20276
U2FsdGVkX1//KhO9uojoyGD4e72CFnt/w1J1mg+k7aAcpgX+3IXaIrqckjTE0pok3vTHaMfjmphDQnkTwXBRz8gkiumA9Np3F907+waAzaWlsb44udtCBJQP7Igl5mZk3Mx8BAMgvhQPhBI6kX6VX5OVFWXZRW2dFog/4uAixVaZWV/6JRqsCFad4oH5FdP8dkBSZijYrBBv0B5C8FpmVGSwBlZG9SyMIgjxm4kpPDCM/zDWUqbxnejrzeN7j7v+Kcn3qv1l5MTKv5K7TfKPtZk7MtvUz/9zKTxRhUzWaWyasWxqHh35qVbQwPBdzmv47/+s4iaKag2enMT6CdDFlr0TD0dwmfbbWR3GNd+oJL+8SqAmQZ9y+nVQ1vhLGzUkWLFXVpxMUXJJHG+zUJLkjQ4SdUqws03MM5lQ+mAnTlmF8zgFSfQhh6CIEX3vjyzVZQNJrGERhiOn7V8zuwkZxPD1LiyHJ7uEFYJsR5klM87xu8Cvw4kll6QOpaf6t5/sKatJvgezyRrXErMga4OWjk/PDtAP0L9cynLwn/R16lJ8nZrOF4gjDYCEAHH/GYT59wDhmh3mbAjZo3E9y3MwNO3V7X7L5EJVsppp+FbGMrmpCkqHtr00sPtuJeWFz0gjRMqJK+QR7cNm0DmNx6KLBbxeUlcAMbrsWO/p5TzRcz4IJQA30reLeTcOm+FOqimWPGjxi89j1xS+H9Y+UXJOtIjVJu8vrhVoZjKVGCOZ2zGvahhUWYR2QnR/KUNzOhr0jOpHGnIa1Nf1tKif4xMByreytAnklKAp3JHnJNWTMkSb/w8UG7OG/0KTP+P1E5/7xNwXrQ2FLzxu845UuZjrf2sd8K1Lxj49d5WH4yOk6TREK2YterqHc8yLmmfmAUer4XeJlRnloK29Q7PoDjylq33i6/kE5fD40GrKh4XuMqRi2CN3eBXp/jZ1MPUU7WeILhoT5KOJqaMqdU/mTc/bWnfT91tNAiVKS8IM9wJFOY42KuvGyNeu5UVzpMT/NFJupsYS0UxAKUblV2aCMrGwphtNn3ZF14c/LQpxXlEDiBPdWmRjt5PXGGnUvsIjxRxB2a/cmSgCtTl00qzh8URkw09RNtwqp5oebBX1Azyg+fLhCtpsxX1t+CcyXVBxeaFXjaTWlWOXkhiogjJiHZlVEzhJeGf3dlUFfbGlzM4NB4/JLtp83KhcQKg0K46vkguFHTw1WdH4ba50XSUjOUXzubXXKaETDWBOmZOLW4K1+PqO6E33MdzyqXf5XoLxTFAMBZ6jE7saVeEB0a9LvefPzlzKsTLPDe0KX1MsXIg1BZFjDwGciX1+/+w9XpH1oAKwqgWwYKgrPg1fbctwnV2ctFETyeP9/msfEgQTDHMdmH83BjHE6mpEF2bA7U5sgnGldGmwVRx4wtVX5dq51ixYqKv5Bv27KyaMmdRnOWHBc8sOv/puQW0VsYPQEKuizjkSBvWuHHCx6pr7Dae39NB4zLPO1o4ylWV+fPUlTQa+fBp96A9mkS/7jEoUkB0ZsENtgtoGpkugasRPT4UVfIyddaGtx+XOsJW1hNWQMbROKl2Ak3HH3Sv7+i//xsxW3ka3NPTDiMjXRkI52dzcoCYZ+joFNdz4vVVa6eu8g+7jXejyzyIBr4ZSXE6acj1ikXdHnMmpjS5iDK2hMQbxAOcP2uxDF6kCnMzoHmXeyr82xl0KTJObIZIVX/mSdk9jsU0BkxPX7kxPPLq8aUER3e8e/6eLDUaXyMGe6qjprbPLwSZSW8L10/UhEHfPN1SoH3VFIvUjbdhjX0f6FhOzlk+6tTuz4D6Chjce02fCef2nDxBaoxeb6w+iLHowjwxWSsZN0q92cEQq4Umtiinb22OaVJHMV80mvOtevZdxezKRf4fQSsaz4P5B5mB1bPa8pqmuE8dRUfbgF+ah/yVxtusnsZg7zF4I851gcrCXviuWvvH2fPEBxtRUIYbxTPV/Qzgkt8l7QHgK7JFnJMbYggveBpZmEnuzI91W7nbNqPXh42C55NnP3qe/pC3h7KC9q/Sp5A1SXSn/r0it0H7/9Hwo3qehY6R3fn9Wiww2PoloRW9W7kiHnbo1X5Eoz6GiHztr0zfJWz3qKklK1aN3krPrXhj+H7HnQdOjkwXQtBWqfDjhaGNERNRFPssSP5ZRP/PdOGDvSUxxycD9DoKIJOaPx5djGzNwRu4aWY4hfRbZQtrPRmIJQpuqPo69KdoZLR0kEHkJpRSjeFYY3Fzluyz5K8gCKEywd2SeOlqRPM+IdFG/4G9nzU+QO0KMJVLaWCanvGRY/F8h6Y6CuCaW672rikbwFH/kUjyrPAqUA2E0fq25dlrJ3eRVV56Lg77FbecyIZN+xs7GZe3WwrAfDDrNFaCAUDRnGvMOImFVK45/dEWt/92hyyDtIsAlMgJzt7U1NRe/SqCQB5OUWbKc4V3gGepRmA8Zujh0gYbKjoUTUgOv8+7aOZrgyFt9g9uUfo1qkttsKy7aYbwa798QoqdgM+OAYBCtLhhVM6rUwsRjSPTnTOF4hziA90LXwtCehM4M3cWOfzSRR7HF1j+W/IbSJrGUaeTtmeupUwnTWP7mSgs8YbPY8CCO8PGt67ucI43dlT3XkArn7FZcwSmiiZTuWodQBgGYIshAtCoxKp9t1n7MQUZ0wN0WzkCFEK0sctmDpJ3T+OIFNZbCB8nXlG17/jZEltikfNB0bQ2vQDMgNleeDv4P12CuWdR5xDoMBUZGlhYyOMqmNdqkr9S2OGztDzMyQZgb5Rrxil+ipF94cq7y51kfNN8YA0olTzhChjaMOFQn6o8k5O7NSHdJiH9kGA8BUc/bEMrGUSgiEfN2rZVJNTyiEyfP7Oketdj+oXGbxtGc5tZvXpcMBSzXF40ljhWYyuVdlMQgxBHnMalSTrYfaETVPCsZhV1AMaV8CsvWtb702Tc3GpxOftwz6o8OJN9+a9aYrlUM8fmT57I3YCApx7pImiKfCWsgbZNv8zX6Wbc699cB5B4G76+SlcTi+EFuj+XFsOwWv4tq3CpnzJQ/s5YC2t1ASskxgavKpWKpyHeJ9YZ7a/whYSTeTj+Wr2EdjSPZrfyFg+jbZs67700vh2ST+xlE4qs0KvcGeH8hJ0kimTNH4kv9E+I057vPcvsvgZk/l88MiKTbRFrou3FzLdyaOd3OQxn3YM/465lmpN0bIJ5+qbA33iHObHl5/K56EwcrUgHNctThDmEI/td0vyIKHRSwQgaXek7/VDa+Vtm8XSidD78b1YlMgW5GoEsm4BhI/vJOD2uyIKvMJ/o7A7fKa/uhxqyK9I5qIqT6V5O5GOmQpQguD5yVZMOfaI9UFHMZgxndNBrI+nHYE7f3NGjBWXsOl/YRQ5nmjs8WmdL7CX0qthAlOMwmXgaRcbOT8jK/3LLKSlUdUqVZ9mStsPDSfzxcSmP93qlAbsTiUNv8JHZ00C5lPKy4VphhnU77TlhcfuoCuuI+3mqxSMZBsszxR+jgnRqmO7SzeSoKddMH6NQO6WdRb3elyv1J2hJoifKs1plfaZgOdAsitys36W8CGJmjDUoeBdIqGBp9+kKJlhUWfWgH1wFFuOOWrsvp6C/E5CTImIxZSs/pbEN4ZQRnbN9+1IeoWi8HK/rujMiwuhdeDt9rBuYq6PiSGewIIm9MhKCmuMhEkWCnnWpx+LsaRbGvOM+996zgAcenZM213gWLae4N1tH8X8JKnwIKg4x98/IIPrzs/ozWQPM/mg2JMBw8x8jlmB0CKyTD+BoqY51NGCHaJf6v6gmU8ylvPHOYTqT1dH1YTTxk9AfacSpwJq4OhMj6uwJqgleSsna3OrhGB3F8vZ3ZE+YKXEIEq58lZ8j8TYBY1moS5KQuyxpWT8raDK0hOgiwTM5G8oK6JZ3ZpTRUBg0TBEGmNzDJnwDi14eyr4gAY58CxzPBleaEoXrfkoLPJ8aUUdqeyWhD19y/ZJd5BoYdb1V9nDX7ZWCCv3sa2qWK9Q5kHj62FHwtb9KiU3j1bjnWu3UFsuo99VJFEF1iIz1ArdA5OhPu4m4awILdCAK+kOwRlgai4fZSX0gHeOCxHYcJODM3F+4nSUhePG8QyQ4GWjV6asqqY5FbHLvATA8K5CJ4bQcX7XDdQGE3mVfhxIZVqApa/rHnC3dHigC9K4rycg2T9dzv1kE030RiVfLDiXLZBHrCvTpRsGejWCtt4HoWmeDdRxlInNChgWKF81okH5/IX2FXkNZPazxcyZfZI3cNe/K1tINj1/Hlt4AvBCO1gBiCl/BkkVC4o/O19HJBQ0Y8TUYMX/N42iRaqRal5pZU41/hA+lUi799/x1/rDxLWZTFmcqPzgpWnIbT3vbNrh2KK6WiBhzDP4lcuuuGKzmI2bnQL1NWwdh/NscGIxlOIkkuJxK/gJVj9nrCUUglh0swZuX5NXT8mSrwQe/iQArsZPHgCq2TBTSx3UFt0gUP42BK6r1PHOpcM9sel43LSH5KCrRy6C5UlEwV22TQgMU78wDNQmMNWokouakPvIGFT4+ouSxk/iEjZBaNwE1AuO5Pvu31S7bs1U3TDB6xbBchFcBzTK1PNjj2S56lZ8ATswJLiDBvRDoK5ibrPiUT9wf+4gXNmm6jBTBnm3x/kab/UvmObG19ee89FFVDkGH14YXWL3E2NkKK4MJYkMjVtQXrqZMgmiV1UIFC4bRwmINU8tbku4QLlJ7tA8qGAm1Zg065PCqbR1oacHtquGSzp0LBuFIraYiCnoqqqIc7RQlTCsr/KHZAE261n21q21Jsedq8v3mKr0Qn+kGf2GwhK8IukDmHAlIMwztCPj9RCqgKDWRPaLPV7W+MPvxhK39JDl4nkxtv5n9jMMV5SCTm1joMdJLafq1OzEXbi5SQzpxBAKcQNq3ZNe89rASar454N0ZVAzWaMsc8F25jfEydLhNvX5PFRx/xSwD9wovtl9CJZdEbqzG2PkdPRrWJVq84q8s1c5hU6A+dPgeQxdeJVbAST9JqGovTG4DmKna5pupgEUBRqMsuddzr8BMCIyMEwxPHyB/XIX/HEDAGdNTtgJU+hds/EALBFFoVSXGvOAydn1F29tVGqeYcUlzMViv8Z7ie81jUBOx3K7nU1xy/Gz/JtDiBoJChEMpN6gYRjfnmGTKLgzFAi7lHG7ZrC15SVkHrdJo7eUHkjh00BWtnOupygvElJtvjw8hlGXdJR7OvM1XnyUcYIcpx3+4GP0rJSgiFv9FbDd+b28SiObCEHvm51GrtvcNBOH9cXup6IdWWt7a7za13mfzto44Abdz0L3UjwXT2WXt181/mm9yNsFjnoukPYY/UuTfjh/4wyBSic+E6Xxc2kEe0KfybSN3fB4ofutOj0dcI3P+E7bmJqdqLMeAdyU73DObWUIQFqN3Ag3QF34n2LRNM2LhjKZ3VjUM50Kc6yuuWBWOgDEQmukO6Z4sqWYzOvc+K4c/VbRLUfDoR+RoD8VcM6OgLQJ+35mhaDKMf0XLbvyE1ZwTWD2TtLDJ98yWrnjmamkaTjg7uumYGDEIKtZOo1+C+kPuUPGJYS+QpPASiQNsWyL7Kv8VdgEnWH2fHM8o6+gdfc+c1K7L6F4ywzlUwEhxUg0ZSfUHMdw5Wb0WLd2eg3kRsDpNARvNG05Pe3iOfKsCBFXUQI5pv6F44u8vagV6V3i1pFdULVlL+DjhDTWWttODx3OuWhfIgQTTJHFELentumN8I6AuKfia5kCINWR2EslvSZ8K+1JEBbqepa4rCCvPnzNIYBFmhNKUTkF8H2S9MVbxsRgEh/U1lC72GpLLIvxfQKOxmoQXXo1IKbA4LFmq8qN9XjjE/JKO8sdVtPwjJQ6uVNjAaFLlf+wnik2mRxMksUnDSIBcWGx41vs569fjXpNB4YnZpNwgvZ6VbVsveXi42fAOdWsWSAzESwD2zqjarR549dFhQpVqgWFsA6D58L+wiOwCPyYlBv8GgFnBG4izlKpTa1ZtpUjF47OZhJjYUiHIYZKHgmd71o/Xfs4v4URqFfq1P77fCsmbBr2s/vPwpRkvKqFX+uvEkiL1Bv75eBW+rXq59N4Qt0LRbPwbF5GN4WGm231GCTPL0BDXevkl+lLVSI9wn2uTjEzx9vjfORjaTYxZYGuRQPuQzqNMNDM7S/Vz5IDY5DlhErvQkf8WVzQOMk1cZleM54GvD4HnDq+I/2lcxKwAIYwY0T78QwaUzIExBbJXG5nVUUQHNvH1Rd9FKQOamCglWq8qzojC5hipEkJYrQibQZQwIU3uTbIqijCeIkxs/JcljcMkj44V+4T1UV3tKO4p7esbpmhpnR55kkmM00PUbl96zcL7IKTz870pxyVsbFH5NXdV+DpR4WoJl/z8uhH9FCo9jk+aMPKXFnrRxmbId+lwcfbbfVrwT2buwL1zehGyJFXm2OvohKP7BGEIwu0Lq4AQaACsihWXv9Aa7w8cARNQG3Fa2ppaFOUsIaRI86pnV8Uq8s63nA7kBn2OjBH1a9/idPSAJAbjTXPJV/c1kHKYHrPvMAx/WE1UWjVfiHObNMkgH7KXVcIYg2SI31HbVI1DDc+BoKY/D6JKlIrHhpcHGoAWEch4b4/ebjqDCJZpzoAJJ50F4fyIKxVWSVRX8j4gwxRIk1xFfRPbI/1bV+WUkcH6TIAxnLvqVNl7vnXnCvO0Gl62/yGGYuV7mKjjVf223ITKCbgBcVYJNbs0OQHWtEJOOBaALdkfUfYbc6qd9/N7Miff2UpSrZJ4D2wpv6TS90+DxlNumJb2biwLcbxYDQVu7m78WbbZhp9fNLYXkg1UHh6W3xzApwWO9uW17QU+dXRV6kf1z3PigfX3xZZw7V+r4DbP4nUyBNWe2ckPco6Z3ncA5NXmsA1SHT3kHuTVca3TvdEkuOkNrab0LEIsklhVYd9vNSKyynutF4yKXrwrc6H0F7ToVS2SjGfnCCPqVaJZBNrm12Hl1S9u8ssdkPUfdbI1XbkEGOGsG9UE8PxN9XptlLSAgy2f3UuK+lQLaVNRXKRCuFag0KIZ/qSGfXkXDgIDqYHEd/uGrAOAotp/b3rr3cBYgvDJR9aWzAw8jA22oVxbg1XS2Kthwi3sAALWJaudQjKrCJB26C7dKMTE0ANXRKFd2pfVcezZC35gM+1qAEqSKHMGlyU/buxpNdLqOYmGItsilFUYqMrdnsN2rJ2nt+PncDR+uRUojN0FEnIFglKC3zH+CDtj8Nav7rVOH02wDiE5fb9DwwP0+dYUhSkoW1tH9CxVJrrf94SnHh+hAPtHBOg0LUGF7TlxySDIIHEK018+EIUHzpN2UaUEy9Y7jUHykb+sdDeyuq45pzkw7EwhXzeWebCJFSvRGPOK3Sh1P5GtMlCKlAEZd/pgurg6UWxL22WTR4T1M9FnziO16SOU0RrvoJqO1noKnghCRgRaarHJk2feMIwGlbJhbqUKqzyz6HbV0wps5HlhiZgZ+UCs+FDDWLbFU+Jn4w8pwCcvrogJgbtRC7ZdU1v0FSvqXGhxiPoM/qH+1VWqo9GQAoHYHAUt87lBHnFcBPAcGduPUNSkVH+uWhWWzbkkkun/SgBYPyGLp5OKKEJntJV0qTHADCxmOMYW3OiFSXXSKQSeSnGziTqXLQIAZGDStIBcI4hssEnK9EyQ+ZqpWwOYCs0PM
Variant 0
DifficultyLevel
579
Question
Lee pays a monthly membership of $36 to have unlimited entry to the local swimming pool.
If she does squad training, she needs to pay an extra $8 per session to the swim coach.
If Lee does n squad sessions in a month, which expression represents her monthly bill?
Worked Solution
Monthly membership = $36
Cost of n squad sessions = $8n
∴ Total monthly bill = 36 + 8n
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Lee pays a monthly membership of \$36 to have unlimited entry to the local swimming pool.
If she does squad training, she needs to pay an extra \$8 per session to the swim coach.
If Lee does $\large n$ squad sessions in a month, which expression represents her monthly bill? |
workedSolution | Monthly membership = \$36
Cost of $\large n$ squad sessions = \$8$\large n$
$\therefore$ Total monthly bill = {{{correctAnswer}}}
|
correctAnswer | |
Answers
U2FsdGVkX1/ffcW00hAKw1WNq99ZIiWJCVR4m4lPvAYBXkl+VW2oDm+n/MC/hoZh1+PEB+h2wDrPOHhtPbZhfyqNva+02+J16n23epvz30DaZ9oTp1yY4IREFecvVmgm7751kB73/q1N5Kv5CvuvrcNHvcNqeBOqdXVrcmfOjonmE38WfEW8sxZ3wJ/aT360eha7anr/UjkSQ7Wq5PvTgmY2qpfgAAQA8frBFgkpoFlks4YmAdUPqNlT+83tjb1YJAObzqrv5lM+Y71rHmXBVt3nBWJLdZjdYZdDK6J9dwBUz+TQqUOph0rief3fkpiA7rSZqu8VbhNeJu1V4zNZnFx/Elm5bv9myDS23i37Qohn3PY3REvzVNJwRPQvwkV08qISmuQP6cNKNYNFVW/UOU7WQ9WWYxM40shpQy+yq4f9eN3bLTas/XmqoFoi0hItmSZH0uIf7hXfhv7EwH8GYHfnBuPu5Eb6gxXpthfL6bcG5CU/qfK5tfgoxoqEzWTVyn1Bno3PIs4a5MZ7Kom23OTGp6o+xp8eUAaEwNYaIhpeprk/qsOXVwVy3i2E1bnr9BMuNO8A4l/b2ANTPzCpwD8U+B1x9sXU64LjmC/OjCjdcwhXkUM6SHWylNcSxR2wNdhTLfbft77k/PTJsE9x9ZqDXOYjVyD0VQt3EpZGOlllNB8iorh+mRTLVWwbhWSd5BSzubSBl3ss0zQluuoV+ry73e0qpsM0uxK/s2SEAcdc/lnQz5IgAfi1/dAJTmTl6sD2T/izzO8x1FNVNkcMuUUUQWDlPZI2TZvX57smKRUC0u8e5ppq50Zlw8sB0i727UjwbaTp5WFCAmBfFygS+PdRWtjjCKQhxDcteiJMigsmPzssdJauPNUkp4ZS8EQcHAUnG0VldHYOo4jwHDUqjt02jYrXHgogmeagg++vwltp3elV9WQMKy5zu0XMi3P9KVg+J8BTYgCCCRGXWJMXybQvmJL6AYMeobDcDTZwsgynrzeX3XCQlcoc6CwBsSXLKT89eICLxDYoMWSYhV52/C1MUIfZjvOVkhZoCST8/jYptoDKuZoNm4x/+w/Ma9+FuIbtokzr31uKRnURQrbl+KhuAnUjrMIqClYaB/h6CKUkvEMsgrBUdaKGrJk81jLjDZ8LoQ8wG1OE3H7dGee/0jY+78eh0Q1WdBSDw+R63VB9LHhL9mIRPFsfumyofB9vu4TWONlNKGGyy526aPiXxRCtM+wsWKUC2KzXUcaxcgQbaBupFW5i5QDj7AzByNIjqKf31IUF0hAvRzVcL9ru5I6umNjS4gL6kuhCdhggdyPmo3IAjwlKQFF4GQIFhKZjSXl3Nud2MXbgf0zs0AoOe/151OyqWUXsBFZj2V/IxHOYxwrw5acPK9G4lRPPfshb9cE/GGSUfdonBJBsWtil/B9QUqzNsZPd7kykKyh/TGH6xDcEuZmdLxqPABBNmyPPBfbKgpECjxFTvUKv3mRGCK6oNgMuDM/OeIGI+gO9mCK94wUbVUFi/9xVfB473THET7rDe5iXQE3/rwGTCHk9b9MIGUEoYktw+gfOVtYcqHvCit9koOYiHaES5CcIQyHC/R2KilLHG0iJUozBaU8MOmhh+1IdDpoFQT3BBjbAKNWNgDLkIe+ElsZ5W2hLSXtPMt/22DbDIP/jPsZCpnUpugROhBbjevyEThZ2C2TjC1a0HI+1V068enMO4i80NGv7JUI2G1FqhGXgU5O+iEiE1j7pQKFPgot2pCYfwmVhTeNWmCdrU6xiZLmaUgBH3xgIRS0uW46NVQcKjP077wEvNY7AJV87XPmgTqUhcAIMGElWkyLP+QXNHvfE4Ipn4ganVSSQqjQJOm4AxDmRc/bRLLMYwPoXUtNJICvcux2Vz7XLQDd9qXCrgyo1Ldlk45E1aofV8kmhefTMdVqIjDZe6aDwFm//9PdRYXXgMgLRInCoRoU0XxobKaRk9/5v3ORALeWJPIHSX5e8HiJFPWulEJNBFUngl8l56GKzMv+ETw7z71k4lAHq5f4fjWuF//QND3/xY4ENhhyXIqC9sibLZayMtb7GdgDMxUam2vBeDIuyYZtFwsJT0ElUStVWMEp9OPWa84OSI+Zgsxog5/uCNua6jJaQOxz6XHpOc619S9uj8KP59yOr0GIkMVNVadJ8NfSqrhgipcibqb9RxObbSN3yIw1/b1Q4WAzfETYO5to+JsE7gDCSzKO1jvF0xEUKdVV57qltcqGjnHp4zJQ5jUzgwHoMDgmRetsWNuckF/4g4YtjZslh0feKr3gPjWlmVAUQkFUXs/X72y2oc5av+Fxuw8yqMi+nj1u72mkKKjI41AFF+yZHPyiRxemwMyEBw/f1V9716ADupIY7cUT9mjWoPa7nzkZMUw+uFlBErelYDz3RR+FJZh39TVX7cDNmqQn0SAMOdLswQHKLoOgVW6Sb6ILNLcoJGvqx0t5GGbbRIqNkPnu8BZYbDS598qXCQPAYMD6BD2Y5G5cHlNJBXH9oCCtiRJoP5hJHNlTKelDY/7HEPEQ4sSnDtH7QXofCJUFCXUr3hLbfZYwX5bLu/iA5yE1Cf6eKJHezU0VDPJxi7bLaKWqC4wH7EEQrWu4WopWEDEUNXb7PsB6rrrbtIpEDMIdEfyG6fh0YEUm3og43fqLwqgBxRBqbK/Rm/1DDGNdPkeUwXUa6hU09rz1IJGBIoqQRFMPOLnqGIYDSHnaOJfiBzVPzcm+TluVEywVgL3J49fundKDPKxdr/aoMXzsmkVtjSh4beBaG6FRoOqsJMtUgOmfQMhfZm/KDiUBIHjId+J0Oy4+EqWjLj9XnzSh88rOYBaQXbNxLkZ8D0HR7UbbVfaN5d/1FBj7+RFLgN5QNibqhlFZp84bHbN6Qdow3vRUMMePGjZYZ3Xyk9AelB29fqKrbeqglZW7PtzS5Nqt6LYG0OG1HdsBzDmz3fCs3sEtM2OGc4pGGYIKbMJAiNeHpp9unB1Wx+yOvl/1CQL7/rj1/TyeVl146t5x05aHysUwZUq/ddxessUbVhQaQHr+4G22bgnCjTV4jYOtj/f2uCMWGYDAtPXmcE0GlzqoyxtpBopecg/U/Sxj6G5DRuQMihq0OfdNXE0oE7A28wJZdG1bLLZRKP6cT5Lppw3KjuoxaPfsFUVZU/oQ8KxcklheDWwUzrWFnTOZxtfpoBf5VPfwdlYXfJqOSb0e02zg3j1/STL23R3GwrSFd0l0f4Lr9uI4GpIrTpn8RkdSFbhHLoJQ2WKcokM80fdvtLQmx0nSVrQPnTcoAE1OlAvqQJCTn9gNlLWmAMcTHFTLq+40p8umQubyWRuK5LAQ0SX6VBX51UGE6S5Bu1Br63OmlX9/QXeQXhvm64W7JW7bjoVybjuJgSeK66L5gX16i2xxsWqE7qPJXHDYcWngYB+v/3gdKvm4a9W6jcETVRBQ4XxvWofelfxW5psGdYLuqfqV5tJ/uFYS9IdxdVKfRKn3ErZQ+tGe8etb1rj8W+tkMqCWBEgTCG86Yx2QNPJBCLLrSGJxwHLpTXVUGQRxLgntBoRElhhUTQYvgLExraMyeSg7ItsyIpnLXzqtYrsKnoM4SkYYcGJ1aRC4WsIgXX1iNMN7zSaVOhk1pAVCv/NGoPspy0t4vs7tAi7CK8nrNCiNfL9B3nW7qlJLo7GCuWtQraldWGCBKxLdj5Uxb3jg/JybzJ5TR+lrT8H7YTy4tR0Q+Gx8Y8ELokBnSPeDtUrcvIySpyXJrsq1RKP6kUWkwdyfF3cBGn12SH8gdSAMNBLUOfgznRWEP3Oe9PJfzCYKNr19yXIAIdceh8SeJsVINgne/N+v3H2FXsabl5OeOfnzEe/mVrKlJiLJgSApTW3kJDNVbABgpX8bMFsZtN7ijCWR0eF4LYgu53j++wF9NaF8qDd+CHcdU2ljFjCL/YocMnr+Dm9YyP5fH/4UrM01w+Gdunwz7y0cd2qm8yoRWUtvFLo8b74EKIuoe7FZ+TmO0319qA0yOdoXrEDh1sp3TdR0fjnr22j1eBXu35sYA+G7tZp3mcfyS8IMJOi+3bkywTuj8NNIn7ynXnmfkVLHOHzw1MSi132TryVbIp3y0MSEnB1ao9zUzxUcyGL4rEd7jcOR962VcHbSm9iC7LPCCOOotnx62NlbvQcTN11I5PXgrscONEERf9wAO9CHfgHvrNI8wzzMT7g+QZH8nGz8cXaerBoZwZBqxvmsquDnOgw1zkWI5grWOxMabWWSbkYMWekFOKPZjm1w+7/rUpOzuHBYxvvwVAbLELdNGI/Pl1aYU0TAgyugp2bJ0p5STaJAXs+Fi+NvQGh7uyy1vniCj+MsrA/Mnlga477BE+0cbH8QEb7QWZY+SNUoyFOo0XNbCfZKPKb9pU4xwaOd2CCFU9mFlmCZyJV/t3CQa7+YpDbidpVv1SxhBGFLdwRwj6p45QxqmBTv+K9xQ6liQJCJRLy+NnspR6CeNH71LRWDG0XbmgfzwZ21NJ4jNi+WV6vYKIYk7QBLY3vmPsc+ACg8kSLRuDEY28V6yv14NHVRrAJdx5w2MALuRevgiG7uyur/UPTDibwXl4ZJPL1VzBnNxn5KH713H+JH/k+D5Lqcr03wNb05dlNas3eRUdye9LF8CjnzYOwpQ24kPvrIRQtgFjCuKOhmYhoyWXK+cGUwEiYlptdzq3F/VJp7a01hVW4OmDD//9kSzDdDoVaXd2v9YAiPxu1HVhuTPogFpxZ1HlJiuvtFqQatjOmwIHRuik/Wu2g+4Z0T4qzeJcwl3J8FMWR1Y/CDp4F8vC9JA4V6V8q9bgLWlYxStfvlozHNQibcIA8uAlabd+mSuLjQaYIzgO5hucU/Jm7CK9hgODhAheyszKi0toFG4V9QUfF7h4VJ8kYsSUzjNPZ71x8xs/biT+Tr/jYPEP/hVt85ArncjG/aZQ+XHbsYJx0TFOnmp1cKox7BNsd8AwvJggeEJM1ufNuhn2oq+91NPfw6tD8MbG8er9zaIpTJqFl27FponBmp69oqh240NwWiAeX4PR22Au3uXFe0DgvcYNSiSHu/v3AqfWupDkIVyTrSh7/8h8AIiwao0g4UlIlzDXJmaD+XYVfsG98Mmwa2R0CbMtfH1MibJ5lv2lpW6S0NfB8dZJNX4iUPHEVylc7dfKGHaYkcNu26mvcYS2LgDpzSL4UHrYqqkVQ+nTynsM8Oe4RPSwDLf1VTXZmX98YVyLt+/NmsZLVxfN5sm709zZbxz/eBJ5CIJBVIJts5aLw/MIIt53+piVakLn2N7PB5oSSX5+xacKiXU5G9qmdFE8D/lYwystLQ0IA56nZpaasbIBOEPGhmWZjskdmsDw/+zbjLOcHovdh3WQtNy608mSG0oumlv+tzMqeOpjRiujPSjbxS+WKIjnJNKEyc2TM+MRHBWGUd7K1RMmVckJ1BYnFyEhEenQ8bd3uANukp8b8Ep6QUrpiR1/wSwLmHO77/ApdGeuIvMa2SMz9uqXyUezIkMPVLcAfCy3oFG+CbE04ixs7QGeVAJLqLISGFeOxUDlM8/vZiXs8V5hcAA5a/qNLd7ejGbHa6J3m6MESszEjoLcAKWti/829wym1GlDVmcieogK4ckHI1qasBt1L4r+k5iPRwSq4wbKL1MU7+JsDDJ6L6eoPSpkIBN4wIhIbZkwPQ4QiR6aj69Pre0x7WfxynCJUU2zECsDJMNWT3WRFA1Li+x0kV5QLJt6ukdAMCmYxb1a6+b9D5iXQpKrsRGexBI5PZ9lTwamtj9MeRp8C3YGK3sv2+U2S4OLxUG/HxQQVB+7ccG3slWQvU7HirEh0BjYVX97xSifGsfm+tK9cp9yLTuVYJiyPDY8t+qY0JR+wIW6Ry82rE3Vh73eDWVKO2FAzpkLjy8ZxU//m/+MpE4Z7Ru2cjFcWEvadu8n15k4gJDqaYtgcD6CkHcP3kRVQlOWL2SbJv3ZrR8O0C4+bqioopi/LwTTmXmA4HzluXaEOxbwD0QW4UC8qi1tRNvsDddA7k6QMw9pCL0SerI+AwJNIxMPUhK9tKF9W5iRuCigbOQjryw9JqxaiM1kMBzOCqGfYmMUtl0hTz5gZ1lQf0tLX2frKGrbKEhzkDsnmWrajT+Lbl3eE31vAA396e/hOVbwayaX5Dzxh6W6YYQ9ASz1HL9wfwOvTgry+0SxxnjpNKZ21d00PdJ6T99VP8NC/P4Qjov6uV/8+JYBFuiQuplc5JR58hDvJkHi4kbTKU2HyZIfZiME9t7kGPo9ap3KNVckKqmAE4w2u5eSX2M3syiWgg3w6WkHe/6UDGXdw8kV5NnutxmfnH5KhxLd2d7deqJdq90MP7eDa0buXrK4UJlxOZoQJqwJ5pbUwoBMoayy1eKAk9z13ESZIObtQ7OziZq+zqoxEjWqR4F1gZFqUdAe/xArQpfqMx9E6954wx5HFliUHdV89A1/+ZM7ptrqksOpeHEy7mY5aLK05aGisq9NY7X5q/Sqb2tSDHdZSV6uU76sNy6WFeQzaawf5stHtenCzZs+cSFEORie/AJjl4gqOTPnCNlO3LCRbSIDxqyXzA1eL5SDSCNp/dNWhAfnQZkbyqDQEiqIhYPBx++clNwNJhDs724CVwFZO43HPgLfS3+Z1QD49B0WmVXz5T29ntFque4i2iQzYLAgc2qpI9aRMRHR/cEehGJB/wSuEW0XG/6F8mQI4bv93Dpxsyiopht1enDE15TPH4WRJCd3rRqVEXg8VUussUnjAg/uILD+ojYXVQsQgzEyc7/frcdEJW+wT7BsltVmmCb6TXpIT0lSOstpU/EBKbcOtFwnDn81ziz04At66Wn2+0f53fAm/Zpy7MsBOpriPd74YdT8wfsigdH1tMwuyKwX5raURxxxiAz9LIkDT4LxOVRXYtwnxKOfB+eD6g1k3ZQs7PgNb6zktmmXIOqc9gsCwjHSEd9qcHPyhLLR0EXCzBfemzw6iL+RirdRS9mMj0lx16RlV2MOtBq7YZ6cPAHYwBGyL7UAhDAk6LZZYF3lYfLPHeWR5joVO4iwTkVkPBrw+AU2yBlyDGBzGeWfjtkcZ/cKL5QgdbXwoIVtn4PZn3DjU+hwh7W2vDNdCUxvuGm3y8L7CX+JMdsOPVCUUKU+c9GCpgcjj3eL170oQ45FXAuJovf1kxir8QrIYi1JX9xXGn02a1CuE9GlgvbhK0dqhwPwJ5WQnggfX0jv+2IGBaV8wcDFUBiG0A8SOkbNc4VU+XwqHHXW+9w2ovZMTYST1pRnzj3hItBYJ3FgWWDX0NDJa5sqzgkQL9BaD/Xx19Odi2AoiOGk/pXnq1vPryAE2r6rGPnRnp/MhdOwJIsQ2/ooorg65VMg4KlomvPHo83xKVUCCaUfdLWudQDRUzUEiqtyy0GZbmtueXCuWSJG0IywiPDOMv9RfvfYgCbTcb1TAL+9llXOsd6BYQQl+7Q+YnC7PzaOmiRIpQQ1YsT7BokpUlHqnvvvDIZhF8qocreX6uIJD0Fipf3L9v7jCFwUujyZxcXo8dE21HT8+3n7ASz3sSaOS3z6NFrl/wgWpcbHS0gjPEp1Krz9fWbX1YKLOM1H01Bcqf/0MaioetiXoHqvUTDebcS7GUMcoACCoZJ6FJhVdft3Jxw6WAE8OcXrpWPAMoOCZKEb5kN
Variant 1
DifficultyLevel
581
Question
Ian pays a monthly membership of $54 to have unlimited entry to the local swimming pool.
If he does squad training, he needs to pay an extra $12 per session to the swim coach.
If Ian does n squad sessions in a month, which expression represents his monthly bill?
Worked Solution
Monthly membership = $54
Cost of n squad sessions = $12n
∴ Total monthly bill = 54 + 12n
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Ian pays a monthly membership of \$54 to have unlimited entry to the local swimming pool.
If he does squad training, he needs to pay an extra \$12 per session to the swim coach.
If Ian does $\large n$ squad sessions in a month, which expression represents his monthly bill? |
workedSolution | Monthly membership = \$54
Cost of $\large n$ squad sessions = \$12$\large n$
$\therefore$ Total monthly bill = {{{correctAnswer}}}
|
correctAnswer | |
Answers
U2FsdGVkX1+ju2XbNOu3H/WhLCdqf3ehhKL56mSlCB4u8S00a/YBLIWW8fU28fa0kM+xkixTOgjJXLAK05NQw5T9Qeu7vYgTwoU3Msvjple2Fr7zk4oJNz89/OKDPuf0JtAJaY8+ktB7RUOFwKNN/UUUFcT5njbMRozjs60H0prtPOOKk446QcpHUKWecVjJev6GVK5MBbCLr+T/Zbo6xABdfYb5YcdVx0NU4GDGkQArscHUfKHh9X7YIAKG7Z1iiS370SYP0uMa0kauQvWWzpc50dsE41L3CRrKr51JI+ybCNfPukoxO4kfQ55RsYim4/sICWdHIvPPsE2K3F8o+7OIOwOEX9B12scAYJZslyYrwpG76HXkG2Mi3tJoO4O5MGdqVxNVnwwZo0DjveQQT+/pvgfhvAEBXruazJg9Ta3aWssr9iq0PpVZf1pcNhGPzIZHxHaS5UwYwcEyZcXZsG4pcwQrww7WQgLaw0aPH8Z+xcK92n5Ob8EjpnCab6N74ElhILG2eBIR2rqfv1Wt0PHR31/jnaPQHys785oi5cIPA/TTozNTZLyAXOSb3ZLO4v78CAGUMk7PQ1nkn24TB1UlQyXrK07G5OdPyvQ6XJVWCxjAmmTFFc9FUeIqnJO4Sx7UVxhxD39wsoOpNDhWtZLp+oAvj3u2SiZK2dryVgbBPLquF0ZI8P49yFy164Zim8h5wGj/s2RbY1FD81YH/q1+CJ9x1YBuZQSx3N01r0zRQvNz8h2OU6kt9VAt1Co1H17ZXKV75jfxOQi7odVhsDPpaXqyipo46bZjqD19f8noNrNddEMPGhOOOFeo/9mGquAGqNGfjfJZ4vv03T/txvX5ESLbDxdJMDefeQ7QLoj2zfNmBnhsoJLCy5A2YhnPTlYV6JQD1kAXThCBLWO7NerU1cAFkeXIBtn6mImQmHYIQVZNKIzbdJoaVSp6fcwEhuav1Nj1AHcdfLrHGwmMVQRnwIUrKsw4txs+57y2KKzQLiEMUu0Dfz0ZwSVTopREg4uYcYXwcC1FdfbRN5kmK4ZH0RgLWN14TMA5Kup1VWFW/e+dHkId6UhShvmHU4aCtK47A+z1+IySA7EpgXxSDlRfa6sgA8amLPAxAzQfJaLQx5lwB8BsbKoUGmQk0VMGz+g1qHVGDEeh91wvOehFd6vSFJiCPGFxfD7M8rNLG0JbseRGhxa7x5zW9LgS4pKsE4mHn+uVrVzKyVpddLINpQ9BzUNV1abCqdzGfBj2yQwkt6wv3r3Wh7x5VCQUdFAHyxBdWQXGcMuPOb4KPplnORSc0dzaLORSEw/X/jTjg2KOPq6UT2rfaxCfPsIg/o6KTRh6EaXxP4um0n34ParySmt3x7nF3sgbRKH9XaNFhDD9ir5WkVO1g/KsqAe/acR7zoTfjxuhmDIi1ifei/ZdKpIEFuuv+zJnk+GJyCSvHrr0ghGKVWqxo0PXrOw/3ovlTKmY63o+EaPB4MUNv4EXILuB+Yie+RYR7J2inVN6P4fQ8II2EUtiuRiAotWnmym1VKcg27rFio+Jia7ce4yu+eYIW32mauVx71jlUlIqXwkHtEEfTZozndD8EuzHQiE+w4AiPKaxhq4NS0NEXjXxFi6hfaLOrPataH3wDE8zCKhbKaj12LmPLubsQYxFOto4gICWonMKADgnv9wK81O9Z2WoHp9OCDI4Ly9L2D6kbpVFFUUc2ztu4QO7RpmedfqyJU2du6oxhKKRMFI41TQR405nBV5qjtNJKs6xBBN7asTdh2MT5sin0v01MKyNzJXEwK/Z7Bge3+ZW0Zi7Q69pilOs2LWVsvMdC/t7bULzTlGn+HsIEhN5UCVkRyQaKWfvn27IR9YK4AeCfloVFDHmKwENaVeJK7zNfdOFp4DaaDABJWQKi/2oByvTES2md4sDHIzx4RWUM9FaJPi/XtMDng57BuiuKFVAEAUre6jkiPDWW5X4kfLPiupPD/5Rs3z83xpZ+pBkBHabbvYpABEWwvotO8i23xYfEf31rzM+TY9ytDs4tlD4Mx2bvRVjSd8J/VqFBP3gQInmvGh7li4kf11Cg0CNqdIvQb1LecbYZoTpyjF5c7m3rpf8z4cUtHrDoOP0eg/xOmnRSPT2+klX/2A8MgQARC5hVan0Uj3Tk/2TdOZJCnGaFwmZg8W/slqsLRJvrrhk3dEhoLwkxI2xEHYA+1wRsnufifnZW0fq8EEeCSC5JlTXCGRJk+ONYgDjfSwADXugqaZY7iqT7qzLKIaOOx2+IOo3Jo/dJdypXfHeryA9YuKZ+n1NHW3VTvP2g3m+INSS3hwp/6h5FU6w+l9WXu7iFcRj+UmGI/OHz3wWwMUVaPbWeLAYkG2zdPQW2Ee8r1dSJkXaiPsWBSImjk7DqcTZoVyjVbPd4kuOew31CiZ22/yYdafEkDxoeZodA+JoYprNDX440HwWWsx2Vxj/LVMd5CE1ZC23XIPGDfFKQE2bbJ783MgO9TXvwTzERRzKoqitSBvu7SKClhBw8224Clt9o8tNSWWNmXqSGEHBn2AInaLtgj6GzerwnxIHWlIebjbrNvIYAfR9c7Z/MpEqmfNrDRJ7ED/M1oblx3EEryPNePuDvyqTQ0QFzY1cz2s4qrY1Mp2SEYJURD8/qQnIrjryYXT2PoZ/YEkeyQYgAi3C8KgtzyAHDOBhHcib4q20/pYfV8qY0wxq5mAZmYfnhjsCjlEXHdpTnwDECTqt0pO+R8BdgE3GGuTDUyfmu0on1hEqQR2K+hLoCaHdcnwKaZYvjLIdVofhNQpYvnanwKCkaUaZMbF4KBGH+ye696dzZ9elB9Xv/bNcLbTKFw+zleGf0ZP7nRKH+mkYuJkWeG5OWlhhKz+1yHcQHe7w9vKm102tzlffZMe+Jp2IjbnDLcuorilxmEuSFp/uo4t/2AEsE2axJIRCDWS4PzYUVQe80OGLWOLoHlXDaEuxxhzg5Ox6TLJvCVyUkWxMsHVuNn8Kk5ZIsNopaN2LFzhHWklW/Q3TAShaTNVZGKMQk04YoCbd4cbvi0ABJpWpo7g6aqg59tumns9Q+pTljL7ibbTdTwDCUNrf2K8qz+Y7j+yBPhouwatTCmlkRxl+6KsrV1mM3zwrpnjXhpQpn03enWgvD1kKxaka7Qbb9w2MimiWFVB74srQgIVT0qTfEsbPFobn+rgInuhJNfORZCwX8fazctIaEFlaDQSMm9BQJ6ExrFg3Fiwad8QMg/MUaY/s/+QH11X9r2df02gEtBGcH2RhVakpemZtZsijflZFkTYYgoh8AatPmqalBtmhfqBkjC/0lAZWOurYQAAeJ+QH2TtbK8gwqGJIqxxShkjxNO1pHOWVMLjb5dYdoEisifJaX4ONf7GE2cxk9XUz/gFOno6DzvgHGhjsvwi2b7cz23GDdHqBKeV5zz4AQ1F3WFZWS4DMcAHM/p7/+wq+2C5Owo3hJrcju+OrgNBUX2x8HHRQGbMTso5g7NK6Jf1G3Y3DCIqmIu70qwz1eY9Y50HFIddta/zg41AGzPTmARJ/YXpYRHr0E4p+4ia1aAUlmURrJ0E2ePjMP/FdkiozgnwyFK137tb/49j450EnnRiNVjYcDPMSRDaDe3mUsha4A1eTrf+Ig5rj738RQDEYLKJjfIG7JnpPMTQdxpyJ7qQ7d05x6rjedB+3gHz0+bj67OQ6ObK86kqJHXwPk2AZCk4H9bK7jkciPveOHi1kDP3eEV/7M9rCVXYEZsl5xbfNoGGNaLKucjwwJgNsPoV9jfd0pNIe08IRWX+yxtcZmq6LkCOHyXR44fic8QGp53oluTsW0KYZ4nQ8bbvi5Vhck31ROiLOLTm02giiJOCUFAZ9zGbTMyvlc7UILhGtP/rZo1N17pqwnMyKhbPSW83URHgsp6KuAi2TrCl/0/IGcHJJIOh4Q9FrAD9hR94HuwPpyxVhYdNT8fw2uMS89CiSeV3//SYKQGjTfvwneitaeCfLQp6MAlAdjq0jC5CJ/7fsU/xbJ/C0G8TIv9SefugX4oFELieH9d26SkBS/CLED+Mn3Y1s2SZzBZqPseNNxLOFBjDnoCcFFbqEEjCWK2EK1al/cZ1AnfgsbAGNvsMG34UNd8KKTt6MB1XRHRNa+5wxpxwifSr8Cl/wNq8P3eUW4rdgGku21RypOHO3B/ObgLYLEmOXNK/ULG0Z5ZBCVHQDD6TRgcE7DREEndkwl609BtsvvYQnoLw7EXTP2yRHgfWuFRpigaZj+46RRl3XDLraVKZE6IMnQZGOf0F07Ordr7/dZTZseXgucL0wRI5eRaQrXtZXFnSmYjxKW09LcSffdXqAzJqDwdFFUgqqx1t7wWQfs/53shui7ShIRrbyZh4Pfxy1/dS7ohCOKQBo/KT4wdqbHZ/zD+2nU2pSOdx4Uj0gmd2kA4oi5k2nomWriH+oRkv1Sizcib7Vok/E/S+nlVkoRVaBsfBkX1GgqO0dedqFylsIWw4Ghq+lF8v2B113SJyq9sFqWWuWalucVP9fvnzd3lrtOyoLEiXdJ1J/uQ1vt8s9sZYif2kbbW6pOwA6IG+h29FId4hA3MEpEWexoTmaapnaWhedT22sK6pra2YhaQtU3EmkjIBUT4dx4htey2hZMij4SbU0CFas9jaIgyA9EW9WI7vxQZ2CjgFPRaxvkr2e8ITri0MRTWnl/TCbm9VBqG3nikIQsJizGXCRJRpCdNx6nASRHg/iEdhSiKrgwoIP9nofEuW6M/oaL6Oid9OR4VYcS30FYdfRhtu7AYNM7hI1XPp+zC2ilKBAmpQ1NSk1lB1YplaGYlT9ZQlMQTseZBhH1UnjDokzSHiU9NC1/Mqm7YpoRQ8opt9To63hzCe0eMnCWBmUcFhUNrzYmfxygyAAcK95MTBLtDGvjGZrt6PrDG0ajWrmyKhtXuNBqqVBHh8KR61RrAq2aQrOOsmFuS/ZP/VmJrR6rbxr5iAtOjBvwuc+svaQ2C3LrBEZRDUmIV1kllV6o/BB6OSXifNNhDqRPgGAHIfkyJLDg6RaSolZTPsZmBd5tEXOOzN0ryHZyhiFuhvTb7r3XUgepozHXAnHmmglXzNTOM4v3p2V7nHEzpgaMoUbSiIEq91MtzUM01rfHad2D1/Fw5EJKsSv7TTCoZAJ/itBxUtzIas+52kya9pGJ/NOCRL9sSaC2+vw0yiF7IP/I69xHqQw+IWu9ac/0R7KOb5EJGvA/8Uk0Tyb3Yvd135W14NCk6GUgJMFerIdptCvhCovpzHZIcON+cuSXv8YGzVKDhuLdJLy+oMg83qapPDsNx+EXVKsZzRQUqxTMx2GRU+HdLHC7N3jifvQ2InWK5OLHOk/EcvU2cvJbiFaIIU81HYUPyAqZCb44ePD18G945LypWa3Mh7MCyXURzovE9DJarAEKSW6f7vFlkDhYlnPe7QpHZ/7TxR4fv0AUjTf7MU8e6ARyy6pY5bjVoSRMFulWfQ1LwC2Cm3QkKq6Yn1svV4KXSk0YCX4hNLa9fSv+CbJGh3l6S8s8KgjDOJP8WIdo+sESFa6P2IbE236uNU89fbU1FcvpFU+dm4SDXa8b7iRyQBVBOwbb++xw9KHmTudTxXWqfKZT3ICywlZpZ+MMnknIGFiJs0ojfILgmBB8Eum+vG4OnfcHgAprFhgkXwTa/AlJCgCf2BQCMmoshAvQpcDnBPDtxM6e0jm33rnLsZRpDZ6xQoFKoBS28xD9VgjgwOQwkJFOeG/ZMckl0C082K1jqpOot5tB4OboW0iMEahBDih2yabMycu70rP5+FoUEBon4nvG9UEf8ugZ++haLBJlFitKmn1iad806sy6IRKbPKVTHb9jRLBjxoBAKy8KC34g1GvNWaFf39M5fHfAzPCQByZccMwPCSh1VbYXXvC+ZpUYphbFE/nNHqexmteiu/Hg7kwuHAOSs3BsRc4k4ZgsD7OEpjqK1aVJKhGkH6ckdRgowb6j+9z1OSj0rC/eWWD2+i/6iT7lGSYGibacwA4rr1ZW+Bi3T0rVz09KSC5YacJaBnm4lJtdfkp5WroWEmTYnXwLzQMLDc15mFBBGC4voZ1Djl0whplA590c80CEmxHmCVdXbeqpbX4CGVcYzdUx4b7qO8ucC0YulV7/b8gTwqnE4qJpIzqGl3xZ8UoD2c64JQxk+La6lPPgVenunUoBiPaHTbD9CmrO+x9YxNf1kOUk737Ms+RXvZoZtqjPnkUJ9qi5PXocn6HlzPRb5VCBoFFNKwwoq0Ujwmksw+j+uLa1i7nw8n8vqCJBBCEDe6mqPlrGXjahqIQd7pPKzJ/nyqUL/STtplsuvKMcw6O5sVXu1/3JUpytu4frEW/On2QIy/wXjd3t2NzgK4iG92JTksMGH+2Z3UGIRQ7i6YfGrDdllAV/fZkbL6x48PscWmqopwq2PzZPuKilunGI1m/Egl1lDHoqwhZpy3Fm1RpS+mLhid21kVSmoCOlsGYoIXJYD7NKt9tQYOKB2mOzhFd7ECdqv4jpNghDa5H+Ckt+einqY5m2I2Asy3buDPPeqarKcUHkZ7qMdcUIOAdTAcVPz/OsbEKBFj05kzV0kVx78omGlyXxmfZ0GzFxrKlhIGz+4HNSNiWys7ImYAQeYBHoEC7PvfrbXa9PW7yvoJ8lN27Ytka3dpmTAO7b8OAgUMmtZIOpDV5ZJOTdhYAr+uPlSvSkxBw3ONWdMXTUnwJ35H3o8+8oL1uRHo5XfVhFICG6l6agb8SaK+6C36l3M86tbl7GnP7p/RTuLvBbyHyNVmtdEtkYO8mO8HGAR5j+7maX2b/SQTAaSQK5svl5sEi1NTlpQCKVlZxcW5eAxWA8QxmWvXkRPBqQPD9oeQH4jEoaCdqxqE7zvN1jwIz92dLqwStkweiXYt3gBoh7QsWedAWpO48uuO/W1M2S6JMTz6U7RTWJuMVwwY/z6E3kP411cPAiwn+hR6gqO+g1/LF03+Di8Glq9s9yTPsWkVTiYHL2kRsET8T53/2e+TkSHZWQDhf+WPYIx8jYCXWuN54nbUYDL2DhDo7TytEDR12QA9XXJbKYWWmVhNYYjADIjXPZrTEi0hmDFCJLZnufl8ZOFqvQwVPSXZddO8U9+zcnCPjx6d5KmR1nNfDqzttZ8PrhblvU4Lwqk/v2yElp34YIQSsWoso/edIksxFbJMehhcRdKKaFgSK8zFQVM1plaFjjf0rsYiXvEnIspQcQVR8TRDQIJx0eIcQG9a5Ki7Ao00Zt6fhxu6mgtp5YYlQ6o+auCkVhwpKa5BZsmZv3tl1USLm9JNAhcJvoaLFsBA7H+oik0nos2jRGI7PICNDZQzSXy/+qV4z5rQzNjVBNDDDRc3ls0uhtk+15ltl1XWhVcxM8VWGWPcp32EbPa3tshKqiewnGPR6ihbQGy4bP9N5UeNE2ok4H/baLQUrXPTo2sF4FM58tCeaSjIYKutrLKsFpjEZjDkARXKbbDcMH5xk0wF6vGkHqdUp7S3v7fxmHPzByhmAuNGhpDzbZH32QUpVVXuhWegpLz1REBbf17mTMMAYMq/d9U4g7+0D/p+PqLapJqHnBQBJnMN1YIS41SStpLIg/JLpZ0UZVm92B1XXzOYa/0Mv3A6SfBCVqHwtOvo4F3aqpnsMMpiZH2DTy1kbv3xeY+A6jWKtk2MdhyprZXnnUHMkOLGcGRZhhdGyQBRZig==
Variant 2
DifficultyLevel
583
Question
Usain pays a monthly membership of $50 to have unlimited entry to the local running track.
If he does track training, he needs to pay an extra $10 per session to the track coach.
If Usain does n track sessions in a month, which expression represents his monthly bill?
Worked Solution
Monthly membership = $50
Cost of n track sessions = $10n
∴ Total monthly bill = 10n + 50
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Usain pays a monthly membership of \$50 to have unlimited entry to the local running track.
If he does track training, he needs to pay an extra \$10 per session to the track coach.
If Usain does $\large n$ track sessions in a month, which expression represents his monthly bill? |
workedSolution | Monthly membership = \$50
Cost of $\large n$ track sessions = \$10$\large n$
$\therefore$ Total monthly bill = {{{correctAnswer}}}
|
correctAnswer | |
Answers
U2FsdGVkX1/0unaR0nWK0wkG2UsWLcngrgWfGF1Tp44uBN+nqrv7kmcbRUNc5XmNN7YoaDRSGSEDvgVyUcNi7J77iXSsQ96ZUkzgIlhbJ/29MOzZPyJ4L8yCA0r9lF11A2zKQdCdApjvfLgXbZLG/W7dSYRlGpVgC5RQ575ikFZ5jeSdslqAKBM4AnxTMuTMGUzUb2q9i/XcaXOmIBlzkWR6102RPgWRobnVVOu8TXymL1LEzbaNkrBzB3LzAxoX6l59C2RVpBF7SkE0+JXC2+shRfANauK0LPstK78qQIWfiKnK5kluS8rpIl9RpWdgPhYvrDeLvmbH59KS66i9LsMNn469bt6ZN6lFewH7s5GjydnTQucjXVEAqj7Zzs34Z6UJapQbP97mlU2RUmGX1pMCOgHgXUCkiejj2hk7avUZrFvMI7ie2AW28DN6hXLpjZie4gF6V4BjCEHlmSwU2r0d9wfd/0pOthaJXgefd33DZqxvem2/VEvsFIBrErM0vTFdgse1HWhiCfjvCOmUUiRzRyW01inZFwYdmQl6NgNuosLZMOGy6BvzvufihjQeU/8NPgeY99ew7+R61W0SeoNzc5zZ5Q3uBDf5qQVgs6CvtGeMSRA8kBz/DIf/tkvyVNQlbnfPYI7F4RFevutB6EQPwdf7FdukNxjegKUyd0lTigZqX5QoJb3QvVuWeG1fzsa8rdI6tlDNzQqiIfI37KdZDFWN2/I9XKzf7YOrIBFs3WjeDrIkNzdWw0bLOvH93H/19HZHziqAOwYibYEJ+/cgyG2mw7XomFmxQPxv8v0YL+AxWQtAGjuDRjRvU0X8aVZuHYfdkTpB3UzUmghFAZ7AV/4xs7x2LuXS9Xaw7TpfP9TLsCB+2T2duUQDUGmJ8xBbLhjaaVDygsEbzJ1NnBlRgATzImWhYh/Zm65wYLJR9E0EMPAwF5c2fW000TuxvpsAx3Eqtfxoi31ASkMCTRDIl07KZQssDsGxGx21lYWVVx/gJWwYpp6C4IF2z4QW84Vlld/c6csbdgl2Oxb4TZz1Lu1iQgT53dLqL7En6zjqz3515EZA6ZVk5T2WbQSa8l6sz1Jw2pD0l1uMMeYiaTrQOajQfnd938nEghy7qLiZd8BwEtnnoQnHz8L5KHr2Oos+zVUqk44uEwyhaOO28rn2Wt7eJAEB8HlknN2rbF6wmEdlNWWdUe3RCh1cYd/75/ndDAPVvZsNPWqOmLjKcv5/MZa2vWVFdxCt6+uXeg83tQItRwa9k8woOLh7dWa3SMyO9txUKa8CgDaexhwISu+unrYH+b0WzZOXf4c0J3DSYZVQ62OxTJScFhVSgz9+sOeSSBMaG1ICChxD2EJ5Ue04DTbv4o71Z+PSidPzckkNPwhUcRzVLPAkLG1GQ2YaQaq/Biiv6HIX2A9RbpFZHlJxj3DrDo0KuZoVftO/WQYiH25yAG4ag2JxW+cqKp3cSCisfe3OkGzEF8p4yCOu4MysJg2w7+Up3VpGyCMoNjl1uCqIOMCF8NRrg36m6m/reKsSgRVCzErw+cwfrf+AlbMuGYVWXMYThyJciWtzvwWaKBGM2cJQrdNIDfRV2HvG0Ey6XCEZRnfzSzj/DZ+dczRIkvoGA8cbS0zil2vngnb3+uCGfhAD9/hE1526HLSeOBeEgacFSwKjKWWeubiccDvUhmnBHJIJOxJnB9MsDe3Ku0pqkughhPCJ049mQjY/PffOflkSNHAQHAE6J7rigWsF8qAelcKxXDHQiAbOfsUZpTzkAMFU8QTQhpteUDd8bTr+iirAWyZfLhmrO2DAg2HksYpbFJgEcf+bKKgfceojsz+ndi4rC2/rcHGpjE9Rt5vJOyeUbnVwqc4qnTVBxXg9pmGz7c5msNUa1IHOmA8L+CF1oSp6jrieHFS/es+cYiNDCm5g1jYg6tvb5PfLtEMEzyFPa5CI28NWsaS6LcTXot1f6zex38FVtqqCV0KF+NNadLzjpci2I+HsYpO7YYbv6v7N3yRxpBCeqAVdtxt46XGO1Q7pvn9UGLJzwWv8pSl/emwXDxnpLrO+z/0z69M8FnS1xHjKxlcyNKW9+yYXWUa5qPnhw7VId9/LAgHUnd0iIKAKbelv6XD04oi+1cc/r1B+nFrMTnSXdfnhD5UJr/id+bwmQGMRfJA7I3IpV0Yc9NnMBmBhYRqVBsHBE7MlTfCb7L60248p56HhpUl/ODYfyS5Kz5IB1tnWlP4NRDwD7YN5/ke43S49aecdygZFzH3Bdwk+ZOFdqFOKqh53+rZ9XJr7mfbhdI3hZq2qpukGdoUSq9ai+qA5U14o6RHQsVKeWrtEBu5U5S/kit97it9CqsiAH1FUJ7wjxKqS+M5g6Q3Fojz9KAFVgKqCycSFp/3OV6ZaJwxc+0RBYg8LtT1KWENn3Poxu1fvxvYSWxoAfTGQJJlSULD1FkaZ859PdSkYcFmWgBZwEoIoQ2TBxS7PCHhHqo0Cre7iwUzBJxy0AzCQoE8SZi3HYml9bVL4Sxm3Kb+z3rjldDqlLB50qtfOfrCmFxy1lMAt7gfthj5OYCFaYNRKCeIJhOKa4i08XcFCBgAO3bH0az629h6NlVq5nMvqUDi3G14DRAqHs5Ugl2b9sIhPZaP3ZAjJmVRxYdXWbfVBGanR2PbNJUJ+k76SC1XyOyBrJI16Z1W6mjKpewi7FIeMfes/2r2R1k1m+hXlLoQk5LH3wRxTotKP6rpWaiYzKCkD8f802TnIna8AVcWDAipi/+5ibCnG0G1++c24LIvYoc49083QglQADwMFmt7kuguXmyJrxosFgOhJ3npPI/Sa2BZfLBcTb7MZQGL6NjGe/SbsIaUcknk/cPcEEYdLaDZ4TmSW7pX2ZCs37smchjBe3BeN+ZtxKn+nixqIRSfGVtw/6kkdo+M8ThxsAd63GTvP2RW3F1OJhuvYSTldpBy//XPwpzldWLVlK2/cg0IbPKIzvmBFjBlb9adx9GynuY8qsa7QMtjyMpFPXhF/qWekM3YlRAXkD3tmWP4oRg1qcqfxXc1oMG3IPCyoPMNhbjODD8U5RYbKTkpDYDjTg2ZmLGSeTw+MzTEEhsDVFVOl2uWS1kQg/RGjwSt4iulV9DgllBUvMoQH1MZCv9QuE3KQo81IusgzR4b/y5A3DgOMglxPflrxDlZ8POQhMffDE0JCjztK5oGcDyJt2pjZxWxmfp0ARyqGXfTGD1gAm0HqWeokHrQZyMEtOzuvBxAN6euWK92sgjh/D4/c8H5E4q+laY5EkMhDGE3gw1JxYUfv3psw9UA6G9GWhFhH4o82TC4wDsS4Ajw0/9up4HtTPODbHpD3ItWAa1BTRAqXWAOlE9UWQ5559T9D8hjni/A5cVg1S39dSOp3ITSMjnubGVdymt/kk3l4fgcF5SKrR3BX2qLvhPMnloYDjJvIkqdMGp6x+f9kWE9x92fRW0KkCDePpFzJhIikYQB0K4hYPPp0BylFgDcO1u0TEInyiYiwayjtkAeh3MevH5JGjjXg8qofU0JHi+9Q8wPBn9qq5JH34on/lhMPsPv+hSkbuBAze9D6C/11k8ki/07O/MkvW5epG49+n0zXImUlvdKgbORHEnCPM+XRyQ4LwD8nDw0+/1JWdZCQ4ZXwI2GmW8ujBee8OGETzq5BGYj0BwIY/6HFi0EyXf9PoZpuVSbNPhwKegq2LrS2SupF3GDQFnvTKVCyb3QU9TNL50AvOTLBoxeG+URQdC/kkHr6v6/Huhk4ZWOu/xttQciYRQ6AvLBiXnAsr5caJOHip7H4gupyyZ3g/CXXlqDxVcA+djs4G9ujk8ej5XG/Wx8lhOjOnf4dS8dFS3GF1/Xw3/Vwla2FNXqL79JTXBmSt12+0afBuSlTOaghgIfsw/djjroIYPRyHhdRAfiFMJ4U74ER/vwyb2O9ZicEJLcUnJZB8I6wo1NqFnD8YDW8tDPXgxkstPNvA+zrAgjJT5xOhzIv9tI++otM5QyLNW+BLlDIiKzShTtEPEw2/6+pB1Mt8VNMTxhyy6V95x2y6lRgeos6Fprolm1l08dm6blTOvjLrxz93A7GYPv1gcEQIzaU5oG100Ne/aHOYR4RRuFjfhR0FFOuDVOe2i/0PHj4qTTjA1pWbQmOgmzFnFXItNyHRKRPQNm/DgtAfxxYD+3Co/OqvjGnnnPCQ4EM9O4bio2aR5rbhdfzRPTXUf7Z5pK6TkGgC9ZLIxGyRsafb0HLRDnz/yZ9eipL6CoVzXebIdFvGPg6hAmZ+dL45haye4Bfvy+fW0IuKtPFtSW32llWS4zz71+zct/cZxKA/PWZxVaYBKQv2nNkriXsEhqX0c41n4Rn1Mdzw3tQCIqVXtq2V0nGd4MOgG3Hb3OzgjZCu1LJ9TxkH7VfvhBzNyad+syB2KcFgYkj95PduE5VHs6vzZ94IUrTu2kOV1zLU8snpaYwe03/5sE8kOfdw32n5XLkKpk8rK3yDlLWRuiO9WTTIdbZXPbuZ1SVMinXIktbdPdRKkeGpKEjoCDP0vJP3feYO2k39bT0u92LbyCoTuWM+6Opqvece+I/6y+Pr3qXQMjajLwrUOX1Y16U5Bu2yc8Gi8Fg+booOTVI1PpiFSOGsi3zfl1h2k2JmO0y3WoumCTE2w2A2rGTRBgptXu8YC1RON6irzwsUG/vcO5Lh7pkAThE8t67jUuUl2I8Masft/ry9ItbDJHyEcOpYe+h0DcFmFZ6InL6u73e+erB3sABFHZWPPL9c6ffV3ZTdSiStPsJnzDUvodsyv5cV4Jfv5vogrWjuQUauZBcj0++Ax4FEUKl3d9lJUlWGIyIpQKJTE5vB+W1+Vyj3P6owu2A+bcCN2QV/hiUVValRZ++zs2aVcROToeORiIIeaANqm2q/OGvOs0ZlpnYAinohfO6axZHg1r4LV5AmyjD5WhSe2icpume+ceLJa9RPpHX8CVoNpnCxyKFBqyu6EvOoMCWdA9lhBaLoMbldOsYCwhgggwgT+Lnh5y6el8nTcPHf7r6/rjlAYx9vZjxmOToA8JCiQlfs+czS5IbzlsKT4H4p+wV9rmObXR6UuXjgTLqjUNKXTu4Di8b8RQnCpGKuFIl0DdmOqRIDUWHls0WSn1tVY1JAaCMfzUMM1uCAI5SfFX9rbUHlv0llsrBQYS+R6mmGq2mM+4Er77ZVJwivi3NKfzbgGUE+Vj/VfwyKGD1ko4HJXA6bWHZm51kKQ5iY3/6E8vxZ6iXx4YQpCUAfuVo7bvpCvW0Z+wa0wF/eqfOxIY1o+N+dvN9gcKPgoCjvusALovKm03knNHeZcd7el1gw6oV6A9decBgoE+bX2Auc94DJQpBXrJhk22v/xdEfWNRRDcHD9WtfaXKI25Om/G/Kv0ROzkQ/8qDEdrkT/caxQz1iiQGqK9tIJxjtce6aA9I0mjxkIUDTfsCGlQSPlXGTirHTm/0K4HjhhNUMVIqin39o+Q86PISbDkQW7mZmEPYICnJqS67/r7Is13p7l+fOCzaSTNV28krNHT7P5jMxiZ4iMFPj2+MpJMaPxZ1C3xQ8GvSfnru9GT/QBXaMhK9xGuR1fnyOvpkgK7lqCZ8A47cKhHdfFa7x+6SBwuiqNDD52wT/dAB9pzUuHN9YnuFCG19/eUlw9j+z0fwcsKRZDIJFN8+UwcR8SPxzPep/iD2BmHcs58676ONXCm12ZCRWPbIcHETPI2Qi6DJ7HyOnF/EZy2wQTIpg6tJAza1jzbkK8w1AqaBxu/DjjjLDmYWj0lgwWRrCUdfd+wQl+ORn7xhAKmYvylUY8YlAZOFdekb0OtzEAPn4usKfvbeQpmEkKIl/cM5jqbyePq/WDT2oQF/5De0DRLc8gcVJnzIKyqLBCjVgmLfxWOFSeoyirX1cp8e7i4VnZCkpJZer6VsVpROB126Hz31tqA8ozXH6hK3j9ANyNpj+C/jpNLRDw9wYFh99SAVhL5kHbvz/dgAq5WhTLgCDo4SNC5Bt0xGTIdtDEH1eabKPSHLCQYW9wgM+BvQ7zIwg8+rzb1+QQUT+yrIoMaJHdHknZ65mAbgmulLI6a5wFyjIzTWD9Ym49jSZ/mHC0T2eFv6KedJW9MY0pCNkAHGUgnAj++52zQKEG5gOLtv/TuAGlzlwXdsazUmP6442TirRBLbaiX9JTX/JPccnmQ/k3nylxO4W0V9KDU7BPKTg6Opjyejwws/fijGLoAgj1ik2v4E/MDF07RH8IlIKAW9vSnh6blcumntdBQ6d7DnBCvj3IHZZm6KcZL765sUAItXogcqeLapmiRhPye//mtdczwi3MBMvwd+tdo4OpUv1C3V7ABTC+iaVFBig2jDKLJF5GLoaSMkK5uFbQPtwDFAu5fIvAFTtr+UwQEiuY5Xecb3B11hnZUMHXI5lSdlYH/PWHaIFe3yOD+Yof4JsdxtRymTYpD0kRlBOSuCOmbowuYGx7qSxlkVy3JZ4Bz6asUVyc7mSYhcBbShO8ls3K2+hguYtyag+R82YqYz84+lh0hK4vzqItJrIGXVFmjGvJLjAh8rmzED60q3H3xMnqa1UumR0rSD25gbQzzFdUYh8J3L9TTEfbBemBTkkDoNXKITvAoNPXN2mXmjXwUo0iuBn8RumrFLysSibpm1uHidYLFSXsuRUcv85EzAwilZgjo3z6/p2FRak1f+w2kHTGmUHSk7GdThocbsx9bK6ivaHxem7QntFJj4eQayugTOX4dtVG0kbBswnOhZPu8oGG1EAzl5S9Y5d518QmsNnKGFVaxk/qEW3274cO+Rv/Eln/WF7dwdO9aNgSHa6/GdArpbvh7oet3PjVu8Eo9+Qcb80yriwRQz5UQXyHGAuw0JPivitu/ypkmf0I289dhFnTJAeDkzIjh39E7VjGTloZg5joAf7El5t98HnOnVfns5ZSVlsZZTdA/ARyzzNXwHbR891oE2o6e/PXlVrLTsZGUmtOS6WHw6KgP3JM/WeFisF4T+CxoeMl5XM0WGhjEJf09qzh0LQciUvJLBqlM995Tf53XP2Mu+CePR4W5WWIP7gMo3zzzZX93p15ZRLxFSWjGQ0RTEW0xTRaBJPFhNKIV8ia96IpcRzTKkmPWAKx+RcR3UQjW47URya7cPoNQ9b2odd1f+W4rHekH35OXpzUCm8thZZ4DZAr2f5zzNZ6UU19TiA4RUjigqA6skArdGldT0A8pu9DpCXUFVDbj6YFJGG78VZfVC2vRV7/WhPv/l4vHqUrsu0QM9YS9I220rQtQSrMYTzqkylawOzSgb+9ykSPBMIaVunP+G2e+pS3ZX5IgMDkj3/Ddjuh2ZiepebyO8vDfip+B4+AGDY+DjvuCiCEPGFCDj5vBQkgl5WP1HR9jAiGOS292xwE4t2iNYL3QTjDhUWLMCfyG5MbzJQ1PPmluP2muErXlbyRSuy0U3D+PA5ReXhbJg8Jaei4KIdi1Y/6bUkXuvexBZFkOn+zWdla8D7DLZBwdZ7W624OBvW3NcwnelbUgMzwvhs88fP1jDfzo6sGKSrDQlq+zdifaX89Bz+f2YlEIXdOMt4K5L0qOJ4CS3NVeJNEwQn01CxwSsLWCCyE0el9QtwlrSR65c2btLIokgDBjHKW2fy57KbJZnVpFdwQw4eSqrvPZ/JDfBd4YoDthMmRqcvWay1Nruwc/jVaShf2dcH5/b6g7K2ZIxUYutqKdCj413uqNXhPYEeqnVThhUTaX+WP1zlYag5/EmTqwsmZNfQHQFpqHDRhXucAnkURs8ynlOcwRbmqNi+PloI7jTSbXMh7EO2n33gmiNUJpmubByO2e+5jrALDwlcsZwoj27m27cwfpxmJnWP29M9LAk9id83inTwsBlwg4qyMPJu+DfTo7J2TXsKm8v87V0bfl4HyuW7HGEO9E4z6WazbUrpARMuhe6n18SFx4WuunkQhjnoUo1+tbNi1CbS5A/KoI/sFielQbXvVqiNdl9eB2VK0MVvCV2k8hxb7oIWBtMDc5xNWIk3ZxtB5ZioRo0E1WJSKv+woLgQ4zYrguZ66fMauKjLvF+ZaJPU4FLh/RF4UEQvBSTHd86/VY4Ej+RX102dR5dIPGGbNzK806m5hSPKBov+OvMA5FqFpz44QuegmMv77BsBAHSplzPY8aaA63T0rMKh4PHZHhE0Z1+tHXL59uJPjPl1RM8xW5RruZAEE3DhXNmPXkRxtxJneQwdQF9MQ9IaR3YK5SLhkPBnG33t+63tsjwX17abRJpuBVMiJV03Tr39qg8+5byN6QedAXxOTJDIJbNWUaZJ4kkpFt/D1P3MTBRObBajMTFMFdKDUgu6GdOclT+31B+OjUIMQBi3K+T+TNTaO0rG8rY4pUAHroXiE5yaMoyfeCvJF7brukntZZ6JPQSTLbz+pSfPJDNc3A94WRexvd67tHFcZ/IQCXwVU5Z5Hcc5p4Cu1RGM5A273WjWhP6+7xHTMmeSNwY9sy2xIq524QDoazgspjk8dBFD5RvZJxendoc3gP1tMwwBikLBxiAumC1d/1U4WtTJW53ktrQDdDOxEp/ycTOv5VAf+a4e/jioWfr1Obw968IvNEnYFO2PgOiVwdWaeqzo6qz+SdH9EcU2UJiQOwguJGqOoBYA/9fYEAexyyx6VIqKz4TpV2/rESb3LL2l1Bv6e4sDGCSXLfZgvER70dNT5sahWeuipvVnN0CvCnLfbA6zmoJr3qMKdrab8mFFhLCMjs/x9PmWXhdd4/ZG1ce+9kB/Xa0QTLdgk7GFqcAml9q7UWQ5Qrk0ATgIigvjUWsBk9Q6I6PPc+P0ealNIR11DihegH9JxICkr61vv3GRXHjvBCSbmVY70yjJIYT9TXLdEjhm9cLvuPMxbJqWvOxTLB2GsNFU1OicAC3gkClSzXbBc7ABcj9zysh9yCGUxi+n3ZQL3MUMh19pI51unYfTj7zG1bRWV78YbHKEDMz4W1+dYqquHv5qG6g/EyQWELc5r50cY4ya9k=
Variant 3
DifficultyLevel
583
Question
Olivia pays a monthly membership of $42 to have unlimited entry to the local CrossFit gym.
If she does Ninja Warrior training, she needs to pay an extra $19 per session to the head trainer.
If Olivia does n Ninja Warrior training sessions in a month, which expression represents her monthly bill?
Worked Solution
Monthly membership = $42
Cost of n Ninja Warrior sessions = $19n
∴ Total monthly bill = 42 + 19n
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Olivia pays a monthly membership of \$42 to have unlimited entry to the local CrossFit gym.
If she does Ninja Warrior training, she needs to pay an extra \$19 per session to the head trainer.
If Olivia does $\large n$ Ninja Warrior training sessions in a month, which expression represents her monthly bill? |
workedSolution | Monthly membership = \$42
Cost of $\large n$ Ninja Warrior sessions = \$19$\large n$
$\therefore$ Total monthly bill = {{{correctAnswer}}}
|
correctAnswer | |
Answers
U2FsdGVkX18T4plaThtKUxlJOp43BEWMEwyhnL02fMf29IJRv8ZU7EvHGdbC+nYJQUkQvolKsFgzPg48X0cbCAxlfJgjDMaKmMNn0ky2Z8sPnoh8ldqbW1YjhbToEmgJwkJR10MWiM91oK7KwqqcZ5Ta7el0hAjnljIQ7+rQhgTD+ll4MiG8xMGhwnuEtEFgSvvL+LQuaMJJEScNCDDnTSAE9e6st6oBR6813qPsJXZP2MgSX8YYLDWw1M4pNWRfN89ac2bwAuwa7CgCS5M7rXssBaXTzWCABwrCxmv7qJG29NLdG9sESv7lkVkLKcF5jFzmYoqjry4RWgCZb7ZhS9Tsjf+M8V7yDKz28mu3mOjJShf07wRM4kTB5zlPq/ACx3Eu7TqeagbLiZrwfEqvokEYSak+m+6DNeiATAf1CWnsASO1lMQj1Ldb236+JM6CrLycr/0V3/GlUU+2Pavg/cy2sn6fyqLSioDR297NBkBxIGSQwO1lMXtwtRIUvRRYz1rQfPRZ9jbMSoiuLVcX4x7oO6BF9IWUwdvE9TYlwLqiyH9ri/GuobRSiYcIqoKQjcA6nj+mRM44UjtyblnxOLAYayD0SAmcst3Dk/52AHHbeQmzoq5p104Hcuv5V2mnsXe+os2Z+rqV1rwJ+2YUd35QkxQZQPXFtDtlft+spjjjVGTviDSgmJvsaKqN81NNlB75+vbyzUzc+Es5AvN+YyEhgoibog2ts/5HxyJw7bGwRNy8pwpJJ9ymxmjmAyflS2AXsPD41Spk4i6OWbxfdvnV37beDq8jYCl0+3sufq5H8+Sq3LI4CLMASO000RPf1TrBv202yKGnmPDtP56UPPItw4adzhBmV++XfJjP/ns0TCXbnNzgi3rywGPNe58/FXIoMYuzt++eLNc3PZpJ1/ewST6WwMYals76ovAElhq+ORpqU+oxWe9BNBSMTbHEZ2nTfIhT5cDzMQ1FeTHTq18atJFCZhbtae/D7n5oMOqyi0wy5Z8fnjkFsX1W57wv/G0xIJXptEt//gY9EfM9cGL4SrMXfmb3N5cYn8xfcnj9VrM69L96s687a7//NkS0vy1v3sH/RV/awDK7sMYPbKdxBLjyTucN8Fyuz3HhNnI1rBNsukgP4fwnP8essLdUIpiHM39cE0lTSShQnZcbc31+VbRKsMccRImpt69IvJZVUMSyEk0cCqURuRtOaMe5uoKJEn0alFdycyx/68DWBJMVTQdus2qBo4e4Bt+Fic5Pb58B1YhsMA7z8moDudUX6UYV6pPReqz94szNdVzIA4NaDgK4/E3HNplTJzF+4PZWRyxHGAL60tNCGwPFWJDs61EM/nMllHyb0O39RSIunSIaXYpZSlXRomvilhwFLqJQMOMnvKCAkmFbUOI0wK2beR6JHKz3DwoMif9lMM916fGVW69mhakBKVZBA9mmn0nzPvTqeaETK6pjka9cAneuZ1N4Hn2qnsYOp0zRpbOXyqTZPb0fY75tmfZ0HyNPC4lnz/g/wnBXaHNJX6RlWs317895wJBCcAk8RBHQu5lP0cC+W8c4usds7VZg4AA8B8o8YaIZVCXk5+HywOxgUidkWOJb2WVoZSmjvxrmeOqnijg/fFdIQrJ0RxJVOl00y3rMWnwdFWT0rXJ1xSOBt8LdqWuV+U44gOvNbCrZjQ93p5uvYN9Ly1E0yDZyBAgHGFsQjft7OeqQwlRl/N3ZFz1MRkLzb9E5XgKlsbW2UpmUNb+zhxcPcazkd/tnWIzKEbqWvI6sGKZDKouiELllH8gyJOZ/iUmeHvABTr77DeR1R5of+PfBHUa6zFoUAtJWi4ON+YRKfctUxfpL4kJBJ+ZTeQeaDS5gvkeuk+j0LufPlsHzgh3jPa1qghnI5Pm5DXfOZy0exbB7ReaFMLkpc4XKugxIvsgpdkcsIAj2joRDp6EHK6XR5ciqACAiyAE0cDLgUXS5lZh/MUtlniBmlFn8WtzZ+6j+cIy4GNWMy6ao/53aPleIJoKtlYAgbyShFun6heHcTaQeWaKKx8T4G9Itb2VZX95eWybV2LJd9RkXwLWTE9G9EySiwhKhj8Lj6+S7nwoyLdeXEXafJqJ4JVaEybDqfxq+l2D7euoSOd9tQiRIRvxUkPuo3PzYGZR8H9xy7Gq9yi0faDoRk5nWFOu1bs89/OnGMCDRkun3xD4WqbxBgF4HJ74pNmZjys2CNszCiTvN3srC2YfbV2TocYyWU1lkAzlyt2jCLaAiPPjyNFAfdms2qvGKPlz6Xyu9RxrjGukccfiukeva6fxg5gilFDG/HJazanAWBbwvAQ5/lH359AHGcR/CUv3SF7JDDnxxRAwJqsZPlbhLvPu4YQPy8Y+KwceH7UORqUyTKt/p8AbyzFO5E1/1cN6L0NPEBIIq8iRGAPKWPse5FF9+ceN7Z8y3vkVjNwYY44yG9/ypZg5Pse68YuKqkMx8ijJ3vwfeErlB16uQQSI4AynYa9sy6NjNkwDnWWlMU1OWF/LcOWvhKyyMz4+M04r4JaTxR1vhbRkDMgxsVogiNMB9I8qmGjsArSh3zSNduTRi6+5Wt8kL6D2X87UxJh7pYel4OlzCBvu928iNIKEpWF1CoSNBYvQeMU3WSqGdAqOaTtSy/vQKTtHxq9GHOPTrCBsCFsqBbQgRP6vC3HQ4z0pWebCQE8MErbDqX3+9Vmm306/F1ODA23ihQJRzxATXNiu3IRWKTRjXiLT+2UepNyjrGfdmkKfq09NM6krPvxVDyo6iLhICIHEXKCUFPxJ/kY/+25nhpDlt1Gb6zwJ/DBZEjBnF98C/Qo2wCWhZLleubplJwUEk7YarPKbDOT5GUuIWYdBB4dXPyCw8yZDm9LnkuUwslln22XugJvqA3N/CvbOjjjZtHO7kKMQxJup8d9mAxt3o1VvcvftiE27yERcpqEh7nDsEpSdxzTQgFFuwAUd+uZ+7cclzbt4GJvz9yFTDwbouovVDvC51vkX7sOmiHzni/5Cmy9g/A783j8kIuNGwQJbLCvtgrMEcjOyc+JkGbNCi3ccsyhjmLVDrFan1br75ckyEDO9459Ny1pekYmcpg5Iy6YSC3cXkEf0VCppjI6mDN5fgjxoFY8s+cAW0ZEvEJzJXT3NTgL8gu+/s1ECWxo8yKTXHOxPYpasaCltgG6ROjlfd3FWw7y3Rw9HOe1YIjDsbCjl70ZhQvMqsSAy88V8tQN9sl4xr9yF0hswheFu85SaTPogBGSji/KyNv6T+kTHSQX4NI6GVf9eX6bkCP1e8iCICa2SovpDm4zGWlxM7egGjsUN0M3Dh2qU7A4refvCW/Y5HVZXWE9d1w2psZbeShnM/MZmhs8mqnzY2tdF5Ddsj6nV0KKzYJv1XrrryQ0q6b6EU6iWJVIPSKZ953sIwKHZzS0b3CEdW3OlGsUnkSJW6ZJB4bM4sPy5HP7QJXN16Mc91QD8sZGcPGRAoC1d3heqQdkwpas+4yqKUxRprTPYEWJIc6+bY/HNj5AzpvhImAJ2ffXgClqFpt5dMNM8/PWQfrcu/vP8Yz4SUzoBxpHjo6K1dzbV4XDW6vCLjv5FmbqfhXG0BwQwP1NmqqMlhst3jPdM15EXjxYmF9uJ64QCEyHgSvEHrx0CVo8+tz3OG2yPQaVwqEE1XP0D6woC6uJAEVpE5Q5Y4uKVq+HBdLDoQ3DZZ7oNtuutd/VGkVQ37FfzB9422BbsfrfZ2QZPR1KWsuBZANewps8s0Liri1VHLrblRwbDXaCw6AWqCNoPrWwnR8rxwvojAs6DX04YBjRWmjiibysVLia3/7Oi+eyk9QOw6JgAfB208/7kNEKABCmC0sBzwcaYhpfHBkdfvLvYrIabUODy+HJgMA5xlMEhclBbxDpIi3nnuFRJ1UMYIl5XtNL2ln1FSD18UnbPIrjWn9gRoXlHnNo42V/X6y6QuR8SFuwxlMJMALkKn1RTBwkwpHvDMV/W2rsx4iOxAg/8JkD3LpWLes4HTY1LXajcAGp/L693SxLPSAT+aS5/qMmdpPSp+G4QMf4i4GpnSA/+x8Etr6pYtTFzQvY3s8vaZ0AdfDc/mffX0pO+RTOi5pAMMpc0HBSdVPrIUxqMbGfH3lh9L1wfnyffiE/PIWeURuTJCT5ok6ObrLXWZZYSXnOLxWBU0Vn/huJHbjKcmt6CjQXwjL77pOTOIZ0h7oCRwSgdalJpyJqFz3v4pTIhcv7eLQiBV7jG0F34v93sIhvgUUIQ3RED3v1LpfCeXLSl3Aro7Msc89lvXW9RRPGNsVnprhK5jyvupXRTqRbuukMwlsYtapaUaCLlmD9GKfjBlfHAGr887h7OdAMX9aeIM3L8LSgBVjmp2DrKAA7YVLaPJo+GRf6OGW3CiHA2OZxoR6RuWXrrKDmNH9zc4zPZjw8CGM1zjmHQh3cbCg1Zt67uYNP3/NINffWqX6cRdSawq7ejeVwM7v+4e9B0i+VCFMKsOBFrjXFFKq04SLS0fHY6zxKoiDqO4WiTxv5SXHDl5NJNvzbRY/rxx8s9XkIsIByZLqBu6j4jrAXTlfFHy2Y8avNCWLehsEIVEb2MvfhvwAgDXH3Vo0QSSQ7MDwe7XYFusAuawVyTWWch9EpzPbY5hDcigTH/anJ8+sdjUgSAiMF3EhZ7TTG6cYGApCRIg3+sZ20GKXeikdOCe5D7YxUSUvfze9jAUrsuguhg8qu8f5qu2jxcfAQwonn3IJJUQJTSKBTsO51bhsdQUtOtBUvfpG0HiPnFGissDi/3pyMGboFBnI2ewRmNzlkRQYLIiMp8MP/NWuky8elxuQBP9EBzwjcGJcXPQLzjErOSMw+GwDlFyFYa4hTkFWjujqQczxDxDcPmVwUXRcbF7knS9VQlhP475ySXFbWxDnPvWhHRfhVDXpeFKLiFap0aqunEgHkp8EdQkM2VojrS/TK1CKbz9mhwCC4V1aKZQqk/DyhASKPkUSbxxTrQyL+TQcCCTvHbTnkBDMhT1to51LjY++PoBth5rysnorWY17PP5J/KQodYtK2YV6tP+7Ece4p2yQjRSHWq4CMZWjFR0NygqNnBNOoDItyLwhgCuyoeShiijioszNtJefT9pwZT+dEPXHi62IDDWk6efDxWuAaiT5FFu+1FdfNEparDLJk5jmplVhT5ZKaOYKDUo5B65dEUkLulCDESjnr1+9USLOjJn6fOE3KtjbxMTrLZOCI9fNxN1+ZluGRblQWdpN1TkPD2WLsiktrJKKAFvCnj4FxFVVWnTHH4qmEdcgrSaPKFcgfIymTsLf6ZPg8DG7sA4cKq75r/0/D/33R3TsiNnBWyeW00b6AuNbGE/SsDkHwF46mEXEwB2/e22BnDqNn9bP8LflAxNHhFZ3pdzwTnDh0g5fW5+kXOKnGVRv0bWLNuQs2yh6BBdr7jhDGzcNsQ2zquDDK4LYCSCOwkMptxfNpd7ts7f8oCpGVYPGY1L1/S5YjesFztHnnuPa2sNEPdoneMqNN+UC4ZcsNF6Ezr5JCrpgD1AidieArFa91OBWFHZcOe1ShMh/LDhAAnvzu1nf+bwhykYkxS+8FJORPlbTX7A33PR9q8puB5/E2Pe1rCpS7JsSE4yKzlz8Z2dt0mFWwoPPiV0IkoWqZWOZok8bqI0cVd/kDo9BGcCNH3Vy5EDLUhfKFH++yVdkvQv094tI1axsz15lON2Xgr/jYHayygqOsBAYsgBZV7yfVeL41WFx33aw8+nRD0APDQbFQOIRR/JxKRFUiyKpfL0FdVeZWIQ/sUQqlBbD4eDztz3mUwZpuGsoXOBiJRcINEBvfLm+8J4CxW7kT+Ey06onXD7tcdJwIXdQhjb7W4x9d9tdyLiLDhhMZgvn+Q3Cp2NDlLz4UscRZAW7dqnDXoI1W3eziTIGvu0LkYiauU8DfVZSMVNWwa9InsuMxCslQS0iXFYojjOp4Kj10i4PQHgctlcCsXwCwq4bVHDmoxDztSc63BO68ZaZvZNSFn6ejrGOkL3zoqpK7WVK3j6mVhl1LTDIeStDJWV83bLKGGnV5qMcQ+WhV6SPw6iSqBTFK7MRI35N8lYgOJ/HdbEgESX20i2Yz5oXyMOvVN2vqog5DZp0O8GKp9SADZXKLV4lcIYyF8HUmU7AD5mn9MgqHSj8+dzzwqB4cCBoW42656qGqbwVrQRKGPaTy+zU/2O2OD33LMgGc3eT7+aY0mVUQvW/VcQiSAMeiREBNVlyalsMDVW13Dq6cdci573DR+1V8fIW6TZw2cproYOM0Bz54NeqDdnVk0MF5h8J7OacLr6J+/y4QnEdOYQHma++t7YyqZCO4HKHctZMEefMccilM5VLTQVtYLn5bOqi0+viptELgv59gg9EVO8k1zLXP67fJYR5mkJ1Y4jbIOJhnQtg7ZfQFJ7GSPZPOeXi0/B2C3J7krkXIz9cHpwEb3ze/Paj/LuPwixL1js9THivwGKRiiTXO2Wk8nQ2G8eUQLDDB9oemBdmJN0BUFbBL2rY3DJ+M4L1eTI0YBMXzvnhf9C10r6uZWp6GjE/0B4btSn0hLR5J50pJ1JGftPLNUuONDeAp27383plGpuT4Q2/dsIfjSIDf7nmmwc/TOkAA2CHyql/oV+5+11QZpyDIG/8U6LynQE4Lyau7y5vZY/WT5R4oS4bF3A4WWQqNmpFoHspsN+Ez01YCtoFVdsMq73raaHCAXT2h6rrHISdh8CkuvzK8mDSkRQx9L+CPssZB5Guwnu3ryEQfwhOrSAKqD98kcIJjbzfg9DHfXojEDn4vWKMWGoxG7tFPpQ/Lbaq2rGyEvP3IfztNb2+TwvUCVzkNBNO/3IwFkwY4k8uzesNvgq/VbFq1qe2KJyKTiCw7jB2n0gYVdpkdqPTdsJ247F/HB4Keol24nxarDJUJ+VNiIl73W75sR4hfzbw2vyAWP+daGCryRlO2GDw5PyNLZ4TvkBjIPHoRMvtD67Is8Y3T7zKQ9KnGwAFxmV765NSJOt3xbJHpmXyHZTHXQ6JhEarkDbyyndWROpTgb99KW+zkuuEplokvOZjhHcy7jxf9b1V+qRa2IwjAVXCtwYpkchKMqn0YukI4RZcJRkWcD0E8hLmaO4HDl0tjxHazAzxaBe/elva0iH1PEq2KxmwEoSd1Gvxjn0DD+FUnRgC7gXQPEV0YZTvbhDXGYHXDqgEsntP1pISzeK8tr4uKqM3tSktat8sK8ubuEiAzcVAyGxqGXzXSYpvqMywM37zBpttv4KPz3WzhqhikrntqWnesxIjHPtGl5Owwk9zLv5+LVPr1ZkadNuM6II6pi5AKR/akvGiC3ahBZidxGj9+FGexVnIbBYR6G5bn9oQaOe4N4MamOFb+kHGeceIGJieBUXXKnwfkbONny8eGPS+WxCfZSIrldO9Fsw1crrDHxk7xwu0ki+zMziMLwQ4mTYShF1KGmhG2+R4dl1k3iunzJNm+XIKv7BM5zDiav8/mYEiyFuyyCXQAvN9Eo1iUoAGm6haQaMLumnS2x8SS17zs7LYRKrKyqHrl2LmnDBCvmrisYFtywVR2Az5AhIBTZIH1ACUxSLWqXAMmAnnnCSghql+rzaFYFuEgILXvtQ7I07pECcrHcXKxSO4craiNQIJQpinfmq5V9xrMG1bt5bliZOacdNzT6aWSAsv40Sd42kMaLEHU7PzRWynYBeziHC0BBtSaNJN19VN1iukOfk0ebotZwHgX2kKWinWjkBhvHnVW1uIi6U8OKUjBKDRBDH4hapqpilb4nCG8yNz7pUguEWf2azhyVhvjfXX4Qh/nhdqWkvLZEPCKIxOiOdwewG03EehQ+w2FFv3oUNTnROeI9VT7qtHFlNFJEogZPiU8Uw0l7dFw3fawUlPlx9+eXs6nybXh+o6qr+c8RN9SG4BtBYx4e4kGeL2WleQW2F2Lz1FcQzHaIogfHYk/wdsg51Za34zCP5GjbJWUlOc+A6PPY0VFW7RANf4Zd5LiLGMIcS7fS+pRpC+OJQGxNrx4/dXwZDkNIbGU++V/XUjzmWOupw3wd5Xu8GPZ9yUn4H88EI6T6C7vg8stDXJggpHhypamqgor/f+Yx4879U3cTveE/b89uk+3nHUzhzf9bfN01xZ6LVFGqiYNQAyNo61auk44rIYiVlJvpEss8O/iOXgfK0TS4cAMLJrMuTCX7qF4u6ky/ShPn96w8emk5Ph1SXaIWNpclCkT7K2odb39ZQ/R+94J3UJh1l3L+Gdlm+318SEPncuxYG3n9MCwDynj30E9ETZUyEkLdax6OP89nQX1lVQY9RJ18vJ4h6kdNw0DHVgJCi2pOnXDPpdc6A2mglTQLES6uZs8gfhkrq64X3ngl/rM/4wb/1WQBrmaThetaSYVcqB1mEngLOAr7qO6R4bNzsIUkll/Zqnd1JSXeR0UbidJqMGevFLfpMo/p3hEat8WQSWFLCk196E+2YEf8zks7TTg/sif9DoIerNHLk2knPSKdsWM7nUzY1+HOUL1nxzqQJMXN2TyIMNj+3BRG4/DSpEwPlgvAh1vwEigXQLukjqwqIvUqnGkhDgbPEgtjqN0vtcBi5TZDDeti9owc2yJeKnBBLCNu8AsESOcGWiVhdugr0+qqlxYwwcO+qnZDsOuAaxrDyUW2du6sFnvR0FfFfcLc+eRwvrgfD5EnvrdvrlVh+Cb4xP8RNmPMwHljRbjchvanqVyuqge0kWQEtvoFglAVlxJkmB251sTwKW53kDiZ6wngLvXUIakC+zwu6aALu/dOvJaeBaBdfaNT1XDkbkQifEQRfAX5oFr7Axl2pnoNIIJ7zkyYoitaPrkitO3Z993rCdIWz5phB7vOjpize2e5BVtJYRKlub7maUoOEx4cvDS6XOM7OYTddme392F6puxftRVFlV4LQRR53FGFCr+itGkw0HdxKmIxdpo1od8FIPcu8rQ8SqxLm
Variant 4
DifficultyLevel
585
Question
Dominic pays a monthly membership of $27 to have unlimited entry to the local trampoline sports gym.
If he does personal lessons, he needs to pay an extra $15 per lesson to the gym.
If Dominic does n personal lessons in a month, which expression represents his monthly bill?
Worked Solution
Monthly membership = $27
Cost of n personal lessons = $15n
∴ Total monthly bill = 27 + 15n
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Dominic pays a monthly membership of \$27 to have unlimited entry to the local trampoline sports gym.
If he does personal lessons, he needs to pay an extra $15 per lesson to the gym.
If Dominic does $\large n$ personal lessons in a month, which expression represents his monthly bill? |
workedSolution | Monthly membership = \$27
Cost of $\large n$ personal lessons = \$15$\large n$
$\therefore$ Total monthly bill = {{{correctAnswer}}}
|
correctAnswer | |
Answers
U2FsdGVkX18c3DcHnuo7O3qYJXny4U7PdYHjl1LT/qMPEr6RCPphCXxhpI1QRVftwrDn0FkwAvR9t4EW/Dhg21lHz0XaOkYAStepHWPaSRPe6LnVGK9PAXorSeFL+qo1OqNN7CaNdykhXgUgb/e1ZIKjS8KR3yV21euHJ6FSu6jlNIU/EvMkkCIzw+XLTHc5JyPnDCfXmZUuaKWKC5LtIPCyygQtirRkmdviSve9wFVSC8cWj4r7NmzoSuak4KuPQPtpJIVAfLfYMHKu5jbg7Kk/jOg2x4Su1OaOkHVg8CZ2QWOYxtLX7jxjBdPlfkKiygm4/FNsixBSczcdbQqz7OIlwekrBU57G/upF4vaphCMed+jURojMHUaRT/5VYO+m29u1k93Lmat9h3vX36UFjb8NnRiypRE2ogz9nlIccfCCPA4tu0vcjaiXUVZy3k3i+9krDwqSgRUtYRJayAJN7KyaVyek2pdaDWMKVDA3KLIyVJ7kaJ8EHzdFWayVKwRGPyFwhx/XHy148IdvyvQg3lZgznPbpnHMAW6rEyYkezJ0QpmWDilZX1N2eqsSYpz9Ax1zMBjky6mKibRB86fIcGAuXiw7wO3yUitflB/IdoF7V1pQgpqXTIj6dMhZym7v2g54FEulORINcMukmV95bEdX5G4Rgy4OAjUvywP6UVdJzWSr2SxgsSrDToODvY+OwOu8lM+4z0AOEb5bPluj5ybEniehBy+7BpGXadHTIUPDWKS52f2UbSkiUIa9rBaBr+qwtgxmvsCQEVF8sdTBq+vigKzAONJ8FULQBoCDPXGyHeq2lQTk2SzZ42QAj6FsOEtwkC053Ax1LXFB4w4lU8s31j4qsw5ILg95GYwB4cxz90Jm7PQzAxTwew4B40TVcfydX0t0RSEGNtR9AX0GBM1sdE1VbBSxtz842TZ6IpAP9oltgQiSwhbz2B6ZncSXnQJOI4nPOG/VXiaWCy/+XPiiS1HQfulEKQ+IA/DoMlkYwv+ZUoRoZ3mAAGJzCpiJgkRn1IhbdRrX0IWICZpFdQ9UJRSA+oqZ0Pz783j1rJabyGOghfRme797pYF/95SGFMTaiEkwbEsxhBJeZmecJCPdycCQmPcU7r2XrlyeOCbjygE4PRq0IVJSVz5zym7KrUrErb9H4tgi3P7BINDjkny+Uwui9x90tKCEOGHHl27zVRCK0b4CLk+4nembABMLtggBLVfS9045p62Ba2mqUAm9AafkxWMZh7aLV8JY04H6FOyVTAGqu980rMh4oegVskzBCoukxjf+HZ4Hg9XAl2pWpy70fGOEwbzdSYdR/uD+/1hQYPL2ETHYOpjsOsALDr5Ymwj69tf5pt3aT9uc5HXyvPH7r12w25FwqkaHduYZJTV/TveRnwl7m2k7smfHG1fCSI4KpCYe6dyjbPs9W4OeLDjDyJsaLUDpQMlPqMgvNGKP5kW3rOUWFKnaW5V2YzHRWY6cvC9BGqNh9QtTGWJciJV4//G5B0cW4yGTdWTY6JWRACctYB+JihG753ih0ByGtu4VzO7FAXp6bAsXgucXdpPLqyt9IanekQcpUJivurjtU9aL6+S0+NTIrP9TEX3qcLNIbdpOs2W/+DZdVMk6mAvN5r3LGjXfpSLY9vn3/58bv+hYpCImf07EsOufsCBoe03kkI+drx0gctsKEeTRCEc0/1eDfHhtrHHiFfJV0YPoQOnD650Qbapc8/KqVaL/lMbn7yNIAbuqxWa6W4y6FdvPgr6/cQAqedglf6SI2srQHKJldFoynWrbzdHqnFGLBB1k/lcXWL/YUUtdyD1ROezCKRUcmHE9R7eQb7e9pEZf9ErJLS1+PvKHmUPIAKXT7hvISQonlIzNLpz5jBveBneZIdzYMqCsYTCjAUsxkdG8Po20AbQNzuoRc8AmGGBnf6BiyaIemS9yAMKMNhKfuhQUpbvjgHAhKRAelxKjWWg5GEQlAfjGspEJm/SSZQqxnPtlGapjyGPl+bJkqy1jX4fK3ITIeK5x61ol7b8+KY92VOJraeg5Qp4gtIGcpJVtgXo2E29yTfDk6TvTymtBugR5zHc6vZZS0rcE3qWqxdmvMXUcOsIC2aJnhNzveDvNoR5O1urvCG2CkbcukmC8sgKNzLuur1tWbZOu2JgI/W9hiLSUWos00GZ1HlXBIDNppUr1TeU1IQqUzVVebUNLywzaIpw4K0nOuNllhd+uO/nQyPMdEgBtYMnvp7cgXkwVUwnIsQD3mizZG93NPHDQviQj6Tf6YZol9rIUp1m6M+4GanSnnGFw5KJ/Trn0CM0ghvlZV1OVhkOkfJwWXTgACN7skppknCLYiwJaPxXL4FdxEkl1lR1JtKvQVfAQrOmtYQU50M1bL9EKVMu+FxiFbs+EQiWhsiYp+nZ4skzZjpJd5llf7NuuHWqokTqMbcPJgh0FFA++VhCaa00EQU1WAg0ptCoVKWQbETgeg07GMtCp0njvtcZPZBabzXbMqLgbiXJOR8VPJO3IriHSxcyQO7KQQsXDKYmhSo8b+9Z8GzP6csTIitP5FMKVWR9wMpfDXsoZEbX/BXWslIKXy4RWqKTgOSN5hLdxZKWvKaWVRr5hQnSeu8jw/ai4LilONZbVoBm9M8i2FmKUxzHkKnOfd78suyAPDz97PEdKn2E+apFPuTSeH6VGVTQYZo4RbIgjeIKePhwbvzqJqgc0zGdoJMOIcnithFXbbzcytfvUIC5NHNJvRnBM+XXXZBzk9V0VdEstDR4oIqGNMWCW6CXIA1cPwqv9dhKo5HyA6pAcJ2Fr0ktWBFf4PQZeUnA1GOONtFcmP44XNvEdcByrXpkIx7nGA77RPurXHpMcF3UM0f3+19XjU9kSpsOnK749iF8NEHnpINYCB6f1AiftPyx7PsX0bJRGlOmXfBul6JzQMCPo7zECbtXAbpKkOQI2FJ7L3tIBbGSVsUGJm3JyBA/BfXCJea5E8o84YFkl8prHeA23jjoVBZSkW88VgzAhqapmXGC0ypLZeJz18jZwqEJWnEeQfmYJFkKeonySq6BTPLSspeB+NpDf05vPd5Huy1pd8o73WnbdncEi9tMD7GhHYviL79UMQZLAB1wkO56mXOLm988/rMuVuqXHsWklMN03/zd9uHBRiwMlAOpG2GB6Sk2A9O3bCr2/kLRAz6N6iza+Lu2/VCVsIHE7iRijuL6okBCu5uDn9PHX4uQ8SHLfJkf2Pyw+MH4tEJX35vHnOkqnt0dYvhtLLAsGTLWWKdNDO4D5lgyPwLKertDOMyP6GTeuW+zE/fWrSytymK/+R98m/D78Fh7IxWUSz4SQ4yxpgUjgaFiMSWcgkYxdmKtAK2PlpBz9ecyPuMGzBavE5e4E56AmZgzyfMa1xwKdRWiFSzz2nF1RsrhXN8hPtSuxGIWRhS8zFKCm5fBavMeanCIqY3yrj6r8zMTZONzX6dIjSOq5qK8FdNpeKGNG48e2iQQs8iNLlMtuvipp+QzDJoZInSY239mDY3RID394G4zcZGLvNPGQhoFQbrerpgzxUC6xvHmQSuU3aLL90SHdocR0doGR6+mrmw9ZT9sWTFcdUeXs6suHB+XiSXcpUD8XNHQbTLt5lb2A4E4UJ4bgbls2dpZ/YMuFmRrFzQkDRCFccnhS9pcnzJ3zdqMS5RsjPm+cVCBnvKo1leC7fLZKRQwle5ptjQf5IWFj4Ky0xZhhX19v7Ko4bcSRspuchF79h2V721pyJr8VtGLQXYHwLvYFi1HIkPbdDpixJiRZrKa1lp1OqeCB6QpQD4fdnxgulkjh4E/qfDSkk0WSjKphOvQvbpkzSlN/cF1VRdpPkLZbxFSCUZYcy3yqNv+tVLETMiLA/88kMINXW84fndWvc5OX40wVshJmP+8gc6AkSyfBkWxsyPS1k5bdTEfhJ2cl/mVLzfrXpmt6IKDDHpldSy0TgG1Mc8qwNV/9H1pR6idR+Wiw67QSi3kf1YEG0MeSA3HKFU3QZXmfcia8A8lW7iQS4NoffTCnp0BXRgb3NmkBbQkYVTp9hiUjRVNLNiiRe/ivEhydTBhhk8hQL9xkK8DzPSVGjmmWcnsj+DL2IvZkcEOs5kfspifkZ4OzIWFeVrOOWJWRxR+AW4/1nc/GvZ/PQT68+RcE/RLjGLTYp2o8XB39rrjUgk1s4Fimvf1VOAKN1Cxs3lJniI1lvwAO00usjXdtmhFPdnDX0Hqsjefx9kVb72udI3piVDy2O1H8TKROQ1XfiHzuGSzRC24Kq+nmRdodNU4KDy9RzssxMoy7NaEpZ+TDGcdUqDalTyzbpG+fYbiGVoYJTuCLkYporuwJcrZF4bSCJvhsjQuk4KLJTC7pl9zGohjSrm03wDLX9mMVoD0WLxwVKnZQu8p8CeCcwnBd/rGpeYxSkZeVX4kTXQnsyHb2IzTUwmk+XLFd1wdL+10aRg3x4LW6Ij67QjZTPcEDfzd0hWwzcohvb0trWQ4CKDV18O4z2L2FtUqqr86fuOMxc5wofx2Z3Jt8gt6m3FQ57yirheijGUrcU9zuuJqxYAoNJdcSYmYxJdaQGhbqht8VImCGA8jpfpozpSR3OXynEvRgdRMM16vDgu2RyFuluhIaGKCSJYftXxS4bJew15OamXyL/Ght06e7FgVzcZS8amc3fKY53lMaFzcdzvU9vsYD2dY2vF6jY4TL6lHSreAmdpUjf14JUjgzplPIH/LAIemO75VyV+80ByKQ2cR85+brVOU5gzm/fHRHs4pGJpM0mDJatO0nS5+hluI8WSljRyI7T0bNAeUx4AtoJ+xpwZhNAS8Qr6BrLy40lixQZ9TCWlZBISPca0B+/2usfqFvZVS4jGKG6+s2aYhfT080b2neCBHbJCtvvip+J3ufwzy9S7MC/0MHqybBR/11GNNnZ74gJYzIC00S8jxBNV2KBW8H7XEXdFISimMlS44e3BDkXXJOcL5NgT3lx7iDgAZ/wVqpsz0KXF77xgpFDXrXXF21PjZr0vUAz8DJMhCTMPiFcMMHi8xBH9HV+srEztFBuOxhX6zOFl4s9oRdOiS2FXslX9dakqcLPCgOvTqslEuoaSVElVN1SFyZsXhhfstwB2UrGb4SdVq0qkv2RL5PqLiOFVJbmXXf0MufNAC3QBmOC/BZqlpB7f7M1A7mFlVB/APIy41Lm+Ky3P0bWPGw7Q6VaQP3O8t/XhGmJZcJ3uOwYw5Yux01kvBTEqaHeBhrsqKINDUpCmNWAIFD4VwU28u4MNmgPnm80Rmfo1M1YCiydmVfocJ7y15jdYzHPqqBLSMtji1m2oDhBrPm5G6Gv7lTooZHwowqPT+ea2rKqIQjpOF2xPKIjzMJeNlGP6Yq/DlcPck7IL6kWSM7tsSw5E4vZ5C/FtNXY7Kc71t3qiLvwIgWZwfLge5Hn8dszRTG2LLVWAXRWVmt2AiJAQtxte1UFC3wwTZrjQohdWBjWaIVgKVXuXlzVqRNiFWQPStD7T3Il7TcQQT0n8qv2QCOfc1QZ3fCMu82ILsT5rVhk1PR98qAT3YMCjlRkIR5F4/wMflYY5Qn/nVuyhCOXBAnAmmSfD+il2CNNd7hdg3xlnH8OWwwyQTtkha5NCf+o8vNQe6HT7Fqd6/39zgYD2vhxciUi5DYjmnpvBsQ8INXqPIf0baFd6lOQsUnsz9eBjwwyiQYCKGkxnDxzmbAs1TerCXYQLnTgNY1GefPm+jHAR/WiSGLcP9i9QET4OT7gf0MoIaeote0dLoBpYB1mM4oZtFzJKlGL6JMVoE3QSsybaV4cUn2BTUbZuH7EOo0TfcerUI7reQTOxrqydqQuaAhYkqInfEd6XQoi1+RWTvVgXCU824NZnysDHurnfzC/rSAHxnyDZ8Xlo4dB+xq4lSiJlOgr2NuoRw3OidetWKTC6jCDvemaH3JIGe2xTM6NCvGtJeVQ/fTxCIvFw3EjKd7ApX7KeJdK/H4bFffsTMDnAG50GTUldG2YfM7PDihEImCa3YRXo/Sao/61Nntw1ZcH2gHsNCU64OfCeBIgl/R+MBCX2lYNMd2zyjCr5rNkMlHyDL2ocVxMLtd5W2UGbmBmNP7AELSuKygZZ/g3zBdN2g3KzHPHY9oN7tWOHay3jdYVdskXz5yiJJUBO+zEQjmcufuAUv8N5f3NactLoLAEoy9cal3OIpiGaurVn32Az+DSajcjUqK2d9v2prmMqhAu5SXMaFtqMRSdjEwmi6pNUSZIRC+FKHSVAN5Tsvr5Y10p3629ARSXzT3mtA9v8vSYCs3eHyNMF4BNPqt8H1fuLaJUIJysTzpUmXQ77aAKtT0Gybyq38OOlbPsoZW4V+NCAoOXqCPednPjvmIZmCMccd5XqfevOX6JGbE+OXVOhq1Qc4/Ti6/q+OUQkOhXwA2w6xntgeynism71Evmy5O9wvoIPpNlwErbmvlsHhAhKgP1BYcHGkz7z3y87j9TL13qdxokWTw7m6O5PJ9qG+vZv2MXIEgnYvEv3IOp3QcQHZeoddPNtaRGAUuNbeDbGWoHYNuKl0G3dMlvrvAcn0/o7UvKI3+5WGXV5/09T+XppfZ7gE9IOq9sUqb7HZfltLOnIsFIjDyt3JR3CU93/JGW1Zz/4lCUpHJFlDH/0aze0dekjw6Q2whMTm9sdkomDNBuoKY0ZTiZi7ifCk190aFLd0jj0Pg4QNvGuErJs+sfRQEfnclQwXL169FQQGp2cZuBgDHTeZpnUm632yu6NKfMmTy+dWXk616RleVU9fmX2scre6jThezZesnSwop0I6Sz+JRvpMOr0vPVkhnjHB2o/W5ICu53mNbo0407od7j7k0N3oc1s96XnflvvyhUzdaxbxC/jBt3+1k6oi/1GubhHiDqxZHxZhjrVDKtgXqn+7ngfgRalxGH1RlkDBrgRDR6joaEqmuBAu0svZKiNy9Hc5t5wvCkpTxn6wHCr+HIVy1ALLntalz+5+OGaAhhn0h3G9Y6OmSgyasixu7wVYvfOmeNodJSwgNSmeupR0v1iifgJm0xsVck39I+30Bp35OLIaiQIuLnXZPiBTP8j3iJa/dFllzrtfT2szeDfnHYv6y/HH4lSI2CXsA3IkpOAiMO/99CRjWoM7njn4xhEWEU0RZ9K/c9uNYVNr+XqZKO0M8/sF3INOVoifghLQ0lmKDiHKXKtVomgUmcLcaLNlRwHE+qjKy8qx7pqIX1IbsdHPPgr8fJn9uY3/rwfjACjHh/8ivR8jKpH3RD2mW1bnCDO2lcJDskVuLTvHAwf1YIP+2wN4gp4MVas8xac9uF1lQmnNGgpXYCmeaaD146YLf3W8juYUTP9RXZUey5QacYL80Pwkt0fZtvkOfd92s0jGqDFE04MRU3A3Wu+7chX2pO3FXzAN5d6SwzDfmJy15R6wEfKhujV6/i6/TF5y0xKT5iqmz91ZO/NAQusU5JF64GSVZYWwrxTOB0rIKhRuu4gDbjDHrVZLll5lyrUyjt5F+yQJE6hklUgvVGNxUteuOZWvwxqY4S71uYHpt0nLJlGIEaN+6gX5ZLWdu81NR6bvDADYwxQzasJ7a6BZWIk5XBTE/bIsgAgU4SQViXnI8kmjzxi6AO6UxbZteeyWWvNQcxS+HT6Duqaq+7Ih070Kzxac5o0zg4EwR04K8Hds56LF+O4zeWCyWnsywl5WzlHnTSPvb8ciQNjonPoZw5dJvUwTuNnqcGc2nWdGoPX2IoO5pabMwKDUWHjAklDzZ+x9w5WMCGLJAsY2jUdAnb5JmMqEWuTY7AwXiGZAYcS1UNY/rz5iOQoRyeoDsW5Demi6OMVUuL6yaQPu8TQ8ceAqP1Rm43w9DeGSdIWasVubjTW5qskboMR6HEJ7EQd5HLLIDISQrxihURY85bS/Lv+R4Mjnrn+9A8IqH8+0n/Z06HoGD13lMxLf3w6RMSfBaXveFG+q+sspB3KS+0HuwN12TK6ZQe8QSd30lqFfcYIKqsSYmOI7/jLqL3nMP2Je2LosBqAWpT9kB/c9wJgd7j0LJx6OpjUPsA5ptJvnOOGIrOi1yk83DTUjj5hU867RlmDFeuApsmQ13Azad8k4FBwnGz8iT+8D+cA8RZsLQX5CYs0Sfik/+5WG0667wqi5n4ChKJ+VmhVVysN8nnYbt5WCRve8KLWuBICFzDIgAu86Jy9c6dM2st0Z4sI0+6CEAiecE6lbb7KPgYPVR3ijcOfvun+z8Ohl8I1BrBb1r+g8yrjf2pmAEjUTPO82qoPBySEOuGUAupZiW2EW9uPlxfIV+GSuy6VcmpNGx0KqacwKJnPAahxphJSrjY4Cym1aCzIM5BH5TixtcE1JrzST4BxCU3pfvsIHElTPLjHgIgdB4whUvaeXHcUqQ2yRX4Xqh2gA9jWlji/J+58lg/glO228lPjve/kVfVtxIuxHk44rFJulPGqSYxXubPxytd2CDSOarUdcBGIqRxjD55XxqLPGt8i0JlREmVUPMFU9nRei//g/E35BDkX4BjGlc+HsBkHOyvcFKUtR/CNdJUvuEpDEVYbhwxTsfO4XwP2FqEX55RI0+9HLm1mmuUd1eEF5jd8FIuGeA87bATpFiPvMcDcpis+5VjrDba9yj48eyag6eHhZvZFo1l4meJG5eKUYpOsG645lmUrjAzbqvTO6F/CY9RNQUqOID61st30jTHSetEGq8xdP32t+WFJQ0lskot3tvFvH9jy7O8f3eRShBVXJkQctnl3zDMI2/90wodVYKFO4cR8gNb9guBGlXPgFJB/+8IGjvMhCux0MFUxYFgL4IiQHftEEu5D5+Im7qtKs30hBOzlW50azRX1lAtb9wvHElL7YEAvBWA3s2Qmajw2Vrs0s979yrl5FYBETEsARaDBKiawJgm/yW1pvgooDsbUFC5nmSA5IDseFq5k67iQ+RkgGh1kaEWy1k5iZmVY34Ffky1iYv0u/KFqd
Variant 5
DifficultyLevel
587
Question
Serena pays a monthly membership of $35 to have unlimited entry to the local tennis centre.
If she does individual lessons, she needs to pay an extra $12 per lesson to the head coach.
If Serena does n individual lessons in a month, which expression represents her monthly bill?
Worked Solution
Monthly membership = $35
Cost of n individual lessons = $12n
∴ Total monthly bill = 12n + 35
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Serena pays a monthly membership of \$35 to have unlimited entry to the local tennis centre.
If she does individual lessons, she needs to pay an extra \$12 per lesson to the head coach.
If Serena does $\large n$ individual lessons in a month, which expression represents her monthly bill? |
workedSolution | Monthly membership = \$35
Cost of $\large n$ individual lessons = \$12$\large n$
$\therefore$ Total monthly bill = {{{correctAnswer}}}
|
correctAnswer | |
Answers