50085
U2FsdGVkX1/TYcc3tzKruP91SSZzkhMETndsUesafsRrjpELkTEGsGkEhVuE3XBerXENgO3MBCkcPtjBn7Fwbd6eifZ6MN0/q347dBgS+LMGXzGtCp+xoXCrjrN+eoMq+C8P8sRJkDvEGeTluUsOqLJMm5/nbqjd9DKI6PkEGkZosFzhwM3toe/Ef2m/RbIR4aG7vzKKky+5Wbuzgf/S84ChxYK18vyFYZHn+fNQjNCIhCVSN9/pXOAl//47Ub3njsPmN4XQ1Sztp22R/MCQC2zdTgQaJboPRrxENSPVbSGTwTBLQhQSzRGxZfaFnN7unjx2HXqhyl9ayu3FBkFnhCoPmBq+WZaXFPGMfaZlXqHu/a+haJ1g1TDEn+EweVD+iiPRPPe6mx9WxRlTPwUj4eQxnp2P985syMxcu85jRmGu9FHf4fBfL9moQNKjvbcNtDON4TLJBximeCvqUwYaDA7Utm6rCJXdZW1xpGb+UjsSpKNxrGfVSGACuNBvQPmOHNEoVDuLIbPTmXMzcyJVJNToop4Bqljjh2U/TcJjuDJ3/Lg5cXuHCxaSnw52jVl0SY26LXSJDPIW/EAG61VEVPd5hhPV0jPOkhkSzm4icB9+4MdXiDTLDFSYbTa+68qCJy1Irsh29jgab9gfV1wJmt3Y/TqabJ2+0j2oWkqxWKhCX4hiUiAJFFEpjbayDuWu7+Li8MQ4xpX9l9r/XfwMuFllSXoJQPvUhGcXBz67BNx4j+fBKOHbRaULg9xzNbUTgyTscqBhqvLVrIg7xagnmIuNWF6PTTxKN29uftCysk4HFFHJataI8lkJmxFSEWQkEzmcat/k7GZOMloTuMBenhQmpaIaRiFUepOTyMWwwN4+hKQd2NjlhYYvsjYjjQ6nkrvXJO9N2AovILRkc8/Xhr8amAOrrH8nlGDgs8KoEHW8C0VJWnVvCqlccbYXnBFKw9E2nsH43KaeSww9yxU/9TIwUyUFsnqIJ2++Cl8XwXQbuXrduD9cmmNAGLQpixuUe4SCsQz8viNpnIM2OBzDKkEVyI+BtRgfj82iGvEZS1K49s5KkiKxHlFOJDezWLl72JJiGDj6RmJCdyHZzWxrtH94Ta37hAq6ZZynTua8Kw+nvV+LGHEsYf0qTDVtWQfC17BJFlC76tCJmCPo7TaGIgdzBj4tXeGY6wSCSgY1dzCiogjrNYtrkASz1bhwBOUklH12rrBP5VofgtCiuzajpzUI58SAlq4Yr8wIFjOCGswxuJ3OBNbdWwMHi0B0LidkUQNO/Pg0IXkwsYMmPZlcXe7A5EviUJ5UHe+7gMNDAoXdhaZUdFgzHJplnt/SiE8t+SIOYAjvRhiqUya3MFZDSJBtM7LdgyBnoYzDytORH2jfqFRh76CNpY2JSZ8N0APlD/C0TeGKFCMAEUsGtu5XAzhR4fUUuxBGn9E4nL8w1CFgkkZn+b7tBbw7crPBcUAYPCGXB8JcB6Hw85wObqlW48ZrmgEXbxVjqW6+tU5uZFxfL38NXx9BADFI8AGlXPQs1zwfSHzIekOgFC8Yp7mFPaCwdTgY5HhuVnsXngpn1NG5uKEH6ab58ppjx2N96AyYtAZ0HLnNtDxCXQm/1AXHyzFP7QUKy8JbDuyLGjWuGu6VfT+ABRGXZe/o/LwSK+jYGCTs2OKencn1rdOpyu765i6AAhp8tyxWfk6yviA/BcKKbQPYd4szznPSlBtA18sGDieLCDA7cZGJzZZQT5a+vZKIbfJFBFnEe+dp23ceBIKJVklciA3vvDNR4gqlJRap21kBI5K1YoyzEMJRv4tl6n5xDC9HRPgiESeEbNe8Q7PrgwfoehCiT7lKMgDH1G/7thPuN/TqP3UkBkN6v9zZiRdooRna1xsLhjP9y92O0oHsmlqMuPW8oqhsNgRbNYK+96XXYXzDD0oBDy4uQK17qeP30nd3q0li9M/ZC5MSe4pRqlAOL0w7XJO4OqsSye2PuyI62S7WkNgjfXVUXEaIpN5Pq1RtCNA+q9B9D3/e2a3VesSUtfIK6eJE1IAwa+fBev2t6crC5qYc67A4MqFFTaqSWBuF+nmvzMZrfs0lyNXmmMhGUCNAbzpuIGGC85w86TtW525Hj0I6xMoONDlpUVFMw91dbPIFWXxE2aDj3MI6BqqyXhblwzioN8FK9viyRiyCkmyas89/j7RB/I5j6ZUe6hmkGiHGyu6WDq7bHL1L4SCR3CTD6ZPbcAbB2WfG+A/4z+2SIEanIKQ6/HRTjrUUx+zpMzgohqUWoKwaMlXPQwmfr5yxbkVqj932EXbxQkVD8xEzjfycyQeTtpEsGOl/X6cokOmOHaLUfRdbPtD9CrUW3NDWJpJoRYpX7UkqylWn1wJIezFa6glh2efB7F47nU5PFRVITXdkBm6RJCMDG9BFTpUW8kUEPf4D+UdmPsNTnAtXYgr6Es/Lefq1YEcTXgWVA1fAC/PYsANXko7r9egysgjvACovTO0cyHRtyzMGqdbjayC7JRBRdCFcCd2qFzLsMdrS0kF8chRAjwuD3iONJCvCzHsHF3tl6ou3iD5xVOnEV6qjlMiNxxJzF4YSZt0q6TM6Ik1k27kHyvBgW3cWsi+E0yfC5HPZdfvB1g2GFsiwG+x2QpUScV0hbG3MovYK0shpIHVsiqONIaHRhTTxGMNzQnLXZDpiMM5O2QGVijfRaWRcCfhFwAM1PXkWEvOUmwIexurw0orocc46ZOyLp9u2Q9WpC5kJsyi3X1t9a5Yc2v9oqIJF+Tu4ylRCS9bJpX6VEXtmsrgpCSqBJ97j6xh8H3SQqi4tpAdxSrnaITgyDAa4/vaoekpVW84RVsQ0sSwdekJPxoR5LwHOrwYjlKY1xZp3Q/dmyMBRttJVSdi/VDlOs0dfMdWM0ZsVB8TdUPNPpc5OxRu5yGjbpqPJ0sjYF3EFt56B9s4SyK4RMm54UQ12ekXnbGay+3mA+XYyI81W0PPn8BF9Aw52QEqpgleVZq0hBqfqQz4QgtMRWRrqEL9O7hezEkam8hGMjOKMN+XTOxrP5zhVsEJ4EucbJ+J6naMN9WThgmh5HyTkJTKOUqP9K+1BT/8Bg4CeJjtNZTmrbQ6zqyo8LGq3svGt6UbOWUzUmm9J6N9JYbME63HVuu4Z1szhJIZVWUxdbUjJkPGUv/DE8tUeAd9pHqXm8TVf7rAQUpr8WEIv4RbzcQ6Uv7qr8GmAviwgdlPskhbKQl3Dsn1+wiukBJiKTqeCsi3BhW8mWSphD+a3M7O6k/bfTobBqI0XEh9ts3QljE1eSAwq1epYZM9/sRcHVSeTo/rjTLgIlUJHtAytU4r7tFRL4iIFzd+ErQGiRgezpSgcQkUs8arfL5diPqeZoBswc9v9m4s9ubO5+QpqMMGX8GhaqmrkjFGqllTw1RqYArIjlGmLy3tZHdZclWw77ETTcNv7vj3obZCyLklI0qgWIaHSmpbeybRc+urI7/o67VpOSYlYet0XAp+m4SqF0c6BvSnZkUMZ5qGK0XHzxoGZm5cd/liHHQTLx7Cl8w+9rVSjH8Ytwreid8x046koCoWxAGaziBSRCYIV7fB8ecjDA8wg6HbzhM4mCW4ElpPmCx/XE7Odj7SFjs6dWeaW/RhCLi6a/3Eh09Xs4aBMd4CXC8pMsf1mxgnTK2pV5BAT/7i5n4O/8hN3AIw7+jzKd6twHzQMVXekv0FJvigkfhR3xFTIm3w1MTQJuABYEi/UWlDJNEHiWIa9vGVHzOIxpYPyHYR6DJ5SAnacm1pv/C2Mxrkdjl0hEUwiIC4Q4AUhG9F7d94z2TLdyBrR2lrI+KOUFagNmTGrk+TE4kZXXrjBQpa79FisVXCx1/fQjEfMFSOYhwVplVYfGrc3SXXq7/YxwpMXITcPot/uHo9IdkF8VeLs/Nx7ZsETaDk4mB10HuqQoC5LdDEMVr+d8XWCv72VqHvj5W0e8mjm9fdeloEk5Ybt9ECW5MctMkfEDL6Iij6/GDABiv1x59Hxjy3HKlEXj7jQ+FNF4cl0hLhttu3ceoRIhzZtp1LBKOd9iNjEhNAFRSRkWWYSbK2Z7ZjvoPigBtD091yPfJDmJnvsEEtNtNquWCnH0+by3NrT+sY1VC2+ZKtc7uyqEv4qWNHsdSE/sJtENCVGCOqicsDRTepHRW8P1sES/dydQv88X1q3ytg4VK0mTNoyn2CiulWL2H9gv0uiIKWRr5jfQtxMg9JduE09AIH5AnutPoZKelQswnOJLXh1QfNDTuhrOYXQ8u1XZtw3V3l2/uzL5WQPF6Fb1C9X2H+z+RaLt73mOcVIhws2Q6By1MLo4UzgiOLM6CmH2NL2SVG8SU2NUdZOOtn0lkt7bBGa7IaDHMPTnansry2rH3PTdFG/kvc7txsTHgYxKCwWD8f1AycVKRNB016pBl7W6IxZYaV3Oi/qLcVm5m9ND2AXHFOtKuoWalpTz7vHq6IUSdvLLdlr+A3QGiqnLDbokCFfo6NRAMBeVawe/QiJEhS+qBByZbHvEu2Eb3GVmmMAOhhqFejz0ZsIkr504HvVZr1d5zzVdmEJ+4xyIqlJ8Nkwm5dJR0vT6y1zaiLCJ6jzRtLy4PDP7tHfPMp4dxrXUpcOZQB1Jmv48cAPplnji6jAU7m+5dbyWVltp/bSYoTU1gJ0cf8lw0Bq62ubgHo001v6+nFGonVWSeeulAMpX7Lg3SrdhYCfq00Bco9KC8taN1jzX8LinZ9w4zEVlwDPxHu+w+XtGR+PVGuWimTm3XRAVBm1PpTJ4ihfawCqMAMQKyuCBZqiqdfQyURrW+lRkhtcZuXY4JuYy1MGoqnyhANINw7uhmyZFCMUnm23XeuPUWlx0PsmS3xzcN730O8gn+as6bWgpAA1dCy5Gl45gNUcBGeeFUiZ/80gCjE6Jo88SUJqmACDwi6CJrNmGt0GVF8Xp3nWpNOZ/2XfmovWBozHHvsXRp5QUqQ4rFq/FKLuuM2tc+K8/IbcwrAyLrJNlPAxYaQEo0bhvNNLwO5bO4yHU9+xo1dXcZqBlMDTwqza4WrrV/6GsVK1iIf9M3tj0Y50CFgOfKDjlbu9Gt28OsdF0qEToK1i+95h5nGebS7dyDpHWI9ofSVzAyrkc1cWEiLspt6XEyo4hDPzvdxefYxl0jhi5pRBGT42Pl4NuEt33S6l39zkvL0V1W5/dYPuDT/FLSpIpY6qUXg+s1q4POJV+3J9vVYVkpZkQBnP7UFlZ3RC9JPFgZfcieD81D42TdIqj7DtDVjYK1GYZH/wnG2JjuYlrIO67PFPfEQBNr+jKsph4ssZb7AWF0Cn/WNZW9FBnELf738280q4Q+ChdP0VACJpgnjQNzdpPPA7mEa0+7BSQG2kArbeM3LYrPfNBFCSi6Yzdq6OCjXDOe7/Jmu7kg+ycfSnx/AknxHvcjrZDtT/7HvDavEiT5uEGdK85yb4nRkgrgQs22VL84GYOHzFMy4olXPxMYeDmFw7Vr5Xfk1GXbrBDrQgaZd3msy1N1t44AEWUnrkC1jc3xAnxAW/MPLtM5V1RBs=
Variant 0
DifficultyLevel
676
Question
Which of these percentages is closest in value to 95?
Worked Solution
|
|
95 |
= 55.55…% |
|
≈ 56% |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Which of these percentages is closest in value to $\dfrac{5}{9}$? |
workedSolution |
> > | | |
> > | ------------------ | ----------|
> > | $\dfrac{5}{9}$ | = 55.55…% |
> > | | $\approx$ {{correctAnswer}} |
|
correctAnswer | |
Answers
U2FsdGVkX1+z5HNGsQ++9wy93ur3nSkdJbZhr1exxIKdnprjxcdCrdyA9tQlAt28B3/8nU8ZjV9xlyX/bkjnt1qiJqA32qGNhjzoHDszmCeXPWoTrk82uYJKhDJsnX2F2M7JlEQHOZ9Q55yE6fR38B/Di/3xBFYH+XPJ5k6vnjAt5O1rXyDYSzDtb/30W8KIqop13qGoLYOSnRXh1p73jo8KG21qR5fuC5bieokTdEjnMLxhEzov8N2hCmWo6OgW+mvVuTR1Q4UioTXr9qprJrGfGP+h167nk5QdIES/Q0USBzVT/d01oLfGKMY9h8yDUO2v2FJ4SFtIRccWcN3J91gGmhd0LBQciiVBUC+cG3AsYaEtIOt/JjZdbv9Yqkdjlaz0V1LHnmAUr1CTyyN+/4zXX5I2dbNWLXos/PZzDLKPTEf6Rq/ShbKOKs6/ZAgWWii+LqSS2ZRd8VQ0zE41xD8B0jeDlWBmyaYLfhoaa6YQv3GOADn3Nwef08F9Z+PVOvz8NscLh1qBAlAzbJS3mdOB71owkk9mtEPPvKZWi9OcAUheXt9A+9y72q16zqu5QH7qNjceHv5q7tPvTgHeocTqgd8guPqjYKVwGss6GSz6GtUt//ojxrtiwsBFnA5qDezWP8Db8WHFgcNYSKE4XIIsO4vPfpKDyuKu2VTfyQJQ5w1J2rpl6S8Ugk1dNyhzvOczqaej732IIceb1Xe2mJXzx3SiAPCiatTHarnNWDTbuoDVH1tiuVbH5s3DkqlEBGQgDoIUPFu8txwMuINY54rbJjFVxi+XsVkt+UqrlE+9zT9D50G8PcYi4u5VqhRW9jh1IUabhwt0KIGeOZO3EDvtuRC8QK1M27WjVpztNH7qFJw1rMuD97Qfg7+IbmCrocdB1zkyggpIAMsB2hvT57sPMJnx2RRoagIOZr1nDsFhtNQSEIUDDeMcijEugew1LE9h+z/GQ1BIIXiMWfCOA1+SEJ1wGjkFsSCwD6NLMjt13JxjEH5UQDtGYi07Abvr+LHXBhIFOfUpfC2Cem5PMQYx/78LDj5r5b8OwI9hQBtYf1u3vet+G67XZEquocZ2gBtEFNGsKSPL8ECAGrKJWq/9OudZUBKdh8xq5Ap456VG0E9zHQgYcyIenm4sOaKeMuUeFNZ0L447tSB1YXb6A6O+PvWWlJbKZ8zJqTbAof8xLWRggP8dKv1lt7TQbUuC6o65tfriLNcBJ522rl2d6LFMczpYoTokzZmG7qql6+FqxAyT4PYgevuDasYanE4aiYH2RO3LK/LZ7yQg2kFv3bamp2durVUyJAuC8l1GWJ70393DmQXbZIeFYwkysQt+3w8Eu/LkooH2xZGrTg51xidLeeiAD71td+cNSIxcmwJqKPFtjOI9vi4JN1M0dOH1ATcFI6i3pLhJAJCOv0Eys7L61l5kRi/w12AfIkz75XqmnHxGOVRznzCiDe1r9ww/j0YOXgQ05SfcpZaCdhPimRIvtjNDcGqTjm/B6mo4OyhOCTvxAELd8Fckc6j/BJFmKbGj1HeYozY/QI4WIjCsNEiJAwviIjuSGY9JChZO9NRVOjTtoUIfrmee1NYduLO9HRhFLdCUDhLKHqXgFWkV5QbFqmdc+OJ97wqaghgJ+RfRlviBMZgO+j4m17+R+wFsCs7aKdFMNpcGCVUPH23uAIjY7Zbr/8KGAWR2WsjJvwcXbtB9857LZwgScssJQPw/urFxruu09aHb113GnAWqgJgnYT+5ZF3V6Vw0G9+H1tSMuqSr5mFvijIyHDqZ2c5ZFUT7m+qIOrArTUVj1MujXYIdHyuOTKXgeV/dRQuaO8GTSiLzHJtBoGI6Kk78PmAXxmYwlOLj/L8zgIuW803TFV8DT97bm44saEJYmCb2Q5t9Lb7YoHzLLp80HM3AS7OxzxwoGwbU7VdomBUjfZcTuS5vhdUljCXv6aO461zwJMUMXAhwoprtt6g6iu6Gi/AzYIP3c/5pBVbyMDnBJ4NY/jqC9eGpOXo03HwR6489ZrQpygsP25g/R2TmNjIr959j//yzs9ahN2yOWIIHKS4W5qB7vi2xdpBj4dt/ZyUQ5T9Lz0wTQSF38tyyTeFxJ2RTToiBSk73Cb8YwkJl6NYb8MkMatUyZVDvj2nSlBvhOwXucim9tWYR/+p5rBFn+EAitNh/JPC3tnJ9MbYAU13YOuPtXK34Mhx74lkWTb64X/V5YNGwCRaO0goijmPlb8kzyuH9KOD6lxwazByDtKCptmlRF0Li1wCBcB0QimzpEVzfbsj6Exlmg9k937QM4txZl+UTDqFeZ3zF49KhVZa24uwXQfxOCQBBGmhNpemq4tSUNKz6Faj7FQ+laq5nBpO31hbQ6pUcC1x8zngbSyI4fTb749yP0C2/GYY5Aav+ZKpJVrrVtHp4bQweu2H9Igix1Srd4YUkY4JhvjfB/B6qPl/hqS4t26P4875u9nHA7OsoaG6U+suSx+UoHThUmi8dODSYqTvZxTkFpt9/jMNtJGmCbsLAh84L8JQDkm5YHZYJXW0pfCSSQx5RXNJ5/Kewnod8OgmHlkeDxARj8KfmvD42SubxL/gEZtmOQKaGUqXleCf8RK4LTYMLpQtuVLzAiridhZw/wCACkG8GnLPWwVbtEBCcYtNKhwuiJH/ZJOkdVs1H/1r5lHVyDi+SSVAfc2vM42YSZbJhE6c1RxP/SleCnOEc2iv45h/cZ7jKcToV0B5/omZqh3pIXY7ZjpkHOP5jC+AzBUpVzabnS6oojE/7OTqiigNcUrZdGLgDsyPo3vo3yMFL6z2aGCq44XElVRfdV30rbYAkjTed2JpT2tVuLfL3X7v3Tk4fYhL/ZRUbh1JzuQsikANybcd9lzrtN/ZrTV5D5JT1+pqvv0oc92eD6ssKo2mIvKbspBCkbsmn+fZbAL4S0nl63uarejQqk/WPRCuNhjEQNLmq0/24KZFXDntD9lrotl5/yJFhYsSsvdhhPQDB2/yT9On+4xOfR/1Mcr42ylybU40hE1vRtIdji+r00YxMu2/ehFqY+s43lup8KvEcsj5e17npesmbBskbCfC741a3QE730QU8ZbX6wVBUw67bDhrUg4Cicq7oxt4kbAQt6y0fS8rC7xX3afBjhd0XGNAAPrdvWTkLQcEYjcM80ymXn+fQXBVSauAdqc4qNKMVDzyyj7sWZIX9ld5Tz4EuZSc5OUtkpcx0C5ZjUY9qgtvF7hxObfqxNr3K/H7zBm0tO5rRDWQSfpLpchb1tVvr2MO+YKTMBrCmScynGfclFC+PihvKaFV8tK06US7nSg6oBT1YIKz3M2BH+HV/dqrPP1vPKD/tZubwjOQUCB6FhkQvQKrZwGjJxU6TZs0VGaEdcfp+wgFSCyjLxOkW1c1oYGeUi2mHRRwVFlxFarV92bSPUjN4Gds2CO2MWGeRfrpLOV/X7rSF0MVo2UXOT1Vozim99xqJq1lCMvZ8exF8VELM7iokJC6dw2mUSIdQS91cI2ASv+8z1zOP2UbpLS2EvMLDStZthEo1n7fQVom1w4cmfq8VjIgexfootS4HgcAu/AT5LVRQFEd1bAsPR6YZx2FT/Xm8fi+udmc+DlGZwj3pmAz7iJ0ELfiGvTYYF69RUELiZu3NWFFLnZrEv1c9v9sI+8gTdA4rz06z9EeSzFMzzbguLOGltNz9Btwt2J00t4r1Z6h3GnbQLUWwgBvu/Oc+38AxDFPSglyAnHLxlB/GSTmFbq94ahz8XVInpnw7v20pcOx61t1S5ZTTU6plseMEL0glBk5ySbr/guFeYoQaLw0uEV4JpeibsBX/3nTuY8bdOd6ssHWLwXdOZjxzLnlVvoE56O64NIzbyyqf2luFM+pKXAVUUsqeDQQtd2QOlQkMnx+F6Z2DSRZh8O67ww5SUxLp1eL6Wo1IBF+kYu1Cc920meLF0jVgVvHGxy6P7GiZtd0sdE4ebTp9qu62LZwhMgDoZ28W9ykgmKMcdldxZtRCNRonS2FOBV0reKmSbkl7Xb9u8LLbbBnGt3xhiPEZqon3G9c/aN5vqCZurfep5DBbEKtnj3KnFeEXpNd5LfXmB3xjNDKq8j5Ket99ukYWRFhF9QTyZbZviLZIiBEHOOoEU/tZI4ur4F7pO9Nx1TCnj2wTcnsl5i6WwQbVThx7TEVGUEBYkmjYjZH7ju4joPqQswkfuL09pNWs2pxnaJd/HTOzdIbOABba/A2aMiNs7IB7o7l5fBEkJA8i4IZpq+v0bG33SPgNyNCjVPXEOXuMZp6eiQTd/pYstbQIkz+Pv2ASWrU9dJpdl8uMvV7LeRzNiDddSV+rsuW1nPBPrK7CbyBjniOKYtrZdsGl6z5dc76gQQpaho5sbyExR6VyssFdoYIEb3y6vqHtEcHn9DqD1cqy4nDq1auj+wLUTUjiLaND+Xs90F7BkD38z0yRd1NhBmzLakaFGsn3uKhhLrEcD/aFb1O/dFao5xyGlFCTKs3kbVVzP8bkyPF32lCdwVlnZ28gNREVBb4jR5fYJJ9oHpECQhno8hGVtk0fEmeYbWLlfnBoDnnFdynquUaQy71SkCAKnCLWufRk9RQou7edjkmLnWo8vBRdTlM1j8bZnxEpEx1dxErLFWlf8RYxg6JE/17reXizwZJSanClXv7XSSc142y3LE2JF57LhsZS+Y8bwiGkefe5Y6PLlhsrQ8QGKgmDCQhgwoXckCZ/OXAZB0WM8CmY7RYiPIp/LyL0xeALWz8Cso3m54KLcLu5in6vmved3pHECVYT/D/87ZW7PQnizw5LCD2SN5W/JNXXjhQjReNxB5nFlxP4tyUcYbUsRAiSsZsVYbAvEtVuUti6twaQ6HCfe39JJFYDX6EDe8QotbKPRWj4Ww5FVhdapL2Vo3NzRpWHVl3wmCrR/N8UeMK9iTjoYAvhWj0HUdg5Vk0QM8/EHzzXv8wkc6cWApcXd5l8ch/ZL8eYbKuocziP//umk7bZ54XXqw89rqtQvSs+4ORyBrzR/emEJTug2PWnrOYNnT1dY0R7VvaFL5OqQssQXe7YlKkxGhJr4m4cifhHufmL1rIommk1mJ7x4MERFlXxDYNkgHThXw/npmV0ZUwiE9QnM9vL1nak9/NypXKZX4fZz/DEgowTv7m95OiVVLg4h9mvEXhLJiY6icEY1nBMtgqc/AGer5x0kUmtbM6+p0SHYZQRjOrp730LUzfEmZKTRELpqFZ6Ox/piuzc5jlbwtJrElK2n9DR8qerBydOpoBDygizU+i1fcvp7rIYFC2Nd4T6/imjNdKDD0Dj3zvknH5SzBqfSsBZl42hfXiLFJyaqJdUZ/k8pbWGfuxcO3A0sQ5alT2ae8Oie6LBjSJ5spDUM7kGs0lT0VY3ZGNF5ioK61lc/zJ4UNenWdibrnX8RP5EVZbWQA4aeNB19apOcPajRa3m6T0hShhSgIYMsOCSLLPOnUimTAlDxekh5OaYV8XshOTjod8SVhPZS4krXDf2U5q5wJlatpYXeA3IruSsc9vhio3gtAjtNmMwJtpgQPU=
Variant 1
DifficultyLevel
677
Question
Which of these percentages is closest in value to 74?
Worked Solution
|
|
74 |
= 57.14…% |
|
≈ 57% |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Which of these percentages is closest in value to $\dfrac{4}{7}$? |
workedSolution |
> > | | |
> > | ------------------ | ----------|
> > | $\dfrac{4}{7}$ | = 57.14…% |
> > | | $\approx$ {{correctAnswer}} |
|
correctAnswer | |
Answers
U2FsdGVkX18g/HbYOanGj9HbWfbeQp50Oe+3RX6FaMJAnxY03rK8TwQuCnkwiWvpfyz2cdiBTY6jubYa7S9Xosd8MnJR6Bns2k9rwmlwAvGUxNi35Sp5208VWhRR66+BmKn2W7j8Bgt8TQdr3fh/ZhqFgztaBWonpCvCpY2KPYfm62Nnh5XwKniQ0SU6TCUS04RI4i9zD/4NteOyraa42Gie1EsNXuHOu4In9sm9+fcfo+Y9HUUPssh00QttEcvlCAG5YCyn5gV/QkyNIsNUkelDrQg+ogHkfkb9ixRF3rjay+lEZlt00GoMKoEEgZav637+n1kGbXt34ocNrK5j372SWssjgP2d19jrC2JJ0N+0UxN9l9QG3pCFBJVbE1cHVVDfxKZiohJtDNHnLMG8VPtOVTBPqEyluUBjf+AFtrCy+TD7H5oFOJ3EKyeWj9BOA2uHnieP1QrklyXl9DdZIekGEHx8KZ7lENqMhtOZCBJT/8CYVZoRU/i1wgHl0SIkywH75kaoRjkNKXUkjrwDM4J8kI1HLywc4F9XlP3kzK0zR1yUIrs+rolHUO2Ds/anGHgW7irAtnNEJLX/a0m2t5ATjlVpa6zrj8wkqZI8NLPczQzAOQEWb1onreKCrw4m3krcllRUyUIMjm+0ZRryByvI0RkhR3F66y2He5bTKs96G4budlgwiDI83iA1uXALC+Q/IJFLBg+YcqhLoU9/4Z0a6SUT0pwF0w2zxWHvC6wYkULQb9pT8wauQjGc37l0s9OyY7SOK6x55hY0DoDNfhga00Hyly7OLfRYZqdl1BCE0pTOaMG0a6lOhpskB1JdK4HvaYNiSSIFVtebxb3+2xJ20gv6ApVwh3L2K0gqXWwXVzZfrsDPuYi7JvFKhjGKaaBDaSK9wAjrAmMIgYPVSDAEhuR8e4nfxa7jfDhgxTQtQO8ltGB0POLW+bW4BCF+7Y2BICMsMPiBb1TUbh5UJn152azo7P/i/A4jGvM/idFFiG83tUSiTqrOyyt8svT7UYvbztQyGF5JbtpgqUrnGVRTOwWSlIPPZuW8YRAvBr6ZQ6v4sDNFbL32Uelma1m08K5Nt0coU/8hiM6TRuz+LcTwI9V8I97pmDwzzU1hvN2E/rmeA9CtHyakF+6GFkK8xdfb3c9ec6m4HrrZErSxa/2u8qDyi4gJiztjr9oIk35BVL/XNE3TXSP6TtdP0Z+PzVw7Z2j+7309urvGLhnPCDYVymDGimr3xl+3bBbE96VxPiqrZoAs9VUOFqhTLzf88NaGXos9z+84iLqG0u9n0uudTTqBKF8jqlYnHQLknhZZzABnzcc3i1hEx/kMyakuYkHe7OBQN3rt8D24kMbCaY2kDSvCtf/Ka3H5GNUuM7K+G8cxMPBochUtr3Czm6ezNKuCRHKAoKoukOuuddarCzEDgPf6dP7igw7N0qcqqtNXgsk4e7AqY8TOAQg8/ixpGio6jwMWrf/i/+edLjvDb7wR/hzqa2xQD5+Jt62VNgOZHk7g2vCY1CstChK4qqot3a2a2RtQz1zz05LWMVOVyd3Dg/MT2xOHipXDIw1YNr3ADWlb504G+P4LDfVra1htcLTLqVdEbQGLA6UOYN5OqLcFcXT5whNi16c7tzwCHCUMvOfQfpuuhP/7Qx7ASHgUrNEAxMrzlsdlfH/zBo5YQ315YvUNd7p+T6gsWHUaMU5fjxFxo0FhHnJltEFtRqDfMjVPiwvS3nUR94vid/l8rZVuZVjjMi5y2K8tX4+SLOpazhrShfdxTX/MDIu5uquDyFtPvG5Jv0q6GwZt1U2zxlmpPP7wQQBlVdbhEKTye6KOpuIa15IujMRNivV7WzyonU3GuauNuUnBpzoeOn1+IDRX30LtcsNq9+5mbE1jqqsxVOkrvHYYVZj7rsShWB0LnRx1YB9hEd8C16mP38eKFyfVYJlPQlfpdKdz+RgXWQIfwzgnaS4mK6EmoKWminIaIOdiwTQh3eg2SMbn4HSghQcWJwcB5olAcyAbXfNM8wpijrpnH5S0yw70lUPT25Dhz7b/awoSs43y6/7cUJkngrqQIuif6ODGkUb14DAIq2ELoz/0JVuwTuEUqfFBqo5wsVc6LoOWnX6Cjt+GTx+FD8Rk9XqriRqa1UB327B8JRGUeeitu5EAOTiq1xhb9A5dc0NqlCItL9cxeQwqFmmitq/vEB5O2eMuKG7Qvp2StJfRRCEF8Sz0kVCCU6BYEwHa/Y0F+GKZWUAfHATe0S61Ve17UGg1GQHj1CcyKkuz6nimoJQUqnivKxTLakKnGcFkkE2Vyv70UNyl0AWuKKQphqxitDuOQrAoVeI90YkWg6RN/GJbnu4MyFmVWulcXnovX2grGxLWg+5WE6fY7GQLMKSqLkvogpMlIBkGz3zaWvj3Rw6c4pMhwZOk8bbDoKmvo13BtVZU5WnzCpAGs0Yu8uo8cYTg2WvEqo018CpeO7HieDy9Z2lfUKXTenXOlsH/H0J4CZXfxC/a1pt9R68A0WVYM+3EZQMnlKHBpzEkPe3NXETljT+TdK43HZoo3g1tua6d3/nnZQWbYJ1CjZsu4l/c0WxQCIgfWzHM4qBYhL15u+C1dh+UZopzBDZCMenZEidNNg+Dd0cxaK8IvOfzJT0rzfKurPtgF9ffUey+V1Fdx1MR+nEB8g3ceBUhMRXvTj4GdVWTPCb7NfwjGASygommWVEwT8DJVNNuxsrK5df0XkUrBFDLTU9SMpSwzfRcXNAcPfZYQ0T5nbs5iG24r2UhYZ1a49pNJbeSUirNGh+rwTt4inila4EJhee1KogvxufQBN03Kn/mo+ZAfj6tu3hyhW8K4/BxGp5EoW7SYJ1+YF4W4qtK18O52V9XgFubVzZpTfOG9JvuxH4hN3ve5+g3RCPfFjAhpVO75rueecnYgWc1ZQoXFG3+hypAgaa4wS9pqpsfHENBMmHt2D6Shy5WaQsmverWvfn57HAX/8nIvyYHod/O511cOSIbhNFxdmHKVqmg8u6rPAPbKK1x87f7HHXipGTCNsJc+AFYAtTEP4BjFFlzWnstguNXLQse1rD2nXT4nMuLfuXPO9sdR6BD6xUrkcHBtGyHTBTADfsZ03p4wkhb227WpLQAkqxECWTAlDg/w5nqzCPuNc3OL7rky/0Fxb1kTsADM66ebmsqZdsMqRdmx6kw/DnuT47Z3Z8sJRHlJZjnVf29JQmQMcNEnibYWFDQuPDo81U+aMzO1D4hq07ADitrJDUjx+T898VmxlDo+wjfHweZ+XyGDYB5VmhEO8QpfEOY1ZG/SCep4NvWHEdrmlR/5W8JYCbsPgTJGnbC7LsZXcdTywh7rPTKe3TAckpTGBckId7W1dM3i6oT3yIyHm1n5JF6pmLm6Rz56shHZpqLUn7lueUgOc4TmQyhY639oCu5PPE8XdSky+TJDRDi1Ydro14+dB9DFWmqUNq9Amx07rq9xgZeOXyzdRZcqiQUOBBiBUYwKR/oRRXGNlL6+gtF4QMBBgOdixvW/3uepamWzER57FJT+Lbw3RIpyRDrBrw1dNcj3cTMKqf4iwP5ZCICB0PBu22nmOolckTiZwq3LFDuz3MyWxJ1uH7OMen4oEI/HQC8K4GQBAV2u+d7rml5KtJfFw2Pcvv1iEE4PHaI4YwG2KnIhxxmYXXJzJxCM9PVxnmHQ0BKrk6yewMK/ht2wGF28GLT6OSUh+qJcGgWT9zMgIWgDmBrFyiOhCN2a8JfgS+lj00U1m8qcWk2hO7ca4XBRoxf56xyd2hQ7PkFKqPLIGKB3gifyvWw4JqjVB3i7urwe4WORzQZT2WcDNeSiSGOigoBurx9FDZlQYOPvIyjH+4HmdqWZAqvYYdQZs/ZsUxCaACFYZNnZos7byGBIQPZXwFtUXc0/ilo2AZ+qHBCk5Tow9uS7LSgiMr+S2VTdQZhB5RBvaNWCSyF/ccmja42+4X3kuhAFYgN8rV8FJrowfaaDJE3lDR1J6I49WAaPK7Z80gCBeDbviao6j4u6CSZksNEr24nqSMlPa0rjrO4OhLnrtvJIt75ziO+9vh8WUDZNUujd2TEULn+sfiNlCj5A+JYKDL+u9HL5rEFlQwNrwnD53OrdzhDLzMuVaTTHb1w8mzAXWyJIVYSW14ssQ7SxZF5s85YT5bsbV5r5QgRI6YBqvMvlA/ZUYeGl899Jw4PwoOWkD0zfwqeWDW97HtQDIHycosa2DH8o6y4BKnGLJmMvcpaYKdP4QGrVvF7jyIGy2aOEESVN+2L+qs0vXsygVzbUFJ9K+cvu9l4TGNYIu76aFts2jDd143alAVo0nOj3zFRQQhVqs37jEKRfcIMGkPOjVH7GSY6ZWeT2zeBnZXeFzlBZp3XXBod/DI6HhtMxMA1SuB/LvekZheYBZEpJWjcJbxuePox6iGjXm6CmAbFM/PuUZZnschCBICfqZ2K0GXtaN8VQ6WGKl9sY/I+c+SI0ggmyu6PUPjd+Mg+Kdmk6qDuh4aixIOKHzqAtAcqqKoUjt8doVg3LEz5XNfaHg8nV4ZfTllfltC/4UdUopmDUsUWDbZUwS1vieLbpBJ3TQdCtWgsHql808lUnDDWbajQtU6OjQHv6iBFFTiQi3uCtf8ei1o6AOhL0Lv3JoKUV/pENsxrXS/TcLjoQS6EqC5iqOtutSF1/kkWrBNUiOPuSj/pPvrv2fCwlyD54mdubT33Iio24TrvBgu8Dmu7td6GbtEoDC4eX+CRf3YXsnXkpHzCcHU+pqnrw1LxmoXK4RTpPTJT7XV0I9qOpp0GM6n9E+/AC5o2Ye/NNImy1hGD7AmLK7LX+tMCsEpOfI5ZyVgmBCnMy7IXvDWRFn4B5qXZe/7/KDCECjyUmqf99TtfPbfgzF0BiDCag1oudz6jB7dcDbA0S0KstCXXLbmSsSb0KRmmmZ0cQS7IQtI0yCDB0CBz94adJPOSJm0AFl2O+KhXm4HNXQFSOqTCSM+JSjlObST/FMupvyZ9AdUbT+qQiaH35OjRKtwtEeuFtNlp/s6Oh8JAKB7shiLbq49iZmLq2uPF7g4/jxYSqy8MdPi0ys7btE5whhUGjpOsXLfmEZmHKc3DC3wGJd8NvLP1NLY4u1NqXIHGDExftE1WtkeynP+FjEH5WRjekXVx4CgE8gmnFgjdExb6fagxXEeTc72pl4qpqyOhKPZF+ViNvbHzrkfoUldOcs3JN06qNvelPGzyLzje26yuWYOKjKn0D6McAl3hb5kj/tgTZ863TjDgvDfLoT3mYHohSFoJ3a0x8aH6r+eaJ+Fte1BOQql/B2Jns6phshq85QQH7AH9GXOfByubhvhdtwGwhDcVgdfj4vhYA+JLt/+CpW7HR8gX+AGVMcBSeDpILhLC+N5X1GWL1jSzBHH/pAN2EhxMEl3k9O1NCxHjNkuAzD4MO60VjJW0e4hjQvXtq75kLZUvjjvqfrIBkuyJ0SMM9kKoI+6Fnt+G6+NOyVtNWuJyryex8vQysu5kgVOaL7Q8N1RR/SJBwtQJcNRH1EUe//weWhcjmeQ=
Variant 2
DifficultyLevel
675
Question
Which of these percentages is closest in value to 98?
Worked Solution
|
|
98 |
= 88.88…% |
|
≈ 89% |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Which of these percentages is closest in value to $\dfrac{8}{9}$? |
workedSolution |
> > | | |
> > | ------------------ | ----------|
> > | $\dfrac{8}{9}$ | = 88.88…% |
> > | | $\approx$ {{correctAnswer}} |
|
correctAnswer | |
Answers
U2FsdGVkX18pBPcrfcaMxpbnnWBlOpLBNmbYoGSuo//MYJZEeyWgeO4FZKAk52TWby2wEJ8vRyIHmtOCOKkX2DFKQu1i4LsOZmlQ9uX1+RaxLOet6fo2+H68tuxKPNPoMo2Do5nZIjku/9hy2oQgM6kypnbGVPUrwT0sTB0mncFgifkY3hDvcFZWtFLN9bQJ9bxMwFZI8rRmdQLax1wedQn5Ut3ilFAM6gCcfZOAQkXpeEhPRBgMH+1/9bCm7ThMm6iZn7Na22x0mNsQQcJFKbwkGbyt+KUxunbsqqqOf6bf4tSxFhJ2ihEpkz0kBcjecEFyoVwpmH1VUS28kE0HqB4MWXqGgRbrzlggmDVxGQtsszqztnbxF93sQk6is119Qj+dkPO1WIBvoLor8w1VVMlLQze4F2yRNMosof2Ec7tDs9S9lri4C6flMj+t/PiIDzC+er2BgQwc81ciUqYEj6sYlmWZIujTHVXyqs1Q7NkXXBtqGjHdN1zlWnPVxj7R6cQ2Vpd5c1WlWD+U8ppHsayLnZszZog+3UgKQLf/oVZc33v+UyxLWeVX7Ny9CSRGDwqGkXToflDLSJWvd7eWSSqMlYdfup1dQE9aVMDSAu8K/++N7g1jalh/SraHZ+30ebI2EmlM3vbW7BChcNv2Xb2mvfUM2+rBzTBlbhP8XznKBulNeSChC4UuhMQfeYaMuCviRPMaHJ1aHrPImb+0bhEueM6WQaDS0HKOMY+XUE/RLkVk/E5fHLOQT+G5VofVDDqy5fkLfajN/3ChRfzrSwU7fAl7JjfHTNDyLw2zo7SbdQAqU9U1F5aIk3J2OlIJjve6OLYGfOxd3PioP+CAnXMNF8hWvy5uwXrjIwB3IqkkEbviZOvAZeWS6B6pxlBBJ0fCjXcjyaD7X4AWtjQVSX0DPCgZkWtfvd9nnPrFQWXvWZjZmTYFbCDgMfITbYPJbR2A2gk8Pf+b+XOaPZfhio0SqUN13Z0u03s3/FSaHoOSObGyEy/RYbT2rR3fKn4Eabxj5pBUzj8CyRH7rBRF6phUOvvWUJL/NBBTF6Nzb+51yoyi5CxgCyjrB79jr0SJqqXNGuXvZkntmBMS4H8vp95wuAf4IEMnCXa9ugOE8cJpjaMLusYrcXaex5MtZUXzD+I84g5lGYFC9fD4bfmZQkdavYlmJV1YEWAj30w9PMWVwjs7MtTigSwGN0S1FsaxKuV54/LTH8ID6VMZB9XJ+XaHKXfc6VDWTA07XvQAzWf2uxUw/ytrLdusNKtlvLfOSOnCPD39maNbaMDOI0XEfDdziYK5i5t29QqtAiFyUuamlCEMYLqcgINS8omYuuPYBIOmH0iDMU+epVNtYSTu0Q4rrHhxP5dlq8tXHo+aeEZEddUkDnfxmr95zGBH72C5EdSVlEhNtQm+kE5NIsQTyySlS3vpeN7L8AgxrMULshW2aZ7iBQwNiyJwaF9LZHqQ57pOqVuO1UneA1ml/8kvCtI6ZPXpniF4ZUJSdRHffXDpTafy1YVOo7kuOwo6hborreKFBkvlajInTQjx34Cfe0OJTadyg+mFgT3iiClUQzVU9iosEhEpXYOdxS9FypCzRcYzD/ndT5qdvjklorG17k2ylZMlvqKkMHm36hfX1ShzT2vnBodISYXvcNBxtGxWkZP+rmfU/8y5pkfirK8A8PHr/4Jr9S+dsxIGJ5kDqClJbVSh9rz4mqAo3H0Nrb0F3r15Pf3jb0nDgYoM4Nh1Bwtms2yJ/wDl6bd2UnHJnbeVHW48GMrOU7bZCKIgcsh77j0ZUXwzRSZ+iZ9SVJ07e1xqcG2FmCahCvSp4CyU5+7F0xpbXADqHB6QQqDHIB5W+a9UmGbdPFpcq1wiBHGHo4RqTKerbn+dSfMm0ZAsLQAEaRMTVh/CWEQn5YMo5NvJoWBq3dYcCWLeu1DyrV+6SNo35wWoE90MlXtiTlCuCNwThZlp/sT64PPBIlaWp66Ifvcp9ugvLaDB+xZHH5DuarfwngtBnO80di9PQ3JNqiM8IjYPYPgeQA2A9H1QwEtelgvD4VpryQf4MF5NQD8k3bCQnpvauXNXCbR53+0TApf2pmwPAb6Pga0rPzo3VteiufrtTanzKH+cRBQbZ+T6hnBwlGCN7VcUz5AdTR6eqgPx8b3omhJam3deSnwkzI34wUlSGihGNgCSIo7axM3FtINCFkuhD9H936FaX2+Dva1TF7RPgQc+i4NBUhOkaCSA7wIOzG7Eqp6/Bxdktgt7Wfn/tL22cfpMJ9uq06+ahsYvwZZzhe9ly7f4H9CAcAoTssffJaNvt+fZfPqmgTMOIFEJcdOQNfXoHfluBwibKUus09H5LAF4limUqosc3PN3/3NkWs9do2U403ONwGPxunAsLFnRbS6P5tHcQmS9kHavKT+lWuDWjJXacUkHY8J5Rb1cfgmJ/eaYcuiwB/BFEQ2WOC66PtkA/BKVhxV+UJ8Vu2bafyqtMtqL/oiYaYXb8RmiRCB42nBNOD/5qGF/ljI6jPpNx6ovT5XAy+XxJ/LZb/D2SdmUNpPznWmqOL6oaleR/oaM3OVqPZS+asHdJwYsr/Zy6rS5hLTZed4XIHFaip3W0kaaGuPf3E5p9kAyrvNqV95fgknc1escnmYXQHSYIOHf3s7PfZ1SSFlIHiz8nkspmJMmbpESn93s6kmKdJC/a1nGsA3QjdvD6mnLeBcxaWdspy3uXox+36ts/mSmQebcIAmbQ2Seeg2Vnc4Kta8zrafI3PBqrzcTFJiTJCm25ZBRE3y5RqjxhTIh2QKMUyX26WI6kAqmn0rpHzXOSIi97EtD0jg6e+g9uUWwGqfXWpDFDqm+AJL0gBL+z+UXMvjfHN7arYuZAOtJIJe3ZRdfqdJA5xiiNDq6mcqY1i5d5qWsCoz42UJ0oIyMzqCTr+hWYXW5nSR2/hF+LHgA1etFDlRRoYvD3NRmzvaOhP9RxImkShED6JVScTKWBFvocj1vFB9Os3Mk6Y625Peo05FTuTYwV7+vlVsxDEpfpPn4ae71UcHE+mDLVLFW/1yAthv1sXGpYEu2zE9qm/02MAxta3gTCKB9ICS9Yw/KOJ5lwd6kxtcWLh95uNM9MI3cmNGXkC7DZEAw6vYG4C4zaE7M8wnnKXkm/QLdTOi+zDAaizX6AbUQeAAcvxArrD/vR+VMcUSUOukfeEkGhu3XPzxZYtePkX3Af+TqKiZSCvgu4iTRXFjHYWO1L586594iYklBzfTUq5pGXHmmukZmoCoSpuPn38g9eW/vlbU3ubRqJ2t0ZInsQKVIvU4BXAVSRVkYF66dBHRYgMf/UqCgKWLNeJ0gjTxIyI2j03KARaJn4CEVxj4CDGGW0I9SEhVe0KgLWBLXarBKgI9bDybP48lslaiZaxM8CnMjqVtu+z43tH67i8sRQIi+joEm1i9r8NptedeMWxEP9AMvF/CFi/c7WB5mg2UDWAFI+l5LlT5ng4REpibYnNNgtM0bpGxkQ2xF+2xr9DaC+OT1zjNaw9Nx3Bba+goQeHbAiHcrAiq45xoRHhCbIPrxgVcFjpEdOXZdgynBi3GFbAdkmmImHzhlKT3C06lER8D8JNbFbobYivVjPB39FZLV0UWVSL3yiBNsWv7abkiFwiQD4cC7Nxlf6/alTNbOAWkoNUhNI9aYns1J+3Yan8DVfxvgtRW1unBxmyHMFP0vVYVxncrDKzl1vUvMjunY4BKh/QAjnPYFiEDxsN42nHSBGVU8/eIWbAl0bErADF7VryUluwBO81MyReMG/SJaw0n1cS8NpAb+Qv8arn4p972zP/m9Yb2GxCHkmzEyRvwH5zIjc6M9lg3IFNzQGtEIkbehgT+khx4ohi4hNTVj8eQxuhkOUa1ZTBdlw8QQkBNH+uH+IoXIH2cJhYSxBqubImDSothNHfDDCehYbBp3g1YF5RHzYU2sY1aR3ZOb8VNfvGqoUQ/QRiCqXXSjDSKBa29hpmPdIhCMyOr+4ABkqBG9s5aSJwGtjBfC7SUa0mFat5ywaHj85XfkANicP51lzRKl2JOQ4+THh92D7acBCh6g3Hz2bpX52SOzvoJuDFC6GVXbvSdbgZSPItgzQ0DQ6wjIen6Nxtglam2keTJxU5595ENdO25MNa8dhpsAjBEgrHIhdi361CQHDzRea1yWs2FdU9uoT6hBzJYDMOAHL53xqFoS7MI4eMv/DeNl3g+6e+cWIiqRvizlYzy9Y+Au5NQ3F0j/2L5l4usE8AflN4HrRwlhEr7EFjhVya+ZdUfBbSXdE7CAaZqKrlmMyJdTIRGeRUzdmvvxz55F5t5adhHzfEXDcShiuAh37P7CF7eZCFtGKeI6gkiSbmG9ecPcES+C3BEOwU8MA9hf67E4ChDAkPnOZeEoUJDYO10TsU2AH8EFMfWkNagtanqo1SnEdWGUJoeeXLhdp9grhKfh+wp4M5OdwCMqTR/yrNxMAOjvd77UJVB/Iz3jeTf3dT79bYcf3QZOjHdbgsB5bJhucdHqyoQDseU4uUcFiAel+HLPoYW0WeVmEiPqvn5DyzqDkj4qqSImvgK0NEDgmmlKsUdv+7n+Mc1OMBamwsU0CWeArRAaIfOBY0NdGG1Qi9vThZTKTXojJXRAnbhHe+IH6haQCku+tCu7oJ2nUWPGruKTOmL8/k6DESRH2zetBV8kc5HGOyRr7TaKmVI4qaZcY4y8uEPC5zb4FKDFkXef7QkUha7b3TfSoBn+AdRap0RWE7/L4VENS+11YKze9GaSz/+p5nwUAXp2Zqr1xqnzW9JbbrTC3AxIva7kF6UgFbvt3OL8kIlHwdhTShyxE9knIZB8PzmSaqMCTSZoyAvnPXmc4Hf+s1ttndYWXos8vG3EGLcPzwVfyC/jLP5RlVR4UGdfxbRsygfrRJLEV3wy4s4YE/2Mk94KJEM5hQe8mCWqT74LVX51dItJykBnwtvZifKa7p3i9Q3D1okuKODHTYKCBpxzMlBg4hue1FkhgYmyPtgdUAdRlWF42gjMw9QCqMU0PprcZKy9c2KgM3DXzANFhyXk2O32cf6NrZsywwuM/U1SdlXokPV+N3orgjpbb3iP6AQuLKnPdHGQL4bzKfpIJY2EosLD4H96YI8LpNIt+XQC8Wcbdlji0Tb2towRLxqwImrq8m9H5OXNPRl1ZI81SjmCEsLH/nPaYW6O1clmMHaGrNolPzl5uQ9Rc+GkYeQE5f20FDBzqyE1ebLNyOG+w/Mfik+zbYrlYtj59l4keh+Qk/Ahh1hgTKX3iB26kRLnWgzxxnd2e5+Li1S2BtxLsXGCCO0na/FGvZxmfbv5aNWqL/Uu0WS7Xsnt9XyZ3jeuQLT5mM/BzJbw4PKGaMnTmZE1k0DRiiXty8ZLXWXxJXQLaPBePxEbTJ+C3+ieioH+eee6PQt+bB3er9oG3SUF7wrD8nTMpWxryvFQPK7QlzY3H7pGcTkqAKFQKbTGW7inZkZida0wC41x4dckLPTUEFPi9Vlmubv3KBpcU6MITsBTSP/MioqWGYKhrFG8L78SbLMsD+PdOxObBaY2r/ENTustCv23PPljyM6nIjNP2IndPIdRzGYqOMAl5rcqIpU5QMRMdIieBrco0ulneNyFVg+z1M3f
Variant 3
DifficultyLevel
674
Question
Which of these percentages is closest in value to 116?
Worked Solution
|
|
116 |
= 54.54…% |
|
≈ 55% |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Which of these percentages is closest in value to $\dfrac{6}{11}$? |
workedSolution |
> > | | |
> > | ------------------ | ----------|
> > | $\dfrac{6}{11}$ | = 54.54…% |
> > | | $\approx$ {{correctAnswer}} |
|
correctAnswer | |
Answers
U2FsdGVkX1/TH8y3s4muHb1Ynd3BLojMerraaq75WxbOWk4+DipZ4fJKBjioh/6Dc9o5NiDmYx/eGatOr8PChmgATgfSeY/tgNOtBpbkRzKmegLg8MWdQWQIrht+vJDTdge1rWBX/RYEv2hMt/1xdumfpBSigxPaQbmo3nABNPJBf0IyejPZ/1fgfFJtyeer1o+wg9SapssRHIcbP/lgAEglqcFGf22dZrm+R6B5ugg+iMsbT4C7pMmOEZTlhRS4Kr+DSA6g2Wq00vndXLDivXxgKFrhKSXfYFtwZJ0PTVvRvRfoQfhyd0aYVyU2s1rgYqZKfhhLUWRkM711EyxoVnlilSRih6HMVtnQIhy5XARtY7lxQ6NSjZD+9Y84nbhDWsQDPg68gPHEpViDfpqPyIPt47zb2Lq66JKX6cXj3dFw3EKArx0vsFKymT7qVwCMRpaNbFugpPvsZ7ccNwsdS6SMqB8//4PXZteIiXqy8d6xQBBhE8LXm6T3akAOeOO0qNGSE9bkIl/A2bTrv9Cb17Zz3LOnZ6WIxbpaKVn8O326hgMlJ8kMHlWgw8XGM4OB3MpBMTjHTQ2ubkB/GQPU27R7BPsKAWQ1qaIJO1YYsa4/f8Y/VdgcH4Ne94GDPdvFHJa379Mt9ANUZ2shxrg3Hx5IUKraPW2KaP9Ia3RH2cRwCpthZcbTAag8FCcbHBe63J+Mm0QIYOU37/WMkKLHUuspTzjyvDXJdOKnORapcD/kbiXT5xjpuDE7QipnripCz0BSwrJx7xxAASvjawDs0Wl/8SBTnteK7JVDhLam2vZQxbRxX5uthdcqaUT4p8el/n4xOvZDD4dQIpVyURCu/gCM7xZzadC9sN3xI3zWqs2JxyLmTNDOaf0O6jM/cP6s5gZG+KgqNKnggQ1M7E8BMeojekvOHM4zPU31b9iZzp/8FzzvBUu9GcJcaw50OqcXkxXjnXwkH3oJ248ARwdecgc2QLnMlN+/Z4yNSYN2DOKbAKXRh9IxsIQLokxdoK2hT0P6HeMtSxPGks8utTt2fX0e8P+pgLy04OadDvgOQhRjL9m3gSJxc/X6cDIFhHOy9qsRcVhLubFNXf+Q3aaM6JTSu8uUylEEtnQyAnE3m7DlyrtE0avi9DzMqlNXRXxiT7fOGbaUk/R+s5NpUJ1SB+CEP8ndi7TnzbXD8CyHGA++oJh0yFjQIg7UheEB60vQdxduXBRwNYAVJLE9AYaPNZsGn6muArXMEoz2/hdAFb+Qgw26f5jbzGaOizN5Xm5vCEigU7bimOymCjpxJ3/PMXL1djGx5jP+iXbUlS7ylaaSXIWdx8gE83y0OMnnSMHAXAUhpphoFZa04bH9kypfTLnLYcdIbYZxibe27idbn7moM08VViib8El9eLyPqUl88St99jbtbsufOXvgweyVUJ3XFFCKIPO3EkTHDtLoLYN5xYMXlvZfMxGamBBHWAouoQH3CrKJ4ik8TI0pQViM93FYKz3Z+uvzAPS/opBTZppKAmCbR+f0hcrCwH6woXMfl+VkXJplo3juV/z00dqA8ltNx6Eq/Re59gmVvj9G3ypgQ1tZzGSSpHXLUWSOxssGlfpYuq9jdaTU1AvcHtgy5FAhIh4mcWyriFZDpFutNiJpg2XJY3naPCy65vklPWPbpX9hhNFlU7cf6kfvw1Pd2sSW0trjBmPbfmSKyLBRFpTWIh90IaQ3UuL6KSzz/YFLolizVLPlXDhCkGO9OlQDd5pgJD58jFT1/MellIRucDwwtaWhiAhj2S0H9Tl4KL+a1AWIlFN0jLuX8TZ2wbgy+dOchquxQYtcbHyCQgekRE92eqYXnnC9eKGX7qsvcOyoByOw3p55EAryF8Rcz04qam2Ty7ar2FoxWLg+6z1RycorNFBPdJi27Zz25ZeOM4sHPg218bZ4SHaW00czOwcimBdczdY5CP7tBxorYqaTLFLnlm/zUpl9ZqnsNeJvC62izd94dVeznUyEho8kKWwz9xJU6QvuVtX2nKWscanJJ57HPGumENZ7eTi1b44ohIDEOu6LAlYsfKosC0O/XZN3dhDTZpDdxmsjXHwv/zp/k925nJ4cFTCZl6u/NddR1yYHj4Q3B0qLpeFVq3IyS1XVEH79oB7EhuWHuY55/QcryyMbXxZEhG0II8Ok2e1w6xPskdy5yGYNXvaXesmFuN+cb/uHj9WbqkkAx/RsOCrPklG5KVNPGJ5WbI0xKBILvfxyrOybrjACc6teNmvJtj1t1+C9l2k8Fn6Y4bTlJvd+kFILAxIzQYKxC3SvQTBXr92JROrTLq5SKkrWjj7VR8ABUNVsFJz+mS+ExOYbbnEcJCMJ5A/DHOT8cP19Xad/TXL5hLbUKWkM/P2Hj5tzCdLObIelBCP3511467+hyNjrC162asgCOvhONIuXnWuhbHBYY3K55mZfDY5egS4mKHhVnhxjCChf4WrWwMtiYqX9sheumuTzqr3w0TuQh6UEZtrVP5Z06ohBKiL7+wzncgQoEf1ren9/jPJLzICby4ghEizL9om0bv39fk8j6Pdrcx839tg61BeJsw/c0VSdsyJYFmiAMAr6mATOu0CtiG98Wa+bd01LoS8lO8xnnebKAAxYQI+iyD7lLhYppkmPC6WTBWkvMej1jli6ay0xPI+NzELejw7kCEelOWc2NdBZr4D7qqSmFm3z5VJ8WR+8oMrUJiX7yVDSxLZPnvjQDWmcp17HCYlQI20/eYmObBXq0X1xcJ/H7PBdN3fsO+Z+FaTy00BLGoQ2udn23Xmd/UC3WqAZKNCttLmWD+EgghtrkJv9nVI4T2Oks1rIlYa8Z50AeUdAQpcLs5S5PorAjGsoJpQ5tCmHfAzvjgO/vocFe0qtAqeRYarCh2f8UaTCQe+vdg/7wbLC/o5YwsEndasrWe5EVjtFo29cjOATJbwHDDPIyqCMN2P3RoJjj+i12+VVOnAOURh1ESBbcTbp6LyagJ2um3DAK1Ui6YlNqsr+dzSTyc3bt6lZ9EanoVgkTLUYAH63V38wxdPRuReugoD2ICpO/ZhWDJ1P+nSQks/Rz55fDbTmi8bDrFY/+kFYx8JeFYofH8ix/9Upy/Mug3N2rqyYXWmdncLvRSqkcJQZxDUjjgCk/Ut+mw+uKnqDNfHLeuXlkfGvu5xz5LjPkv1ZvwJZmdLE/lvw1bSxMS3aOWmyVj9+1Pfkl7pwGhIbIYeXHWeFuywWN4TI+hiaBoG16vxWBNOK7NPvWUvmeX1Fn1kXRqoIPPNGGAjNvESN3rwRb5bPKbGKP0hFVAS+m83WhT2nCR+zmPHA3BfAwZkiEup1ya+s3UiP5V9r3+a3RdCyT1gOpKZGrRrZb/OJt4YlnkVEZ/pkdincttqynDwSTfcg4uEwbkRU/ehKgSpsdw6ikV/iij7HvGEv/NwMIPWniqMnLbp6zjytxJMXO084L9js9Xyk3pdw/h4fGGErPI5iqBLxDufJfedsqOJS6A3FsHM8TWKvqHvTmxH415YFD+8Mg9pVLYg1E6u8c3YFQgJQzxqc4am8itU2HJO4t3YpuZqvVY7yQappsMLqhIgPvJGPmQC7T8nf7rtVIG4ybOHr3z18J7terTtSRd82iYu45Z7jiq5Dj4nF3pY9nl61pvfTKqUqPSsfjWNU1NypzhNQC5BPEHBXBiKeVherFwTtj0GV2NiNjrTmXqDfSA5E6Y3z+yJ3hkfyV3c6++6ZsC7COizOfRYgoFL5l+++/xtm4LnabhXHtuMLWJpNUG4Xtzn8RMRSAgo9o76+AmKo2rxp9ZkFYa7Pep0luYQ4IpgJHERv5/KZGQXOugjncTTamxJ6iSxk5ZfhfDXO9/E00wm0xatN7z7BbaDm5yPGVHpA5YlwMzmqwO5BL+41kwEDUl5L7L9HPB44o6Y/pd8XS2jhhJ+5lpO3eSpWn9dSudMOk5VlcnI2Rhq6RQlEdKI7RH6IStQlosWyZkQPsJZ/xGgiwVS6y+50ANyKv96BZMzTyXpGX6B0jqcP+BNxEHnqYDicTqzIB2KKqHBD6j4ynW8JEzjnsQ9TDi24ArE45y4UL+auaHGhJyQwjWo7jb8ZRlkv50LBn0Jy2bZpYso2QZv21f9UZRjo9c/Eq28oGQl/yUMjCqq2A6s9yOc7L2W65xJFvKjmDnHuBBan2keOUan3De/eHPqvwfoi4LavVBV8NUdWe9c65Kmj1bgYukg0TRGqzoCewOEtQefcC42arYe/KDI3JcM90yRbufH51rCU6YveWCH0OGIcnYb1OSq4Mg/OcwHfEFX/tSdUYYZrqpXpRdd8I+azOY1MTKIvGrCCRniZ1IEDmsNlPOf9z+SUt5untOVihH+1GsEzR7kSi6/OFhl3yzSxSdYVlTVOPJGRKKmznNuB73Jx+GRWk4Yh3MUVTSp6rbQueDC8x+xgT4ZB/Z+6f9mDRzE3e6aBoc/hXtx7XxHfTqNh0Cgfw9h1DLuw7z6iOcbPfijiG5emTbBIP28MVNbWc5muDgAnOPPRRHYHKahyCOVJfE+Fs6oX5Nkmm7SLGTBeCOWw3m1w4TBARY7a+G5Wgib52bsofacMbMdzztTZxySl35Ocs2fD2MuNSUDznTYp1V221o35si3yXzYurY7BwdvaIECviBF/rE2D7qBztAmkbYvpH3EjtvffoNZBXN8ydVqshi7A5REkPrjXTdtU7KM2ZPILja4+bRvqrU01g8+CqIT/e30aCpuly3vMixs2mKuDf24SNHPOuPn1IrcL2dM32DJ/V8w45k2ATUYlmTM1YguRwFyp1wDJH8L/7e4PuhGJyK3OPSBwpbQmKLtn4/K/Qynsert2gAxvTHT/Zsf2oShcKLSeYgr+7Y43wcYZzmw0aXpBhn/ZNBPPp51y4YFPX07zuyAOcx9aVy5BOYmAeoY0OdBs9yvjKdk4fnUqs6sQaKhhBjZ7Af8j+xRRZVtJeSy/HmQAIyv7LJoM6me0Qgfv56cTTestgL7sJHlOsPgGMxdDeFx/frqL6U9O8zmprGHSUCG9Ktriv8QHnxSKTqbow1C4p+T6T1xV0O0Ox7G6Vd3NZsMFOPbSi4mmxJRn1E0oBw+eh3XR8kJ/rm2ig48EWv4V47IM5fMynKE+MPdrLbxJlPqFG/24NManMSuDoSi6fa+P/xTwO7AubM+ITryaB4swUN3rytMm02nCOnGomRBPHcH1vsipugu/GdZgR23mlFfpkLFdIqVADwMFkd5a2N8R9e+3Rx3Y1WumN/yV2W5vJBLBt3CQSHv04aDwu7D2oXMS7bgbl+GbyCa5MXgB0VcpRAnJ/ksJ7WzR8MgnxWwIF5dkTU55gvppzo8Y5rlnBUXC2w3UVCNT+AkLQO9mRHKD6qbnuF4K6HknXZ52dMh24oJ+5Nd1ZMKIpVUl40xuR9cD/IlOKhDOmfz9x6OTgjgrxKE5WDhOIVKOAFVZ/vv0416C9ExVA57Ypa+x71zXf+S0C8luvR0HZ0iho2XLmLVsRNWMTCbAZ9WlPdj/+GQZW3TijoyZmvLpk3pefG1eMPUfUrw=
Variant 4
DifficultyLevel
673
Question
Which of these percentages is closest in value to 97?
Worked Solution
|
|
97 |
= 77.77…% |
|
≈ 78% |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Which of these percentages is closest in value to $\dfrac{7}{9}$? |
workedSolution |
> > | | |
> > | ------------------ | ----------|
> > | $\dfrac{7}{9}$ | = 77.77…% |
> > | | $\approx$ {{correctAnswer}} |
|
correctAnswer | |
Answers
U2FsdGVkX1/pAZ5H0nA/ftJe8ZZtERdmHg2QnPAQ8NB/sNvc+dV2mQWfneiHOHAc3RuzM0f4GgIoUWaXqxCDnOrAM8/JENYBvyuWHWKUcnyyzOSUyjBzf6sas0Leth9XII3r1yDhHOh9IM9go+9km0Yrvxh07+8ovN9sX2neBYLFAJtWHW30McbH16yF8sVun/2T6JxWNigjDcMq5GquGGbJwOjVgc5RhyBW2nR/435D+34Lnnerjq+B8Kx5gL4D4AzmsreBOK7k/v3s+HoitDbkVTFJK7BAzsW7Rdh5sCDCgPA5L/wMYsYIf/8SVbPizPlSBRnOSVO6C2kKMsb0I0XIAKXIfmTIgaVOesfWWQjVaOnVzlGjjcGT/K/C+1Uy+ZG0gZ158py/euaHZwozy93RDWAHWemPHtx7w0lNK3RwIpKH7oDorNW5JixIP+NFjIVuHxgJU/Xw6k/OQIIxEFTzRTE/4eOg6XhJYcvWlR7Vj6cWlpTRDqsaRBxz9YJxTEOM3V5eddnyifII/TPDlA/2J43qbW6UiEGBBWbWz4nPEL68wuwxGDuOBkHODeqQKj+oStVPclerc6fmR3ZlcGZOXE7VSyExqfiFkv88j1J5VHey4b6DUNFZlgOd/l9zLZJpOlg6a/FVdxoDcDko21x58hU5cenxJnxbfozVwCM7UADtjwg5vqvfcJVNxZk2Ek4rQILl7f4NMLzbUXtZXFpciii0jxQn0f1GyxXwD+eGW+tFvjMgfc5wBNkGWj9czo4xudXOeXvDfnrAa5ussnwUoZIIR4NJEGQUs7vFw0VtCWDNb2JjXrewqDtw1+wYEnJP9RN4MzaSFnZgWb4XSlk1zsyu0O9dUAcCWtQUnCxLIckkF2gdyrRKfXDv1zRaK8eRn0G6CCJShYNv8o5SWfl70vvQPU+xDX4aDwfw/xMvfbr8bYzy3x1tQNkSFIUH7Fq72JK2azGR1pQiQwMaBpsVki/Qa61yz9Ar/rcXNLOZRixfGN5zwRWTcgIVLNRcYAARYDx4P+BpSgSatEyqg/bx8TtIlKCjfLvtNnRPEOgin/hooSSRmnJU2re6kfDmwr510EvyqX4VzydL6klpXGR4YdceMTSURjo14kzv8RXuMYJGK7S0njELwo03RxpjlqAbR8QURSg0j3CA2m3sgZ2WBBL3tF2Cr/PrZ9OSx15xnFuzbxhIZL5oN6zJu5pFgwVDj5vrOTQrvvV0Si+W8PpoS9e6EnQUUobjSskeBm9sDNC1cJZOteCgdsoNroORD5CQZRrb7PW73K6XB5VaIi84bWHGoF7tcqBU8tnSd4YKq4uODvfjkt3HcWP2CWxh/oL15NeFWsBv7gCVf89LUz3T126Unq/kXSpJXR7TykYwJzoVST94bb3pJWbNpyE2ALqabLR6/VI/UfBe3zLKaqqncYUFfq7Vy0dHWq1YiFCKK2izKsvw4P8PMvGmmLz4BAMbmqXUbWdOD8XMjN3swcMoc6DPvfWuKx0lkPMLcMTa3hPIqVpRDo2SAtVHOqcZ0L2tmXnFKVcu/uDZP7v2fVADz58q9D7045QJPxJuTGLyuf47acB9Bt0cw98viI/u4emirDvQrUWThq+kKajGWeWDgNJ0V0Z9+EnANLAGwjJPLWM1OGphX/nIZzkPIDMOOKm475Qt01FgyhTu+WllxKnUh/4dbUXQvttPGBI1kOxP3Y2r+0+/NhnOBdwzRJQL1ea89K3wRsS3BBQzlv/I1jwFTIhPZYiUmkpzu46q6bP8q+0gLB6Quunls5Fv42NtrxoeDqXpZyHK9wm2lLv0xX7ims0LPlsM7icPzL2OBAaQ1f2VWmn6aG5EftHPiUxk0ycRerDaSsDZMqEZmGebd2j3JC3Sal12ApKq37ZsavcgdGontGuDBcami+giXm8Kri7ORyMXz2J+7FxwpOFdK1kzEJeRYW7F/YwJO3srQhd/uVbFf1cZqWtDyzkTLAQBRZ2QiYr4AYlXxRcCdd4sFDLZOPNGETgHPlQ+49zt1brA2mD7GYKjnaKdzCoJeOOC415WOsyWPBDiCSv1gsMRwDlsvdTT08C43CBcphOsEWd4sRt2nEeKhuWTrk1k8AQxaEek3AnTiNd9jbod174E66PMe3DZwjKUjokujcrPfQ+GRmiLnAAx8rX3wRwtqQmwBllSKM3RZOHAT15f4qaT+tCeiOVPXWqefxxMqLfGO+9v0dgpgS23gLOZ1hCv9NAiLzievziDFgjyfplDdKogK22x8TAju/jsgCBFrXoT5QAiKbT9STY4vZJd7Tnq28+DGpfWU9c/2IJ0iPYjukbA7RMOksMx8Rp1h3QXsK2tO+ZNke8fqRuqstbl5pAZecgmOS0szdjkV9PyqZHCyOznWiQF7wAW+oQmI98TD4Z7bItZEuzixSXmGmOyvZagzGGv7Uje+vd99V9mu5bjp6pj0U3JiGFk+Q0lcyyE8jEuzli6JZ9GY/iT4FQ9alSz825gDZg2GgxVed43j0wkVqPD/7eKy1F8r8yBIBtomtHw5vGB5Scc7RC1LeEudYwArzDRMmU9cMYc54xNcFhipDbFpeuaZ37nFDzR7VUkdsum7EPLQZovrNmEVYyGJqpWspv8J9wI3FLGYoMDMlwNf+ZnqFG8JpdTiA4AzhwE4XP1SEHVe1DE7SKgLY/Sr3naXAp3JhJwtRW3OOV8axKqr03/j5tVFYyBuThLX/OjEcB8zwjYSm1+rDLqisIAvln9NzT9wldKP1+Y5upzSixGU+kMVOSDevjuLlQvujsg0JJXvHVco/HpzhDKDegdbn6SrxdgaOMCTJ1Ro5m6ZjRXC/C3JEBVanlyQFKeERXY0Es08XiKiUAHD1Ocvwc5TMpFAJsvEr8vAYxjtJ8OR+OAuEfg9Dheq/fZk928+72Rivx3YhPOkYMzbXY/Eq1gUogKju1MQvipXUkAv9Q1gxxoCxN8zFvze6Y0r0EszxdHrzuv/Wf3FwPELo7lwrgRT69klT6G90DIx1eD5Rsod6h7ow30HwPwabVPEgtt2J+YMVM7W0R6lCiNPBRhO4QpmBkTLT6z1Nuc9hMzHtX+tEAj64Y53xgoktQVfyFusWoPM8QFfzFO7Agqy6agPE+K/OdTadOTATVJvH5TWK8S4Et1PRBEU58vK33ZLgs4INjRDsW/HMYvmaeu4tmadHVmmNuNwBdxmOFnO1Ihi0RqgT65Wf2XBUvkQx/bqD+ybDUZDVrJ6t0JeUprkhcxrXos7jGXUDUZ6olZ0ClsyQJwo5NGHU+IibiM1LKs0ZWvjenSpfy3LnY67aRMeABQtGlugiaVFsbNgxaON1KXJri5roHdxBZe8ApQYZihwreWwbwN68vnXt+givDh58YO9wumR3TfNWU9kT91TAV0eOqRjpyXVc4hWBMwqv1/rgaWi5iWC4xX1/JdrtewVHe/bSQmT/OWss8Um8/OnKhPhdqKtUlgpyD9Ms5Dud0PFczG4Z6ItTArRT2dcDrlTOePlxy8EGbtDd8Nao0ZGyjc11GAYcPHyo2WHH4mTs4/KAmNL0Nkc0GMOMMvfs4ei2lFfIqUWyCVIXYVoiRaO485svWpqygh64U7RZICmoDvRcQtey8ko/OnHy4l9LyIC2bWg/oNtY02b2rfpHWmczwWywGiUzlr3g5wJJwF+Zcdv6j/bTxDVc7lkuj1HeljYnMoQaSGPzDmkH3uB7wP4neehtWB5eMnulcm5ykWFuYLsMAfUvkLKClXWK0MYZIUBckFn5Q0gntZolMeujhb6JOHoOpk08X0S/u/bHvrHi4yMMTV70+hcZaYi2epr7v729zZoQ1b1CP5Hr2IelZwU3StMF1P6Xtn2IcY84n44ojT9TnSbUgfqV+jhns/ptFMtggw8MnKC/OAbj8/qKoXJCrdotZChphpHpDt9fIcOP4EU8+dh7WyVMsDnKu8qME8uFffSPaYZxHC3rgScjfobr90Dts7JpgItoWP0BpHl/kDBMP+x+FzHh83h4AIp0x50GDpEgZ6q/T8XpPD1wjIH+wBDXpf0HYL52+oBySgKGs/udbmR15Vg8EEP1hhUPY2tF5g1YV4Jr3VZg4bOf0cXvanv3oCqpsDRkyfgxcQZFCmv60nAEpTfi2F2GsD/cx+d/xAZiQADUtBf3wmacxsGLzs0PPy/X681EVyvzFsNlYEOX5e4akop3sH8IQHltFom2h1AmbDW6naL2M1W+ExbdHW4CsglkFc2iYQzCyfs5u8lT0smpbrv38HhwQBegkJbnX2k11uJuK88bAtYCOJGjdUEmCgBvqdOApHJccUZM/ctXrS3//EZsZ2clvDCYlnSbLG3trWDHdSSx+dNrLagMxOrWh4rzPA/AhaJNBXmAS3gXYmPY8xWQtLM/QE48aj0oJ5l3i3qjbBAAFbRMlF+IA58Wg+IcufFATQcw+WiftaX+jHwDZNakx4gyXgjRlG0fKPnriYCg6oeCk9MlhuFMlN9Wx8T+vYD6XZ83B4uRs40CDNzrM+0p5jGvSFz4Z8ABIvxbO1WdBMh7lJBUZq5wAkN7YVptVoBy7vo27WQrbf77nUTCsSh3jX+5Ly1o7yppNtlGhIZ/dplI4m31JucuJkiKhlTYtJCVjBwgD33xlwXc98shKy7MytuAklZ8QAKZsOQ9rCh8FHfR125JmhgAtjYNmzpZ674ArFeUPG1xJgYyhNuxeA/f7sxbzlavc212i638PVu03GRM1iGHTOQtgcfZFN/dq2s0+9FfEIQXfz8487coJoIP56GEhDOWTvBHWifgguiiHZCXczT3DHPYqgVh+y4/hZW7ibLqWLosY4bmXk9sK3pBkCrH5+NUJdaPcMsYkdtx+ejWgdzjfm2tPtA/Hq52VVaWBPIGbl7AFNHQ5nNtXuPEHVr1acUW+RJpvg/q0CtslB7DPhSsmRer+ew7uw33weqyGkX/wHpYN2so6ghxyQD9djVfhyZ5yw5v0R43lQFz3Uq1+b98IbmhbZ5+MRmBuJ2Nf3hXAqzv8Ax0hdjmZAWY9dVqY5L6DpmGqc19pUfWQ0ehP5ZvlF9dK9Y3QU+dSFYJ2+r7NNSs9+9Ffuu5LMItHobe8Zkgy0uuUVHCYlOQ8s8RM08kxLmDdv3EKz71MIX3HEmT1y4Yy3fsd1C4w0ARsv1VmE1shLi/UYFLJXHCEVz/EPCagEfuIfatYTYUtMTQ7A0pT+zDKomSllY8K7kVJCg3WX3YQwwAthpUBr/cMnJas9/Ju3c3dLkTrxzBv3q4/KxbYy4fufV02gctm/lk7h5s9kltczQsA9QSqU9Ixj0ymBQGNu2w+EkGXXHOemvNpNCAElsh2538Q4QTpTrezekWUPmnu34rKCTNF78dZbNtLgLqAQk/NALhL9NfJHUQoAGynUPFmrPFw6+Ev4DPqUcjNBrAbkTlhk1/HXXEh7l3iASjyom4AN40JOxLaivQpVllYLT5vXQFWMg09MetlBIzUYtExOy1WFlh7gsl/+SESyV3QJaI5VdNsoRFI/wWKg/CwjQv+HimV7TwkZAmkEFg8=
Variant 5
DifficultyLevel
672
Question
Which of these percentages is closest in value to 76?
Worked Solution
|
|
76 |
= 85.71…% |
|
≈ 86% |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Which of these percentages is closest in value to $\dfrac{6}{7}$? |
workedSolution |
> > | | |
> > | ------------------ | ----------|
> > | $\dfrac{6}{7}$ | = 85.71…% |
> > | | $\approx$ {{correctAnswer}} |
|
correctAnswer | |
Answers