Number, NAPX9-TLD-CA19 SA v3
U2FsdGVkX1+uAFAW9ckwS7WVeIzCfd5zk0NYMZqv7+cLcvjasamdPi4hpKspgbGpfTcP9NT0mei1DqX3Ggzq7Fipw5++wWRzpCeK/jdAoQeVDtaZoWPjoQGofUDlINV02XufeTDEz4f3zRa/5vSAVs0MFoxY46ECNojhbtEVlCk5DWNqDYQIcq2gL4SjRHYzIrthAX5uJSt0zUW2wRLw94RYLbhxH6e/vWeJFl2ZB1Xy8QGihX+7KXjnYPPBwEJHN+BPPmbuxXpwZNF3LjsyqFr8bLBRIvaiY/Iy3s/F5nuw1DhRM7Wh8w6XRHhqPBUCjO8gJvKLMYmyOz8iatPBUXN0eCQ+nZjFh0N9wuF6tJYhO5D88SM0v1yEstj6j5HYtVeNp6ro030YGB6Vrm9s7tQGU4SX7Zxbw23HHbOuTnf7QTqIxNnYiUjigERZk6PxAC75Lo6EEs9tDgyEneWBIdpo4yOR3vAJMzm1NxAS2uB8/sT/N1gszJe0wvWUtjFaOIzV3gpEh2noWd0+4EsxL6EDDqe9HShqBo7jazUkcZdQ/bixxDKvKYthWzPQ1wTyTw7i7hBLLza47pq+KPmJu+83eAJYlmOWAQ9br679swAf+9VOyWRETroEPOLWCK13OXu/diNb2DOyI3nz9uwH3E2NwsTUNE+chzpK2NVCq+83r5c27yYsZfGcHEr2KycWgnj27+712rNOvyzWfvTCG4rB7AdQ2iHDrAToN42P3gLJFr0oDRJI0RduDecSDVq+K3i9W3sCacjzX2llIgAFxyONLKa0AK0sfiAKxbqOg4c2oRcO09MfjTeumISulAoIXo9OvZ0VEbKOF8ahRC0mCv2/9J1Obu5BZlbWIsu/91i5CYXSoGCo3JGm6h6N1Ajz1fvUjsZIu7O2HtJXfI6HAn8F9KmR5Bt1Ttihcmh8mh9hwkS38Tj+FuttK1mrJLBGey05/V1UVHxO67+iBR0Y24kKNqL57YEBO/IbgZrKmnIvimHnvlmZH9lcLb5GyUMiMRUCw4LRlkB5bAoF9jm+fSm1DmjnTTZYEW4B8/YucUQQy9n+Wzfde8knkiukRQ6EnvsP0fhO02XUF2toH03WI7Zm9/2dqKzctgG7GNfIpXU4YWLBiMTR4U0V1DUGZmq8Yvum9pB0fSYlr3rT80z0ByFDbERjNgjv5t63m4NEYlayTMV1UoL+lkfFaQMuh8t1EZuGivsKQTkYVeGKfJcZe9E9b8AnFket69VRNk7rXt2MS5kOaoKdP4ckOapdEzIwfishdNLvkn2b35qCPwAPAyf8jrxPDcS8OjPk66h3YP7psHcpjRU4VcI6mgTqAqH0gXzxy7E4JZ/GjFAREk9o2PctCL1tDOdVA/xKT2MyQVHZAbCJAeJfFv/9EcIaOUMAswyb0Xk9k+spLAJowIoDL4lxbVaIEmwCQjNJQjr7qgekpVSWCtQy9E25YNMWxon6IsUEGRhwOptWkGlrKQweF3mWzHpeN9akBL2Vi+Rs68yLIeu6+cFq4TOGDcYqas6S1fciptv/PMgtFaS6XRIlx1ptMiqWfWN/CdZrpDA9mDqwwlL0QQeg6MKAv3dFXhzQnh4ambfOXDwkgNQcsLyCvCfv85Si+66uR26uKMnCtaTHzK/tYaVpo7mOwN0bQctdufKmEFkuC2oxt7eDsY0+xedrv7tjWbXeysmuz5V1CzPFSfp0/DYPDr+ebx5Tw1oAdSyNAXouahSHtk0YPtQ7fLTZcC5GsGoBnH/wp59ryJaCVnBG6p+gNsc2JwwDCFDbz+Pxo63Gx1ozdG2lY8aSkb2jZmZ8v2zCj5SWaUkiMGlGupDlQdd5dfPv2Mk7HhVk4dTpSC1zUo8+BSR4KNgsVykx/XZQg0kYSNaoo4dN5eMp76kbo4uZJ7RI7YIJSl3wBarB+V2hCRnWXLm2IGzdQbtW/LlQdeOqBt+Cbsi91x0ksTA3emBh7M+1McCjaS2OPBAuRgyGH5mMRCtV1Ea2PxImZ4GS4K5lpdA89GSmsHu9VoZNie59kA1ao6B6N89H7N3qDeZEXAt6DzD8u46ebsT+p3lg1o8tEj7uSETN2FTUHI59i6HWqsSIiX/ShH6O2JOiKQrFczWtBkz+3XYjWuI+JQqXVJnb0TXFd18Rdp6fVh/DSjyNT37iYL6PrT7YFp0gPR6flvau48h97HxPob6Hh4wgcgzRVA2QWAGM8erhOrr5V9phxsViUJZKrT2O274SlT3iT8xhmY3+fJSAU3ai1EIeJX83hhqtED6Re1aFVqth7pDW6LwxTe++A2Omcxsl2u+59tWwaUc13y3O+K3HkDIIsmOHW2KQZL7TFA718iaEdBbrzpVucBZLbR109ScjNqrGbzPlPt+iaR16NRf5ay2HeeOEvgiDvqgtarZkJJQs1x3KxkvlxoV3n7VODOBmWA1+VfPn+9MS8I31/Wl+gp48/6kuTxk3kwatJOHnqEtctaQ15HN12zbC2p4hmuWnLjXsfAPnqQuxY8IIdHc+ykDae9N2sCmkTqaMXu5mwbkgGbpsYHdZYx8rt+pUIwhF6EzAuJwlr3JI6rKdZm7qm2JD8cSG3+ILVKSQ/QwjtuEZpxxnqhdJSpZl0tmuy1nFwaxKGO9KeIyc8gKSW72hwQyxg0kuTTxJFIYwjc+Ju/dyDicAN4TorINKmU7c0HGalF4176/+KxjswELbPcKiMMr3gKMNrYbEoThpiU3TxtI/xI43kgNVtM6A+kooN1KiNGn0O74JskJ9LA+NLLAue4c8TBFvERNlevl0RngQfh75W4nIO1Wde9GGaGkq0tIpq+IaOkd++6OvVaGNxErn45umRKalzmqNVfC4i3U+sB/Jeb4USxqQA3T2Vpx673XXQPdI+VQzrDn6qSZPDFmQUH+BJc2MUyQBqPJoxMIrF+n5igT8qLwyLNr6lrwFYj/WtYvY5GJld643DQPFn/R5Y3G+Rpp5//gtorvpf8ofaC3JpiRcIJ7F30+NsH8l90NpqpdQegCTzcQyilNHAcw+CLxx9RJHWurR3EiDrDPxcadQbDo5EaGLrhDo5rEAOPODnI1fyWuu7OhUbC+7+pofENYEDjXHp+CcO729zDwyJz6a1JiXSjxdD5vWR9rH6+mEVfmMH6FFK9x/Tq3/DIdLxhulQHFaErsL4qlOgCOqMldr2CA1BgtPXLL4356+sN5/Z9vv+TXgy6yiI/HZE8QbdFwhTygxW9Xaa+9B4Fe8ALc0ZhqM3qTej0lIEk1N9cOxV2F9nAZzDLjveRyQSQy0817oj10r73eJQS63Mu4cgOiqkKC7JEBLG5A5pBx36Fegih842K1BrR3dLgS3dB1cWDhnqdTLsiDfqt6KVn9ToPAYWWapcucorVnHPESv/yMrqEO6GV9NrrsZDkjjYION/B1nodaXhzvXbfeRPB8RvW1SeXmKsD5SxkOdjE6D7Syh5YC5/tTbuodpFgb81og3agSGu1YCC+DLCltJPNzzA72jC+03vwOITqaAgywSjTolhURCovtU5+W3WsMmb72VRNswfUjqy4JuEEFO1jEv2+JY/ZdJvyVZlHF2nt38aSsyaU4Lq4FxcfJ8nRYgO/grIV+bWK9AN1fYFGDgzqe70LRM07yRN+yfbIsKKgKlQqCjSn0g2DIS8cf2heTNWeNZdZgylD8/ahkUGLgtNILhSEP8YV+2xEK3XSKP++Nk90Seup473ahXrO84iQA5dxsoxtxjS9UL6ouwK6a8BGUN5xrFHX8jVuWhiUIsp+s0fxA0xY/2R9Vl52bvQGY+q4UovzFEEMBQHI5ZEtquwLZ7gUaDM6KTn3+xRmShevEeuqdGkT+1drnB8aiQQIvfnrw4TKA75i+jzrCrL2jHNCsGOFLMKopqsmTT0XMAn8rMMUm3slEQ0TCzdjTbyLZN0HZ2mE0g2fQUNtSD8E+3khX7OwbTVb5xIsA4kNGNR6dEwvS/jb4BrvRILcYKmhh88aDZLxjzmEzel5cIvtvJqmbJ3yw4RjYjvlLepgLyAh8ZuduVYUV/sSoh5dklPm3HYV5VhQGmW1XuMorZbknbYSQpGi667ZPWHf+el4zbaqYM5Bbp18cMsW1o0QtuMe75Lw1FdrbMWQgzTAZHDC6m941cvmINk5wuvyZpmdca2//7ELH1ioHMNLi1/umW0Oc+RNqSs8s76RSC+MBqCcItQekBScSBS5Hs60RIpN0N3y7p6uu1td6mCQdk28K7xDJBSbMxrKwaXB/V0YygWKL/oyAwmGz+oaYCUoRmzRGTlkDEleva3ZIZC+9YmpJvAH7rxquGVzvK9fxBGSJQAQytw+u5kz3yAWVkUx19PX8CxSStAoe0Sifw1We7ELX9SwUrD9mYsYJBZmfIs1efztoWKxqnG4i5MI7vhji/09mkqOHtQToP/2auGBR4+TjhEcRdhfyN35wP6SWvioI8AE9hDw3dBijITlJ3yeWRER+myisD9JR0DYYAQN+2luBDj11dxae5Y01O+Ufh34FxxnU936tWkhbbC6RCUZxOou05QK4bXGmgCgm1jEcsIQEnsODDJdIs5how4rbAuBIkLypuO/FeVZ1Fh2uF+vPN7mWPRPoPblgcSBvbg/jBYBg28R8e00ZlA3BEyxEEOrh0hA01VxcRH+npDMvhPJiJYAhJx+CICrzqgZttXHHkag39yiUaRAuMC+P7hfi66/hQw8gXtHR+rEDRqqupo7Ys7okd9gh4jsxL45a9PKH3GPc9/+tdyJ3yVN2gf5561A1U6uaLUU4zq4ffxPjtqVmXQ79L04bc4jHi5nfpzyr7GG5MN0mHxDBN6VLEVBqY6twhB5cO1rlYAXrnbvzrrjdzVRt/SWDMEN4DlFaKG6xrkvBAOFeYXyolfhnscqowKTiinFg6LBKowO/Ah9Aru1xjXOf1+yeiLGUIbG3bnCUwE+TXqQgeMU0bw+xceNrk3/NUU7/ZoUjXQy4Ut3tIyQubcy2parmNE/uRmOQS35zVu655E3KRRYkaAn5/I6FnXsA4BKgimfWwwPhfUbKuXtLmin92oN7YcpxQcbggFfSUNc2wcCzMg56dyYEoARS1FJ4+vApgWLWo3gpfadOKq+LNw2i4oOpjyEv9QvmYrAGxKIpgMN11geqeWBgqyu4xCAaYwJ/G7tp9HwvoatAQAQ9Y5XS5UJ9CkgAOYd7/YlhbVyjtrFMvh9VCGKM4PmsyYxCSBBPyC+9878diabz3TjA/D7JfhKqMg4T9qDw6uqR9PCs1FXYD5dKJ88fyolcsL73pABj3B8A2I449mVvNdvtPrSKRvYppwYImByAnL8B2wAYdgpfR3vlUudtb/hTr7liWkvSFewRmV8zX+Av0XfyhbEghWBXxrWANmcLHXFcDp97A/9LfUgsMn6o1YI2CEMcSngelNo0VlaobrTwIx+1r3OkQ73UmSs72UR8oYChvNpcW7IBDo73WpOdg9iFHXYLQ+Flbl0qMUjEPz4M+RI+/ob1yqlV9EyqdsHefCdgRCfj1PmeAxDra3+bapd/QPdXxgXmjSu+ndA6GPDkzRVtsPxyrJ1F4jn7O32qDP7oJ7wRWL5Zs5XFw85RPfkV4xlA4AEd3WkWB65u1FJPfk+8KZGe+jGVuws7sUr4dw1aIt9+WPUmc3exYENiTTtxsvfTpFe8CdOb4Tga8y5XmriCF1oJyNAgWEJ5WSz/fftwgQkv9MzhJzGvGdnXT/6mt5flU85GBw2t6GUsNhFcDDw0Z5ujy+OLC/3xy/P3Y4tPPRQQszOH80w4ERihLUsLld2stUu93Uu+zftIsHqqfkAqZICyNJTpXTrLxBQaFXmawvANGXqDzggdx09ziWajxpCiGngvOtgBqe05wsDvtNcw0qSzlRZRLlhniQjnmEL59p4s8EZZa3LV481MN6qBVUTViBn0b3uo7HvwyzW/2UYN5Kar+/9VpE3D65dXvHmSG9xzAnwG9Rfi3yLW8EiUWVFyteiN8pl9alHBKbNu3sWCJKaQyKURXOEqqU3ET5e4Tw/uSiZ/SPiuLisSDB0tC8c74tdQzZkqBewK2PGoNN0FkLocOfQ3hLd8izvpdDzKgryRllnyJjah18jghA/XY7LjJgJxZVQmHxR4eyt0erTIQbRshCd3tMklKcZAlPOdShflC6vekuDrWSfdOi2WrgDn2FtOO3YdRVTDPelPTZv+FoPA+Os3wXrdEzXHBqgI4/NjQos/MNja7ZaHZp+sbbtOsHEVJaitzhh5V7vjuvG+fnd8oTMivqf/oURc3KEtVagPYRhVVMF7K5D3sbrlvpgej8Qh1nH3bXIDS/P4TZ703raQNNVLnyJgLnqoD1klJPaC+BalH5ek7qXHGdFXpN1xNHIuXT6Bo2hDrAb3z4KvE4VatfyzyJJA22x7sxNyntLwWd+8SekKnfVJ4JA/hd9A12O5lQY7dJ4P9uz3WXnR0xMYPp/z0H37+CDq4BTWkkVdS63zGBh51xEdWiqJWbTy6ImclSipE5l525vGf0ZNvbdl471RPCvzxWC92DG+nHmzFUcFA7VlXXrgJ948J57r9NYI/+v3Ku+fi63PjxEI6igv0g1rAoPIFsOMb+y4cVkxqA06mJcxBDo2O0KKRaYIqgcLBb8TTjoxdeoY7OA8W9sFlktnYBcrEP6dr0l1g3WIzgg7bahoHTs0l8Omk8b5VYftTffqwcko6/43TqqW8VxR+NlPvIg5HbEzxk9y8N6AdMEu4nz9Qhqr/tFp7K2u6sH4HYYOUj3R1NjjbNs8TaO9+JxcvjZK7cLdORxfa7cj6DzFR/6zcEwv5wIA4jehpnjlswoSspEdbWO2srmGj88wNjEeWxtdha1SmBpuCGSczUa8rNcd5sDM4U8UR6r4/zhSMwp+0eVdKlVjCvADuudUbeOKwkNAsbVOeGFn8g0yPMHtfB6g0OI9l3WjNq275UJ/rfMl7PSjKfbqy0tUrRu1Yh5YSZ8g3I47RhCeUVgWF8dYbmibAo+qUTZLkWmml7b25rzOuimQVBSUmoXxcqjzxP0mczB7baXMMvF6DgIWsLoqcW/R/xzxm3Bj5Vh7GSwsruDLLrtMNzKeK94uctGniWtiW1hvxTY4OphujJQseHFZgo8yHafjs2lgvfFptQyLjV2nvBPDfXLHE4rtqY4RrX3UI+GlPtGIPlurbIuZBvSzL1+vMJpfx2QjgWhLpU6yjI3g+ntYqWJxMrEBeuVe8n5WquR8z9bWVkgb9f94/YbUTWQsxxP1cbhvLmr1LyfcQQqzKFuWCsnzQFHuYPJ3qOve8gWb5vIBwAFlX0lqQGrraElwkq6ay9i9q6fhPcaDCl109LH8oeCaTAg0+RSsEWF2rJ8oWtu0F3AHK6psxUz0AInX53JNnsdySU1JtovDH79tUgMacurVj0QFRca2G/VU1fv1AKrDbm37Jh1xIQ3Ar2RnggZ64kCjrf428aF7Agtpc+BwlPCPTys1equ5sO+93o+ZQpGWrE2amEfsD/T3+mTNSHPZ8dCPINzK9xc0QdWdMROd0tNEnRJtst4CxFTd5kodTkMzREpgEEcQsZ7nQD45zlB395oS4CyQrrYgp/dal3tfvRV0xnAGohRCFMzbkVKwLgObyOqSM04mo1B/yDdLHvn1DHJ8qaCjWmK+lR6RMpm0rx/T74TOc0EzF6QuZEAhhMPO/bt25Ujf3rYrm0r9X70klH68Jk1ivGUKXQtt1t++o5p6aat1pBvQk92rvlJl64LWrC8IiIctqokaZV3cr+/INArwlwRaCnfJ0gw+68u+WBbvDzHUafkP1FIQpqU2m8IDK239Yz9EYZR9u++ia4Y8tgQrpIgtKs2p+p1TCARXhT/eRM0jCBgoXt8nQUVzlp5JiClgrsulB3iE3CeTWXAfh8z7NugbrSo03RX6udURwC0rDqIDfuijjGsRZ+nyCjYxAXgtGUDPGj+oe7X3oDi8tpphuOmARDS+y3SGJkA9kKlrg8EuMAKchZZrwlmS3jmLkMOGcxigk+Uy1HVAbcv2RsHT/mF/cPNo4AK8dfQry8TQZ4/n5Fa8TZbL4JQWf48L8axBtAx0mouXz7017FMqT962nKyNO171s3/FMkyHVaQOy0mvcpYZpogenfARboFXUJr46jei0SwXZ2g3MH9uvZZejgjW2ibbtSif/cIM5NSsLheKY8jgnU9oNu7Cz0jaX0Ehuuxx03dypVHg7ezv6MvQu8zOuEK7h/s/2Eu6f78XcSi3Nu+dXfYXigeeI86IlivxdBwGTbqxQuZBfpsiZFxk8uiliS/TWzeIfhxfqFeBc35TYx9DOzwOgE73hIbAPodST5Jx9yCdLitNZ18XL2bw0jJQjwsu39vrHSOQaMYunv+AvzfUCMtKWqBXYom+uGbWi2Wr2LlwjnaZdoQK3PcQlUJH57BlZTQqrBF35ZvbSIa0MvsyO+la/QNhHhjjKJ+uL9komxJqLuE2BEyLZV5GNqMwVzhRPG4a2UJaYTktF/+RsCgTXcBkYNN5fhh5vExlqWqLVKMiZkR4ScD7elfk9Wggb32mgdGXSlKU95s6+uy3rI9z4jG1UHE4QvZGeMgXvt8wuzbDG/m/0LnvpiIoAR1ZHq9Gpk56lGbECT5dwasVjsKWjMmJytju4xswpGMGfshJo3+/W+QdhruCEFBmMusSS9MCOBzM=
Variant 0
DifficultyLevel
633
Question
Liz and Elena baked some cookies.
The total number of cookies they baked is 35.
Liz baked 11 more cookies than Elena.
How many cookies does Liz bake?
Worked Solution
Solution 1 (Trial and error)
If Liz baked 19 ⇒ Elena baked 8 (27 total)
If Liz baked 21 ⇒ Elena baked 10 (31 total)
If Liz baked 23 ⇒ Elena baked 12 (35 total)
✓
∴ Liz baked 23 cookies.
Solution 2 (Algebra)
Let n = number of cookies Elena baked
n + 11 = number of cookies Liz baked
|
|
n + n + 11 |
= 35 |
2n |
= 24 |
n |
= 12 |
∴ Liz bakes = 12 + 11 = 23 cookies
Question Type
Answer Box
Variables
Variable name | Variable value |
question | Liz and Elena baked some cookies.
The total number of cookies they baked is 35.
Liz baked 11 more cookies than Elena.
How many cookies does Liz bake? |
workedSolution | Solution 1 (Trial and error)
If Liz baked 19 ⇒ Elena baked 8 (27 total)
If Liz baked 21 ⇒ Elena baked 10 (31 total)
If Liz baked 23 ⇒ Elena baked 12 (35 total)
$\checkmark$
$\therefore$ Liz baked {{{correctAnswer0}}} cookies.
Solution 2 (Algebra)
Let $\ \large n$ = number of cookies Elena baked
$\large n$ + 11 = number of cookies Liz baked
| | |
| ------------: | ---------- |
| $\large n$ + $\large n$ + 11 | \= 35 |
| $2\large n$ | \= 24 |
| $\large n$ | \= 12 |
$\therefore$ Liz bakes = 12 + 11 = {{{correctAnswer0}}} {{{suffix0}}}
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 23 | |
U2FsdGVkX1/FFAYGVQrThVMM1M+i12laiSABauCwxq7eA7V9DVnIdfueLJQYGDYNt6RYpp2B3rF07MQiPOCkoAjfSXc7n1DKevXGHCSQrHAmyidU0jkfcZSzs1PoBA60eVXyJ3PQR6Iz96pOdTDRXzB8IIcYxI8W1WyTNe9sDOf645trAmNc37XiVmvK3bqlHwVi7u933rqVD2kyjPyKqo6J494QGRX/yP8c21zTMwPs5bGFQL22cJvwmyG+nR4GRYZfJ4eXe16YpCE4/HxPnEJg7AGpvMHPp7uzQWQ3lLsqb17eCVfO53a5ZCbodUj4Xbk913H8RbjXinehZk9+qzdUC8BLJ5wGV4jDW0Sa3DbIzCbVaih4hpLCmK1Iq6XC5wWADWmg5NyJpeP7bPViQe8dyiPpS6m+IOss0TfDttY72Os5stk5eDhej0+f+ud8g52G0ZEIHirTPf8hQaFLH51Po/dVIvTUNwi4v52CsFm8uuQO4K8Tli/ByWj7gnnFj+m4GkIyJyNreywM2s90BuqzOjF4n7LVg8tN8ldWCQmotdl5ldVJ1WFkY3bt5wqXnnGQLpPy56AkIlrGBoQEN6yT6aAQZCPYmq227FRB2xvBGQWJLl579aoQzVc17r2hmJ2yg7rN+RZsyV17HPfWGbI8z6+N80jTHlG5FGePVful46VgY8fLzvg+yF/QKYs3SQXu/RNLVXY4zyccqZESzb6ivqt/xbDdGCwdcE9Myzpyq3rdSoV5ZzCyZu6pwm1jq0VmcdJjT7PpLs/Cn4tV+xASzWaAvRWgNYosrncIgLhV+kDjRGdzn/H0BjcUTPQVlRZOPu3aJRd7uiLaoHjK9RKCHQX4t221cG13I9tDK4ufm+9ZzyoFYTJPdEEOaGE6c18bYbV3egred9BepUWRTUUyNvYPK3C9JdaHxPw7I7lg7Ul2FrlEAA3ePOARsvO3R+BbCddTt2SSAJRP+iBNxg0tkqql/AMeu898kVCrDQZG+Hzsy2GD5lls59qYeXn1InExu14H9ZRxNQQeWc/BjRP2jcKs4/V6avHGNKM3sEPV7KSM8PFlzQ6UgiJMzlvfoBzOSvZvHdXZ0nCnjmPS+ClRLblMnDBhHTlhPk2sv32WIrGxpqK1nb3h1jRf6QT0pVhsh2lDqtsJncAgJuYE2KwTHeVOWsMiggavn3uF7mydzayJBhhWp/cOhTdqt70Xp8hqIawqEUcOQNYV7BB7u+zc+2JU8ValTLaNRf24QCBm7lOHcVWlXLOl1SFymZ1S7Z4w/26AVKdItX+xhADoykCFRUdaZJUBTN+BHzLPFFJKjND+H6OR81DSFovqrxPywZBgPXPrdW0hOE/juXeaKhQh7r7PVoM4WMw+xa37U3ELmSovruYCEYUCmOCywOFvDU1ibY/TcaaZHlZNIYSWGB9oFR6GL01STOudLV2iTYlufnneCjs/P5R+uyu9UZv7pEdVFEfOYlcfBAonKZJ+BPXS9Px4rr2t9czhOURsp5NIuXdYtbzw53gLAN3h/y1F/sFTtS1ULHe0MELD+R4h8a29fHPl+1nKOBjgCmIHSEhSUpGksJ8zhSKF5oi2Kr2bKM+cqiy3hU0Bv+dPEOZwRDlu5Kv5MHbMzj6rX8aTp1+b3m0+H/ZQE0Hq5BWGkXcRXMpfoAsjsF3Qdhzkvn1afrqKViyjqO+lf08Ur0vxY7kkZYGecovxXGB6Zr9pveK8srRFpGDIj8cTp7UkPcpA4krgwj6H+r9BOHpxWm8P8SAU9onKsTGxvghq1tw+BUAcjM9zsYlgH/oD0ozvP2CitLXc3LMY/AxMZn0lCUcO7miTX9ZlXtUZdT1ph3i6xtYrqhtPSWaiGxSurmK62cmnfAOQuIvWw06EzUiTdMGyKt7BK6chBnXQHpCvjloRbx4xY5gUofOgrY1Mw8U47sHfao75MdKsdeimXxQ35MEb7WNqIEx9tCTL7jL72dauT0dCoMTeq7vd7YD95AmXpQwEmDHuokpH1CHQ6McuT7nSEyr8PMkUzT8SUc2njfMm4hwEV4ukQxHCBoZyJhHgrmvJVknE2PsdkXDi+KRhE7zs93QfgiPepxm+a+aq30h5VR3RaBLy5KtjFpSF6eebwnnJW8SHB8+zX977Yal98xKuXSzhVIvYF71N4EnHmgAeWzEUutXS+EfIczMHw9P33B1GOcA5JHWoGexqkX/CmNLi3p6MXYxkwVXxF2n1Sc0yfhwkRfaDCptqNiVEWdgW//Lg9GNv5LTgOTAuJeTJDfm64jdkjxjKJdBSmPsNcwl4Isu5JUO8mtjRqKDlyRnGC86eBASy2jncAy/mPNtlMJ30/Vg7f4cxbxpdjB2iFGI1lnFO7fooz7NEofMSZVaKiQj8ryd0DHUM6bANZrjxJ/PLJrNb3KP0gU8jJY4TGuYHc43f7RAYagmarhB0c1rJ1jqmAnTP4hFmLFOOGvAeyp15HovBD69swGvibrDlkMSd9uSifY5z+zaBLtBAz7CBHvfkGTlyZcgdQfgDsRBsYDUVPhydD1sOVPxOwPbT5k3VJdyLZrlIZoFXDNAjxsz/EmhqfgWIpuK7SxAvK73lL694iQEm2Tsz/fK/rNG/HPQhPuYTgABN63QHPvNAuEeA5mtZ44nvDN0edlI6j8l+AGFw2LTRBpqz12PVrWeX52f1MSJazuYpcxaNg/39XFT2DlXMHysaOyiI7/q0mjicppvJ8HqKlmGScO+1/be8ma92NQdoeVCnbob83s9luGS/k0wEwlPKJVTNI7l0GAEaVv/xx6UHgMQHXeHzKE8iqtTDb5xZFwofhiwIsTuwryPlbqj+erI5dgd+YCBvxHmj8AGrh6NrZuy7E4pLJKRFjZOM9Eez0g/JcWi4gV2OuqWUn5nya2ezf/9BhuJVRFjfqtzfgQ00G5HGcCFseHVd+fwY3aAupcJxg7xI+sedUH8eot24KEIlhO/WENaKBiqylxk6xmnvawg8KIJYMCMEx0DFTxC7GSJrf0D4zNBVewsLEGfPIruVE3q8Uft7tFAnQT+IE36+1r+F684i4MKwUJYhrn3CbiuL25qw2sLYvFGHNoiiWPBrOgMvnr8UZqIURBu8GslhZXC5Wfn7/tHg/ydz3YPvpb9AQok5XRfsv2Odlp+8Eg/MKaucAPHtI7t2jSJUDz6lPXZ3qTwfztKcVo3SviGDMEhh/3wtBR+4wA1z69HtXszY0eG3vEekbA03JOPqGhztE6Cjaxz2sJNSzcrYguaATrcryuX1VsZw4qrga5ilCCVcMZa9r8w3qmoqBj13PVRuchPMVxq91d79dcCmD+yZtkgvyoJx0hK4oLSxVrL5tDxt8Vy083vd5v2mU8jF+IRf6MjASmqL9GfrAsPWPM9xAwvzrBiYD6t7RO2LnOmPmqf4FCOAeQWtWmIV8mOA28/Y6I0V9jfmclBfeNUOi3UF61M6uAMeXmRcLj5ixxWU3/7UeThk/hCItCXpr8fraDvPTGewKhZRaUMS0x1l5rPA1DgaBDK4up849DZ1RBDgv7z8GWnkF3h43N/Et5PZ2GQ8YQrRt/OAWVmh5wEgv/aoU7bWDUfNSvXpgDACF0dZMsj0S3/5XfoplcEjhavHiYL5OWpLYimqVEqeHoF0zS6RaY2hA+/LxpE0ksEAfuJ14Ik9rehW3+O+v5706N8+Tq02pUoQDJSbxgnierJ/och/eMjGCGNoM9ukWqKz0IMJf+XjsuuI5LdtiAdDsU55sfSYElgmzwEaIvL4kQ1SG4DIlpw1ssgyjlK/41Vw3RgMSguZ42UtdZBvzGio81plpKgPAqvBEEt/EZ60fLhEy1ioTxuSezUMCNL4PpKJbfmcFLCLeGbGxMbZMSo0d5M31p6UXIEg7PN5ijmCxFwJKo0bYH3q+Vt1WGJXgdqj0kw+wzPj64wP8t2ZdOxcXuIjmtZYxdNWLIc1PobFFXG+fvHSt0p0+9bQtY8bvDdrMYNSpo9+9o7WiCYvfT4JffTyWawQXBppJgs3rYRkdBN3UkuKotuNB23nSJ1oydmhNGy0h7QjIxmPYapcQRSIn81MHrV1AovynTqm0O3uEZfiPaZ2lMqQhkI0mWjuMVZxGsrp0JZL2VRmlDO7YP7lfFy3xDfAZs6kiHn/Loj0FB1phaDQ/eKmKrxmJJhY8bMAEG3t/6Zu43KjKc1VROCXAbEZfWibBLiJigUrxcQ21UgnFZwhabnrvqlidXBPXtry+VAYBmS/AT0mt4Ts+9kZNd7mM8XUG0hg6AKokj74FAvAyyeWc9qXjROwP8XA54gf2Sqt9H/dx1d5/y5k2FBXtGi3kYpvXkyHTJKt8s4yq3rU9GpYVK3zfp0W6FJ7bLoOBOblA5o0dRe+zeqt+WSPX0A+vAmCNjDtgqDlAi1rZgb6vfu+GFWIDd+vFyJBa9/vH2rX/HeJwW3DZgTPUgC984L19Q3teLVmvygPI4SNGKF8tNzljTEi/UC5kwgy3SCSwjJyJidpKGHi8EWuztG5NoqLROXwZPdz7NlZpevfCWl2S/p24mhk9es8ogkUGOuOSD749E+8zA/t6eObJ+sPO5JRqngwa8ESdCsL3qFpUySQj2r2bpSwSCtTbRQxBlXL3L0LHRogLWy41wjBX8BUHcYKTU8eT4qcpwwr9xmXZEaVanffLxvSojjpyENGosliilvk46av+Y9nQpSdKBLtBFSaBCIsk7tEg0u4irXfv9h/2DnjchvpI4Gi7eQer/NL7NwT3+ts2V9WuI/Gwp7YtHhzJE/Dh6AVdtZFT5NKX86E67V2X8HfJin//c+Mia4VRfUeQCtVPuynK9jJO6yEWSS8/MJMuhdRATU+A4HXmW6pblu+xgxVSJkFHgaxjp+WR6zTE/O9LDAGnjblIF11SHyfFN6PPr2Xuo5pLa1rZvx5NOQuWXiyC4eJJR4SvKXtZrcF1iplEWWZoroqxDSoUA8HqLjduvrdIEkij1HwtmmJve3tn2DAlkRWIxdjN949EHIDCBwZJnPF0ZVaW9otK4q3M6zOQeYvB9Rq7bW9pO8mzVQqhV7yT1onrzwoHMRKkk1jvnQepDCNrV6jCYITawIuNSKcLlnIhFThClKOqOryIDcmtkADakuPlCWZP9knQeEVV9AUk0ehVoXFazniCMAiysVqEJH5epCQQFSJXDJ/z1eLUuRlUGGORa0WAzG10LG3ZlusfIfZZxAkJ85GAw6tR3JZ1ArZeMhCOCrHvVasCehA+ZpOzAY3BbXm+iI1q9Y8u+mSK2rHHIzuPP/2PwtHTsUVDXlo9J8p6v9kNMWFvu9eAo4GFvMF6tdCDfEfKchExgoAgLfl4E27MAEwJy6R59WygmiGlb9Rfy0We2teyCiHXRQV+KpY3McO7N15BdZTYldf5+cI7xbnReq0+9CCTf2WBl/rFimnhxkpkBxiAlBCoEbAJvQSaRojk0uNFhK3FDJIgQUvc6F7/NURLIictAnIA0U0mIXO/hC20AlSN7ZNferFTlS9GhL284JR7KCZlUdhNXNYMRSYb59GMBbr0mkPJ3+hHLLB3qxxK3WSA/+v7wyftzTt/UwB2RBaCWD1rO+B5FoDpE7LX3YQVv5cOth5zep5lW3HZNuTS9WyCYTgEVNXqoDGE2TZInz+IJ6GFrG3vdHMPSpL4lO9V3beMH01dJNM/I/yW82oUqmrVDosYlCN9IKk/MihXQFKcEcn/WIsCLo4TmSQm2dxeLc01k9sGlcno/AMhlj9bkUG2GhYml25hyUT6O+wssOMeMxS3PeTls/8MRF2+dSyaPUvpeBpHvChLOMig9WeZZrzmcx9k5RgvtT2O+HJuR7hy9vB6hytn8TiuhP7ZvoaOlb5X21AwPlixutYUeYArmtDdTvUhlMADrfeKTWck9sttXi0oc7SG/S6v7V2DHKRL7u76umFs0WtvpTzfGwuEepgwivqTVyUNngcFEyvwQe4VrJCH/bcSo52ztdLrYDj3e02215LckRwT5Hts1Lm4DHiM6vN6k+70IoMOV5+Pw72AFo/GLzMHwBP0LyxOm/tbfwZncCkyYPE4nir9rwJj3UQm4Clx5tnXQef0qWo6yhwtj/+v3a0bXtYmkKykRQEQCbpVBWoE1sY2rkE7Hmuttx0+FwNIUbDeyT/kngz6GcvsU2M+bepFnTVs2JEEpUMPxbKGnx8MkkF4ST4oVJhmUqFhvyRi419j8z28MPHKx4dIU2Z5EbHl/r6eyweq8n6immp4LNIrsG3K5g89RDTW0+IrExPMMLjWP8x0FvNkuryTkgxEG7q6t48CBBo6uN+f2x9TxIoM31XFMDj7VlFRP72IW+FcNYBj9PGQWk0JALQDFG4Oc1gTOhEPCQKcAOjAsAVmy29CoRfdEuDjgqb/kd1EljExyJicMhaUnYKCPzafGk/PJvc7wETQk7U7VlK0TU1RNAXT/FOCyQMVXsQ4ex2asK7UDXBo93pJw2yZa/EqVebcAhu9E0DDLodf4YV/wdqF6eAPzRAtExcR0AdPTu3QufceToitH8aKz8VMnpFf9Lr4q9pAUTnaDtXarTQuLQw05x5N6C++NgqjMFm4MqTDVgn46HR3qAZWlkA23TUu8QhFdBhDdQ8UG97mvGdMENWBoXHKE4xtkthOtf663Kik8KK2qQuYuXe1NrhuZTOdNH2SjOdU5n6a8DtOvoapBdT6tbKUfCfZJsuYBtLItIeTm9J/SRSATCVwYDf/5AjaNTv4Qhu8sn04fs5LgCFD+YDmTaMMfAzV8gFv1qJmiqzGWpixa5LEg7l29f1AONEj+jLVUjrmO2ZVTnAaKskIU7T1mFwMGDd0IW1AwCJY7CXqpls5Lb7xT279OpBXeeGWsE8J6uFRYvrWXLwPxWzH5jK5cvHe+zk/fMnGXOs57vagQw//q6OCUveTV1ZsMhVwJqLR0yBuz1F4q2Bb2w7wNaIZ1ioWqf7eAw0RxKilqZtBCBHYXh5hybKTi6CcEXgxWKFE0jXAAZ0T4WuC+dK1fPbA/QcFBZQOv7zhb0uiDZvLEO+V6olEgL9hNxXgkNpF6U4wTWZbuvmfmTrHWGdpah75Ju+IKdQMIMS5DYIhP57Z2pjrbzZGpeoxLmchdka2pozoqZBnf/2FiagicZ8smctz23g+hha6gdYYfMuXeghToipf3GpQ+RJAgWJECYOGLj8INZpAWs+a7kI/JAGSdZ3rHqB/3v3tANKVAVi8bqzvXW6eEdBIYy/fuCzH4mNBR5yHzg/l8S1ww8AEMDWY05MAQhuMeU/v86vQaUvYHVG8LFSId4S3cMawpz4Fc9vS6LFRlTvdprg5Rbq8W2+agpUcXL0w+exij8Qu8fS19UebM0Svv8SE6C3hsG9Glw/lYBDwAqZAF+zRfVGhJaNW02QEfZPSVrJekk38y13clib8UDG1HgsNl01crZ8sACr77Nzi5s12RZKMV4GihwKvUGAcyoOqgnWVHsBnKMAJ0W9dpq5YlaqQ2yu4CjvQQpnzDFnxxZ96YxMowRcrAmfXbYnpN3F/oTzuSEZVPHp52jzM4ZLv4iBmeaaX3Uj3fFxKw8rro15iLEZ2M4Hdx+Lhcf3VUzD9vPmQ5MbPFeqNhc4n5wP0SJyADGok6TWUI25BXMaWxkKS9bN2dfo7oFDkYb5Rcowmw35kkFVfq6jZGtdYxpea4eJw45kfxmpghwg5sDZWmyYvaGUSgw3SQKE00LWQBQreHT2/zv+9WfExlPEo5N3XNGqdH5+EbaLdXbGlIwEjO+Z4bA1+0ev5UyH1DjiCmdbFhP9jSUqzpJsrwlRCYHrftMBF8UN0Wjr6U0x5zrfXBAiCx4qbgZyMO/UO+nh/gOE+tVba2TTTl7TLJUJUlJjH8GrurF8+IA7dcOG0Ss8AzJeZjAqDo9X5DKywJryePmTrUPUHRdEqej6ofifaZ1MXdbHC9zYcAfNeQHbtGLdRijIKZbL4vx4HSAOz91lzpQxD3PRdMlZbE+uzWYg1i0C+42kJ9W6/5TrbYS5xhOfKJu5XhojkJAIq7UH/aGb7dlX8ktjdaXPQ9S+CL4I/vEbN5uvxUIMTYdyD4aHxb0MtXHVEU4INv37G5KhnRnbzMmKYck2j0aag4k9iUlynzOGFDlhj9AJis6Bf6LLag85JFmS7CXf0HeGFm5dBBv6zvVSXlCJnSRbwnpoh9tetSzQTArgAKj+/XcU/kAVBgR2tN8ZzZDGUFRfuTRWx8NDv82LK1e1ULFStDpHeLXoXVqzzKXdxt9CZZ+xj/i/dy1x/QFo26yVKfi9ajDhGe/v+6iPqxryrEvpTGf//wWuWTVRS7J0X2fnZOW23FVF5RPa9L0vZjcJOWz+gEBEaJeIu2VfTfn0i0CyhVpueCrvNxV1XcHUer62lNdAJKu63j0oShmSGHwx2EYCVXBBgjzJ7VuZr90qbW8o0H1fkXlfry6VFqtCWJVvHHBV24l6tY0boIVYlSqCT8bCuYROZhTkbW5T4W0lLvE2AKoedcuMbwyo2L36j8XFks+JbgNfDcS9uIcp3a+8nwnuM3YSsK6h8vU2ZgL0eSv36LaTx8dftaAD63xhDwA5qiM5MnSmVm7cq5Uhl10eLjGy05gNNI+b0GpfkTUbO4kCmqCY8+9fMmDFNC5N8R1gAeLBG907cf2pD35nlOvNxuf2xkQgHzLKpyGzgl6SA8syO6IN7nuHTilxgGo/v45NjSR3NWvxkDrQVHMIKXCmiKRzPmjWBN+GzcQ=
Variant 1
DifficultyLevel
631
Question
Kane and Abel spread some topsoil over their lawn.
The total number of cubic metres of topsoil they spread is 17.
Kane spread 5 more cubic metres than Abel.
How many cubic metres does Kane spread?
Worked Solution
Solution 1 (Trial and error)
If Kane spread 8 ⇒ Abel spread 3 (11 total)
If Kane spread 10 ⇒ Abel spread 5 (15 total)
If Kane spread 11 ⇒ Abel spread 6 (17 total)
✓
∴ Kane spread 11 metres.
Solution 2 (Algebra)
Let n = number of metres Abel spread
n + 5 = number of metres Kane spread
|
|
n + n + 5 |
= 17 |
2n |
= 12 |
n |
= 6 |
∴ Kane spread = 6 + 5 = 11 metres
Question Type
Answer Box
Variables
Variable name | Variable value |
question | Kane and Abel spread some topsoil over their lawn.
The total number of cubic metres of topsoil they spread is 17.
Kane spread 5 more cubic metres than Abel.
How many cubic metres does Kane spread? |
workedSolution | Solution 1 (Trial and error)
If Kane spread 8 ⇒ Abel spread 3 (11 total)
If Kane spread 10 ⇒ Abel spread 5 (15 total)
If Kane spread 11 ⇒ Abel spread 6 (17 total)
$\checkmark$
$\therefore$ Kane spread {{{correctAnswer0}}} metres.
Solution 2 (Algebra)
Let $\ \large n$ = number of metres Abel spread
$\large n$ + 5 = number of metres Kane spread
| | |
| ------------: | ---------- |
| $\large n$ + $\large n$ + 5 | \= 17 |
| $2\large n$ | \= 12 |
| $\large n$ | \= 6 |
$\therefore$ Kane spread = 6 + 5 = {{{correctAnswer0}}} {{{suffix0}}}
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 11 | |
U2FsdGVkX1/IjdKbUK7akPowSqjl6NGNhqMhm9GRDrHSMxrFH297s79Ffol/D5xwYfi9uZx907V6aEU2ItVokVQui5VPelG1+KFJWclbkpFg4nvTQ72UKnqX4UHqU+qGYJxwhoHI/eCo+FGXyP2fdK9aAqp6jImM8s5DyL1HI96KqC+2dh0iQHMnKh1uFlwsEm4G+FiX/3Nx9Nz0Ymw0vpA/le5CPtD6LztMly1uegHyE2igmh3fP8kqsdTAnK3osRpTggtyRp8rgoKaT/+Agut5juxdhClg4t4/CgSn9sYriNEXd+REfI7yNQtHhrnKtD1zE6IGCxkGDRFqKKPT80dAM3oGYmmsZBxQYbDG5R56ormobrzMdtnEYSC6WVmnYIOAD4wGt5nIqxN96D1mp2Z06FlQbjpKEEel/gjp3YLlIdHVAEZCLC3gPvc7Gf4fc1w4N8++qawYeBDwLqItbT+1/WnOEHU9Db/J9MiqN8ZMBk/AhFA6qJoDcMNZBluYN9QsCEAxJiSU+LJm6M02Ck8ZkF5SPFUMPKOYiiUcZa0PQvQSBlS1IYYbe4b34DzulGa2pEb1+gkWOdDFrF/LgrA7ziaHgJixU0h+bfORgZHxBu64vaeDkt+GARpl0tKKwNS2CGDAqJivwVpeNc6/EF5LGLSkWqvGGzcbs5XcqCud/Iv6ct0PSweyV47MNYxmfvsADI/vAfc7Ow+SlYGTgt7e3Z5C0Ejdo3LkXKEr4aP7Iypns/PhMzrqlzpfzSG10O6q7imzhm6Mjxlii6wsm3m26IVZaL1dGIYbX97yelAX5CFa7lg7JolikW1htZOuvllJBzez4+7pYMKMkWZzKoO2DJXM3YQI1oN3jEFFHXjQZqEBUNixDO8NcIBL+lpACW7/3wmVfX/6P3nZecAgwNDnsJqRS0/YIYYQD44VhF0eTex2C0FNYHb6KEcFAjxbNsQoQVzKCjyGCQ5aDWxWtIAfHun978imqIq5DtOmN7jRs/Lqeu4TsrLVMgJAu5Zr25gwTmeXor1puMc8Fxjn1aAMzTu2Ysi1WWW0GxsFAKQ9zrJ5q2C4ygWKu7CuM71nQEmhIn/pw6ZmhsPq2TLrqlBRok+pQcn2f5su4a8QX4au2SXqa8JU+6cyEK+PuAjKNZxhMcpNYbCk2DI/saPTKStcsItB0A4VOD+eVZnuY88ehkadgzyXXngHkIbXC1WApu9VkmGx6qUuoS/7dteBBCuhOVQ6NOJoHaOPtT7N1Zyq7jY3t67awsUfdxhS0ji7lK+zKi1X1U3zza2K7lpU8feZogeL7Y7rQuEpsBewT7AE5LcWNqvM/7L+kpqMj3xqzS1fVfHwplT6+nnHUtpklk0a7qewqVd+ogVt8ek+rp9x8ub5GwpBIlQaWX8BwMhLTBiTqwqfG7OghmYxrKS1HSinIbhi4p5ZSY3T5q+j0bTly7U+OWEnLcxOPJHoyKPiG3o2h/mao7h4wPZ4J11IljfSL2WdCY1eY0M7KoX9Ummd984wQnFPxcnxMltLYlldNNqX3n7Dr2z9DC1yYgW89hQywy78GcZR3HIlJFPyWlpP8J5ZkUB+wGw0mELXbQqvJbP1mwjYq0kAA1oqVHqoD99L9/HAyJ90aOC2pvtpSW4DqN7iXbchQ12BCNlYFRVxfm+55Hsuh9bmrxhHC9W4PnEvq5u8w+XZoXE+lJ+QwEw1hSMOvwZslmQvsqFHarBbG2XF7MrjEF4mYudIDRJaXayoVQxdWtQecjfpivRbD3p8pAPqg95trljCCP74S+aOHZc6d+jgf+xMjt/W4Py/6g2Gn8o+opUvaPe9KoCQeMuW/RhGFspkB2vXEI88mngU2r+syKw0yozOPSf1VUET8AVXVuAA90RXv3Xv9CTYS1+sWD1erSM+I0YHIaGemjxmrGEGi06Zqv0z1M41PKNiB3CEosWn3i4Y5lTag7SYfwZPCXla2OawZ44bD5gYe6Otq1nAIfGzXrprsV/hCXB86B2W1UaYPH35Htp0KjqZUa581lhFl/gnkwKirNDhm8445qy8UcHnQAwsb/OxiNo2g0eFuipC8odCgrPWlEMXVW1Z8Hto+vP/IJ9DGSIqy4PKCiBbRGa8J5jxJFRulpmMMkWrhAUa1brw9G4ghpY+1WRQGHJkAzNxAUv1rGYDqoUUW/ZZcfNl7qLmEXM9VaM0b0icHCVMbpbBAQW6dDUKSipFbfeU00RWH7jVtLSvA2B0wG9zA1xFJKW2TSqsX4JNZdrQCWhhNDM5+WXVyXXvmkCrtBgjHP8a6coF84qI17Zg4Q+dPg3IGy34IyUpzQEiOZfiN2Tuax2RpWfUHlHCFa3H1sKbnrsrFQp1hrfh2Slzf44bVpb/hh/cNvLThheM32k/hIhMxmf8VMqpJ+MStMF8Hs9eSKJdG9dGm29XqSbC8B0AGik3wn+X1CMKhNrPDEl9UwVV46S3iEis68zsQ7yvHXLZSBgXMrbmhY13e4Wax+d1AYFpDcOBS6RwVpU7eIHD48nXlBaFPdOawtjq8UfbCH2N9YDhqmqwud3zvKNR+6fQZlvZI/7HXgvrFMAvkjTOS2ufkFHbyW+G/5x2geEQTuydnE5B3E+yg72UaSr0zUlnjJ9t6bfan85gvTDxPtcxMnY4JAoQ/xF8dFrzZ/XbpfJIqZYFHwwiESmJw4B6uwTRHkBrCmhRbqm2X/yX8CaWpImOsaptCUP24Mb3XxceVmLV1fmaHg9HLx5pLGHyood9770zKEfKKOjmWNxESi1bNyoM3C5CNQ/LrrtgXhxQoM5U4bsf6sz4h/3z2M1tDEFUoFZLcGErJFhiFhIZStVy1bVDJP9cbZMs3H5dZ8jzxkhyGsVU0jkUJ9CcuLR0ZO6ypxhkUd3ZOmJSi5Jl2h3Y1pU9r03+AfAMI51bxCA/U8ufnJc8RX4ycCNb50qsE2HYa5xVyXTut1lp7o2iCrslZpN5ote/2WBZQ9UK0e9IVh9v2+XBNO4EVq3uZDf2+qwTiHNHeethkAK7SH2Qfn8O4lezJ7YuiqAhfohXdFSYgyacUhiE2Ojagyg4oB86yMGOWhSdW4Dm4TebAZkYo7BRPw3QFGmkXSLglbCpE2fj49TvWXCV3jyFasKbuTDTgf6moNtmMYpfF+YpACUpllQ/3fBe4IVBXXsBpvHdBLwCaybYKljVNiUx57lF3RPIvMon+4omLF4oxsDsffwX4ctUazJomvMKsoksQBYkLqat94FiY9d6CCHArQsxkG9EDSkbWyJALXoOMq36f1f+7bEzIxg0vbKzL4rjO3Xmsom2oCvbsjt0MFYNlWmYk2TGIHJihkaiRlLd3YlwfdqnOYP4lnasPHQl5+CRVh5mbONQT32DwE4sCMAfOTfJSF5GW3TWyU53OoZ7+rupzmEMeaiIaIWG71Ebf0TIptLl7T7hClWNPE37HY3I6tQntbNCeK0LnBnAeTof7ToUnmotmpwd4Nq37ekRUpONcxT/cwKcdqXK7fevYU7/uMrlt7WMLeSGB55iMM2fRjlV4VFdH1u6ymy++29Z8Ee1VhrUCSI+/Zj05KkLswzJsQ6HkF4UJp1si9Um8GawJGS0C6HA/U1NV2Vugl9EXJtMHlO/a/8j2NQ/dDItVW3k1IU7asBAC5OaeXiUiRdrfmVJ6DsWeGABy7ouH4r0g+4+wYGHtC7Zfh0k1lAQnJzFbVRBCbtsozvFd1z5CiJV0MxYHTfJPwfu6mvprotigmFVT5rbHSAaYjG02y1hS52D9leh+v+f/wiTIIa9EoNkMgOHOhzrSbDxGEzpivKzLhKsf9wXh9dXI+xRP81z6rbxmykV+fnymJY+nooGyE6KDfmaEKAa9Y1e99Q0zDdf052Th7zg87LR1KeWRukpTkb899Wo2RUnryKUaYXB92xe4UzcKacXIa3fq14hCt5xSlXWjh1vFYuG+bOiTcLpt5EvPeoDf+J7pb7b2ezfAhntpdFbHK7eQmRS/PAI92EReBfLFXpt0Dl2GT6+mjYZE+utfazzNTcxMGGxP2AByniTeyPF7hKlaHvRLnSgDmacihzuoS6E/nw5CAZkei6F8x5Invl95Cv0XxUKvqnItoisBNTq5CCbsUyjhR+oJbpuoUVRTeSsd/0E88DSK9o5QqPBMMBy1biBXPsG/hDfrIMVU1+1KGl6Py1TxP/rIRGnrcNAmtIBaap9R4SY11yozvyOiAbQ/gbs+pWIiXb9jvxKpqbb7+pP9LOzRkLQmCNPDScy8YvnQ/vfvtWGThwwPIwxuBE5Irf5oJj0xXp+e2jeKo6Lo5Yuf4RPJYdMyxb++KMRrmoxXNiT8XQoDghCGBMRwo93101uuPDBWxWWZc9OV/wQ8b+p/tbZ8NhX/mUSB5RFTVSlD3UI4XYCWz3n2c3hUD0wwhOYuxxIgcdliLDB/mHjEppR4DHRwrtJVfAPCtGUw0BcCLns5VKFGMMXXfQk/UhuWLJL5obFSu5vv2OIx3GC0ONqZVInDsezsot57SgjC2dA63x+85RPftRa1UMtWhUQClOGnZmrHp7Ih3T8hOw1rtqIuaH5kEcMpNyc2+PMDrPTmKJQMUVz8c/cMcDCLY6fFm7Zl6JX0VJcIl4W0ic7VJTYWwmGJFi88ni9Pk01IQ7tK7g79+iDKt0JoWTz/C3ql10Fj7FpmuJWDxIyfrz7jMuoxAVF3m2rLeWLr3wxJYG5J34BXvI7NnVJNPVn2PdHvTODKm8JZ8QQf+2aV9cyaPgNdcXjL2wUPn5+q9NXmbyiB6t7aDhBJEyxmL++swn33osWOnN4YBWYWuo5FRBgILN3SGqZN1kasq+UX2A6mHoy6eZDHUYGbZoTvJDdbqphGCSieEaUMpCZbOUy3S1pokiOZAYQ/GD5QHPi6QLhTq6m04wmkCZlmeUKPwuT8+fCwtknPYs5vZeLbp/9fm4s9w6Vec4KTjhFlJbvRlPvFVThQ1mxZlWw8VPsw0A6l5oZzLICYua/mdQR2L/+jO1g19tftlFNoTA4gpkg2xvu+/7S52nkTsRYQez6N1u7FVVWZ9egpR9zkKjFrOZ0yNAajGBzDOHUL4YgJo9rByto4YQzdzRv09NdvfETH1iIVKCWNK2ayUcH9uNWHl4efi07OQ4zEkpxVF9pkZqgmTIoYL8wwvsmTjPgzVX92in2DgPHdka+K2QNILu8ZbUStvrwR5hxS/ZGcJRWayNtehmWNhZjsgTp4XQP5M/cMgZGXroRo7Nfj7pn0LE+5pSuOMuBz1oj67ZrNimU2nUUFFrksn8O8bVz6GvJ8d8u3jKjV/B8BbNVrcbqP9ouF1k1X7aqkaqLSi2NDljPzYXYtclEZcE3sHfBNfOYYyftOCq2k3JuHwJ4ndLENV5qqB5+SdRakWQtn2T9mgtu7nYJzqSsF5KxhvKe3TS1cqDd3hDcjL1IPqu3kKq5qFSY2Nsleo+Y1JjjgjZDGYHJeJVeJrw/wtzLCcoj0ETSOXop7XJoWZVe4V9sE2Wewz2eE8mJkCwTd2l5n32RfIHXYpy685g6R9taDjjCCN5WlHDuujagH19wr1tvpNsOuC91QumtXgVzqJUtYxH7aQz4jAcpJyKb3nM8AFyyCLfyXcj64akc2Wzz6NjwCTjxHq5+Nek/K0SXUYsQQZdtlp5AmYSERCSEqesTpwmMs7u8MWYsBNbQ6OdTZOZzMBznaxFgNfGpLvFl9eGRpA6Pmd6KFS/RjOy13Ws9uS2GpVEAQL2SIvJ+r40flWWmk1HWTh+4F7SamGFKDs3c+CbkEDFVVzPgv1wOA0v8QddNL343aqoGXW87y7Mh96jkSzAFzvcKouHrJBB3KqDjlgWGeKob7RLY/cEoxDKnHBTygFh92fbntwG0dDZ2qJAiJqs/EHVGOu+8YvSk+diaJv9jbbYYCYTe2+KlmCEM041rB9f4xxChYVeGUHwE7p/kCqApVFsxq0LEvSVLU2rcniE7ysM+2qg1kbeaPKqPiEAiiOdO9kJ+SjSJKXf5C9vqJ4F5q5X+Q4d2yuFADvibYKf2kLFLWfEEKhdbsSx31flEuDBNBkDW4vKTAYzmUshGTB9QzzvuPl5xyca7cRL0QHhhMFd9Tm8i9XfT7qjQE6UW3bJ5+KA5cJsh0HGMGfuR1B6BR6kJyYcgf6kkxCZ8WnVMTZ69teuIfegvJqT6ETOYr1hhPziIIpy3knEHEAPQbaXlGwgZrdlYjabxBHngWLQ7NX8b07z8TNzpHTwj5/EzSh2Z1Hi3F5oLfJx7q8C8uQD5XNJN4V3SpmBsaLSqwEhi8fa6gLJk8rqajwpVQu2wTobm6EsDupcT7PKFEzdd3czNYx3FuHo4/IwKsT1bcGDB6FhTFJIoG99vNjX/dSIGOruhy+7mLx36k6kKz9WIWKl1QbblCLhiuilKeQWS0Wv53QoGfX6B7X1zHAbz2Rku7Sl4XiZByLgiaqrY+Qrsp9qtvHEzfGisHp4jewnesHSk+49lXdxj60KnGrnsJuRYirkaGWUcbeOWqwLOCYmiI2XXt29D0XVqkmCvk5fFdtGzRk0wb2pNXpLoj8sI3WU3E9Q7p7eDzyr5rrlGA8XuMGuTV1UDzjBfHE6ckanh0+X96vnsxJoUy17bQ0WgIyxi/ifvIZwqkb0UeZPHrK0WUvwzB/nGzhErmo+7z0pH5v4koRD5Col8RKVCDIKu0UMakvp5dQN5upDVyWoBB4F+XG81OBCheVrJF0mYFDYtA4/33/8lHhaeJsz0ajH3753Zv9dYyLtaIn54HdtB3FDN5uMGS5cXGmF8YwckLN/Eg4TAEYzIQRTxOVIUnWiXiHG6Q0xt6LBtN2LDGekvk8Ppt1Xr6PGUu4CFUPhbcqC5wo4jvh33gy1M6AM/vYrds7q0jynZ6pAHQkrAvbtUf2Z7dKgb+C0Fzf3OscjetzbmiXx3yMoaq3Wao+CnxUuWoW33ZNc6voEFaCad2uYDCGT/szk6xom2nzDKjsXWVBWxIkXgF0d62s5gUMRIQWZcHuHip8s9MBBnjxrCwfP0dZhcCpdnDF6Ra/OEkMoja//gjWWDSoFh1+9oHFLLlgAqEg2d/6cx12MQpZ8QBirBWeJPMRE4guth30W619ChQbBEUwfun58ca+IGRTP/iHw2fibqJEzhGyT9SEbla2voqG7ik4nbFuct4r3gu464Wg+TruYvwJ6yEHEIHEUsj/HE7+HM/JV7LmjWWEs8t0EsFjz7BflZ7/ZVN/KjnuQ/3dBZGh+DAVrKEE1ZTVU5ccsqKpaHVNY8+f4lJqknzSZnhRGpXh13mMu18s9i/VjC8VAmil5h0/esXrENsvpd3vsqmBCeXKdmVdCEx6DKMzxpDqGhJzOVog5TDJ9eQsv5aa6PqH8lyCv4oe25mFZsjpap0VcSrSqC8TQjRF+nzSBPDfS454iiSMcp6kW2+UarcObDxKfYfD/vYOpZSS0baMt9icTHQYWi8iBGLZLMP8x5U5JD/1FEMjggkyhOwbt1TH8ujc0BaxMHsxYs4BP1Qk4POOAh2RG41Mi58jNQVaJrtMeKdHco+s+eDCw0xRTqwciHiJDYUXUu0iWNOedcQPowKBGUQA9cdTz2zPmTS5rQZUmUQ+F1wl8TyPW+0STl1HTFac8/yeihr+7J7cwPm1oh0N1w5CsDgRwDeSIhe0H7OZPCvRh+RrXcIw23K2yp/qBufdHkgsAUe9wb97Xodnz678rUas8cfynp8cg5KWtyFnBCfJd8ELDz2MFErs0zYb+6pGS82BkUQa5brBFemo19drfYy9/VIpJW7rGb8v60zpll04zqPjVss1dhwcl62pETQprHbOJk9EvKq0ZuYEZETI0Em31JMUzRrGmR4EyxVDxHy1FTTpUTLPL1FmNrVnICWN7h7x9YMwSFiMgiyTf65Nm6feh8DIJNkpTPita7ojtzV0OYmhdMYxSuWsCZ2X1hzom6vg5R2zABcTXgPLvC4/0UT+UD3qac2k/5fr06VqP/PKNDtjFXviTctYVbr0U8NCQwL6xunif4yjBgBGL6IK9hQ9NkNi9/zrcwEUKdASB5LUSQA6R34CAkx+gzR+jaXc6YeLIRftVQ4Bv+phoxCzo87wETE9A7LurTmmYLvR8TpeNA8z6aCWDzgazLPaYGMeobfA0Eg+YkoWuXHH0XbiQoocw6JxLpTyTRKISdMUD+lf/knoQnpfORAW+WKPk44KpRd2Xp8x+vaNoUmMUOd/09BkiX/+zLCR4sDtZEBuvBo3JJrKsclCaZ0wVTIx8NzGGpX9YJVAOxpv6/PbK1uxNQFnMTppesyizXKQombwStrpMRNKOzrMI2s6OVG3seOGVZqjqScaopKIq3JTQJ1S6hZwk8HpS+y0TIN8SC+xEg49NQcrt871eX/R8aetfQG03RSigYXCLJm7K/dX/3dk7YRdB7IPppErA7nKgvPSj4xRmxL2W+kbDltKCX5LrLZtu+Oz2DorYKZ1T5y4CkIdoEpRtHe2aUyubUPkXkerTSowID1cdAHu7wvgwMt40NxHQ41o1MiSODpDhc/jWsWXPNECxBhUEoXaTqLPFiRrCEDUBAop+Z3RRxWgo3mJ8m/MKg8gBkyKBhGhoTNXHP/hwNLORoNwC/YbGhV4mR/eiT5bpPO4T+mQL0Wj6Cg8QcTKtR/0xJYNFZ0xFh07aX/eTPACBuNmURvfHZSxRzdoKW05TPIkZSQz7x8rxqIl2RUQfC0744yE27k44FQ1B2QHCc2iNpD2vxRRPT3zxxhzK7G0vEGxyxR5w2HMEs8pvNPDslljhDzLDd+TSoqoC6ewU=
Variant 2
DifficultyLevel
636
Question
Gunther and Gertrude are filling jars with marmalade.
The total number of jars of marmalade they have filled is 68.
Gunther fills 16 more jars than Gertrude.
How many jars does Gunther fill?
Worked Solution
Solution 1 (Trial and error)
If Gunther fills 36 ⇒ Gertrude fills 20 (56 total)
If Gunther fills 40 ⇒ Gertrude fills 24 (64 total)
If Gunther fills 42 ⇒ Gertrude fills 26 (68 total) ✓
∴ Gunther fills 42 jars.
Solution 2 (Algebra)
Let n = number of jars Gertrude fills
n + 16 = number of jars Gunther fills
|
|
n + n + 16 |
= 68 |
2n |
= 52 |
n |
= 26 |
∴ Gunther fills = 26 + 16 = 42 jars |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | Gunther and Gertrude are filling jars with marmalade.
The total number of jars of marmalade they have filled is 68.
Gunther fills 16 more jars than Gertrude.
How many jars does Gunther fill? |
workedSolution | Solution 1 (Trial and error)
If Gunther fills 36 ⇒ Gertrude fills 20 (56 total)
If Gunther fills 40 ⇒ Gertrude fills 24 (64 total)
If Gunther fills 42 ⇒ Gertrude fills 26 (68 total) $\checkmark$
$\therefore$ Gunther fills {{{correctAnswer0}}} {{{suffix0}}}.
Solution 2 (Algebra)
Let $\ \large n$ = number of jars Gertrude fills
$\large n$ + 16 = number of jars Gunther fills
>| | |
| ------------: | ---------- |
| $\large n$ + $\large n$ + 16 | \= 68 |
| $2\large n$ | \= 52 |
| $\large n$ | \= 26 |
$\therefore$ Gunther fills = 26 + 16 = {{{correctAnswer0}}} {{{suffix0}}} |
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 42 | |
U2FsdGVkX18IZktv3nLwWR5CJIna3jjgV4oGeyFQgqxch7IIJYSAl7ePui8xU9cI8xHy/feVxi+igiV8ZzGfJZABTpvVYDMlKkR2HZwd+3Ls+dOpai2XQeDqKMPVLKh62+Me/mnEKNMqvrByY0M3ARjC7KBiMo6Ntw0LAvX4ohtFy3o2pS2Qm3zIEDjY9XK93Jqakn147+m+nVpxIzUcZkjwq8wIgMgbcAS/Vmo0TELt9h0lGpqerCvEI41Zw2YkpO3YuClilBGd2lxbQFo/+jiUKMyNWLlLNBiFV/cUAHeO/yMSbtt8q14Jooe2aVEsqVuxaSRYot09YKYP2kMydFcmEyWBs7ClHbS5krpwYzT+9Mu9JGSorPPkpH5FuKFb/eNpDsA7V8ePc9V5c7/SihVivgJGvpEp24HLs8Jw9ipPaMfluIQw2BT4ADkUqLSsQdNIwEpD6iUOL1FH6ByNPoYxk5RzVagk3Fv2POs29XMFICBFBxcNsfx9G4aQ2ITtLHzlm0kYtmwlW4x4yg/9fFyjUv8yiEsn7OSePc6AjSaevBSSAN4lVCQgKV9iZLW68etf3J+VNFB18bzjnDn9Hf8tBA/SXC2VkO6naOirDwMpJxPgJxCFOP4wXOsbhxdgT/LwySIGerFuVVpvxoXUxiudThlVA5ttsMNFUFXA4OgOukOT+YTt2VY7CMnRPCZV6aXGcNusrZTbnaVmcZpHB+hKEUAf/VB52wQQ3pPfx607SA0KYUiOGo5q/ECWJ03/ZLYXrJfNp4QpSr8kY3qHmVl+CSO0LPXGj5KCqXT3dITv4bvTlCQO9fmx3RIvYldzXi79Tol6Nz5SproPiYPg32u3EIKu+e1AwDx27NQko39a8biukXttd8ix/1Qs558/aPJxPXFfWts/ix98nvWNfRXYsW2aTuACldOjzIOZCdLFofidgr3DAWrgoe45F6glXCfM4UhAfeshIxgbaHlOZCzMJfdtCEbkYkXT0AyXt+ozus0ejVxy9Ty3tJ5HotaieYAnkbcKXKWG0r39iDqliCWhU2JfTT7oOt0O0HNxwDz/hWfkg1rpKea3QKyPgMtPQ0ePSvZnF/j5kE1VTYYwld8joyfMmC4a59Eua9Q6xEuhazAy6/3WsMdt/0jwcJgdcRfZNWiZn+0jVeRr5iobK8jqBDVAq8Gyo8yA2SMfSHJOJwDa2hQHe7AvpV39B3XaLXk+7PB+feAZnfVXGiiWv+kIpnyc8ZY5FGKkaJfj1DJe03klat0isQkcEgTy6a5+rcLmwtyxldkiKgr688+ICehQDg33pTObU6Knp4lOGYBpTPT17I1HqI3f8oS23lnZxNY98ioTXksLdvW/Ap4a2DCKXYtf50MWpgC4PJ2hUp+G3d7VZbi1Ajye+tYUimAO6XdY+HIbLAPh5gBvo9oEYdczg7J+/pTwhKQFaRZoHZEAEmzGTTUK4DjSW6sTmI1V+VhquUL8FrzmpEcz87wZjl7HhLGY0OevpZEmKwmDmBHhHze0LI4Q+LRmMlPro9hy3HsOH/1evAwFxznxseWH8ou56CTTfmUMspEhLiBQxaswHgFkNi8HrZU8UUmoO6rDwd8UwnarsW/uV7yNXhK6jfzzGOHGWzmdJEgqgYF7RZgVnx7+2vwyWxi7kqJ7D+HnVxWfpipGUN8ThhYu9HM8TX/3XJexpBgiA+NVp68kOYspecuCa6FF4aRnGErI6t5eCRNtE9+UobKtz64nRT4nIJXUb0V5Psyk5WIHUoa0k1bpD9ZWx7jIicTpcsZpJ8g/oZzfH5xLVVAEDdbiNz3FFQ5gQZd7RmDViri1xPvk/rRzL7xMT05sHw+lo7g19K+byRtdLeW1xTo8SlgNe8ucl+32vE+mvRuPeXSVG0IUYhGl5awmrMQbMU6LzCPMIegTTg3PWkzz+jY20Qv/AFS0OpZnxg+9gAF+uO8YpMkdQ2+RwMY56Ggpi8LiVe3hK5O6CEnqGt9XmvYt2yeOPIrw4nUZR5IpgswpwK19sg4mgkZdcfLIgNBqRmc6auogOm8/NhtRVmbnQdzpq1T2ooLIB5okXjBRMwmbTt+cumhfcqKbQddd9o355HJSVovw3sOjOON6ztivzqov2wWoVu3nVLSFPt4w8Iy4d652wPZD5UCBQmXR+7/mwcZ/RD0MDYQ/h9UxAeRViJ2yrecLXYlXqArK80066eEWd6qojmRsKDFYsTlF4O8wXBuLev0Q9dmc14sds7zahNbH0dLNpN2DKU/swzXLZkra+FosqZbg1GiKdfRDLq9hSnrW+4Rhxf/9AurhVrJ/vM87vKEsxDsvFkEX9QBcxppPDq8+kEBJ0KkULdq+udhfpKgN+GkGqSteAreKxswbF6jFb/7+snz2WivWEoMq3+htPbdaCRSXjjiUvXOY6WXNKR282uC3sA3O9NlwpEx9sfWuW6Ch928n9Ah1cDRJAU4LP3Ov7BTwEjNPJeLyWAgXDW3X7G8ISrqzXNPGsHuslUCi6Cib1whiZoJdJSB7Sd//KXsCo1LDD7CuxJsMC9mtRJXSe7/CkTRUccu3VKnuEwx3gQR82sgnz28L5dPcrjc8AlZtLo+72CY6TNU1ioEVG4ovXko+YIigbqhKeBXueIbYpGSGANyQVoAAJrbeD4afOaC0lBUK/Hjht7Qh5+Dvs/SQJmpiR4B0pNIjPMmAYJxGQoEendJS62jeO5SQU5KwsvmzpgGhE+6B1GElMDEmGiSIuxFty/PSK2jd5mmjBzCEculxWKGZsCBUIzZS//oIYkppncAo9/23LMcdyBGtgjpuYDGXf1WAv1O4F7/NB2BeNVSRM9hKPTnLawRp+I9GnYSxJ28xmFPwf7fvrQX0OVf/XQ8DW3DUOkDTr59pHKlqzejpB9Qo2jU6JPiaVyF5AstPWwhHpr0lVpIFE+UAKxL0mhXmhAyr3exHd753yXyr2ctNoraR4hE4OKuv9GPMYLDxy3QZd/MGXvI9rn+nKXsmPjlqtMwfKbIptQm3deUwGrZpD3linpz21NexYk72F+qHuD2S87KPh5hf0jHfHszQvTJtWtKpSYJY2uUU1LDZnJSLStgOJMwr77cgiwLh8yuJ0l0/gOI0PK/pTvdW2vHXKW43i3sAhOXh6HGE24DmNnG7j+tfJpdmRiwJNQXItgfIfpuL0SQek3FVkc0zitp5lmZvFbFSt3n5lKrOCFNpmQPesrZ5q08zTls5znDoY+fZmMGBF+Zt6PSQHp2dnLznDbX09EMsHq+d9nLCOcDRQtoHF8nfAmrgTpdgeNYj6bCLn6gLyF6tDM7aFt28H6jo7rS/ueqbsR96rVJva5LMk5Jr61CNIC5iDyS17hnKteHApXz9SlpikDfvrzYljOPIZwYTR4ejbksGFOnPxixYXVK9vdKSbZ7niqgEh6dkEfYLVObHT7TPtISzaRI901PYWj2+3nm0f3sqiTmJNiBJtWsYcycTXzHRdIdXuPEEIBR5qcQQpnX+miwUCyskrVkaRf+/O7NbNhrGhDpMG7EAMnQehWdjbB6IEiZpMNTCfASrqfUKb/bEx4bXwsX3Wno4Ghwaa92YDgKns4wr847MckRKToLswip7K/d5Xc39kFAaYnPRJWWbIcvi6Cc4Rhj7UQmqtvPxj5UPaDOh4hT9j5/E2ISYo9gmoiqGReP2uvnAktVa7dJAij971aj4NqDFLieQVK29T1N3oOhdfNzzIueyLofaiNISJzeUGlICCd+LLO8M1kPr790se3ZyJlx0Q/mGEEtNixpdS9pr59eEfQLc9JFrAlL3fHQfYMDPyX+O5igbM7dpa0BpN2xwx7x6uEa/PZ3mMpjbu+PmmF7kdG1VugkMLSgLdadCjAvX0DgDfTaEg7HvynBJccmuLRD6LNHQ2tsJ4kE5J1rvG51Qee9GuSvHQmiILoWEOrSaDRTTCitApS8MlzhxrwZpUfFoTE9hqnLAQGWl6zb24Ywl62viR+6X84JYmZwyoTr8/HK4xxPWHd1man0vrJtsGRrVjORY6vFVZu1bF5f4ogZhvYmKXbre1GirNA+xQv6Z1pAyjSDnbl36A4O1hIL9Exutg4zZgVa6HioVLuQHF3pX45MVa4QssFOgL8bNnrqprNMDZvQIgUJitjsQA4WTUy8eEphKhwS8o4aTQebVt1pCd6E1HRWXtQ1T5cZhZfP51iItY1mfKZwT2FuaMtq/suDezUiLvJcxp/HJg6xwpP1YhIue3bhpQQcGvHnWWnIy4Anp3WSDX1FnvmBDhcPS8mqa4Irfo0rhOhMCV43i77POj3f3WjVgCsAfQ7SQQwqCfdxjE00DEVqWKVT+OtWUg2kxw6K1vJnBsH3P23xCogmiEzNEdHbzriesDA0kc0kGwnKXvOrIcnkRxQLglOyirYwEUWO9qd3i1jJQsh+rJlKUVLPpTiwsPRTs5Bc9QUVsixb/5rujohHD7DV8ot8ueJ/sQAuviAf9syI1eHLmwa2C9/RM9R1XWFGEdQk11EH07vdJKPDyF0973EmxAm7lOo8B1iOdmQPNOQg/v4KaBurYV5TJmP74LSnuF6oU6VROohnAQ7O12yItBYqc50BwbUoBQqxfMjAABSmWqkxBjWl8UjzL7ZrfFp9XktAUdgd4xNzK7wXIjaRJ4orucUJdltIyvSPULp0bfbgjkfCA0cV83ptKGx00nJ5g0WEOaFrYCA4gIwrGdux0QRtGWteXKlhSfMdgXXWg911/rXSxhzRT5V/oCMz16srCOB4yftrWFzwgADP4s/vp7z3v3qU2nJkBiwKOQg+7j2QU+fOhGl2IqecAQltA60EHY3LV1OhGg8bgnr35X1AhSnsGcIyKrPP1dlAACY19UxqNpwMxOoyfuSj12TAdHE/6CIT3+Zcau3VfEHy9ogbTZYe0fn99aVfXwvKV55MpC2DDg0k2myJrdTudrFhxiAb1QjvpPyXEYMChkZMqQ/j/jWVkmyqR4xHK/b1BIpR/CL/kFYgruW9noTcISM/AbrOUyHAJ4p6UH3G/vbwvPKfCJKxFYw4wuJrFGnKGx4KJt1WYNpWdG73GTJ13tWpNOaciq7Sh8nXbZ17xB5o+zn5/5fVtCZb7uHsGIaCtdy05DG6XEHDuS+lzJDzDWeq0PKdc8CUtnb7Pd6j929L6yH51kLQ0qSK+FJbQieDaWHIsWRPybBzSdtob4EUhfrCYmyAHuuPxq60XxBQ9iW4cAjaxfa02uGjCfsQYCVO31XeBEtGl8gjIwHdX6xUhd4LLGeGRa+FceLo4Nfccu9I9RsSUQxgVGPk0Vf1deQmrKur2Yn8tLfeCUII9UgVTUhjxEcdxTfIlruNoRax9fYE0QpoD6WIUjm5vxZmt7CrnfDjzJ3TeidicPd1X+w7OiiLHP63YkfNTI6LcEaXM0juXNQMLY/bKKYqc15dVYQgWU3yCFdiZoWcIbZ3AD05J2xrFSZoBq1gnwmqgiJSfS8ySD5qbIpy08Mps52doPKHg6H/3nsUTlmYErwYsaa7FA8Mo1kyYE+8zZfjuHHIbEYD7X7NX+LnJ9XhrTn3nnYKtb7lzRyPNtkPyb7xBo+epdfTafL2bdRi4x0ddLIY+hrTnnvYvo/Eb/+Cf6FSCqIMNsaQ6ALlummjyNU7zBd1rOUs31dk4eLoIUhkEJyHLjGr7UE/YZVpHJF1HWqQNZ6RngLj12q2WbqNMJ0yu3p3Y4/LqoeZ9YGExWzvPXFuCMo8xlaXWvqmIupdB6H21hGL59HIFDWvKgfJfVAHcfm1n2jdICXDkIyW3/vuVWrxyWFliUOX6WIUQcjjlD72Zrpnh74bAs9OOo90KzsWXWqLMDO8hYCMR4DHhsNWZlPnM6gjh41V8QBu/gfAmN4FLh6ss+YkZLW0Fd6hUSk+Q1ZYokjYd9AdmkUgHDcQYz1qfAgMbi1Icl4fI8bxUVF9LQYIVtE+ldpvTLtI9lx+1t4gvtDxJAawVZc7pbCI42AEOdPb6NCd3PhLUZkTqXwt4A6Mob2zrhDyo/VLFFQcbgc8du+aW3tpB8Ud+C9MkCc2DCOiZsVgZlgHfB7fEbcU7E5UnloCWT+gIG8/aSoZ6UrXkSGbooOiT2Z0kTOSBCSw/EMk0e68pXCKrJsCbSBjeEvDyx18Aqg1YXbZW1kQSaE2vYvhFOyzW1Jfjynts5oPvElkrPjY9kB+Nfy7wEhPc6Mjun20KlK5j8+t1PH2zC8Hohi6eOw1OLCGienWSm/dUMcQIsnNQFZZdJ9CduHSU8FlrFBnW2Z6Bzk/mp0zVNwBFz7hKB88eD21L6dvQ5MvlkJNawUbZO6E7y/liqc4jAS77csyY5NFkmiyUTqf5cvdbof8y/iEs4rHJuO+hcf4dxCkHBGq0Pi56OZ76kGcXURm6mXYXQX1KA5MsVPJgAptadTihhgto/W176Mz7/m1NDk7oCQNDCX2XP2XelCT9hwubocWMJo/+jMDgDfel6vBAt4bzZ5/yKuqLyu4qgZrTQFq1EJOt5iLGrkPgVdwBMOauTUyPv6iaFBp+fnj7HZ7GEUL5pcxuvH4CsuWsLr4IulgEoKHEmJaMjh8dd4DlqV7J7Yx+Ld1xvLdNb4SYYObCX9Gp+gblIvEFN7M3nIBoNwPot1T4b9pLg+MI/3b9S6wb6zLcdrdIwjh5Bk7ZwIOMHN1A6wS3g7fG4ZSHHbzPpcmqVzExfZxi2f+FRq3t07rcEIcjAlefytGTmKOttWV2aJ6GbJEe2Gv+MFX7qZxfmhJpXU3l0889K4DhP90A8+pNoqJgH5DVGJfe3tqwQrJyyeAIBvt1JfpHwuly1nA5EuRtzilLPe70MnRh4GvV0ggX9x2p4PS+W2l38O8KyMXPJ7Fs1NHW4TWaoVI+QbXEmI9Iozojh2/8lDwJaSLQgQ+NLQDzrRDFS8tfJMG9SmBDYEyRBm8B0I/3jC9JRYuwrI8N4ZJ3+qmgnWHY195CMuEqA5FvSBD05ONawij7ccDUEv02EFtG8ZY1RukzYixN+igOpbr1IJzFLOt027KrpxKT6GAafoZk+WQhbySB15PXtVDmo16jqsuasCxo1VAa0PQBh9UjRFmyOQEB7qxXLuqtsH3rGLyKZ+2q0nVplwfcTwZagv6YjxwxGX5luOBn5pDh9kPT18+pdm+q28XOwrK7Rl2NWSKfqCA+UYcNUGJ1Gdcvn+NS1NE5/hzDkvMXyEmBn/LZ0SRtO7CnsC+SIGPg3sjOTWPS+s80oyE1rZ/315iLs/kxMk36EXgwQkOk6HCg3hJ/aDu8zGbsKCsPQlYa1627WDlgKlND/LA6+o/splsF29MO/mLA9dou7M9TbktGkJe8GGb4mZ/CvqPt6xMzCPGeISMcfrDZ5mu8xJ8j3cPjswIMO2ODM7omPqkfwg4oHgECiS8cKXZ4UtItRhlRBGNoUOcKwoVAHeNU6XPQbm2tKtuO+Ss/KOCk7hXP2IDeNiQbnfSejOWyL85gptlY9h/y53Vw9A/7UFvt7AppaJP0Z08SNLLYhWUWtTbcbBDpHiZNosApjGY2OzKTtBwv3CYsr1cwKx7NHZ1wG6135T20nUGJjn+igePbcBmG8PlZQMeIcey4RJh6NFpC3zODk6/GvvGhPAI3eU6rCDrExs4acZTdJCBqc6tUSGKfu8kdVupzjhTDjX6k0oa/gqpa1ilZtFBnNV6A6KKJA8vsAv1hqWfHEKeSKtU4kS0bYTu1f3TxU4Glp2ucM8mnGey5EnIVXAhsGW0DEqloYWLpIU5/8+1uF086hIYLKZnpFZxOiNRxJR/k3hM28QiQFYi+hJC7Uq5GDfUSZUh5a4KTOvBlSjMIu0v0ckOcdpud0qjxlWqQDCvvFZ3amIQuQQwr7GXpT4J8yU78JrpoT2YsFdeMU+6lruswiqrySmRqvAsiS6KSn3HXLhghi6zEY4ZmrrArs7u499yJr5A+RL/eU5FAcmF8k26RAJGceiHSSkrzyguex98Zk5aMjvKauim+k+WQsc3IQjLw/kH3hcRVu6d2HBc87hj0rGNabo3Vz6nz+Py+MqMfgimfWq8cwhNdL+ala7Kcsus/BmlyDI7d+RHXC1Kk2cy0xBUe81ug7hDOhUfTOUmHU0g3xHnupF2zPl18v8FdeecwBmA7CxiMs7nIUpqYH95Xf+NbeK/4OSnW6/Q/wjXeB7BFk0e/wUT+cv4cTdB+j2z/hq/H1jRty83IAmEVcMq90juGzfeykCiDNjKrmqFonVAC6i6niDiUIRdR8j/oNBS1XUwf72+qwxQdW3mffc2gG+fhvkkFqtC77FunsLviMmAgf/GZ8/h/Qgo2RQMrQ3G7zuwezKYOs7mOnI12UOPZUlasU99A1FDm3E+PhmCM21X68LrLi+rb4LnRU9DeH567lWwRyIss6lW8vq8B2Ycua4OxHOskGvx6R5q9bj39WvlvwEpax/q7ip0+Aebs6xwFj6OXsQCJilBFh/rjQHClDN96Bo3H2JW13Un/d6iIRbzfceYJ/5pJVffHcmzR4XoFrlM+ewqqxNFpZtBbl6lk6A6iy6fgaBcED7VDLGysVN1OomaiYAcabKywmMltSElWNGCjMcaxHjYK2W5X+CJ3uYKynBY23vR8J9MxoCDWLlPDzYVdPzYj/Rri2seendzcuHU4RhJABsWbfowwyvHIo0E/YGqtiqv0MrFhgvc5vFGkV8V4Jre3Ivu5w1LQ0g5o2ZYtDzq4/D+zZyVlt1Y6qO6ewRbSjS6CkXG2cosRnLTFFkcuoBQmKuvQAM7ebVnU44ZP8wKRkJ18WQgkTkzX19+oB/JbQaTalv8=
Variant 3
DifficultyLevel
637
Question
Johnny and Evie are picking strawberries.
The total number of buckets of strawberries they have picked is 104.
Johnny picks 42 more buckets than Evie.
How many buckets does Johnny pick?
Worked Solution
Solution 1 (Trial and error)
If Johnny picks 70 ⇒ Evie picks 28 (98 total)
If Johnny picks 72 ⇒ Evie picks 30 (102 total)
If Johnny picks 73 ⇒ Evie picks 31 (104 total)
✓
∴ Johnny picks 73 buckets.
Solution 2 (Algebra)
Let n = number of buckets Evie picks
n + 42 = number of buckets Johnny picks
|
|
n + n + 42 |
= 104 |
2n |
= 62 |
n |
= 31 |
∴ Johnny picks = 31 + 42 = 73 buckets
Question Type
Answer Box
Variables
Variable name | Variable value |
question | Johnny and Evie are picking strawberries.
The total number of buckets of strawberries they have picked is 104.
Johnny picks 42 more buckets than Evie.
How many buckets does Johnny pick? |
workedSolution | Solution 1 (Trial and error)
If Johnny picks 70 ⇒ Evie picks 28 (98 total)
If Johnny picks 72 ⇒ Evie picks 30 (102 total)
If Johnny picks 73 ⇒ Evie picks 31 (104 total)
$\checkmark$
$\therefore$ Johnny picks {{{correctAnswer0}}} {{{suffix0}}}.
Solution 2 (Algebra)
Let $\ \large n$ = number of buckets Evie picks
$\large n$ + 42 = number of buckets Johnny picks
>| | |
| ------------: | ---------- |
| $\large n$ + $\large n$ + 42 | \= 104 |
| $2\large n$ | \= 62 |
| $\large n$ | \= 31 |
$\therefore$ Johnny picks = 31 + 42 = {{{correctAnswer0}}} {{{suffix0}}} |
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 73 | |
U2FsdGVkX1+pReSubxJUCjd4HRyZPEtG3w041OZzFhrPk2TODKZFlJDymgR8r6iyrXpSEvq/ExKAi2uYyAPi9gWG5hBpG9dPJW+LjwDgQKhKTI3Gk5GYGbtSLMOGyFK728mcuCTxbQJuA4Qz+ixbS69gqqkxhbULUe0fla2cURX72EynkChBrtCIbLa26yEnjhYwYimmKf8G6KGnXRIpEubaqacFBgsK8Y7U0o/qJV2Zkhrkeuz13i2gzXEhzqs5ZMSQvuxiTy95YBmCZ6I8heGNqk2nsMG7Eodgo75j0shGl6NEPTpe806ufJzrWAm2LJ+6x1BDdXo+UEb9JrGT3uVC+o2FasaDnYQnmYz+BOlWa5YYLrtMN4LeIoTX5ELKcywwfirkNSqYkTlV1+zwb2SMSJjQb544Dbt5+Lx0G0f0934al0phy5xUZNVzLLREl4SiOjaLp3AoXidMlAM6T9CJt68l2aZHBjahPmpWRPkZk5Ykvw7lv+waI8m7kwT6moVVTXyJ8Pde9HTMyDYf6TYbWYKqGDA3sSGJ0cLzqHn3EThfEM+rGiAllj9Bb5dTRVpbqkYvTonx0cU36+fmZOH+TuXg71DrZWmPpVtYfAm/qtYFWU5VaDY+w2Xw2k4v2GxeFBI+VukCE3EMbPM/ya1/gfX9yJEkM2Mep0h2PWD7t4RzSZGmUgn9olOU16quWO9LEWEHpx60rExRQKhZHAMGmd40y37/NtyqO31K8GhunBe9yrh48iLw/CucEo72+6FyDfP3qFFhuH36mpLLsUecVrp+tW/d0rK325ldwi9+Xy+tkUXIHVyHdx1DSDnNOk0Fh6M3h29xJ1bRhSkQv8LDG0VR93kwfREhG/8nXoHLiFHGtcXaJW3wH7oKMqe/zcLcyLXYqqXVAv2xY9qAJRXCFNR54622XTAkD1N3dEDsk5sqFV18NViZqnur9fPEMTyQEW7wxQbeI53TdpP1N0uO40eiDGBPPBpgr0ydk57SpL2h+LeszanQ6h1UXt0jMMSt72ke+AtYxjUueuomO6794VLnL69BVQxQLTLElxaJePQ3RnsfdqUe6YVU6MG1b/lJFhVX6/X0cc89auHdYW/qdRqGFXTwiOL1qcHKaelKsdAawSnE7mmA2VfLnT9ToAbPS/I4XMVTWDJFHZa8YkuFnLZWr7XgndL6S03y9VKdsS+duQ4pVgZi9fwZ/zLovYy/g4Ty78cS9nibsT/hQ4BNEpJA59pUidVIEdqt4EoZrBbLm34RWOQjGtQ+ZHJBTED+6cpe/yaz02V193UrVU2ejaC0VkTzkPY4eFe4XQQm8apMlhSbz5NAFFcBFQVTM9mSwr4kdLQHtoRhGza5Y0qa5SREz/LZ2Bq/XDeJTAW+bpi42VUFRJA9V6GftumfS/fYXbvYSXXPMlp4Fjhd7EhUxbxry63b8/KaoZkvc1kboAfD4/O7EgFWgWQ+n0v1sZkeH1QlmqZPTX9z3Vdt0NgmYs1PR7n+Ga/1B6YPvAe4iEZ7SGh0IVAfVpWeNFPMQwAyAlZmGbCTJq5Gg1k0IQVaW+CKr+SPlcCfkXHKVcnuR1DzuRS4iHcEnVCLUXUEiPXBQxJOD88v26oSPzNXwQAO/6Er6cZBQDO8/mRbfuaJQdRbEnFFdAT2I0upOdbENdWdd/t2ZrAgCaD8W0K9hngmDagQfhMSDBfpvza4Gp/Gm7f42Rwlp424OMNLA/FvtsMlQxct06vuiWYWMjX4FLNEWRsKIXEfD3p25DvCbVH7ouieJP2/fl1aJAuWWliQliSNZaR/GiGnz2uVUjy/LRuZyRRQ92/kvHHeA61mZia/ec3lVry1SeZstohtUnDD1CeKMkH1AqzkzZYROFzFnxwrKPTYqjK8K40nAd8cue61sGWfxQHUnU+yvg9n3Ru6L079l829J6ssIcFHdsS3q/qRdpo5TNrbC0dLByNmLy+Ox3i6MTI+L+5hzu67VPPV1bno0ubCWauMafHu46VBEjnsj65xzwY2bM/yfjmamTFB/31SZa2tjM9RHY59vQqQm33Ffej/QCGNG2khpBAIZ2Kul8YzJZ/J0GsH4lGmu7iOAX08AC5/qiRjPC7I29vNxzYOT2hdZGf8nQmHvGAzSUlVEgjEhRTeMh6+C4fB8JxAS1NRzSkr2fh0eHhofX04zqfHiujZD3l6ITnysV0HaTGEGpZ5bF+CiBF4yfyKjDr88ROGCL36Kl5e48+mv/+d5YAsIuIQpE1+uov8d+5tqBkRaUrJHlLnX47HW9L+q9KnU4mn3E+9PCxbOWDTMHZj9oZSYIUZi8yT+RKVJ5ymVHuDyEkOR8SF6IU7Zlf2qOmnprUbDybgL50p6aA6I+IRK4StUixwnRmR3Bm32mlOGX+gE0xLLSjU0mX4EjVZAmYW+qYX8bUSZWghHDRVzfk5YROSW+aComUkyCnEP5/OoyS5pKRAvzN7L57RyY82wAy8q8/wYPMJxyQd8FMFtFx9bfhvh8RhvXLT9n994dX83zvnOwayYLuiXPx/A5u8ix3WOgJ5tiLFPadjKFnuWXLnM5V5z0cD4zw6wRy0W7hclxkfj4ZujoQLIE5yz62a+hQ14Qz7lEOM+2fcYjCIGXu6yu05xICu5uZ4T4wR5bwGUbW3BuD2bM86fOuwdacbfprvH+6+HZXGx9ih2qx1VJ2oQvrKZstlvYm+yvDvE8lasFSEplliVOs33AqGOy/7Od+WKfqoZTu/GVQcNff6F7Ify5Y3QcKDzasUepdEi4ZDOHjBawxXyKe3bS7ODNtMwGg3ffl5GT1c4Zrw68MzY38qRFEGWQyvnCUAZLffq1HdtU1/REB72QiffAgJp++GFB2Sv/7BhYN1aPuQHm2Wb4GHDIrnDtIVnHyEWI+MN+jblrM/LDhS9oWopKrn0U7lFutOXcDa5FwiPp/DHnrhVlvp/1YT+XWk12kkOw4g+zRJ/ECXCksx1CJlMFO6X5TmaRgVn5vcliAsXdIJNzbjVJFoa2NuMKppSC7fYGMFeWoqASXSXMC1gBrgBA8kLFEzv6snUqCOsMt+2+P0N9Lw9X3yUQWASZJ82IA99hiQcN3WwwIR04HrX7wllOx35F72eTB+DpkePpPRMXGBBaen1PuDLzrDp8IwAv1wLho3esecnyW+ZcdSo/2nDqdn0fV0as/sO/WHkbkf8Wh8cerDQ2PfhoBbgn3gbbkUuWCy3qAkytSMfFFpn0MRqWa37DfTOch8ryD80PTfBqxxfa7ERTxakZmHkoIboBLqnp/Mk219yyanPHVwYXDpehwNEb6zNruUDXHg0ZYu/8MAZrHIh7S5Z6j02ilgG8O97RGdJaGTxsB8ij3B0nhWFBxGLx4b8C2z2R6Y6y0sUHn6NBSLKG0kO8KrAm2Wur7o6ym8MY8ZrKVE0xH8eyWluMBk/ZBVNnTGSAO+j0a/ayN75YnmnAvj4j3j+W9ydYCuPJfrBAZz0zaXVBNIa7l1Ri7bqMdnL3HX1+12zMZ/vWeDEikouFvtC4f+0YOUvhwi3gRnSsuLuOlxKZC0plasa0BDSvvf7FIs+F7gMld7DrahQefVK5iBGXWzFa8pBhLwdTMPIMefD/4/vnEXiv9rDLq0cM3AAcjAeVFzU7yOX+/yo78/gs4A869ekSTOnL9gOu2OdwnJHVINxri69yzQEJbUUO9u9LSGG7K+JOX/AEmUcO7f0rcN4MoSz3zurN8yOchal52Qxf8m7yDGgn1jMphS7NG2wEbzaus9UOTk0EjUdlfmoheMIy1mdi7Ye4jBwlFLmbeVGdpAxul27nehGeBGnjZhPXttTzu2YmIhlrgVuA4GWzwtB6JgFRsQS28aWYauCxDN51DNn+Gii18L97UbEkTN3q/VtVQqb7RWdgSBi5/zvvlSleW19ZJ3xgv1ile7365obY0nGg5WRybwpx/QQwGfHKUQaQ/iD5Ee7bnwHvFF8DH977qAYGoToKu45/b+beZk86XxtERcQAVKyoy2P04+gNXyEv46LHb6fiwvjfYrbbMHLvwC6Dxp7cC5hbesiriBgushbhTbtnt+d486g3Wpl6pgMUdDqeFS1bOWpWPk8TZXqxVGW9vxxhFBJKtrRUd7IjB8t8VKXM54aCF/FBY59FUQPczjrMuP+yRSHUCk24uJew3LNcVnDzJmP2kwffTWocZxty3ATri427Z++5WuwRx9biL+h00if3WbX+P1RwwWq/6nKItJYG3jumWcX/DAsTxkB6ylCcBoJ+xeJZ5zKdHAA+oZmx+EMhna2AavB1Lkr0MMuyAviiUKLpeGxeAyJwWZZwsupGkKM/a2bGeiyHhmL/IRMSXOXcUZxVHLKk73Q7GlQMPVWRcnz1zplzgEKETTbAgoBCCnjtZZljwG1cJrr/DXb8RspfgnMqGR58yKIT8BrHSvD9JdsZngsssZy0P34+1NzbhBEd2Vpd5mpx3E9gUekTa/+kKpsmUTFZfxD5/MEHWLONw4ws9PnOFJTdoQE/TBbzqKuDhcx8Mh9SNayuaboARqpeRTnTH6GtDg4IV+5+j+DWMV00C1XCOscFBjvPNL7D35rbUcLj8q3mHrreTitrkPotBNiKYqE68wm76WPJdjM8zinsXrNmilCms/HqN9IMsaGeY+zsJ9Mi777p4/GD44NDVonlSavvM8J9YhlETQKmFWj09VvSZQSM7SxfkgOJHsPks4kIoJWYOYj/XY7hKVsD1lxvp3u3c4VSWMCTyKwCfaYcr9rDV8iWwpcNxSCyka1oHxih01U7QhpbISc41GaDSM/b+AEo5OEGk18tppPojqTA7BpFReEygXkNiTRUypDh+o0IhoWm4l1Cd7HuQAdq/Q6CrUvnYwOSz+2JxDQAmJshws8tsp/JeDbvn0ozR6b/4zpFNV24eLdI48kuna0EDQHoe0P3rbycW1kQ+WxLLmKD4PR/QN5ceqdHO4iagIk/64LFKZ8aHCGCqSlqDhHPee9+9JvZz1RgV/ZGv5v1SNhW9Rv/gSuDd+pbqsLuZ+/0nG/lxXEqvszdaoaIZY3FBGJKbeJx+OSHiZCCI4PkFWcTqBxwtDRb+kATHG0ZJ3LlvV9KlnxnRvh/J+qWdj6HZIxAU2Iz6A0wL2YXmp6HaxcBDnGsjNl0iC0QhmWo+912n+50YfBVSSE9o1WnYMeCQ1syrs5UhtLeiO/kTZUrTlifw/xuCNayKLOsnPFMoaLLqi/ymqjvNy6k3SdBBmUrco/EUir1nnH7MyfQdDH8+Ns5AzdBdHG6rqBMKM0VdnGdApV5cdxhGqXd2Ywxb+DLYIN79rttOcVPsC6Z21vVMyCwuaw5e0aqDSL5MhJdc0QoOi2Tf9RlzlcFnCh0Eos6tyUiDIRXs5sZNPaucpWk1zBNr2otQ9/wbhUM3JMs56OPuhTShaD/AdYFQSWd442w6Mfq0JVbDHfqPhlwLTqKE84ezPuJizAtqVNZIFtWm0d06SIMa2QKHavQ74fyl9ZXq3sx9xSC1VIj2FZYNUDmpb1Zt3Z27SCmJZV2H+i9oX8c3/EtXW8jRk8O7YydLU7zj1H5hopiD/tXImFPFg+FhvhxaIOeWR5D0irylGkfG6xg3PaRsKKASNSo8Ynjp4S1GO/s4A8aL0jnOWJQYz+ae0zhi7/rdzoSADmh0mlBwl7SiYJI9Cfw87L9rxOO2QEZHc4e3qpDNlAYzDwosXYtzbGW7KTO3r/yYkY2eEMA3WeZrqIhyS4dNRWVACHR4jdWjy8L8ms2XNWLdx2Xh81TjmTPbFCn3R/bFDdiUNaUMEfbSMU93L9ZBiR9LqMHGrH7gponYbTKbBVQRvCvhvZ9CSrqkbbpS9kBbjUNVxjLlDSr4s054urozHnlPCeruzrS/fG7sXwNGRGB50c13ypAALGRvZF3IMIQJO0HPVZydqbpq+vcnUyFXsxan9grbiqGBNfqJcSc9cXF0+42eEh2bPhd81+gW8v0C82v1CBzxRUEzOrWYJY/SkgMjR9a8mVd+0vTmVeQUf6mO7i7F1S0OZWGDhocvfi+P/F+pr2Kro0VtphL7NyAe7BrDUGLjPoUOQ3JwulKxkNXnWHNv0i5tTdpPaYbYziNKSprJYusVhu0TkGEXDn8ElxrkP1vwbIoQhkJ3zgcuoDXpeB/qr8D+0AGefMwtsV/1995/a/RaM5ZjyayKmYFzjV3wFzderNcWf+8b8Hpab1xOxkMR6CcwsJIEw17hjlNuVfpR9rd+Pbfc1HLL7rbrGLN7TGR/Vot+LuOJcuZIJ/GXtjfTStvDxzz0vL9ChfdN5SqJX3jEZNIcB/UeFcjkgh/ydMLq0iyT2QfyKr9zISgc4c0P06k1WGuIaLoPQbOahr86Wuvlqp9VGCXh9VTQXMtqvvgQbxbaQxiQKzNNzYQ5vst7Hh2QZOCAHhvCsXtVewZnlVZVl3h2Mr+wnIyUhLeSRYXg/Z3EbbhMTB0WWFVplkXvqnuB7+dyL0HZFM1nyZVyzR9jy8V4vGZ3M9bOn6BRbaZmTDIsylZzqV+AdebSz90XcNptP6PewDXDoU8SHO23/RO19cFVXjM/vKdVuZ8w6lgl90xWFKGhqaOZV4CVIFkq3bfqrrR6TsVePZRsnpxtxpSG4LjKxAmprdceQ3ZKreMQI4kR3ESg8OFWo9O92E76SoGENt8rfUfrxt0P4EV9LrZaRxLR5BzdTQ+ngAFnsM4MrnP9tFNDFGzcxzJINbAcn/o3jwp2AN3GVjieOAOI4id4d5bMenle5dB24ltSW9TYAmR62OeYRFWJelVwyoExWHhKvYy5gQ7wf7JLLq2N6JcNJlGk11f/R6VAt7+h6I8tAwtdRlM11aDxuby+HqAAIh/b4JIt49NZjzKrZvN7DVk2idmJ1LRBgrFOxmazuie2zYFLr9y4bb4+Z9JA8ync44m6zDB4cVAPMfZ05SNGSLALpgkwXx4EQmlCyyqb8lXTW9weMDSq8k3dAmMZpwtct/qTI1ETp5uJ/PHN8qnAVk4ZYEYUe4iyrI++uU+6b08s5dfF6c3a5nMvxSLknARFnsGEU8VhnHwoBJHph5dNUTceAU/P24d5SEmz2ctr0agqX6XQjH6Ka9YR0POBrhYjlntIT0zh9HB9v5ex8+MuqkBfGfBzraq9ai5E6ggWm4vxNf7CLV/vLaRIBtiaqZZY5NWL+8jK9W1bnFB6DqE7wTeEaPJyAKcs4IDLB3mY4HoOnJvUxaV3QG91IfnlF78ENlUlhv9mHebYMP2h9Fm6JdnvxwKeSENRhGML3QlpevmjEVAv82kLPR5d7pNT1OYr2AKfsMYLhuBBJwjhp7sNCVjR0SVOR/RVlq00/WtTCT2LBQ6ssIgMikwrmHpMZ898ZSRK47sBno2ri3300SihaJwSnvWPfxj5z+zCfoDt4TEW1g96PSnwY6UeSdJdnm1LgOWg2mCFXh6u8GYmYi2D+Az7YjG9oQJx+wPIAJycG2GpAJw4rvTfhG24bSQFeAaxRufHdUgXrxdp7EOpyzwCESAAu3nm6QfNoVPipVZcPl/5G5CZi8jPD1yHF7hRPGsUM4lvzVuYgOkiRxGF1+08/2ZeiyJ+E2XjjHhCtcP4MZlHFNrvbI6iHDP8W7FIxTj/kCT+9L8JLvnYIyg+OQW0bsg1pN5f2tSmmtzhg2c7lybh6Cije8HgnY3S6Dc2THNb3+nqkkcXH5jejG/zBXbnrABx4mo2sN8MT+MbFQFUZQMAv7vtNibiWrsHamtt6q5Kwkd5DfuDCTDrtaCSGOoktWS8v+TIci5/RVKqyRk1pyHsnGAa0etV4eanLLm+uOUSkJt30ssy+XTVi6vW6mLOaVy77FhWvciMn4He/RN/Q42W+Hi30ZflIn9TFLHG0bFpXOckMhVLe9RHmeBeNRqvgOcyrsAX+Q5pvoK8DOuB2pge9ttnRyiDFtSIdJiTah0noQp4XmIqm6O5sKAIoai3l38EAk2QIdAcd4yBol4azgqCCi3N3Ln8zDGa1xZETr79dtPdOQe0PR9e+gIhzi6pV8MLf80VCUxvCQqnQMcGYmeHPeLe7mt8R77UndTSfZIFiVmV4lgYX12mjTSRpf/d5IJ0l0x6bJZaYZ3yWrLeiTe/XM+lLsjyOSSycztL2glaXa5fFR5dwwTZu5faZb8F4A6K8sOddSRM18C7BFtGCCGGOOvB+J9UzYbPT8pGAb29+Pdq0O6rupzy3CnA2Bv78ipb/MTpYKH9GETSkkoGkytYFbGE80pIZxo7PtsHXtnWxmDvLJszzIN80MEABATxck4F7WBahj0QPLoilUoTan+0MX16IkdA25mERnBvsmnwbYuT5JfOhgF5QExnsE/3DQ5XJXjBdeTquoY/+WVOdi3WvY560jz4WKsKWTR6jbjKmzpxWl1s7NxA55VTSEKXsW+uaMvfaezNurU8av1zmxhs53K6QIxkfYeSihg5HttJ98AYr9doDGNq9Y0RiNUXg6+iiBb1Uq2dMayB63OJmn6IdVmFIB41o3GdPX0IV+pUZ5vCqniHdm9gvxH034PNXeXek39RLBYXumkekiK0eTWEh1c6Zd/QsEgPXUWZrZtQTa2hh+S57hlP5CoaJaBAu8VTgy5UC4wqE+oKqBawa+pM+OF64oMbsAec+lHT41k/w4ntNRqVdzQG2Vgc0NxTv7iM9yh/cY7k6Qw0wNXSceLsFOG8sR2CxoH06XZPjquiHwSRhCYC7eGxWx7jJeaSmhSVZb62o91eX9X/g0WAi134vFJRmC+CKoS43wwgr1Rdhsf+G0NglP1InGQ==
Variant 4
DifficultyLevel
644
Question
Charlie and Linus are counting sheep.
The total number of sheep they have counted is 741.
Charlie counts 181 more sheep than Linus.
How many sheep does Charlie count?
Worked Solution
Solution 1 (Trial and error)
If Charlie counts 481 ⇒ Linus counts 300 (781 total)
If Charlie counts 471 ⇒ Linus counts 290 (761 total)
If Charlie counts 461 ⇒ Linus counts 280 (741 total)
✓
∴ Charlie counts 461 sheep.
Solution 2 (Algebra)
Let n = number of sheep Linus counts
n + 181 = number of sheep Charlie counts
|
|
n + n + 181 |
= 741 |
2n |
= 560 |
n |
= 280 |
∴ Charlie counts = 280 + 181 = 461 sheep
Question Type
Answer Box
Variables
Variable name | Variable value |
question | Charlie and Linus are counting sheep.
The total number of sheep they have counted is 741.
Charlie counts 181 more sheep than Linus.
How many sheep does Charlie count? |
workedSolution | Solution 1 (Trial and error)
If Charlie counts 481 ⇒ Linus counts 300 (781 total)
If Charlie counts 471 ⇒ Linus counts 290 (761 total)
If Charlie counts 461 ⇒ Linus counts 280 (741 total)
$\checkmark$
$\therefore$ Charlie counts {{{correctAnswer0}}} {{{suffix0}}}.
Solution 2 (Algebra)
Let $\ \large n$ = number of sheep Linus counts
$\large n$ + 181 = number of sheep Charlie counts
| | |
| ------------: | ---------- |
| $\large n$ + $\large n$ + 181 | \= 741 |
| $2\large n$ | \= 560 |
| $\large n$ | \= 280 |
$\therefore$ Charlie counts = 280 + 181 = {{{correctAnswer0}}} {{{suffix0}}} |
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 461 | |
U2FsdGVkX1/6qOJMiOZ/QgluS6AOR6R3SpXRLaN4kj4XQQ3YIEzI32mUsJRjq3xU09bHN+a+eIlYiR9RJiFEY3yEaR9hb0gwvlO2vaFD8KmdMnZfB4SXp3cy+ym8YrziXQvc7erNWqTTJkFXEQmuoYWzq9cmJspuJs5ZSCO7N7BmOfaNO3aw6C9MxChlkGWuZnKzRsRSHX8AxOWGj6l9oMEOG1IqfhLX4CiDPri7WyGY3AmhWBdGFVL2AovW0KWW0dh4mfA7gjgzCZeqZrBpkdiljWfH9bf+b84HRjeaZrLMciDCuQRJVSW4vLfxwDkkf9zbsbZqU749H3Lllu8s4fT76LBI7z9mwA+Q9vrWSQMVrQj522rKzdw3ZB5PwA7+lOFRmrGntuE8yT05uWyck2eJ2LV23I83TcvqIw7lkuDNkd2Q3CPVq2tFP7fdnu0cuMKPs3S0isoHSpFMWVkSVpPLqvjunLZqIHVTmAqKM0t2mMWiyW+D1TKilfhNdV907tA0DB0xt917y7iorf5w/P4lBrYm2CKlsHUvnahrKX+P4I2kzqMwKz+D/9Diav4RsVPbmFAW5Z65W/RnTgHdlgov790EQI4BuDmOlj1NoJp8TOg/OuqwenE7AMCJd0gYQjG0IE5MvMDvoAYENl6Kby9lgmeWU/GqJr6k5xMXErg5FTz/78StYKaLS2awVBbL9pNizEyt6x0ilkxUHYKHXc1nND0refoqCd778YOVKuvL4IMqHOSSmchS5ZlGqGUsQD1j2aVKKiRx64H0O/Fa5eCdwsFZdLncQPrTG3o67+ZXVm77xgdetTYmWbNth8u2VQGx+wIELDKipdaM9PowHlNKXfh92VGkWfZ9GbdKYnw3fQm9uPTcK1Y1m/Dp4rINkWRO5zIVR2QScNzrtAlQbmksc9+hewa+l8lOQsgrysHlmuyRmmutB+AHX9KUxuYw7qKaJEN3Dj0Rd6VQeLF4Yy9orwFybrpkI/Zv8WGQndLSPwyfz/iukVMvY+ZNo3q9vFRDH7QdpXhMfXl9nE5nRLcZoMAkV9vJIsppH5apsTDGac33vXpb7S3KrUSlGTMAYlCqfAT/lFq5gwU1M9SpmOCNWjHuJbxy0I91C1nZH/2rF2ylzwCkgBPXY38X6IrIlAa8VJcGDUFPReHDVjMn/VQK3CVzEgX5G/s1k6gRNVIckhmzhr6Qe4/M5yWsH9TVpmRtb71YzIaJax2erXiq9FzBd8Gy8fEGHV9e57o7mZQafJ6MgyJurfxRdYpVMx0y++4hIRlplzhUFPsMUXfyPxtaE6JQRGlXzkzBfoBHZRBu7DOGcjpJaf0TJvOJ+FnPim/u/hiBSauP6caX5VtcrYmQDji6lRHyRh9uwLRCHDoUz8J6j+YR3XbHypviNJ+m7fHuAzIEkapV93eBbl5WUW5esDfZ9qAmofyyiPZrbzNy0rGPaDyorM5w7P6O/gTCqsdK80m9FJgZM0jPGsjqt08Y9t2g+FoRu6aw3KV4pJs/7sGTmY3v0KR8NLTyPeiYwJd1ewK0myHSXBO0hQ4myrNz2y1WYiJRNg2g6taH8RWmauzxMyG19aHz04Bj1SV2Jtn5xgAT/MQ/npJHE8MCUr0naGKSvGkb7CoNnTimabXuKXrWF8zRlc1P3pXnXUg4zLtyxwZJBnUa7JhlTOxZ4u1SvIn4NXYnA1oeTVcSNjaLDVDqC6pcmURsGZBi7QhnrRaamNWQ1nXhu4BJlm6HVIlDZ2zks9lSd60Bd2VXIUG8M5E+kYV4e7eARbWAhGSBslwUxBS+kGOE3Eg1Y+GyGexeicW6TbgH2rF04T4k0bqbdoU1MX2H3e14PuO8h1z9pwp0IpGu/8mqJ7McweV/VZ+qI8cH166BBk5a5DR0UOJgyej/9RuS+eSSHSP/9DolIxPuwqFv2EaMQQlq595KYN8ocF467fAJFOHuK9/DQigCGoo+Zhfs5awwNCqarI5ikNEUnPJ+fzp9M95vqf0fcFhgZR5o72vz8gkmLr9yBpgpc1r9A1p867FqROuIjO2SVJSwdxV59V3rpSrwHiH+o7pFUnndw63s2KRRtdsqjvn0LqbocaCMj2xnxKhQ41on5RvGp0RdtCkuju5ZHrRBvML02+L5cCLLB382jYxpbF6dcFfSaAwyCD+2X/OrNTCgKj0Um7xHz8mLmJpJyjMu2K4sRtxV61KabNTfZtZFbGJyuOM1aOdPwJYR8kL10LbXQBt/vyiG/71psSI7rLxs96Uh8ipI7iZ8s0BLpYzTDMDFyxNm/btgqmInF/n5bWvmp7cxf6fdn2rELMVCDWZpK9/ktu6o+SPYa4qiAOs+I5MHHzFi6NGH3PUvY3QmsIV92lSuydwd9lPJEeY3AWJXeEZ6WgFvfYOx2xCWDr1eFtKntBKjV1P0TDYX4V7R9IKxbR6bvgtfV6kInftxJ7fBeR9aLk4/SQ3VkYx6vJBLwVQrwUuPa7uGV9UpKGT4Fkgz7u8WHs4rVXlho19j0NULqfd1Ghu4xqp3yZMn6ut3fcWEaWz5sWZ1tTKwSe2pkXmMt0iFeQLV/m/5pKkjIS8Y6kFeJZ0uZ+bcoYcdZmO3sNhd+CjRB6aulNQJMkGiJ3dKY3Nj/O0EMvECEPxwuTdKwTDuH8KDiAP348RHv8/kNN8hqZqXMuvmEZhiOhVvsIYMqBUAaeLO8VyK9I4RanHSnacoOL1QFIf2X7xJHq6Lg+RrktSLtThPcoJfvOb7hBOtSiZxCRjUhpFoRZNWiYsUYPIdFdbaZDlRCvhCpOxTcB4X1Y5LxpEgXZ/hvO2Ra2uf57v+nUpT1IYdI1s8kX0ymCGRKekq/q1WRZyG5uivGitjxwdCSaNeGOHNccr/ppAOuc0zogM0KxPq3ql4xlApwDdUySu6HgR8JYOBX3GjMR8S4SxRS+nEwq8ZA/XBKeIFHyZASKq6AuFdcZtOtrF2x8yub191ZhDVQNJRNNL0LQYmUcN7I0lQ4/05gJ6Oe0gLltKsJLlkL0aPlE4jA/uo+hnxn1O5ONml4XLyRi4RAV/uOCUF+PlBgbwzgYC7Yqq+uyJtSIPZW4kX1NHxmnYZCtfkNu4UPYJ+BNxA93oCmbOUzDu4mpLYDtSEEDT2IbWq6pU8u51T1GD+0t/LE+dXRdc66X88Nbimrgt7X9tEyBSGsAWJyvOyNDSQfhvo1yZe2xfCn+2znXWQCoKO4J1q4kc4Xx0ufAc+FGe3yhxC8rnyat0IrHy8pDJGbu76e7PyMu8jifabduYVO/8x0oOgVKlcW80G03m5mJHip76gpnxGP0BNbSJOXFIPuEhizyaTcd5pqSMSbHM8I4NuQjRsjlJOSAcP4xCg5szEvbqM6t+Sv37M/wTJuxaOxlInb5jehNOMdK95KkXRtLcxfYKPj+NIkJOVi4Mi54Z7f8z+tfVOa0LhIBp0jii+chDYs5/xoavc5+H7H11d0cz7v+p4Gys8WjtGK6tDgbpn3nD16ZX7/A7SBqqCOIknO7+MRc+u+8B8kvQoN8NZOJLzYIt7MSlz2zbCWiwM3GMCNApLR5RO9tVhVTdMoqNl+x03bOdqF45gtxep+9IWcc+4o0SzSLqwr2TuN7co++1gAzXDxoyA+o2ry5m3yb9Qdh4Wgmj6NMZEedRjl6leq5ucKmlVMj0I848vCfjw+BPL1wvGUMccNdn/9lLXHVr4WF2HGOF8aP+r7asm78u25UfgoqR1eA0XchHZ2Udc8Ftrk8Vaw1Gjw1nq23Z6P0xzt392Zu9vdbheKSZG1rPoWmJApDO7W17uwjtqMNsG6kQiHqgipoLtLQtDZYA3JST7CSyvRMXWuapjm4ks9eHQ7JWgsWCRUOo6BgxLsC9UbPsAaLOV4yCUg4PorQ71zquj6LnU90m3p28OE30gNaBJRUy0XQKhlaVMzhA9wiYwITkSqgGV0PdaJ9ZPtqUgt5pHDDX549fYNcP+W966htqkWij2JomBPblIgjrMIVBxACib1BJwQN669tfMWnoLArJdUct7G5h+mug2IiiL6dFyqNpG2PyqEIc1tEdZDwGPXi028Qmj2hHJkGv4beOE+IIqYlwyFNoQ0xrY+Kle5jJnXJB14jEWVoCwrHvdJfaoTF0A8at76n+2vqqOn4BN9FsFEwTHEE4SOluh8VRjIdbB7wYAISmMED90Umy97XVXz7ZdONJxN5gPCFzejiHshMD19XDcSJUZV5fBBSzAE4wjiZWejnC5DvAE6IfCLZ/BrK/GDDtljKDRzHNXKz3pQFI5hXDyd7iaiywTlqa+PfcGKCSzJd+3txj9CIO/3USu3igvnBJn9QNjAkbyjMaZ8Bun+2sq+ehWDcyb/alpRVaDerewZqhDHN9u/tA+ykocDakhcBgacQKdMxTE9rxLSBvxMehSEKl2Z097h6TT2wQxcQ0ET2TN/kVOqjeTL6tQDJLhk2Va68y3n1rUgnBTIBgd49JwSn1tQtLkSUOzs1k24fuLhXgv2qqp3846AojGDZ2i7ltS9wCVNcOsGs8phB15xysqUbioTMETQGt27lM8ZV+9j58L934BQXQN6UUHdpWfUc0Yve9V8ucXtE8cYpN5gjKB5sECm0lniOCz+YoFLV1hSagMDTEB6fPBhlLgzNpHwqwjah2AS8BoZ58LgUm+BI5yNgkI+cvJch3EVibaaemX3evzusg+aobWTeXfc2T597bQe66rwq0snJFoUkwqOpEPyJcKo2/w5buROR21sQLvpYVdMsCQffIoR29/GacT/nambZ+f11tJ7QiL1lvTQocoBLKi8GMtpOVpzzT4UJ9hHl79HEzLPJYDgzcSe6WgG2hB6hoD9deMskgty2RO7QQsf4o5FyhFOhl0Nq5/i/ga4yxaLwhDnlXFdndnOmnjfah4Qgauht/TBTXYCCRx2Lj7C7EIKn5QtdnupBe4YVijxroPwC1arxZV8aGW2sgpnu1qYdWrAr/WNQSnwA1xrxyW9tgKCqHR84L5Vwj+s4r9/EYk7xVppbDglCZO0U8L7dYqw+4NnMoar1mtSd/sw5Cq2c0Y1YYP7EYl3EnbsE7PvV1/fcW3NE02ndJA7enrMAbQmzNkwesN6QF1lYTcQFfhN8E0SvOyEvuXonwzqIsmSSkocOpLbeAZT01hVAm9TXpxTqgLRJCLGrDzEDj/moLzMuHDsZxbVGJg9Mm7MdfZ4rIF484HcGA7H7Sg9GtRrlyODlnic+N2nwa4iHl7BnAaJBi6OurlzTlAnLmRWUAOPrLxtv0wltGeM57vwFiksQqV6sNGI0eZCFGZd9ohpeMW08wnWb3xa8g7qTtfIO5ZikFeNbGx2i0rHSq67/Vneo03n6Prc/giZPft2enrvI5hN4zXXVCLQe4r6t+b3EGkpeAS6oo0XMSLmHZ8GYRUJ0NzvYbGldENPSQpDutxCbB5npMSQly6Gbh31yjOPKTy81COlhn3p3Wxy2ZOnne9R2D8LpJc3DoYCD4xM1NOeSZg4b9ml1qcQf270G8famnvqeT9xImigOHX2e79Ytxvmd9v9AX+4qS37majSHf1n9FezChhB0i1+EthR0o3+MI6xolrHSprGQ02zWdQ/JpoJezRNlLyCXKZaCsQVQ2IcNloZ81a0cLk0e0Ty+QyReaWYAPMwMBARsO5IBStqiqBuMWbsdxrosf4E4qDnOqdZCD0dlWBFmZzHH2DmTDEXPufMLMXnpLgHNwTIhfwPN45AcUr2TcnyjzXIk6If7T6YJV4uNpYSGQyZUJugxuw59Hvt6NjjBbyNZZAvWNBkBHJKvkFieH666/Nl55881ZSUgW5lnKbqn5KG/iiVtd8H1ipJHROyxPM0lGNwJGm0Ecj46ZubfuJolUE+26dcf4cW38vTHTjDevBgOoB2uXi/lFuVnlaY2v7XUXeJ/VCufJbZsC5g2oCg5bjfBXcLl6gcIzI4VgeHOGWzMFg2y5ArHP9bWqYzDPdSU5n1ct5PiVopL2BkK3OMfYZXccNwkZzKEc+jP4HJonwhAD8uWgNR+GuyEOU5elWfvYEV42h828v11GrsjktbKi2UMbZBviJiQd58n+Rs9a2VqVihTG6swreZdBIUTm50VG2j83aQjELDPvvdnwGfhi11V3iqNG/hpaQhcDj69gMsOSs/vYxkO0JDl0YBXxUgA9I/F1EXrkaj8sLWbOK9jImo0z7nWeVJ+q9oXU1cICFO9UP9l1EWgq5e5RfcBQzItTRPxXuCOsn6t2hJryrWjsoHp9ZhQYbwub3io5imZsgLENZf9+QjZX1ENUQmlwDy9+gow79TKK5ovkt2/9kWz2v58kbSzfc7oQbrg3DoHTCL2iPE0BQKAqWPOOek6SAkvbiCb9PY3Tz1ddbs/ST+YU8VSW6o8Z2vvDFi4JcHV+OIVi0EO/Xjumi1QEMgkGehQdgo8BUwXCp4Swj7gm/l+4yNPm4axrofS4jwN1Yr0tTMyoRLgSldufGMz3vh92U1AZqpuc3ch45ml/BoFj92nvxCdc4h0vUS3Uvwfv0VSgsiqvYKzkXFGr0A4lLL9u8Lov438/D8WfWBJSI0qo1g3p4Ou7H04dIMB9NaVvCXuJCc66TmYXRrDrkwCUP3eVSjVYQ12Szl6Zd5mmE6F1qN+3UYnX+sIOLpBCUxNchb81Kh99yzspaZBi6S6INusSo8wvcusc6BtkcxyJnfKRtMgV4T9o5O27cQMZlIY37oXU2YQXW+gEfgM7DYaPfs2ZNbZ0tStHAHAgZg6lGf2aiNi+BwtWG50amwsthXUvdieRrrxDnq19fg+YoauLlXppacIceyUIMHtkn+IMgEingCLHVGd2fOqD7HUU9S1F96DPDqqu503RgY0djfhH/rsxQ4hkW2aAGXYSki1aFove/uq2ykRr3Y3rz9wosiAoF8d4VoVMFcNIuNMxQx/4HLMfByJgCiRCOKtzYeja5kcSt2ddyKI2RkQSQmar1q5RuxZKLwX9PFsHx+71jvyeEyhTsgLreTBxPXUsIcaTPDIyZ5AjTeldTkqtYBrpQAtjGwgURe45/J6yzz/9pghgHlCN0cGtzS27GOwrLwrFich3oN2v4A883WobWRyH9o5QopYTyIDFUjno5v0YK4WWvux1VoQPl+kevl8SDLgxnKkc3BAwP25ydsUrWuWGiBNFU1AYLkI+t9kbFe2xTDle7FP7hWVhESlQqFOtEg7LQ9ysGYndYK6jD1dXK+RvXhuGLeLzVDyPf+jyJ0pJR9cJVkLhVA4+GvP7Duxc04yszrToouZwj3Vpw7iBNGuIuxLBTbGfzOEnAlywLPLu2qBj9ZvqaOXct1L2k1V1Hj/io3HU++eOFu0JLHVw6MswpR5zaFBRTuNtmswbQ0LRrN32qRFqlO3NBG5SAez8lzBKgQl0tVRepQK0elj9Ryo3JEhx7S/lDjOXyJGVlQRO/afu8CFZYyGOnm9KLj6+uko3MlDrEHKYxDwhBeSIlHUa44OUkoNURIma+zVxT9vzZoSLE9SREwlkO5lW+1MpwQkANll/MDKOnsCF8xaXa0g16AkN4qbfNUxsScvDi+iYoqI9m6p0GWnO/JT32URN9kc72bBUetngNsVXXsGlcUL4Wzq4QVEY2G+pVP67AkpPFIijVf8Zt6o50BagVlQByWfOMJbw0H9iEEnt65OIe+seVejoI2EPgIT/p1+j1AMZB89DiIn9yAZ/H/Y4VdhqWWkHDJlSgO9qFpAkmZ8tjTCoDCETv9pa4zFRBGMWH+mLkqdeOyfwEIUVkI4wXouwPvUiMPGV5XX1leFL/pfrJTpgR6Hf553RoJKjYYKwLBQ3EKVlez7HSoA1eZZgBu0/LuVa5/kJrNzOEZDYS70/4P2LFcPqAWtMylmSjIcOq9GXteaT8h++uvqoxTxrs9uo52h95PdibRERm/4oP4nso8tclVcVWnr1doWqRC4sMhao0orI5bLLetKe6MUihjEFCM3wU8Ybc9Z2B9NnDq092g7qhVn7JkaBCz++acVl7v+cZMer7OFm7m6tj3cm6snMGWVt+ChtjjKZTVhIsVi2Fe2aeTKiwNdVmdNMQtIYgx08tk/UociTwWN2R6fBTSvEUxjiOjtbn1DQYENOkxB868vcxL2qTv5ZltKge3u6cULXg3uCdRA==
Variant 5
DifficultyLevel
648
Question
Dakota and Duke are mustering cattle.
The total number of cattle they have mustered is 2500.
Dakota musters 420 more cattle than Duke.
How many cattle does Dakota muster?
Worked Solution
Solution 1 (Trial and error)
If Dakota musters 1400 ⇒ Duke musters 980 (2380 total)
If Dakota musters 1430 ⇒ Duke musters 1010 (2440 total)
If Dakota musters 1460 ⇒ Duke musters 1040 (2500 total)
∴ Dakota musters 1460 cattle.
Solution 2 (Algebra)
Let n = number of cattle Duke musters
n + 420 = number of cattle Dakota musters
|
|
n + n + 420 |
= 2500 |
2n |
= 2080 |
n |
= 1040 |
∴ Dakota musters = 1040 + 420 = 1460 cattle
Question Type
Answer Box
Variables
Variable name | Variable value |
question | Dakota and Duke are mustering cattle.
The total number of cattle they have mustered is 2500.
Dakota musters 420 more cattle than Duke.
How many cattle does Dakota muster? |
workedSolution | Solution 1 (Trial and error)
If Dakota musters 1400 ⇒ Duke musters 980 (2380 total)
If Dakota musters 1430 ⇒ Duke musters 1010 (2440 total)
If Dakota musters 1460 ⇒ Duke musters 1040 (2500 total)
$\therefore$ Dakota musters {{{correctAnswer0}}} {{{suffix0}}}.
Solution 2 (Algebra)
Let $\ \large n$ = number of cattle Duke musters
$\large n$ + 420 = number of cattle Dakota musters
| | |
| ------------: | ---------- |
| $\large n$ + $\large n$ + 420 | \= 2500 |
| $2\large n$ | \= 2080 |
| $\large n$ | \= 1040 |
$\therefore$ Dakota musters = 1040 + 420 = {{{correctAnswer0}}} {{{suffix0}}} |
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 1460 | |