Probability, NAPX-p167455v03
Question
A bag contains different coloured balls.
It contains 4 red balls, 8 green balls, 3 pink balls, 6 grey balls and 11 yellow balls.
Nathalie picks a ball from the bag without looking.
What is the chance that she draws a grey ball?
Worked Solution
|
|
P(Grey ball) |
= Total number of ballsNumber of grey balls |
|
= 4+8+3+6+116 |
|
= 326 |
|
= {{{correctAnswer}}} |
U2FsdGVkX197PFB2Nwp37BfryxKo/odRWQgQLRqpOjsI0gbbFXNvPWs24pkgqzUEsVIZCE0Av1B5dp1CDDFQt1S8EUjRFPX3ZmWa1t6AyPX0iJ62cuK83N8QaXO5AGQphgIF6Q6j1oc9mAKj8pTMVd2SjwXFf2kXflsjtG4TyzWFD/PjJ0siy9EXpnIuhO3hzWq17G1ADCNg3e9ALaW4Ehh3vlEylv6GT9Z6Jw9R9HowVlGnYGkU4Ow6NPFdX+7TM7O4buw06Po45uYeT+CmHNfN/K/rbqMK/x8cyf2LOyKjGfW3Is4GWa5DuAASCz9QfjhvDGCFltp1tGsbitCA8eoTeL3wsJNEHYLWxBDYUMSRcNfg7VuJ9Begsq7c9NWAIdDJpBbFoQG30XfViDc25GeMSy7c5/S/AjgCN/TD1M7pKX/xUDYnLD7B2YqgZKFtveKaBz/ezoUFXG5FkRXpPgM2hIcIocser4PiueJQ/BHSr2XuyoeWzfVeuAb6bvpWC3gicvMWgOR+/TSj0CCRTmxxdl1J/wiE2r4AHuIykEas8vTnNTIO/LinfNOn9UBLciKT0i8FVInED6Wop7TCRiRtGS6VpNzrutbV9zDBfCmZXdKDrryTYpbOxkY8Gboch/GHJXw8Gm1Pngj6uS9dwNDOHi+KvqlGDfPPXsWtCMp4FNDi9eA9u2jZSGRPBQ3+1IOxmqLYcbVsr7v5SG6I7W3bxfSgrqdh6lIjadOt7zxQ1+wBLcsZe72nUxZ5Pxa23tyQu1/cjkngz2Xm6P9FHoj6POFyYBa9qp9vRSVS6V7CC/GzANCa/XMgwU4eHNE0DEZdStLK9grudN3x8DMtT4kdmGeL5C8EdNykrCFrtQsviAogfOKFIInrTuMR2L03/HXe1fMAGBhkuIquQ70/YnErm13Qzd3BtRyBYfzZ/i4nMNq0YNomD9FzrLw5ImuYYoh6l3xz1djk62X5f6o97oqbKJoPAVfNmXqvgXdVewc8h0lLEMC82j9HKCzgklaVfL64cqFn3WyBz6bWch6+FMwSfRKMDyLH1ImlzFv3q8mOZ1vtgr9IvCNsTXg1gKxinixgRWRzLDBQD9bFc1y23CgVRStRtZbS9DGmY3UJfS/Emq+fUkoeBBSLa9NXTihzRNVrSSMMnElqFKt8nHNVn3mT+63C8hNGWHD453bYaGEW/7D53h+oUdyeLjYeCV6j+2pl/5NDBuISCaWgYbtAK5qnPGN/Fzds1MCySmX6o2jRyFEdPTji8+/lUpLvZlGF6Puvr6Pte6JIGHFASD3rs1hXsse47m4apq54mjL16nfV+DSdwywwO+4kh3cv5bc5w09Gmin/sl9lu9cvJMRzuY0TBW48U7bM5KLbmDQgHvkTmciu1F+NARgsm+yeS/nffqBddU3k15zRdmaqW/wgWL5/dls2vvm/nbHVp8t8xb8WyDLVNJ2mZVQkrN3C2x88ABiWH/K4fcLhwwOBT3btEJb3l36Uq0vzVNFtmB80FfWLy+8x0vs8VNO/tmEximSkziPkjcFIOgBxCeFd7JAHwoL4sdaFjCbwtbbCw/3BncRv3p7eu85fIbISsm+l/Ve95DIaoN4rsvOunalDj8Rw4t2dRzw1d7qUs8E2qAXbiELb68t9uYvWqTpWko6upRET0xLEp6KddRR5d6WDJHLdzevqIPiKbdj83sDYiir7nUdVpcrRpBIAOoyKltdezWNWWJAlxWSp91VrE6OKaTma3OL8BD/iy2wRraZzvLLKV5GoHuFRizMSncIwZkqKRMG/ELEb0RjhbckwqkbxcAFpMULr7hQDoYMCOxmI6HRGrlurQtzSNAiDF8xZZdBh0vxOfR6JRPqF7V9WqRj8ZBKrCXaeZJmSpv37avP2m0seYLjVL1SQNHanbjI8pa8RaMcgOfeFgNWsJXitAPOznw8upGZVn1THTw1Vouo+Ad5ffcDaHlSc1Rg8ja8yejMNlnD6VII+/28i2+p8NfeN3UGsjJxhS8FaJ7zAy3AAIoDyDI64HWypM8HDDPK5hVIq8x2aK+8/My7a/eRLLQ0HSrLq0LE0y+ab9GQqWHYTGXXM3p/RG4BDoYlhyBWNmoLmSnVahHfYgZ1w3cYrrOoRKH579IVN9oQAdWPc1K9uWkADgKQmClqPOk2TC7y2mOTcq9uGwF9mzy+JHf3ti53RRrTtowTzU4Q5IWLddkzcyuKom7ceFku7sMuxqFWpcNCezGU04/mVopKUDF8priJYbWWMrLJ/Fe3NDUR8239wxsOsNAy4gXlnVY73vrhMVoD/TD/tzunt3rnUstg+MWfZjgufv5bwRuhS0VRaKcvQCTHOUZZbawrSmj+ICTO+W4vblEOSznr/aSFug/hh9N3569U+h9zJYodH/TswGsGFR2ao98DqVPuR9MjGTK+09qh8XoRMrwZWOnSmXJ6ekBGsEig3YeKJVAVnP1nhjYNbEXy5DxhpfTx+uNX+dBrqlCJ1OC7nKjb9zWIb3EZgIvSDImN/+BNxDGaLcYSLtwosKrCcyB6VWCxLm5fRQBDbAF6aQsNdqZw4VbWtnf8frqVqsX735w2D6qwCJYvTMubdWWb1Y2cG7O3IpE5QCDvbNx9jZaVvTy3VH8iHhyLb89Z7eeRL+lRPrxnKpkWsJAts5v2lpW+ey4FV+JBTyHA3uxyEJuGeafj2UZeP43MhdH/eIotiwqu8Onf1Z3IyrB2in1sWWTUF6wQLgWRLurOAgYDFgMapYdp3wfh7GeQePxnmBxWACs8+jp3aS2eGBL2DeJ2iqxmUIOffwdiZs8npXQRV3i1Crrsgeii8W0pf21a0LCJ+xeTDxiqPCud4GvMVoFTf4x04NSdyk/+N9qbP35NInTHhS8sDA9IaZtixV82iVioS4Rm5tuYafDmUo6XidkdXICcgzqAIpKwZavhae46xpfZUD33CZr0L7AMYd5aDpX4mv6GZf67sB3gYq2ZO6DLnsXSbVWZdEAsCi9kNcl+UbcOyLc0022pXStbRa5taKRhSgcilV8YV7R6LK0l+JAfz0wNgAGHcctJv5t20XflIlSkwPazcWE8+Rf8nyAPcLajL67TYG3MyOzt7ilUUaZ99wR1uOa59BQCoI2Q54vDOiJCMvg/ZXqk7Cgwf88hJu28mfSu/UTsM3eHkCFck5ycA32ihKGfWRVJ9GXqNNJT9LTHxxjv8r29L1YKpkyxss5bqWkE3e1K7Y2peiKM7yzPOMmidnkIlYZEBWb9iG+ZGV5rZKHxHbm2l0KHNJd/Gh+dVmzTAt/M17/sq+A6uyQBBz+BgTLiHJGh0yi61GiE8fvF9Ya835J+iPR6LfCe1+AVC1gO323yMSM/YfluDJLGFHK2VbGspOr1t/0f0vtImmymKpuZNvbrVm+2EnlKjewk5Y4DYGo4YyVfNLCrtg8DamzBzQ2ev2Fv9U/FTS5Qb8V/+4zMlBlEvU/Y2EmESGI6REih//BihU7a72pIDQPD68XKiRPL1RxaArX0sFWJ3Df4DsnZad5ZiBAPIZ0/u8BHp8Bbjnjy2a6UtTnUvxTTKk1rM/rFjeJz0//vT0O3tA9a/iBzCY4HVQaigxOlkKm884WHqSPzhlkzjYi2ZpnMA1ua685ptzBQAev1Mt1ldWdroE4KMTu/F+9ORJmTF1Bd74lANBzqRGbF7U+PZF113H+QMq60fP/vKtRIeClUA8CwmJFk799W9w60NMFh3XvWT07qGyUFpPGbcnOlsICp1eAyEwRAP653uPWkvI54Yp/bYHU+m4QGA3iS3BwnWiuZBpOu1jNI3224hOoAJ3rveKgGH28gvZSFjD+ngpTKSfcOCIZgAifqNCpC2Ja7W4LGCMMEYC5LvINhAkSkUlrubI5CReTyRA10ylJ5n7FcViNen7j9D3j7l/xWMpnJWFT7Bmuh0MOIkKBRWTp5JgvpuSIsOCTV5PpB1hrzUk93cfjwv238GiOx3/0wdeHFbeE2CBF6A5hnO+zhlGCSkEpN4wWB/ZT1HZT7UtZsT8Jdw/L4pph4fI5R9rPeCyBRezGDGQtyoCoXNVwpWLfIgfhT7mlNXRaFZmxYAz3iZj0xF9T5S4wpKz60AL9L40gBKKOKy0u4wCVKohnu21UpMpL83G8wPVUiR12Mt9yQ20K/vNhV4JykLQd7hoWX3m/AR0543E0BZIFVAsM0fb4/SoMs3/PAdZ8Lu8MOGdoXuoabjy4hfxXEURmU9LwRy0r7p8hwtNuQZF3eMa8Hrh5kZzS7J21Z76PrqP1KLfs6Qs42UXfiRyuuuEJqZtvYYnqyxhv0+9rCqZ/BxOM5DooSlJBWffdk3f3qBpyA92CPkk+F9rUIVcIjFO+pgfKKdvldP1uNtVL2BvYZQ8BRKrvY46pYsPuY/K4ituAx4wMVvzkzuGhRwuOqMYEa09EOFtf+4pkP8QYnH6tAmsg9jQ7/BbvjGnLWHgBCUcwXbU/gfByco06aoEh20veQDlJb6Vpli6RpFM50aAL2ewTRozHqFPXCqikl5a+Cm5p7kKGLynl5C3hBY2WWtkLCa6qoTyOzORGcLo4yjFSXEOmqNstlLM8/Fi03YFfrpztmqNZmZ/y2WCzR8ifq36xQ/Yh4ri4DEiTMvgwDNdGDrfKhqDDNqKloa9DGF7qLx7ChNJ8+njC15JVghonuAob/gMNAEjOGPQEWkZacMvh3rt8Ijd1VkD2IeX2rhxsVkKMK67zq9rNKRfLz3FXk2MHmtOiNNTVh+rD5C0Y+81ufXW7gVeOAcbdlkwXvm0yasKuNdykQmHvLVu28Dj/bcnJt4sM2UZ63DRWRnZfeBtPQXErD7A6pbg293ivhPQse8mCDWBC5ZeNog8oZa8gSIaH46o9hMPAdkHBkS4a8AnV1xIb7RmxPlC47pom1W2p3zkfCX5QnMq+aDBSya99hS12EqjiPuKODSfxg3ocXKh53sIoZ1POZ3xi+Qicl2ZA3pcEYDO3R0ct9haOPAqSAqF/7Iz9P9YZO7nD+/n0N+Bv9h2dygy/igJTpQpIKsV+ceR3bTE+OMKPGLOjasAAyCslIuqIt/IgAQh72pEMl4y9vFzXVwLPy5AVbHNk0KuADsT7I4SL37+HOvAsbyF8BtKJSomHizeSRl6TR4ShAcdBnBAQLARxxzzcA6fAGcqFdLL3nwmv4DOOdCxL73/bLu3tvzdMllvaLyD1wdT7vH+GbH8DFyWmpLcTEYX4llrgMyllf4IPPTLzFP2Ee96DwxGi+orHI3LEvwoHuo+HcsFcGIsaH1drHGjYp6jDUtkNjdG89c3yDSPfbIf5EZD7u+km1ecmm8LHyMrA6WalIWk0RMvJaOxpyC5SyH3Ge6yvKbOfN+a4CV+ddlnLwnu1EMeyJSYZ2czBy/QaqVjYGxQTH9doxBy3ZKdfc+5sBU9WJFpY5X3/WrybrK2GdPFF1SBqGBs/diWOGGl5X84mwbS3cojo0eBq3+UEbnop87W6ZXm/vzsP56zor+zNLHTksPWU3Xl/qN4OlF93TN8+qo1v+Y+teZ+e3iroB8XnaU0OqTbjb7RbBHK5YuRgDCi38AgEowd+Ne7E7KRr0VA05aqSiUrjjyfqiKtcwHZNUx/OHk3fUb14ljAGKllMvumVLx8eZxrB7geKXVqwQuyt4nFwdtmop5dhuX5pI9Ng7dPPFSxKP8WCNjzUdSz2I8lvmklVaMmQ0L4y/7BJrxWJ/qEY1t6wBOadoe66b/BYyFD9q8AW9T8/QwSaUj71fmtz/X0VS1CEYjh/WZx29Yu5zOeQRObSlpKAXVWxjiD28oQhUvdkLDmspkxhtcVPwk9raJL/y8zBhEJV9yf7sG4VnJ60PSV4rQIByOLxfUicwV5RagGOXeZVfFvg68c3Uyfbk1QO+pQwpAvTmvGCFpT24KCYQCAMLiC7SBheUhpPvD0Q5fyB5Ze8vCxbg4HsBSRugGVPI/QM5M163aGnTNWimwMNx/8V60BPgLoFgiivQvI3FNFGe+o/FXA5gnEwNjbtgbn2UMIDvokAhA//ditagM6wcNpN7dVRdVNt/g+YhelgUqVRXUzhcSS6U0yMZY9p3d9KB9sGCNM11PUjnvW/TVaNgrHqDzdc635NAAgUJJeIdMtsi0t5McijIZfRJgRE9BCA9w54MXcGoHtM/2LnbQfXnv+a32bA3+ZCydf8KUnCbOvkhOMgePFskfJ9R0ujchZPYTxz7N3cB7VyhrnnzwFHxcYMJXjklXTJ0CwQ9GQkeZJuhzlkrUdxMJ4OiP40ptvmMuY8uZFKQY6IZhDFJDa9Sb726irzX/N4J04SO+BORPfwAdiOpDu0FQOcHT5Gd79QrBSDvoVhtMurA8y6I5g7dnPNIlMU881nfry0lLRw3+bc2mDJt5tWViQe4oEYjWmdJph2asw0+yuWzgj0d9DQJi9bcvveilsV82ERoqGXRrlrRtr8igJ0hPJkixeQY0idjQeckZkIrgyPYzwHNBCdaUgLHgWx5cKtBtDVeeWFIJw9+DiImaDwApP2YQI8oEd0kPbQao2S1mpjcfIWKExFeEJzirrbgEuMb5OEb6R3xvWJNV0NldQgH3zwFFLM8C9KosWB0LhIJzBTmfJeCzNNSb/Yy4CbD+qAPw84DzwdUwszibsXB11peAqJfxC5Y0V5EAv3PcArYyQRZXpORVwyMc0twq6fWxKIgu9swnAXVJucjjybQfbbyTpzD8ePnEfi2JRoHNZctwWFrGlFofc9TqiYlIxhW7pjmM0Pq1kpzDjeRe0+Fb/JMoDoB6ShVdPhTjXpaFm7yB7iUHcsB2ZJBzqGUZe6MJt3pzCnNl8XNDjRDgqMqzJ48lO/KGlN2KuuY+Iht8clvEypF/RYH4V86IJ3jthMFHj5tF3S8N0gLpXUd7a7iIyzkhG3ub7n9zdOH5p/iMNyG+UCJE00CbexeqRBdRxvccJ/cRQM3ICIGbgZ/G90Hg73o8qOXq0gff4bepyEMzv3C/hWTOXPqL7rlcxN/gBnNahNWi1qpqIZaktVVGb/oK95AdErwMU/6EnHMHxLV0xbzIwxBPn8ECLt7DyH2QCp0bzODSwItzRgL5ahh53NogWGkZeR7EpwI2f6qGPsVDPYMzShKZ/u/R3fyl1ZbwZDr54DwJ4qfJRzT3bbBSn7lmk3NpZmi7OtpHcp0UgAYZT7kiDub0Qge1I9NLNgSSqI8XeuQ6A0P361E0lxZIjx0ELvTotnEDo1UPPBuTWFAKyKyhtqeLsD6wu3UTvhbuvZNxFqadiI/NEGGCQ3QUPurUZIYXqJDH0EhvRa55hE4bF+bEhQIM4cATl4zPYbYCXgcegUD2sLsQjU41wvvvBcyP+kwn6pxcM3JEm6RWVJGtPZeSLmIf4Qz7z42jCom2JBf6ugykjGkRNyWt1r3VPJMDqY+r2fVSovbnMnmBm27QrQ5D0bkU1sncvhN9HiDrpJHLIwDqPhVUY08ia4Ic0ffvXGCL0gqfHRsi42PdJFVh1KGeCG/LKo+PBY8R30+Nz1uVPbLckbWidDEoqkqfSU5ZzgnQwo1fHwZ8MUTEmbkFzBi9GBz/qfVZWekLZhPiVjg4qFnDHFsxo6gsUn8jtvvhEjXzj63AWBMNS1RrvxPbIMugRBvvD1WiWjrGZfLw2VLcX41LFgJB5j0gbs4vhN/ESQh2Q8H+DjtGzjip/TzQQMDTcNWU8Tzp5kOmSv7Rt1LZOyq/Si4geVibgxVEK1g3xMEQAJTyxsoaFxD3A0Jw/bi7mjB0V0Kn5Z1Z0m95t5zGb18TcVNzd1x02wVQvGj+0vasD2cUedinNqqugFcyx9JphkJYBbgzXAtDigklrVEpj4f4cUiX282Zi1Ie/uIZ+qFJj/MjRbOCj0h/GWD72CQyArBaw2UFEOGadEQy+5FfNnJl6SRS6ia5/M9kRDnx7+FA+Ieq1TY/maN8CkbeYaW7g8eTM9jp5tooel8xrTOno5bLK33pnDeDpfCSN1Orr79JTEp2MnniH6NWkAm2HwwGBJ2xIAXzQJd4iTdYRnQCNyWidNfMDCl+o5VZhBsVn7opmwu7EhgakkEmvHBIu20LbHocU/wiuvUJDfyUajvTCoHTQUEGEeaN6v+DpjqajRNZxCf71iP92msNOzdxzMERacoCw+JT3gmI1gYROKF8DaqVuolXKChvsej09GjzH1ry25ffzwh7I9x+d5DiZUqBxOqsBNY8mpBNHKVzTyK8axydLrnUNTdTJNoOtyOIMgby22Mh9Ljtu4gfcbLtS4DinvZcxt77tCDeT6a1vEWTPskfhfiof/NSo5QumUb8sdN88X4lUF0bgFDhqpgObWBXRyRmr6KKI6kltC4DFCwsfIz8DeWFL7yiNsnB6rVeJXa+GHkk5VnRGUiPdCgD3pDfVKvPQ5SzmcCJ97zy4KKgNsJMtNG+TjlJ11B5VjUp1qVKNk0+MnG+fxBSfZoA0ZlGh9Gltd7PVP/8dGmu4DxUnxMR69PvPbmqyExOXmFdzrzPnZciTurUPRwlZtnksGkS4ej966uWosmrSI3lfhM66T+Lvci1rF0ZUxYflO4cOr7Mifqz2W0bV8ITOSWBvgRWjeXy/0EQkEVMVU8icgkUUKsm9PYBFnPdutNGoD18uWI/pdcq9V6i54KlfRfk7SOLUUpAkypF+9rhh1O9HCXy/EqsLDZOOoHbNBcVSB+51cxuqLPCIn4KTBJ+LLV46f0Q/V/j5BLcTHj5EL0Q793ji9CwktJ2iZuFjFv2mzjHKERwKr8UfzwaMYHMrPFOvvgHKm1D/xONUTOs9fYobVx0+pMm7AzaL9E0QqNI2Q8QYxSAo8ipuW2GJGi6hqX69v3pA1nnIy1gC6r4BTwxiLIEvZEF2iuu+4R7crxh7jFvHRQe74EMyt3D+HnefKUj678z9z0Ucs8FUGjoy1nJKUtVUURYDe9SC66Qyc1zgbnn1XIQejEOiZqwQVyXShlD8KtP4UP0dPKhn/1zlPV0FiP0IqfzDUkdH1a7h7C6XdhurZxe21JS3/QX4fQqySrWCKtapHVzCNlcV8h47G5K2CW503O4pODdh8Fwt55E9ej1JZmOzQC2JcLs8BwCm8R1cIyRq2JbcHOkwJKuIGFEjzzMQx31TCO9zCOl8ZSVv5ua506xzCiuNcH3jw/+QvmlV6LLesNJmdFfXojPpw2i6Y/hc5F2XUrNTXkbkTylW5lKgstTKFb44GAT0k+7bQv3vH4Le413XOSpkzNl3Ew7duhMqikCcuCSQqeqLMpcuZuPaCFYXvRKK2PPnj3BnUNc4PygsAVE3Y3/n1YTp4r0SmHsA0RJAPP1eUn1Pzp77U39lgWfwm/sC+iSAZzNygFPQ72r2ak8OeFxMNyKx+iZmZ1W1IHEMVvGlg+EylPsN447xX5cGY3gumpXTr/Puby+JcEKM6K0hR4VMj0txQ32eMOapmMhOTFnn923DN+zl9Zy1yRoUbN6ss72ofsmlDiwgryQgtOaJ51KFf34M5CBWleuOCnauJLGGx3lmXdOWrVLj6TbpwYYx9ge9RzxCBjWv6FCJSdTE5RtuA6PEHOFtH+WnCVf/MThkzw5cEJv33wbhILDgSeR7ZR8+M/Dgmf7GhUG10rID9E7IU30y2dUg7g0b+gNRbs3x1T3GAR6OTsz01YlFVpMmjAq96mxDdRnbqFOsLFUvkEa3efZEwYyHcntWltS2hidhN9HOg9J4iCCb1reI6c/h77vjvc04nr/FrreaoUmbZf5jXIas2DpfRQoD1o5krbx+TmIv0RRdRCz5f3zLm+7RP3QfVUx8cGx2c/wS/4kOWqLhiKTsqA51b8IgP94hQ0JuhzntAKEfzS0xaiDgok8q3hrNt6sIKnnGCkBgaHRhHJ5eAnDGseCofCahjvpqmmQOfIUlrzAYmvSBcmP/SuD4RV+7/b+Gl2rUY5YAfZC3dCUMOjN9ZVPxE88tWvafdvGWpuaWmnihpjhr+zasGOd8YFN5tTOlX5wgqBvIWUG2O8eXsB91dAm3TFjeX6REYTrICMDe5pCJg4u6LLsWRhPPcZN1LXnl5uehPvfxMeeE0Ts0dBvTpiFOZI2q02mjHKx+Sfbnv9MFhIBtU9OJd17OPcmXavjY55/fefdpdLSZKorOiQDY7kfBsShraiQ76CIlr6HjqvRc2+czYbpMaYMvW1d94xXBFu//N/L84M+u/zS0ag2hW0MXrojHq9sAKg5P3pPxwO1GFvch6+cSg3VxlPCpX1CGW/EBhme+M/LjYU5Zx5TtppVV6mnzY46p49wQhw3S5VB6JzugtR7WkFpgKL2cNS2wCAdNkuzrX9CZIx3h80I2izcXB0LJNkTKAv+vAHx68N46Dral8LyiPsg33u9A7yfrW1ROSqVScJH4IuejdoVXvhjNjVYkYZAIHu2HJH+y5ga+FVj29y7NWHLXOnQFxvcHMxHGE7tuipc4fv1rovZvE7lHsAqjhKj99puPZwmVHSGsbU6ZjUtkNk5MjmYRIOTS7D6+VT3YtcwITA2WoKYoRRoJVV6d0MuYtKtyqevRKDSlu3jw7tTY4TRHwDPN3hR64ZnreNPn4EkuvDZ7g5QVcneTec1SbtpOGsDwhX6jq+hFzOon6gtm30m749Zy5ot5OhIA6s6Z7aQYUZjjffVQAtmZgwAxPlQSlWP8aBxUzjRYpKTNfG85naMX26HjKzl1TwVIZ0plZjAIJCED23IIG9CYn1MHstF85XPKOT/tadVf94XFVRZ68KiJqCjcob87y9mkBqNMK5T3RSQmE5E9cVmiImVdmtMEfmFwwpmfM7e5QyGb36xog0FGsQOMqz5+cEeEulTRuRgDEAeClWwLftRAbhpidxH+NVvb4Vb1gQCOT2/+WK9QepcJ7/E2rHCiY8ATlYmAYfrEPRKdOPfILCwih3JQB9inUMlXgJQG0RwvU6USug0klEVJdZrJ+2eBheXIhaen3qlTvMedAhImN8Q9OrEBpOOF+/KtylfwBWOUa22xx65ez5av24y7HWBCCzpn8K4kOObZs9/wSxM6cyDUJTSH9/zE1liZz7cDZu59KgKgT/ourtM3EfMNuMYZteYrzM8G2V2VPBDTlp9qqD5Otw+IgTETEJ2F3n70ZpK9UJJQ7FYxDsYiZzk0Gr1QOvmhfHylLy8zS3B+SqD6HlNJtf/WOrbcKD+vywN4zTNMyYD9p8B3E7Wp7/B/cXOqBfBO8RdrU8lwFeQmkBCLEV4DxxhQXqVnZwNBZtXhfNOdUhGQnVh9HJTUm//ifsp5vJJxYNTYIHSuAEbgQkBMWiA/FHG+qxfTxGukp9VMUJzZsDyEIneYMYoQL7DZe8AxVQms7t8NGUTcvBzMcgbXgi9XjT+6DxaM5W2/hvX7SFdS4VU8B5+Eu2+Zgz1auacsELansnyE2Ao8byv4C9Llilh73vYBSNe7G1rNtIL08um46EoyWp6YTKteh3RH0UIXTqG7pa3JgC+8Hq8OutHeP4EUnAP06lmZ2eVTudNLne5EIJi1yk4O1oVPdom4tgzryHVMvI8pXrcbf1gVOtkp+wXOkeU8vRiljBd3oYlzs4goWt/LIiX7TOJ0RXwq0v0Jdiwt0706dJ9lnmj5HKrafARghEQ/zL6tzk5rCRNm0BOMYRBwURluw91n0bMEJKuAKCQB8SHJYDhZRMoix7RDCeO7m4Vl/DfMPKACsdC/au7MbN0ajHKabyd2KAKGmjIN11QBVkY3SxOO99XsHKiL86+Dy6HB2UuMJOXVb2HMis8WetCN0+nTHVSqsYZZ57q52a2KzHboNXu9w8KNKF5RaKQ69d4+PiUZ+KH0AnQrYuPZRktcED+TWFMZN+ChLmP8JRxAH3Wv+s4ZcmlFxdW9D5K8bJXS4f8NRQ+iywr9/aiB6MlrDCSlKYYK3wpYNTX3m+JEdzyOSSzxi5l/LvqrcQEkKUhDDL0qLoKvlW9QND66jxaCxYknss8u9sqoUdkhOJ60bXNspO6JwFf4BcyBsnWdUb2PsoVVMOj4LJfRA0H3Wbbb0lKajnUeH7NUIPd7B78O+Gcm/VY4wuEjeyYpkDp56uXxFJuv/2xWuVjY59B4wSL33Jj8vFzgR/Ko0ESQKLYQXGSxDZiWt0lAGd5dpdlHhcHGGk2JBdP4LJg6ioErtIV/qpW2X4lZYD2rdcvpJ3UFaPxh0C1//ko5yj5jj/XbrUR+SxPQ9TNQw50C4CEz/4DRv7WIPNvOpgT/spvL+KGkzIRcaPppfv4q1fiDTz/khN/1wi8f/mUV8fAIN2o6WcfJPuz8TW19ZVOO0VPR37xg1WwnwbNNzRMdr5L0WdhN84rsSXznbYRgxkMpLjPpZJRGWCG4FRrN49HwHmZpYox4zgdDavnSQMS2+AgHwvzn7/lzUkAkZ73+3UrguqfGbuxVOdJe1KZ13ezS9TxH8zH4CNA1CQFVCRpBHTH9BB6KIXgnknleKZDtyRF8yjrl2JxsGeZbtsg0foeD4GTBjov5ScYacoS9Xyv/VDI+uiNJtEKPTurTsx7jErRhMfjw2SCYe3wrvZT92hPQYfo4pwjUTE8SmSe5/hP7iIFpPQ+EQtpaZf6zoXu7DVFNK6zDtFdidy7qwkk7kcMeRhpvBDQvehtwQsjs+ZHZunm4IIJqvAmm8jDMETBNWI+GNTiuIH0Ibv/Rqbg4//w0t0PDNcCnsFBu+ASf5D5qoZqiQwnf0F9J9F/BwMuYm2eOvkMj+LlhFOSzpaTQoVvX6aIx+nZEYyWOxoqXkVjPi/VTFqVVO13G7w1Gq/slMB+/bvtVyz1bEpKnTBaGuxk8X6UpVInzQqisFK7RhcPvv0z7lktzDTlbHU0rwvmuxdJsR3XfILmR2r+n8CGoS3pn5wo43mjG8VrIGbpil7CsgsY5wGHBvVtIx1CcEd7a9tfHfdIosmjjLnw72+fwa7EWwP2TIKC0T+E5Wgt8NUkwj9zqxN0HRGkCm4Sb6KVw/2X0cNFgwcfwoSdg20g/t6eShSnr1CiI53RE51f7Wd1PYLcvhQpKfXVewEpOm4WZd4IdIuqfPLf/iXZdoYtAxv51OcUm/BAtXoEfPCgqaNGL6FZAeuXYslaKTyI9zDHW2xXtIoz0JtCHCxMJ6wYL2qMWg5ifD/IO4E1aplShfRPKqej/ha/iIeOJ1APlGOspIcFjWwtubY3NUbse0MmennLxSUY3y8SqhPjJs4ifSy0AgUKM/eb4PNLy9e0QIgxbr86UFU3q6wV6vcIGqBTxTQIfUdcSWTMzk+DLmHGXoTvAzreMUmE7fGlJfYo/zObvcpdOph63yF6fWVRJCTfyKiRKsMv83G53N3Gn2cBZKPKHmal8WgTABjf9C9jHSmHGqwI12BbEPMw0EdPkNHZAxppd7y5KV/7Nox5s6PZo59FH7wWcKLAuztYb2kf/fjI6oPgR0DiAjRbjedCKdnSqBTkUCngBjr+ojM9vzTuP0phyEqG0EKv4hPKBFwgp8HcJ9P1eAyeMCu6ctgX3sRUymqwIC0zojwTXYXfKAeGmrO9wLoFzYr8qgxEurRhLuwpXb8aC1d73Og+iqE1FVWA3P9Odm82EdmFBgiMBppullwcdCYDcx55XoLDl5+5VsDf6coUPqXTrJReB+68WhGkh6ICfIw7dTp+xwRXC3FaU5kGvgFIejxNFdoSI3QTXEMUxko+hX797a6mB/8ogsmVT9T6BrPIuhJ+pU09Ejkm9m0lubfnuYV6R0xd7LLStIqLiN9qutLtx9hviJg7HeXP1B+9s6uXfHLXOUde3SVpaKHVhS2UepsT4nztYGfz9IDa+skgZOD2lgh9B9LhL9DsJK5tAKQwDsABwYpa5ioOgNzMkQ/sRmm13hE0YvNLVlgIY8wOZJ5dmm0d3LRBLTrI6dTddCuzRF5T4vKukDq68fRpZBYvdB5ZoWWZTXuHq6cOqD3YcPWk7q5AygOJ18SMOQRnIN9WGwd94swlnR8V4VriyY35/HWPXttI+OjNrudoaX4BUC25TqvUu5ZJHpO1X0B+a0yhPPeEKUPvwLk0xwYmiUM26DTuHU7M4wIx4B9VjWmCI2UrSeSDsbsGcdN/Ww4RUML/BnCKWB8azWLuYltaRNLqMuFrZR8gr46w/oKZ2iphnVQyy4Bc2AjDCnjB7H04uOCoeq0ihXgtCB11r0TXBgEbiYfeS7L58/3Dkm46icib9dUsenyYayZTlzKNs3FbCxppROdD4m8r9jB2W+nQDtqgStvv20GZMKpm/n8qoO+sstpKptHq8DEIcH07rZ/Gw8RMUNTLs9OZvNEvtIPnToNFJ+k91N5tYJ+84o95CIkOZHg9efy1Y+cp1n4DYid/WJgr13h5aJx3MqAzfgTYHdd8bCSoFKpzbigW+eRGRum7Ax+wCvL4ZeoD6PSOr//1fm3xQ5Wt05hmK9jRTiqMbsFjrLfrMRlNDX41dGfOze2MJxFyCQs7DfEpy6OUVPYsfzJQ7WVe6W6TLN4suwtZaWeyRjOSGyS9T5MpgCx/TcWiHo0iW8qFcZTAswptD1GsBJFz3o2fUX6gh/cPUqBrMi89c2v6S6t8eGJc/3tFEh/QnbuW9R0rHmmJFvCQ8n8iuaIPy+ESgKFZInMFfoj8yWOugKtDbMm2txZ7NDXbYOneqJgcd7VuiUWVVTOQiONEL+1Fsdgd6LND4e7PiM8JdMyCtkGvCgzeLXrQxgCM4VptJeKdyJq8/nm50edlAF8HSTr7g3pkDeIq3T+JuuOUhFaa9C/7zdU1ucQoZWkbNvmEioNyIPf2q+Rex2zz2W5ZtlRd6Gc+oQZP+Z2+ArtNxfJNvAGpVRurNGMkl6AEnocNwUcDE91j/i9xhsf+vIo04cPNh72Tq1ofgYh1vnENWANchCW8c7AO9DCa8s/isud2gBS9ybjfyTU992eSnhdP0P0XipLQbiEl4Bke9rlESy9XVxAWQCw6blOmqXMq17/8opPcVz+SIS7iIwmnT3zCzCwpmZvxy9hDrTqoDfcAaAHx/zayi61AtrU5rgSg+SZqEHbjQz9QjDUbAiUB3K9srnNW/WyNuXOzKYQBYQh77gu6HCERojrFp+X3QlbOqnDtJ4KdyUlH9xoAcspbRqNWXd6z7n7SgfOVYb09h8PjqjgViEfN+Mixz6QMGfg4+FPWQWWtLEKSmgspEalgc9Jm3pyHHsdc2+EOXaetxi63ixDjwYkcUEh9RytBjgZrYYZxRokhoVsZVMwnE5lI1kYUr5ts6pl3qmv+Wqh4Cjl9Xu4LaLlZpsAh0O4d07ZDjZGWgN4LjZhcQpRMdsZOGz8AbIsz1HuaIwWsRhWe5w0QlFwNwjSjzfsILe2X1+laPcBgrWDyzpwJbiYLOv8wDNRL9VG2h/W5Pkt/ZmVnN9fZnacF3jQu4xXc2lF/DNW6+I78uA3uK8QCINrAYjs+3WpMg6ehrOzgy9kzfFv99BJnIvUUpDzWYIJqU/4h6QqFNnn6Uswz0pZ7B1MPy8HhrIgJRwo8F2Zs4StYCTS7noNSqnKznUU8hHPOkUZdKdiBQY8vFNaqkzZAoMlVTSR80mXszxWDKmiix6mDdkccpaCsrWKBp0uCMGdMEk9Vw5fpBnGkJ4kdo4/k50iPntq6foHn3r2EBjeK/8S32X5wG/GyzzDdzClsm0rhE4rDb+lrj00A8Tqzv2x0xhCw/HsFLLmIvyEAZYukDnfX3jan5+PFGmHBQsPKzZoR+CpwZ1ifp6AQ5cRCHSA0188+9s4XqinDDImmr9rVZukXKG07K1htSgGMynXq7Qi2sysO9fglF3YeDMohlRdi/xyhTWbrezy2gAb5qy1++aQZIrcuSgXKBmhK8Td6aStXnJhHUeEKIfw35PpKTm2Y3PkyZuJ0rJCBNcYbFDjNbwSGZhjYgesl+prpRRkCnMU/iMbCNjjP3l+a9f7uKUOftVsV4S94xox2ppvhnRrNr9bzeLPmK/Rc/2Jqdg6i5v0BElknXJkV/ttDsZ64B4005vMm3aWeKlbePV0l87k7DTS1Y9gxKbyEuSCxYwrlYTU50I4hWLBncL54LVbybLnl9WFhxRlhLsdVtrQkdbCN/oyiwijFAH8BAnLo4aCT+fkQShmamoyWrbtYcQoHYn4krlKdClQ7zqOHBw4Jj9CTpuyZDZkHq9T/TInzxwKFxRTFA12Ikc+aLt/oHpGqPHgP2xFFNPGuWplDnyx561uC1eGBL3W3sO32bfd6zP60sphYQAD19HLfQ5mXPhclCyM6yahlEYm2je+psQcPIeYC54lJOXOyLJHHVFuY1rcuANhIe27y46F/PniI1YiT8yLV5uRYfDBBRsHrgIQhpyaGYea/9I+3RV1RMlS1eG74Supea8ITaQ5CXgThOMQA6FjaS6gAs5S4tIwxDJhIXI9mhwGRU200QgRVxxM11iPSgJHPiW6KLYeSY4wMMBU1sM0Y/oqCUwvfMCtO2MaB2IA24DBcN13S6VFN6q4MirE2qjYOdk3Sdg6dmrniZ8bCaij2tUo8hu0aQ/5G7QTgifb7yeL5d7DS0vp4Dw5jxCDXJ1vYGblPKvmq2w+3/2tqov1DalmT4y9J6J9qVl1uCwu5MPYts9tTbiO3ohDeJexth0u19PWMfhYiXEaKANd7RE3H1ENnAm2rf9sRM0abtYKYClUC2wZgT3Z16Vauq2mxwsBWjb/Qf58nCGCtA3GiEiWpNp85xZ1CJjWCDqAGbjSXMogk5sgRezUjUJrvoLUFwDLuADITEYHytL/GMlibY58HMAo1f/4Ye2JOg9E2nRLmQiPUdaEJTan2Tks23km5MSHvbNkkUAQBdYqrI/q2LMPQxT5CHszm0MlEdAG2WJQNMNy1pjKfX3VWcjUordM3aFEylgH8broqDRwKhYUruUr0o7UtqWe8TF4KCBi/2l4uyGgPsoM6ELMCyexZyf6D85j5dacdvmC0ikiH1j9oHN7HRBWEW7/mx8+gYgEhLoxYPPatwi22j0yyYUiAMff2DdHYSyd7PAAhJyg2mUKBv+QFfIDiOMgrrzlijLI/Sb4kLICEDES4wcmISgxGwL1KHPs9MAfSqrdI95jyc2mjK49GLYI9OedLvpKxM4dPKRGA2edq5J3dgriWzYFY7KbLJLDO9R9hGooHnfNeSsI28tlk7oCY+RYbN7isuQFQQoByE1JlGOpY9bcmCCHHrvuX7MIDK0X2V+ttpOP6TOFZD5VKPJ+QRh7t+2sQfxjqWUR0KrNCOArSvTYS1QIkGiNHxi50LYscPp0C3w/9zID0KiFjwNaXMG7bu72rDk9p5hNHq9ZCt0ErKlGO4Y1+B++qSFaBwG2hhr4MEasPETKil7Rkh/aZr4FRhoKsiDxJhDKUVLqOcelb681hsN3dds8bfgzULIz1h4JmVZ+kq8EabCCcceD4lv1spNmojRFZJtV3c6HOk6Dgp04NV9hXokHzAIa2rTAIL2YSR8Cjru9uXPMehK3lXvrBuUU3pIh8WdzBzh6dioarxSOEhnAipHaPLizJiGStctjU6OA6iCs6G09GefQNmJq1VWbUWT5/Qswrtl8HI6nBXSfUUu0denWJ69k6/vw8Oz9c7+F0nEToKES7G+g2Kxcx0WBMvAFu64hefBJDffZYLUNwWcgqjAEjaIVRFJElmMcji0XiWaRhql8pR6EZ2nE4j2yK75RuDyCoA3gEm4WEpT3Y58rj4vniBwIMwgFkG4WFHElMfOVQHgo8izjx/48Et6sf5ZB6t4YLjDmI7JHnonkG3DDR68e8Tq+RF9ZwG47EeQdfKRIHXMBiX41TlzkThEwVpp1h6V288+97RALaNEfc2f61qAt8kg90Ve8bTdx7YeyWVKWejcV8G6K5X5PUU/XG/0OSkwp/XwHTiqHgdvWH2g++HsmyAKnDYL5DUdY8plBlFMrbY0e1LrRCB9F3VYMdiARkwsIKUAFqREmv17p3K1vAt+iYfQGQO430TNRYVJWJMx6Cf7/Wa48/F57QXqa70Uk3Lqmz3eQuzHnvjLMRSOOSrsX3mbLhbBl+IkpBH+jEuLS20DZ1Na/w5AHbkNS4OQezMyih4yXB5YR66gsCo+8WY200cJARrHUHswog369qfV80w3DRi2ilRr0ZrugHon7/l3K4oG6hCue2hgViH8xPUAHG4E6v3LgkAgkDxNL3aOrOmoxc+N+P/p8llBcb2o0CHDn1HUfli8kUm2G2Dnnwk/rwShk+TKDVKF90t5yQJF5aEEyCoDwAntJFxEsZJwRDj2o93AweSSN0r3dnlBeyeyaOosLPHRHGm0IkVpHJhrAvBmKqQBAJhbOGlaHVJaIT1i/MLanmbjpJOo1IZmPs95xZoLzB2EAYigkvqNkTFDDesXaxELFSlfAwt4YWCWy0hzdO4cumC2Xxxp8K6wOGe8/dzSEEoDEawEaS5h52jZWz/3M1ZTFIySkP2vPPXIJ9duxT95No1IQW0xvhbWOilqvRkacMG+DhS37xHLteNmLZfgKNdTsgrPXcu8L7RAX/j5Umb8GjW2dpOY4DrqqrGYHSGjrZRNHJo8sEoSGiNMQ1QC8viLcr9BeXTcqO1NGZxmOTvUk5woiDNw+zxhpcoxto5Kq152Ek/sCfTvw7JACQa+364DjRbhOsFofNeViWP7Oi8WeC1a545Zc+fl2AVg6Yn740tAwC9x5VqO15CYoa7xwF42GuFdAEdy/WyOrGpN8LIIw8mkFHMpkyjWPuzkDYXRHJY4wKlzt1FxP+cV9gANVLXG5sHvs7rJF3vdyfuk1vkN2cKeIlzWzKOE88C8J4WoSvzumZO89b8zjRNM3CFelE8tvmCQVO+CgDLmTaHodiCqSdmFRrWSlJB7abjEXIbzlxI4tXkjcmsGWDFIIZ1XvM0g0qgK8ZCqL9+Tv8AMV/I12Qv7yaIocEfVMFUaZGW3fjyZYgny2IS9ePSQ6p+dTpsozeVWpK
Variant 0
DifficultyLevel
562
Question
A bag contains different coloured balls.
It contains 4 red balls, 8 green balls, 3 pink balls, 6 grey balls and 11 yellow balls.
Nathalie picks a ball from the bag without looking.
What is the chance that she draws a grey ball?
Worked Solution
|
|
P(Grey ball) |
= Total number of ballsNumber of grey balls |
|
= 4+8+3+6+116 |
|
= 326 |
|
= 163 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
correctAnswer | |
Answers