Algebra, NAP_70032
U2FsdGVkX19yPWqaVF3bXYnOitLsqfSauS2RwRRpB9T/YyUa/cZytB8oX3pnYydjkjKyz91roRyIRcWn54jXCpJrC3gH2b9zMkWKAS97w5jd22N6oECIYqtYxW77rBdCUYrqWNWAPbf2VYHxgYUDdry2bCZHBIAGis+LKAI1Ub0NOHSVEkg/7sl5f30b433jgWM6Ysee9eS+U3FitBpLeaTBKVbB8DKMRnJkO0LIX7CvjBW9qgWVOXDp91xtis3UdpmIO9hQjSF8uaMf8ROweky+Us2L+YOBxQ2JxguKAhww5Kdl0gHVp1QkKUHCH3SNWmTpgvnJ0899YGiK6wjYgAugeMW+I+9u+AN8LW5rLpPf7HdLQuwYNhXVT+qvZGv0/fDJ1lRdhetWzCcidEi40XV4EdjUXmtVWiFpTFHBSeRif3EvoGDJczvfkTFoIfvNQx/sEdBpsXl7BI9oWDwka3y0JBgXgmiyV/uDti0FrsTnXaESldbhfOB63MNZotHITivjhO5TIdfZOw2pfGrCEWY0Ax0y1ZPr7fZp6j8d8vw24KbzYbEYk70OCWimTICEYNOi+R6ZWmAtqaZxmG7wwVW9mcgC+pSS+bnmrrpxhHeG7pMo3ZacN/hiTrw4ZWQy34QaDsZosdPjj4CMx4Dlvldx+dKxr7GCWUPaqVptSP9OOF5JBzqrpTU6sOayxjWDNsgmBKAdT8WL2UTfRDw/5RnsbB3xxXBdZOJJSVeY/j/PWzPiZimJ5QznwSk2fyRKG/vsVHDm4h9rqpw/9PRYOdR+IBm3nOlXvu/NCihg+fcYl9o7IH2NQydlpmG+E7hcEERiZRa9M42oV8BqUoFZWybt6pFFknsg9kTWvKIoaDqSP3M9nbYP1jCfqXarW/DSfgFJ7LuNLeDKETBgwlSJ+QKg4SJUR3IpoC3ymQ/dlZYWwOB9qKGDBHZb9m3iJ3Jjk4B7YZv8wKtKSrUZfI+adgpXHUeVI0UU1MYywzMsaQxuB26EebgyE60qu47QvA/whNGnQi7xJTymOLiXKauVj9csULBxa5LCfl7u6VUOHSN/K2rv99YGrFWBBrE2yGX/5eCrLBOWPGOLQpAvg+ICO8v7Xjf6TuvaB5Ryo6gi3O13P12FMjKLFpRvr/SKLWeE8PxLtrC6l4PtcMgN+auptNwZIwwRN0LaBpfxn6P6o0qqPG5PeYUDCAfCSn4bGezzbRLcUeVeEl87oJX1r0mID4SClzyeOQr64P12n4RwgYpmkn1CkngPu84VyZF0Fpv9ClOkteEdwIQresrwkOsG+ra3KBf39sX4xhdRceyCYUiAWMOOKnlDk/i+lC3DZ4qqoKmlO88bfMv4Qb4m8XMmzvVekh+1tWQywS1R5Gx6PP4o+dt1kkfGsGsBBRyKkWN82cjSlbmnoGUiZ6V7Bw4geNDawrKguHtT5HAmNsKzJGX2/4Y0jxyffzD2EWTloFewyXQ+xNq3RKEkhYPhga2q3tikzxouhyOo4n8RZizW0/lGZMf6PffvZ1JvyhLJW/hCyq/3P7oC3s3ngZceXhT86CGetvitfL9n5WaIDzHgs094t+dQAJTHZS/1Y5OTtIbQllO5ckX4L28UP9+Mu9eBFRz8upClJ9EJu4vpR+pCAb7XAinhmB8/e8c6C4gub+3Waq9cgFb83bUsh1ksURuGMwUMF79NQShT2SP7mrUpMSEnROjHtfNvysARFgDpkndQEJDefwtG1/7mxYYE9tNh4fg1FxElEjsf3XZzIABeiuiRHxpynnR2U8dbQgnw+3fuYkxVLqPGEjfzDnaqbTWBhNI5z8iUwC63qYeZD6f/b6yEyutznKbQ65kM7ERqGSgEDHPcgalb5XV2fPnlKYDGEs+vkSFYEBP/3LwyI5lWO6V43c4tdP8L4cJ1jS/6EFGPuyDP2sEWd5srkQsYOdSacU8r9kZJb/ylgQ23fm1EHrzrLxUoXKiUA99QLvlJq2YgYMdEe4Wr9svWFy77m5hoT+PPl3oDlwtKESTQ77le5MkbQBNtjsznrj/CdX62qDKZiADyJe1cPTa02nITBAcEnHJKkEuACQAFdLG1IMFgNSqSX3BeUVnpbc3ykAKzIM3YghUxJFY7NN36URX5pVbLZGEDT/3fHgJfSHeD3F/TAL16MIxDMuwdTnNrDHOdz37BwjlvBfAK8f3Hjh1Od3HiEga2oRe7tqjjZs1ejI4XEFGvQliy8wNWIgKHu/PACMF099XAylXF+eNORhEpxMjt2brjfIoM9QuIo/YKLuBw7OAlpcyim0vIIB0bk/kiaQ/NBpdjxzFbv0LXhzvAOqb0WKFIHTxRAVi2x5c2zoL4w9W4moBdTDyO3Yhc594FP6JVFJ24ak1DgFNpv4s5pFY4jAnHlnrIDDTUKsViAusyFAhR8XBdxVYAkTVUoGTuJjree7Q531KBPeYoQoWvjzQIBAv0j2QiOT/NqsQ4ZfOoKZGp5BQir0nxjs+kgwPRBj4CxTCBM5TfDxEL+MS82/YguUHP9Ewb1BPZDQOD/5v0N1RsI/53XDl5qdgQiv7oPrg8aqJrsw7z8QB2zZjDC/cymolzq3Had2pMyt+s/RerVcjo3JHUXBrGtaGaj6Dk6RTvyOly08HAu2Te/DYXU2ADwn2mDxM+7PhRvt6O4tueBH0P5bCdao7S7+OWBcpx6mhxGUwYa/V73udpwBnxFzLrOvmb7i/7YgBo1zzKdYOJfw8AhCvK3PmZg7ZyDCqOhovKZrGOYbGbowzA90OL9q8uLsdtNJw/zp6WwyOBLo5gW+7x+ueK5OC3ELor69YoEwRy1nW7A6WGmWFBfBDCpz+YRIoNa217vfkX65mIQfQTIsJo19caii5WNmOEdazUTOYeJrnZjNaDzdCy7bMkrLI3GnuUI3qjWMWg+MxeZC9R7/FUv1RYwTfiI+OGbmm3RtDWXTTpvlH1L8V85WnrweE1L1jOEaXs3zNF3AcuCOTZv0ouYVUYIdMRmwqKAEG04kMyJYwyqixlB92ZiU2Qm1nPIuqsM9spYfZnXkf1t2IVS3nJTQmwL1zMklFAJAbHColIcel04ZAj22otNzC2lpQQTKnBwYtolEdCCCV4tHYD4zM1Mp9y1xCSAwFL6KWbjcZwtzIrVheQ0/a+n9OVtx1y6FZQ8NV7r6H/TNx5fGY5foiE4oqGZOECf+tLzFcGOUezp4QICZEoQLm0t++4rtBCYN3fw1R1O9hmZ7dJy56tOjpbrIQPIRMRdAXkssGoa5YD6XsuVt2FselxGc6MDzl2UP91JoZsDLal7J3Bt71POs/5ptaj9aLb92j3w2IqefK0gdaXtpHKVE5oRXI+LGzpVs5++rPw9c6/QcrGhcM9+8S6QhqVcH25zyQ9gYNHrzWr51wbmh21CqzhOmHshv16u9642DjUEs+g+nk8li7L/hRa59F1NHw44zpTfRFrMYXYjwMkTVGI6RRRck4XA6rz0P5KNH5sbsXiZ5i5/TpRbc30IM+Hg6HssI9EYqMBTSMCYOGlmVnGVzbHJ/utrR0gca5t4DEUIe7GEiXIoIfW8BNjjTFECyKxJsLZqPiwYhlUX/i8SRbRCzR2PTqBG3cYUG2HZeEDmivyJlkSNc5u16UyHJyZZpJJd5ku5iXFU8XPwZYbC1OrAPbsso7c+yToVd27nnvjP1YsS1kjFd6GnMWbnduHdf22g4ceEdw0Rr/pjr0hCUE42D+ARh6n1YhSHA82Rkyfsz0Tsqjjyl3xcoXLm4BlSsR6agFrx1MvesGx0v9B3mvUV+hLoKAA1Z9ncvMnjbi4FRxahUycxV7sftbVWYk7oDHNnQXqtc47EhWJwjcHO7BD/9iwMzAwJSiX6vftynEZfGc0BjZAtPgeWhRnYGnUoixs//wXRJNwtRRMI6qqJkdKSssBZhOTe3TIGVZdVn8Z/FgJllW+pdOAleP2TUe/iWWbqx4DOwTP6G0FcWBzqeepW7E0sKz6GxxE3j7xq0p1Q2ZgDYVP3l94f8LqHJgbTmjiKe6tRU++w1sLZkt0sNRh0b/pdJaQvLixpjOsCCP/bBgkBdMZfSFJVKQRukNoAZ/GqwMDRL3o9JOaG85MvjWEdtHU8FfwWj0VXNbbP8xvgvyGLgw/LYpscMxwt4HXT138V5tEjmMbW3DtI7MUF/cjW7LVNt1G1IXiAzNy2kVb4W6bccTA+kMGdPRRzW1/27z+Dbyz5Ggmo7ueBnqEpv1C3aLwRL8R+V7E+2kNMVuDyD6yDta/PbparXHMGfKCKrL5MXLdFi395yWclW/sFm6GNvpinc2u4ZiBsXRVjT7FExi10Rhodf0G9JxYfJ0RK6YYqwMMm297O6El6OYZb8QyXhAakOGMcunHqzd3UMf3WCqmaR0wQ2ju6sJx9+oTcToXqpMv3TNSHi3qDUju0oukRRGEJda1jMxTOGKMLhXQsVKYiCLsPHGCpLa0MaPCCrmSWmDzuEVss6kSPmfHDGS71P9skfEDU6u9TPpmFqkPyUHxnJ4ni43k44K7S91tJ7nzSE0KrJBkzNAX6jzXsvNWhIB+45rKk7K5jzmCLwCdxu4gdFb5zTav3UdB6xpdMKs3cMvXY+UrTU5XG+DBON4eESRd/Cvoy1wmc2wY0QhfydvQfRwcCuI5VQLBW5uKYSVKwlWkpF8g7GztBpCdMVLt4VIn6oAUEcp90bMmCq0tp93x6fJ4JiqEr8tmr8+haJ14AWTMK/DvE7EG3lEwTjnvrXvygmrBgCsGiT9vW192BUlNu9wwCnNaL6TTXVWklktYaFj+PPVi2OJeyPRClT0O4jCCLNDQRIXYnvEeMjQSJJAgVU9Pj4GK6+np5f6AhY9S6f/fWVbSINm6pcKylgI0HWlUJVFaE4ZECweoTewgM/Zvow8va+cFs6tQwMGs5RzI+IVJSBmAmxC1N1AtIA+bsDW3gV+DmzYk3J/6gnlywxVZuf68V7Vhf1aAB3HH49nDWseZ0kJ/u8YyPeF48W54kPrmifPgeyZOv3YJoMpNNBHs6sgkSk87EO9ZFkHUxkH0e7SbT5xxdaThF3TY+xFqkORq2YKGRaVwxhzKfwQdYzSKP0WmmiNtfN0UyLFOCiTkRy834Bc0ccCbmoblLQofavKNRuKiXvpexCEMyE/pZExpa4YTznao0w0YGS6FtZKyZuMJdCnjh/ebCARPGJImb1lsxgS/ZJen3fkBBPYOJ+sYLrh/ZUKbqzb7hAbkqIfG2mEHIMOmQXqQR3zYy6ojDSEQJdkHv0/KoGFJAVSe3W+3kWEYMkwwTEfoaivrozAQf0ZwFusok26u+GeBMpnV8eyEB4EU8HiWabZCLfNGPyG5LVIuMTjg1XDieBAr3SmipIJrIqjPYlT1SxwQbd21lzppJ/cBP/vhwp2VA1WCcOMI1BKrI6762Dd4Y0jkam/6h4my4rj5rmIDGSzqojnP0xqCSqJJKehrQ60yICVc6EyCV5TfvH++2pJviMFViRhdrZjW+l8on446OHMiQ0PY5+plL44MbXI105A3sxXg/kKpsvg+6FcLjiZby9jC+KOV8VDXwWOl6lLTH2vKjNAv0CYdAMQDZBLz4hudrklB4QJXCb9hOQ6e2BGH0tOJpmdVjoKwVfFlbOkogwSXBAfMr/iO8NyjFYM+uqa7AKiDtCUV/VT7zKosfCM7UohyA12eI6qmrjXkJK9gfqi1qCDAs/H4R5EiXnxp3az5d73WiII3TFcyp6Q5UgAL1hcXQG0JOgXDiWqsRi00O5S/ixamOFJRGw45VJhwHsj+4jOP+1gG7ajy+EwwkS++jIgIkb5V/t/We7yy4i2cXtdsQ1mupOSDs2e0KnDAVz42Pt2hfAjdFQQyxMpOu2Vcqx4XXAjnHyhH+5bd+wLJaFgfJ4xmBN5HWrgz1Yc2E0LMXZn1TyrWCukL9gfGMUQvDLNAaIt497ZPFlgdD74N711b1J8On5Ti85c4zjGndQO7IfqOegcCncNHqCwwGAxiiKeRxYqq7XvfGkxgcxBKBkRvYaAeDqZO8qjeErN42fNJ8QrJJ+ug3CXTgfM19pZ/+iCsskQRFZSWw5HYdXqYaVBEBb2zainYk9sZ8PHnWBTuzsNG0QNJMMZ3nHv8Tk2xg9JedxLxs/OG99tt/EdAJv8tGT8yDxASLgzSvvsn0BcijBTvPvTuJ+NuywdciqD4mslq6vPlUz4IXwV7w0UwfcrCtS6mlydOfJfB5l526+sRi3QjwUJ6V1DbN0C6g0kmSuSqk3DwQRLSA9gNWRSCfkm81Pc6SK8bK3Ft4Ht5Q+QKh30JWz6Fptqobx3Q0yruWB2zbwB7mQgPXZVt0kxk73yNREnCnCAx4Qfwsxc6w5lSyzMV7zJRWVYdkU/d51xz55raxBuHqK/GIPnMHkSqpcFsodKY8e3Y2DkWCqzv3DoHynqxTo7u8tAtJmMc7axLWh5zivSjyMf9P0C7OlaLmXp2TcWc8kHyJOX6bbInhzWGSfJAJjbcUcOxOtGcPV+GBlaSdBQRHDMevblJytawPzjZJDt1MfuaimrthjK24pZhI8GJRxeFH04at8bVfvVGIqc5ksAz9DXEgo7HUyeS3G7PkHheWx0HhlKPGEPXHtquCsMJcu+LxZmyeCVisfbsBLwQ+tIa93j1cKoN6nrdQfTI/QPx4W8hh0Xay4I2wRcVpjADKOGLehx/tzCRhzqy9opBA/L3zf4f4NlM3/9yJlHtJTPHgFOPITK22ByC8c0nBnDY/tpm7lq61GA+0OF0o+xb3/LdcvpkEu7GZC22GKeLTwFedX7tpVHMOUSJOmZsUs/yrTrSyPhm8RDd7Fzv0fQldEkJsg7HV3qEaFlDIv6SN76L5C8bkvyssvpv3Va0ExkHw1t6ewzMn7KLyGP5SDIvJbv1N3RiFBY2BpIvuvgn/SrjPh5mPOto6I+DwPulwBo3qpSMvl05NvdWph5ygEd6TPIRytTuzetIF8ebXljjbpc+zQgTA87YKfdVe6O2FpjStBfoGtRZfYm9XB4hSs6aegeKxOfdN/Km14JvQnkrcsWB1ftKS1MgngBu7pIRVoYmi2iizKgbOSh4Tg3GpDrlt/HfJRX7y3E5OmZQeSI7VnrxHFBJotggB5WGQjAbi1ZdbPJDQbxHmqN890TOO+bwwDc3pqtgXz+Bne89Zjd9U98v5ya+rprCTaHwwpu0LS0gpnIzmvBAvpSBv6QkvoY4+ygpkgBbZAQACHoaoVKwOIlmy1GNC4WBH2KWo4kwPyLk4cddCg/YgdhJcD4Ri1DMVkXJE1IErgX8dXLFcXHb4HiLjd9IzztkvLdaHWwyBPa5si71hTldjLvmi8ysur30dAE1/uRMyV7tzCdTP+BpoKqSrNGHOf3uj1VhOeBRob/KQbymx+QNZZvoo//bE7RZTEmOADduZtICKV0oGVmm5cyBJm80m2550Hm7Ubhj7sF0k0iNSgh+GfhlqF5Qq7Rt5y1Vyj9RXeS263TiS1/ACJBVaeSnB8QuJOH7Znz90viful7MQWXW8PEMmeLfOqUAeZUQEAA728Ge1Osf08Sddfv8eFLq1vhIDcrML8bGsMvKcx2vVJvH41sEjug3mFh73cfkGg07jP0pUR8LBV8jnM+xB+mtm6hJcLfaYfF8ejLEYAUebNono+3DWrHwkbI9Dx/SmWLx5ur0XW03gOt5Ls4Qpv9ntnqanm9VQD6lD/p3bZPcTxPpFSCWVy17TsfX0ZFnLBSWk3pLkuZkhS02rArqbxkphc7U9xKlACS7L4HZinxIrfSZvIKlD/FC49RRp1wCk5DlsG/0mcaG0n75N3ZQko2xiwSv8YpLdLCVh6mIh4Pf/0Iaki1QqrYstyOzA2Ffaf1Mt6H0jFRtlOALbwKUREUd/iOArFgIuv+4YOCfQKrxo+9hgrIFfqfbKeeNbwzoxCGkPEb8mhqi5hOK6GYaBQtwUTaqoe+TA9arYmWM+7wETulO2XM82T9xJpHc+Y39QVw1P9ELrW8IVcr+oFYZrFV3yM4mcJQynHcbllkQtdRyyOgcnksnq5xitVedS81iBzmAN78tE5MH63+Uif7uLVRiFAEnpjEvRKHIJFiQm1LoIbCIgKBiDYBO/DqwLTA6HC2Y02IaOp3r5B0Hf+mAj8i50XUqeyM1+ZvruQKBx6X1wUQ34kvGtqm9khr3aCmP0zhvZ8mCG/9CXaQ0Nzzg2OhojSmC8r02ZImqvbOzDvNgivdwdwoEFnV4R8/KzlHu7pqvLfQhtXSIHTFI4x1zLuc8UnJ/DtZ3gMqn2kpCAM6kBweDjwbj5EwGt0wXyZ2kPIiPAW2B1/Cq/RDHOAxwFHfrcNEYweoL9l8R36iiYWWnWGVL8zXliHJax69CY7d9mBjC4l8QmURbpC8ieNoF5NbILPBBTfH+RHSkedS/jXGNtt1mXZ+oLoWopWgmTAvI/6WyyXCYl7UfdfRSC9kCwIuLiL6x0yo97D8Zzt74uTiJdwEf0Subt3WVfOSlvHxdP17Ckps3bbw1pK8+gZspXBPvJQs60sp4+4OUeqFQoUVSzFlOKMU7c10F7oANFPjxFPWPI/aHlc3MYzNadhCWB3HiM++l6Q0Nl7z6UAxBah6rACQyiMjsqdXamBhtyKvnFicQm5WifufmRPdX2rxucRZj1+nWR/bai7Q2FBb3WCzw0RIjKtDnYOrroByveQnXe6JwVONgrsKnh8O1tp0xUXbxWwEw/2kmYWiTxB7RIlIS2dYG/6JpGWLVqErBPnhvXPiJB2HrMxooxgmt3FJkb43sxvOo0R2atuUIqNUbHORmuU2rb0uOQAQQGQrcOhuo1MXBqu8W/fPKXCCiimGdNwnkZyyn1TBWvDpEJItRNv146fC2701/7lmtbmy6TSg6tVHp6j+JNk4cawEPaRhkAFC98fE/mR25k5E+aqXB2KWBOWG2JhZoljzdlCR14A4zxaN7OQdCLlzPXeIj9yX7iXoVMaH1QiWmdQCnWWqmMs1OcHf+yk93wDBES15ryeBdCdmha+Sh+Hg8HhOIOwmFlEhRsERVVp2BYhV1mp8vAX2RNtBRKlOvNF0S1oEiR7hOsvaK5bgmxwHGtJW2N8KtyjhmpCAIKvuZa3/NiXUja1nVxURG7AeapedVhwX2qViK0CzO7PFcdSqzjTz47M5hj8B+CEgoTdL9c2MJPozDnVIlcRpXWay6/frgzxpgzQtnKaMqlWUbXFv3u2UaN6AhPg7CoMT9NlPgum5yl0dw97CaBuC2n0azTdKtoZJrW/rDQRRSENYW04WHCnHJ4mz5OAthrYwlh04vicrznTmUKaOMKVl3ibQWMDsXQv4OLeM2CK4gglaZhgQV5DeDCZOwQHSx0yNMY9LjgD+qxaCcRXy92BaPrF0/17fOfly+zjNmEX0HETtIPfL0ZygbgWEyK/VX7KvJVLqtE5L0WYKATzXzsOC5kVmTl8blybv0qTCsddr7wUYBsKZrXTtEakAjjFhWg/ZE0VoDcw==
Variant 0
DifficultyLevel
530
Question
If the average of 4, 10, 20 and n is 19, then 4 + 10 + 20 + n = ?
Worked Solution
If the average of 4, 10, 20 and n is 19 then
|
|
44+10+20+n |
= 19 |
4 + 10 + 20 + n |
= 19 × 4 |
∴ 4 + 10 + 20 + n = 76
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | If the average of 4, 10, 20 and $\large n$ is 19, then 4 + 10 + 20 + $\large n$ = ? |
workedSolution | If the average of 4, 10, 20 and $\large n$ is 19 then
>>|||
|-|-|
|$\dfrac{4 + 10 + 20 + \large n }{4}$|= 19|
|4 + 10 + 20 + $\large n$|= 19 $\times$ 4|
>> $\therefore$ 4 + 10 + 20 + $\large n$ = {{{correctAnswer}}} |
correctAnswer | |
Answers
U2FsdGVkX18LdzzPxpiUN55Y6yLyaLlqiHlIa/da/xnGiUjtnzDWSlUGPSp9qBS5J0a6Sad9VkXawX0M7A5xo3VAKORluNrlRVOCuyMiMPfettxnfZp7tLBt+xWeugJmnQahaBB4el1RpfGkzjVXQSxDO5lTFSGF5FcaQsLimeZrxio4fKxpARYzhuJcUNvKM/shEQ5urNWvjYhs1xhYpxn4FpRmv+UvI5TTBvzf8qSce8NwFZ5uUXF+NbnvAgT+gRG7ttZWe8SaXr7CCe7nm0BR7iq8EqM0JF2IQYEIIbd8rho9sD6o/eY+b5fGWVRRnAwqvn1P9GRIn/mKfLlF/6xkSMZZsjhZZG2nVk/TVgHw/aJygkWtSODwNImDWHCkFmh2KMKaLPt5XgpQM4mNFlBQfLo46xbp7ZSHUogOi/i6Bx63ZfO9f+Wpc82LKBL4TxvMbw8A4xDOQ9qhV88a9hqQEKZcXfWwQKp9TmJxkKeqS2ZRrImcej8bHjYBmEECQl0ipdFEXf2oDT0b+jwEjde2vYR0K6/1Wzd/irP7mLowxt/IoUVySVCf5kAcT9GluhsRg8UoZ8ZUMPO/0BU66vl4M2UHtmYIF/w+8i3vtb9xxOBk+qW7JwpOBnvDxPHxDpgcXyySI6rsenuKUUHEjOaTA89Jgt+0hUBtHuExCL3N5iCyjQBL3MTT/7ihwef54It9dDwAnoWBlBSI2I575/oYU5K2uefIMIcS+oNV61GHTxet3nNCOedhu2Kuv0tlIEeeSvPgxqwUnkDF9hx5C12iv9lY1vx3cRLHPPiE7m4J4jfZh6sJE1fR+DWlKzNVfjlSa3+Nc9mc+H4cM14WDkU0xte0AVCJ/2psi8IH8kFyOzxsVDMeqt8YI/VndW0Wl4JVzRtXcNjbFxM/+oFCvFG4YAsXVvd+Bhmz/l+dHEkO2DkSqULBguAW0cUVYA7+82gCRIG6a/PmZOsty8xowALMS5Gqncj1g7xSGhHECKXoR6477p9yr2hl4UE0QoYmXj31I0ifaxhfW1PJtWPXe2gCXeBvZjB18r+E2pNWCEUMuhR4rqtgU+WNZhwQ1Cl2c8x9ZCjXzL/kJunBpFN+m0jN3oVx8VFb6U1E41ATjxyZqhg4/WUmiTzmA0faMWy/grbuWcGSAeBPDxo1k6F5sWx+jrj4CJjk+dLuoszPtvhrxVYXfnl3phkNoMr6K6IL0fComgX+Z7Uzm0f/+aCEctggVmiTTl0wJxNQk6ycjkdJ/9Zf9mSoP630KlFF+CaSutqPAyfycHP57dpjG8LO0Ye88XmnXficrcJ7VXaAc0gOr0q3xxzhDwsj5tAeYQYVdqwD+RqGt27BiPYHZSmoxOWRSUAkL73L5qntI/0zeQSsQVVXrLG9R6tklbkMTuM9cerPan23LoC5juvmvnraOe7aHXPYFaYe7puYq+W+OoaD7JrGrGsnCRFCocXyYRvw5yvVt4HdHB9wOt5k6kc1iqUppJ8ikwfoxj8KbMjJ/uldHqYa4MIexLTr81klQWcHQ2MuTXTQDr2WKf0uQtA58LEXFpgPY/EAlbQ+1r/Auu4LhKy+uwORFLTwgb+kCzgLWVGO4vWxHgy5+UjPOSbZHp02d9J238L+QaatjrNW2Vd8QiHdCikNwJutvcE6LJOxoLuhOBbZo5KKXASiKiCA9nR3iMyh3hLBZYWL2TcXK7O9ceyG7x+uHHTRGRpeuKlx4YmNx2vu5ZVXa7HZGEM1UoH2YzA6lRrTCY/lSLa1YVHnYyU5DxUgKotVgzu2VKFagXpDyi8SE85btxb/MJXDGOl4WrQVaYxu18tZiXeCfeamgC3OpQPSfbPaGE5EiGEFDBCzATtA72nVlc3ubf/vSBuppY/+dbXpkNS3mzPt6WKEPLm0b5Y3LGXrlhZqXhgwsYcMtdDPGvvNxZjB5QVIEgqAUc0hRce8Q569ZrWxzSA3L7VRFfNL8lNOEGD0cLJvERSPKg0FhtC0u64a6kHWWrY2BWhrERc7pdiLdtkdGfDjGYUVHgEd5x9YawIpLlm9CANF3X82G52NMHdD0RwT9T/twX7vQmxdqX9ai80J4q/6nPExqUDQ/ldKHOJlDxrR+bcNdrNjKjXFkIIqVJJc+V2RBAls23uX1jLy1DrPhwqejFnyoohQD8a6oVnwImvEyu5oFCfO2krrJ3imvlbtvRB+ezTa6kenv6LHXnf/Mn5r73TCyYbKh/a8y5haqkW++ZPkydK0IDg1d2eKTsNdZ26xbv2TERCWL8jj3NUSvXatGGCCzUjhqZ2czsLl+PxMX0l+ZechJhUfpP44AMAy7J8zORw/Xa1PEyD3AcCJ6SeGrqbHSn8cNr7q+ElhOInCI9NQ/LB854rwqpCHYSYzUef32mt819ZggmB86ZU8+XRebS1+42wpzi/SkdHmE47vjDchuNrCKSK5EuNTfWGhz7scwLS8dw4vl4BySoWRUNAOomgVwX0CtA4zPXBqr0mPPZSI+e92RIIWrpAUwXAZ6Cfu6RDsMPhH+pa7zHT8MD8A+UwDY7pan+Lcqe1mQN4Q0wSz1HiTOwwyEHqVEPEeXZdsdARSvNacP/LQlSXFdxGsQd+udxRPVw/yPUCWUHQv0wJQ52P/S6Gr3t7zmq10bHy+ALWxIg770PcF4eVE9dZo0zbN3vEiZWGjT69rbUsHvyOHeCodysp4ifdjfZb21vUJft+vMFnRUHkl9HSuzFcxINodCCmmYRwfXyavdrD8Vbd5ceiQ1le/KWZ8OgHVRUHbJG4IeR/ithV0ewYwx1tKVzSHhE7hbIQRGArS1woSVQd2SPM3nmYsf1SGSNF3ZvdBThdDRKYW41MIsEzumP1jk3T432Jg2SVRdN9pGzvRBdEMcNfSEPn5a3/yiM3XpgD9PHqsaDUDkSUAenF074z3zMiCC7Ic8qu0oCFEGk/NDfxe1j7kjcvRuaLM95216QdVm58FBer57zptBZYxWerlqxMZ4RPyA9s9dcwqKfnH7zXc7y4EeHWP+oOpeDHC5EvCO1euEZTmIH4/ZOq5HZQqyOygFxjKuljVKX3gxmmmMOhTsdq2vVAJyNWD5YTw7FE6tG6LclTFWVh5rSOZq9ZV8v8JOG7xU/+Dhsfh8QxR7EBdPU767dT+QoV1co3d7SFI3WCaYsXH8+mslEBaZESL5mAi4W4tP8kCY1Ddo4/lDoO9XDfAKf4TgF2c+wiojDSUC+yuuIAyGORFG2fh5se/uAiC8odAul5b6G8uYEczifPkbzlIBjPgtaxbJXB8PeBp0VoYKqmJQLdrEgR8o96XrgtTD7S7shptY46DYBFVWwiHxNWBDjBrzzONbAS7Zev0rbbKOAtlXCeIfl+ueM7/T2UYviskOgXenAeHxWfL6YaIkxUw1hang1uozUuOgw7ANDuDQpC3bCHT6XsX3OmaqqlFahmAwHxVOGY7iTHkJIZ5HZEKgG4985lr7zoXblWrqPWtUwyob3+VX+D+1QBntgI991pDj2ev9BEhSpTKDoxnsOi/k7LACAGITFwqkSmiGBBmdcN+YjxP1sCVK00PhOnbaWmsuXsxUM9oaAxvX/A3upwkbF/2Gn4XhEsZ7cQhviC5nkx61CTxk2pEc/39JO3uD0kZecq4S2bHDnf4lI5BtHtHR30Ld8AKD0FOAkx9ZxI6skhbxkeQ1iY1p8BaferEhnLWbbg5eC5PLVy3adb8jS/Rp8scd17ycbtQx8ocDHDWlYCSqVEhrA/PXQwgdo1IAXVYltVUnQbH2aqxZDduNDHP/z+Fi5vFpxO2D+iPFjWZRr8SfoaIE7lbWHwgjiOo1biQdgEqJdN28Hw4veZ41huqTy3bYoQDm4lHrjrl0g1MNOQIXaVcWkphnGz1d5XjpqpoGMKaOa66RH7PlZrG+SSjPPebs8hvWv0ixlxe4uFpwgVskqDj2PbyKNPEjmoaf+86dAsizzFGwzRGepJKal//vDr1LvmRVF0EgoWFbL53+UGMtJT5ocCquB7t+smuJmI/rGNvjk0vdBNKLQru2z9UumXCR6E566aoyOAeXc2q5v9EU5mxriEY5kVf5N1hSmK+bSIZT1CAIQT6FQAit2w7A/47CyqaPm98h4CYevj+BA9K3sYES6bbCU/yt5fRORSVQuePrk7NmaaUyzF2Ka3KvGNx2I0GV/XWN6r3yUj1GPqbMYgJg96qxk8SS693rT47/xqz43hrHW86csyUYvuH4zJK1ynvGSdjNf8tGSkC4zxItZo1WDUlS/IXJ9efUYmznixnU6ZUcBqKWy98g1mYxPuw+3NY4XYIwWIr6GI14Hv4i28yk7kM1xwXEjO7BUEzI21r52yASv5OqUbB/c1ZZa8/dmuCCyU3WoQ+F3v3I+Nn5AYH5jy+g9jJk2PPZ3Cbd/c7Z3egkKiQNFml8k0ztGrkunVN28TOY6FmmarRibG/7ASoP1lpRgZv6lIuRgkfb5AuURFn8ag8tS1TZUWupISEY6kwiJE4PIQbuHI0b3pUogi4eWkVoBkEUST9feJ+IJv3O/ZrEq/Vqdx3198kBosy/suW/PRzCyJC1OaRawbNlkY64LUVTo/ja6qCbtDLw255gBzPFjOeuS3IpctLcGlkPsNx1ifdBA3nW7ngDz7J8SfdzVO2RM24EBjC4h2L3reWB2BUe8+JgS4lq/9DqTD6hIVoCh2M+yanNYo4LStOEDp1PEZef3SsI8teA2jmt3rhIN1XfEOBQwdD3JLKu+1KCd8Dr0CMigFLWCJDxvGLkq9SfWFoF71RZeCgYOObw4zwUKhCrn93BuCyUnzLGgGKr3LoPrH8RJJhOBtlZKDpS8jklt9etxnN3ay6j5SudN1PDWYGAWngf76zcOeu4YlJeNlw+r5SY9wzY6LUy6eurpZu+0kZYjXUT9FH+If/TxjRBBtAAn72DY0BD1XwSs90q2fny9MM50vonqeWflolnSw3QVM2mK+JgC+9eLSz8jGVM/iAFpFz/M4sFfpUB05udS4J1yjOJGOC8J23wpTmCeh+xx5B/qJMAkvLUzJ3LmqunJyoxOaYpSJejjP3F8gS5ELQIu8KrVvdnJ9z+gvth+z2geGK8Yfp5p9n6iixlWp85gWTa4ukPle2ufFaotQrODW45ogLLQZ6xNIBlAq+1eFedyqpXQAhxSW5ZFJIffLvfj2y7BoCJATdUu5whtXSMhBVGaPZGCLt6Za1cVAvURZnwKmCzLPNzzji0k6OWuxedrSfOvwWJBQ3oZHu+a1o4BojhZIZLrUfNsFxVwekEfioG6K0mwig5G2wb0TNWN0PF0DSSsz7sfIERMxTOyiBNWet5xtTfiCSJgtECFIY0ZE/AJad1Rh2Ln2YAF25Bg9NbytdQSxxp9CtuyBB1By55WCY7BUxLQh5AftyXgP/u9ffEXiUxNbiTuZu9z8tr63FovnjZjUoYtnz+j8YvyfjzDXAXrqHaXMYFBm8U/cmR8MhIsWa5ieRUISpsC/8e/+C5xGaZU575NYXHIIp48JHT+/1lTBKkL/Upwu7COHrLGCp7EGxP5/S7Aphi3B4t8wnOv3+cfaYuJG3Xquc9rvVRBIBu2nlTdagT6moHm0OT6yAEf/aaDusakrLWqcBffUfhtb9JsmEK3XLn/+XCAjpmLLccwgcwr0rqRbo9su7KJmwDODMTFpMAdXEWc1Eut4Zs1fLny8zcFRTP70b7sdubrePH27TbOlwBemb9t1NjucAYXYBmpWVr0wvCvr9OU9l8fDW3eghB6EJK+hydspczqOOngbg5zUdddcfb185wOFK3uz+GzmD3oahXjTJNlCiilUUKtzlGOlW6JoYbwVcY7JDV4eaa5PaM6OeUYHxZgssYCSwvnE+AJEZ/dIZmtahx71eexwIoja7GDpjzSd8+28ypXcn2pEHYry0/+ZnRkrexGTzmw7F4EYLtVqFkJ+GaS/kZlctrcMzCaCwkJT6CDVUDyHWmDZg7caJkxvCizcptyMQsOE32TEAMHkxVb+Qk7JmahbjxXTaekfAeWQAeEHSzkXOLc9lXk9qRuxyd+MaK4RfSOmbcDR+MiroCaIj04q99nEqHB9Eklf+X3eAzozuUo+XwJNYqB7FEo9deyIRqoajvej0XWONL7Fafo8DHAUxQ7xdlsO2MqGm5y2axlZTRHVLLsktGlhfkWnA6pW7/Ix5PMqviJZDgCuN/c3qhVLC0bwN9wwBIlVEGhMEG5ap/TLYX5fZjTOLHxCitQVij8DBBqFpWZoQ2X3SNMJfTuGTzc57SmCV1qyWVcBFxsIg5LKFCnOBbm/kdIupyeg6o1g1TJGTavl8Du7+WlA5ZdI6dU2teTjLwfsCKmPkHiokXkciNvDqExfHHDTpIVA9YVaMjgKmPamtX6kWmAi891FHY0gVfxlmGM9iSju5OepLfo//576hZoVcjucpwhhhS8tqolCrmMGfEn/0S15SZyVLTMmSFvlFJNNYdH5vgxMgx6YOJTJxP94MULCcGHRr4A2ROkEZC98n1JvsmNEtCwtlSmk3OZIFokQ5LT44IdKbZ9UccBG/mVtjgQTv14ygdB2jJSH9X1FScNErsXfFG67mxzKus2mmjysca0+/EGAEg7wqiq6B5x3zPFRb7dzvm7Womj4gaUjYr8AIbJLFcRos1RCkizNLqK9v6g/DOvGBbKb7unq7f0ht1z4KhU5Oj9AdEmqDU0ksfQRg9+P41aBuRQJltAT7ZLzo1FxwcV9tu16k5qW2o5a2uNa4+syHYzvbSQ3nv+bD+LLDrxuA8PKnui8nkNaNCz03qadkkeC1ppRntdaBobPxuhfHvixm4hFOkMn+BQf4HS3Yr+5UrHi5YBion/dbhlkN58bQt/m6z3LpuDsLOJyoEfS0UEZz2H1GqAmC2acHLFmpVjr6Opod3b4V54LMg7GyjLV7HfYkZaAQCmD48/8H88ZLmxFadN5/RS9NL1DhXAnrP4Qndd0IDkmS6rO/EcmfyhayRCqpRkJa/LbruTIo0aHTUJujimzeTzdqhXX+nGoFd+MYciuFP1nBFb0X/U+0zyLQrRg+rqW1fTMcMLwXr4rkebuMHlM9KyTfLRYiHi5JTYiqTe6EQDDNf7TEO6laGqFfZY4vNzNBblaZoR/VUS9vRxCRN1gY90B5eYcT/J2TBhGmdn6GDhwDC2RBTrTDuImiBnztETPHjw7lwKPaWTGPgt0bxnlZ83CRrc2iLvCMLP+6aM8iMTn3wh4c5S9ekRZ6D2O3EQzo6JzmYyOROE0o/zWMrN4Xfb/fItib6xI8+OibfeWHSIfpr73+tFtmTF2O1fjopP3IZzzoRzJpeVYQGuR5TN6i344z07kt1OsKjvumBWN0jKdiiTyMM+jf5wx9XBTWpP1BrsyHeX6i69t2fL+aj8bOHBp8QNjzCGMTddSgbyBAWL6Yf0XeCyUtx5jmEflOzQDwOsz94uOlNuGuFHafIZsA30XwFvjgaULPXalRb+D5QGAmhjgRGBdasH28rsmOhlpwQUcoCNn/Mw+WE6c982epWPofMtyYaV2qBxmbXhCUnfunTIPGoTZvg2axlVBVP0iZWEWSUnngQmxhkKz0h0WogYwX/swNapWMoay9c917uUq9kX0TnkPmsAkmTdyYEHwPxJZmDyYxF25HTg+B76rCPOedCllMMzeXlsjtCliMATQhMlitsvizvsk67Q3cGJcHwJYD+KLHCharUb/eoPVN0aAQ2UyzhJhJhQVp8HdoVanpmfALzxnmuNlSKSLpFFENysE/aNBYaG9EsNY6luer7vFTHrumniFyWwMevl5cOHE8r+UR2PSV/WdjMOgs1V8XuyvLtVDVaGD6t2vrnfBRgeOgANQU6dQS1lqKfrLMAkVic7TLopQekuvX6wCJCGDh2Og4fojwOwVwopqqG0wCsjXFHq4ssnYfefkBlfawCF840Q9+IgDndq+qV8A4Fu8zE5ToLol5gWwWaOCED0D2jqmL5kf+62kfm2xPCc32l7qtKRBt+kfa5jwlQ4IlQJJ2oo+cicY5v60DK3UUff8Vz52IFy2MUPXwemODfgqt4ftoT0FhVG8LSbEZW0TZunzW4hbQjSI7XhcTBRAjnBMycsq5enDYedLcxTMBOO3vwTgAtVoAF1MoxVybpU2p5/AATl2iBVhNvcYzSzM7HYXf+Syj8Xom/1xOOOp3U5Jv8lpI224fhb8uemi+QxNU99KWlT1qwqtdz/KvMsroAhTXzV3uBsx33Nz+vTfbCje0CqKAX8WSJFQ2sLPKvWZ/ZeFkZ+eg1L6tu2rZ4zoyHaQqpEnQ2KVq3IUKWRyuEFottZG/A/L2lBUpFRGhLC3RCvCkBcFjGsOu8B0U1wi3yARKjSsm3dBWxmzw1iKRNrYdXqt7w7hW+rlaYl5OUmuVzCgidfjaN0D/cwCXmOa+yoMkvGNL9cnR8Sz3Vv1cS6ra8bspRn2KqO27IuHfsuIYxavMbkcebWcd9U2D5iA8fd7ErdA+8aY7awyLPAX0VHzNyOcrt7x/2HeKu415FTQii82VZDB1WiclVaWiQ+fn2hKJRdg7mvFBqLsaAfTCFpnSeLOOQT/FbUfEKD8/BfHLZZiB6GnEDtN0P6mKm88btHuz1+FjafKj+cYCa9HFZ+trqsXHwLkQuOIULGR0Ln2jmhJYNIEAxvVenYZYzRCpAn2F/VzHUcQHjr7QLcA3QBBuhoJOj/Px07xexIcJSR4Q/KL1eM+ob6Ws+tDXggOV9i+czGQ7YZC+zl3rlzUFAwWzz6+Fx/A4BCvAC/6wUKqyFGjVzkuIgS4y3vrE+PFjV1p7JfnqrX62mcY3NSd/f2gLK4neV6ZTcb9KmfYVt75u0QaicEa1zmRYr1j9ie99oFM5luQDUY+MnDV8FZ4tiS2agUFACtp52ePNSjRsdAwOUUgBeejNQRRalhXmi+QRGgrjAUKpFMZ4XTrIDraEyb13MIpTzvpbhYAc2EJ9yKIdqOMGjLI0ylLuEnLNjcswoHlQtI38kGILLp8eAZpu1s6HJdMhSAuzQmDya5XZ+l/Xa2/yZa3RfOOdN+j6P61FImMlasgR8NvJ1N8uACubQsAM4kWZFAdOsz0pBAMUsdd+UN8EcDMXon0jyzXWhNcJGAym7agsczeChrg5JB3GRcYJG9DE6wCF/nmofKuo2OWQ9BweER9OAtWE1ifW7Oyv2NwPwHC/cr0WFIVgV/OEhblfD4UVgk97mRZj6Hq5fZCfubHJ8GU7H7/EopOdJR9RozYHx7eAAa7zPuhyzGvOh7RgACq6GxYe6zFXgrqkiIv3CrEa0jdtVJghXRjAUS9n8wY+J1js8ZrT6XUaDvdNRS0G+S36geRWQj/Cp4x9RW9w6tvhhRxGORl/ODOwERK2XwTbRTHuQVcpPfE9YuQNeSvmnfjQwXm/nQFGfi85aGf9NItexslb0V91pFSF8Fg/c3/Sd19eTUGWtOCnOzUGlBLJG+QTcMCgZobRXCTK7FwhRF7sRPbXqoEQIS7QvBIajVDy1EJh/KtMzRzcVRXqZiaO7D37xmIAAGmoPHtyw9SSJ6jAoH1J9QlpSAoEQLKtsdkjrPhlSG5IAWpWshd7Big/qvHWbebD5ZVXCnNoQhU+sCBnJfUoPWO4ArUhFYffkcFK6lnPaFalTTsqj4U8aqaYI8+oyLM+hIO6Z99630oSn9SA0zdhjYrWpklwMICYLhJ8N8kfmn3AFowkiIyXnRz8nul3hgGQZtSjYzJllklvj4zMEA==
Variant 1
DifficultyLevel
532
Question
If the average of 7, 11, 18 and w is 17, then 7 + 11 + 18 + w = ?
Worked Solution
If the average of 7, 11, 18 and w is 17 then
|
|
47+11+18+w |
= 17 |
7 + 11 + 18 + w |
= 17 × 4 |
∴ 7 + 11 + 18 + w = 68
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | If the average of 7, 11, 18 and $\large w$ is 17, then 7 + 11 + 18 + $\large w$ = ? |
workedSolution | If the average of 7, 11, 18 and $\large w$ is 17 then
>>|||
|-|-|
|$\dfrac{7 + 11 + 18 + \large w}{4}$|= 17|
|7 + 11 + 18 + $\large w$|= 17 $\times$ 4|
>> $\therefore$ 7 + 11 + 18 + $\large w$ = {{{correctAnswer}}} |
correctAnswer | |
Answers
U2FsdGVkX1+IT9nCQZxza1JmGek3tQerg/+fvuoVLZEW5GE7Mryo+X6yDAh7RVoIiQ3M3uKudwgWRJC5KGjbrACBjTpXAThGw7D+fSvOAdQOQjCeeGeHdnAPbM6sAPjw+wZ9GOhO6NqSX0qO2uCO11FbixI0wc83Wct0ag9A7OX4QcJE9OIkhkVQDJZ4JSnbOa4TS3eemyKC2sKA1YOAA8v09sF0iZH5/wr3sWsNdY93TNDIfah2+HmcZ8cSg28R+/lZr/audw7/3068/qdjlMaIyjCR4DX+0tx3Q+HVQ3XWHCSiy6Bb0dgI3LiskckQ5jHBqvOAonnznfhMxHZMvwDHokKIGlBxZGQPyegH0hgOYXp8utr88fiHKNDeTRov9431ICgQrz+dcwZmAIWg857fYaDjM/nySOZyL5yxpnwCXOxYe2lUtimFpprnQWkEmJr2Fl/QOWdj3LjyL/0qIsEMEcURq4tqS5lj3+kEsp4cJA9MM7pe8ZUXOBO+Wm95ujcxfS+doMltxD9RJYOmZihwB/wF3ZBoOF+/TvDxZhyK1HnlitWcETHxOydvX9SjjcjFpHm6h4pze501VzoCDVn96vDPMmTsFnVFxbISZ4BL1abK8BxPefquwgJ8C10lGYzcurxU2xqm0FisXqrujS+LCgN2ZCwKwdMy0aSCkekNO7/qBnTBPiMgKzFEgjSQwhjcJ4kzSEsGwMOSsK4VMJ2I++2/l/Fz3iBDGTK/eoB4SfWWYkb9z8eJeQnIX6T8lhCXVmhJP7HxKB/steFFDlxN5hgfClYC9loIYIY9DxKbd1s5w1b+XDo73rg1y3Now5SKSndLgGjHHiN/tqN3bGNX+9zMBMfogGGkZD8LHcTtzXu/ULkg7I29JQQuGTPEtOfYITqkOxsLLPLQFcJE/o4+lnHc90hIWzidafku8SMNnulCZymFzLbdfcA5c10g2GRPFRXxLSL5S784hlZ0nKAPu41crMTRo0+6dSTs/FZy9gZ92yNSLh2SBpRVWVe0MAmDXvD7+AUlLhKCabUaKpQfW+CNth8kaevWKN5ZcQAXmr5dJXRbu5wB0BYrolEx5zT9AGgOvmUw93AkK1fvi8lAB5hdvmrul3iycuez9UWrsQ48u1KMhXn2XDAuw60XhGcLwku1C1GQPIS/zP8K+nkuJc+CFy77yPACsNVMgyb0uqBqMLshLvl3NTYWwK5FbfUPN/+HfSTMYv9zRfXQl1L+2vVimc9AVIBJraXCSvfYuD4F7ZpELGD+Jf8oNSNZNB0ZNgZTHkkDYLFYC8yXvTMSSCcAFxW+KySzhnkxcZjrYzXD6VZFEMJNFgZgKP05O9Jk+ntb+fQbnEtq/jr9S4Cw3DFJ1QhQdKSmuZgtI1ko97cdWGKSRRs0+QfkiFSJUHLnFwEl+FqxcAz18bIqLvBbccC5RI/QBRY/DplDFyIDq9UptYE9qBwV61F+4eDlPpe698BY0nhXVeZ4ZThBCZXh4/C6vVUJlgBVhjmjrHrjluawt9T9/19eIgmk1Mb9JBg7RW54psxPyDMqCf1rCyxEs/IBDOVQKk6ARAexsMD52qPmhuC0cFe31o/AjNwltZgpk9RZlMyB4uOBDlp6cmfoojlpfGmdXfA/ILWhfNLi/gYItfSmPZIrbgxo3jCx6U+0fCLuRQAKvGAw7husOlk3sT0cF9paUPzYnptRjK2Z9vdrPnMtSd0LyIwq36Fhcjn86CX9V7PTdhhku2tOHcxYU+l8Usg/zf+xoYv7qcHhhNOWHvSMGTVxzAlmhNaZ2pwuFn0Dp5MWOBawEfeaCxQAJ0sUYLVLdOIMpFIhGfWQC3HdMdIBYGWYLksWbgDPDkQ7IrqxwrWfeawwSm+KNf9eYrIwZQQs9EqzUptvqbETTnMY9ID4RAfQjAVZCjWj/QvAXlH5XI13Sjb9x6w5Cpik86kDNxiG1nfXKkaGkhn1dosUTNH7yCfeUuxGcteLLkTLQYFlQsNJoOQTTmIW69sxJcrMdo6REqA9gO6+zmtEp15BwAmjkjf+poEV98DIcsJcDkzNm1PC7O6Mm7fO/UhgvHBmdoNnsn84p5XZpKhwPXKFK5zHG6AqcHnQPnIrVvJ197v0XXAv20+nhN+ttwt7GvfY3TmglNUF1iBblxfFQSOVnCDIAyj6RySzng688unkdPeYdI4pNh34itjDw83VsZ1Yj3ZwD3Rgv8VklO88/9k/T314HDo2+dbJ68nv1B88Rb5XcC7aoDVBoaFP0/mBy8TlSn2lwqiEIM1CISQrhQxYxsOiOPa3tWv7v7jCqdmAsQw08rWvr9431iOtritRcXNR+J2xJtEqQXiSNVyI5xc93GjaWGj+QpPHTsdM97iMmdih6npa2LONNPdalYUUqjPkDjdJ6EBXZP7X133QsI8gvpL2Go6ZqkcRIfoX758L0J2wB3UwohH/bIvdf9b1egIqm2/QogIKeeemSOAYTFb3MVYvP/8hIE8xjyzvYLL3a16babjpp62wuuC4s+5ltXvEER2uLjnJaOGhfmsS9PdpKCg4GGa9gxuXCCzgIQyKgB/MFFtmtTxlXZrPlrw+ktZtdg/7YQohO9ub1x6FZYXtd0k+DLqwgRFodw0CMZlaeUsgg39vA3eLuZdF8zt6kIukYjwbBtzt0QK2BADumL8/ero8H30pGPTdh22zeydqs5CvOVpt8gOY1S+Qka1bvvdLU4pVvgzvZZGSI9yEzm8QhMPmpDS6VxhWNc3I72QNqJH6P3EYs3v9QPLXyklLIfxeLe38kEujUtChMv8/MzVQuHB/mtWIvHUrZ/l7NJ8d0t6NL4sJYF6mJorMSMRKLy7oIm1eBgOUvPgzuyuwTaduUiE/TEYcvqUE9qP8s67tt55klqHhXYItntBNk2FYeJxAvms2KSddeIL/U4G6y3cGxSLqlVmsjnXd5q1ECJGx8ieIx4UHBt5Ph3LTwFQkV+RBOMSmssP1AzFdy3SsjxRHwBSrGAiQwspDTXN4jZmY04es1Qxh/ycCy1L36nNBC+ubdLM6wTDCFDyIiOQQFnW4B0ACX9b6QGwyhxmjl8exOC8oHOl4d90hLFfBkdZJ9Wdiop3eIYa0LezvjeJOwpP6zWd9+jW7Mzv4d0qqgw+skoB0H6arPlKDT9KWOlT0zHaIqnegJia1ZLywKJLRGMqWj7uk5e6JWrimE8K2eTskmkO1SClgRbykiET5Z2uX5Rcltdb5VRlz8iB3fEiMNf/Z3u0dpJGfjUMBVEHq2T6MWfFDRGIZXWaIOXOHJT7adMDHbkSnbpOyhkPgKrjXzr6LIje5F/u1qSE6lpG5hilyE9oGSpRoVo4YtWIM7MIV+dkLha1Ea0ySdjcWRqMszAMrKVPAOW+Zjorl7smF8gEHCbeJlA2GH9YDX6nBHsv1abZKbcMe9faEZrBZX8iDp+4gtRHCaNfoPt3j3SEx8I6aL5bON1VITXCA/XQ12mDSmGgbDn0cCPR+pYlC5kdnJzLv3+nHksjL3LEvcIZaF8fNbDuEQE/ioD/0dEDyV2gUDzkrwJzW/fUgqgYgUVp7AAJG5wdyJQVviFFGwdnWMUq4kWkV4EvCHM5SxhyaNR8TiLyZmRqMvQhPTbwW1I54l5FhBHliQHl/Ukisb/+XmjoaywKIJ5jPCVawfxZSZ8Yxm44E2CgO2bh4gSvdEi3awh6ByjGb0t2m43pggatSEW4QQEZPue44l6uWTYexCEZn1l+W9xD+Zg+NGOO3wDfTK+/jVMJqznDKzITBnO5UtRFtYuVqPAcigR8R+FOnxLYv8wQzw4asK4CnA+cu2NG9GOupJLS6BC1RIVEC49u0p/3xj4e07EtnegdHFkMPntzHdtB81MSjgNeeGh/uAYcEkYuoV/aN2OTO/i2j9P6vyKQ/5O+EWMm+k8J/OsuJl6SICGhFgryqtoRvL5C957OC2rkD85jePnmytS4vSCH8azZpCunCABFdUYgU6rkXoeVZdb9Gi9a/t3K21RwjZFSCVfmWwasiz8TMlIsm9RWjNxU+2YG9bONJen5ybzVkVq3seGPjBviMPmPKHAM6hiZi5u+O9Fme5BQbK3Ia+p6cZx49Z/DVfX99bDHY+P4VjFBDYZ3godrCDk7m+Fnhipczdcc0X/znOxr92pTeHpOklDldZGk/aFyVi5e9aifzhseikiPf4n+JkAojWi5IllMYP87nOZoIMNpYKLehsJgHYho3NOmci75fdYFCou84Hc0kw0XW3Yh/gA6cSx/O8aRSKiZz/9PYZ7gjzyy8fmi42V+lAOw8ZSLB1NOVKk3HE6M6ejivRKQEqGn0vGBcKNivgbMugTNR/FfT2rXgcx7hDIh8vdB9lEUm7Xnjp0N6PE6Qg4Qs4nH/QcCxqInVvP+fnG4w+qRP0iyrEfswBb2ujPQtD3KyCzcR1Y0g/ExEJeXHBunRolI136yeBCvQhdZXvlZlqw4+aCXPIS5FE4LcrxJ9p1mQhO88CD/7C20j3ivGHM0tJA7zXHHxVmAn9uiQjSI/kDsVMl3z4iU0DGZme5QP6RTKN98PwLlI2OjJWsYljBH3KidrxPK286B7o4KzyJ2N+xwHsWmAGg1U7L6jO+wj11/crcUuwYCBPO3/dHQYVXZWZnSaNa0j443KHeuEKfap0nSBy15cyByq5f/W01DlnWFDiwqcWgTw8/G1ims5sG9rYDfMhN4GbfmJR/BJOGO9KhYrBdFutNLqIGlu+kwGlPrnsJvkxnlxwkwHiVd34ki1jq+IQv9nkTIohIX1A4gY+Z84T7Fpg9n9/hpCEtkTg9vMWlTPbZ4lMhQE28NpiIDXcn17/5VAbO5qWVEZplUVTZv7jxwei7dYPd7sIDETY4bhfPU4RQW0FdSb+FSUPZMrt9Z+fk7EWLTNgrhAdWJwAcZ5+retWXUvUM08fV9DpVtBzyZ93b6Myx75mW68a1GHZD82a3Bi17TflGyFsE5UsHZoAiSiV6wXnOw9it3JLUnM7ZELKn823pmKefBxyZOGTaFTVgJymwEYVS+Nh/Zdo2LM3Z2pdgpqB23/Zl/A3+4KMlXzGLvCrAlD68ACGUcBEkqkGnbF1mYyqkf34ptt16hwM10uRzVz4ojw5WTTg2Dztcsn/3y1pUtxKxiXFTCANnP3IjUO4U7LlPtrl/O+HL1OFH7p+fdNqDm1v1P6V9sbTE/1A5itD3wSx87SwWaY1CJ+wI5cwJ8oinPy2VkHypVKBRl5JXMI//RvgQjmIXWZgXI46We/uCf5uOUKGFXKT6gG//1OJ7imLfWTyj66ZTda1ojMP2xoHbpuQy/QOPw/3Su/Q0iwVmdXVJsiVFdIIUE32aBmkxzDJcBOGvVVggBoRpqVT6sCGmD5W1kPtUYamyBpTEi8YzAq70hleohQcWqOOLq0l8rVMBDdyYkifSkSZk7/FElMyIM2FSTttDEcaDCGIFnlhKYhjj4PCnrIYyKECXIFT0NzvYak9HK2XdP+2lT4FRVHuZ+e5uQrN//LPYbmbXfznn7l8h9B/eIKed1Od9J00aZnoxPw3iV2kwmWgFpAN1pwK168h6mPetRvNy89qLEOM/g7t40vYyhqu0S4cEIoq4ZU0jGbsOKLZYYpKnNMNgKTEFXmC/IdsmtLA9ESPL0wC/k+Gq4qJfM/SMTCOm1wo/4/uPtUSh6iV9o4t/jvqQfGifrXucmwUssP4WrVOsi1SpNyJ723OgVQKIZeqiXVu6ShH1m0G4bi7Uxv5IJwOPt4NJ0LwJ52jxmw3gkJsuOWi6QkW8w/sqcwWA8+FJSdBHCEUh4wvAbdUCbMB/fKtYkfBaVvylplwdPWC1ToMVHrNXbs8MCHKPleN10685Mo2sfzIG0Q74kV6FU6WnSou5+rsdnACkuvO6vffIaDqo1DUi65WdUpWUQoZfUGwRDoiTmWsboUUV9PMmG2+35N7CimJ033KPBVeb9LUqX3VQVh3sqIY25S/ipGq8zTQSUmrt8Iq2tAAfGMf/bPKQUjQMJeLgDuntji+S0FiG8L6+YLxYPJrkkLeHArIQQ6sz3orCRmRt21JxnbDdmPdvi+We4Bwa+ibRqRDSrFjaytDOyMHPpr2h3ObZDTG/C+gegfQGeD2Yv4wGBP1YbnplGJEOnlHpK1iJ9I4kkHEe/dXLYsH/pmLzf+7Encl6zG6oq9VL+PIO/9lqG2hl8vJDrH2tCUcMl5q4TVatSNvuUXGJNPvZsYyV4NcgbkS4BL6maVv90h2plI2oXUK+05QzQ/Y3kA+sM23aoIVls5RzgFzXReMHvTatsi/dIAXo2vPfRfGzDHgeky7pBEO/a0z1VRuJb19ZAnaRTa9QGY9OLbrVCapahBXwhjFr/TnVPjVnHxGQrwzoqmbnW3pwayZCUEeSMiWSlVuBb4DfdE38iyrYaZH/i2Y65UiWRx7ATikkxRanZnSaqtpqsFUbQyVUrl5tAPJpec9mEgEfBuNz6+DuJQgBGhYNobwwCsMP0XkoXyq3UR2tGwsvjJg/7Vz9ED95qhyJXViR+ybgHL3Y4aTXl28RL4lvP1CKTYQNfuI4M4NFx3lC0493xJ9OuQ9aCOEhv4/Rgp/w1UBQoL77cOj7AVN5iWYwpmPGCruJ1nJU1wbglwjGmuyZnA3okvnonho+qSfZM0SgW/nXkJbUzTeAgCAGs8YzVveibeupvwIKflay0whx6R5lDBTnaZDRg2GfQf1h3JSay7rmeqo4vXAKV72Rf+SfqpSOoT1gUvITjsmhWS8rX76YXe3LDe8uz1WLrv0vs+RkSuFWFWYUYs5XJwuNsnf9ElYUi2kPtkxG0CJ1AP3aRTMqlpgXV4bIsCojL+ZUlQafW9+3QkgTwnUA0vHnRfk+RyUJGSO/jK276Qv4kIyPZpJxGRk6JzOyos7Wpqea5avdnhro3TlFfEp/0HRH2nJaAH7tfbdTcpEbO/QqrN4MkWsPOm37cI2/tGgHhJS9Yu/P0aZeD3o2R/bByMkeIuj7+QbQUV+GCriTNzMfaKMAPiVDHjNZuLV7dk0Nc2bRk9YDPCrYEGiGwb78sAfsCj6JXiSrLfntbEWazV8Z2Zh+mJkJH6zYRfi4ZWHzhTitnLaA5N7a16a6hlVwak1QZlrqSONsY8CzxpblP5nQT2Mu/utEtBh6kv4NqlEubu8ceMXb/HM22ymfXTZRXJRLdCenfrNdDFJmqYazUjXGSFdDavg1FiisFbdhiHbUpMs20ZZLKex5WFI/0VgfuPdw+YSbV5s1GY/1sBxQmBPn0bYnlkE5bizb0GvFBwv2HOblJ9CqUZbix2SlbG2zyP9si88o8v8FPeu7SAotdpKC1xqIpKwUjbv2eKAYFPaMZTx41qQeueq9rfNusxFrWxfBDY8YvEgDpiYyfsGxxkpcMtBnpm5VGyJ62cxUvFQnErWKeZHFjlZimHQ4O0IB9AqnEiHRxQWnMlrqBR9cKWBG0/Uls6zstBJLssE9E12M8LhIPOFtVtBJJmldkOk4s5CbGY8DM43/yPaC2nq0yZzrTepDLdTfPVE8PXVtDGZOTIxcBO9J6Y/yvDqhPrv+X5UjF5vARnJ4UNJvATzmA2ZMKGXHbrrKReRpZi2rfAJfnZf9YwwFPP/lJUg3ePhFyBRljDgyJuHNaTB94SCzlbUyDxEIbvAi1TPthMxD1BS51utRCwdZWQ4sZjM+J1bVxT0Dx1Zxy8m+Rux+Uq3SA22TnWgFkKeTB2WZWiyzIQeJmQI+wyVGBVL12MjJ6347224D8w9baHC+0LkPipTohtgeEXO3FwXxLHiRnSIA4uj4kNwvuHecDbtXGzf2lASBQHiFfQ+1DgzR5RyuJe/RBl/WmjFf3g/oa2LEfRMLOeniOuoyte7rWRCKEl5cwch30p0FglqU6+SonZFxcd9xFsU/4zOPG8cdkqKfaCxYxMV5zdYTUqh8OgkxFAEdknH8QNzq2Q6AL6bpfgx889jFfE3WSN92jEZRR4hzlz7K3gxyWTZePm42ZIBD1p5/GE2Xvg8MYwqtZ06nrYdsVGyGfVrEniL87oZpPOQCwGpYg1ppPQ6NLsraeFDOputvVhZU8DcsLYZA2yjO/J5IfkKqyUhkrcNWzaTZoh/zBQ1/tMLK87bWyMeGpX5ez/IhZPvR/W7hQvC/+GgvylE7kksuvP5LKrct1hnxXQoWVr+LwCDDJDvgKzEBhDfQSQTUV88dkW8HWOe3CguV27JjWKy2tS/nerga4pxMKyp+1cVDTUR0MUe7C+wWpjnmmS6NvhQewyP6F6w70LS0OLugYiss1nVe+OKAjun5KtkmK+W2oMBYMFSmdACZ8mElTDO7HTKijCSvrrPh9uR/kGv1pfjA6Gm166fey6GVuzmWhzpem3shSA+WB26FIyia2dF5QOwdYOTn4ZtjB5qzo8R/UYQGVMpuKTpPk3zWoxbVsGF/quKWa9B4Jm7yUYC4I/KbrI6DZh9O/oVXW+tdQ0WFfiYXgDSVeaQ4O/I6q4dOP+KPaPqbxcjhPDGKANK61OeQE3a/ixGXgTymGhzNKTw/lGa/mYfUre2CTquamGY2Q9kRxmlnbQ0Ig5kEjrv+Nrzh5AHopELT7+0Wjuc0WVw6mGCLJqQD+vqERqSyFxlvkJ8+ghI/1uFIgPBRHwFO8wKyGirmk2zkZGBIJwWLPV5mQsHP4O3m1O9stC4h3jLN/BFdFGb/SJvtPU3FnjWbG0/Scx2gfD41taOg+HBHi6FtyTFTqduQZHwhgGlhMRNxyXK1nPw7luqRNMm/3qaQIF3rjLjVVR54SxZ7+DoewdSiFTX3z18UGwfCqg7rzgvL0FXy2gKpdays3GuiSLl46msErI+32KW/rDkh0L9lsDvX8BbPuvc5cV4zcN3rwaPFm5GPR1+K1BGX0MLswBkeVIRFl0mDzXw3BYu4m4BYUW7IyBlqtj0iITu8Y159le+Bcg8BsSfvqzNgxs1H9+D5V1BkuOJuqie3/7685DtXA8A3eDJfRbtFkFfYUfp2aUrsjeahcFYjT4++wRmz4OI0sjk4VSrQJfqpjV2gJfY0gCiF/bfPJ5t49GH6nwRm3pwBxEbDD8O93lbYcJ4r2Z1M+Qf7GnZ6Gut6W5rLqZAUG9sgCpogWTFBD8jiEKHBEwSpQ9CgEvZIiBszt5mGSX7Nq8hneDP3uuVySJpIa60Q1fW5yUDzVgGJ2dbw/Sj/EXyq7jXxf1FMtN3TExvILwuQzJVvZmfSXX9rJEHlz6PHZwnL1MBqgGQQ7/Ruk6feO2WnPqTCRntQIvpK4+zB1wd2WkLBs+oxTlYN/GvYY6TEUUZXc4bKgL2WnRdLPtGZ8vbzpEN1b9Dn8B57pjXX9mYKYBE139PN15e4KTpmA4WLOEzOt7YTwllgrI9rMR2tC1hUXZXaocQcnAkUVHJBbO3V6sgmSeMa4i4CowpQ==
Variant 2
DifficultyLevel
534
Question
If the average of 7, 8, 15 and c is 13, then 7 + 8 + 15 + c = ?
Worked Solution
If the average of 7, 8, 15 and c is 13 then
|
|
47+8+15+c |
= 13 |
7 + 8 + 15 + c |
= 13 × 4 |
∴ 7 + 8 + 15 + c = 52
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | If the average of 7, 8, 15 and $\large c$ is 13, then 7 + 8 + 15 + $\large c$ = ? |
workedSolution | If the average of 7, 8, 15 and $\large c$ is 13 then
>>|||
|-|-|
|$\dfrac{7 + 8 + 15 + \large c }{4}$|= 13|
|7 + 8 + 15 + $\large c$|= 13 $\times$ 4|
>> $\therefore$ 7 + 8 + 15 + $\large c$ = {{{correctAnswer}}} |
correctAnswer | |
Answers