Algebra, NAPX-G4-NC30 SA
U2FsdGVkX1/VIgTVt0AGEKYno5U3MiX1liVESmRFDM6GQe9Bd1JGA3AxMrPLgGUmqRVDw2NvIS0gX1ZcGA06FfOGVeAb5cFL6J9itgSEA0uK715yOqgK4zO9Nw1HiFPFhXOjq4S1KW+Tk2wQ3b6S43oZN4P5RY0iW4p4wFAgcMIXXEyurv3t6ZIxOWWiE9JhAc774DZJ+ne+s16AqD02ZNyIiqMydcnxCs2nvielarItK6nrsEq3VRT7tm77T9G/q1Oz55F68ir0QMlAv1vmpToTVD9p4quUH6mfwe3IL+CWhGE7FTFfLxHoKyzEPY2GZaVm9wbN+igDEjqQIQKbkbbBapBKeBNybP0KXO5zxDgkuG7BxjMyWa0RtcirY075HEZXZxh7gANuvBEa0Y7zhDgc0ogPpNMYFTRoqce14yNEaeUwxsozF3h3khi4ak4vkAG+/L1mjbTbQgJMyuk2ROAYa5EuKfeIIbyWf1RUMOPO9AVdNKNgRAKGbQFDQTn+8jHcsfZU2v2wN33mYoV4+HhzTr2tpNYZS/YyggWNuBnpfPkw9VqFfmGDmfabItgjlKtz604aOkjxX7/WGeV46R8NkUBg/GAk1Mgj5LQxKFr5SZMkq+gSYA9NW/tZJxYzxgZuvn4Ywekp5i4NVHGmnbakfdx2bxiXEbTDBEzxvHsD/xccJdQ0zb9HMHPRP6zjv91W6RAZKDrpiatKA5bV6mTDxV6pJ4Q/h90nIb2+9mSXUFBktaYYInNRW9WdKBcHL/ZeZCQtpghOj3nNhSG92pt9QdkGF2mwPCucg9lCXffFTDCIabOWwLCBh7fFfiF0YCk5+GjejdBhv+3cMcqtcyKKmo83rZvnUCpTihu55o44nTwtXhxKdoA/NR8e60iV/LRYoL1l/lTR8dYUc0uanUW5Kkk3KAPUOKc1OHombMavGTvFGrDtQ63bS8vla5C+1JIiL64J8AKbzlIrkftbuOOwXRMys0QjzlxAVS60NYD7JusQPEHU4iZx98hdYBPLzPK64pYX6LrLKx3QgAHo6VGBdjHOPE8asWHKdiG04GNZWA0bjOVzO1yqeRfmrCnkBfhNnfOg4YEB6DC6Gtivk3KtB4GMEpJJt4wUsWsM5kgYQd1VtSgfTYbbTJfuLynS4DBhuStMraXN1oAis7cwS92pre643+Kk7RYCYObMsdQ2bioHk1GwZvXDAs1FkSouDNcla2ooXIEvdNdwrMVTonDKeWad9+L7SCoND58XzMgKuzEuzBTtw1f4WjJYPQgbwEGOMp7S1OH70PXXGxOj+UQKRo1gU5/fwCf6xkTrGcO/kBEJFBUCnqwNK3ceU3JlMFWgAUJjTeLJd4Il+VcZVk47v3r8+YkZSlsFNRJh7JPu2S+8hLaDEfK/lwZtaFyrl8BhjcBZ/8PUsrE3w4iVgPhEU7hj1/jMlbIYLsQG29POiKCB3NLZTVJ2bQUEgQm9K0VHIpv+r1DK6soMZ2zLn2zlaqEjc4b2iSfpl9GVbGLv+mG0W+6y0PiAPtinvbzOJvPRQ2k672xYqcIDmJdk939BS1p3+yufPOZ7OWkQpMzOlRwFNkT2WK/qV1+NxQ+kYMBXfsPNiX3+HTXTKDW3R4txf3SZd4ObO2x8lmYkWXg8suk72qUkMMY3I9mLLiBuN9v8wyF0IqJmEWqStpTQjxsOcEfygPkjNjDFxzhmxXeTIZP53OzXxUgqAuqZcSTmq1x+ImrrlHhTJ0B7llDT8Jn56Bzhs4W9WuAdOdyJVtQtbIj/eWv+5MPQQ6oLQzdxayIO3UOtpkHspvs5/iUPOTpq8wRS8iYfywCGT3lk/ZVNZMxA0m/95qdZ+oBm+Owdg38kreLXCCAdxeQ8LMJxkgaWBHijqgXEDAl7dVYSIG0gazseH2Hv3tYPbKWhGJb9IESjObUJGQPGkoa4mUo47QTRsUvcjeFPM/aY3/eyaV2ZYKhOdwhM6U40l/nJJnTzc+4lQN69kbaD/iunc+XFsgw9B5f4I/NzAXr9AwARbkqitiK9CJ5nluSRFKN89AtOGbcZ1qtHDbiRsHt8mA9xg3KfSRqhKdgQvznsKkk8am9b0MZD9xGMUVD3CEl2+foEaLalPeW/YZq7E8RyIYQdVPZqHu80UYeFVOw15WBbjBpLs8Hgoh1aILfiv4WlckmzdDCdZkTGy2Uu4Rd+GK611NNYMb40GumM3j5j1P+QfNzJxp8StGcMT0tyPlYIa++Cw3e2kVYkgNJRSGgBDdWsk+PJlsfEatzIV+/EQqdsDzM3y0lxH8GAedKHEobtkJerVP5ftAl/TTaQ9KGV2X1owjraP991Wjf5ZMfClUWvh1pdTpYB90UcfcYzXuFAwczDo2BK5xEDx7orfriqlchydO9YpQKOBvrI7fQokU1pkX2TB9jHWooIeDOczg+T8LQlBeOJNyzuYGNbFRzud0cJ5kvOk7Ip7Lr/l+RIeMLu5Cp5URmJBvj869ODBj2p6hvIbmEEr/ebyhOv2vVtyb0/KwJOd5nrJjxMF6AmKE3uXop1Qqp0kySbnlk1vvA1TDTxsn06spyQf1dKwnZ8ZtPrkPiXOoiNFvgU0kbGB385RmdOaofPweMPaumhW+SUGhfmXS87DhJ8IdaVPYHzHJsDfkoakn68aA0PEHl7JIhuXdIbw80Tq66gfaPikBMnvHMcMLIZfeRIFm4fmrEn8xOJA+kWQ0uiCY6w/L7M4ykyA/j5kSJnzm0xswuzsoFpvAiqjj97lLSk6r9o2IUNNhKUtoznXUepcbN2Mt4bBdFaTFq2oA+/f7fPSHEqBECI1QKT6jlBPvpHadlmBIW7nUcBYxf/msRzqooMA1bFbqzyn44A60ZvRPDtfgdwTaEYjLHSKTBHS1/+7AseV7kFor/eYQa+eTuEtgaUxHiiqXFcrvA5c6BeALJQ7Th5mKacgmAGs4wbqVFTERRZNckKidxGWexN379xRqpkw5ygVOYGnJI0Q8Y3R/4bOD78MJNmQXIwfMKyFyXv6jHAjPj07+MLrZZEeK95NNL2kVHsIMfladuW1MT++4XDYCdw/B7pZeRQ8O66HfgVHU+6UvePYhTW4T9v5/z5L7CxNWRIblu1Upmb3S9mT17ukreFnwAH1rmseUz1WrJNHtKygfvCpsz7vP8ESoXTQyMeAfBvp9QUCxvygsDqWrWBajUYFe3eTFTsVJvTcefxIB2bjkRAxxhbI6mEPqwL+nWgVaZFE53l8wrdrJ1OAgHAYfwg2zCqXZ0Y5j/ovQYhrUGu/WxqSPaQKDg8N/AHVu/ZHrgM+Xg0dIcjIy9t/A9tyr0Lo2agFxfAy8kFw27mUM/gO375J/UWlwnbfPi4BZagv2v1A4RGtM6DzCTRoea+fS8Ay7lgPX20c7tN8Vr9Q+H4oxx6Hurh6q3zR+AHBQDzXbF9Hwn4OYTvHe3zW+VUn9AYV30p/58ruKz78wg8H9xcRgVtB63IliivAbSj6oMvgIj7s+55ddcsi6BG7ddp5f42ZK3nHc948oWZgVBezhx5z/BsttoTQsEACESrZoStTarHrHyq1X/8qxSBBvCb2YauB9HaF07kEbVPAl3MTccLhIxEgXeAAvEoUn1NIPLQjzpgsJOfhFou6QxIW5mjOTVdsjVUzx3rpWIKH7QNidikz4+t/DlXjpi46cOs96QjYs3tSxGE+sZcV8W38mzYpr+C1OwoE21hv8B5BF1Mn5HGZxxRbGrL1DouBYFgkxqoy21AL2CijvVP45f58GEG3AWAOnAgID/Bl8lNR2nf/TtaXD9Hq0lLmP1ROlMO1Dd51WU7gMWeqTOJUFwZYM8kYL4OJpY7da3oQ+P0zRdY0/lT8uPBSvCDviYekJMRpUiN/ItExv+RJIJtHdacdif1tBXlUTodyAk6oYcTaduEAyVJDg/wFdylwGzq5zLiOCrpSD214kZm5FGiDY7PE+Vay0kPOqSrveSIWIUIxgdueQEu8axoTbLZ5cKOmaoqwPLb9az04pxkrPrS2b0fG9ntySqqI0rzKfVC7u8Qmr/zClPOD2orRkCoBhZYYBCZORsnXFjJW7pNUxRd+C+5XkDOQnhCntx0iDgsWEEJ+WzXIc5alkscUoogYrvvweGKeMesdLonq3gjLkCqqULthvlAno1KqEwJlSiFLp4BexOSXJrgdvDttMAR5R/+Edd8sNnNRNs6ZkrBBQVgV8aP0jAFYjk93S696kZ/Ri8TI61mjbzPGqeVeyKv8mFv1VViPBgUgnRvUCO9R41RVqDMwU3y6QHbw+8qzmvrwoFo36diqt4fDkHLss/pxAs0FBZcSeXCr2zcxRmPZ3I34FCSMgcQvqJUqxUYf0ese8GZGLqDNGKzpOHcWtd3B6bFkI1eb0gpIPYLdMbxc2HuknmvIDUmHunvt3RGp117ebxthhIemWA/hbWVytZega0ABBNgKpRier3iLOudLfcTqicWRq05s6MMz8ZnoUQU5AB2KaKjrIWvDIL4UN9/Oy7TtRXnT1OWoXZvvrgOBItAKUHOcGQWEnLpEI85AgyEMFDapebQwZyGdz8C9SdNJh56N6Okrsw2Y+PcQX/8qLF7SXP5vEDN2bIjhjBuLq1POSZixqh2e6tHzlAHVR3W5ypgmf5eqVd5su5CbzTr3k6GMKFl6dFBJK02nk4YHr9uomka35o9DJcZTXzXUom5hqzAns6Rqk+UvQYPXXItm/z8mAcr3STgaTPoxg7g3qOt2AftYAZkcjCzFhHGaxd7gHkQOmTj9+C8v5OxBG8ajzXjsY/uvnlukN88wlSg79G/AwuPNZEFW+8BdB4+ALMaoiMacP9MrBKeXGNd/MkXrKZcNQ5xAZb0iYoBfsY1YfJkFppogQVbyJ+5MVsAnSIJ63f1/cliTL286D9/zN8arY/Ln5xCTKlKhKnLzW4e67jShITf01MUhH/AuYJj8V6sxYzsCszUfuI9jf46qEYzB10cCpp9vAx3UEFn2mT85GHxicqUj4YpTWKd5NgQaNBCr9id6M/txTyzOwlIq7i/K4PCzd8Hd+XE+skSTz4yrKwqmHnTLxlH3SD6nb9+rHY0XrgAERDkd0RQ0CqrFFxjUshF9+jhLKrVfIR+PMMzmUJG2GKq0ZxL7vb3fB4jcRZLK1U5hSTp8awpP1vBc+Dj0LquVibLHqXwM4c+4BExTMA5al/kNZONYZNAOVm8aQGxit1nI7PBrylVwOMhfegakyOMU29QPt6tZAW+PVPeQuwDgWAuLuRCVEBFjl7fRGTQj5H97ibqs6c6I16WNbAR3Ux9sn8JshRct/GidJ+WRz3tT1PLPhx8nAHOBWWP9yjqmfockMLZwLcZ9gqKIVVkfLfO9Ew//F3JF4qE8qc3W450hOZWTxwNXc+L5du6B4BBdwAYjjqhA4o66QJuXAzWrJuLR4J3QBpJJj6A0HgIxlOraUyPfZEu/p1nXA2QhGK3fVz5kBoEQw9DRk/z276IP4Y2wRRXglaggHbLy04sij1bKMP2h+mpIGxPnXsB3W+SjWiaP+jILeEQkXg7QEIRvcjd2w4RVy24wNWJ3PY56v1CUV/rz/7vs07TkONaRZ7hG77I1jgkzEYztT/71nzXiznVDQ6OyYdQsLvbcFM6b9uZHmPbq/Z8hohLepRbKPs6Ss+jgSEH5zasRK/T+inkBdw/7cIBLSBJ/EOBQyluSZGQDQFHFN3cQeRONvS655KetFF4TYpHm4qp+hgWpkbqOnWQHa2dB+Lhd/XtEA5iyQkEwH7BsE26lME/79Sr4Aw5ENMfPfzpSNSD/ITX62FYMQVEQ6gyhdqQcMgm4evn8p2nS+Viyufuyis95Zc4xBHg9XALNqUYAZP45i3HT4Q9TOt+uUS02/ExdIRjB+MIctdmb7JMrT5X39dDwlP6H5meoYG+KXN8xelI8ERGU77/uf6Amp/53w+JnXNQJ57RIuOvpete6YsONPNElTckTsvh6DCzb0gVZ7+Dp3j/V8WvLqexpnZzwSNL7IgMIwQoOo+HQ/epol/cCngRcqSM8yYHxX7SnuaGbEkaI+Z86eCurR5HxWvVDEELRTMmSHgYsUpbrnUIJicIKcx+HuUGPsrHPG/YtKNQ1pxgJrdEer6zq03r2rYslK9P1C9L11RrvVrVebGybkG5kSolINOVMGsJAwhjRFKGUzMuU0gi3SVbc4Ka5+Olt5RPbRXDfdBqf3hdbC0Vh8cqZfTX5Pak8mBc1H3+sOJeFZHb7oFOVEMPbkRIhp1kf8kDLwA9yshpJ1A/F4sUnjbmPUs2W0nGMWe6oYQ2J/Bhd1Is8k8iX6N8HdrxWd2CGVMaRvQ9VA0YcTUmCDe9S4oIOJj7W+ggNDC/Z7TX3qUlIWEYgj58N48+plB/ruQC/oRsqMQtuQRUo6j22t2h1BJq0VKBKrIMfVlnRAHwLHMHQvlb6JOs8OvuI+78P/U1j3KtfcUeazIcVbSn582VaogK0vSO+82jDlqBn1lG9NGPKwJeYTjZmici/VoNi++gl0veOabxzte8tGYGPwb5JksCJQahE7cjIpwELHb/XJ3pATcy8XxawPPSFuwBOxmfR4gWBvFMW23+Ais1nYkySc8/fwtmw/c2BK410zUr7YD6v/FwGJ4wxN252P0zs0ejUJuK9peseEt88a7gzKQYej3nxvONSJdMYr1AKWxe+lSJLmYk4vkiMDBH8bU28exzeXpQ+XYj/NoEegicVJeQOf695n8YuoGp43A+lVnopaFZg6dXGUOnkE0WLEiKzOnSNeUO6eQsrv2kp2Pxx2UB3lEF2B8RDHPmlTpooq9ofeEIoF4qjkoIfHwlaW6tJTO7YmPZcNFSpNod5+tCzp4aAjkVH2MWhnZoW9aip4vUfH16YixyxCWzMHwY+WyhdSl3ek08ZYROO87+fXHRKrZGhL7P6WfqsZ2nRMgJMGGrxirgZWzVLUT/2mNXEUipSxTnwwygdcP2/EOL5bdDmK+/89bGj2ycmRO4YGCBw9AdGg52bj/4VC4OZH17QyrntIhwrj3Flg5r1wUln4BmaJf0pzX8e4gTRp/voUPWXL6RY5ryA08iU+aDG9v0hnZM510kxk4WMYouNeFUXGBzB1sREuJ5SxJ4Xc5kqB014rTxjJk6RfYe51J4dGfXSVO4tQmOxZpGz8kTBaZ0S3n3ME4x7xfN7jFfrOmrymukkqJBX0GEIP90CgQn11JF/mFsNMe4AnSon835KZsqkfs+B6T6HpItiRPzJ/H/PWv0ZgKP4ip3C56FLmAyazE+ugDTl7Ng6Vw466d1mCWXldzC+UVXqYXdcXMGOlEBpcPaR5rb5TdsDLfzl1vHc1uzLKxzDUGQIkf+awrtoB/yImpyE5HH8jIaM90qDS7csmgJKRtKehpEbnbZZZCluDj7Zku4WlfzezNtGtV++6H/X0dyQPVDnahYNlSFIkYMuTbhJVR64ktBmylwQ/vrBup5Za9+EuBRI4GC+UZXDOkD8dDQHV88Qg2ZvkFi1AmHNm5iTYhhVu0A3ldcmQU8oz44p2I3gU7uD53arWw1bHhzDPepsPPpBoYWenzukkJfJAn+qidO8spw7cisVHiA2EgPtxOXhIj+5aijRrlQaVXg/NS3OgaKjKDLOE5pW5qyfX5BlVBW8o46PwePsLK+B0BvZONwUw9eiOGaMBDs+HiaswwO1PoVJ6SZoA9mUdGP9KFkYYVpWdHoDo0vyNQ4OD8n+0xu/6pbYQiCAtbfB/78Gjj/5Lmw2geDf7kIQg5WfeCR0ocFvvJirSx60Ig1yz3cTjLI5PHUbXRyrHMImK0t8MCV+G3bPOaEv8ByoR9i+FKl/TZEPddtrfaQHzzWhR8BmVRCBfiDgsm5G5CutwHqfxdjiE5NdUe9qh9NDzvCvbyW5W7z238mW3D2c7ulYrqTQf2Vebm7utByrmRuotyZ75iuOw3lio4BkaBG8Nd7TbNaEKH/oaXBg4HfGHGHBaQlnGimOAtTNGzvJ3xprTEKTnFmKHslj2ca6DjNC5H8PC1b8gPC/FESMc3F7IpADytMNkcZ5p9lFDYImlyEUctcCO2joZL5/EXCu+j+tmu4nLfBHdRyKQR14G4AuMZBbKe4d1Et5MaIOmzuu67FTrs9T+mfoU+d/9oV3oFx6eYrtYI8FdNWMSqT7g+LjkxdU7G7vqHR+NzP1xVLMsKmeDkWhfgZp0wg3vb1h+h9FCoYpioC0pkLKfDwQJ25KYcmzgT1EgXun+StAQxsggN0hEIzMJqSf23sOEz0a0fpBQgHbq/1s/Kk9TfIecyMXI8seo8ShLbcfHxgnGj/UF6jei/1c5qMMxHKt0aYhR/mPhm0WAmY9a74hY3u8aBmlLJbmdGP8xtU1PAwm0jQ+wB63sqg5EQgxXS0RDr0QxpjEphOEhdT08jBNcgkxbxM2qRzn78vndvU3dHD9o2IDusfrmwlDTPWPy+7ZHE0G+TryCnFjPmuSmNba5R2iX+/g1cyQ1noooqAY1gPqep85mE6BIquSeS8I/q3vAwLuZEFiLrFNrkHNKuVSyH6dLXnW9BVRj4qmtU4yOEQNFejh1jrRi1Xs8+fuh+cO5FTHhoivU7yg5unYUXD5J1FnmGga4I9JMGyadA5sMcsHz1ItTnFFJIAJG8Xm4AYSHmVkpNI1Yx+1yMEuewTgn/GU6UMf0O+2rXhWXKZqQVsV0nD80Qi2iqVK5NKI1ZBjOnU6y2R1lfB0zxPeWY1AMM3ohluBIbPknS2z1xjsGrsppjNpmIi93tUZslg0zRfoTOhASPlTCF60A6YZvt8j3IrOp0r0VDMHm4uavc38Htd3VmBo6rNlhUXDbF4nMUSjzDzISNcKn9Pbd4lo7sFFqEyKKU2y34on/rhalZmnbvHj96Ahp2xm4duOV4sIzzh++cm5E0tJVr2xqHf0OsCgxwln2QHthhD2bbG421S1KoF4SgBifODAa7SR2u4FOT4FmlC0Y7Ixf3wrFMV7SbmaGlO7czhTU8tTmHpr5cAIHE5OWgZSelE6nYyESXsgYNiJk51dFTNRPHKutf+QU7HKDVlsDhkNZFBH51JJ7xi9G8nIPwyEXVCvS2317fPp2ZTkm9hbc8IpfKwI1OgVXC3s1Ygr2wd0JlJ7l1WwRTsvItPSRysgsL2nXLjL4EgawIcYgRaT8UKyb0FVA+LumofGVNKKodInTL8s37Wq4fgQWzj1sKAf1eO3PXCYy9eug9Ztx8cm0JjyczcHEyfg2Wr4b0ctOkPYfnGXSxJgI59XEN8IWJt6cT17HtKiwZkKDjAa70420o896H2SuGE++ALfP9CbIBO37BnTBUEg2MPFmXUBuRS7hBBb+b7egOAz2pabU3Q7Swje+yDK/Fha0uIBLxMhXiPjI3aPUtHkv0SrKgHD8dSS/wmb0yklbBsRzox9MXjxU/P87E7nogfRfj5EpwRpH4xWP+M/we3FQpQcTfy/f7Vt6Hb2a6Opb98+fx0Ycm8d+O54u8jbRMF0aILGqMY1oLX0XY3oLN7l1LePqdNT+Z7rycMBMBS1bTvLb4y1yxh6NVL12OWbFVvSBVDu9ThkgmFA50Vkw6YnzpFNhWAQu7j1HbGaqifPUDVAU6tQSqweoyfJN8dMqH8JEvdQ9fNUE2NBS0g/q60a4p/KDhRiYXHWvbW1WuZQdrdpgONGsdSYwsCsC8vfLDpH2lLysAxLYvDzfSc/Qc7JNwqW5nkiXaWnhUtKwSRC3IV2CzxBqvCMxFTKJ79DdV9WD6DOV3cwHA5tTFJQbxjcXj4Y0pzLKm/aYGsldRoGl6IIHWmWfG2a9m6+VGfR5fPNNWnxt2s2Eni8lnBRLegEQC5obsOPK7wZUjrlJHnw62o403o838a2MHJBpZ43cq1vjCgAGlgMtSghLsq5LAXGPA0ysuK72sdIc8OyvtoMlpPgfEp7cTT60GFwitHaR1iyeEhekr/0BFD9c8ONWs2zsjYTTSnzhP6ZCAS+sJhqdCp8IIxRkIVmNOkaYfLak00cY1cBLlrVB0sQCRquEaJrAhdhUkPZXHjmB8g6ulqpPAWfB52hHgsWsBouppXlNMd5ZNNbFr0yniktTaFMXSZsXxA4rHVD16DsvnTO7K2jK+m1HPFX5XR7RZNfBqdma3M8Z4tSfWNTlKTzPT+r53WTdjn4313/RNxeleuSu4h37z0U4wPjfjst1UcbyZcFkmCXMlbZY4v92jdW5ZohexYwkSLnTKfEiDXbPNb/407WbyhZ7sOd87LyOrHheK9feS6EKTTVKfhqv9oVcp7oO8iskpM9BoMr8ekVRme8brWU6Iy1bPFXyZoT0zdUKsFBuUu9T//W1PwC/4Sdsk65AHKK/pPcI85wgqR+/lYS11r/64JnCCRog6zlvf1rMyuwoavfecZK4LqNZxo1Ndekx4nqy27RjQTnM/Z36cqEA4AelX7pHWObZ14I+scwJAzShPZZr9qgPN1czMcQDRzz5UQ83rac7nAI1fzyWXsAdI/FDE+2DqM8XgTXLNXQny67g7h/RN/rYI2s1IzivmI08qworkIsCLhxGjufn11K8L1hRS5pjeDkyDGD9H8Ww0zTcUHlufscJXZcXgXbd2xbvlMZnqxWFI6P7NOFWo7ZDphfQ0Oc6Jc+3hGvjGctncPgV0LBvzON3NJZ29Qr3Z9U/E6u+SPlBpp/2I/csfTIzr8mYd74SuGwVtUO2X8PeZLFL0GgDGpYTQseQ3ZDavDVe7cpiM77Lnd7mmue/5BWy8PGOLCk0LHizZDJrOzwP9NevTy+/H5eNWaBMxAnb+Lx7E9VP2gfh0UJXvt3CeyULcgDweN21qbjwOp4NrH+lNVNFf/XXlbLO0RAH/HGQV006zPc8TWhbTt7ua1qyUlffYB7vQIajfB5Z6n+NAzqx1owjYJ7z4G5erp6wZmdzAdDgQbDAtH1SJCn3wNT46jxw1W/sccvFr6mKdWV3EdlIbzGtwc3h4gZFAIkHUkXhL7ZijC/ee0RVyDOuebv41HIZTF9Zc8jheTB7WvWqIAmNAsfEQatF6L0u4GkUoPNClxSMGzuB3UpUk3qdQV2G7Ko+TW5xIZr2siIj/wK5lEsAoRiSkPdR8eh4mfKYvczquuXZSaK+su1GYlbqW4VYpHAeMbBTLjfJjzHnpjEN+ASkeEwSu9EFvUuTTTRrvx2VW2eawxXlYLAy6z4ZtBkrAkMMwOVwHU2ZSw6e6bqtqVFVzJr2/Vm+bucref+E1U3WSO8zS8OfT3q9XDfPVKOFyTBtJSl0xzsHbMa6OLmZ+OJO6RWVei38U10jt35SyfT6nV4WNllrNiGek2j/5P7f1h1Vfkx7e90dDXm5mL3q3Nboh6RGnIlWdQ5nL09ZyUqcXcdl8ENHTN+aBTAOIhj0ZB4m5UJpHOQv9B2RJV74rrUr+0wvOPfl0jFd6VActU+wkaAGxOYptyyHnLb2f6KRJtOGJMsod0O2LdxaESNiluCWT3PHGxBFc9XWac1R1RoO5ktOx4RdSh14k3KwzUUQ4rhkoMGi2CMkA5i4B6Ngs0QAqGfbWsWHUh1euDqf7pWpzGCzKYrQ9e3Yfj548npJFQwTd934FAN4o9DNdcwbANi2QuzWf8RzZ/UUitxgTeQQaH0xqWHao7M8X3SkW0+Lg6M6DuppmWrVBr72OUXjGemsUblTnoN3gPWByUN+0fHoToiZykzMrVBOciNmYLAsmWgX37KOfF362GAIGK6B2cNExQOL1fIcTM1aFHoqUIyMp9EhyMY7nEqYD+aIS37m3VxO+nBRxUdEN0p4dH6czrljbsZq3RdHgHKW+rXHRcxUaOmJa74hcnf4QgrCcUeIGW3EAKcA8ZxMP0ILmCiefMDHkbjdqyBY7qEi01h26RRMOGFW+686k3q4BbapEzg+jqwGlykvCGzjl4ZjTGsDISyBWjJNBKIHphKojDREfiMId33fibwI8VvwfJ4V0vYsCQYU4mz8B6Q4PiAaEYD2xbbSjGoSouZG2AcbyOUb67GBypP50OGX7rq7FrOvsJrRIttR6XRERM/AeUpsXpTc7hsdDI7KkBtKQmOuCni96SDnA0aBablYM1p0XVSEgkp/MkGWxVBLwC2VqGaveB2v1ahmhVfhDem4q/34UuTrnf5uwjh0jotwjhhEZo2lWjIMY7BB5WHK+O7Belh9jIveNv7aovcPekOSN4OO6uf23Udba8jfGked+iw+YJ9Bwd9olaum+4b0LmafdSePOxuDEoez8N8TYFfM4wgQRTT+mxR8wyDaQIHpdMhaVKkvTNQAG+6vFWVz+LsgV5IP1edYi8weemayw1LvXCRKysuar5cIsT4hjKp5i6neWKtniNw5tElPkuGXfNywEDO8FUusiE6JVvZBVAg+wAprPr1diUFPJwBneQkc80cpkvUTeBNo3JT0bszYWmunDL7+PdeUxUPLOT7Mefe5yrWP3XuxigSLfE65uT9287SGvek6mICZ0jswXuKPO9i8JMtvVhXvHNpgp5QKKA/WYiufL5hzWegq9ryfn2eCtVqxyanOdslRvVGSfzlh2y2DYIXwSVXs7/+k3lhRVWsqWJ9omUd6ODp7Giks5Lq50OsYnu1Ze9hscgjf53kZv1GGoTgQmZFrgWMavj91hiwgXzx/XgxHcrKzPQaLrYzERVYvhvHKT1tJdwmT7nlqEHQ4ys6ig8NSDR0ZaPq84ECJkAJzGeXg8uxaeNJZEpDNasoperWty5rKg2RtfFNLqwKfeADdRXRpsrneFvBTp3DjtP8+yEm1yCYszhbVlZfbu/BjdSi0CY9Sl6ifGq4wGCOzD2BfWlbjZNwlLtxdLp6M+l5yuqc8uascWUBhf9u00sZuzISVtQFjbX4tHsDZQlHY5RiMglVvDOsg+1YIlYnopFUwuQzeYW9rcEfFi+S1mrVcRdrKmEWNpyaFFqHGur1ZfeyWvxpzBGfllA40YeHcfdSp6SmBDdCeY3lSpZnGkJrRlGPhW0GadXdgQasdVgn2Dy5m3sEVs6QUSsG5V9Hs4e/uySUUUASOo3JdefgfdbBVp/ocx+AHWcU1MJeOPuVM4KqlGxFjLpedHnhBto+e2uNILVVRSF+WAIBW+SkaIoOMz+dNNPSnMULPzRjL8cbyapacrwDFxl1kmPOfdhhzEIXXjvpKAVXA33fZLiJHQDYkqpL7nJmaepWqJz0MnT9lzCPJ8sShp5kqj7BhN9R53+vFJ4cK+TnUe0Q+CkqCEiFpnD7HmxvOZ/L2tLGQ/yEvttUQ6b04rX4TZBsyvFPmMzrDzaV7SDm8hUiyNcDkRkAVfjUdcc+fNljDLROmCWATGhGxBQ4MZkmD4SFbjGnWlqhBfeNapnbrSjX5+uYASPJZo7B1BsKObUqUtX5Bo5+mCwe2rdOGMaRzU+xs760yuBfLBWOCMhI4YnprGvugxSHu5kX302tMw+vAHP90RDDsdwGeGjarrR9QxH3gTcD52XLb8IgtSakS34oVFtmh38gN/rwkfQvCc34lFzMAT1SmAxENEnFeXkFmRFDUGSkRHDrc/Eko/v5ohabqDeQyQus/8vdOxba0nlv8MCbOAXlo2xWosXpOLggjYzstPTTUObN/sSPOG5iJRAR1SRn/AVA7uOPTYoCF01IZQ2Qum814ApyW7LGQBYaKzcCC0I1vj7cSz1V/gOw2VPw2u1nJsns3wFe8BpmhuG5SBWHpvJ7W13fco8G44ff44H30+z0jnpteo2tqVCw0VdIcMWgOJGy66l2mbI1H0PIyJQ+1RZsVyH+ZmuvyFBldu9cNm49oW74hp679pLCO4qIFs1mcfPXJ54RML2i8oDfgav3PiNK6KXTXLYT37KPn1VX+FqG0k+8o6ZZcq6O8AEp0PfBLxfoLqMoTjdVJMoUD/q8EfkQiLQA9MAd0srXXJuyDVB8wSNupvz+JNkkszEY+1CZMBsyyRxvUaV7eNEo92Y2QjhuchIZP9QQ0YPxT3FZStg7mXIuV3AzotErEt5lLPYq1N2CdjK8ShPIvFV/PBblFgC+VdhM3zMfpaK1p+G2FlbSJzQfJVVOLYtIXiSQVpHYiZhBqE9v4T0gJTCO+BuDqsmhjLZ2Xnh9T6KbX+LdK4rk9YM4S7rfWjfYmFiV2YM3O6YMg6dn5fQx+s0YyLqVVCf1GHfVDXfbGvk7CwfXBtFLR2zYFTFl3V1EJbNFeNmlvSEREGE7CnyHadv2TsuG0sLSM2AeHwee258in2a5IaImrLX/M7Q4Nvk12zoYqG0lKa8MSHb69r8VFXWtkRqXdsSz2up7ex4QTBAPINATd9X5tNAL+kq9E35wh4fUf4wJqYgyCG6/zmlvKSX10EOMwyWFyFZE6jMfMuDIrSxaLniTdWLbRI2wTOm8Ji0L/ns3AxRhS1tZeOeEd14X1fMt/pBTE7KEogMIWc3tN1SRrz7Lm5/cu2+1Kiq3Rvuy0Lc0J77JGUehr71G8Ne04ZVBZFQbyLk92xN6P3JfqNSICIwYu0NSWRP5tZSvFhT0aiAuwsyNMQsPBPwKVtNGrRNgYqR6AWOsU7OuWcp3wjT5D3aUD//oNLP7nR+Zup4q0IyYTPWuqljqvVjwqwWMGTQXLK/nW0QTQAOpsTq8brXj0hqYWN0WqViNeFdyduE+21zcfgIyX6qlp6YE1NJ/5KiB8Zn40bt9XSooNnTBMXMCckfubLaCbc8aXp4qZj2m3vBjDvF7PpWHd3YJ+3yykeI2oT47H/9S8+keRUYg6CnZbqaAqGktxEWlGO/fqzaiYmyddHWgrdsy8c71Zw3OMxX6vZxCymWpHVSXS8fvits9CmO0W0vUj6uDPYSqqQL2fB+o331XeN5K+j2E7BH7LcIeUEJ4SHpfJcUcH06oyKLuGpwaMYFR9gpcC8zaJ1SSbkItTF/kuZRIAawNjhEKEAc7DmjFnP4xJF+U5DW+GkG6zIHbVUIa3IOBWhPtX032g05Oq3beAOm9msoOLnq40wzVzlCRhnCIxzebmfToWJNLp+/oqbDKAyXTYe6WyP1xSX3ux/a1P8l1YjemwQ2NH8uLdTPZPNYTNhr+Qp6r28aNkukWh6FVtwfLYLTHW4Wkia7blZ8YdXFjQbc35M7WZLztMDD0aRisZtppTc75F9AGIPxgsAgeiBtZSgNkIb6ei4bb2t4czoB9PccYY+KDIpyZkZaRQ88k4xOeFURn4l9UbHszlS87q/RD1NCGKg4xyIH/k2Sp8MdKb4FQt1n7Q4Al+cGIXwNlEnEbhig9J4jfdxjBqd67OcByAZfXT2olDT8vlj2b2SGzxw5+sfYbtpb86gT5f7W98cnI2EW2YSaP/KouqvQzyOA1Lz6yCAbwFIv7550VpvdyYjGFp5u5Ol1Z0JDTSjyo/ZC3HvUfVAISABZqyxy+bSBF56kRssbDcRhDt2/n8gUVmqu9Htovp/DNwh9yoC6y6EfyxQMNi2bib96gbs33XozupCCRG9Iy1tOHOTKHje64jqxbzA8NbQLLTLB2hT2LBiRPxmt9r89t4RLFfhUEH3ngo8knwh9TesSbzdI8R0je8BxEgT1ZqB4NyZGK8ekABqI/eqWB7DZSNmZ00duxLpZ5atH6Cc5xw+irHeZobp6VG8unpLydiXBA2V7DKoaw3yEyDNCo0fvn5bMw0DY7GFkx9qo6Ww7dENwlFPLHLMuvqPxtYxHpz9tQWquQalgqlhPCbOvKmVloW5Sxk8zYOcETJQgQKrjDWI3V3R2aAJQo/p3eMTllfmDd+K4f32pVUfvUVvgcLtzRZySBbVCzqNCIahRHsfhgWHPJy3St1QpezX4YIuqLs5YTB/M4FwAKyqmtc5hTQHzhSN9Z0KVj/LYBjF3DsZF0BfjfoyuH6L8jw0ufB08EvUW29L3gd1Rz4k97q5qEnr4eBN4YsCKGdZBUpA11/zDlcuBY0oHAu87wVUrVdhiypjEmXrewiXFefjF93/rkddsO5XURcu8ZCpoe/EDzSPBbymoS8tf4VcAKKm7/0v5q9bqBycAKbnilwIjbch0MDWTRTX1lSDXo8bC/TywnxP1mG9mF0r1hLR1be4IRLUdxWkPSO0q2utOcGA7oKAfz1+BuQO/BwkbqPmYRyfo1TZcTl92JcRR1oXJIvg2sZLans3Vre7Oh0c7TvtfNSpgq+k2KbDMA8FBB5HFxROX3zFCkBkBALXmMiVZnxv0hTFvCrfhcHo3p2QVi5xuJ86O94P7Bwo+80gVClplHS00+dkgyyq3eZeAYxPlKEioCwsnnVmVKYeqYB/HUfmrB/Ljjqry4GiMQzHaV48FpS+l6LA+BIeRBO/W16kvIwQPIFbw02+78+x1bOl9tKmvL1GTd32ZoIvBeNrvT6LtESOap4VyebBjT/jAfvlJnFQZb3AAEtgXyg/LEzHzhrMkqZVmfq6ahMJbvND1WUbar1Up0kYB0rsIlc/OCHx7hoOOg0Ijf5Z2wSTno0/1iV3sgQS1JlxyirDgEZTBgS+HFzCI/1O/fY7Yuy1k07JWLDa5ZGi5h7uhmJexA72JXuUSPiDDoCJbRmALqvpGziX81r+pKxMOfqiRNyPoqAlsBQveG+L81E03EVZIxxdgEY7iA1NpAh4ofZUKgWKBmSrnwHaOMke3LvX449zRlSnscbZjTWdvJY03vMDPXyTBh0MQl69aIMiOJfHycmU3H5HkirAGxS7l13Q/JRsvL1FBhUvOJd3PE9Opu0sl5Y/VEompp14BnLrgx9Al92WhBj5mQ0K0xOAiVhC4lXvui8gxd+QstJ/1mvY+MWQak7qKwGZgqSN89lp7dhaJQ1Mnmm4Sn+hgwQ2sYll0iT+0s96zQqrbAFrN09h3JuxwdjMRF9B5/2KXuytzwxmCMmt6SVvI5PhJ77wmXamiRiOkpkKMRvykTqtexfCNeh3mloYmXsy0c3gjDEjG3WKcXsbXZb8VHKTjUAZJbn9i2Q4kR6n3kPuaSMHc8+gnj6bjyTqZyu7awmJEmuKHxzmBkpQJdRonUi4tmQqkG2nMT+vh1TEw/nExUQRKOgJgNZ3SC6JnzTvKeqDG/dOWHJ+LKJprs0PZ2920tYfL+JSvJlcUNvdTbkRq1apfmnZk03Q2mvB88rC2gw9xA8EXAfmwsY7zFqGHVTSmsLHA2l1eaCTeOUo+J5IcKfkH3j+4GyS6QyvgKJd/J2kumU0xfQzzIanGN6ZorDExa7KbtapigqrE8wlLqbKHRS6nCTetbDS6uA3xeQ6C/nXszqSpDDYlMxKyIQrk3ZND59lvyDLfHyB22JA22CwF6E0e4jYx9VuFqoWpHqB17UVfxy5Vv6keVGpcFBqBADXLsDZm1Uj5cufZljhzVeUhbJY1Q4/vQKMJLAACHKYyu6/REFbcLvdOEAL2uQ6D9dSlL9LRe/lbCYRBJvlt0aS8mjyPwmojb7fzd6bKRm3HteOeZzTJUSYx0VkO8VLUFLSrOEdisKb0MYToASS70Zz3hI9WwlINf4TZQphZ3u88i3hpGI1bxEkWcHfWLnHEYNQNsAHPinTHt9BhlFtKiGWjSswylyM/gogFbRqCyqi4Qr5hwfqs9fQCbPAbDqRUquB0H81d4GW9HJjAfHM53GyhQmjlShaAIszBsg/ar0stENWyWfPycUrpkpYWqRSK83kbGuFfsTGcYYxab6PkYlF95wa7sK1h6uTjsgTkg0cmoV5Wqs+2I8pmN4aR9ct3h6adOaB/nT0nTyMWKrr+5+ukLktEvbJjTFgEMLvp1fiA0syRfwK3+rXxiBNjLb+DutRfyzUPqqswvNlcWGHyM9cCXlnNZS4bQXOjYe/S4d4s5eokwnd3g6q6j5K7592uC5galIMehzcABSCdKddnu0x7yIBxAZ9aWoDHSDJ9UedsSAkPd+vYiqR/rpowce6oIkUUMje96fB8yjwQg7sAiBRcEnZrHUA5QsEOfkv3Fk72FsK+k7ozVvVWHL+OilOF1bT71yitsmvXDKP6YLeGPgxs9V7/RpphBkEadNtqWlTuFzE0RcigUVjLV1KDcE5Go07LJP+xJYIShRlgX3HUXNJKLtWaViM9dKna8Dl7R21Z5FTv/KA7x0uf9FFOCijM+McbjiS3SXk8MjUC8MkwKXMRQmJ/uz92leccJv/c3D0+GjnTFEsxuene5iTGZpLsSB/SnEmhZ/VypGEPlYKLcpQVReGJ9sfvslQROEQAS/h2oVCdO3/0RW3p3ABe6HSkveyITz4N2Q8oSX4bxZTQnODn+zMNYrF8IA+bXD45kCYWiVHMXtgUp14+sPFhsq+2ffZ6DwUGa9bfLoANAHvxLjq9jTfgdaW6Was2TlXQtdBQM08+ufh09tI1rPbMs9NYlscUReqhwPEwJQJZ+UfEy78nD2/kAeZNxoPQNZIVOkxMicSyRuy3fptVm118yprXycuoIoEMTmJ7sqyCAh0P9mMC8OtVF5OhHte633i4ry337AecK8LE40gUZP2j60R3TOrq8gviNRe7O7D7zysIUaBAe0sV5R2A0mNHf00RG2govJXUVuFAaKBjku8jozVTekAzZyDM0jNtdKQucUaclYDvFio652KRAthi2mxajpwnIYqzYzQmUPEcIdwNT7135bQ3fUzvn2Pefu6sRGI6zW20TKliRfl3IzWE9lGwqV5CrzGamnDianG3rx/xtqqaeowP5ZLvZX+dc2gx8MllSWWk57OGwpFguQfoZlODQNSDOuVogKYwbbHCYjRr8yIvA6baDi6fP1dJkq96gd9uBA525wHzJfoTiNK/EpZUl7O0Au+ie2fLh4mHsnH/1s4mDpnrl0acnDm18bEbjRgT/yA5ZbBLlcX7ZUHK49MAo2nxJIbclzHs1Z7czQuzI/wEaSD7BNXT96zH0rvi+CtH7q49xIsA1u4/rSisfotqKSHxNYdQgMt6A/tPUhq5/gC7g/NchLRVRirdzk2BbosFVP9+5JoosBLj9oZ/QvSmbL/XiKI1KrV9LUKMDtJW62RjR/VdPhgLnBG8ep5Snghe9jiMUVihI24qDeGAW74lZATKYQa8oG1ev08oSz/57KEHs2YpUDW8lscLbxiBMwRJr+6m9WoFrD0A6SvKkO4pk7Zk9fsVl4ralyvyU+6Bbi/+JYSia4QtgV0GJyvTEyfO7c0WA5w631uYzsTMs3oFPdKB5Afv5xSOZgQFBjrKvhOGTr/QKLrva9OuaVtcUH6iopmqnZEyATd5teaW6Z2PPTHSqfzr+leFrf7TgJhwP3Uv96KfX4kYuocDM8tlVHagWL+8s935bQGjjOlmOmD47vA+vSpdbeOt2247YX1DUUj7Hy6N/TxwKq1A7+QpFj9XSmf/hnmuE40ZZeuSi4YXPMFxYUM24KskiakVEQQ0+XG+Y9NufYpUokKXrbgfoNOzXdYQZUyvOWMOmBhyiIv9IrHhnVZt4P0iK9AHG1NEfQqh0Ynp+kOx4c/fmOQpPd1oKJyxJ7J+HZ3Hbyb6Er+VihIIZl9crn+srjb3YajtcCti0tWec+t55UK7YZ5YO3ukXqDMFfplG067U6gohhfyB/nhDz0Y5yC0qW9P4ZswCVkREANhtsNnE3Kbn6dXGduMh41P99WfNYtLU4yN+QNz8bLfkVPoRv6pbogfX9cLedrOu2WFmzGj+fGIdmTzJ02N6xc0yJLNLBZGI2v2da7W1eE7sM15uFphOgDSzBndUhZcWrgzIr42VaJ0J5NOZLJHKaMDdUbo1ZuJYJJBE7HYNQAr1FWoo3/EgvCP6z1YCHuk/CIqgfddMKrD2NTUukh1oGnBdRCfUi9wJnrZO3kR0r2xE9UficrIiEYcJWVgB5Ry6Smpmu2PWEy51AZud4yeG7CfmVYU1MC8tcigaAfn51GrutYBIyiDekeuOiVTlE6oq8adQpliADHMdeEhvTrXX9YfKC0bKP3kwan7GJGxvGoiS//Y9WNBbRdce48mgboMUIoGhEL18LpANx/UOZQi8p1QUFOCX0oihTSdQIlqmRe5M3FVTQ91XfGJPcSnkDK0GOJRubWgSC5kKwSqqpdvfu1cNIp92J5vggZgE2G44mRvIHUUCbr75KZk26Bzmv3IbAsVUyQy9jD7Vnta441ZNYHcK/LYZPwCyZLOx8DKWCvEcQli3Eu4BSaQleuUy5nVgZk2a5uBRIXMU/QF07Sj6Cl1zuPVbe4pBX4Z98k3EckbANEYguLEyXkGlpGj6RtYS7tGkn64eIx57Ax1PG12QhISuN/GnWRjD95Yukczx32WAXezs86zfsvhQRK4PWUfeTP+qz7WtqJI/h42zQvkxFauy+XpHhvf/Rfw4rcSMNEcu87akTBSfmwo0NZR3eQqMTfDlySyRwjIDBzMdaaja2JxavvDwaf6v6+VEgc3HxafXfjOWgF1aZI1qg0TR9Lru99/3I25YSQbm6A08u+ECNLAX/LImWBKcmRqqulD1RUCXYcmojh4s3bRLoSeOSM3yVGJmWuWsfU6jiIBapILCi/B02Aw27FDfPtSgqfGNVAT6Squh6RHP+a2ol/ylJbaH0btJzm0DfIRUigGi7gi5tS49GWPwT7mGW0oyKSGnpznZmj9uv6MAWpUWgKeergs+7h7TWu6ksTHQYdeY+llSBedcDC/UqDweYGvtM9FOT/nmmozkau7w/wiHADy75FgGTe1k32ZxxomizmPjqUMNtRg/5nHlUVNp8QKw7ucE76ZisbGrLEc4jIP6oxEABJbzRm3bn8weUjar5n9zf86sNHKaTfLFCUpViki2MZOEPPQPuCaN8CDu/lRLujXnRUV1TpLpOQSN8mTeWY=
Variant 0
DifficultyLevel
708
Question
Sue and Belinda have total combined savings of $32.
If 51 of Sue's savings equals 31 of Belinda's savings, how much has Belinda saved?
Worked Solution
|
|
51S |
= 31B |
S |
= 35B ... (1) |
S+B |
= 32 ... (2) |
Substitute (1) into (2)
|
|
35B+B |
= 32 |
38B |
= 32 |
B |
= 32 ×83 |
|
= $12 |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | Sue and Belinda have total combined savings of $32.
If $\dfrac{1}{5}$ of Sue's savings equals $\dfrac{1}{3}$ of Belinda's savings, how much has Belinda saved? |
workedSolution |
| | |
| ------------: | ---------- |
| $\dfrac{1}{5} S$ | \= $\dfrac{1}{3} B$ |
| $S$ | \= $\dfrac{5}{3} B \ ... \ (1)$ |
| $S + B$ | \= 32 ... (2) |
Substitute (1) into (2)
| | |
| ------------: | ---------- |
| $\dfrac{5}{3} B + B$ | \= 32 |
| $\dfrac{8}{3} B$ | \= 32 |
| $B$| \= 32 $\times \dfrac{3}{8}$|
| | \= {{{prefix0}}}{{{correctAnswer0}}} |
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 12 | |
U2FsdGVkX1/A68kH0WA2ctvv8fbqvj+Ti5pj+l4YYOa7FIOWcj/tNIA5JFPypFIyPh3ugcdN99+o/WzfFt3hdjTURZiXcvdswd0beA2CoTgIbm49mjjiG5d8R5EhPJKl0f5Sj/txFYMFxbzVVGvy5zToxYwHcAnWs+Hs3KqtQ5ggPCOZ0KiDoGTXlzV32VJIOrChwjgzoddQu/NgcVdeeVKgyIEitZpUSwiQ7zlIkddDn9YSRq9y1L2A5XQq/lOE3mDA/HbckgFD+paqtAPff8dk5Fo5GlKIqq5W07Oxl8476H4EKz/VUtKgl3TbI+0tqxErhpP38rg/joaf2WY8I1FAxa9ryxirsqwlFwTToiYtVABgqhfx0lHNI1VFel3uLQMWe/Gyk5R4Edx/GmelvvUMwg/uNAfBfz5as5QTO/w3yz9PpfFt09Qnshu+3u63cxny1LTCIDargq3iZA47uGE4METNCSkfRHwqtnFS5fA9UlWIfej5SCmarYGXJOH7TDApBF31FS+g6c3FGa31q7mCaxYWMs9MAcOSN2cC7VEfRZcZSL0GUw5gUdSAmtDWjAyd5b+giTERQfreTa8sJLMQkbDFWrmzI4nlNwBaFMrMK0Txv9YlHRk3AoPjkUbx5SvIWPLL7DRlYAVmq3CMx390v9TfJjkDJWbgiQVAwWEkzvbxfjxIqlyY1LjPTKJ65CAZdugEuBF68P+WojiTVyvlC9dSy/XdfXrvtnaOGMoy76SkxSD+Z6D/krVZu5K4tBHzvwOaJsN7vK86ujZVFc0S/nvP83WJPuT8xs9jAwviiHZocsa38nba8KoawpJRHLlRTheDHM5sqDqN13tRlgmSs8oyhTwy0PNO0WcuuHCPVI7jTqmNtlJbSbpBEmXycOXCVZwMV9CgniIQe+IZqS2Qf1ARQYQr6vG+fY5mfzIWkXmLqkhCwX7D1N5+HLqQq81JhKIOE6GWmKl807/ZtPMaVO6axAxBds6136gVUylxyVbyN2XQy4Bqp9T0y9wJuYIzRcLQa6uuog5CBTutQochsepZMs7/APykhAHkCP2Itt4eHdh7EuTBDWtcKhny0Erl7F3n0DUzx+kx2Acmz6iu3ybLcPHVpYxOvejCg5Nxt7y0o95TKgHmq20v0/w3XEgHYxp6z62gwV6LDFpf6F6IcZUmbEGj951+sYp+/utWqqyXA7c8qziz9D8XB5d1qh3U+LjC5lY4eRpZxtyp9vaz6Wk90bNvHCwsSuMLY9ohdKzgSCdN4AJuP50Gy8s2BlozHR3Vze7nBH2V3DKtQ4i4Gr+2RZkjfx7AJZE5/1kuD6rKFL/79hoIYo6MMEFX/9aB+FrXTmUXQDhGl5rIihoXplp+i2V9MGncfgkkR3XGAS2Q++BkK8sIri+F/jGQzLo2s29HgelwBWvswCCdym3Ud72EKf8dtl5oo2lJf2P+Thd1ml+q4NpofE+lIOP4xbYZ1Kj7IDSt3u1rxwDzPYthA5BvKVoioFiA99HQHeFu03SxixarcDcEGC11ImgF8RND15EPZEmnDTUMEROzy5Vz9w9VIK2qOtPxaV8H8abftUTfiWIH1pAMPI5220/bfvytV2OnvviJ6Jp4zU4JA92bAPB3ZB6KGQ9XOuE+8IMuq+43qPwkVgc4nvTRFI5AGd1Z13AWkwN3uvUr27fXETeQv6BjZppMUmt0/HIAZrGVztEDH4RWeooryEyru3MiUGD+6tySCTEVht1CDezzAlIqefS5rBhzedb8VQZEO+twNqY/nPaEgCAv8iN/SaT5JTpA8jtsi6cnZaijxyUy5dVx3khizBgHN6otC3vpAAEUGbSUD+ZcF8/eDccrnACh2mt+E+Ea9BvhavKDEvv1SAP3vMcCNuJGxDJNc/ZB0TgTWI36RBuub2uFRyeofgmtLUedyLUJPbI8dn2FW/lHloSh7jgbMcY2RrIXiOF+GRWQ7IninNNQ3TvYWwB2TKCCfwJprGMHHKq3oTHewx+O94HbdQwfrwY64XqLAbUKNiLY+qumKha5D7Yq5ZkelhYOUezcEUN8zuIeM5GnWrcEelJmR5vXW7dXkCYdbIZujuQf6nXzmwxaC3bUe87NzPxeQSfTQuoJBZXdqKjApGb9iVmDna8AVCL72FYmj8kKwmN/TuW5LL75Y9khrPP1rqbhMeGCMetyOSFG7yLl/xUcRjejjtPNYzEtGAN+e8GWIEnezzCSeOSSyPPWiUe4ziX49P0vkhdbdoJzZO9fjOuO8hWmNB0l1DbeJIndv9WwMoaw7pL89MXay6Fso3KPxMLvAoyvmUki7OZ5YwY4L52Y73KgdxCVRjWeK6u/QzHqbQd7KqbYj5OttbfvvCl0Kf+l4y8qbdn8b5zSJNFBYpBcREZgnLsixjQCGD2WhmO5c74YWCP4DYiRD5UwQMEhrSyhLjO3ihgBkH3YTWCuW1VAhSZnQhWGIn6HJpoy4xkTLK0oTq2E1l4Z3egIoSd7hQuS4IQSWd1uW0eh1FMgASSX1C5qXi4Y/31W6l2qa7G+oj/RTT2X0VyEjTzxcpFL1ej7i3tblSPKb4Bb1aFPwt4twmLiedVf/tx6aJIEeVCOyQtulnfKdddfM0XACz2t5H8gByUDqAhy5I3YB05knbSjlmMN5T5dsaO7xcsFjHVLvM3vKzqLFuTvtq/G4rYEwofGf0BFVx3dNUD4v13n4vyZBanS/6+6sZasmWsb66vyYVIITndpDPsYOyTTbRjzMWF1FY244ojT84ywRVvu/tgzUIwShUeBfxjdjOe4yAz/lTwDCWfoU1oMl5LkfZ5s/+oEuU0RJv9D6K3fJHsn1c/fA+KBKFhoxSZz4dJBvDmB3d75prZ2mo6WYM/CTl82xyVB34QeOzEtB0ii3CkYsaFn4d5ZYuW4V3oHZqBarZPSrY0RSS253R9U+ZpcIL/duetzko1WmNsMRm6tHxEfwR/cpSCF+4MAZfaIDvX1bFSKS8BwWDo6CIF6MeQLGJ7Xqlb7LTu+Pnk4kowDrGWPZugNIBJ2VwOE01QIThrr+WaMINVD7+QV33MJtThRuehc47wCTQ5jTeh0cpAFOrt7WW2+igilCjxGtzJ0FZ26qZfm3KhGV+3tfzpl6yhyqijmeMmATqm6J5/OCeUawTv1jTmiin6X0D/agspeCqr8SlFLbK7t6IpiqqFN8YrlocbeLNg1OLxZh++Rmu0CSvbgAnn1pGsbpjhjNYiMDCDqdhTyFOYTc+Tt8tsFVDQX/F3nxxDw5pQ/zQqjrT7NgTWamjJv8QuUAObMdy8iu/hdzN863v2kMJjzj6Vov3BG9g1EQFkiuibC0ZQycyqdf/Iq1Qz569yjcbu22x11kDejP0W6V1Nk2PSPHRDwgkqqDEpncLZg0eaP7e44xWX4StfxGHAd+4ZswmBv2cC0xbL9P60Qa8Mc85lTUD2rwGn17HEPAlG+IGc/TK1QW4UVeIIirAUGmJEmVyJJJ6wZlXc8zWoNOBJQltMouYTgyo9LA2xu1XUW8HWClD0TuXuxX3DQgyjjzkgplHN6pANbchVt6OsK7tdcT+jcAnBztez4Mm3/2VNtRXX8VGK9w6pmvHy7YS9MwVJiQlZbh6MOTv2HVPgDv6HuapnPcMgxgBfuvExj4M2AowH5Q43Qsur5gT5c3KfLx4cuBMZEcPxCtGz1Xo9E4SOTRQXtylFbdoMPCOEjbn71eUI2phkYcXdb2ODQIjKNSLFQBFWzD1lSLXbLFo2A7aigtWByi9eCWwE8NfZZmf4AXwx7er55jfr2pxnNKqxMMvxHlWfEUqopY8TKhbLOT6HMOliqzrgiDQqyHzaV45Ey2h7/33hEAE4826+KXiCM65SRnpEFCRNd0k7hi6DujmVuoE9Gvd0EYKv8ImCQouEh1cm623Wi/e0FVQGNDRZr8RtT/2af+qCXx3nHRSz8s4S5cRGsVxvEY9vPPiC8KSNTp53rQa7XhgmqEFTeRD8nwbz6Z35RuWcEIrMoAg5BZMgbBWSuK/l+mOTJ5djxo/p/fafdF/FNgxu0yhUsrDBj9qWqGP9JHYEtuxcrvH+dBWUvHN9S16NCa/hHZKnHUL3kMFRxsZ/ghcTGL1VbnbOgfM2MbV+/jj0P2pZuabqw1dNkg/zcEWGeswHdtHHgCI3VgTIgMDoNll/VQKWFo/UEJsHny55GWhMrRS8zGk8YxqIBzTPQ/A7DxBwhcMiQwqoG4LRHLeupZBa77ooBynwGS8PStXtZ87QJVB+Ksc2m264T2wPN7AVoDZe8wCor6bzgFBxYwn9mLq0XWNtto9NnKPY44K0bmEz67f8oSne61+GObbbmM66xrdEHxjX8NbwYXICqYEgUJYDyMBnr3DLHkcE+WvGWsYzn8ZstxxuSXvVhs43qb/Pgx2DTGSd5S7QiupYnEKDL+wM6Y+/mB6dI3jrxakq8eSKt580j4UMWnitomRBxWeFJu6GKN0ZMRvnXdWrFqbgP6XDHCfm01yOKi6bfqPxOgPKGSrGRNNmNdK2Iy6ZKVVJ9u/lSqk027bfePZG9bDP/ZZR2yqS/HF9rwzNEf0GTjDnOXxmbLS2PAgNkB4UOuaapSwkV9HxQS0FJsqzk1h4h50MspoIrB4w2ogh2cjPIaG9e7TdbV1AFvRQyj7nGvRH5gsXPrkwKeeY+eJhOlMIkEyK+cYjhuhqUX1uVBbWbbGlxiw7z3XcQab9UduBrbUobaso3h6zA8znvKvvv6mDImQ5ggGqxLYtCP4I+uvxUykuyumc4r6y3FDc6j0WpeMIBR9TzdJfMDQ2N4y/gQr95jVhKO/gxdsHp0rPMaNIojces43muTaqiaskXCrFkiSNVMEjU8i7u/LH0aGRPjYttHk+7KuiDFQBCQN8Sbu2AUjE3iBXfUAgiIMzcBOlNrdoL87A6RpGI9toCzDK1BvCuZ4H1i2oWc7b7HZnAKG8fSdapQ6Datr7zH4VqjEqPzjVyfyaEaQwel4y98KwzyPZVhkYOwvVn0dtd4XRIWF/6Lu9hlP6f11SCkKaXTV4o4yX7MCiQxdgJyA6KW+VDBy5br/PtAmEGnZ7LJuzlAzdpFRR4ShtRB8wFnwLT2+fw7KszCbRuKjhIDOFIPvAx0fJGsJwVCoUn+AVnW8ZXTi9gSGf+qwSZpRvE2r5i8GZ5A6qNOtbpTuwWRXvYDIKirLXXDwzsVQZLQuuv0uSCrFF6f87jHIth6xuumkaBFDfIGvsRYpHhJgloS/R1S2cJLWhbUY65rTAjNeM2C8joR99bxk6eMFkKTjeA7e//xLdfaUaDOuAQSaA1C/q14mECX/q4/abaZAf1zOA1J6PqetWz/RNsjk7uoLLG/z+XgpPS2+vaPxTYgcjHwNBouv9djyVAfsKIMQBb35wKuhcVh6ee9pfTU8uRqE70Cdxp1/MSo/hXbLcx1GufYcsqY8aC6dBSHDdd9nWZzZB+uY0mJ92D1+VGPnvYPZvcxJmupJzld6qffVpfytQMtMBLHb4OVPVtfQHd1D+jxtF12SnujiytG50NR7A5yO3IbM/f/5UuLAKJIBGEEH5Ar5LyGAqLuGzQ16KhVEaFdNMads/zjZGsm0KirUzx9lDQd2LYfBH8/BlTTpiSvMawC08ljwppoS5JcGNgC7NCIE4spaCMN8i2RUJQjF2I4DAJmCrIxk6WfU8D6o4UPbjg+N7ZKq9ab5gtLs4Nci73QI9e3LX1PocTcPXsYUzUwzu2Cw4aBklEe8AeBJQwAzOnOxQlDvdk9ksY0O3H3ye95wXJcejLgVp7mpQoQtEF+yVrLayNPhRP26xdfTYslcokmgFMwemOWV80ThvebGa2dGdvWMDgDOYzQJbN+Bd6JQCSIdFB43CyHqGQ2aiGdjTrLvsSuKETXvvTzQVXleSXQhF9UjYRJO6R9zBGvCbyvUcS5znfWX8/xjC9OiSpv6aFSwEQV58fxqEvV9GsahsnhfHOKPQyMfJeok76zhiEIEFs2eTTdMgBn42HYeFYmXTJVic28xAPQyoLZRxS+H8FFb8sIbrH2Kgty9+kDWKiVa7/VdCFzbnMny3CFF/OZro5B2CoPVRq2IP8wArFIVCGjtcodMkhfXPL48znjK5nCanLCgDJZ63DYxvm4jkYdKDiWQEoAGtmhCb2/QGWDx22WAN+VDgSw1ZMiKfIq0ZIZT9QzdMjhXPmNDcoTtzR2FJ0M3PIkOwbf/mAObgV9e2pHyN2/7McORNqTwyvkdxSX1PV/d+vSDZIyiaURgc7A5uBcTHV+G2iOk3mV8lE5yCung1GHRAIuHFWYfqdqZtYzTzC0ORo6uGzyrg8MTTaIMoBqNnP35xxkELVfBVZvJ/vGUX8cfhUfus78n16RsMD8WDC7bpV022r6r72+WxU8U5ZMvF2Ui0c61HrxRL4GP2X1r0h46BHHY6lDgzsz8kEfixnn4EdLkbstYqlhH8UKhhrxIxyTfYOo6hksgtZLgJAKcg/FnCoLUMwJ/mJzokkrAOxbZARACd9M93Nf08w17n3LcD+0BITSN4wd1HdxTbPB9IiUHbmi4CSOgeivM8evqDt7P2s4ejmumSSgoSaMaUzTYPgRgZi+RHqiHFWJn6qAKElNfWRtZ+Ao1F45mQrtczyVMjDcoEhGDuyJBoFR9ARMhwx44nBSKkYQKuBGbQmsGmNX5Le27ATmseroj8rxl7K5gQxKbw0dkaeriIIBn3Qi/JtnQLWTcRgVOkK3nmvRV5+M7L75tceSqoOIS+jKlmNwwBibhfZm3OBuP4VcLcP+vNKdYSunSL07AT1AT3VEJ56g7eILGkKYl2N4qnqgwgaKNseVC7iy7vLVq6Dz6dkeDJlkdDZZ4NjvPWYRZAsxd5cyxRySQB8rxrBo0we0gIi0zvncUnXHqeI41Z4jNvNs6MmUodq8KNDEbcx6gw6riiUYyFZBmMa8F5qZnrb0TMmXQRVqqXHaIJbD1J/6x8KBBTCn0IjmEvbonol/hN1k/KOSdSL8srgNCtp/JvWez2V8RNVOf6jbGh47Ed160yelhXD7/rNnw4Qj+ZbxujyqA+0SCOdxrUEMhY1iWej0GOj7/p3JE23Eby2UIojIAMDxetGUz8rW0tT6Tv93dbhS5+oc/SdsVz70uaEE1yrUt3f515qKAz0gfA9xTAAZW57r+1GqdnWnnlwQ8UbzoWBsX91YrdkMoPz0djA94fAMafY6+Z12hssvU1HENiMke+bTB115doJAE6l1r3tLDKLZfrAN6PWz22pXgJu3r4tGikmwaB+45Mu5xcMQsfGqxDE7hfO3vyWMjKmY5AYOOngqEnOAJ11E3HNGCdsBqxycRzmzqA4m5+IALRISq4qx8nzusx63fcBpQepcJgU6OMATUEz7u+/w3fkcGOqmvMMCOToBJ8UMVxyJB0AtsEW850SpOPto+762IMCdguSVI5MsiANQ35zEU+/Ow7X06e4d4dj6nPfj3aLVFRoe297UPqa7+8AO16ZxTN48/QdshWPKhrYa9Rqs/LM0K1lN9C2SH4Xaxqahahm1THbtdEAMwhz0hzYBArTCs+M2rTFwFlgzBv1+rF7aGotIEMWjRL1aTTHjMOqTy2VSn3XOy4+p8sFGylwV3+0mYOv4zE40nS6Zqm9Q9c9LSy1dvLzbm6DS2jZsPurRy9lWRASb6Bi1H328WUc/8SjkckUc3NWl+zf4HLfXGTtebqQBWL0tWykZVoQQ8D3aeaA0WWBiD89AAj5M0qCicOBafW8aiIhAI1dz7E2QZmNt7yutzto4GCsoxqtjtgfW3dGJk2Y2DzOJT12ZAMzVgojBQBrfpOG31y0Wz9MVTCn8nSZE7hUClig8wn0wSapap6iV/Zuyoe8sI5VyESOr7ii31VSNF/QyZlVZRaWM6J8XA1hK0dzALj+U8vgbkXQz496GD9f2h+t83NXzr2gAOklLVgwgLlr3G18BIgXxorSDxbCfOW/8YMwAUPlP+BBYAqpcoaG8ZP6c4vDnV8uRuFwfleqK82l8KHZytVlq+TUjHevTfA2UkjksoC+UVHgPGQwfmuFOz2+TfvE+xTrbaYnHTz9Mo+LtNUtLOh6jy22iRG92g+AqTyUCA7HrS8IywfPHlreINP4DE9KN7lurmFMafshITXlfXhksQw6Ke6zeQ3PdUYA56DMVpGjIEgzrkXh8OGsDSJsJXpSO/NoBB/wosv6SeOwpq66ekCFLT9CM4eaibrdbteOppVHDGgn5xlKv8F8vE92UGXw/OjnK9+TVnA6tCbV7mOqnjfKmx7AMK/57sCopxYVEJeRooJvtvV7w9ggc/t9GFC2SE+H+4cmIDYXYRHC7aqhoXu0Sm3tgrIzOrmJdTytRr0dPxp1BDth/cS2fMI94W0kkEqm+JBqNioNIw59YxOOI8nOnfKGw3flMYo509japN1Wm1YEiBIKzJ3IGEbNPOLIl75FJ+mm5GBIGmw4z+eTinspw13R/THnpiKePYbsicD/SUme64YlzoxivhQBQh7LSO2sjcNIhJTlYebZusyZMEtTtHvGjTCLvke4Zg9AZueYoEItSOBomRbx/YsXTuR+reuzEWs63/MBr150sErKXO0RHvJGqDmVcmDq3U3eBou25sPzPJdhJuUVHwRKq3/Sb9rayjxfnzr4aRxJOyqYSm4OXnbs18l+9rYtDkFPoCiry97ZiTSx9B003vtCOj+cyPgu71CO9N0mXIix+K+/vuDE8/QI/Zl1eeuVItlihnhciXMg5y35GQr/wDipY8PfCk4ijhy9fe7lQw/t/r1ozjJap4onhfz8vxdaKMdZkYr/Vv0F0D4ca9kvdcM6lw/IRFbTxpHKtMJP2eOUKMmCk+f3nx0YpPAxf3SplCgGihZsOqRNS4upeNLdeooxeQv+ekKZ2scpw8JqTWNpnlpB3e8fH2r72qyO80/65cFUaAZcKZ9nA9LMBsRUth4mz3lJZdvAoKz8difpzKBZElII422KbP102y2aOB4X6DhLslIMWHWrJdC30/XJIqPLvHBWCrKpLElEA+eNQhD8ilFH6EKLrRLYX55umLUyyQq5xnzOrKA6L9Q0q8mHsxXxI/0i7kQwo0sIR58+wanjT60ixlWCsYNMfpZsbptRj++CPuey4lpzacGj/z/xOpTPZd2JyNJmMS3LQCg12t0D9tYoveBMx+RZoCh37qhKjh1RKUlYH7uywYGPywmzguA+PPrL0D+KzLtq1+wRJu8UOW3NRyGX5Z8X9TZeYyYVN4Ud8DYwLh2nQvPrgeUta3KmZoQdtJKYLMaiYuEKwpcKgCRunKkuipdRstj8USvSMXqSU6bXtxfnUxMnAlrDNrzI4aDzXz/txs6yA2MOfhfuag3PN5igEzPPBAVUiw8k/4Z0tO+n3pgpd5xIF8BeK2gh26C7QYItF2ZDi6pT2GnlxeYJu3QIe7CkQLb+psqBj90FWg+wmCyCSuYNfgBiploQyHg8fNADwZYG6a8EW1uY8ixGkJWNBlzjyLdFbxZeNgl0McZ3lotzjf+6YSmPWxce79iMwCXpZfFSeh7PO2LoPZ5IK67aa1TQ+OtBY7WECZFVpfdr5bcAmJMQLu54cRE1+ynW5TdKvAICBHb9k4ZAZh0l2wR/3dccEUklq5SrbDWVRhuQ7BvTqsaYOgSni8J7egLp6k2LONC8Hk9v0UYF2EsD2EYBcFeiK9iKD/F2CItaZlxeSFUC57K9jOAImRsEWEWCO+0ypKEaxJU0HSSZX6JPzn/RVVA4ao8nVyU0kR6oAN8QH96mArUVHQFaO7PpzQDz9p0w5JPO099aG/dhtRyFnuJaNVcpaNq/fCgFi9SWycvIE/oKY5+1v1P/wFB/EhUBlpGWlorf5+DG/nI3dQHxeHZEoZBjD1FYPnFvM1u50zJkOVQmnvxKprV9m/89NbbXVowxzRnCshMjMhP5KkAjKDnwLqgLfX/q+9vuzdxDHgBhi3FzHyL+V1Tzi7xVEV+WwYb8g4oUQMUq+cOFi4hOeVP0y0xcW6XerBHzZmipfqb0r1F9NkatjQF+WfTrJsMsHMcGKiePsYas1Tt4DtxYFWHBMEWRiOjoYaYN9EdK4L9QRik8IJXPWr5+3/k+Ia8tDyLYn8ZR7Y7wOTG6mwXlsgoi80yHFhChwvOpVspxSH5KU9TSj42D15G0rwnmLO82bu20CwD7qAivCp7N07zsRm145HlJNDdTQFrR/JQgmr51ypCIqH5ha//j/VRYoEFC447+uHe1aw3ANALm2d2clBfjB/1lM3zH+Jtrx2qkktT4eBB4ftgRTeMDdXXhtWbNeraev2wqxT3OsmVhsASuwqGNwfR6a7mp7A+R0jTVqb1z7XxlqHIHfCFb+vgvFfGkPwimYpXOhJxP8iUNPDcCzd8KJwtXSt6ZRrdwQ9okl2FKMNY229CbFWCKfGBW/tSJH5CcjszYC/JsrBzJrMURHWFdbyT/i0Dk8MZeHGncI1oEg+DsNwnSJp6rLO3EadCAO3OLWQx9hW0DDWP4YHHGonTH0Kr6p7MQbGXs3s+INpjwR3j4Lly5n89ffKBy/Cm4s+wepYKszmJy8YRSLjhjM/Y2S6j7wb+eBAzbRE1DteBkZ3DaPVOneGsgM9N663MKLQLyvshx812Z4/3xmo0MweA1pukqOh8UTFjP1XbT1QifSBiVgeL492zIa5h9HA7BEn79g3n6lPucDVjn+z6osskxszoADg6Uh0ArxWl5tqbnIsHOkkQaALm9TeNcBk3P+sSYKpoBkXzzLYEtS5MdkYCxeAG/qh5GKFo3bTh+jSAvyDI8l04VaW7ldxEv7UWLNfDA2GpbLl9177PHbrgstCgMkd5POd+Fbp7tr4/N5mrP2czTEO1r18pu+7k20GL06Ph5xploM2nZNLv/bXSD2X+9e0YEZXpzAbmlE+5FKRmuTRbIPy5xggKhX4te7Uz32lW/0AVFRMnbmGw8mpY2PXzfuQIkMldMp/IUvpzZwBTodgZCFOcVMcOcXXurNHp0QsstfMlxMkJKzeObNPwsY6tyreD+IqDBCTv44M7nEmgnzXRRkIhNkiuGkfEZHEG9P1zoVkPRVvwfGG69iJ+mJCG1IH0Nk6Vcbabkl9XOMBRiNywxoyym9C3KvzDGXEG67PlcX31yzl8wQlN7n8VmyCNq9JdN2bslegzs04l/a4A1T41K6RyCcX9u11rVUpNhe3JWT5GctWhjTzgsgQXPax4vFnB/IX2STX9w71lS7QFs47plPfMgWSCMgeA2SNr9D68Av3G8cYCOtu/AuKu5Cc7kFSWAXjVU6Ao042TpYzo+jrX9XSYSww9pMwP0sMzeRZHfyP4pwNxkW860jRdQvbZzSSlHEY4sPi7N93BMChRR2y+Qf1Mf4TA4zDOpR4vq9pTf30CzkOiagHKCjpZfo3HbEoG1cKCcoY1bVKsCQWptMLYRwU4cLVmEEZqND+Ky/2PqizKdb7ajduFbrx6LQWguDv0WcpSQpej+AyUps0pjyphyYRHOLDN5hg12eUZcInVnnpCRQEnu01n+eurDZBLcXA/6SZWAULnPv8FCEZdgmxPKSfk+afqR9rXltAlr/kxPEbTll6yyqfgtf0uUX8qCBV5I5M1TF/hEiIKSWehO3sn59WQN7u955s4Aox1Xyzop2FxISU/6wplHY8+NfffTcHl7k0fFOAfoKF8H0ma/d68q+k3S4bH4XpSjLfk2GfaCttYyuMt2qSiHETpuX13IPSAHWI3K5kaWPul+IGD+98eJ6PxcpI55vLl8ect2RBNmLWTiB6owShk/5JN/iCkZ0tDr/aDrasA5HRYPjHSE6QR3hd+jcp1/dGd5xwLzX2zhTlAYXpEOrqZCiMuUyzMev/Aysi43SmXWfhAEbMK/SchmyvxfA90UX1lxuSgyEY/9XAOJPxjRoDhxv/iW9mMdm6zKgoBYOnkbgaD+ADkX98W32J/7Y2tCzXl7rkLfEUqjf61zfWPizyHb9qVgFuCyvpMANqfUkmaD0H1MJ2hMRrg/Z6uHEJHa0XSBkcBSbg9lZKaKlTPVgKdkSS0EInfWKIi7Gvm/5wKJAV7XCIO/o2fd0fEIg+l5F7XBgOJuNpgAQoyL682s4xdwjKcDrgtn0nVC4rXGBYMiT+oGSLjWknylWA/pLl1lL6YvXddGEarhAYD5FGXUPM/1csrXRMPRl22h9alDwk0hiGGS2XTmMS8QQSFXNEB/pmH3uujjrfPh+57Vs1v6U0kMAzwT1FS4s0jxhHFjKVgPdwGBxiGUj++0CPYGUUQja0DgaL6gvCwq/0Wa2sHy2YxFB4HeNHRgwrSZmKKOJG/NXJ3Ay3Tke3hx9mG7MB0SmJfvyZIlELZ0/ZMAvrzoj2G23us2zGaozQ2Kcqh4PYi7G0pNEdM6lVDsGxvgcSDqOZfYla+zqHU9wZDUWNNqentDw//clchiNo4FmDCkagPAaafKoMlTPaA79jDfuWMRYvpVA8sRu62+BKP1QJhNxNCxdn+eMjjgnAL+jQsf0jTrTVp6uWfI7qdljIClKUiyW5SGvxrMimH7op8ZKzjQuYseVbAiHIJTdxWprSp0YTvEwu3OMu+sUF6ol75pR7HLICkQUjuY2L2dQCDOJ+SZvCSCwdqAEpu6tOt7Uo4w+rh/FGmcEDlFz+4Tc+Pq4Xf8f0O+9CTKRfqCKJskbQ3bjWPzaXO/OkXGnX2sw5xc4LaLjM8dN00ZWkTEoj7XVCh1UTrW/amfHjk6WK5lvkjSrEgrOvgACSzx1mWtp8Iz8Z4a6Hc2XP7H5XnsMnVngWsx+R3sKMXIYFDYFLsFzqemCq5J69mhJMFrVfIMTwZOeJcW/73hx4GsMKQWB3TgKUZTdlgxl9ukO5TsBbGAzIrHpjOSDxW7t/iW7OW8m8h9TMMzc8LGvQimoKFL5uKu08tObQBUOROAylNqTZi3iQXdEtvNjOjOH6TgpFQXuV2LkEls1hWziuRPeg9ar6mlF73duCt4L9g7lVsD8bCEG0vid/KLOcn/JH/cpEq2NVA7xB9W21RdesiW8/tKvlXXJmB75gCLkB6COmNn9I9vl6muvPDR4ardAdIiA0BY/oljsPx5WVsdpAXO5t/rS3b2b/MpOWEepi/iEKBIyiefxd1n3VZBQdb1aY/klPJnJsDKqj0LR+9l0TQanQkW3eAN1b6iP3507eExHSbIJNyuQVAoTFb8YX9V/8/1SAMYooOnZMWVMTA2j9sKksS02kEW/+RbseUx7XvsTixsPkenDjK/0yd8BEZe4HQCbWavKuSatZMphoteMz2bwTqQnoxQ3Xi21SVlxREOeTzc65SXKWwYSXq8ddwadnYGRMQ6yH5il9ckA9iSHzELxXNTzIwqYDv6vp/h1CstHeDalLeFT+GjuMNC8cMrhX07vyNIrEaeeU+xam4rzuexSvCTZg7X4PvNrjRkYstNtzoGraySFgRTZGfG30hDEDrtKsr1Sujfw9ilh0mI7L/WcVU4OwfPjgF7M4ep6/PJ0tJcU0y0u/8ubNSPYaXCIesyp+hpPA2c+5+ppddmlORUGEM0/1HdEibrYSUBvBJL39H3FXOy5Qtprgw64G/PKwutbg4gG8k4h0qpJA38olGgtyLa9+BqUk4OvTwhADO3m+DO+giS12xyJkp9a/EBmKAIytUREfe3B22hz/RBimfoRHU2pvlPBOrHL3PljlR1HbpekNhxWf17XjuKh1P91l+enuSfE3WZ7FGbDqQ/S+aA8uu4SyGOBrEfe+S2ONqO1nTTRtpbWGPftDSenTFCdLILrwTFKOh9eIi7R/0r32/JXGyjbmWyGSyuX07XQ8hW6E4eV/S6SNHq88mpr0+N45vCqt8a1IZJZEK/fPt0kBcyl69dc2Myp1JtNGMlph986c1V5zvq66/mL+y2Kek3M/HxSuCgttxp789/WTXGWPMIWRK161oB2a70c2jwmbDHFEe5Q6DCloq/fiBA5B2l+duyCca7Fn3xhzAP2qRLeEO4tD4Hc9XAVYb9ICtZFRpqVGjDvyF9nCPe+ORADdYES0qoFlHxZjK6v7TSGrI/2X3FDVgwgQwX8Ghr0c69JVZgVrW8S8RIhfFy3BKqPEngg/usI75lChHW98CDOOdljCAgzxiwgIV5TuBjR+w0zb32xIQ9U5wqlAuC85RLvMFc37aWTymNCJ637E0X9NA0LK9/YpOB8RkG81aJPKKwShSrLI3v+HZTLiO8xnb5VT/Ja/mzkS02eiQW/06HlM1wJAzQtQ0W9gOusVhWgxWqvf52aDqFHrBT3bslpg1NVVg5A85rvcSx9p8j2ecLpFq+35mHNzvYMQb7LSzrO6OxM2OD/Fvq6RKoS+eBpoL2L03Cy7s6q3o3VKQ7fDQ+Pcpla9XQxizrst1euc3pb52ehymZA7JYV1/2RU96++y3h1DAWpW20N8WHvOLoDfnk73guGmel2z04gyA20/S2Gbn2Vj3pI3+D6EM5Ql570lKlBT64EMludUNtqLHYffjvoRQKBAPdsOL9Vux1ecQ1shngf39i6Mis5Sjs0HLdtzpuqnYyvvJmITMLHdD+5OaArm7xKlPv+OmUjKsI9gyvNypK9w6piXCgAj497U63Fq7OZ3ebp3NTG0zJBoa7fW1Ht8oMgququljp1B6pJ2o/g0wjqMiN47HUaIrWfFidZ38ar+cKmrDDIm4NfUaZB+CjD1S6FqggfdKgsnMQBKFvEPRbyZtOod+l8jwk8NhujH73xtLWeo1kSSwgH29IVASFDp8DhKc8kM9fSbfpAzHqrp1GhZj1Ah2ZbdAoQ5DXiIEkifF43S64lSsacrld7HgmcxAx0xtlg5ELjiJlFq1W4t/RXfPeWgFfK7Dtcbg9uxZevAbPlrbOiQzH5MJ5I6/IxoB2fK0JiMlU3RJGNmzlNiUs3ocKyPzJNChboLSgaz9U8jWoo1MbaIJMFgGr/2OX5mkQAAxgI3JK67PV1eS9plbKDXs8G3fjiUpP2Skqlu+FSBlyDGbs2QhBAa5zD2J8lXHVQWh0rqs2lGi6LbQVzBqkM91hs3Jt/CwU+T+I0VdnOMrJs+bmeZvpWbIFwCpYaOPtrw4hYe0/khg0OdvbCYejY2RY3QHFc0+LJt652SSSCg+4X5zlaadLarW3hl3h/aeE6UoPtVnD5idPOxf43n8my/aJqxg1nL0D2oNvbBpWrtbFkbEDGBlXhJVpzDu7JpiBt7BcL6LhHMdJpaL1tqhJ0bSX1V9JA3bL84DvzA0zjHv5krNNrd8XJFh4dS8SHf0PSWLGUH2NaLA8qO9tuZnBiMYMBfrJN+z3N391DGOZoPg2rP3ZXpOH6YwIFzcOK1bW/uzeAAOGh5of7MtQPNV5DgK4fnzS66qGiLNTJP1Sn4aJaHpbZBllYGY7MZrCrsZGlzUr/C8I9Tinb11IXCqMuopOWB5fjImmZ31T+ma980m5b+6GPgqC4/F6Qq2joCaEIyHUFg+KghKzPzMNFYb923ULhCePR3rWTGrTkZseEZ5EHuvi0eSejjlyp5ozJLDi9y40f5wjnFmUPtHj67eH0hrQTvRHkJB1qOSLCwkA3qhJL0qbvF/PWh8hT3KxmfajQS/nc2BhGSoneZuDGEEWk3mRc1sWuwOUfyxfNQYEtdNqR81v5XkLB6SMkniiYB3Lx8tcwTrAPlTX9UlFvFWhW/qrwuc7iJAAdisIGGd9UvSElGoQBoRQU+j58+pjkvObou/eSnEM77vbTYtGYHobSmX2m6xGBD8S+SYQjflkE42BgWF7FGjoFPV2WpdnANDGtBq047iQrEPSUJ+hv8KXTk+fB7+FoO2u25S9S6IJA5GQtvI8NdJHBjuYTBh160/zchjXDxiiUCDiZ0RSsBHjH6Jeq8v6BBtaJ+0HCTV6fESwgPW/Ga5qvp4w8Tnsx2/sZxf29LkPKJM8+DqdWcR9cp3jgCcQNqrsaQ8uirOmQNDfRQGnCYznXf6JP4Rb+Y5n2t3Xi20smK4IBttsp/N+1JdCCksjgySmKjvqsIS2QolxXPbINWbvzY4baw+xUymK3cKiXZUISvuNvdtDmJhlLbh5W9a9eBZN7qwagSFi9gpHviTApDWPUaklTk0AkTbXYxImnKQK3IiWmPTUGb1uSyGtC4/xhWbFSLPmhL7TWqojz7euF1GbJ/VzikcV1DMDdfO6ePcO9DR44vYDZw08y34HXez6sfEWHpAXCQNP8E1jNu1wfFvTYZCaBQ1QadH2jKpq95uK1Y2WGp5N9HT81IYzi1OBzv4/tC4TXYR+wsq3Rd5Rsx233a8iNhVusR4ZZVxy7bIjSzl/9bIyLQXUUszqBKFr2IodO4R/4lrSuTBdWxt6GR1EbdKedZCjc0o+ChzHYh9tGHA4Js1C8I403BMCqQryoV2vabgEITTw2L6WQ4QCLYCZ2gTyWhEHeSpM354HgwGAYvnnPSzOQNkfS2BEAyrbSE2Txc0KHV2f9C6WzI4PvB/dUw+CCMJkEHizoL0Co7d0Tzn4bzdBGL6XVnigdul7ZxetLZ8VkMiYZfgEyXs8fvb/HybIxqSQX1u/deapiaUfFLXffVQu+6LnFyrr2w1D+6xI4QkD37dZVAf1IEmyo5KdKUch5t9HZf8CWDI9XBJs1ES+coxPA1js8xFOoQ/q8Yxj/xQk61t2THhdhXK4SDOpxqLUKB3x3O5f+8PD6K5hls906+uKc6bSxkN8D1f5kGcIwHd1Gf25BjeTcdH1gRn6fDMNGoA0PaULdDm8qegYdmMw3tCADEyQ1JmaqgkShJuKqmHKA59L+BpwhCQqRQd7pxaIj0FW5BoVWCC98v3jan16jR1if7BXKPKofUKqeKTC4Z8Q/HSG80uaC0WNWlPdQDk1DvEKeyn7+snlMPOS556ORtKC7ArLctM5a4bB+fOGjPA0ZKHpmEaIHI/uQ+9wpJDpYK1mEloqHMrUhRgZV0387Xf8NwSjM9VfwjEVbs3K53geDX4CgRgLBm8qlusEZgsfP8RfRXhDvtZ74N1sXNFNrf3GBcQStsgW/GSS0mBLeavH58FrWmvlIy152B+c7gdo4A2WcnH9S2NFxNEL7H+M65g7KltkFGlKD73sbUBFaorgDQR/NIxKpRhX1cLDJAgEHJ17/1npeQCdwCniQAckkdwCl8jic/kQVGzOrLwGVcE3wwoG5cC2bH0EZwfjZLAvN5KyQDb5uqrP0EDFEyEyWYKJ/S5vOx+QVYBB1PUpi1jXu+Xmgue+6tCRbSnzEdEXDA5lvWGsdmQQSj1X1uaLg6f2IeRHhNlcMCQj/qrYJtivsd8vW2GWLEV4+Id8Lhx2E8DJkhDt886cY3iTlq/rsaI0aC3ZaLOsBkj807ScVay3PA24QUO7NfHupLOnYlhVLUkUIIGfLzuYSJmj+TK1XLRr+DoT9te/Cof8I56R4gAhvJlVV2qNv92WH0vwNHaeEmxeGCc1ysb7bHhLlMWC/AeuYglL78nDLG3PCzkEJTbrmvCsaaXJAtyInzVBDkq2JJIvyAdtjh/ZKE/OAJAvSkvCEZjCK18LhgcD+yYSLxeB76r/2z303d2dHdfkJOWsXr9Ukmv06T4lXBG4pTDZZv19nWJh1btZCIO37lFTQq59zjlIMKcrw5VX/VHhH1HxYAFNp3PjWhdgv7u0WFlnD2cqs7cyh/GPaT9ufGE61dvpWsQuGF+9f4ZdlVX2Evv7fAUE4F2HW91eAt2kgtbvsNC/CSDTfQBD8OPpt/CfQPI+700EAWynGlPOj7V5Zxxl/Z9dXyiJjx+6LzQZQ3fSxMkL7PRcfBh0IZlShzyQNyVOMJ7QO2gHw5zOPHOpbNjGbDEPwu91/t1/Qg9fmmUlS3HDufOwYl2o7quQZQo80Wq1O43bnrkToMnZBk0rqTvHueI53TsVlbxG147wVXe3Klq1cWxZK+bBYR5/BMmxC4x+M33r56VIhFf3FwT55sTKK5mBTjImts/3UCFaMWSWgLgtpnts62qQRNnLynFUvyVzGqkG72a23jYDYgdKK5mwC1dkSJDVFxPBsxyXNRCcwC/8hg0wkU7yW27YRwOtS8+9jU8+3MGUc0+s/Z9his0UpnndavdmxuC4kiKol+z5Pc/l9Dkynl//4WRQeCfUXfO+t9l6DXfbcymxB6QMpvKq1kM8d2/n1jF36yXjwtXY3MvSkUeXNArpBduBR5CpLDYBHYbi4Xj9KHho33Rhu64p7Nz6wSlqIF1oZPfoaBEX/H2Esyk1nEk6F+9Og1KvlLzDvhGNk2YrzjNOgEjViGKPK8Rvmiq2JNT8icKktg/DctlXTtK5XQoaJYY98ZrRhxJGiHBk+ljOvtAeO/pcUQmjzpMQNVsikPTbBn1qNEX48GOohno6yZLqJPUO/PB+S9+hWqnhTTouyDwiKXxdVfSxe6RqtNBWn7uR6lSJ3LViWxcmIVaAi6ldVYtzq3CCQaiH5b5Zzu2RwFFsCguBMyuRmm8anSY9HhGnLB81r622mE9gDNadK98NgRVo+sroq4W0f20bckor0wrvy7lq59JBTrm6e7274Q/0LieNIEhFjjy84JsF0aBN90j1cqsReUt5Lho23Dj+nhiUvicF4Xi8L18wmt3NTvMoKsmKPe1mftDCg5Cghfm6rzggvs5sB9/7ss3sBr4fNY5DizM4D8ETe9WwgmY58XUotw1FfYdLgA8FSclYCPZtmlGWo7xgrnHveVUxr3jrv/vGadZjsZFa8aCXcLx7LPgPYjXi/H/1NhpoOaE73GSLZllR/CD5vhdt1Ad5C+tVTYgcIX9PQSH82O80XNfvKI6sgynJs9oLRQ0Z2ZjuOwzvLLLkFD53vCGD/0wVM1QH1Hbf7fbt5eX+vpErNl9Xva9nNPRwwwmbI9YMtcNyKAl9VC21xo+GX/8wi3eTbUibVwtgFk8rxPB9r9+SY6vEiUiHdU3liZrNqF1HXIVWLpLN/+JHTZcujKhrs6xUETxYZXrdIaz9cVbtOVHG0NtVPuMWugCTWMhT79SBiXoKcrqoP3ACz8+Rb7LSNx8mNsTc5JIk8hvgFmzDByv+ApQZcYKTQd3lERrWPe3qGc5GN6DKyL7BTY9Aa1DF06Q2q5gM1H5wnY1frX6ikLmyu8MSlVTj32gpT8V0RRMPjvtm3HTEtTkUP47swwrJwwWR+/GTrlZIPPIO+gs32Rr1MFr/ZEHPg5r5lnJU9kuwgp9ezW47mVUifGWYYtkaMdaQgRp+zGS2P0OfWuCHQA9lxBgcDC1zo74WWmOQnKly8VBdQoQFaMNEf73zbULuOIApOXR4ZGc7CPPg54p00DnRg4S8B+iMvA4lxnNf3Msi0VY+OSI6rHyOjLEu7DvkeI4+M6dd9x0ilAuZ2whA9cyA+rNJtEwjjKNJPChU24D4fiDDwJ2dqWSpY4JGMvjxuw9U0Mu4FMhmwVvulcR2fHk1TKrP1UUkQlT+22yPnC7cpo4gUvroVDsxCysXSRI2BwxbOnWSLIOknNkQ4wV1bI2FQd3xp1nTD9ElnXu1U8hb+RCWWKuPOO7OEyPRyJp6TPnFXKQcP4aPGZLndxueOpW00aUM+GB27QgcvctKOTcShVi+3uGu6rhegrdxJV4H4aLKZ/qeQSQCTStqjFf4L2rOjZ8EVkWCcka/ATRp4SdURlMCbnwYgv2NYbklkMcUMSTxq4bI2T2uvWMT+Pw1GQ+ThFp4PxQoKGFBWEVA/2wvMjCG5PhGtI4ymd2dtrajbLqV4hMtqgc2kU0m72vbwOtGTPOy5c2u+cW5VyRL2bMQrK+WuQcKjxtOF5oo2g5Usr3t3uKUoUJlBPa20bwPFDF96oTzqcMZq86p2miN4jTd9XrbXtbVyBa/lVyjSsUhDS6xUAvg5Ss1kFPA4LAcyljjwv9rgbsQQcT/6LGRuCIxsbSBwOU+/g9Y3uUsJVzC6MTBFSxFK8pcVlfCcNIqDMgHSB1qjR0OaRNGIlUU+bkqK6vWIIIWryuASUG3hdLS3TE6ptPLXRkLuAKp1qyyphvcwkjPTWjkJ3R3m4zFiZLZQHW7AtZlH49xGNhQ7S3uxxox9fYxQ8Sv9otb9WWAPPAlNssghQAesAudMF66KIfHJCIZdVhLB5lsKGW3rpv0hDBSutlaECGPCkfpo3DzYfdJ1p5NDpCSOmYHAghj3HJcb3eQq3SFr13LbSeEQNJL20j7emTb6ciEaCNdb5+zTqtUrluCPf8LJZzo5FtTvaj4nsTQZvjbdUPGYbxr7yX7muSt8Q55gWneT72t3J/jsN4s30HChmnKWfHT4Pe3+tcyHubDW3CoeBB9u1THxAw4So/y96EhplviXjXzitFMa4Dra0jQ/IYr8fAQ3bV4aSeWccyr7tMyDwyr6lzPCXuccgUYDrIzhlj9ZUWkA+YvdA3MD0q/v8c+IVSJOZ2a4f1WhJzSeBQGZEvNQS1RMTGKa12DH2D8F7+HcHxaxlqUG/pg4CR414BMN5TJakGAFtG1R3alF81oJhoA4HEU2WebsHqJzLFZLT59sOO+0bqYt6ZZcUqrdZqCX7Gpx+STLCA4iQsU2ZxCYzzDirlQCOI8y6KzJgvGi05ePJBuP3UtWft4mDsSBOb7Ve8qPdEqe/DN32cpDl7CGsAqd3/Mc9C+LLL3M3/yX2YY9ZCRT/HE7dnRnPW09zQmbL8uRJlN5DYylyBcUV+5i81dqkTXHmtvLJ8cxS9Sw3CMS83xmelCdEPkWKJKHHIxcN9BKb/+rD8O3DjuSU9zdfdnYgAIMQ5EgD92KC2RncZpCfuoY0NNFFhXMJZAdhm3kuNKFKkXaIKD1yJ9c7Zc6Hkb5h/9a0QYMcS8LwBZiTba90mwbPJlSCAnRu+kIxXlMUrOH3/0OZ8GLbsbmzo05pNo4eNDAXsVUjC4W2DuOmIGmpCJGiS+M27AA4EkDbZ4a98K/YcqMFOEtDx9Kbj47DwHchYNieqzoxC0Uw6zkvh1pt2eBcbfHinHh8E93rpUmD7n88ucRoP3n16nfHfVxkm/mNvlY6o+nvNPhExw1EvFYvD7vPSv75TwwDJVZNyCXbXJpTpdZCUmTWZOG+8cYnyLdX8DaNvBYPZJqqm7GALYFe315SeHXF1Q6YBtcp9UxkM8Un1Nq7hOZXWe99xhGmWYPHKnkPWkRudV8ldSQboN2sDS9sRjGsVC4rlMmOwHMYCUPSbGmqaJS4bBtGEIlQr06EhmK1TzhoDghGrDfg6WUOpoQCMjGoYhW854FawkcTrauN9rtUIbMD4WwvUSSmU2/u585e3hUq8WKDvQ4pwSf09qdDEFLRZee2OxougJ5OKLSOsn1w1YScTLVfZpNMyhC51pTEZLHwgRBqfP2XO91QcsTvHq+BYRQj9tw6heD0s7DFiZAl0fuo7eD3Ka+sLZDjdnJL2XiaiI7DDHEUsR00FkL2d8lrN5iIxJixP6wEweAwL08K6W1KO+36B86Ayn7pSHduyU0LYm0nNPVpie2x0TAWGvyTzVJ5nB2VMdfkt/an2dMhxHsCtZmo03KeyghcPr8I5bDMobjMiBoIc3CtTIkFgxcjrDq0OgZYZYdtZylV14CPT2321lDzU6LiIMJt0GopKKFByR8Y0dnbKxI/Pn+gH8lfapJ8R9BOFewsnp+s+ErWcfZNXLXf03ZDNbWvz5tx5HVYEt/dAE8CuDgl0Mobh5wC3kdOpktkEL4Cn/KajrRw5P0QODg+z3/T7av1mgjPOEl7tNgdRPE58tY+XeFMSTVL6fi2Wgdwa1PAiXvaKdnZe3jFwabZbNC8FtNtQT92DTK/TGTnaHZCiv+xQNOPGt7bRCuBc/LFsbDslA/gxiO0nzQJike9mT+T4rkU7Sc9ywlSoFH2oxr9slnMaGOARSToYxtGJhAv+CxHMw5m9r8N3hn8GBICJGCJGM2I13D7eczH/qCss3kP1Mxe6N4k6nUNwO7/08Rpx7zA/3ADRjklcrv6KaUx1P/8iI2tgVljFkE3IaLjBF/jsTVR/iD/VsdIE5WyDyPuTIMlxnPhw2wf9JxlbfOEZJfqe3G6TMcsDN84jb183c8stp11qaItjDvkXNs1oHLRNdotyNfsMABnRRLQZXLOqDNvWgNQVwrU9onh6Wi4b7vkrZFhq5VDV5RMz3whRkXzTxBYrpUzP8CEP+ajjpC9UWq/akANtWbYsbpprOX7HRpgweZY2LgLGAr6qbS8poJHS3VEneaWRy4R9nAvteshyXMQE8CIeV59qIIHN1xJkV5iRBDS7Rha5qzpzFtnRj4wYOKdfhmPFxqm9QUrXJm2Ok7oo0FPfhlZ+8wOPx2U5dwiwaT+E9MFoEjxgyviKaFsjAB1aVb6v6YSRbGxqDKtvKPVvtaFg4/D9x4Vy7lRztkJsHG4SRwLTaUOQqkXYZCfG8zGLdUklcQoV/mzbvxfXjjRV5FmwxNXb2EibhaiSZsM7Ohn1at5Wy0qzNKuXCLiaJWLi6mUgsAjgEcTdIKDT0M8BVLYaJVdRNpvbOcMWf9+sa3mUEMd7YfdVYkDz67d2DI7JPRW98iJC6SRQg6ZhOGnmqgn6mGjeIvN/SX6XROK25xL+Zhb/j8Cx9llPWF41AAg3hht6W4pNufPogDPQxOTdZEO09I/JQ9reeWZQF23niU3VDeqsdJArjfixBZpURAYjWtOaQZ5eESVUIvYUrK68JQ3jnz6zuHWwjD3nSuP9xD3HXXxT0fxi6ktUTuRLqsQPyrcknjpOMFTUC/W8MhEn+6WBSMlSKiQi6FBaMqktzMQHwjvl9t+spnfGlLINLJSoe4IeJ9BfwPgEpzkI3pvDhsBGrDIdSYoH7yIsIo0R72UYcX0pRPAkPydrzbCVGAtAR/IRL8hFzdoT8UX0d+0WjHgngQY0y64nDL14W0vRf0ArRz2wXylp8BpEacyRRVvVUufQ50smEXB6gDImJiMuaavw60ynJct5dunpzIA12IJxFHUQmU4VP0oqYD8K/n+lbZGvVm8b/yoLJ327EvXZkwQgP3jRzKICFlSA7K6reoOt9BW6HSyEPqA2zqma5gQNRZbVceZvDtfQ2eXeTJiQxLq3OLIt3Mh7GIlHyo5TeUSUUOdaRDl5XPz4QAbz7HVOjs9ENNOAY7bfMq+KjuozbTYpybJba6pCNu+p8fG1qv5LFPLnxb8W4i6V2bgw2KPNo48kZV8BiofZvrS7sRHYaZFHNkN9LyGTqfcakDWAsmPhTh4DhYSCGliLIKDsnNbunjJ9HS8lctyBFpjUBci+l1BeCB2I6HWW/dPCMW4gYxnq1S9wbvqplpgqrbx9icExhCd7T/YWs5i+FUiLZB7TqrqYXkHCsBQRYniIpDLZaTryeQapGXQc7KqUUA7seBWrlUNeugcIUR1tiVgUE7OhYjNNgx7qaBjN5ssB0RFcq8WrwBGjy8b5iKOrJ6QOhuESDqn8jb9QAO+eXSmxW/VgNW2PcCkoUd3FQY+4IqQj7yYUqHaCPZuskU81hG+5Cf4=
Variant 1
DifficultyLevel
719
Question
Blake and Ryan have total combined savings of $5400.
If 61 of Blake's savings equals 41 of Ryan's savings, how much has Ryan saved?
Worked Solution
|
|
61B |
= 41R |
B |
= 46R |
B |
= 23R ... (1) |
B+R |
= 5400 ... (2) |
Substitute (1) into (2)
|
|
23R+R |
= 5400 |
25R |
= 5400 |
R |
= 5400 ×52 |
|
= $2160 |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | Blake and Ryan have total combined savings of $5400.
If $\dfrac{1}{6}$ of Blake's savings equals $\dfrac{1}{4}$ of Ryan's savings, how much has Ryan saved? |
workedSolution |
| | |
| ------------: | ---------- |
| $\dfrac{1}{6} B$ | \= $\dfrac{1}{4} R$ |
| $B$ | \= $\dfrac{6}{4} R$ |
| $B$ | \= $\dfrac{3}{2} R \ ... \ (1)$ |
| $B + R$ | \= 5400 ... (2) |
Substitute (1) into (2)
| | |
| ------------: | ---------- |
| $\dfrac{3}{2} R + R$ | \= 5400 |
| $\dfrac{5}{2} R$ | \= 5400 |
| $R$| \= 5400 $\times \dfrac{2}{5}$|
| | \= {{{prefix0}}}{{{correctAnswer0}}} |
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 2160 | |
U2FsdGVkX19jPzDdDm/WITvyo2Q2LQg0iBNXZpobNCqZHMN0UoDaeMffLj/Vvpv5f9TCGAbVL6l9CIgx0Ntf9/ijrClqd7I7J/dh3tO9mngyurRTXx3e2e69kbd5u91Xk4MjaYBhxASkZuzpCYv2t03hUTCcUBMlOjIyj8RwwOWstnsuyDtRSClNXAwcHXhlR32HAJc+KD5Z7sFBvndwp5W2yORAbbbWsYGptNxIV3niRGZwJ7AdEUVbM/wnkl2ltciKwk0+FGMFdJlOO51GDznj6cXj4o1XWt8tUklkEACIrpbIVw0lP3TgvN/tP8MVmMZCkRBeYnrKyL/SOMM7+2AIjOrUfaWsWxzrVVwWOYi+6uKQ/hHxMWtq26t5n/uYxs1JrohexKhQDNI4XoVysd+t/DhoFPHSempux+ndox1+nIGfAUOAufNoIdBK1gWIjf+GEAYNkOe2qXPAONnUUT5AtpmGvSLCYJ906nN87rHjDsRH8HCp66Bds3nYE/PyCWK3KJkbImdoQwy0iZ7of46urYfLrgbpAjv5E42VW2reoNvg1g5O6sYeVOUOhDSyAmkbmgwCRgly7g0+3CvCsuslaTroQlPX4QV5/MBvhIMHkfhiiAizJg9ddhKyy5wLMjxyD54eq8/AMJsxL3EYTIW6uDITsdQxalCtZ8N+GlfpDroIKcUpvQMGx0/VdhJWqsPSkxyIsrvfhKAm2//4Bfy9DsiGo2kozWNmISfAAuzyA/S8sm/jJU/tIUpOra8orkkCivmvvfQw++l+Caz318OFOtpss1e/I9J+3XN30XCxZjT6Ub7yTNNChrv3DGEtMGnY6gG6F2SkHNbvfB6uP5jZClbzzagIZCBd1qBDtoRGnjN3i2PpOVXstMc9L0uA+cxmbm9wcf4o+8Svnawi5dldllM2P99WqhTzNVjx3uxq1LrzzJge5drLj5RJ/m86ft+QDHpvikAcWNyHEGWHIjU2wk8Ok+l2fFvLyZOr2uf+EAWkq60GXfMVlhFVzYgJAJsfMrEQDiggu3cXLNcQGOaH4eAgZng2T9Ns6tg+cm12J23QoXvjC5umr8jlWwQCvXCgBiLJZqkL6tAHHGNBIvwos2+6jmlPRi6ZdOlFSWbnZ5HedzH1WEnd3TF2HTcYfm+2Fvxc9fQ3aydcZc49oCSxOx2QLvXAxYHGdzOC1AbZm6SulTq22o5U1JqT2hy6xgbfYrBMDytJ42pDv31zXd+EawiU+OATqYY7rYPW4kJ0tov28DP8p8vCkpfkPl20cKoV/0qIwjcl1dGKvM0U5UWWnOl6z89pJOn23ntUT2z7uOm3JPshRJiF0j8Mc1R2zg8v0NqECwsUxuRIhhG1fl7D3wAMjMt5kqVkLmKwSZQ8KWld5Qx1AWcz2hFGclHCDlLf1xZd0NzQSqSNp7iRyvr4ES/XaBLO1+LLqOsCx/JbSMTOqGB+y0FgVO6vAGSC3P09LmgyDT5dPEQvIMA1F+rADFDWS3Gy+GI5Zyj7Cr5p4EXOvg1+k8I+C+5CFOBmmrHz8lJIpQ0PhAWyxmaOx4NwQaImvMJQFXuCuVTHG0jycWx7Nb40Z108i8jtHHvWpdU2M/XGKUjnj6iNP54/iSy3APEf1NDVrPiTNIFifi099VN1w/m1h3zFtsfUrAJH8/uz4/YOC3ispvR/7YgOb/cwPB425WnzOD8D58z2RqE/m6qJTWPALLLX6NKFUR68+vOJ5BQPYNCqYL6ONO8g8i7ZqVDzN1D3aOjrW11k/zUpyiuWf+W/VCyG2ojgHRvFsM+OtG3cxVKr3sTMc2mNq2ML73YShSizYd63aT6qk0BUA9+uyJybbqC5nSPESwy8W1ea3R3ZJUhPhZ5vSsrfsEOPi84oac4SynJYH8P/69vQjcklHrImet1NySO4tyUjAPS5epdSJ6bSaUMzDxWT8aipQVlT+lRWLTL6/Y0kFQ1uQH+G2GymHLOUi4Ja+Ka/Xh7cTeXeoUpGshy2Ab24IgZalikZEPzctwIkxl1Ez8hKeCoOuuv6Dc9/bTBoJZxe5luYXhNm5rlJrWLmtb/YGiKEobvwnRyb2vmtCMojZjqiDLbGiMK7VIHFiEwt+PDpn2nmS/dMrVqAXhQTVJ9eLYD1Ow83e+ZFhTyREABAVeBxSIyWlL7oCdpkYedfN9a6hFnTKmqO0FmcEJin6LL1VlvT2TWBk4mw2G+rITVHfujwzg+I17QQOCs3qwGRmtGuynFA528hQF63Xbl5q6eLkUrQ0XmcK/gb3oxBxawJtfcmyDrBEim5xEQ/10t6wBcYRRad+pRcY0xvyso3RTG+zFWCZXYn2hVJ4LlkhD5HzoBTixqtW53d+oWtUuKRgh5LOHtp8z8kJuXOzTGsKth8VFylr+TwUac2b/JNz1gLkYjJYrk/gZNyfybGsTmYEZG46T9/jEf9IWVY5RV+v7HddrE8yokJATWpllFt454lMeIQLJWN30Wtx8jvqbTVfrGDRjYeQANk9FIcldENECtoKc9avUJgJGD2Oiv1IZOr5sCIzhd6x9zvHaTU4ve76/lWkY9DEfF4L9VPv4oc/Lu4ZNZzx56eR3vGfoJmON5CanwKLRyk2ZHUq0c/ltjdo2cZ9tpzWnkSMwyrpPjmKxWAAq7jHUqStXq5oKBDC12YeOLe3PtC1MgOI1PyNc1etnjB48UqiPbSHTAWp35P5nFqyGqNY+oACgWmdqdEpM5BZ6cS5h/Rww5WJMOJ56bqrEThf6P3fk9tehDtaMzYqES9r6qKb83VZXXJg5FZxk/WeiRo2XIQKlCcwJb4tQJ4LSezBUqBH4E4EFagKy2ZeqpqvYiYaIfsNg4QrTRXh+eWM4NDx2fMHw+zvFLI5+UikZAjwzo9pOwsR1oz+/nQZZr5ydv0fB0ENDvHt8w46lA6aqWgA2UuP6lbAaOs7PRw5EO8RzasfhBFg5wD6ORUMNzYHK6mgVsSdZwWGjhr5nKuc7KtoSISc5FkKlGgpwZ0rniOlMhRGKCfX2SpdGL4HuKDCKn86laQydRpq1Nu5WMR1UN1ME96GBHiuUviVrm+rF9EmLg0jZqbfmhfdV3HoUDuZfAivOdoMTfK9Et/taodWzH44qf8YDoFsD2LWseqFNHP6AIPVXFe2nLKnxcZGmZHk7mENmXX2jkngQ4aftAPxCxpqR6BjzuljlcNCMyzqRY5HNcM4SKuCy99a23zB+7rm5ZdppqhsgN9EjuJ0YmjqILDM+X0Fi+TBoKgTxEouDOZnoVSUkBZmcSLNVR7sIU/HE9GSe7szdAAwtfNvCEkRDc9wheRWwo5nMBThItmrnzEN+A6A93UvNlryDsT/Y6wVvWoAbJEvpKNZnIOwcixgeXXD7eg8XC1NdVFwU1H637RDXk6FSqoyRvRVrmFWX/kpXo6nJpN8sjTyYMG2L9oFA0LToKeXR7+9Jw3RLOZogY1gsDBEHLme1YZetYTo7Zsz8W0+UOV0fSg7RIzjjEC2KOzCdWxoUVXc/YVctZ5gGbPfAVLJtF2JZmrBRhrcrf5WFeGreyV+vL5TeHL4CHuUY3r2NXrZLMimaNyOpl8uDHBlurxbRr4b5viHV8oDJB28ZUfBiWrJpAkjwQuvFN1Bs0DaPNaasL1u0wcTL7bnQVXnASJbJIgQ91ttSXbt5BkRjIKvSR26s6ty2M1Ov6S4c95Xgsx5BYa7NrFvjMLsTyYH+e1++6iYYsyii06vXJWaz72YOac50YHMz1PMkMWnsVHoINDQIXaaoWWFwVJjwMZw8ZFn9ykh72sB4OjrlsMgy0k6BriirWTebtFlO0CJVBgVM6iRmvjVC+Rhz1yO+jFRHBHkzy4eTdn+/1H43Kge6xW6EKC1squLnAbVMjrpvFKSqiGtX/rpGQlVx+SkxcWVjdzBFbzDWtp/S0TUCfCOegScVKvfWs1gq6UgD5OCYK1VeBChiAohlLMdcbMPVZlAZUkKaa01WzBfPpMruqXgSry3C5jTuE5VNec4zEihk0woFT5NiWJZc+HSy7ooBUBpYmvXO618/UBVeyN9Ku85gSPPvrHgL17J8/s/46EX48c4XHDj8vl8sYHjrFuvvgu3SC25IJXtdUKcAjIm2np45hxJW7mVfRoEHV0wlLlatKir44hMZ/2ZBlCdIOh0jrtioBPZgCI/Ia53+EbA7r/HhMQ9IguVMKtoDZMtXirAXq3nnKdQo/4fMNSZ1THnYw/nZofEt3VoyO3mUUjiSeTtnmzJYBuusoscuGi3tCQntv9XLqDChpTIapPUVWgo+cNgjsiIE+6kn9ba3zLeB7oTrrZSOD79LH1UapToywZAl/CFrYQctGQQcv4t1QODRCGWG0BghIC9+xoDs5O7N5gN2ZnvjFFcQrK/8lOb3skj2oC5tPAVcRNsMPwSOSryDpsfNONdXNzLQh3vzsgcXig1gmeaDQlWFNIc2rbCFZ5/og/AbS4UXYyRbFGxvScEqkE+3uIRN439fwaDDRhEIYCfw5w50LVPeGhZYF1sHivH4Sx7pNKgci8P8NFyo4kCwEUgfSxuSaAIUX7o+dw7Vni4+7WtuvnoXPCr0VeE1pLYurznePPUllJC6j3GNTMKOHtVzw7efQNvKTgYeSdlBLkfl1UuVqma+RaQaTTJ8BrsdTPhuAsbhy1xg6uDQCM9ptBxx0pKdqi5AkmGbbgvDD/gJA1te4QgUR1hBdfxs1w0NHSUDFDgdJp5JYO+WEYzTJ14ZrJtO0eJrnNjyOq7MpYsce/rLJ0Z0+B/2QPP19ciFjkd/P9BiKcFk/9RfwEmsk9GYGYNqAfo/PylKxUizMNGoExmAzNwPg2Y+25sHmit7kKVcq9j3+YauGUi4e62wqahcdj0apBN3R4qIY5XrwGpByuEa2Z1FhLN0N105NLDK0u8axJauWVKXXgX14nqC3d/LFEU8QO13jkYeeqH7I1c9RV8YRJ7X5aG234NLp9CNxzr6GPBaKK2ktzXeAoxhov7hQz7uWFIBZHKzpyss7dgLxxfhR706Nii0TpDHXfleIqWPdiBPzhNsDryJ1asNWxZdQ61AWmIJeglL4TNZGllrZH39h5fYU7yhPQ5lgv2tKG1ktuy5nLQb73Q73Bqn7gvvS4jdGGyig6F8JHk1A7QmebPXFXepTc1S35n0kj/BT80l/JYaJ2VLr9BPwXpx9y3fFGCJXAZEL3OgwdP+qYhphBsSiJuOnzPP7vqFeQIArO3Qr/Ot/0NrdsLhBX74E/zcst/qfwjgMcIwBs0bRv5ChAADTlwpKUVmxsnCL92g2yq8MPbbm7qSQTfLOuqOrwHznCZqNCHuPq0Dz+M+T7m239sROjt9PYoA4N5H2nGZbLCSRt2TT4q9U4UWkmVB6TTphS5MuJhEuP9COqsd8GLRi+tJAHa9Jil5cz7ZUuPk/RhhNSWi9vIags2YrliRuX7NStzTh8WW3mucws0WZxJ4hOghB3kBLpXNAjASVYIsrMmdbATvvlxC2FXKxdjozq7wMp4GY0852GiEqx2vITWoMmIMs7IvgQW9s+E1dQEzUady+KhWmXRdgSQ9nRjCNf2X24T9MEXNCoPnlY1KOwjNImGvUUkZi11Z9YGCz/SsIPOiQODs31XOyiyr8iQbCzpiJApVqUT1eGt5fXm9ut30A/El0k3TAAivIo5n4gWv0OCag9QY2AU4VUimmE7RWFR6qiTpzw/1SsODIvpEDfqLTvEL+Qkc9wch/JsI1d78eEfG10vATHqp9euMrCMmy4FFfPUj+iwY6q7JDHk4KwptGLHNLzWXvjdPCbtPlLmBpXEvD7nOchCbfTL5/mjLmtT29pRno8+AJGHRV/uYa0ye555p5ir6F3Ok5OIdp2THvA31W6TYJwinQB+qRyUKUT7dAzv9vqj2MS7B2xrsilZLtcLq3d31bW9sHBGjRwsWSD1lb0vUgHAVxXgFJnX02GtLrMf/46JI6nKOuW/evosxBZ+iONC+r+op0uHvinSJnjb9sZzetMYxEqGNgU9JmjDGqfLtP88LpUhKwaQ3R/7dC9WBKTWRe10+9POVptnRLwumVfCQ6TaVU87l3OCP0N//i2uR9Q7CUS/GpsIKu7zI5VPwryRMPejFF61G80nz2sPpyzH/SRe0dPbu+7A8Z8i3TcW3fxgcf/v3+93/X9/dQX5/OTNmvBcBOjlTeWiwNni4FrDHjmiXBskLienA3f1q4w5Gx08GjejFkyr/R3PimrJbSFwgbC1xAVBKy8XxfFIqmsbp0xpOonUoU7aFHrKWfgQkHcBBW2OLEnOYxpbj/uUYoQRYbZSK1bWN74FQHBzynWf/lOAFQoEghrKkuwq+9/UQXy4sTRsceEGZW0Zy9YWsMEczRkoRA2LdH78LCQxRZGlCzemba4oQLEFYvMNKoN0sUQNXFnkc27F1LJ386iqdoUQqtYaanipOeCtGceMPgusyOFzYYO4lFjPaK7tl8yDIV1W3Kh+SoDevbe4X6QCpYKe4idCnAdDtMVakLbg4H1jrM3H4XjFX3SdKvPU30hT/75a4jBatnP/1Xc03NC5rh5ZoBMOW4in1NspVLlfq16g+Jni0rjico3uYegmGVJs0f3KPp6jehSkWqb8TdMoCB6sgKzhvAW9ELDWbB0l1nMaCU/Uen/iUCWC5WQ8xjBWDAMhD3fx4ayzVf+RkByiSeKvU5COQx+7Lcr2k+d2b2jHfrjKKML5K1My8MnWoYA6O5vP89QDFXu0WoDe6AELrvEzF/VwBg1sHIQXzTsZNIHSf0YRcP9oHkCLgP4wjya6jHyY2F8tncpZWhsvD+ZBeWFCtYo5XBpTbWqwdp3YHPInyBXBNEDGRxpSiq1vOJy5XnObINQY3WTkiQ9Z3iTnYQ45ufCnfFrN8rMkP1WUTJSoJKWOUOdKl4gT3d/MrR7GN8gkOoI9yZGJ/MGQoUIlbSNcZMsi34kH+Zmcg+Wle7ua0Lhezfeb3wHLdXHRelDe9gwl9vy+XXWiOMf1S/eLGAsgzaLng8xg1fYI8hKjFbQrZ+Bg+WPTEcNvzYCKuDWpUQ+0sSzfGUo2LDhKzPmALOx4CBsnFd9Fv/MOj7AAmV/1quoOEfpTctXqLRQ1qS0lQ8b7kgisvt2k0LUh8zRoZZgtg5Z3CZvbQIHA8zHqhuRKfb3Fln21tZDAHlh8pZq7sHzOjq9G+0jZZBitmWTmqQoWBg9v4355zZQYLyuhgt8gj7Y5k9kEdKViW4Cl5A25/ys4HxXwH7FBU+LJbsNp0e6i+Ym4w9ddo9RY407D6T0DNh8kCiivOvkCoWqfseb/YB4sE5NVjvQskJdiKlQpkSyEoTxLvm3DijwS41CAGIxOtDHTemFhHVKadgHBRBSugGq24QUITLmLiyyde8SMjq4llauG4ZEozouHTO4MlxiZ46IqGzVw3C6No1+qxnWKp3kla6mYLiQ0TWg+rGQnYIVRaV/OArdh/7EBP+eGSQnks6HkBjDhLX0Mu9eO5v7WzcYZsmS+eG9th2mXUIp5XROpNpr0B8Jww5OoDlMPdDnRn+HtaJGtO4NAQlHy7ISKhXNSVYj6UOdVsMYl7E0DQy59nK5XdqXVRqENbYFGfP2PfPUHnbdQFDRjkyRzC6OKYzcAVd/HAJCuAtlVM+OWR/o9VVzp7a8PlaA7whENjVU3rK0ZK7oJQe9GGQsd2c0ZQOEtoVt1j8kEv6JBRG1XFFfXV6tsVw3l8kHuWmGMkaz65hAPIIlIDBhwMdbeUeOYoiowXR4r7gmotz7UfecYQimZkgnBtMRBci5TwGIpWuNi10lBDIZNT8gGsrqiSwcTADbmDYc7JaS7DYJxNEx81xKCDNw8hn/hwBGCmxNPE6oasIt24YyDKjltdePWs+TC/UiTPzT/2lL6mDIAcdO75zC1ZI5pcmLGININCtnjv5ocPXQeju2N6jn9blaEGTfHuOSdmbflWspN3DUsWbGZtsS9IblPz7F1S/AVYhY8IZjhy2Kowzs/GlNIts6MiVMQk5xCrj8vSKn19bqiTarZT0q68CCIPyLHKML4d+ETx7tvt20PkZR120VncA9RDfyS86fPSeWnYJbY6eMpUU1x4GnHEnTqwXwwRaLM9mF/5sAYfLV/LAHd8WGccfqpcgS7K5aqioW0ezJy3Oje8RvYHxbrCRNTwzxurBvVwLHsJW+ij5TOYYR3ALdXo9nAzPt0WlQ00Ia9MccxUdAbK49pxMafU3DJGeZF2ZQ/kt4Jbnqo8YxkTZjqZzqOo++doI+pkhzry4DD8st2gTDD7TEG7TMw607Tc4hpyHz43W0BC1x5B4LrmXaC8As1/DAivLG42x4/OeApHYTGctwjsDbWRFqRr5HSj3XdhGy+X40evgk4DpqUFizApY0XizDMLu/aW5yLCXEfz4Hl34iZb/4mBifRQ87Dt8o+qANsxgm8EsNw+KhJAshgiN49ZJ6aSB50NBHw4NMbUDzmnhSH3J2N8d9jD39hZP3tg81Zv0FOceqluNJoNySDuXs3YSCHI13l6+dGWSm/yxbtwotb/QTfG++iLxp8GFmqkWs8/ZtxNQsEnWGrPgxrFYCLzhZDqTRofvvJsBWkY3RMmJMkCUEyv9uqxCqgreNJBNzljOhLBmtnmpD6xyLNxbXEcRLfnccs7fiyoa8gOowmG3Zkb+AwGWzzumg896nniAcdJgaRgpIq/jGb6MPnNYn8eFEyiWdNrjvZS9xvmiRxLzcUNbhLN/keypvB5LaoNUvuez00sicER31Ec/0DRn28XQiInwsNXTR+1kSfwNPAG4EIxZgjcFW4xiCZ5lOsDiI+Jk+74BXodVRDFv97PklpVhdRPKeIV/5dYb72RxEPtAip/mdK6cPvIpw/Z9QBfOOgjHgp2RAdZH2snyhJKHP8g7rX63WddCnzIqSrWqtwtvAQwlPJgyJNcCWzs4vdmDL3ZaHFgxeDz8MVAJEykQUI78mWDDb4mO/6UDlyKePGiRNZ8Sgys7/CtyNHHxxveNyAWj/78LZFTmD6/AJeZUN3yFHHVTxXz0FYMGeTfOJ10gKKyyqaQnH63xcdO3u1jmIaORkTSrt+e+9E0L2C0svldGFBOcf9I3H6D2VQIfCpq4rf+OhqSWbUTS2louPgKhDE+7yfsokDC6/VvcxeNERpdVHo1aZERs+3khuebnXRUlrqgG+/MbeeFAQdGrzT6wtdymAz/kzyQVRazoWMITpFOGQJjQYaEZLdP+2rgBb9nK5+gGI5+z9V7IzhA354I7W2soR6zGcg+sew1qG+VByy7CqJEaXCLGvAa7i49mqYgq4pidu+kpXXK020nTZC6LcMlKZhja0/Lfa3A5zk/qrhYIILQQnJofb83DjzedIXdedJYkxlG2k1SWlp14GQ+mXaERAsCEwdQLVzaj/ZdW4kaDfpqK1MxTQMEiWlfzOKypcp/YCOIPTQB98nUlaqbIEGJQfCv6HHBeL+TtYCTZiYiiMqEIrI1IIhfOK7Wj3sZUAio9mWM2bLLi6vJzAcje3FkQzYlxcSKPWx3HavR0bO5cx2yoV7oF3C72NqO96asIxQJx/9cHbCQ3fDZuSwrsn/SH77kjJ2ANEUdk+EEwKa6P9mqsTjfyO0/nj3Yk7L6YD+HM39YDJaM1vHM2ZyoD/XJtxKNE7CpkPLppc1D817oP5gKoKBfwPRpO6+E9zC3GIb0+2OVY4bWS9azPOgqALdtmesXkTaI5fO+bFqiGzEPTujW0B6kzi0OTSIlGE/Ntf4bVjU3LbDm5IhtPucH5nmnlXdNCvqj8cNoqKoeREyULWeGyMq80EsvQw6THU1UsLaODM7Bv5OHLwXCfYe1KX+DcRJaq0zehA/wGP286FaKgUjDEqq30IIMx7dfNZuPYQYXfeCVbWoEXW4fayeXtXagfNcXHaVBzRAdYuZsXCXqnqGGY+JjPW0HNF2XMkI/PcmDoo5g8ye5kuw/Y6WXf0/+CQtSRxvw0KemKijVS8PNkOQfT/RcYR1nw0mh4CfIvVr6QOPDBdmCoOqmQmUkZXCfpxTagZcyJ7d2F7WOhApdj85sNXoJifSJo6arWjzxhcTOY3GSmGWGM8M8VmUUoOHvTor3EpgIwKNZm9vihqZwRnBLbsrRcYuIVGzAdCX4b+23z0jqhq1+tHx1Rj3IHFJWj+PsOvUwUWvMQPIQmYKdjg4xGWKpMPTQ2Wsw+u7n2GmZF6EEUSMOAMEGUbJxZk7vmRS1/wzWDSOkE+JwoT9xg6RIcClG/XtP1BZd7ZwAOhSA0zusGG3jXwsrX6Be7Iid3wLMeesSIXdH2nVcoaIbizV9k8GZwZDbttL4MWhLJRB6HdnR4sCuu2SJVwWwamYF0PClE4PxOvNRKio8FaBf/swUFfarJLPJB4S5SAq/RQaDaaZU1KJRWpdt9pWp+KD4ls5E4oWr8ibPrRBM8BcFo+hPqn2FVu6Lg+fALLLOhCRi49ZWMGuiC1x4T1Pp6Kpwf3Iqs+77LbYGZr8UwTwm4ssUzO4WNKx6bEam9TNSv/Y+zG2SLzu2OFXkzV11OsnG+nPxV3ig0oR2/BNS25AF8qPb4PwC8LkD/Z5P6lKsurfDbmPK1mY4GW3ZSGwAuwSUMLkDuv87h0NR862Q8MwpYzuFtwnRtdQLFw/umqqsrzgaTpLKAgiOnJ1j1nemIkDDkBhuAhhxc0JEcGVceErFY1Fk+mL7ARYXSiMttOJPG8ksvdGpRtiA6en+cyngSicPxNaH6FTyvKdFDW62PoLBA0oJQNmtPM096Sj3h1bJfMnqjnQKD+n8kog2fLTZKb3dun8/m5qS3/52Tbq+4CYKjOCQz0mzib+ikwa+zZPUzBXML3ioX0QI0DaE1v18bTcrPID9TFJ82HQSFzQpMWC60i67u+k+5FQblSZjEQxC+A/leyllB+m8EQC3fldv1h01kir2Lti6LUh5StrutmJqb3+/YYe9C3mC1x+ircAARw5nAqU+kAYYHOvV7xrKiEAT73tGn9TcSr3NJdYGaCRAjLiQWXM5f4pEubDqIbv18TsrEYPv3h9RcyvcJeOubJbug0781EVMVF1jsHwbfyzCyiGSBuQdK2X3nR6A6032w2q4AdagJtv8caysHoUDC3vKtIjevawhd9ba1cTCf6XjScq2dHFg02Vw8sU/6kSc/l1SvU9aozBlrDzbr7p7Xnn82NJLqIMe1QOGl8ryi5UMB1xSRMsQUUy7Dia+dxf1ytPVModvmtmqhoMTdX2P/OWk4VTce92GuBw8Cc3Mq09OwUbR0i7HXW11zXa76D33SBi3GF03zAozcb156tVXLCTWqDnoAnrmYbK4FW9LSTxvR8tbs4/H2JSejfEQjQbCDQ08D4qfV+I4xCYvcgXYG7RyaGRYZ+6nY45jCbuBAeFCDORMRvoMuzC3fpHU7pNrL6YFjlPZi6MuuQN0q7OI40d3mDMi5+udqjhsiSMa8znL9kCT1nwI1xQ7diluXS/kE2Pa19sj1sN3XDqrdiydFXl/mQgMtIAA9ZKvWthrKubN6uOBtEHs0UOCzTNZak6Wl8ZFxEylaAv26rPNxd5lbBfOFyKAwtWo9v/eqZyYHqw9GlLjUAwwlBv9RGH45kFxlV247UWWsjIvREDccO5jRcq/Hj7dATyEINkVwpDAmwRj+5xGXhPfKDQ+nGzB933RvZlbGyh8gcGEyqWJS/lvvaory/d3lv79Cau82giJMUPt6GirMQA2DAoK1JpnXWV1+Q6oCv94vT6ElpTqMHD8DVsuNWeRpJp0vC/TTsOB0KbyXQZMf8EEPh5R5KYReikxv0TLM6sZaF2y9wsT4XuoCW3FLYwlpadB7UCnJK9HJtKEvYLzAixDwGh9fYsdIJKpxflbDRQV4NOmJyJATtaRlHXoizZBsVwXeBTYQkJKDM7T9EZ8oUaR/YJ6k1eeOX7GkpQzY5kV8O+AA9BrAEy+5g8ieQpKmnKgCL3tF75JGKAb5iUeYycaYNbwX5Ao6qJLm9+EoLkX/kz/wMfDDp3sGbS3mUDoMOPFQO1ztk+WQTAtFkCoiynz+S/RAX0tlv3UnW4yBobnagCOQCefFCArDeAq95z8vudHslFLmAWbRVbXYrmJv5yn2JEgVNdznpxBtDuhD2JSDCGtCtR0eqru8IDouFG1x8P5VdrzteMMwvtATGCapqmx9/TCsjIv0QvilJkVcfgeq1bl1XIxSpm8NkBhGn5XulfFUMqGlsew9/beaN67AAnPVg8cpGHAhZCaQfr4u3Jss0dz+8wJUqVT4SxLaiq/T6fB7m/5wtRZdQzrpEbltKt2xH5o6zeu+enVNYVoZDSKCvYqYGAaEvAriMobJWA/VOFlsfehpsteDet9260i6JDrIZQBPeE9rC2jO8/cV2ZzCiIPtViE7VDsanDgJ4hCmBpaq2YMIa7ka6rfr84XfVKHrlncskCmRaWWyda6JikVdApaF7ves7hqzxeKBdzLsql+tVAXKPuIhOaCueElcoBUK4qOAVtAjCkZS4ZvRWQJBRJ/8RAQOCF2PqvB5AwTxCrF8lcsfmRW3ybdIbv/1X/in4E1V+wApMjxlBOHEvNt6NSzDC8RPFX2KROMKOAC5DsFTYf3QTNOMRzjFBDuYb5w1Af7efrY/DgtksZbLTRcYd65oRSIE6gUtqsuvG/7/Os2WJKhiu463by73aOZWPehwqP/5ujHpqHtmc8CRvDJe1QUodmVO8SsEEMyboOQDZ99juc613MxzqtACPZWdwZtJ+H9RZ2gs4QMbHMcOyoOIICOrKjevzHuTKwjF80Xqw5Nfpsl6vS9Lv1qXeoZySYx5VnJVYlXSC45V91sQmSqVXMt5wy2tsErZzeXtx4PIgTsAGYPF+A4tsvko0aUfVg50VfQoiyOil8704/qnVs3veWjYTZWPre+PakZtEfiXx1Xafh9nHtVBAhLQibFFgE0KPFn4r8Ofi8cp4owIec65ixQGGz65sPL3be3WubW8xMr67vaEj4Vohv+c8zUUJiz76ERoDECN8g9UHXJTxKBsnetBjvOATpu7jJD2QTGgDz4yG2QplfkjLyYYsL+tglP+RiptdFLdd4bo/JUMAjBZ4P0M8VPdV1RWVmR6OZcrVnXIB4TZ1cWtzhTitHf0l1x0zihc3itnq2zJQiTkk5nvnEm655NYFYPL7Z4YPiubLqPmrSm4ihGrp7GmhvI/YZ8ot/YbTb5Naap4KG/r0kRvggYOBpZIJZLWdJuF8W6Fcll0QSirVUw5d30RZ6uihnLWBvkgfYKRSjdtPmQ1n2ALJ00o64Mu1I5Yj4IzhoFIuq+/UoYSKpFgH9+QEgTUklamkRBED5b+ikmrH8m07DbEMUqOIH9c5dZ9ucMIO10PgkCC2wrUw6emlCqniryDOr4h7Kf3s3D0fZ8XY2Lxn9chrXZEBbs5ApEhcXP3qlqiLWzpjpB1SL3mwN8TzzGEP7TgIHwM/++ISM/SRD3IggnkMZPFEY+VnZcUol2PIb8Q+uUhdrIUf+wsseA/uK5YZ6IbNm4HohTY2TFJdxSNu5joAiissrwagwHA1l5xtxOTmrhRsq1FM0jHcTghG511at36lzuKEEc4eMo9n1JVIKpZSsv98THbDH2hV1Gjo3NQxWnxgMoRKlu4TNkNEpJSFCYD24Klov0AedKk0ilPI5OUmzQHLAZX7EdtCPRb0nPnSJU0i+g3REo4ONQNnKwcNb/pLRCujYQnKaOaQmy+eAzfVE/LRSDnvUXlHTskcBo1H5Fpo0lHUPVNq2zyerpyIeCnyNlif8acp3Lj9daRVNZLnqUWWpB/9bbLP0/RWQ6PvOQHW8o4QAdDT1WDMRQ97DYCgH/RI+7RfXvTMusBPYleFGM/xOSTxHMUMtrYdm/earw2GLJRcalU6DF8LkCFftWpf3Rg2YF5UmlNMjT35JMxjGxRdBErOXmPCQ00jvX2TZv+GlufAAK1FWE9c6djIeEadsVY/NMm4K44+cDK8paR9aO2pnjmkSJCa/tjFeHiyb0nU80YB3ZDwxkasEHbFN/+zvTYWRWRiC1wk9i50qyOJ66NKuMnxx502LACaBP6wvG6JlyYg7Jy+nn9XZP7jskcuHIUf3R90j1MuaxZN+aAdW28l9JLDQ5IQb2jAhwlefyUxBohUnPkI+2gm2khPqYntNR3YsETM0JKPqdMtg+tXhLnd6dXX+6x5E5A/5N8uomhTcqVq0HFUW11P2Gvkq0dUrI4xM5HXgEZxjXGadJNpu/KQYdtto6BV1iUc+Agra0hgKtrclzTw+NKyf8tPW9VDzOSL9vaeJFepJpN0DkyzDYmWsMi1Sa0DIjBeD3HewQ2jx87oRvoazhqeJv9E3UtYHRIVHk3Z0ckB6VzgY+VmouV7Cuau3P5oooUGrUb9uj8AgRtG7iBQTO2kzlcMd+Jwr+DkFAIk5KGq84vZOoUcraVrPTq4SARUi3VM1/u/UI9y97nMHusn07fQTzXkhjGf6PvBG01aZcwoeDpO0/9NETPS5WWgRQXGC/E+e1YUnw4X7heZVcqKSM8CTPZp/qFNz09HUh7FxM2emQ5HyrmW8BEbQs8Q3v/2TA4P0MzGxE6jIAbQgoQS9+IFIpB6cHgcJzdbUbDKbnFaJn+3MSfTP1Q8KxbEeN5FtpRbsjDQ3gvnB+2tmvyGR6CKvqlh9Mo9zr2xOul6QMBibwI1MiCAp61W/P51fzvw0x6mvF0o9wXdE0mbXgf2gIV+5hyi6KAgcJtRedg5O7kINK2jvyPV5+FCfEHX5ZZzusOlxj3imxe2iy08J/OIz02RClKQcLf9qFR3jhocc1y8conm9au6vUhOqqEU98zY+fF9YqXRP0kb9jBDmjPQaAgWktiurFnin7Qjo0Bopdv0oX70BjaRqkQz5YU1gDZn9U9ZxRVQ+qYtvr5iFYcAu8RV72/fK/r6nyZe40omPrEOykAPY9nIGF8kYfgRBQGsG2ZW4dFf8QQBsSmCsStIAh9rxOrYmxo2efDLyfmUCMXkDoY5MP0S5Ia3bGSfNZRCBmWQqYCAMk9x0dTaoLodhWL7rYN89NrhE+B0ibHf8JgrR9Xkqj4ZenOEwuVAxl5IAhkTxAeUJKDcsTiN8rY8Qyd3bfpf3cUcRyfKCgEdrl8ULVmTN3XAJH+ZpCW1TuFZMZ1MsB8u+vrCPiBtQl5DADQqPBsr3MzATvnwmAns94IAnMz5IFvkMepGA6ZzanYtAOLF4EspLo+fu4eemmOzZSJrtWu1AmcaRl8XQl2rOsSUWKqPbwY+OBix13kzZwf3zjJHDzBhIfINMs3bbJ6gBPbPoHNn3wIgXKjmFBSBRfhcsxelQShysl2upg7RGdp/eivz+d1XgjhUXd/3HTlhqLGJXeSEaPk1oFrjE2trTwEi2Ghc/BrCPO7LRWd8Jam6gw2zcwK7L5/jOpx7JEhz8AstObNaEdPtV8GOB8plO268nNl9mTrWzAj/5wzgUN8CxE0s4aSX3485N0VZ+gqTT8j0tCpwQfLloWS47I3jK6UTM1wi7kjAPuyfWtKwMTpSmdIxJpZoxdM6rlj4XhkSfWRHUN1c3wMSqygMhVNwhMoWZ+MKOgplcW2lU1/lR2pzrK/HK4VQxebLkv7n+9bPPi/t/Q3CYKpv3Z9qeG/bCX/TRX38cP3wh98Qoe9qkjNTmynCes2GVMkRGrxQfrZKfiAc1fRelDyfKODSlEaODWSaKLKQlUNaBZMf7VmUKr4qeLDTosBGmm8Pt5aomojksv7Vm9jpNBFd8bH2/yZV67XkZwbYslvmbBg8jxKEDpokMklFG6RCKxMyTPiOqIed+b/YqdeJMqEI051DzSfmwSOXNB9KluewHzUuIdHzJaAQ22LRFhxGwtuq2JGUhK62Fi33YtOfTmheifuwynMn7dbq7x31dS7jsppAiS38sJwz3eyTEDO32f+m7H1HaSF+dlHhAPisnZgjE4GKppcFQzn1yMOpY/nl23nxdXC7QBbTc9ve7XY+LyGjXe385XkPGVueSejPmDyI3BZHCAk+U39f1c5GTe/OzJtpZQb3KW1oL/IEEd53QTi4l9KMKfFIcMsVDqA2nRjUBbr3NSF9ohr7WJVd6D1B+/7x+sKbW06nHbdP7mwIpTdgKheI68vYsARGmLM56qhXEDz+uM5ClemDFYWLmTwz4gV2GSla4c+Sh4mdqleEnPxf4MDNSEcqQTds1FJBSxzu6hTgd+ev3nmb6rHu+U8ZUtvl6BPXt30POCDqeYdZ4bwhw2xfyGVP/KscSUwrPSiTAbv0nHr2cH4YDmACDfBwttEgJYn9Ndgp9/9t3wBfNl5Mw26zATd9kR2Z9etanRUqNA6sDU+jSkv1Xp/E5KXWgpO9Fzvh4ic3IGpNo8B+TOD9wPqb7F9mlDaZuOvY1s9ePtfweoF1npOz9Fh0FuzWPvDsbVUotrQk1n3Y+fQPPSAvz4GyQ3wPnZ/6No4Kl3LKNfwGYW3weF6+2Wvtn1iznaicP6XBQv/3dM0Kyy48v8YMGEqBMpVKsI7lIheQADoN8Bk2isrJKTs8ZFTchSI4DcTaD1Bkizbp23dnKVEyvFLv176DOnPjPCvATz2VhPMaV7dsK8CRe1q4CwIg/6EsbCrpj9mswuBLYdsKgbTRBhPt5qU314qu29OyW716fAnNO4uqReMBzhqw32LkikKRf5I1Vrv5ts3RA+fxcJrQhPlJlAysQ66nJry/YTtlYb7LhprMrhWPIh2FKAKwGWog9dOXtK/WIRrv9XIwF54ELm5uSwhBS6L3NwTVlMmMw4swgnlhLs3PcoUB3W7G3PvBSAA90frlaZlrpRcsXn8lcuMTb5xQsArTBCIk7qqLLhHqBaoguq8qv/R3WI5trJyBDIGuJbUHTzY3HJ5uNXAL95XOU3opYnNh981ox9Er8B2HiiZz1JJ+XSMfRTJQRWDfl4ROrCDwkiKCxCfSz8eyEjGyEYWC8Xrtw1WHy+0RcU2NNM+Dih7/k3JiNvv927Ayxq/8ZL9EcMQiqC6Wd/IP0GhUth0cRXV1enGNHdez95QxJTLf9bO0Qa6mQHQ7FQHq9KYrw06J0G1VwmGpBO9NRarevzvhH6dBTsOWlPj/5vVcX+DJKKLCm3OdsyTGqCULA2f4sLcDTKeJtN+wgzPkCSp18/g19qUOUnjNZ8dZpTwmyGfyZDIs5OHS+a2nCpkR68fq1CJjVMAnyHQC4KEmxnWRYktZ8F5X4wl9EDKPGb/wqqy4QiBu69Hf8e8t7B/nlUMi1IUZWcaWN2+Nq+sic3gtzGtj8dv2YcIBA+iiu5iFQ8j0+jaL/d6wGm52e0RmfHLB3/N6g4i8LV0dfjdc3QcXEzw4gcB+yvxukNSznnhcTpUaOT+3udjCaro6OhBH184V6lJ3VAbbiFx2a89xGfISbqIhyA4By9XtPXwulHry0oinyoi9RQb/jX1J1wzlnO8nWGE48ehsKrp0TtgII6MkLkdI5r+i2ZfR+bI/qDP+LJj0s7pUy9gxucz3SA036z2BDAQKjMFQKFaCvIc26flRx6AmCCCRHZf5my1A/Wfw9zMUbUigxxXR00OYv6oHPMbMzRCIqqMta+61kixn/tUSLC962Mi8AORUbBttCQI9lGQ+VdSnEWjEehvasuSZJhrWxTJESoq5Xf8+6h2b7Ui7oI1xmB67PlCiigQjx8tyYVJ/NWdSs7HEGT8W/t2rLJ40WB6Z1zSBVvWcIkrY+fdy6RpTmgM+lQZqacS2RcNlrfM50+9G5qOvwyTbHkKcjk9LkUNIKFck+1yhR2AKbap4mpVJ9AzWXNGRwkZAh5aofIjvS5YvCItAtokCsTNqFzKsWY6kCBudTrM+rbmA2Ap/3LfP4jVB35RiN/VHXxpqRL4IMXdHMcU1XQ7CJyTIyGDwcBBQyevJHo11wTF5WN0TcixfPWNhsnH0mOJLKDpy3WDM1Omao7aXOibh2IYctn9Rnt5/HdgayZyUSQ21ccvoBOxl7H1ehH8inGh9OMzUbltwzQgrwex2YOx4sW9EQJE+tZHb97MzSl5J/A1S4i76fd2Z+l2UpPWWLEDNmcJdYotffPfBlTb2XOOvRMLNkY61j5JQL7Wnyuttw+n6hjNry374GBET4iPViB1tLSW4VgxziTMix0z5XqF/mGkV6qHPN0gxOVW0lK7VeIIvuOpaexLd3w7d1LPOTpQi+6x1RBZT9PMFwA8BYLWLdfpiMaC7h2+SutJuIiMGb2Dsa4DqxNY94RxS8DS3ASAIGZiFXxS2F+Czrf7X3njHBvg4xK0A1L2/5WkUhOIuzEAsIy3htULuBns41NGZ1DyFxDr3z7VhRkuoqw3B90u6nM5qr20rx1nvCgWjlO6NHBO8RxwN2znaIx2z9/bPQVHjL68jTnMyn/WYShMnzPYxdyqGt4i3Arw6nYEKZE+gpHCfXpMX/Zybzo30OqQ8/HllgAA0Ahgpx44eOx7DhS0a99mp6QQYClY9xq1eT840Q+D8UZFgaz2wplr+R3FfQRlz5zaXrWXqeKNlRUwowReW8n9n1OqzhXJS/RDSvNWsmsTpD+dc/26HK20NF8IJvCyyhw9mAUSn0ewc4y7j3Zf0ltcSoMXaeiJSh6bwFFpv9gKeFsW1zseozkZZPXoDSENvD0nlzh6pQTImIOaleUitV5HmxOg9aH+4D0NI0BymLEi/zEH5Vs8/XzyNOcSf4Sz4YLRDpsTnUWO0CANTtzlqK/tbcN0ErE3G1NmDN5GNoljfazLVjWKbmVoI04Sh7mFl/40Ic9HfnVzN0NqqkpaQrJQwZm0lTZNtnArOHWA1AowmGB/WPVqlHbNvGEOTBoymJcCq9Xv5TqD4yy/kV1Y9aim3jTSt24mzXaAqObJK1G+lLODiLmcs4me8FIh93gHHluMBQn6uhJrXp7nSHqARMHrcwpeYThsILPeAB0sf6EuTmYvEq/aMjeZpQQ8gFXEfj/ny6mGBBpkltPCGEkzuOYkXqYYtf323IinfLKg8V+lquyRcmMPzxpp7DdhYuRIgNu2CZTuo4GJCO3ldMY68oQ3FBg9KNgEoq6aaUJ4Send5Vir2wLeNfXmF5or+SCcR1pSest48vMoSqZ2DmaEYDMjVkT/cOyE42jhIaAROMws91jS8vMLRL6f+pyklj5pQwZibnbgxZduRmuG1JTjujqD0TZ3nev0mTCBIVWdY143m4xHMmM2wYnyFWSRZ9xLSv7KQf/Zj7xG1cL1zI32dUX5W75GnhdXhbMuuHoybfdq3uIHw1e65LobqoPcldFvUEhVQHWAJEE/4mxL/Bqsy9lj3ySXNpdF5outpiNm2sgFbSj6rISLQIl70wTEQvZGQvd95myPDIFxdBKmC9OyulPY/guxAgEOOc1kcmOIJ1rxy1/D9QX5YxcNfpJyWC1qDbfvnm+gU55++nsrnkk1kDgdvwKzQ3iUSPwTqPCnH8OXOceef0T8LPqxGw1ccZk32IIqbD4J5R7B4ACmYcz6L823KQvATqE63aWJBqRvG2d0tb+EBEhuqMVS6L58jGfAz2fh+Z1AxDUYekRbx4reaTPBw3OvOTvmnIT+T8fUonXxqeg6Z9fG3UFsF6kvBFntRn2XcAfFyeqA4mHO9B9na0mypmyXcqSnXQN+OuSmZvJfa8u9PxbEZkTY1QKiQugsnI+9x4/Qc54z1pGE/GCmjGGkW8z8DJmyrbrwcFM7ucKQCRsw/d4GFp8WKJ7vh81ywFI0IpxI29B10x5OEFQhPxxaAROeh/pMXLncJBkbajOC0u6IhncFXPUdwNyVIIs5XrJFzNLDaw4UGgS3E+txa3+4B/JHx8ZxnJ5APHl6nbdhvhgfbpAg1GbkkFeSFHX8IRlwqJtnQnVVd/xWIHtKCfMAHw2QNEA2m56JgoAo1oEjDqIJyVDtL/fpt2cK+gb0rIW/X27gGHLqHHTqP7uNS5FYb2cfBERt7Qz5twU/ZZm4WNzoRR9q4w6c1wG3AkZJuGUwnqShBygofEkBRwI2x4m3/o8YhtoSmb3FiLO1wItTz6FZHvFI+XprcXh1f/5kiK2bD7HwLMEPujd+fhzaM2FD4Uoy08Iaomky4FLzeMd2WLU72yMRMbaPjGhUCgBveMJh7bA3njwsswKyttoU1J1G2J6Wr/eywRUBfDyA2XHivWBVkb4vecenFPCQsqwvpYHQJnw040aoys8hH8iuSI7Dan20Nmz+X3wiV+W37vmMjlfQGhVJ341sx6jJK7CSpx6WvNzTexWyl41DmZKgJGL9cm23pCm9XSFBH86Un1xScJbQUgt9naNEmRL17nPDgkSHGpomwRG974UDBVpt04RgYHP0VmALRH9aIMVkY2w7m7Q6W3r3SonDUVCuDFtJQk3Nw6HIbK9/Ahxua6MMWHJkY66CY/acHv4JJ13/G2js5uHZyan/jpLRLFLE6IXR3i1Mz864QSHhwSwWXpbzf77HpqwL5N3VAiSqDaLIfvP0jnbFQcN+rIQheCu6wEeuwiUXglF83Z4AkTk6rzCGL4hfgSMjTe+QdfYrnrHH5dxRdaXu801jvp3f8GtvQnsRL6VAXfAPinM0JDXdGD34fqpkVUekaAEtaoM2NM/hDasxcm+fwICtIEVHwV7NueUp+lGrmmYXCVx6zRXx8pOlrEee8cDNW8jn27/UZah5+++hYMne29z65Y3q7mxy6Fx6Rv/O2omwYuAUSH88xTzNhpYtI6htpFrgxJKZ9aEEhXYt1KT2ozDs4Yai4cQa/ubhPFBthCHubr/hI6Ifrxsfe9nu/X4HznyET7wgEk8dlt2Eh1ZYjboNZJYVuo/E4V5eRwJsm5wuQ2EeehOvbfDLnIi8Q+Jck26wZwRuXkk/dEHKKPu9/xpY99Ywp60OiVWPQQy2L14ikH26jFToH66UfA4PeVtzF2F+22+KxgVPpyWKj7rUiawrAAUN3Cm9S0zmZifppucRZgswmZ+oKY1Lhuo25Snx0hNmkM6ocMYuGC7jVx0YKFt7mu5/pHftDeg4gbu2QIQ73GVw6v7cAHuqtKC1t2M34H/7la8GPkHzaDAiVgKc49f73+53h9DEl
Variant 2
DifficultyLevel
722
Question
Ellen and Jocelyn have total combined savings of $123 500.
If 32 of Ellen's savings equals 53 of Jocelyn's savings, how much has Jocelyn saved?
Worked Solution
|
|
32E |
= 53J |
E |
= 109J ... (1) |
E+J |
= 123 500 ... (2) |
Substitute (1) into (2)
|
|
109J+J |
= 123 500 |
1019J |
= 123 500 |
J |
= 123 500 ×1910 |
|
= 65 000 |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | Ellen and Jocelyn have total combined savings of $123 500.
If $\dfrac{2}{3}$ of Ellen's savings equals $\dfrac{3}{5}$ of Jocelyn's savings, how much has Jocelyn saved? |
workedSolution |
| | |
| ------------: | ---------- |
| $\dfrac{2}{3} E$ | \= $\dfrac{3}{5} J$ |
| $E$ | \= $\dfrac{9}{10} J \ ... \ (1)$ |
| $E + J$ | \= 123 500 ... (2) |
Substitute (1) into (2)
| | |
| ------------: | ---------- |
| $\dfrac{9}{10} J + J$ | \= 123 500 |
| $\dfrac{19}{10} J$ | \= 123 500 |
| $J$| \= 123 500 $\times \dfrac{10}{19}$|
| | \= 65 000 |
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 65000 | |
U2FsdGVkX1/qcRi27MmxsjdXaCD07okqSTJQKz+MQFjOrJV85mqvCJyGw3wA+eKq0LtImYWNsbOZyEiX7WiCt0p3zbWxe1Qtop4bWvH6zfAHLP/u67ZynfuYwS0RBJJ8jgrUraK0dKLV2BHE5lRMUxzpZkFi0KE38rO4G/RDhZn3xHFKSZYfnuDdF4XXLE9jZjUK4QDoBDDw2g3GS5EHc5cdffPlOwPJebcLTCb5YMCl49uhPfNNQiTNRCLfGJUyffbuNbzA0dmLJCMFQv0/j1QMhUXPMP4Efyf3lLTeQjMBhbnaMgYT8ToXSsHVf+ghgdB7W7lIqEkWuPYIvjTJnYsiMVDtH7Vo8mxh7NgXutNzLkAT+ItxfUUPl3G+TtHu31k3DZqMNMLujEmwyl+imgm7cnXQOHShQc2TjA9VtNUkfm1HbYuoTLdEwb4HHTIYOHvS2jBsAXi8SIq1oQhucS6679ear+CwV4fviR3NDQsoR6z/ewZl1uUCPF20ouZ0rwuUM8SS0wX1jqUf1WmXoegBQso8Qp0u77dbMtA+VGnYWnIT3UTiUaZLiVk+jdZ2I4/JYjNC8ZfKZuM20uqVw0/FXc6sldxLF1FDXfsWnkA0e6M2mn5s77i0aHGwmc7atNqVImIWYoYOmT0RwWo3ZrykA6xy1jDVrlG2wMMuq/2kW8NE9HCjUQdZZbEibtWQIHSWHrXRjn7sBL4gCZm6rK3US2iWtn72KkkESqsJPGUPMANG3KiG9gxLRXD+BarNFY0r/63N5OcnPoCkpDOwTdIDOx4N5ny7E7BuKggjgZK8N/RWuPwiLUZlUoS1ppjAbKqUAiGz+KCXkk4ikcEnQbKU/JZ3mEXhriuYSDj4LgDmoeigr3kG86Ra6uoQ8yz40xefP9wwKcXyYk6UCmntxP98uJSSTTdyDy5EQN1TWqt6u/lACYQfwdcY4pwcrR6QOc7yew6mrKwQRuCBNFWHXhPZGZTVikUOyFwRFCOydLq1kydpMkDcqzu83A4ixYQUomfXos7zslrg28EOmkzi7Cp4U/qMxhCV+iLydrZ4FAgW8z7V6Re3UU16IlDEyUFUo6nRWZVZ8yDAOnwtb6nuiHaAiDHyaCaExMtpRP6/YEaJLggDn228hv8v2ffkAroQgRcy5hQ550gsGVmtpAu01BIjMmI0Xibn4r73XmvtSSrJ3TVJLbeFCABgYUMDwtYeLUm3YjpK09xk8hEM1SfMR8+IKJadzbCmWGNHElKwky2Ro0MPIy9T8sqa5urgdt4fcrIUwiU97PBEAUXT3mdlmr3OCC9McV7XWHdB9PE5f3n10beVVyR/0Ijzb3xSaKTQd4wV3TAtDO9HV+9bfo/9J/LFXi1s5Ov6OG9325yhw6PvD0Ph79rxpEH8jhEUAsN8anxJ+gXmp/EtPizwXyzBbnd+MhC0Ygz4ylwQrPi5UlDX9IgagLdz9bSotahzybZG/L8685Mi0CcNkTDrH1WayxIBKBpFJFwKAK15ffRQZHBe4FPO46/P/QTJ2+bZF0TcGW5IICJH7aECW52jeWh0oGXtgevGpW7S8CdM74WzdLyvlv/jPyV+J2uJEhXf//uMR9AmnAH4BRpF9Oz7QTW9TAJiO1XZJpdtdocWX0OPmJMigJifos+6F4JU51b9tccnz8/7S9dat+aIed+hbrM7xocCrhieWSosYsW3KoPUgF5jGU9Q4KawgXhulZ6EN8IsU6hxBaq4meJAWpU2ewIwbBVcOc8sjaLYGbhHegVjAn6y4Pe02NIzomz5jiclQ2EtRR04xy7EvEICmhFGjUGIstNo1tyuhjyAJn+wEq1VC/rQzx4Qws3GzLnkzbz5E6Y3XI0z8F9Ua8d3YbY38A7qvSgbsTEBelFoFO5GKXRVXp3729priOE6tHUFmmtrOihiKbQrQubqz8U0QlP5imsuR2kS3O76XMH+GJ5so/DjRNMKgZmvmbU8278usSec6AoXe71oM42wEIzwd9harkR1zwdQVpEllCehTt5DgCcqHLlWPQqqKYUBQVm1GKVXdAf2endnyZvSrhr+0yoTr7CFD2YC5jsImrGAhRWFCAv/winf0n3QN+JESC1ix2Eka8HfiF7g/PqHqVmBiiV/ehMRr7qaqkYd+gX2WjTLeczcT7pECW3Qmxup+TMrN8yDmNC8lZLFW5YhQuyM2LGo/quu+OFTp9DIMoYq0Z6Vtg+uu8/efs3iHhc+25gSMvP0LXtAud83dFc7Qu5nRqJISpsgbp4tXKIWJfh/SZXMsFCntk8gfKkg/z0gMiUAeEhnSkWukD7K/z5DjtMMEq2IjbYr/E0iyVBjNPQn+hFm6GZrvp3HeT3G43E/h7lnyDkOUyufORvXwiS8DCKlCFdkh+N2TfimCeQDQWDmvVkLmQ+xSaBeXn49+cQ32MsFec0Xa+zExSUlexm3IoKTGRWIO+dZixH3MtpZrPuIM2eJlVAUghnST4svre6UTObPUZZ6+RYYXDb0V8f3KXCk7bqagSwx7Ye4AHpQDZfdfr4NNOsIPm/SIKhL/wQCJcJU8BXYnPLXJfJPk2CnC/2s8DHGQdLm7LSbFRwp/jaTJtAAJ37DPIzrWTh5EbVNFnvbLWFNKLXs1UGo5asPYt0/PcJXXEyu82p+3Eg7loM06aWZBJQhuTe1Hg/82zb2QQWt7nK1f4tL0Bnex0VGWX2MerpCOtL5svfsdcjSsC9cWuZxDdQk1ug3EnJF5t3sOY0E8yEXp6ObUGlzub2bJA01EQyXcXZ9H2PoCZ4kfjYf/qfLJjPH6rBkFtlJtMYvT5NUHqB4ROurqqhRXBCaNEof0gyTh5cs7GdI0Rhv4diDMAUypxpCZs3mtO9wlW2Qr9aXa8IzBp3Ti/U9HTZCRRGbgvaikbJcZSZrym3GGayj3uA3d0rK5pgJN7QJBHdbUiRhk/kobLN2XJsk+80QgdCyN6jpruphr/EfUE8ttdeo+vKZSKip3GR4eKsMaume0giF7T9t7KsTbfVqxP9bEgPd+jLEQPbYdCpQ4EvkwSdxVb1a4CO7IaeVvr48TdPh+NcQat218ttFF38TXhfNzEMQhcxrHc2J2K0KUyII6PmfZGBIFT+X56kpD/5BsqMqG+enf9v6XHUhIo4Y4wzlQPQzw+12xydk8c0i9Sjj9DA4y6B1s0eoLmKFXtxiq+RpCAj8uV+bvjkUADCs1CZ25vgsnzxMWQ5LCmdLfG4RKGIpAfrvl/Z7Lnmn7T2XUa5mNVyHMPNEIfnwUjC0EFKRoomoNrGqsNDe/zjL0hx5SWotBu7VDFT/QEc1I4050TTYBnPYxBCD2gkG7/1eVOlDzuFMYkEH9DYHtF+uOjOepJ3970965DUy7SxvOBI9os9CMeCAgHKuIQC5a3k6/+atFH5hb6IXVM7FYzhuY4YjryHFiIrrn4iZQktOmPdb9hPIp5y8qFOYuWyHvAPobBeTklEwNRWshg1Xd5Hr5Txa5fyRYGnptnAGQipu9961Kc5DEXgFx6IO2aurkiJLAK+00C7VCdX+vZ5Ea+tnG/PG0nlKC7a+mv2AtQ/IbF2FVfPF8IzdBxTYvA1F7wHueDs7x8ppzstLbY1TOcPyEmSITFrRTMzc2xiGuCxC+31k8y2bbChNs37+DfHgVwQJ2fYDE/2ec7keZOGE1qlsIKj7NOOD5qfnToLWnEfHOM7halZ9gzki6DihxeCXdVxKw1qeTN7RDY93tX4zxbo/U1MyYnmZPi/pxR9lNA4SdTe1po44kkR5fDRYSV26nH6ViqskKJtjj+GPxNp+G6vPrXpDJvFPis2HyLeQt/b+sWBCEMDMCk1DyrLWZhE0qdm6uxbxh5dnYhmcUJ0q9tItuAcUzHSiOg7I/9CQOoUrBn1FdeWex4ZJgQMJVoW+q7xBMINmDPcnKqmg9j7V1CKM1V35T0f8e3vW2EghVbdtJwy9RQ+nHMTlzgPxWBj8u3HBky4f0yToRIpBjdcdUTr9IOYr3gZfgHQgOPXUPo5HnQlduad886BhSUlbwes8hLii0no4Ob7Qy6mLV0A9buA3gaDwxw2soOeDDPX9LP53A+RsxLLsbq4Ls4hS56L5i22k6Iev8ZsOYuVl9vFjGL6qLfTObEJ53xq2HBtUQqw/ewsywYVrrmrc4JdQdsb2ItbBJD11x7ceuCPyF7sTihQqdy35WCDsHgzoYewXtxlsrdBSadaXOq/RX/v0shcYVLJlRgvW+ib4vpQfQKQIEeOKspJxECG+piVOUxm0UVbQPoiSYpklXgG0+sqmxDFkUdiBNrYzsnPBtw61nb4XOG+Kbxrvx6+m9XFB4+e/hV0WwGWoee9AlR2o1W0mxyaHNf3JkVsdfMLwxIUy3QzzaWZBVPoHpP5YYvgY2D2s7/XdiOn8fpbAVrfRhyU1/q0hoX6ddhBZshmMKpQl+4WT4IAxRHfn1rvmrg7eX5DmyzAdNHHSFLKtpOMeyret5JxE3fsInbm7Urbk0XLQ9l2O9Uo4EihAeNgSw242+jq6D5PcWXRwZhPq+q4g0r6G8+CmxZRQh712IrLF3J+tX2PSM11rGGIwP7D/GNgYezU8nBovaXLJQStIFXNLLPgzw5cvho5aswjz/0Aju/bi/Z7BSggHvTQ9839Hrk2ukCgmMIzpP6acd0md3tNyArynsOpqCeu51T65peA05LJ01QFkydPmGKoHo+fhzAYCgm7HIhwLzXGPqdAHAC0hUDHKGd0bjGd9DGSuPHOs/AG4lipsk9bdHaPsv39JWaq/0kLYFpq87skaVpxhPpucc5n9Lzqx7yowA6KpPF0HKAzXWi35panCMIx1GKBxQ2BerWBHNqvBK9j7+BNFZOKh4EscIwA89azodFUIISRPvt3vldoPYsLk80tFl0qmQxtaA3dD8A2jXDitK9OJQ4BWqt1N1UAGoXaI6hiy7vpZ+6Bk2V1SzgsB8tDiqjpfmnHB/yu2yVgZVhBwHSyWi0ZuvNuL5tY/7MXqlG9Fmv7f6LoaXmlBFzomuYosUq9NHlcyHDrCMwj03xNcMGJ1PhMtQI38/JU0xntFs3318e2VPJE19vX8IvUh24hkbYFACo8/FeZ9GoAn/PM8MUJIx8tX0gd1+pVshCFR7fm4kZI7m1bbZAkf77Hsai2lNJmXqzm1TLUjm17syGxR/ytdIC0IgGTSjYJNAXaFK0+Q1+7SGU6aRr+gDM+pKNAF1YZUpsM5QBbMP8RiXMTgwGdUJJWdb8m7bIcdyXAzrGqpe7qh/XT2ECnIEABo/wTh1kjuUL9G2Zpiuvosph9cehxKAshOWGQHV+8dKZpacJzUS2b3UZCvRfBCj7saXBX67RiyAj0IbsfO9f6nKZRYsYrFJSROQpVZPDkwgJ6/vpztBEgr6vrgknydx3Md24cnM77wn2Q690uZXUqw9f3sNd1zrk5xFF21LnDC9EDkP4ozpTjopb71U6vrsfb2+q+7PZJaeZhTjfU8D25oy6+KWV1zfazXCoUPzEsbsZL3WV42Kb+6ND0n3zneCiO3epdvNsc3W/ea3ShCh69tVq5XwyZ8zJ85U1g/Ii4oWZpLphz3V1XxR8Fg/wZIFFyNewsye6H+5S8+qSdr4mAzfm9O4DNl/WWHc61gBzhjsLnyj7i2Tbp2IBzzPwzRZLIOJcg3enzCox0o0mV1XD5JCaS4u5Nv6OfEPJ9IEhGTXLC+7sMEh2u1zIzyqPmCvw6UsM7zZ4fBXuYZyC8NwZM+OQ7rn/CRwYQBWy2kxZyBkUscCkIeVC5y+e08ibRis7tFsPwcqdyQsFWU+UCUMA8UFQ1HADI1iTDmjJCcwDGMNkRnRMaO71YBt0A7Ve3WpdNW8pK8ctYRylI8S8OM3S77xO0smVuQ3EtLTCH+HTGELsGX/fnxviaunjlOBHTj7Icn+nRZ70rifQXMvlulcN4qe11f1gJxuLoYe3kw9DVKquIGwctzglnT/DBT5gZ9vFqQgnCuia8+ApieSDzk/SxOj2E37+kLwVBqMZfUYmD7o3RlSYy6BMM6UZQBww6wMuQblfOldgPusmHFn/H0LEG3yQaQnrFlw/fWX0we+h2e6J1/iwurChoYwustSkBpifbDKdAAijJs+mF96jz3pwBtgvtAS7M/5coEmBemmLsnYnkeYEDEcsT6ab5LsMREuWvwAlmWzDeZwqBQ8TyvzbcAEnFRMorTdyZcHJlEFkPO+zEABZgt1xA+knsOjZ/E4KRZUkw7uwbVblHhkaRJSMTmMpxDV7XWxg23mgnlsYdrjuXkFAvTIGGOgZmTO9jFFNbFkq4Xxd9yZ7oV+euRbNl2RRnq5elQzY4y1R4di86nI+fX60sc6gjahb9E3BwUqhMjqgmTO/ThZVewuOtb3ukfFHc+0ctRNUNRuq0zadx/xmMY0cIjPJ9FhXL+rjGMDsXhJdCF5m91TJzYtJ2WXDbDj3F1qwLPB7OSfvJ5pJxgqiB+8Ph+UJyOzdEeHZ0u+1UShu900N6b8fJFibjxnq865QKZGoA43lRpkDw2rwTq3oaRvoeZkL5l93vgsieAyyEv4Gvw/AInnY0KlvOGzdLiN27Rl3DymwMEU5vRccCAxp7iWQNohkwtdMXbrbCeeXuzik6oDSPpZMH1fXUjautjZ9A/wDVUu3A3Q3oyHQ1F7ZLs3h8d/83wvUJWTXAihwFckdVmFYP3CK2Md1XdQTC1UAjASeV4Z03SOEIUzBEsmVqjxT5E+bmRYXLhSamYhkFs712W3twlKCOeRSI2Zd8ctwix4naQa/gFP0nkupLJqwUiGJBPSjzmakdzbFFIvmJ6BbxDCsfKwMPs0gb5Q+kLdr9FsK/WL8HEnJg48VGXtiwOHyji9X4f+48xE4ApflxRRmKmHBWlVivhkPJWoEd3wWetWniWFJkSjE83uMw8d6E0bK4oqsDUvAThCNPjrMgTpaL8uFF2CwsRnADhSituFiiNjsjhSu51OHNkLRcVkBlzv5JZ6RqkvFRYoJT1+Fam/yxyljb9hLlMlA6UVblq9cAMyH3RQrcktLmHipS6YNamafeJgSf/Eboa86e5zDJeiapNpV+TAmbvrL1Od9LYs+wEQIY0ubkHZXUMtXMi7CGNsIOdPLaBbbV/XOHSBlmybEXNoGafPbnpw/TCJNrXRSKdhNdO91OR2Zw9Jz1snrCmbWVQggPr/3j4H829YIhehKmb/8xtgBRRQYjFfukqvgPqyyLz/4sq+AWAaEJxDNl5epaHxbLCbTgaHLcOdrsR7EuT+UiiRlYCXr6KTnJv/Gt+vPWgPgyMKarteejd+tySvF9nKJfREW2xtSTyVORr8jKa0myd5VcxK/rB1+Gh7Rr/5MKQG6nsJ7sDL5Oa5OFDrHmMkFZfDaguGMNCtBblAL7XFD7ynItWHVeBQOSVqlZ1a+7VeGyNo7e1avCngAimLWy2X8t0l+phq1MY5iXw+V/9mj9UMlLT/fEvltDiilpPX/CNKAa5hbX1VmYHURC8n5AhuRw6r/7EMRtqeB7C0gIO2WNj0UprihWF507GPdtMBiwdMhWsL68OxtSUMmJNnQkfpJP2AEHBlKnV8MeBM/LjaxdNu2KmxsNjCOFGuSh3qUSEbYwtAiv5ycNcLMU12YczvjtPL2eooGxBIIMN56L+YR6bVCyCYp4Ul1AriRLq/GyyiMluQcITbfMVGPmR2g0mImJyLkm6buWyauwyWJoqjH7MeJ2GSyMX3xpEDiNNOCpBz8y5cTOHfliuShrb3E7cV8HqsXajhEa7asDXU+Gy3NBaQRbK01EfShYTdQ8j9l6PyikzxCHahUtPhyPAtqFBbc0ri6NFskRoFa9zusTu1zwZ3NNLIHuDux8MwISPV/ynp07qLoQev0Y1Aa8NrAHacJz90fDmu19Eu4aABZktaH2UNmms32jECU2c6FKXjSZpOMexxHmTAZwFVtx0uPpG1cRKpcVl1VxPnaJz9atl5zBYxDYvZ2SKKWJrHZVm+QqOy/Bgin4/FkOrWdrxEnDgrWlD3fOna+HjhoMCaGqC4J/j83qQ3z7qX6efoKBMYVK0DKcL1Nctmcf1uamToEC6dKhoKPcPKji7tfzkRoT4wiA0Bd4WI94PtAFF13CPTz4+og3xpL2RzlXk3Agm+EAagkSsggnY7yE97F1cVgCzF/LHaiujHTzUHCbK9TsI+hlIsFL9IwF00e7pQjKeORgIpoiOMLAIbGw6etioXQ2Em59J2tQAsKmzIPeBTYauywTUqW4vsWvU/VXe5uoSLnSk3WqyBYWMR99Kx0T94knG2ELGsqhGzNjPPFWimj/aS0aveYqI+8ovdgRg+6a/aj2Al47xT7a2ssEQ5VUclRBfVqeGA/dDl805kcVTn7T0bRvwkwKZ6Io9EOQ8xX5g77j4auMZZFcLxkNj6Y8KjEyxrnIUVd4HqzYynQGvfGbvJ4wvIDITN9qfmQlCZUeANa64j+E5EqDPRiIz7++wuAeVwBwzRCh7AMTVEk5lHAWyxA/xzRmFpIvMa8Cq9gzt1J5G6nDJk8bMU/fsyUY/3JuGE3vLtNyuWdgCwjBIPKgHElK93zUn4G/aTlzJPbl6gNLuHY/BfVb4THVYNSYUK4jY1wdlS1VwY6/G3Toiym44xiT2IoN9fv95/imHQTb6bsRTyGwp+e1gp1rOX6NIKA5dJbIERummLh0FI8gzBGmlDJ2uzOId5ZxeV1mVMxem2rIK/ZLEklW7NIsID1/3bV1uj3ikrPxshjib2FWgzsS5JYiIi8rOsfTky9PwO1i+HsFmf8lbt8Yif2F+6vWk52YKo18+sREyrl5Qyao5fqCtcRbtlf9rjAJprU/lkmLguM0FkMPNytcYqx+ht5xfk4waedzKdaW2Fv74vShaCKVstulnTrM7u/v0vqCXb8HcQo1qEx7OM1CcxpOCbfGYvTahKHt0TXmeXdy7DRwfH+dXgVAgMML3xIsHTtifEf6qco3ks46+QX1/mZQMefumrfevTGPEQZfyTKe0K8p1opkGEj+Hel74iWkJsoN60jryD8U3wOVkTMv2+0cR85VugJugqsUWf+2g32Ics90PvSHhcf/g5gyS/DPm30Ss2fPtpXD2f0XTaKvXiuXKi/lJgPMUbJ9u2X35N8MZsALQ1lKEqbvgGyw1FljPkTY1RswXASD7U92YzUUHWLOiy4Eab6OlwzxNzhAKIpG+4QMjEr4ECwky0strZe1XwG+NB4J/xkKplVuS2mDfe2QOnqm5XIgNB+aZDWs66TDWc6iuY1Ep2nn/grTqKEwJibenVp52yYFUNTLq/fxrLTLCezIdCdxwr0tBjqXPj0LGZDgDI6dpmxUG/vbomS8hm2CksLZEM22RF9d+/WJWPnsbFttCs9pZ1POMsxlQE+/mwfxLsChEJsz3PTDLlXvUdwJvN2eSRs4xo06qj3ZFp0SmC+/n6nX3YrPv7VyWS98FF4FiV0+Cpb7JwVjMqEhzHPl2bJjim1gT2h7Dg8oJKpVkDecC2E06PmnfcbG7j60IvyqSJUVB6QmqKMehZsphC+tGLbfdaFjs2JeVyArHHnQ5VOMYYjRCPfBJmVS1VIqpKqk92Jy/0SjX+5jgn6dQ3qr1nnJO2l9XgRANIAVB2coHqrfFOQdf4XDXyofreinuYjblRe5yQM8AYjrBi4yipVSFMEExlhFyZpMg8ZaR71y5YcsWEyczcrMe6h01DG9WhWykb8XAjfTLZFFxrDNwfyHb9wcVc48zjwLfA0QQGmoSen+E7A9UoxeD4BTptXOntMxwq5VP1Vx8cNtLAwwpVpw6DLaVpY4YfggimdRcPjr5U2qu/TovVA+Cr9yH2FbZwlziY4+e75N/MfEhnSaiCR9uUcHPO80UgqFBQrN+t+tm+arE4iGo9BMbi2hp9o0Mreje7qjmlX/JasjT9BbW3kJ8X30saC5vpmnv4qvulzzr3hFejKQvvvoCznnOrSHmnLIe/tqMRl+SVTSOskIP3+QJPqXV+jS+snNBtHbjarjifpkIanaJLU1L2rxvI8MfbxZ+EowtpMTcNEYcWNSCn8kKOMZs+fa0tTSJ7GW3aaNlzbb4T4J9CQLyM7Lvt6QnQsVNkj7cdKd8p3SM9rq6hlY4dVdprnB9+pasYOmjvMvnpmxxqaQ+2NB7YNJ+y5tXVXAc4M71JpkUvLIs02e+lG0BtYmJBKwjpw2T2jJy+XmrxvcLdKDmDlMJNqsPBK0M9iSximyeMFRniJnIdSA8U56ATzl38wsjXEVtftgAgoN2NvXHNo59o2oUCS2sVeeu3ItclzbdVn525ENudOeOp5jdgJuN6Hw3yp4UwW+s05j8Ka9m68/t7NisjleymAeNZE4YMk5N2Skz6JvE6ClvcGdrdZnhHks0dAoOXufPg0UP27NHLo9mrg1W7rfuf10kLD4ZHummB/170jqPiGYGsyWhc/lQJ5nlmOuiTXk1zTysRlGVSPOUj2Bs1p35jDXlIsjtPQ7X+CCv9Ypc0edPFlkJ+4IbhVjc/0eUddlgSIVk0pxSutlCmDUf2cElZdRt34Df2r4h1HYwrX9xRN31wPLH6frmX+PU0LyDtB/Yaebb+QEv+x9KjuQmSJUPJi5tYMQb7GfygL71r7XQoVe+vQJi072Kxtyg+4DT/f73yFvOPl3nyvfZzoRUPty9QUKK+zo7oHFlfwBcEN4zX1H0zoXI3iMXKJxeem8y5pN5Ulfuw9yexM6Sas72pN1ukb4+HD89KAvJMklklSv3sS1udb3wocqdrmJ7DEueNwRV+qCLRLVlOYWeoAorCILcf3JowNqfgZ9E7d8t8MpOUNEU3XtnU5bM8JcXCjNllwXpf7coM1kWmBJSCsMDu5Yd7Ros3sDhuwWLA87iSeZUMOM8ffBigcvMbXi1KgwZH8LdFCPBmqR9cDKq24/+GeZjTQFqSp2acD/p0goaIOXT2QUzYhh1EyO74bt3Qiw3EQgn0Rax7EAZ4BeREn6j/B0VwFbV9rC571QQlQCE/PsUMVLzqSnxSedWC9advKk9jBXoykie3AuFVOUHwi5Jyo71kgVBtXObali2KQG7IZ8eqoR2oc/IdwMS0praJzeb4kchQMbIVLxZtp3qiTb2m5q+6lqBBXviO4BCtxbI4y9OuhP1abxxbNw8/wGbI0cv4N5NQZSQAqCAuDzz7ICwo0p/9j33h977tvyL2TjrqvC/CLJ/Da/C2LGEEdb2sPEvSYYPHt65nfU92JmZz2p4dSikacrcUo2k6oIwnrLVA8qqQL4V4ySp9jEAbWWxRZxl2WmM+9axI3TJNrm+/31TM+bC9AQLe2Cl2dJEUeYrupwaykDnHx3sAG1BhMG9N8oH8RYI1qRD1ISEiStqo9bd0IJoFf/uJl2BJehtSN2P/s51FombtB+uVxZ5367tSfI9JdBWmJtLwD1FcRx2Ij5vNvdf7RUuM3jgsq+MDfueq9mFMllg91pKnt0NoBe/cRTSoju0X8D/VkUh7EyYepw95a1GV4yAaaJi5s6RlUSneuK85/9pLG8ruP++AIcnZF+/hCerejrQThdPUNUPPCpHXoU8AlO7Xtg9jLmeZLcTcdU+XN+yw3MFiz6JH0lW1xuvTylyiKIiJE14/LcPu1AwB/ZTPY2PgouNcEurhjBiTv2tbaY9jetrhlvqEPfnFRs2jLUoc6YDFt0+xSCCJuIUJapPnnU7lcrrNOUs7zCMwMiEu1udkXUC+oDBOe1u/gAw298r8Z+yCfq0qBoAs2BQT2lrowuL2G+POPauC5gTDcJUnpTs4EQbpHRek/V8HJ8VadpLE3W2DFMaU1ZR7aiMKd/wqLY4J5ptY3H16agkP7WUMN+eo1X2ZnH2uiMz2BulEVBXRrHwsqPk1dd9fmLg1bBZjHsF2zaDIjgfp5TGSjEl0n8qqPLLVoTWpjERqRuJPx+MUCs9X8tJ4e89+Y8/oAs5CnixD/A0Updp3sxmdERK0GGIn0MjSeBiIy5WYjXd0fDpcf40rcNtvQr1lncKvo5IJUhU9ha2e1lK07qJaB7JJ0psSKz0m6XCfGlZpjNVV2etXcOQrJZGubOTYOtWD02Iq6okyweHovr84L+a/r9+HMlJ3Zpl2g9Kku6yaxPKSR3cP8JED4KQ3EkK34dOWq3yLPf9z9qghgIr3o/QwoFmabhYWSbDHgsHW1d2gq0kHcnkgX0kACKb9vd9nJgHhMwmmeZmIQ9knkmQaHUXcoe93Cn81OvhGySfLdVrhK4p9mpWz8ZeyUp5xMmr6TZpPAVAoNPHz76vT4oFxL5pXizTv7HtrpSJMvIPx83PcmYrZG4GdK2T3zYUyQgGwqyGlUfOJNBM+Dfki8wM/hkgXv00kC4SLvCHWbdH2Lry6Pfka+Abz6VcQGf5VLH/c1qvdrn2J4txOHh2rU0PqdhMw4oZEyld3uLZgJNULrhojSlzIlxTAvqcFKGILJux7C3gheVYOwLjVPEVRLxb66CfNCR8REW7FfYEtimctndenw6F1FDSdr/zHkbcktWnBJ/HGgYaiOmMlalIUqlv5wDKAueqw0K4b4ARvcmNv4DSV6eJ7sXHVh/lJaorWo7mZFzdp4fNCQNv+0y1Sh39DAGtr7fKOhiPhwcWnLU01qpZz2B0U1oragqM/revmX0DDNEeKlYQlJz/3Zpll8huMx76AV5MqpbiTjHE3ez1Qv/YtV2HTj6qnFEjMx+2N3UZ98GLbjjPEos2rRJ7GgtwAwb3G/LFKl0Vj86sjJYTTIBfdn40TYY3DJCjl8WyHWPlfWXfxqSAzJbeKt9MQmlDDO64KVEj0eDcFef8F0QdJvr0mGioBSNkKW7FZhhLqjipMnm5tmfpoQfzwkXSGtizUoLgyA/3/YV1GhN1pnDly0xQ7DEzqGTQv4thGdEpqo3sG2ZkcovME4cJX5aOpLPpnO1UfkDZ8Xokg22gB0354noWQIyBBacHCstibnpbwfUMBzDjq5zGNi9OJl0b60U8IAGJ+caGzQGDutMJTpVa8S82eBfYCDG0jqh6fyICQTaRqWPsTUr+PpQBpoxydHvg+VUyG8rLdVFntdHqgvUw2R5JXfGvKy7Ocr4/MP5I01/eMoLWxUZTk1T2fN0a2skbSehxaelOre6XkXtRcwYs7xYt4w4V+fd0egZx2oHSMLdTMKesvIyzPrGBMVPr5jWff/S9nefICfBWXMjKV7svBrjCtROV3kYgsswCQt52lVI/i3CFewSCE3xOC0u6Q+NBtmSybbTugWNsTKz0OhkD+sHa7BNr24FEuxdyfeXZo6LxOcNBTGt/fN0p8nYv5M2TrR5JLfFbnrV4rZH7g2faF+huFTAKHZNOwKOSnQsDDOd0jUgPIXTeeqtxsp/F8ZyOl+HEI76LDkVZuUv4qZGXQ7SETRZf3OECf6E88/tyFvHmj6xErBHXAqV5MQsneew3zk3BsXZJw4QeS9F2yT0WbdOa6dm24pJcOdMDA4ThO+Bbyin7doSeOl5SSmPvfkKkP4H7tGlUNaP7f/5WiyXV7bi0rjCNHpsgCjrQ8oIv1N1Yhp404GN8AZUcijmzsvoPAE+KQp749q3sq7zSsW5RbKvn6jmJFaGIcJKz2KR5Eys/sjo0SEp1d2yY42mM0LSdjMWASW/IS2UDqorpDfVeU241AI9d+6XNJDxCp/pbRAJf82U8F8t5FtZSvUwyJJSa2zjq6xjLRNo/wX8YI47SpLmEIXxbC6ti0D3soYYrnYX6CSEAl02qvs2EmQHUgAoPYNmYL4XZsYktDEWcGcOhlmIHeXMS7IxLeCIxIrWqVBW7RG/2D7pxYW0LKQ3vxPWNQsi6ct88BslZXYHN/QcG1h+bQIoVD/PFS8NfGo1d5m8xFUxkpyVPOOOx50DEGdO9XAdYSf6tJ7yWLx2+8/Av7g2TkTZXrXNyxzTw8i0/tyKkF9o7GUpm7rH+b8KrFATtxG/sZW8UzsNXDZC6C2vdS2F7sDLrNLHFv7KeCBfmbSeyyqEflM/4yOevYxenWC23bBuT54EC6i3L7RcyfkeBsz0UAURoBgkFWMdRydMPq802cACkKNcq7ktM462jpnK/xIdtW7eQKEc++/aCkwQpWkY8gty+cPcDoq5t+02JJ+NTYUnlzD5Hg0pneFxk638vba5/AKvOLOnJu+5+oU0nSzjgobeZcYXNFKRJ0TqklRstQ0lm2FBk6XWlwGtKZrP2BzCMRkBjdpb2IzemNfa5navjWLT+97f4agtCzCDERux1q1rYMM8SDz9Gn9LWMz6dG9IAdDHXAvfl4wDmv4D9aARA6FDUMr2WSwnxJKbJOO03BAbzfNPI5ZPcYQ7w37KVH1+gbe507yWsjwTSjepEXSagq1Ypnj0kNnSXbHEHc1UHw2UJlh7VBHF8OgkLMlbd29o8DKBpKOe5nIZtwH4hj7YJfmWr/trNrNCIHmsDBb79jGwM+TFzQxwrkKnV3V9rO0bNtPV+opniNAY/GEYfyiRTERFsz8iDQsns06Apa62OHAi2zARmFqCBVbQgzteSMxVCsXgOLolKC76BGeQ+KBDmIdLSoUk3jhPEHmJ92QQp1M24uRoMJvw2yQun5eMZgCtYuahmV+lZvPkCk6Ol5GCUUm4Yl/YRxK1IrbTGz08bpw78I7QLAkc9ZPQJS5C7aMrbZjM9nTcL7uRfO/daFWu5NYSXs8tiKMCa3DHji7RsPPs2rtomMZXlPCyBGrHxsIzlWvn0R4CUUWU3JNAwucnCB1UzMBhI2PN/elU30ehtJR8TkYTGvgphpbihgx7z4DWeEpGnn8BURmaK2zShxm1Nch9nXmezi4US3zetHK5t6J1L+ribvhOg5o2gqRcsef4unnKXgscby5X2+sY33W4b9bynspquKipUIDD7l1adyfApjIYi/km/4xES9VEpiEvzoR3F6I/Q03ye5UysX6uAOI1fWiR/A2lzxsiwGJvLWyCQNlSnsPacu1kvzhZOhvEcC6m6Kmzm5VH+tpad6FLiTXjFy1N9Lb8y9sacqAkmAEYidBj1OKWhmAFDP1hDtuJDuOMEhpeChlhljsceVEzucQCPce2lh9UY1vkGhazGmzxryyGtALTr6Py9BlKwM2nm7UwWnlHzuXG2CH2YOzRl4/9TiHfVMRnsVKS2f60FGb2wrBYLhaetERCh3KV+3DmW1tYPApMaSHwX4ZhWnUgQaiUc0t5ZlSuuyNotlr2DrFjo63jxa3c3znWhm9AtwioSI1QMyEpeD3AfNayZLDSaKoOxrgEXoKrp76MlTy3nYF+BvWVLNUhtSkZbuN3cU44tM9vFh7cM2Kr0IftLlsIRNfdGGu0IwEqQ5DB8QXmtMETuOzoTXvsWKkQvL2yq9aJgAyF3wq/2/nRqdeXR1ISlaAmjmdqaB57PIG34MAuzos6k47a9EuKpiJcuwQYCikioVk8fpSKM6j553442LvoASkSKwxSfwmOh0TFXuntnff0fXW6Vl0S5XlScearz1J6fxx0secK1SA+vNRVfA4+zZblAJIzNsXvT0OXhCMoNS940I5FuSy48ucwmQh/KnuyYDLgSMZbXi1sW04by70kiIBkkUNcQoPnEIlrdn2M/i2IR2bq62rTsYHV8cTwI3BfJ3ltOj/JoNwRX4Oll7B3abnUaxYrWCM6n8UjGDHJOrtcuW+ZIYi18Z6rQu/q2q+x5j2fFCUztHGbArEZ98o2ahmbC9B4LWwqDYAtwu2qotZy6wXSvfnoAZ8fJmc0GP5PMkmWb1um7XtTtSoTe6hWx18HMtx6cEYnSCU3+zi1zmaP3kQwF+3lFaGzYcLmYwUTyTt1YT2QxaBk0MJLjSvdYdQicuAbA7BF8xEkfS9gk6XiPSKPaGRbhUwoRGw2WckC1gm5nu6f+xnCPIOpuFLoOM4PeaWOJ5u/w+MDA7AfygVkhIQQdY2uBy3nG4kS5y+ApurTmRNgVACVFD/hNAjEv8gU9wEahJUUuWlENtHH5cddi2McaQfCjWKHF9JIjSy5JoRdO0eWNgqlVFVJ2xDVt9HsjI/24ajLBJhztrxghbKuT5Eil55MIPNf2z1dDIXIYIjXs1fkae0PlJQn24GV/9m8iV5lrLMOIbQqmWjoUHJO/HkaDbNzte1VJp9m9RnsHBjpU62W6gdisFtaj0ZrluJrsXh5DgV7vmkGS5hmb3Py5cCLgWQO9yuwrIFficu+QERLUuA6j4DQ+qItHh2bImdkjGurh274hMAfHrGZBcTg+KfsrQGaF1anlXf5gbNo+43e+Vy+Omz94SCQFmJKyZvlMqDsywu8g9ZPQ1DlaTEOYSB2fSP/Rgyq7gme7hu0FCOvWNfOB2sch8TsRZ6PD5LN5vyxbPp+lFzSX+CPbLDeDnv2+IUw+Bd/UtO5zUGF6xWsJMuFF0+hH3aOm8Jl6fJTSc7CllpVzWALx8ktmBLzwD4WP5tc4/kWP6Ve0mYhdwMzz4tKFhy6uGxZT66ZF4bA7EPsroZpfh9X5XVyasSTjDx5vKp0hhkWTHvIfefB/6qe9Rkl9jhJKNL5vaBBmI9ha+gKmAugnselGFbRcyQTnPe0wh0NoZMTYiVdaSWrGSCzGiPyNgdnESXmHZD6ziBP5p4Spp7z84yztAI3swctEvamO8SEG1M3lsttx0rme5zWvCw6Mk2l4azyGfqF9MUTDD+UENfVwkWir0OGDHsXlUVy6BWaxgJkvm5aCYplkUeK3l41SKaVJj66nIbQn8UpO3KBn0CXAabHFQ+38Wlpmowsb/Kevj+FNU39T4BZYN4fcL3WspUj2HzcCYdT5lqo1Up5RFZeYXNiUBU9kEnszTK9BUgou9bIpBjFSFVyVbXNSUpG18NRKWr7QIA5J6iaxhq48iKTQLeAUkq+OloGWh7KLLmN9aVNH1kEFXOux+jIiqlU/bDpR45LHZzNZ5RMe5dYxqH4tNQA5Xr8a/X7XROZrA2j2x3r5EO+K0drSZu/i+ylrTZx0tbdlCyZ0RC3zFqJ4kKxLSDvYb0/pwmgfrddmoZQE6SKvzSHB7Phq48PaTZ3r/+N//PZd5eX7pll0V2Xa7uxSAMLA836DhHhs3BchZoikY9QIYY1YYdzhaB+LdoQ1DW+babHaXfwzAtF3jSpQoWv9PoPijJ3i+afaVYda9X5MZLKKzDriuzahocNZE6EmOCSWjyWONRwIke2fBdh61YvuWFPvQMM7CtOZfi98u90iIhMtBS5eHLlM0Jcr8r+cG0pwEv3K/CIherceXxxH0M+Z87XkZO3WsToAIwo7R8xjImApbxHwj0MV3a5YpYx0lQuNjbWmS4QhFL4PCZJOw1la9gICwA/lY8JD5xEAxdH8Cr1OcNYg64K2IBm5hS3JFFhsqeQfIKGi5g0A6sSUAukvgxWN1XPRMYwdmtE4kA8qCIKDT1xbPYWFGREx9VPV54VtSV7E8qLK+FgdCOrgD8a9nMhvHE1sk9eqRkHGV901NhJRRhJinyQVkG6g3mUHxWHApRjF0ty72hwhA32bdle/sOqcUK9cYiy+91kV3SK2H6TrdQF08x8nUJywyisT3xytQG4iz4rvLZSinY1plWPPLe3J1Go6XnGAo7Xk03MEEBR29Qijl2nkpNdxA0uHQEFztj6GWxgCDqsS5Uhc5VXP0YhJd/3MId8JRxUoCR+03T6lIGrgidevq2gAqKa0eFiPmhk1hm/qrg+x0Ido6hNNOx2np/i3ciSz/StaqO9ZkkOkhkoQACi5pp2Gm0dDGnIzFcL0wY4fmNZ8a0LL8pLlO1afXtw+eDtxt1d3peP/WEh/UWuZmTedGc71CJysEPVdWYcXglflzeJKkPwm8C8I0rs2iTMzMmEB0uGIXoImcjs8KCeBo0iDC2DtB8XwN5xD2rDWkXC22VBYPWrt/FOEMHnywc1JLmG0/98bzt6B+ah4ViDH5AU1DObO0838FTEJzn0hSXUn1n3jb0Nky1bB69RPqSWdEzgqeVD2dfIm5RV+mkkstJ4iPpyhMUMSybmes4pv8W0PQFngWzQqi3OD4bO0j5jpRWpOcVf61/4v8zDjEK0sui33Yqs3LaTFuc4SJbYed2mQD6jwIWlaN0+2+J4zqkU9pVsSIc1g2z7DnxFHVOZCmG8p1y/8wHoObWtr6SLqy1OoOGgmFhO9LHQVB4uwe7qX3NakqYVGZ49U1T90pjxYWFyhylgv9t18nkO1lPmK6ADAHd2lBljt7hhFZ6ZppUBnzGOD9DAm1z789BpA2tAOd8aalc3O923GWu3i6oq0dw6LxGA0dQl408E81bdTMeF9eDllIjZs4App5EgsYd7B7mL/mA3dOVZANWwlTIPKXExWXpqS7fd9G5/SmL9NUhBhE0hRqDpQCIeGlX232UqF6bDc24yjF/S3E1fb1XuQxhHZkDltoYzqTLN//yHQfSWJ772QR1PIdCReOh4bFB/TV1boMMdBTAtC6r3LJswy7CwigInf+tq71beXyU9WMWOvJXzm7UNvFOuHt1juvnkrn0yICOCRAoj5KZX6FUf6cWK2nAfDiRi3YhYIdqq2Vgdxrhh46VjqnjFyUz2YJOMXKoI6QXA2Bfiwu56VCmU+mvIdP7TseK23YigNpa8LyX7uKxE+Nx6MFXh7qSLI3X9BH4uDe07bXZ5/648LnEJi30c62HAFeJaPsoYiEXEXMP2MjJkK/Z8p6F/lkdjKRIfJpXcUFKJ6dspwEqSLtV8vGXImR1qSbsFzETnIvF1JmFx6BLPIIBf71tG/DDCwDF80aTcRARVYmEzqWbbNSAYlLfB2cbzr1J6wGQw1VrCof9LAfoVmmnqr4yx1/DRW5N8q5esilR71o2pOdlS6DhnX2w4TQWUJG5VRsUvu0m+9XZ5LzmzIJYFC2rSeWHMpkV4+Ta66gcki150idI0wy/wfD8pg39yoAEWqugm0zVNg28n0vZNrRXGMdXB89vs5JsmdHWVrcBsZ701nmKfASSQ/VCKXjYfMySv3o2c4u6Gs/SOKSGXn6m5gn/ZD/B67tA+ZgyZRbu2rEQSnOHdrVFJpoUeDTtY3+7iinB3GwOHLNGkUr1Ievqriadvvd+9FxB22HnqhBufv6DYU7cUoVnfunmbaRTiYIhcCK6oyJGWvQ0JR8PgXO+h2Fqa1wwmsbBcRjgodZsXe4oDSFJHmbdZMznM76zEa0udz7vONuaMk2a1osc7rEEtKrZmod881HAnae4AxIr8Pob8HaoeE82gtzEx03n78p59p5P81By8H7epmGDEcNfOtlaRfwwwsIICYoDGwoDN81FlbhFewC8xcEmbRUzaDJWukxmDauAFdXrCWV6rGKfZ8hYnUbS4WasMWvwHt+sp/ceo0IZpS3mAPEK9eaK28u647yLHC0zRyc1V52zXGWN3AVz/wkzsWWuCaDzxIVWxhDQhiP9Cw+srFCigYXDBSc55LP1pZ/ejBsVJiZahr9dwkzNHZts6lvRfpmC65w//tMnLLevB4YVv1MUOnkqiIrvRZhmkeJgfzcan4Z9U2lNhGzBtGqWiMSVR8qWlWzuxEk1A8H8hU/XAWj4obYgG8yZ13noRX/vXwN213m7nhzb50MSXDbDPdYDVSTNgGbQVyRTmuFZXpVN4JB7ewf86Q5oFoU65XipCEHXgGtRiXt5mdkwU7/hacnuznbqVvxOTRIqyt8r6SIm7R5LdhmMoSucu3aW+Qy2WOCsy/iMZ/CnDAKSbnYMgQ9qwvBHV51VQ7393v2+JVXHLOkhLlYxx/XZk+pCgI7DiYTdnvFjiKckwNc2oWmV74zQzdMgq902SHH5HpGzRac8WRwlQHuoj1j81pjE5wjag1999+7k6REBspeNutYKDjLKL3MWrvh7tXlW4Ekx2lk9ZE/a8cHwxtUGKKmoUJ+hwJ93uqsBZQq+ciBjy2M8dcKRKvWK/g1w5Rq9DNTJwSfQl388lKjwkfCK2N8Sgl8lcT8g6owHHwB6/Ycx0uKdSxIl9vqCQnJI9YeFUJmjfENWpNo/rrr87mc8C9OasbXSCHy7CxsIWGYnzPeqczz1PHy0Ikj1n5ymPQ4MPam+jTtp8xfZMEt2xTQgGSldVo2phbjc9+rIHPHaWsO0RT7Y6rvRLH1pu9LgQnHfnJB5dS4oRorpsf4bnJAi66zx4BKwQ+VjYPfIcbIdywdcrvZh2FM4cTRgDIqD9d7XIXklqaiERutMCnovE/jOtMZviQvor+nb2tCtzWA9XNn4dVpK236F1XsW3dUbeDVR38aS7aS7k1BiXfIDoM7KXw+mdB3x3EnpXEK/zNuwSuMp+MJ0JCokK9N8xghSRnYp5E9wEE3QENaixrM4cnVSkUwtsi93Pm7WZDX/CQeGN2bpc5XOkklFOYrLGlNXfDOO6iDFGovoLsqT9SzDlG1YC+FHfYU3rin2uAkh2a8P8FY0Haqr3iDJ5IBVJDSKe6nmpDZ6k0X6s12gQeZ0vm0W0Eu0ooZbdn5H1Rrmt1UlZomsEOoJr38IMeaWfY0e7vknDLhki1sm1gST9ZKTgxfv9XBLL1kQgggDqFHZyXghBCHE0aQFKCohDDFzIhxTu6vJ+cOav8+ql3R+pm7osNrMlu2J+3Wnzktubzctjdpsm9TS9Knju8B6mdYs0cy4D0pGatKOflQPle+l5Z7DN8g3BFcwxTbm3C1ZvP5WX515CfYFVI2b9Amo2kUHHWqW1riGzvXD05k2Jf2y3G5lCUnGDsYf9UVdAx4xkXe4WnfKRS2MJzx6JjRwpoheJqqBLJnLAMbqpARBgurfs8PJRYndHGOW/q77dQ6kRkTOpJNB1bVR8nIG6SILpiCELUtbA21BdWH35wmpPZ3TDh8Z3NiqwjXA4PBzHKYJA5nI08GL1Y0rSmXOdEtrFR8zTsGEKGMlDtP9r6W4zC5MQxatOWPlO1ZYp3rqWszRCIGu1gnV3PasFm6QAQ79uDsXpr5kI7sUqrFS+OxqCW5E7V66AndBhV7sWAKZ9C/vaNdERVrsCdxQpaK38d28S3HXQuJbJfgkiVWzfsC9jf6P3AHyRh67us0bOlo+6SqSEi2vFI7gQmwsUF9/Q=
Variant 3
DifficultyLevel
717
Question
Will and Ben have total combined savings of $12 810.
If 54 of Will's savings equals 41 of Ben's savings, how much has Ben saved?
Worked Solution
|
|
54W |
= 41B |
W |
= 165B ... (1) |
W+B |
= 12 810 ... (2) |
Substitute (1) into (2)
|
|
165B+B |
= 12 810 |
1621B |
= 12 810 |
B |
= 12 810 ×2116 |
|
= $9760 |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | Will and Ben have total combined savings of $12 810.
If $\dfrac{4}{5}$ of Will's savings equals $\dfrac{1}{4}$ of Ben's savings, how much has Ben saved? |
workedSolution |
| | |
| ------------: | ---------- |
| $\dfrac{4}{5} W$ | \= $\dfrac{1}{4} B$ |
| $W$ | \= $\dfrac{5}{16} B \ ... \ (1)$ |
| $W + B$ | \= 12 810 ... (2) |
Substitute (1) into (2)
| | |
| ------------: | ---------- |
| $\dfrac{5}{16} B + B$ | \= 12 810 |
| $\dfrac{21}{16} B$ | \= 12 810 |
| $B$| \= 12 810 $\times \dfrac{16}{21}$|
| | \= {{{prefix0}}}{{{correctAnswer0}}} |
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 9760 | |
U2FsdGVkX1+X79QyNvHLbcqxj9KqRV3luwE8XMYJ1SW5a/B5ByHzUeuHJzJWCZ7U0V3wz92uph17Tioe8NT1YesdtCgf3ETuh7lvRWmHdRIdkTTb9Vw2YwMGTrlLTtxdJrhQaiL0ZsiYm4Kf8fQmN3FCpyRPaWSNdnHIqoYXNCezU+grbQLjrGHMaRiPIul+ApOwwg1lNpw69a2TUCGS+ioNxjIQ08gm+lVGV6PDMXGvz20ANjYUu4qwsmkJB0GoiUjj2dYFWBg8z8O9CyRcFA4TdkjMtXJjxEHNRWkb7bsXK92PV+kje0q3Hopt1Jfnp9dVMolWByxe6Jn8pwGP2ds0EpJgALEJ+/+jpAeOHSnG2ZXBGMHuKh/20mSCUQP/qHBVY8sAMHXeF6ZPTizae6VWhCBMGa2eqnlY5QmnbcXpXmYPA0JOuUp4AsISOqF14Uy0qGwf/dYeVHl8IDu0NnhPB+0/2Ic75KyVWr+0/C+wEVc/Vbz3Y5DJGLtjzHzoHi3PYYISvHVFGRBEvgabTqCG0vpAhm9RRNbHna8lZiaNrKGYhVZpMwYJaKn34aoA3X31otwmPO9zOyJjYZkz4qtK2yfjRHyLFgkZ8ZA78Zasa6liMIOEaSPmuJKfBh+/Fbb8blWF6K4p1zgHq1pFFblWEK01JmW5duBnDgrmtjGY/NCZctYrmW6D1iwrR8dwEoGgfId7M+iLN1cfoUuTg824jMjPxPZ/Zkn2KP6xv84uepgCb1FmYRZg54x4fSwzgrjZ6cT4v7Atk3iZ20AoXZX6fpiuUNBoImlT1izQNtjOjfsBfoSJeIRp2O+sBIxCgk1L7izeo5lHLAamSPvWtjcn4KI1udswF764ZKPGBVksWGnJqrxuApm56LWMLTdpLJLgtcpV1NCHLv6nNz3t1ZN5nk+CqVb+KyKfGVZ1Wkk1dUixTiSBiCZxI1+UoPg59NpecdAg+poX5te/+69P2/RwCZMIfmNDbL8Bf5YlDD5gf9/8MA1jxNmEo5J1lZy4K3uud4V/HRYbSHW66K1F7T/xxiQoSJlhNuvxT0fOEP7h/1c46hC/qXnZJp9nsWy9dLN8GaBsZE35awfojrQk8sjhJkzD95R77T/FAp42fe+nNwEDEdbXE68NTXf+C2J3wPJYAZf2DlN2MOawsfDMVAmjYbKg6KttrPcHhSZ2Kry4972UGLTmApCPCBc8yeUOIQDaSz2yH0iYNAMZDhs3T/asUajc6yzOVr3Ih4XQog/snvtQQfn1/7WMA53wRoeHWC5CFsF+Fu6a6rtKdcAq/H9JP4tWS46sEJ9/8oSLDrKm1umEbpQ3Ya1iPiURPjLDJZuuOxmuj7drKerDwbOTc6g/3HIAWs1SuSb6UcH2P6llQGECifnrxZkgwbklcjyQlHPJTxakg1INNa17ge/klrEU1jh+3RIxjnsgCKcM5S6PJcIgVxbPuAMyur9z0djcR1ITgDgFwUe/8e92T60MGQtjy5y+dUKewL9YqGpPNDU+QT+EA9GpU9HIGRx9Jn38WRkYTDfIT5o4VW8Gpa3lEYUYXZD/TE/AnKgresMNX0oMLzd5GrR8Cjy1BThHtjkMzHhBlnc2xXvoQCPlRKp3djZEI9Ei25gKOz5kDBw8zBRjZH6VXIzLm7SQyyu6t9POLwfAQoXWyBFzpLJqQ8WunfXznVGjJOHj+oRhc1W6WS8Tc80BwVrehvtLDbmj9TwxbytTda8geHt0tqWrVD547Q/nwGySCg/xdZ6yoY1iV8DpUMECdw41osv0Q/K678W1c6HwYtj3xjpcw4sLb25NJFn3v99nXOT5/NCB3VyTSb8wyn8LCPeigYHoNRbf+4OyPhE6BLgWD6EjbLktdsPnI75S5T1P/t1GJiLYiv2NNu8rKU6Vom8bUPMhwlv2/+baODcINmWi6kiW4Daa/WQjo/CNaSYVXggE16zKVBTKN+M1UHY18IeJMMLXkQCHA+oXCMAQsetH72htbdwmA3Cp+T7V1Jjn0zMY9vH+peB6niekQwXXzommAVMX2m7KeU0Nb+/AAU6LwBCTgOYxmTxuBIGw2B2ksx2l5PIKUHdALV/FVldceAjCJpwgFQEQSsyNvaKA2b3uXH3jRAMrbqyQIQHGxILFBufZIZDGk4vJJr7kopxcJYOo3wxnnn6RgH2xQ/XGkfPW/9gkl42QAeRZ4bgFBbi1F+93O5bY1rgJ2Sg4UK5yC75U5ppEx9IBKmMVohyYbpdFARLz9Vi3Hb9dDipRkifZ7TlIE2wHSj8w9mHYvYyymXlDPzv09AszBzpmk2kXe9KO48XO8rAXw4QIOK83K1onrvsrPcwAZ3en5PsqfTTOXNPjR3495NV6Vhydo8cRqPf2ZkeSp8bPxpM1Oh0DizHttzkgezNg+V2VR7Zr0HRyT7glL/BXt+q2dKmQYD95SX5LppoUZNQ8kL8vsGgMQqTZiGR4Mrr0mdRqhsiODA7/Vpb5RQ638VabfV80/UgsSELyGt9L9n2GsrLcPYDLOax9eK+MWEC9GTU1cfP+q4rSZzz6BIMjXpyx24vfxzk4/7pON30/C3poS3IMN9v1HDD4RPn5Fprht92pSIUVLsH8UEKHE3OPsc6ermePHsVPIBVJf/CVUkhJjpMuIyTH2B8z0oVRLt3rr0JGO9I23g9xgKQnLu8V03BieJWvNwqzJ3VRRdFqheW9x+S0WzWvLloJeIDdsvnI8p3Nn394shff2P+rsdMv2SN3DGvmaYaPw/8vQD/0+i3HSBi9imrQx9RZEhHYdLMZaafFSnM5GZ4M/+hU7YecLbspklrJ5YzUDwQz89oXHs6jTxQy4kYhalLQenxoK5igebPwuGwENs2zppAQdBMAtpIyCuDkmIkY4po+Xz/7//9l3QD/JQzWi+zH+dAq59IB5NasWVZEjX72lJGJp8nquj1N92wCdPyleHOJkwew05+/Q8zfdb+sRguMEIOK6/+Gt6z3qHN+yTMkC4pkORXK+4tLWJYzDbyTZvrUDBQwbPrfNQxZIm1yIp3U4n6yfNdck8CnFGoqdIO4vSgiBJkqYUFjxWC6KV7/L+TMNEzvAUxs7VtvGKCJP3PiWxU24A9DqcjwOdWJ70RKnsU1W9DljiUGlKR7+QOeqLFovbaj2m9+e5FkFOReiHtzBLDM3yYxJrH1yp/WLrXedwxJczejvUnJ9mnSGkVxarG8kBMwx+tlqzQx+UXIw7y0OfV6Qm8RvTT0SvCrMieuu7mgIOBfxM127Wn8dbHWr7hdTdhvdhaMzT9YjDzbdLQNe3EGqVgQVJugEWHzs/Bkn7wAwbKhg6Zd+353M3vIynyTIcfbjxmMVHyNOfhuL7sRIdjbgM5seq0YmRWp7TFBUSLsApKD0Cva6oDTqvcUY0JTbsLyPGMaUbt2m11Nsu08J/mLPlQasH+mOkMdzG2xAoEr7wiadxo0CnAlXBWZUbS+5zc0HzmrpHXjEfdNo9ym20Uyh4Y28qPZObh6q+HDaTLsGJxvBGq+2JMI1eavGaKNbiVEI+Q0BIhfWLhBrzF4WfBDEN3Z0ey5CT6zldSpXmDIMyojfZetwS0BrZg31+qLiUbghTqrNSYJqKJTLejPDT3z/ULqhvegFq5dzkVicrQVh4f28TQ6oYOi6krR0Tofxp8jtWzRkTd0fDFrqjDJyTzpXhyyqumCOU45idd44AwCgyGIILFqbRyTsoS2MEtJt7/EkFQV8tEkblnCMNEl6FV+c7FBBmqp2rL8wSBbizd8YafCFeLeEjR5V+JOSv3qyBuxeMx1l/Pja5tmOo4vyFwjGzJcBUb8LObHi6oMLp7HJ9NnWjLgHbKt7NcIPsNzXntQx0nhF5/CIHv1k3bL4ibhuaQBFYQr0UIR3czzmelLrbpp1G+v7UUXuRp1j1CT86f1qCpFTTxtzWswQx28EfvCQ5PaO1yIFwJinuWupsH9NV728+azGXXcHoY3DgqFeqnyK358uxvjqR9xL7zJmcyyBjDsCqAjbawyuWJZ9CeIDNG3U5uv8C21o3mN1dNyzpllcyZ3fvBZYFRie1qgcLp8CHTs1+dZh4nbMsOZmcXX12aolQMd/v7gP6mDpMKuy0H173ZU4j5kG5+c6R7kFbrDTOye5wCMR+Zfr83h7Xwo3DAlXO79HBDU+FKplagRJHTBFC6VlR49zMiHqdD8FPTn36wc5F/UfTAy6eACAcycsR3Qpjk4XzEBscrMa+Hr/P0KeMTxTq/YMZXFFVefd7MVX3QO2BbJwIxdyFtlSx3+yussaVY4/5jxyofiHoT+aBBp1gjEut5hLAoQF+Aavq9qeWbX631hnEqzhg/OCm6JbqhVGwzfvz8+jTDcp1RbcW4ct4r6l8nNJ2yIYC0MlcZLxzxECGAqJjSVYAsmiAxjUFEsN7w0w7COyGgrBsj/fenBk5rc+Ho5/iEGZ2LGokV2y/GTZUsjc6A3c3LvJooJPbTCoFsrf2BExPZL9nT86ZJ0y8znCVaubDgHO9o+W/vM7tO4pDK8FE6yN0zeinyfjxFfvz/hgxVPgX5fJm4G9S9F8kiZ827zfSPXKojoUJlaCncpIuGFFhe23Ta9+sukC21GGisAILcESIFQAJNvueEaxOLMddqw8EdFEa34VJ9rFl6VV5x3dIV5ZDFa0taWBg3z0Fyt1sN5lcNWjXiM/F3lje60oMMNRLYp19WY8K1JakMlYCfIYV5rH2Fd7r6UNT1JS6O0/0Wfh654kkqOz6PaZnZasIpymDxJIjxOAS4Hd8Cw37T2odtw1F65u54obtiUTJZOaAOvynq2V0TU66Lw9/cPKfKkDl7IM4k8uVtPBtrgczNK5SyryqKpwvsbnhd0Ky/dXJx/g+lcAbY8pR9z6YhxWXuNhdIQFxG/ETduUhwWBCQD4jcZFq9uiXStpkduHCM/7ss53bKnErWG9JgLnBuh6DAfweX7qv8ArcM98+ZeQHwtijt9+oyS5eh17ZfZFCYrugj4UG5H/3uNTOo+Ne43MJjPJzniomhcdRIIyXg6+wHYbt5jLqz6kesBbf9wWb9ThnZ81CfaC9ZUA7lF3Z8bEB+jmp1vdv9W6yDnPNc/IZ5u6thuVMgQ7vAi7NH+kD1z98G07Lp9xuPenSO3pFCr+CC9s6qNr8D+w0BJDrHv1ayXsUop0mO6KZGESSil6fhu8I0sGfKqZxZz8L4S8NosXiwUvj5FIdiGUCWjcjNW39DYaCzC+N4ehG2GJodTsRe3H4vB218b+G3rzT6KUsGOJuiLBYLEdm0Hn8LjXi7gdiXk2jZNRZqYsT0C+V9QY1/vXIDaJZfQ61OBrE88ehbm9jy6aBDtGYNdY8NirCt8fDxG0695pNBNqF5+YAPhox1gjqmu2TVpyTOzq2hrgZqCkrJ5N6Iko81TrduqkeCjbWXt1PJs9Ebia/ct1Aob4VnLb0dzofJybWNGL6eIKApmUdUm7CznDq0+BCBuVUjzmiYhs2pfS0s+L68EDt9IMFb1bz49UEhRvleFtAv6ojyV/YrGTUnPWocIVrrpwtCM/1qfBT5rXrJMPsD8S5DCc8o7lqqVSPBNiQRHvJwi7TK/vBsSAuOpfcDC5oBZBquMzvl9IEOqh1rArU/mQ3SEmYA14j//Uga5niZGDAbUvKxKNSi/4etoY7RH5qYOwBkqWAdP0gPrfaGw5XuA3aPzikpgHpAhbATjTHPp8oj+HY940rapIVxfCoj6KgC+TKlAZxxNxp/xZ5oavjnv0yjrjBKtIj0fiIsLh9qgs2Lu/8QDUS4iOLnDb5VxDjv7xJeCPVEpb8krsA5a09GR1Jl2up3qT4pMcB2cZRL0WFRoP3Pyq4Ai5XfiUTPE5/FjXqJ5H2XCEa1MoGEhoy2hKedNgeVP6Q+PIYwVOOERFmT9dut5gwkgxo8t6CggbhETei4lRrMNHCHEi3Smz/PGNUVTtgnvrX2mhGz+WEinSDqa2F1O4pxl7ntGLV0wiwm6NtzXmxUtuhun2bUkYVRhsKHlPniIxDKFM9MIeA2buobriIds1+wQ+c/5lCEy834erw/ev/fv9mbD8bb2S+YTyFARJHy2hplPjHMKBpeIEEiE84TXayydEm0e+RPe8/KZ2qC04pqMdRhAI4ckUXvUw6ig5HY8IJjPHQulCeINEB8RypHGKOJsZOt1aKAU9b7zAQHQHsoU7pV2tqKY3sNw5jJMV2/hxPVN9mMgnElxNliobk+ooB8Ml19h+BhSNEaoYAQTELFyhvvKrQ+cAJIfGoOwmQMNOutPU/mD5dGdtL7lGCmo+g9QMI86oYmFiS27ixpZMsIeLPmdioJMpFHybQ/fs6lseXXgcIwhwUNe22ArYA1k8FnIg0iNbKFalp5b8fKIB+FvjiP8+VxDsiih3W55TT+/ZR22h3QtMO/YhJ8Fn5NTBkvGcpvtc6lIKHWjrn2451LXAfE9O9mXxbPuYgItY02Nb2HUaGaz/gTw1Rl+mZAYB+XpwhlG/OqRM2Ju+mAWfVYx+jmgyt9vzdrFAY6R3Wiv+Jd//RtfWRSWWnaO9jHGYlxVrGzcrX69xEgqSVib+sfr5X1F62mLBZYJMX1HWTvCQiZhodAkqPCj0hKFoO4PDM7faZXvz4BuSRWHePqkDFes8H8iE1S/Q1qrNGTCxtQdVFvaJBIYChCXEVDnme7RC8u7gKz9smUrbkeNat7At0LJVnwsejkWizh19J3SN+fJ0gS+ZmeYZIeD7M173AF1AjzHRsT7s0f+x+o/1mdk1Xya5VQxia0upbjQvmP0B04tY/jE9tezRcE04pGeRnOhJg/0ckr3EaDs7a3Viz6rDNN967d9KAp2zZV0vRwirUDPjGichgl5dav8mXdC4Sj/1B1lub3erR78+b5GCBuPa8tf1g+C1vlDejTCv5qiJSrC1i7u5p/jtIKva4WmX5L/C+mGqYA/sL5r4eZfxfJyGcuh3bQaLSogJWZrSqI+oaHArXV4bbsPJAaeEyP8Ca4An+lWHCS7Gh7KdgKgLrtbCQ4IF7gb13oe/oT3OBEN5IaALt0fqwU35OY+Xbyhlnehyw2xa23GnG3/n6Ke0CHtxzd69P/6u8iEvvxxmS7jofJQp+xH5euL3bYU/76TmVI2CA3pDyXZLAVqyks5dmkaG0ZawTs5iXbDJDoLUbgRSpOXvoh512X886x1vyhGYMjS1eQEau0kBOkEwpwlxCwKJFe2op1LQ1DGouKPoRr4QJgABqRBWoxOhCyAOX3g3kqM5gHJbIwg9R8t8JxRFizdhKkiGog/bVeC5AkOOC0kQoN4GkAVS2absCRHDN0oWeaR+vxm5b9eN6mXGLXMEm9AOw1Z9r/J4mhpZRO5g39Cs0EovhxGB9ow2poiUE2WmpMV4LajKqvZtymYvU+dhsyoEPCp7sV5g5iwJ5CuEXfOsvinyD50ZEBHWgbN+cPpWlPUw8VkLk/7f68h6zKqwz92/TMNGI5+V+ICNJ7/3W9x+b1MBh+tR/peVi8ktIskb39L7iModVxD5NvUT/0M3R+AKzZ7joSzJOqQK04GH54Q1r9n55nDcOY5oxXFeQ0S970ts4Yqh8JLiPawk37H7o9mjwPD5505Fb9EYGJH2ocnmAU4IqN/Ezg8Nse+tiPhfz+NLE+pRIVlVpZC0wSItVQdiK5plmRbtrGaUmNHXZcQNbo5WXPw39rUQ2SaVPpAQu+GlB6mKOMFg1wv99aa+RdbegfIsrxubxLjEB7VTIJY2iIDXDFCZkMT4mZ6pit1orfIgFyrzKVAx2tW9RP05aOWLcNBnJsbg+In1CdnbofyDgmwHUr5mhZFoqkDQGjBOhQSvmG+0tmZ1Ua6McR/PiW5ADHWtLlCGB8tfOhRmqwKpCOkxu2ISZr5oyXFLoKQbw4paSbtWNRWhbP0rpJ7Bx774Foc5XVrfLvhK0DXE8ymsZ/X6QR4oSRUIQzx1fWc8BqmB35pYff1LJUyn22CotV/oBM+B/1PPF48zln4dcbryy4QONEfr+DRzfSRUnE2+0DiXeE0fYNBo1rBwiD1fki6uyqRu6WEfuvFaJJc9OMK9ozQR0OXSDSQX4nMYpH2SYVWkMGLvEuMOJPsPEvj3BWr2RE2DEviB0EENh1MT4Ajf8/3sFSzTGja7F8M0XgOwgRQIDXuGrpj1pvGbnzJJg1hSro8SKfoqGLMI8KfuItiLYYj2vKywGpI44Zieyz+ZEsB8cVbx9wmcHIbjrX+JSC3bE9kUSajNpD8hb3I9UoUIGvbxw99WbGGTCTpg5+0yaYAJRjOnl3crWGoCylHID1thH27fysBUn50BlYBP98EHO3B9zjSIljIihG23ocqzLK7/J1MWmyPIp27ltTXgCJdN7Yz+lFp/AOartbuFmL99XQ42Zha9i3aWudKjTcDL8uhKDYN7HxwyruNC9/53Y4553MTzT2MMdTv+ugxELV5mLqqCjDiimt1cAGN9ZUR+naSduTBQQ4g/aixV7kFo+JMA53H2zg1crS+9eiOg5VhPqqc5dI6tioUAOhJxhnhWuZoSCu0/HpOklziGgMxa5NLXIZt1NTdGtJweaf68gsiMlQPdMy4s1QZJj5l90NMtmfhOo5866c7yugmjX5WAyDvp7j8gDD1L+tgFfyAWXaNHawN/na3Oc3WntAxpiBbt0e8AR/oPuUJfmKz+3Giu+aj3rOB3Y1GLFjrEMu/dpl+S7jAL+pdxCEGKDXCXV6KwGnFvpHEa/fUqi4aZ0lbgu3LIg0PvhQOQoCjzn1YG1+PFJSHToFO3ZD6+b9P//Iw4IsP0CeeCVQpNoBYVQXKPifKfonL3cuFVQVAJSVvOwSyZc3faw0AHPUi8fyuYRReD4uFxUAsdgfRhInUuOE2ckaa4n3HQv2/7GvMZwYfwItHxaXfI2a9aQvP6ahNJWAPPxVqTmz7tYbIQPvb/dgv0GmsEDNxeDob9B8WnvroO9dhbuEha30/71O8bJaRNrdqhcFXn7xyMhkZYf7d7LW7oRLueh9AkoAg+/IXxRHqQRTHfp5vfy7O/nOclnnSZdeyeErWzlg2EUTucMrwNRuC83DOuPQI/aoPtheiDg+ufcPWqG/f5OqGrBlfqM4/+SQ7QaPqu/6LvTsmKq15ujtT7eBM1HYifjeHjdzzx1deKCaGCOUeebWS71yyPhOcp4GnJj2lfGFxneGf33cZvlTtOl76Ld1WqMYWaSZMrChpsDD606+deexbDeBVPZcVBTBZP3eoxHyK7ZcftF5ICMXQvFI8N+4BNYWaKQdKBg8k8iWWFHL5anQS9Qb2/0qwD6tpGyF231kyalDetu90OEki5/DCo2osfJXOOcZ1VQvmYHH1x1vA1CtNli8tPWp1R81GxsYOFhIN/aUW+AHhx0kUA//dqbhfuBtILgeqTd18f/cHRj4RVwGi8+ZilkNqPwEWuM539eRyGwPQTSCiiC+v7SB4xctDlLTQTKnnzgdGvlbdC6FWqT0Yc6XfRzkTIjVqPR9qRGB54qRH7QHQnz8XUehz0j4CblRhDoJbzdxiljGXuXhQ73bdrFF/IQqMwifTJ+laaq2W+FzrsPuwc9k4C8/idTGY+9Hqa/YbXqmn8mQPak1gsvFJgddufqkYGVUtWeB6WNODxQo+snJrmSXwUhaOYiOIdJDuo+yug1gyG3XTNjO50flwBrk9tomFGLXkPqxhC+BW5OO5V5g7i6Ney9RwhlHF6Gfje+BXq8+FQ5Y2Wj+aDgkVAnbUjw36Ph3lpi2+Vyq0qXUmJJe7ZZo8Z2XqZNlQ70xDIuXRvik5A52r1Vqwe8pPBUNZ1D0jXerBfCpt6dvEQaJ7BzyF0IUrXAAcdCtVwfXtzyXObSZ6Fj/IJJc+P6GbsrYOphKKgdm3WGlbtDi5EBWI+2ST1DO80P2eYqyDtZeqJp7OvpoIPN8l6GD0C7GOMlEqACuyxOpBp08vWgOdN8UK1/lv6vfjph3K/oSRyNnzPeGYx+X0Grk8rlB1qbImFOdyTdZ4374hDOl2M5mq+emFRxvxpD9yKTDbh57dI5uWnDgJJedpv56pKKnEeGZ4XGIbpkncxT6as4FFYzhITVlJQw5Hxr55rkJS/p0oKLgPf57jn613W6KuNSYg6yN8Z0+WEAr5ohMD9clvEy4/a5xyjoFQ2+Jj7untgV1V4SaFjjxBq5JCet1SQUvdzoG3lbG71NfZPvqxkPOo+sMHgYx60v1mtJyDrARa1V1WxrjuAUU2iD9lr6PptvFz0bVUxgNByHL/zPB3JV4gxyw9vZes95FhktrgAaVjpBAwLZAOK1c+H/URANnbfoPUsTBWuxQ8Q9P8zyV1wN7JuzEY7bv5Et4GAuL6LcbFj4kuyizKn+Ile4DFU2kCZ8Fjqj1LJNKtPAqfEjEK4pemw7gRvkpPPHnl2znwj8E5F/Nl7Kv6wExMR7OcOZldMaTI6I0JcFYWnV/BKEq02/+xOGnx0AZWhVrJDDugYH07a3jLY1XYiZlmjsc7j3W05UOgYKfZ6WOlvvvvjXNoTysrEikTAkHsUzNAWuH874+VwWnT73O3Rb5ortc8maJRnKFJ6KN1sqsPyPu6nf0n2DJkgBw8by3LnSmSLOWEbhOGBHAgO+EFiFnnl7avKQGJhf2Iiyz+ZeaueKYAJYl244xhP9h5P7ApTWFyVGQR00LAZYlExJ/2k+lC6RHOYqKJmBWUmZxiMnp6SX4FNNPvhUNk2TpV6QHAZJUN0rmw4/jA7yj6bs0yuzPKfjLfZ+9q047KMEUUDv0E9zAPSXvKnh48a77OsVswg4zIHlt+Dvd08X8wHsjRf6WHrWJaTIBlUoc6gAexGC/+YmfaAsgp0DFLtcB5/OIflpa24WwANoOu4FWPY1UZatcb3LpIehQfyJEEN49ZAc1fpmGMOnEjQ9y881JPiogus4x5P0Y5Fx+s13t7FHKkFDN0gfoz8dIr7CL4g5Hu5DvAXXldsjafrT7VJsNsKap/KzYYuXApUMeC1uGiiujnb4gCK1Eff0fuBMYYMI1AF4zOjzro0rP2ZTqAjqb918ncrWyRKR7c2+Lc0dWUs2tFoex0yTgp4vjXeDfVUJhnzwBxYBSP7hpw+3WZ8dx5+wqvHU6/NISkbhyu6qRCXiS3btLvtTwLsCq9mj08us0CjVNorBypsPLNkyI7pJ7Q9ur/mxa6DeK3gQZlVWgiWL4lKCJyi9nPsbaLie8FwEIE5ulrQ/lUkXEji1M1MSJVW7TQpsrTv77rNclckhSTV6qb2NZYFV1y+4V7quugUdd9eRvAL66tGKyXdy7iGl1eLPW497nWXO6IMAT9p7GciuhdC2qQhx8nmOpRmfknY+OkUKwOnWpfs5OFbdtMH7zqoA16qk80HJOqRCjzC9drwfl+MYEPVOHTf7qZy/yf3I4o7BK9QC/V3ed5vmXR1r+OaMHqPN2cFU4TworSVeFcLg7Ou4yssSpaipEyxP/inDn07hNZT6WEGpSZLPVGGO0N+8G4e/HW54rL0ZZu0wYf9mTg0cl3r4fH0Qc84bwseZdHpl9UeUwrpswmotx6lSbgckgnLdVNSC5sJ24RvBZgYcRysXGiLTAxYsnSyLmmEVGowhC9gQYMoAoi5NH76B27lNR87nuVITObl/mE3rttTrynQETw5awtoLzT/aBRHO1gsrCrGwwAvX4Cm2pa4yKLXVMjAlIEdRGHm5OwY5Kx/HjF9qavqjiIMiA/Dwbcl0PtoxWwnsmBc2q0BPPLu0YZeDzsJPhcS+c6zaS0t6q3yjPUjZfFYzl0kOX00zmapfG8DJZ2yAwWEnltJw6u7cp3bLaI80bdY4jNnVoOqEdGwpLXFWO8+O0tOfB4lSOOwVZUgHjURViszq0f3JgABysoy+s/DwU4v8cMs5sXUvXajvS5MXRbpXFqn+0a0wxo8bZ9nFCB2sSVYF4oUy177BQL/mmX8loKmkJm2R51jPIzjf/WTIeiALU2mGZj21FEPqbqLeG6ponqL+9VqmcIB/83Hp9cAbzy5yStTsmmljoHnNwZrwms/Qkfn2dHMP/0L0gZNJhovuZzob0Dw7Er3QkF0OYDSfb8SzZ8kxzmtfDiCM8VRVc4ZdOGrGhGkcBaXIeMEBkSgLVD+1IMWtrrLeAs6aBMgIbEmdsW9C5GVTE1LJuo87zz8A63+2js9UZU8LPoH3PlXoOicQcajtpLWll2K4cI2u5d+Njs82pT8b76Kp01c+tuXkPApDRIjcoas4EmFC+GyydqLbfpUOss1jKKe5EYzJCdCHgg69TKUvNc6fZqnI2iMabOFlFFJOIi/QPoLItMtYYjqKmcArAtlw/tUoB+hFObgnUX/shmYrnunRx9RkZkYCXAKpm3ITkljamgO4mx0lEnXoBK1kxjpbyRC7qHK82iRTkLRl5uNnsCzwMZC5AdmvRMZwdtasPt3EIHIgcp5SbU3u52cdOiRfGettJyC/tC5cwFMLRBBvCzw6hN3Qc0+pzB82oiCKqtBZFp8plqbdp+aI5woWRKv4GdF88K3Y7KaV4u0F/sfENQ9HWKyRZkeH8vdIorko96R16vf1NPhgU+XH6l5UJpx5cjo+zY5FvDcvdTfROwq8hSm+7GABN8jJshlqAcTpxOxyQ5s528XfuTYH5F26WQvWj56fNxNQBNbSbn2CqW+vMIL3hyT3By/KiIrk+zVRJNR+rII7UHERkjzoMuR+0MbLt5N7ENTu8RpbOCJ+EmnDr0O9ooeyeO1/9PbfVruuqwvs9sz8AkFkyjb2F1u1gtnvq3lag/tjrb3Rm5dlijAiCpgJjsRGt1dPlw5uz8BGhtRerVxIRIUDyDXxJe0zrZO9l0xa7NaqzUemNQuC+/PLGs+PG2ioiySykJobd4++R7qV+gixTgR01jaC1sC3PME2dzki2wTBxfaWeOYBa+kGldnY2BNIyZI5JhCESWC+Y4hNOlG6u7EEVtRPMt1nmE7GLgAyP48JqMH7h6o/OdHUNF/6gAaJ+DnSeeSRSke13g5MmAmRDFof1NB4Srr0Zq/FEgFAL7CVxP8Vz6RUxr4cxydM+9evzFVch3QYAE4ioET5euGCPPivqiSdmezphVivwOKedJ7HDbDn5m2kx26DKynwXahdk/KNkr4FFtS1jUFcrlZVyI5HG9kokT0L4CsOTPIXGPxlvyRzNlAq7x8p40MmjqRGHG4UG5MUvt9BwJVsBISpLaa8dQ4Fh0b6WpgR6YVC3hJoB0EGZ8n0HDFmbZ9MPiJRocTKJF3T81BBxoMFy29EBRgyqQCKuM0EyyZByZEY8LhDZbRRDPyppPJggskEEyOO3GHJ7y4HfQmonggHgbgsknk9Shj1oHFIh7dXj25mDihu2PJCKGkXYnT00aDXsIMMHJ7xpZrJ/g4SHEciJnlQCs/x+wuOx/AEQKqxaMJy0xxDuYUYf/NM8+Qe7TRhlUFq6Ahoq7weptCDMfuFiCj3ijbNk4feYtao5dlDjUBbSh7+hBa+lHn0oV9JV6DpHBKdIyXWsHx7BWBtZbuI8f6T8/xlLSYR4g98G8JebXW8Y5ZFPHbmNDLfv5OP8lakFavY32mjFVPZ2ENvoUG945FMIzRslkueETXwCG9oq8Swt5rMN8M6hI3XM8itBwRUCNVwyDP5xjUjo05qHNG6+JwA3YS/uUw6jIAujIJQE4LMNmQvu8tAjSAJ5Wsz8DSvQQu9YPtUqboodEh3rxE2RMNBDC5Pl9Jg9Z3q4DvHaz8VzyjOrzH9Yd4TN/MBygUM3muojKLkbu9kDyqb+mVWQGsQu2k+71f52bhOA0gvtXx80h1w/ozrBXvyycriHbZcO/FG1dL0TeKlcTDCzXMsKbElOFLRe3iBOKKkIat1m1i7bIw4Vgiq14Vxn191LmlZ+yfFgGrQUDsKcWy9tmrHBTNSH4fm0HHiiKf9XPV8Uve/qu2P1cNCJlJFiiOmAwnhN+X5MQvajBzwFUUcMbmsuVUw7DpY80JSLADussn9j43prYQ5Zxslhx2CkJqhpqJtjKcHgGO1uoS9NGzJU95R8gTITB7NvuWJnO9d3HNJeXwZX3oOpQxf491q0y0Zp2KQ5LY7S1v0XQ6Jyg1vUy5xJDN4hIMzDVp0feuqyzvjnu7gx5TCCbgfqiN7AbWQjS9VtZY0fXHXOLhN3yHs6w78s8ZBiEuiJ0/yM+BwwUk5/uM3GpuWyEywc+O6QDu5+ENOTGoAYDWm/l0X5HX3tzOder8Y7t5D1IoRYVA32cKwaaCQdzba0nejMO8y+Mj/5sZ3NY2UNKChBvoA3xEUCA1xFyBGPwo2lgYvkC4K+mzxAIrp6xy10cB+sMUDBbEye0b3wJIOxkXUt83CQuC5P1D9+xNA7vmo0WaWy9JMZ7sFabfv8CYGcSDO8AHQvdLMjY4TK9ytXe+m6VeWsUNi7WnVmzS5pSpCyESH0wFSCP8GpMByx6HQoyi2RHN1ESrTFKACPnl5OPcRYXRIC4jrXEG6MxSFPC/XqWlf0JsvgwEadcbHFfmxeHXiujcKi9/NOxd/8e7+iiGF6osb6COnTwkdA6ySQu7mofKu7buWVLI7xA8HtXEgu0GuAJsIhPY1Z7hIFrfaf+iFnpj6963vpwHwuN85qrRwnI56GktKUmYpVRCtEWJ7UUa6Mjqzzl8wmd3zVkS/N738ixSeOAQQM+9K8rgi1LsjpaTO6mdZpFdjWyg5U5GocqGoeSfCo/zSmMTqycVLUW7E6OwWT7xxaCvZOm3QEZ9iFp7mbvuxEKZNAiyxGe0SGKHJRhN1pqhIiQoCAH/mHQMuu53Paxt1ApJOt97R7Jin4BHRHGCWasCaLctF5n4ZdhSEZQLkxKyO5PdZRYT98+ymOldWKZabv76w3oq9FIZ0AVTrsmBl6FMKXdP5bU3vlMxwxztGTckqEpuchMqwRpGQVIo0i1ZfyvnEUzgYu6Z/r6s2mTYf1aGAJT9rpxKcC6CLk/ajtFcCZzz54qkXiIYYfjy4VYYne8eV51nZs/lywRyAa8r878BJUg9KOqdzPMRP6jUPoL2HCGb0iNibVbCrA0TqkTggDROyru1W99D9jphY3j91bkuaCIipVztLl/V6c0fuNTmlCcUQfI0hiapBfnjM3eiDzd7zkifdNR1qW/Oi0lnStM/EuPQgaRBLu2Ayxy3lerDPws0QwPjEAOmf/NbfmByZLEkH57obSeovl9gdvlfnlWPRpyJkIHn5ovLP7WVL5oQvKgpKYEAOBulI9YCJTN7y2U/SyHX29uz9zIK4K668Gznb3VvyPOQ1N2R7Bt+VoigKJzGAhRvcKh9hNKTzXCjThmuLO00B/G+vswcVKLt0oKwqjS/npGd1ZMOSEYFl9dvRH1E1i5Y6/ijlbieSoug5BQUawtCTOv9W+HFe7kqCTtfZceZN0PbNjbAfkXb84ttytXOx2VKQitE1J2GR3JnsvnFo8pzeP+FTRsomCbwGiiynYJQWtSxaqIj9y90x/Im2rZHKbdwkxZSdBrA3hx8Em2T6pAfKDuSBrBWT5YQpAphzq7mWzpvOHa1mq2JmU4fpD91kWGN4Xul4bpsXxuTltEahorruIzY39kJUQjd5ASmy1tW+HFeF3hANIOKQDoXkH5/Hc0iVtoA8iSRBeVhRtGXUEVx4gMLhNqwsntjdKV7ntRf2QAVcbBhZzGiY1BWjqtkryJFlyPKuqyJtoT3XWXSkujXN54oGStIg+nw9RAheXvGI/dJ7qf5F8lx5viaxYvmYJ3egBxPDbybj+dNtygA5EOA2iDUOshTkE9Zzd0n0IbQiWJO9zy8+SxRXMIrhGvEQifZ4nyi8OE3RrXRDdcxQoiepQV3ecVASA2I9ayO3Vcm6L15rcDEuaKM/Q2k8fP7fli+Qz7+k9JLwMD+GXDN9f1ZUSIyRNXgpuIX3juasWwQrPGPO5aBGLiOGm38puzY2iMf3WcHQy+fO+nkHjDs4YRI3G3QVyA53h3ll5bh5tVKfWRytu1CGyBJ7z0f1S5yBLMTqYvFFK7I4xqgbGb7LWqxx91LZxkq7GGwRT1+UmyvJW7l1gkYTU8frJWNOy6KxezvJj/ZzNAgaauEgvAMvhtupkQxw3ydclkdxMAe/4y73jEuk0fGwE/yUOa28N492ZXZyG4+ChWCrFir/6vyTN0qBclWTdQW17vc/Sil/9XOUMoeWLidfMRVFtC3jKpNfANXggwsmL2NmQqbg9l8uitdqvKYiww+39FYmsDLyJRiYxRtM/v2mzvzyPTHS6X1YjedNHmgaqjbQOs05BnI+ru3glZxM0YVtoFNY3zMzEFHCFRpmYMe4kWyGtWAjAJ2HMtdBdOlvljSt7iKHd+Dz7wS4WWFRrPFD4zQumSb1FnH/lm3ndhMoJciNE9bHbyhsf2G7x8sIfB4ulyr4fYLcew29NsQUWnCl7YfEKN5LklqrB4+yg+pqoIQ9hrjsDYRFPWMiBLwI/JRZxKkDR81NktUy2QDs7DxezKYNITerg9RGiaQhpnvvYtImEunEHiqUxtAdDtl74qxGsTuRY35FNNJ0WRb1rzwEKyZ6PXUMWXCuTycAIhubpDhzbzWhmpSpyGPzfqmdAN4Wcpp7q4g/uNOBOLsmtXpSHOgvv+5l3QIvRXFovw1bcpsO6vz0jSKzvPgIlItqMaVBVNEWKe5MkJCND6TafASXfQSVy0zGyRdswDIXes1zTNOtUWwnZd8WnWKFwXARPUpOOjc3Pxhjqp9E1y4lA9dEcBWJppXfQ7uPkVvrmOGHjIsPRWnKUDnvzpi7BFXknMR9Khg8jlPDP6cebTlxOg//OXR6xNbImk9mTXCwnab3/dT90Hmudgfvp8uZ9wyTwVnz7bJKGf7fBf70FIH5L7CReQTXP5zxls2YGfNsggZTQS07Y7sSoHEwTzwEnFJMt13hA7qLZXe/mhT7AqPt/Ch5PeX4GpAQnTjOsG3uCCoyKt/XAmjW+FTNp/52UdhsB96iehtSjEGnYSE3i4hcnReS+ZuFMsMJcXRQH6T71/J1UjgnLdVEzGSy7FAgy5pXgEhz6suNvcYKIGjXFMpnmcDGH7gV56Hs2SH8+I9gDk9vTS0tvusChBhvKbIse4umuFyhAho4fdavACu87LCcvZdneaFGJMSn2jmxvPtUvthHGhI77fUJEQcWW41DoKuz74ZtUBmc9PG1kk5v+YL65dOvf+sXZUpi2fjjolVd3q+Ovj1GYeuURXiGCvmsMTjgxCIuWbbPgw/woznphhfeagkY6SNpvK19B05Xacu6FDxUhAvcmYa+XlLi0EgObUvCZYpN2XQUZlz5P7eBA5oSyZ9E24bjfzvqTZmXGckoA0s/OACA+2vDJN93P3trwAHCqlLKiAEYChcNgfe0Mmct/UD+ognX19WnaR5ko2T8DiQhstwqxmJ/cYt96ghA98WPpro2rRpdjpa/4pnAHL/ZIaKPncCLKZU5X/QxZESTKG3pcsMMDt2pBa05vDlv2/tP6WpMG2w9n4dCIjU4SmP+VSpm/o6iVbPVwX5UsGwjTcGAeSKXDlLQod3D15CmFZ8zNPgjiWK1/kbLV3wJ/fjO8f98z18KvoUubmvLW4j0Ak/mcqAy+NowGOjHtoGlOZMKpMFFHIm8rSVy/czy2koNDG8xB8o+WO5fMSb9AFXMUBfBOSczhezrbPpHPtoGhoBIZ+qJysr6ToV7yTsiv7dH4jIQ0DL7U66/TC45l5vwrU71ilFYX835Di/TDFPUN9+nmmRudUD7MTbXWFaJnmo7cA46n3NImP1A/QuZffd9VgWDGFvAh122Klxm7fMy/kXfzAofcrbZZf5umZ3eSdveDFyxBb4YztAWTadY/KQesSH3OupcSMSnWxOQLiFquSvvD7e+T+DnyxzcEdbk1CJ8G7RYZjuc22rBujKg1jhyHE/2x4XXXSEI9cquJ/RsGGx9yxv5A2zCimwyVQHNjC+1d9bcw032H2AJ9chEy7ut9mSZ/k7CNyS7ucbwNXGzkHEfZsk6oDOlfXxqolxbUI2w4IcXcZDpMyS5Nw4NJhH+aSaCg8pyDBaqmrtVyEf8B84zmRo6g6Xyz5LobmSv3IUuizK8ji1TrLVKpKJD+FjZe8ptdsCbpslfkGJ31+2An7qrC5kulO0aIzvVKWnEsa2y3NGkVj1UnsMwCFaxtoyS+xQB6/M2dZ4nGThDRvn6eTrcb5etheog/zQCWqa5ZdWg0W6rfHyU2OOR5SvIsSAH29wg1qwjD7Ymk+ffmqQbdPnegXLrKaBR3ksL+VUMQO6RIrFOmBd/qkNIxPqFoSCu/wl2ZuEjKDXSbbSsq6Uq1l7n4Y8sX9bi5NHh0Xl2FgCsFxclvZwPIrigFQxb5J4+28JAQTtNw+Og1lQzVNrSYDjCGqFbMiMaUrf7RUJp2yHugjBjVb67GfK2ltUVLNvlCLT2Lxz+g+QgdICfP/Grgplz94KK4dRNolR+1konnoATnLobqHq5vcTXU25RHf8mVSGUAqCm9dw2A0k7sZt8hirZrCu9hv9YfE7EO6xgPC1Q3cjRxjxk2sHykivJP1xly8sDShij3jP5F1lAJZV6lvYn4IT6O6mhApGdC9YBrEhxHFjNXG8jjbOIGjo0Er1ZCc7aEe2xk3rDqFKR+aAhZ1WD1QjmSYOq8fQCf9f+ooFc3xitOw776qBff0kDgUnFEwCJ/7silKRzolp2K7Vg29sjOn5ujMJ750iRuStGOEDTSZtYybeZLH8s30GDgDzJJjNl6VIsOhaVJvp3TeDD0KXjKLoOFUDOKm7zxP26Q5nxB5UPYpjOHBGumvTkHYFjIIJP5s5p2v1x50wG2ZL79m0RpCLGY+S8oPkqwqCW4sbsS3ZnJ1wJjmMcPioCtWqc3qkRz7Fydc2hGmMJuA0HSpTj1FUUcMsogQFGlEOm3nzhsvmYMExU4BawQufFQv7PwT/ZWMNp7TA3h9+OkUXllY0Xg5b07NYZhLnDFNP0s/LnAG4D/ZJhyId3B6LXzL5igFemfe2JeK1gQDRwNcRmXmlhjVOsDrX3Vl6u7dHzfCWmW/6F5CFE1P1aN+OFAcMpvse/5yoHi/+HK0UZf5Bv44YDcpUmB3gN4uYT0/qoFnYldN2kNWd2nsS9Tu5dX1SKX4LhduU+9nwc5omNSgMyLQF+mJnV7DSExMKW1UrGfzvBvOwcy/B/G/rCQ0x1MkEnoX+YeNeR7X6GqbbL8kJuHGYf30kDeOCEdAnwJ9WTH7zzPLsfJmVM0Iojthu+np7385t9xUEZxtf1w9Ua4GnFhCP9VNHXBoyQNUmygT7uYR2sWWWXZoPbJ0mzMe5vppkDsT4Fykfj12Vo6f1aP6rndIRxVgjy78xeypnxVYXt7jD2l0Hrjpnb7IMzwA0V7a7qQpkolWGSF0N/qlDZIyCzZ6hr5oIrgts0K3SknsI+0eXSKptNQnWSNEm1zaLdDXNaELinFX49kNyRFUYNMBfiy/yc3i8bwO7UHt/kKrq9CBhhOyfKemTQ6szsB67+zu6Mop5FOY0SmC+SkXl10k2PFr6poKBOtbUjs9dA5DlZtGHzEtw/M+gSGgaraqD46V7JtEu9OSNlg2kPi72dXQoSIt3N+DsqNM3D15OdNEgp6p9YdaXI2hL4dpALiGz/ZUr+oZmGQCnoXCD9cOAQO/7G+PJW5qlI4Faz1FhQmJ15M1vVbG0ys6M4F20Jb6997eUSebmqu4rDRhB7uOYhocFPfo1WHK15amPDijLZSRMPjdtThtSNRoQ3LDbUCA9tfer2KF92jALrycZPEYPALjxio2wtma/eVCNQbehmmgG9LzvXzqQGf7DZJdVO9e2YB+QflyvcpHyTJ8YlWbZUwtJDBYtZ6M23A4FBDMU/L09AvmUIYkGXC0PSKEcJhV+C4ucA2d+zmv55u632Y5X6yQnSHf2bRz63fEVlLqVyh4cZA+Xxin/DWMn4o3RAQ6+sb6QiQR+X4mhES72qYSQPWT5n8TJNNONsVb5vtrMev9mzJDwR299pD6tezfhUulZOtZ6EmlGZ5VqRZGEoDscKJZCJse5uNoUnjSLEtuGTRsT2Zld4GYkLlcsC8c3wjJxZRtsSO+Do+gUiaSg0FxQgcSXC2RyR4UgZ5KWRddAtYapuIry+nx4+m2XRgt/PktWPe+N84odjUY+5Tou6tWPIqpr0JJUxANq17K2xFJkTQdHB9Jo9vmbGhXGlS7wwcME+DBhWq8fkSHJs2xUdwjYhHbe3VZlnH8Oceejn/gdWnuPeBI91fViREqoXlEvNM0IltkgYX6T5khIEMU8tBweTFD2WDPjtpSyHX1yk/UYGRiEb4MloYeLLej45vHCMRTaRg4v0u91sQFuy9xe82PmYiquTa7lkBknD6cSXD9S2s7Lm6a4gy9U4fjg0J4x6EhoHgnYvVUT3HeTPMaAAF5ExF/2xRAsgQHrKyJfMT3opz/N6LsQIdw5aG1zToxL43olLIRNLvMNZ4j7OgxhUh3Znnoy/dYEWxUAAZpmUxEPKSn5Frtx8lMpWUhUb0rRBtp+NaiigVJ0ryUAdh0lpqJrTLw+PBHdDdFTe//VAZ0KhLwgghzb7+3dPndaqt8J3uZcGwGD2OAubIb/nPOlBT0Gran5MAM5G/7TGxM5Lwwf+hBs5QIwUdIOc4bCEva0apzg6k9H4+VTCb4ZwO/My6GsR1ZVHMQkj0E7AsztFMA73XrRM1nRsCYbvZnUq6dwu2cegkEEdb6EQM3WvymQUkdQ+2FAOqmWVWba7Aeeg4fzNbHf2JpZ2PNVRU6pKdAd4Ab9oHVj2EfiuRUpOITfEqOh9S4BXUiK3arc6di8/kwC0sYpVPldS/3FQ4RAoqsF0zdd9gIIeF48F/N64W174egcw6PfZR73fAEdP44gboYIat2R2HiAPmnrJ8uM+IkPfuPtvoyu5Iykn+FppdfCvxqaTLFl6UOZFZbIAtshNMmzXZ8X5JWrsQM/gDsEGn1UdhCGDY8LRHR0/NSpnSIN/HJU910lNK8rHNUqzEjX2lqx0hSSlXqLKHHpueAuYjbiMiI7VPrXEwVIodHnEs09JhhUEvDO1JZwLUXub0/jhvLXQNf3sgsc1X6MXH8K0wYFhPn4tdJUPKSTzNkh9fxNtbG9WY8OQxNfqd6+DVjZmG8iYCIbdnzhra/SfxVjLO/98SOKIpPo5D7m2JRFW+V6NxdJkmTnA7cC7VInhsoHhLdfpyXNnXikGsSNT6sY+UJSialcDze7MxGVtZ6XhZm5Co1YVQOrntiYIK6hbNWfVwD7f6d
Variant 4
DifficultyLevel
724
Question
Batman and Robin have total combined savings of $1 776 000.
If 31 of Batman's savings equals 109 of Robin's savings, how much has Robin saved?
Worked Solution
|
|
31B |
= 109R |
B |
= 1027R ... (1) |
B+R |
= 1 776 000 ... (2) |
Substitute (1) into (2)
|
|
1027R+R |
= 1 776 000 |
1037R |
= 1 776 000 |
R |
= 1 776 000 ×3710 |
|
= 480 000 |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | Batman and Robin have total combined savings of $1 776 000.
If $\dfrac{1}{3}$ of Batman's savings equals $\dfrac{9}{10}$ of Robin's savings, how much has Robin saved? |
workedSolution |
| | |
| ------------: | ---------- |
| $\dfrac{1}{3} B$ | \= $\dfrac{9}{10} R$ |
| $B$ | \= $\dfrac{27}{10} R \ ... \ (1)$ |
| $B + R$ | \= 1 776 000 ... (2) |
Substitute (1) into (2)
| | |
| ------------: | ---------- |
| $\dfrac{27}{10} R + R$ | \= 1 776 000 |
| $\dfrac{37}{10} R$ | \= 1 776 000 |
| $R$| \= 1 776 000 $\times \dfrac{10}{37}$|
| | \= 480 000 |
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 480000 | |
U2FsdGVkX19u6SENSCSaZJP+msHDIyw+oyxStbvsixJSs5eXbaZO08KQznuXGqlEiLz+65xIbSAmnCjSA7AvSWlPkOmYirbGALYqs0G43IdDA68Ku0VxZsj4IuoaQ3OyiseGxxZCJRlzzhJkMbEytQD+HWuUO1G9/JpTrlYyQ71Vk9ZIEbqCfBmYVGKCNt1J3+Qm0CO/xSRzGt/UA38lWBwOfgqCAZkYKKyTepcKXa0g4/RVv65FmlXLlc61WmkKHiIA8BXOpWTsIlmDd83qki3Iib2fMQvwXroLoYiNu38AFaJZgFavnN7a5NtgpQoyuvniazjAsFgXuOD8viRrRWogs9nZ4V3uCzYkH9squpyIswy5ZtIUEBEGf8PkL8XfX/S79ASDW2sizmFyglMgN0PrdPunlrA3l2/8fdXkVAGZyy5bnb9z3piPKoEECXpCLOYVft52IjGV7gHFPSkCE/urIwkTInh3/YgPBWGekyoQuzQqGi/uQ9INLpSdFNxtNYvPxc9OLqCgkccbqTzD51cC6Vhi2huIqmozhJqq2mz9lJLc9zyey0vtq83p7ynfcowvzB8gvPA706eOpPKdjUWxO69HSohAmKPMjyNLwbpfDEM4gbATyrknn09siZGKtVZ+ei+1CtGpoJBqpGpQBQaQHhpqnbtcPag5JbCnkYQUlUvYOQHvn3WLRzxzPySvj3p3B77WrqTV0QCEuspsX+9Hma1EmrJDdpLWJ1Lb/Al5dG1+nNo5OxP9S3CxR3n4/rhV2J8qnpkdvJPiizDswrqI2jdA+3c5QVu0QUnn9JVFtVPH5EDro793KFN3HSaDFSPqHM42CBhp1eSKsU0uSPxmNNi1dwfimwZWK3wH4kGhbQtTfpX5CxcoTYjC0/YN+PQ7FhuLOxHOurcLdVGAmQ0zsKdFvoU7tWmO96NAX7NItbLgHzmJeE+K0TLpQNIYK4C9ljKbBPudS9Yt3R8KGFRQ+iJWcbmLggM120O2nJ9yQJr9STGZmBppxXSWMXYjTMJNJh7dWucdg5+V58CWLNBXdq4YLS8+w8f1KIck4ZlDOXiJCCbKTUr6SW2IiIK41GFevCVRumlOo1kj53LKr9Z+R80tscog46AgILtMxjKDqZ4gyZGa7isF2y+3+nfQuKHV2J8PRDt1ceH9jumBIST8PctbhC762OrVxhQmIyKwD1pxZiW0iLJfblaCspwtd8ZJ5iYRb1cfR8SDPQwIcyfijJlbQJA9ullT3qsTSD3bLkmW6Dr2LniiGKk4MCEIe15kpOSvGX2/QWyC+s1omDor4HLXOSJ3HB4RgUJb3g5YyZSUn9s2NN2MmiBZxuMvWlggtiWFRysOq5ZaAUTV0I+0G9AlF+P/DAlwY1mENVq01oy+qclOjaVDGNAGsoV8I0hh0NbyMtpYvX6uoWC33eDinlLXwQDlOI9S7BvPrOC40NeeyohowFNli53sWDcqwvgYnjr8CW11O2e3XvAxDxgK5e9iVbS+oJCe7gF3G9j/4NiAvXDhX3OGdfQPi7wyG3QuAwatwbzlPHTjevY3iooixhWPTE8B0HfhMQLb5JoxD2252Zrc+0IhjVE4t/tUsEi/IghX5HRtO951cE+yMfXwKwIhWUx94Y3HyvdQ0NfNTg6E969LTc+311j4fo2S77BXSnPdVBS2Ns1SPzuMVBLvOr0H4zUDj7CuB67rcacRRosaWh7J4mlG5TfGKz0Jbi0XuXcTu5xS9DFZ/Wxp5M2ZQ03+U+wyL2qjW/vh5PYIdN/VaVPrYxN/Xfp963ndfsZcAZAlElpP3KaLozUz3HqviW1gEnKSu2kERyXAzOkqVK47jONxQVfS7ntcNn2QGh2FtQUWpYSqDjoCtkShEHbN3e86IDvaGHtfGWrB39/2RBykcB6dQcVYJi6ztXC4xWHzXPhiH4aCijvtpDpFFOZTDX1t3DdeausBF9m1iNY/lpJHiyJFNHJ2vJOpyQWMH3RWOuWMGGmLyuE5MZ8TnR791wiJ9nrTYpO7yp/7sYeq/CriH2g/dSKOyH9Na83hx19g/SBi6JGyB2DeeHgIWCKndy8gdAZ5yCEOxDLlIP1SdEvQ7O+3/uiUjc3naypeUAo0Fh569HLm66Cb15zyi10SDgjEa0Xzbwpi8+djho8xQCHw7qC429W2+Qkk1QmhGCoe6kbY6r2zZby5ZTpo4/aG1G8Rn8uyCcwmseWd2fkjHJv/aQsNuqjP8OIQYAHF9KYof0WfIChw82TNqUU7ns3OYtWAuPlFeM7KQ1hUyvdpWFniE0JQDf4ss6ZApI2D8uUJn8NDiKqN7QZYFzbyYZGQ8Mzdo5UIfyEptVwRev8rqBy62/vPZ9vGaAWb020uOuLl586+SqKRKFMOj/COLuojgJ+yrjkuBLWh70DgQ0oEC1hW3S7G6kOxT4TssLi+71WuYQU7VLOMvifmsBTbc+i6GzTY55r7BMvPo8GsgrETw9eu4rQ4KzXoIQtwzykZDLOkCicdp7J2f32OVmG1b9ZSYGJW2fuJm7/S+K9/QFLSMFEfX/Fk2PynyrQ+FmoIX28TGsvOh2wA9a8StBDQLZBQogdZqxhNOAQB2KWcWQc/Kb4cOkvq/6uOX4i7vuVmXj1Ioanw8YK0s1LLsc1/aIrnApStyN9+80CEzi1oEGyV5uwYp1avaPtfu2XvJ+HEr9S0l0F3dlJXm4WZtuuaKE935qYjtbwoy1H8cKGgeDq4dkQ3d7toZogBGvn2fen2/RJEdvm8b9auhSpV4P7HrCsB4kO0SVbiNl64ATr/gUM4ypkcyUnxeogVC6seSM6kxyvyVb/iTDQrR5u4JLw7Gx/kJA1KXIDij6NFIgIK1ySC7ykaWUMFyiYl7mQGaCnlJaeClBo/v2B7UbztRgReMe/tOO+Fhrg3XSrnyzC7lqODyHDM8SmrbIJBeSSJIqE3CNKLQmz0LAO05IMZsmQMKZvVbwMV5N1Dj7Fy03bTe95hoxo798UY6zit9whB138WDxEVQrGNC0ajQzBYdlgn78h1hk2XQEuBZeMQ2wq9PtFfcEF6BDCA2CooL1+f4HcJ1C9+5VYTn1ObDHj/XKxw5a/wcBkfmb4xxWsm5TelTncZ8IBcyZLAhrAdu+oMtie2Z3hYBstkpxGObzwojzWFP2axm9/mJnRCGStczPJLRRsEEbUIzz+HBIe+jfmkkuKR3t3lnB7gFvYTbHgvwob+BjrHSN/YUML+/lN/h4H3ITTBZNSk++TM2GbS2DWxfXvPjIvfK6afvlpNtE2mc7F/BnR9Qd531+FBcVirlml8AH4dyRbeybLssuGyWHgT79tjyuD9QNGYbJ4fmyMQxSVDb7ORSCBbdC0koCX98uLMY+GKAOeZ3BR2ITjXLvkWSgWtwu/7H7DInxVdThTDf2i3xRuOe6QoRklcqMZ+DKRj7Ib4W5ZjFbH6R5m0hTAasOoW6PEKENhXT3+EY2OA0HPBRB/ZqBXywY/DBHoaBh0SSDb49n4sR5LSVQswHHt8UTpegoOHGkDFGJiOWWALhgZjkGScQqinhtLoUQ/19vTG6S5yhBzsxCkq9u81NEGYi7b9L5cK1Bzey+TeWmofQa5nj8MizDUEzyWwUpC5rWb+KYjqxI1xT5Aj8tAi+nsOnXUsPn0Uje8OaYkmRaqrpupjhoYXw3JaCT7tTXbm09tyP1S+bYjIKHRi9wjsHnUUYPjQPyjVfJgCmEmPqcuXTzdj2c0YsOKoh+JRvYy2188RsLYCo3u+Q5Y4sPwBcTUKZL9YObLtFAuFQ0BIrB5gMhGhWEMXKew4yasvY40CAnBkBXtw1TBsWFC23qLta/f8eBbE7yNuY9jBFlEDBdFOe6hH9exjeD2C0fckG7ZzXpVKD4v3rMDqZQ3iZ5M2I25LtmrpDYu6xs4sFUF265nRWUhTHAoEm6fn9jigHccmqUgI3qGg40hAkQL4n+aQ/TO1HdkEz9rzET2M/DokVCVVH2VTIOfhfxYZv6itbPk9ZHPYfcZ2+RZrBXE3MDb8hRxQVicQG9lLxGdxKF2Iv5zi3Z26XtgBEL6oWtqO3Y7Ug7tLOsS8vdKxhJXTZF5Q9OmYviwUNO1vbJnc5R1jDVKoQcq+O3KGCU4zekyVxVaSaEqRvSLguN6hlYDd1Mr47rD21y3DOgjcxrfZq1k8YvRDMSEjsR6yZl0f7TuotsMZJv/3PbeKvzeiYFUGrgAQ7v5jrs+CqWuaSzW+DVhM5SvO6lI3d3CmAwGBJoQiEi7snUsG/vtD7+uyWL1eREAw7Lw9/xzzape4d0okAWosafIDhBvNDITthJAAy27z4nu8i6IC1hncERcugiq3u/WcxAMZMV1IfUjJ0RqQORDOikteam3zKgJvnY7XnGBdCepRZSvoKbCFOTgsL5JPLnYzGEZRhvhIvewsoyy19utHF3So2LPPH9c9hWxCkeOuwcGT/Gyy3PCO1X2w99cc+8Y0PPI3og5UPdeQ2kOclOGH0VilrOyV3BjkYifFuE1Sp6VPaUBiy/+43HiTcEUQaPUqAthnRfkCLPNm3vwGzgucqUypBFVkbp5ANZENRSB3lK6TkXHVdSvNq5hRThDNg+SGC87jD+YR7De+B4Ybs8K5rv3OZ14fiurHoMqBaKUberCoI72a4lGJr/WB8xv0jKVssyB6HKrh830ulzVI28JTJfpFCIKEXZIf8RkCU1ZFBzUy7uUmrUMGSKu4pS5YB4OkhYPsW5E1QKvgfe2UQW5pVqd2XuoPXvJ1RAY1cJv3XjSgNaSwNuPFNFqz1AjGjWOz42YNB8H83ESDCNcRQN60r8p3p0mmZR7rrxMohhU3BsKkdohhu9VCT73z+pgq5JXSfyMFAD3RbysMXP6rq8VkQJwlX2UyjKRSpswjKTuf+D/TjCO8FHTsHHGifsj2NX/oF4BUMroubeyhfiYHY9FgZm5L/FyMpV/sIn729QQSkJkgrY3HRVFTburHVp5OCroY89202CmHEOvdybX0++kmWcpmTtAfMH6SHQpoxvDF2UjXTEOXZ+TU0dFbKEnx4nbDsTaj4fE00z4eFUwAUir4qwA3sbvKzhmIcJFezbAsqUW0Awmv2ppVbNRVdmCz7i4x/uqS9x/wlMZjqFUhxnnk1D1iGDWT43jW2zi9OQEWnRJXoIxo+C/nMJ0b10ONO5DJWbDFWNesfg4XEw06r65Lt2/SvS51Z0w4xLMm/TO/6zuhVAQF1sdZoZok6rSsvm1YNOQa+GMPQjedWZUrB/k3IJDXHN5AouoXSkMW1GMQNu7oD8vC4+KC35aM+p99gGQSGF0TZa/Ypqcokxl0z7XSFmlShZlH6Cn7VUKIbseDkNh3vF420FmGnhabH0UlZ9vKN4YQYgXW3dlSk4ydLGnJ4ckxVfIerk2hfwiyoShGaIiccdeFzPd2RHLGGk+u4fizkdx1pponcKcSxi9p/yItNh/u41a7fhDeN4RUNkZgXsxuSiup3a1F11GiN9F7p6Z70ihLmyOKbhnZNo5gD8AXd0P/zIRwXccm7vyHt6jcgqHydWXUjr9pR2keuR0h+5YeF5n5LtTx99jClsrFt6qg0zWP62kMe6glpgbGhcFQxeTY6gx1TahriAtTBqRVdYDlw2KDHOcxMwGyM2KkTUIYadxFldHY1XIzV+nhWzJaAqQct2Hqiw36Se/A/r+rUTu4/zF59iUN7vimmD2ctEzbkYGC5vi9FZtFTdjQrSHSUZqDmryKiOJCfc01bZWPLGlNmJgnc0ZGVIe3MNPWqTMTqVnDuAO+gpmOHV+A8nelGdHqVgWqR7stvqJyr+PWyNJDMf4Zxgiz+6U5K43e65YQwMmNGCLNCvzvkDs8WqpEcI1TIP14icA1YiRlQIOpeidGGYyF0ha7uNA1Q5UKlRsUdoHOUCHSIE0Xr7nDIPCcEuv7vyR4tmMKgMltsZNGluUOXT+jgaRDfhsFKDoYbJJPZO3Kt7dIj5P3zyuNcMG4R+cnwYLeF9YrvL2Q1kLWTKXSacN7nsroV6bhfpmUbuUKsMQyETFPLHccZbfr7zyIwabOJWt17XY50L4j6c6264ov3xLj3n9BG2f0W5Boqc77aLyGa2hqeHcsPFhZK2lFSKpmPySkjbVIQp5S99/F56TdubmZ1QSaC09T1m86tAX+eSOhTeiiLmWJ2StBGUo3OB0icb3zwYugmz8r1QrUv+ytklu8WbAnaR4GE0ZX+U9rPliXKsxdyI2SClx/gNHyzd2IQ1s010d2NM3HCFor03QzqJ29SaCl8l5onlwhsKluXBubMUmeUT+r/uxEUT/ircGJE+5TQMPAvVSb8aYKYLVQQoL0bb34eYctafrUZEMyYihC3ZFfa59zcF4gsNnipr2Hfig7yXBiQnQcdvochtzygJqkn42MhO10PDpm/kZsiib4YOmEuOsJ4znFM5ewEqdu6Rm3VVl/Szsq8AkPjGXeldkYmsxpIVm/zuLTzBDocNigz63PYuTjDm2/fMYtfRqiCU0BiEjVzA977u0zTiTA6qp28YNNlEh6hGvEqUk9uz1oouVflaanBdVNfnPwrptWXeZQ7IQ6sn3M6NeTx+X38AHOhcPRq4rJbF+PKFnIN9pafq9XZH08UjBBq8C848UzEDeBIJ/oB8zWeQAgQQKqvftslzkYcWBxdWVGDIVYaMAGtr4hWf4e7j52jRdEg1pMYPL4IAwsP3fG3acD714F8VXWNo3CigoqCgVHfWrgKejxWsL5CXcssDAewKZHwqke5hVplX6e0frd68hwTaEMxsiELAXkLFXLpcqE5aN2F7l87gWRrBmL4gwUhUgtRA6SxuaBgtaiDsI/lvWL4aBIIcE2xdHJJwmM9EQifA2JckUwf2EOkkrqWrieNRMnb37APzOA9QrTwx8XEXD/kDcm4HLIi9O6H7AQ66UD5AYSC1yvOTA9stDBqgV1/o7P47CvZoM3RCAXK36zLJTXPvCbQjkIZBDqjrbSaYUF15Y6PoGiBi3SjVZC0BmYkaIqztzgXFb64fEURiV0LJXyAfl/soI3upYbcx9CQkPMIxeqFMNrG/mh2/mypzyeknDBHOumo8erS/VWZNo78Fx088khBBcWhz4SjtCBvJaUFyRhpWaUAfbFwHkc9o0rU6lf2grrk2PC2Sxg8UfQ/9zvMIO4rUem7ex9H7i46BYLQFAqwUvlrxG8ls/vkmSVO3H/QuY6MMUWcIfhP4IvV/LjVHq4UL9Zugf6QqEpALZ5CBa3z8XoqUS97N5W9CPb5DO8bSenWXK0pmwZUZOjIXw/Pn8N8DRBslUAMYiQj/HFjHzWHsMk3B2Nw+oIV6gVBtHENpWCk5qcIsmYlUyiQFbWN2SHWf6cFdBhhYZRQcvtJaD7iY0z5W76ihFers5ukOWP9sP2mQoX6JMxRtPbFtP9kvvehO8bW09nQetXrQISaESccKOyEQtwZy7U6dWBha7YI76F2K1Np9JYpE1f18KuB+UDB/PLZtp0qSaJo6Pewj5BHnRy+tpIWvaMXBRtGAiydSlNNDrbJhPYyPiKSerckrIiwx7Ow84SK6ZoH+noZYH3hRb3+MkXmZk9oxydLMh+4+/5YuEBCelQEPju+jL8TKRUJKcP/xaH6I57UNgxHGPdBmYwO5lUqRwgN/wgNRVqOMwjJrWXFnawCP6KsrkaLloUQdsltWJnL72ho57eRc8O8yL7xY6VfrFRoB/TWE2ZA046uReVjT4gNNFKX7vX1781KAKhBemtiYtTYN4W0AnqJUzleFPf+VquhVZXCOz1Rm5UuL1LvDlADk/RCTyVPfh2wlMhy0RoQtoYx71ln3luZ50PIFRSqqNeLTgMNGDFPhYvrOYa/arLllOODkZmAAIa+D4aYdMjR0BzXcp7gDADx16AqbEwtS+LlEvIzQuCwQCI7ECsugMKF69X87t/YULYkhpR+5lYWe8CLNYIOuQU1KJV2iuMOoJ3fuKD9conp3c5/H1muJYB5xNL6aXdRAGcnK14oQs1jVBmdRKyDLXqKZ4EFnsGLVTGFK0IMgSlbie/Xn+3etF1lPu1g7raKt8PfbCyVQI4NZ2hZxKlnv6y6Sa7wqBFMG4UUTROxkuoEk8doZ2vZ+olbvnJUQZldzOCsnHqLUlvjGSnzfS2FL9jpLoA0A9Y1Tvboesj4C7K5BU6qnzqNlSUccTxfpw9mBjtmJPE4tucp1wUGNnof+jceuLtizLy/lY6BmUHvqm1WHXCE0SAvi+9doZ3EUFUWw1KdocnpLe3SapHul0NCYMXnSVhZKd6L7NjBhEBHnDvBnE69a8atf13szwDYQEW2GE5ECfot7jFxmziihyLSlmp8ZMbmO00hC3rkcSkgqrtqITSocUTxvNdkSCwko8zbmxKrUB9VFSFwk7JsxbDyls050sLfdUKc3B4aX0Do+WkzKMVgWNXe7iZQxz7bvobQd5QjhMhIiZjGyLuyM3fcvpJCxmTdiOfqOnfKEGKHbCc8Oz2J94mw6Q/F8fInbvy/H8AxsUVQgQ+ZxyyLlxG7DH5zXJ74hJzOduekm2MipHwATjxlPm3aT3GpjuLBYrNIi9BawGVPle/lBfXoPTDC/hlKL/3Ae1smBgRpc3nEi6oNDn7Uti/wKBTBdHHXgl3gTxAwDeIWyViw+YePetqntGH6XDEOps5La5gQ4H3eyfZ8T4f0+7HVvRJcn3D/kYUNA2BSL51qs0iITgrxCNRcG78+tDo2px6LgSEKhfEt2dGuYQ4SOu0cz27OcWpWG5W1mLyWaC8ZXU+32uQmaEEzisvH058L0IdpxXA5bTclGryEJA7HrItfcTME1zGZ/AAUhng35YUxW+SxwAQFM+xGDfJhAwXcPiuCfwUzmkPJ14F1Muv8uMKoidmpETY30PL+VeAqg3dYUsbZcleVKWxPNS8rGdQbf3Za6W2U8qmG6ROBx6r/t2DVrxkrqpF1Itp4Cy778PA3elWfJjCFx/TxhiwszWFdpWnqPOvLBqI0BDZlSzPDNWE+FZ24dQs0PrtWHhfrLFVekphY9DU/5oVcdqVIKZVsPQ5ErW+eeq5hp/VSx4LJ//oINfqfgjSzTkGeTJLz57nV+Opfa0PLG04cni6KU8Vo74j825FLtB/2btgxQaHkRv/pt+o/ykNJXIgNlE3yqJWlXpsv5gk7oBkSkjtGi5o/ZfR18/+SJbGi6S+LoS/KU/81HeYUZvRRZ32fski7aB6Vd0t3C2OSWDao26FWz5JWED+JA/uV6wdEUeM4pcGMvnaheY0LQGTSKI9MJy0tOQQulFI0z7scuB5a0M0l/H8pZr59qeaeYzU9zi17YmhU650jICBYBdGI1zCjyeuUE1XvP+jtdu83QGQYxFtoFx9M3tO8xkKZZeCCDRJKlmRbPLOKAfc4loiIP/Xr8KnhXx/XOyy5evdEzjgQjc7GmAeZpnDFs3JhfCpfWG3qj3jC38/IKIeehtT3vI0Mu9GC7LgnEolu1ukTy330KjGKlu5tnKkWmrZL1FD4T/M5hqI2ckofOoOuRmFKI3sOaWCss6Gi5Kj/UedKueMhnhTs89xr7hoQ6Fv3SvmGhe1SxWtkrtQeTAvILwEPY6kvKmORUJBzBFUuTmxd3QIkB+pdLBxF0zWmuCKPohTr8aG3jbRAKL5jgA/DK6AWqnP9i9+Q9Q6TeUgTj0na6oCC5DW78t6akXPzfGOz7VWHS8BnoAmLqncxuI9XnCLtMQjBwzAOkkGRDkI8pniPpnteYw4YwFXiiy1XB6ljUGYhDhTRPbdix3iVRvs//yxhBWoO4decMBqz4iayrK1xo5vJ/OMSdViWAFeJc3Mn85P/PAKQ9hyKQnlgRr0J8bmO4b1h3fXni6EGYq4Uwc6bY5VSyj+v63tobRCQ6w8qFV6nL2qLZLHVN9A5ZMnMzZPkzFvw2+bXGX9Plo4xlAJqZ9YifKEd/kRWq9YfD9iJp7+dO+8SHJMxiS/8BpaLa1fUWX+kqcFn1i81YmPNI/tj4u31Yb788rowgRf8Pcxn1RVMvtl7dcheIzS0XVIMYaCM7alAHIbRoJjVgu930MESUZhGH6/ds5toQeAvbDEKWCyvFSRC2ZqVNMZKl8XZ9ohhVKtlDaCyNQw8aZduM+FgW2qQY6ZkiDxJZ8N9DmeAotH/hX+fGrtKkFoWZT4zIcZzM9CQM/F4mXwPuiMfSiDFCWPys5BosytYuMfcxl2HDA0RVOPIVI9vkKHoqFF73UUkERdzoVlrrkcXAEMc9IkO9d35bITL42InvtOS9LUj/gyoNrGzXr0VMVYELJy9JJ81NrOnsiXsYLQIqmvxHKsz7pKyngpeDKYlyQLmOukJ+W0zpQKTKBxmr6m1cip4iWf+7m5SeSXqJujuKT34/wxauE58BI5svNMQY2CE4yO4L78vdllD0oMs7QHeSGnL5SAx05qIZD+Qpxh9ns4HGmllXX7Kx1qRSuQ5Lx9NQqLvY4vSf7SKw4YpHQkwCBF2b0uLB2ScTSqnUApN53Is/JQAwkw2AV6UwJVVLgEA0CqIA2xbJWLrXJTJTmPOeAiUHRjn9iXBdGf6xqKsivJVhKSBA0ZDidoOPaNSYeCM2ymBfXln5XuIghhvHV2mNonMS4VH6qL9ZaF4azEJfTwZKgIMn7XrHky9zSJDYIWwiM+Pz4cFTZWgGTkiqs7Bl936NYO3nEBbU51+pnE/ykosMAmkB6ktbyNvCERhelBBAd8vzhL7OvjPnMFB7xGbQpdJuQGFjB2XBpOKlod1jHaQmxEb05SC9GXMQYvTXEIqC66YJ8UbzDxEm7eXq1n3EBR0V758mksCV2mnQYSP9w4v6F8H7WSv7Rz+mgp15ItCQgT+QqxsQV9NGp8TnJ7lDfcBHK64FYNnouAQoPHhAik8SPRcgCJQU+mvVystosX4HhUG6gL9fjz6WNc+bYMOFh96x+bLclWBt9JqV7GvkUb5sydV2UU+zlOt+CiEmMRNbtVbG/cH5EWphD0RSlf/KNWlcffy0N31fRBf/DXIjOurR8GCkPTB7Dq31aoldbzE+cWzOsWAZKN8UfH5G4WqTNjZyb7A3Bq72illi6xlOJk9wEW2l1otQOT8VlfOLsaSkRzdxV+t6EwhJAi1cfAHID3v8BEMpZ6imCwOrpT43xU9UlznbdV495oM4IJp0q1x9RAn+JqXwSjMjsaDBDQwD5kbf7qNljplyMA4HbZDTIloDkXebQsgHC9lygOfP5vJaIfqGYUDB6lG56qKL4w6RT9N1a7IDPyrhOnRhfXj2N1wqYnnrF695My0kJHloN/+rCHXTpndG5j2UmfoADJW2DIlk6BjOTSEY4GSA9W6oKwmWWQiWhh6xcq+mlpwZXyf4vpQE5R4DbLy3X6YUB88w7xdC4MpxHH39ycOneH19/9g/RunuPFNVhHBIVjY7ftBcTDz1/JCG/nTURqF1DZ93jyekuK2nqThGKV1XqlW51oLPlIhBm05fNBArPZeQz9/mPW6Qg5KjJsUN4VF17qsE2KtHhN8KbXxS/wakwVxdh9voL5lF8iDnidO2OxNY6Sb0L6O501b8dq8TaPONwxl2G5sr6/dL3DMoP6pOsxopgyMbiP7GXClWZz+sHzjKMPCV9s/0xaqPZA9ly/PjrBW03UUmHec4LzE5HeCtwCyXDqI7pcDYGyGU5jeloECUIrlbUIMK2R0+d3xvswAkWWPUCzOVDvYBb361s405xVxGdFXL5NgW6lA3X9HzLHpCdXSmenkNCKn9726UQSKNMGvgcPA5ARPrDeo/GnEK4f+FYpAot4Gzgp/JaK1ePbhPvhW36VBct9Wr1INfbmYvZHgc0QStzb7a43SKiqQ6l3GVfzMH9dVTttKNKdRoM1jbDLe1vOqiI3HpUBSsAaNTvCMzMR9ituyaGdkfhKdpuZK/b2Aak6L6aE/RRJiZEbw3dbNoGiV4S9Mzfdrz9y7Bt24ZazrBT5gKF7iUBI+GPBzGQMDhWetDi3s5H+GlA32a3r12/T6mTS0xegLyRqkogPeDxLakVAbC79iolcHrOQvL7aVpk2ybCrRiXnFcxceMZ4RbUJkXWVP+cCelZIkUnlt77DXKPlkgO/3OGBiHFB2EqWj/Vr8F/FMuUMBfnO2X0NjD+rq1d27KAdiJtoMQjxzTj2Ht63mYn7ghjnleG9BGWck507l+ZLZ+4ONu6X2Acei/NqktZLrIecSf+FVs6wPI3CsRt8pbMkV0LpQzoSZ/r2POsKC+1IVxoClagkthiFL5lXr7VHQNRTZ9UonQIryQLgKZqu3CygG/39TCYle52VOrFPnLlXsZRaWUkGOM9DUEbfIT4yLrIyLURE5UEVP3/XMFAvyBW7M5Ma8i1+hdOVAUlWeqxwmfqPQaOhswttiua6fZJx097ipDSM/jAK3LCnsTdEKatx1ln8k3qPPIphCo8UdHEBKDZhkWoW0PgU6BjmXiKiRCpYpB4g7aZC645KRopqraGmyBFL/Abt4O8UD7QrbZ4NGS23j7JhCBRyLzXqJtO02klVgtUeH5MWm5hGbkaqlSZtG+2tp0MaKP5y/cuiHYwctbtjOQAo5JWL9GXCE4udDI+5INVkHlDAOy0WSQBM6OK6Xuw2sWWR1/u/HSsuqqdgTBDJS8TrluTh+qbrOHTlNvfGkYJje5Og0sn0wMvkBsmSxGfJDiVhnZQpB/kgIvbMMHVNTxddjmOA+fP2IoXeEjUXsP+ozc89qHLKi67fkEADEwEyXGw7qE6kFsxVZ5PMF/E647Tepepn9xMR66g3H86/79PH0L+yJpYELom0kFa4xZd9CDxvpr/uSTiwWF27msXJOjbQt2PCLN9+rph5sGFCYX4a7XzYQqgR0i8ATl63qcj0trT/nyivx3P+FxVzVe2EJxab6ONFWQDnFKCRx1Dn3Jw70IYegecN0B/XYRzccQUOe04SSG5zC1mO+lTzdQ6dOpEMBhVwbeW3vx6KOLDeIFskZu/3y2hvpONv5JqwKq2+d9F9SHNoZfRDFBHOOr1p2A5v/unBGJa+fwyYZ8YD1UlKXiF9Q+daCjb5D/U7ThpqXkwShDrQ34G0rhRFf7aSBuMRIRi68P3BgBzzKhuuSanPTrgyTqiygDlHkBw5mSwP9x+5g9jHxC6psQ3uCzYr28hGELzl870JDC1bPFtdpTw6yV9berEGhiXTDPa+d+BsZbYcGTGv1hQdHL9m6RlfsBEQlr9b4WkrB2QOvaiyIJTsq/ZdI8zB2xXafvpjSQj+36xKBiBojDE1e1POBUr1APlBT2h2Udh9Oy3dO0ts9mSomo7knw0S8HdFB/4GueKdNhHMTuQMBrvrgU3fcy3PcPLeqNNQj0Wqq2hZ9TLKCX75OXEDwQ3mV4uGgE4uD6X6nNdCGtK0WJ83Yb3QydY5vkoDbPZ2xrueiELKlB+L9z0XVFEE//5rHjo97PtVPgYovEbFMiZn7YtwJOALTUk+XjDqLy7BekVfI59r3t8mb4MgbRS5T8bKkqlYCCZijhO82RSl18UbAnUV+42bB4ADkAavqOu4hkWtqruagPG/CCv43WMkc8dsqlkXYad3k1wAMvsybbqhiNYgnrp6uIneuq/C6T4cF6WdQCSBmBycxhf7LbzCpb0e4tP8DQqkvARdL16EcetVxfvLwlGpIfVKHkr+Ht1nCw==
Variant 5
DifficultyLevel
709
Question
Anna and Kristoff have total combined savings of $45.
If 51 of Anna's savings equals 54 of Kristoff's savings, how much has Kristoff saved?
Worked Solution
|
|
51A |
= 54K |
A |
= 4K ... (1) |
A+K |
= 45 ... (2) |
Substitute (1) into (2)
|
|
4K+K |
= 45 |
5K |
= 45 |
K |
= $9 |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | Anna and Kristoff have total combined savings of $45.
If $\dfrac{1}{5}$ of Anna's savings equals $\dfrac{4}{5}$ of Kristoff's savings, how much has Kristoff saved? |
workedSolution |
| | |
| ------------: | ---------- |
| $\dfrac{1}{5} A$ | \= $\dfrac{4}{5} K$ |
| $A$ | \= 4K ... (1) |
| $A + K$ | \= 45 ... (2) |
Substitute (1) into (2)
| | |
| ------------: | ---------- |
| $4K + K$ | \= 45 |
| $5 K$ | \= 45 |
| $K$| = {{{prefix0}}}{{{correctAnswer0}}} |
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 9 | |