30177
Question
Tim lives 6 km from the park where he trains for soccer.
He jogs there at a constant speed of 10 kilometres per hour.
How many minutes does it take for Tim to get to the park?
Worked Solution
|
|
Time |
= SpeedDistance |
|
= 106 hr |
|
= 106×60 minutes |
|
= {{{correctAnswer}}} minutes |
U2FsdGVkX1/JjcZTD0Ngb/ZXwpaG4J9V5e4r8J4GZuuhbDUjoyDsoDdetmcVYBIMDaoFX+cd+Ndu6I7vA3nLbtLolE38q0MCFCIPruf9qw4TeNsNzKxvArnG6nb3/hAiOfhxWMTjYg4TC7VgxO2WcpB2nJhJ+5tVfQuHKjvwbg4DWniec9Ol1rwo4paotUnUgikv3Qewnd9OjlH8AAMLW2klD2hD0JyjLoXauj4IXJn/9UVntTRipieNXwJgGmHvNzzpsAIHw7pueHhe6CWZIOnEZCwXFc0cVUEk9Kz/2/Bo1Myxp/zaWVhPQ5TdigihUXUhGU3pp8mJnst6H/Xa8VN5KHuS6VJ+MXUbJce7mb8/nzPIscHXUxl12zIMpG3ANtUXKS6wNgk7Hod9ytgdXuwx+OWrkvhd19wZPC8CP51oLXZzQPdUrOvphnUGEIDYPhMBUThguSGKLIVKrqhP8uixtp/WX8Iwhgr8gsmw30Vj1J7tUKh+1qLmMoTLSvt2xIhD3ReEGIjvgvjpIooZBqMF7FfdYznlvsXIfxtKVSnOFaS3QyvgtRwzv7UI7vt0ZH0y4lmj8+scCv9SpNR/AvK3VAKcsQSBYN0K/CYUNkYXLZfhQdDN6X2z1FAfNti3QgeuAk/zp2kkDneHBv/6jRSHK/ay0WoDzpIZfKlLGt+BBR3uOU/9wDkM/HdY1v5+lijT0CIz7xnmF4nQ82lUK6Mqv6VUDPN7psRGLZ53S28dzFOqPBFzDdweJ5ewfOIO/IrslC/OTZjxA06bJHDe8QcxpCat3Ii+DTY3HCuTrzumc5e/g5IPYIJfCyrqWQ4UhdKR0A9DO1XnBWmMgmAt/JSYueVxpBEvDys4DfzHPGyVsJfjh+Ewh0MsZjgVK52MqDzeVCxC8x6YrEIS06sAcfKYVRD39xW7ejop+dC0z4nXZHK12OYtjgDRSV8kgtmyfwWLsjA2bb0j8R8eRrxlJd12pCzZxK7UhsAAhhxsn3Tn++U/scbwzymgIIoYDbFoT2Tqnx7SRjsYV8VpfPvR7MXCY712Wchsfy+4BS+O1CGWB6bIgDMHQlR3Efm7ILp6m40D4goXJh8DwmDNIDL6DFI1JXkbKJ9tWcOtDpvo4+xNS4Rwcgv6yN9kRD3829oFDcGnLJGQNpavuagYd2DAV0Xi2qNRBg1MBHUA0TeGGXKbidET8QeR2ABqXGIp6cxxsds7QC/l710fNgLAg2Thap2k05WMRbPSrm2b4w6cc8GVbvR3hhGl75xBkdiFbOjwE/IX0LB6bERgaOD99H9iCC5HQ3cxqg+gsitTaX1O2d2X78IGXpZ/Mh1kVPPTI6Ij07LHAtNSDKKac3T0Vp/7jtSPbtG7IEdcpCK6EEQB7xaPm+xeaGJ/IdFqClNzYhIiPAqyfBfGhJOQN8jDhONKAq33p2ag/OhqZgMZyi7cFC8dxS8iSzqPyxVoFGx5MnwjUyJZlUseoqX6ZeSeAz5q8evUAf9UtiEsIIAIIR4+RgHpr/RkJBh0srur2TlFbQVLH0h4HuTHnqeyP/2Os5yHeyZqPgC4Ha26aqgpqWRgZ1A1tQEzo+PQFHb9K6c4eV4OmNRohqa02oiaUS4qh+0dGlF9Qz9GylV6glZTA/RD2crbZvi++64SFBwBLvVicBWGIKqWlLwRh0qMZUftCD/MeWMS9CN7/V/dpxLkQbRjJ5hgTOrSgSi0GFcsArbsj6wsYVht8Zhr9ZV2BNOfLR/Zvv4si429KWUxNm2Qr+5QXcjftfrtO3HEOROury6xlo/tqeUeP2qUEKgeFtUzyLDGa7gqti1EP+uhJ1sasFqqcL/oyPSeH5zJWqEGVnLHLqcNU26pbBsjReg6av5mdu+I7yruz3WCqUuhJ4ifwyDvumEEsBQKbmypf4UO2RYSDIQZJH+24pcGYsJlkGexD3nV2gppE7gHSSquEmIWbRRp7jbPAYDFTX1G8WfWI2smhJQ/eeM1eSPpoBblAhtqWPko4sqrn+p43LqVjF3cKsb8RTrr8NMyNdmroTAIRIFTZsCk0TI50lyRj+i8WhkSJEiOETe512hHXibaMhXyTpqMFS08NvjFmscGOKlNyvPoKGUrRaw8KOsrBDdPRU4GmzJgwm3tJTneVPA4lZIAOEmkhSfxA7y3qeM4F/D/EoLGUCSZ7btYn/icHI64M4j1iZl2QnxZ9ynAypi2QWu8DA0qOpNcP9l3DcO2vHbGnyU3ALHXhfKP5HRxonyXYXB3VkVY4vsXicnhHveuk/x3Z6L6JnFO2n8YQoUDfoRqlyIkBaaYbwJe3o7wYtArw+gfmOr3yN4ihPuWaBxCMwuFv4XGtz1Pz/3Mk7HBdB6uSFhXZS+t0YCuJSLPfPRuBLJM25BT/fZlc10LUEnc7VwHd1WcQxOVhRHkhp4gggi4nGJFZASBZcqIzcJHFtCS7tz6lvIGmy+4Pq7dX9IswAuIvNqpWRaivqrUGkRnSS/STeV56Rt/h94JpkrnFTBrBHvRqzLhIvJZD2bZ3aHFbhwSZp7PSoe6vyGtFcIx/hCYmBs/9UWtgtLAOtaskPQPvcVhPNthYv+IZx8V+ARMcinXtxw1jPhorNl3TpDE9zYLCcN7V1OKMN8Rfvc9QQzXp4APKNECN+GzNTvp3lhJGOpjWhSFhSMUeifG0V13X4a4lGyhA9few2mZLFv9wpB/FKRA24C+i2gFAnuS3mprkRZW6bZeJ/xuEuiLO/MdHu133cuLQYn5RdV8XMEvT8qgxD5LJgwpZYnSQjsP0uCKygTvwVxqLmY5+vkB+mjLCdLxxPpAIEyXLMyvZuES1Uo25t6TaKhSWQqAsq6VFZM04jEWA3qjhCjBeQjHvwxy70QJ01H5tJmsA/d7AZKjmXzzLiJ8Y4AfGBOf+rfw2DLhM96BK2FFABAmLJeo8TdtvKHrLUe6sDkYwuJszOPxxCqxzzGSth01S/hVSag15p3KYrFTw9Pnsh2PygfzJBtG9qsfmi5Y3jd4j1Ps8Lu4QmugsOnylG93517WQU5kk4qegzms0m+4ZYpLYnbUtn+7sFSMfJEekFfU0KPqtRMP+eHpFRGa068bWyVPhwk5e+1mNIplmIlEIgzOqQV91F6vyI867x6Y8Nxb6k/2qPYW/yz4WOVIg9hD2WuTI1Lrt/ya1bLmyLRTkIKyEechn74ypq25IgJph7Fk5mSooUYcz2Eeryxx431M3Wd5713mtIuOnb9Eh6tNiakutftyaZs/d+DjkVSTs1l1Ras+KvAc3K+hIoZ4/mmtsoELtLs+nHcj9bjcUTJGnTP92Qu4hxV4b3uBZZnp+a5Gz8Yb+z0c5KfuCWRUQP3rggIRmcyAksvq9Z/sbRcVJOC+EO9cRWyHr533Orpacy23OxlW5Kcy8NsX6yWgITTgJ8o0jrImztOwIyxEawlSDkmryCG9yJdC8qap2MEDUP+DvKR2bNc0jJkQMnGWRefAjJF9baJU7XJpO0fyTwXRwRQV8qQ4Qjr7EN6tps7+HlBi82oGjelS9jUGaCaXzGStkFWCRFUROXhDKbNFfz2LKvHVql4lcw7NkDVd/BbeGK97zD6tS3FtYIIIcxbQYj5Qs4Wx1u5k2HJ1ydAxpA1GkNwQxTpIbsG3MHmYPABnQUksldvdC5ilC0h2lscyRjZ6gG6rmhzOSpxrQpnw2sc+2uvq1HKW0s2626yP9f1Al046rmNZG46Mq5ZB4G1Ma4QPy8YVM5h0lAOQvkIJGAKzWKW0mK2qO+4Br5vX3uKlhXuQODcz4Q/vPEtBhhCW9tPTQhlDliVKfzx/p7JqcQBW+lYBcxZtFoOPtArTfpKpiD7N2hBVkxwUZYwzGWadjtinHwpmrg77ls9rGgW6xdsodyEtkiYJqZM3QOW7K0rTgwWX0FMN9cDRnGqCKZIccmPAcs4u/Vx/lx6mL4R5/+Q5Iuxp33ZlgvMBni9r7WPnxUxC4MQLtinciNh4osHq3fYipTDJ4A86iMNMDUrl0VrmjBa4ZwJtc02kzEEQ3IGZp8nSXAi68uPAp6u7EuVw2pd7x21z1HRS9UQe3F6bzcWPDHZNHfrM5tWjD7lbBDVoSVnN5W8ZtN36twCvli8oBXhRGS6M4sHRPc/eEnfY6f54bKAFKLpVLVgAIwEdh1JddUJBvKxgxYDvQhzlIH1ifp5xhE8kVGRsUqc4WbHlZLgi0WHi9wCXGuAMYgcDMlqaeTWzOwqzGMNlvde6CuI4xok+qq21yrOoHlCqSxhz4PkgiiNRfIdB2ORwx9vKF3lqetazOLLzpnahznTEB3fcgOTZ0XbDP1qOsttDuPsxCSsXcMnblEPt0Bvcdp4EP3Hv7i/WzOerDuzSFjl1L39jYTeZPYprlQb4uN2DOMpIbbNE+vMogjN/jKoe0Ul847bAvE4xBfLBYtBgBr+u0OYplFMXgPIl3MvXAUouixijOrEiFpDs/yibSf/UCgg7gOtYvr2XTEppo8l1Ph67+g+CohDmP73tbthmCx4c2RiIB5K4PNB0eHh/jJ9lDkL7cG/bdX37O4QB75zMfCFDM3Mvy07U9rM82i5e3MMIWAaTFeo4z71IYnW18hrN/NxybWMDl9GM1wnefX8RGQ3LZw86ma1sKFB3J1x79F62vRSBX4DkbFPpKUu4hQooXNAdTVCtYb+OmvTZnGTJkPqErcpUwtAXM5cnnvfzHTVtIgoKz0sA3TaAjbkh8Cob6s3SR4iPULT0Cdq4f/p6s0OJAxjbJjJWOKWkaCXdVLvs5J9krwd0ITWUnHln3N4w2sFGDrlYYQDWcCT0bct29rxHHqJgRHb/lohww5WTYu8rLsdT2riCJulWNoCdUEips6Qo1KCvqvXLI6nJZ5cM9H63X15zVFZ6lpHNn/wFaAxQ/mqmCY85i5QRYuBxhUfd/DxggEVb0Qx1JM6/+QtXZjD9KYm9aQ9tANhmk9uofmEfdU90ip0Hy2Ut8BTSHYNFS3axvdq0VeHhWmRWWhZTk3muLfcvtx+UMONQFpZkQ0zLDXGJ4tX/XekfXC5rqBsu/yXc1CyiD14JGXnYll0MdTB0GbkfKZXcLOMAaXyqKx2N8l+VuJKj9+x5uq0ZrSd2N06Pt+ZQc6Q7qe2p8MrvlFz+L8S47bHxjHonVUfm8zinEljtt5CN4nRGHCe4y+RfIxsAlc0m4FL1D49bT1ep6RhHOz2kAD0UhoNvxA+cXKpM2TocHKwM3+IZ2FuhXzFpyxTkJr3Oljx5g4tNiT/PkNVEqT/6+Vk/d8K7aUhjR97Z8/0UjPVglj8FEIMgH9Jpigtt2rn7MocLBm7UGE5MjXEu983ho13kGlyOoO6yHI+AjdSRRasbcqYXdxt9L1Y3wLDtebp90adJo3wXYqTaPeNvUxp9iZbaFK+CkbUXBAorUyKBTLBHzGNNYW3nXaL9HD7sFvzVsN88QsrtjpPj5sL5rWsygkv0vaskXwBCb4vVIeJKrqpHPiIWUTu48hRPCHakjh3gMLumdLndRJPZTEPshUWrBW5cwfP03+ZKHdtDN05RtJHllv7SlGVk3Br7oyprk3T2EU0rNOM5i2qTNYLg1U8SX/6f6BPQ7Lxsz/RwMjHZkD81R89Ffp4l2d/HdiV+DxLi3mrGuziEXdCgPiLfL8w7W5gdxRqpzq42PmfI75TBs6yjQVdu/fqc7wW8AbqYnfWjCNzJnOneFoMxMG60N/FhIWApgWRPAqzps5cCqK6ZvtugpsYXA4rFzH07504VghTThnPXZ9MuSes4dapBCs1rgxMnwKMfNhxxoq0CvWErrnLTwia/AIjoSvyip9HJjkboJUhXcLNsDhy9KWl25QQQf9HQ3aOR+NYiGedGX4bkfpczS7E5Fo9qQq1gkS6+eyWEpXsAsLcZAbjVieRRi+Avx/myfxUdty6pgfxdV6LZDjqqtGCPVboGPl2qezQ/3aktBAR3NZ/U+BQBUvjfS6jhtM/1kJXoMLicOSD1hHu+T3A9z9jT+OZy92Y2G2SrJ6EDEkZWR9f0bOUvxg6wJEwRyCOcz5zd5QjS8hMX7BFV17MILuFooSBG78SD4XGrA+PFUVN9v4O8zCx0Z4/GIuM2AkTZ4oMl9WNkL52HhR92U41R+L+9TTj+00vqrQzlL5s85BWB1GGEGSk/odJrA3npx0u6f0fU4yu8f8b1KUj7n5g5bcFVgZVHOH4jBlo2f1qTRpuMBVzzgWKSbNZSm1KS0UJg4tGljeyDWjZ+sRPFfYlpHhV3EPXPJvOWv5tWVQ2xo4qnVZW3CtMtC0AgAKrdfaMOPdNLHJsZHxlUpueAer7P9/vRymoNEfHL4Nm6eJt+aCmwjdEftclWkmFdHopNEjwBRyi1iYG4EjfD7DmZ+Gdi30d74RzXOP31FZqxZdAuspSEEN6vTXcVVzpo0bdS98zso7HNwQnJwwgQj9FWIyEBEjORIAFKM1i1noIrju44ZYnBGOM+WlWtMHsKrEaqeD6Zej7X2gHem0uPmSxUsPQmL9e1oQ19cr8A6PzHGWlsY1C4bTGIWvIlpJndy6SkDA32M0k/AfDHxT0qPwdK0HNHNj0WygvEFqBjlWa2LfzKpRvPVFLPXf3puIrwpfTMfxQdOMdXgePoqbgkqMG0HEFidfShqbu0GIAIKiKmzksMogSKP4DyIzGhmjYW01z41qX3bnfq0fx++Sff7/6UX0qDrZWeb18pBSotcYi91gsPbvZs9YYe3J5YbbeqcCWyBvKRonYqsT7Sy+sUK8C3YgrVoRTGgqtH6wKvgrflCI/nZtyftxbgOK4S9bq1hO4pbJ2Z9XNGRkIgAmyRqm9Cgy27zVyFFX/EM5+TM6pHrNral2LejH7dpA2XBRcVqsC0zxbbDMJAALMYiW2rqT1AKuPXpQvT9Y2Lp5a1TVb0B6xl1oQ5gXXPUi1wTcUk6ykJbtlJeRsbPhThTHZh6RxhXzjYtKbQKhBErp1pr6V2MBsucHltaFTXY7KD7ngkMp54OCgRkaIOBcHL9ZOJb0d2j7k2fsXx5KpH30Nf9vIoxGuXQEoqcMYhp5Zx9H+QFQIwIldy8LW+5oxYI99qs9ITVJE6ULwJ3yNZ3QATI1QUHu8xV102egtLJ1aoff9KiD46ejgikTntwmB5GSDx+JSKadrO1N4Ywbhc9Kjzeg4seuJDClyHGRYMq2HXdgDnViUrfHR8MeZdFeH3nLhebJsSa/sOV3Y8uCUCuwAJ0Tk1SWYxXBpBy6RQ5dkRngNDHtz/f5bmwbhTwDXS+nRGjUsSC+DfXHoSsRy92MI7bTtf37/gXUsQl0YU6WCztaLbqgA70juYrWTzrOM06AH3vI8OpRx2QPKyH5WV2OnoKqsV5dCUSryglR6O2H/CiG3Ki3gHUiRI3lKm6BNRkC+8T6AontlpdJh0tgkgEYstSHtRZvY8EwKyIZyVwsHDuRDXZpKpyDexb+50uf+ULasCHxJQEjicyjbMtEhCQAWd44TmkC/x7OICL0l8oxVIINreiIGYyTuowgCRCU4+bWsGadtnpFd0x8WVF3RH+gU2ilYRpt9rtOMlLgu1kQrL5bDVmTgjF/FcGovJBj3ay+MNH1TIE5G05wP3T5zEZ4xMQoPcj9/UZPvqzUiDC9SefAecEaWRhPafnKiKU77HaZKPls2tbGKplbodD6APCRAUjDpDbmym5tS2ipaDkZxnw6rCWu31SrdhgsnAlSguorstEpB1aJ4UHFdtd0IR0QIcyyxqOFUjQryhR9sLucJYcQ5hzN+QA81SBiG3hScL/m7PJ9vshUJ7stUTSSms+5ku/71lhuvtlH5JH9ImVSjI9FrKPilQ2oYts4Sxd0XJtmIYjefyiaiqp5LXeLsfEducRFLcqajtelg17bvEmsZr6Glvggy8xiYKHb7ghwL+hRLi0q1cxFrLmoAZfbsnKCV9BjW1CsUSgdyEQSgTev2+cs1I/0pSIN3Ek47SxiJPPAfvOQ70cmP2zSS9DwKTkxidJyGPl5ay2DbvGyveTkXWXc0LPfyCV+MJAJj9Vp1tMf/tFWqOW2NSRbHLBA6R5tJSyts98aKDeu3Fvx9ocrZ4ZBtSSuoopQ5zBFJLBrVcJqnylezeRXfFuol6zwrooiPiju4To1/LoqzdqWbZWFTE6G6Tx2/uDtH7LapSW/CWgSAYt1G1yPZu+x1pZzN+F1Pe+Fw3cnGj+5GrQ/kzwc7v1FVHbe3SrWjzGez6VTc1tC7ltsr8LQUwuQ7X7vO6yK3AWda8V64lcH8veAK5KD++IHCPD9lqxCpOIsfN/KWkRz6XUcy6XLGxDaO9LViufKbxyzG9OHwgEA7PtMOS1bihsuU95MQFYDoZY5Yj7h7ncy7Ib/HalRyJltUcLlPV9n+I7Y1EyXgJhp8r1L0UYPyuzfJi/oKYr0lpJyGaA9eX4X4BBKIH5WdbOkdDBa5uLbXLQ7CajOZw7oWkXfjT4l2yJ3yYwAzgGzHoyEfSqk/00vDGsoBBQQ51B/XCKOcw9WSUOjn/2En9HXeckrhlK5mdFikEEmqIQcpgYvacB5UeoiBtdpWrm+L6oa4CpG+JIxcGKoM+5M6WSgqiirLqsyBG8DN3BzlSiTKXOJFb3Vn5BsBvpWXDy5CRYA/ZCTmAQ9eGIwQG27rcvJ/cdBYsjsdt+SljTnV+t4Ccl1hrxTFr0SCEJBGw4L/PoUcow1EPgmseO/PK1MhPnHgwIfFmdkX1r0uzFoywomcUUPyM126b6jJytgO9QWkUf2x2320lEDzPNa9KoXW28SwI53oAnZvQ9UG7I+kKwaaoaAn5iKeUnCojoGVJR0JW4WPd8iystBEeadmIYM0yBEGFW2+vOGVMiHsA1RWJB7y0D+9B0FvIU8SRvP2g94EdsFYE1o/a7YyOufGVzYo8JbUwWrHHKdpnZ6TNtyRqUsqDeHjHdRvTH9kfb5UXDuj/J6syLg/4zCVsN4Xz9Oro/Z2Wp76f7c2PUNIdmS0wX4x2BG5wgloRLb81LjFt10wzjiNn3b95TvS9xW71n8BeiMvjoCD9A3u2+1jzHkDuvZxZHrwiQPVanYcWSZpSvcyRSILP/a0jqkVGHRJw7mZEJ3ojJB58aOn0x36Cw9ab26zZx1rp01phl71pXGbF6jm2VATcDbVWXA6jl7zZp8IzBO92ZqiqAyGQAIAtXZHPojIzToGe6PkTtZc2OaYT8Ing/w1aaFNW18xqmzmWZ07crdbBFVYr+LHfuY6Ya0DJl/2Zy6q0WzwlhrWOgG7URAuAUiEktC46g2K1wPgkaHdcDbCaJ3VpbjXUS2GOdVFstDjVuPfS+j9fkneBnpqcT7vtOSp5b40kaz3bHctDp+zYvD54PaTCshOi1CcR3rqMecLKxx61Q0n7SmmrrsFRWtDly4AkyjOZXlGLMn+ppOVGPnpKjbGRA2sUaY5IKMEyf5fLCsy8XX0O/XLmjjtBiodVhJ8Hn/Qm2rm3LC/EQvVDRKbtRQyLuZ5wEeKy7wxt5BpRVxfAv6wzgdOmgkyRQhXW/XbwAhQxOTq7xgewy/nqodqA7saNx+6/B4dkSo4mOOsF1QxvLcNpl+v9dS36I/yNLaKgAt02hmEd25DNsXrgINva2zBoNj1uuB0O4aIgN5tAipRZ4EnZA0UKkQ8DDDzNUUkUTqkFFQXxqHdMBdCa7Sz7Pz8nlFyGQKkKu+CVz0dhhncZyyEea1mToBBxp7WtskwXxe13kK1RAKOn92afwNXTTvjtGfWa4l/R4tFw7SGBhk25r8tU7QrneLvwMd+pxrBkhIJ3hx5pWw72+i2OzuqhhLVJ9gVi6J/k9QSoTVVLP8AT2k4qdsTX5Q5MB0HlBEvdfFhj+KrrdH0BKrFeWCeqE2YQ/l1v8+XIzSTiAauLudo5HOgnq1lBJmeBG0C36O8I2h204igd1fXjfJGEV61YJewwyiVmCg0Mtl7B/5Sg6K47q0Fa/QWmMd1AmI/Y/HC2TgB1YIf9wZf756/smEb4Zr+/va206ICHTxocfAib/A==
Variant 0
DifficultyLevel
620
Question
Tim lives 6 km from the park where he trains for soccer.
He jogs there at a constant speed of 10 kilometres per hour.
How many minutes does it take for Tim to get to the park?
Worked Solution
|
|
Time |
= SpeedDistance |
|
= 106 hr |
|
= 106×60 minutes |
|
= 36 minutes |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
correctAnswer | |
Answers