z1Lck+3DgPrOCPlOT4WkZtRPyzmqEYEfjrVLMPMAYgsTMSG9VjCh4045bb8lWsJQHYZ1iDEdbWfJusnRAekUbmp7UQqbe3tLY5r0Q6Egrc74QneBa9KziUcxXjzCqqd7+XdES+Q+ratu+Jjy47BHXnBnA0c=
Variant 0
DifficultyLevel
690
Question
In the figure below, square ABCD has area 100 cm2 square EFGB has area 36 cm2 and square FHIC has area 196 cm2. What is the area triangle BEC?
Worked Solution
|
|
Area BEC |
= 21 × EB × EC |
|
= 21 × EB × (FC - EF) |
EB = 36=6 cm
EF = 36=6 cm
FC = 196=14 cm
|
|
∴ Area AGF |
= 21 × 6 × (14 - 6) |
|
= 24 cm2 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
correctAnswer | |
Answers