50170
U2FsdGVkX19ZfcV9AHkmUYvR0gN03ia2UKVXdU7ohSA6eMeT60UlPwTImCu02tXD9r3wBmxjtMOtmYNKvopPnaGWRTVGbsvF38kQK88JC8C9PEMRjssD8xNzkyznHDv1S7Q6UFB3vcz4vK+ZU8ihkFZjL+Xji62J4ZvnaWJyMzKd8EI38iOQH6H+lMiEB1CVJ6sMY5JULdBBZSP5YOmKwCF9hb2B5419fsNRS3ujsV9bYVQIK9OxDJZaentunqSXoE+uloMi+ZXLDeh/Ke0XRw7YjAIObzAgou82SGd8acxIcldutZPwm6jomJVk5ZLsJaNyz6p/jyPP///UV0sDbLicBGAcYAEdnLlE6WswJ1v1WIfS7W2EL07FIRy4WzJ444nHOiHrf9LiCua7CwqrBoDTY6Ocrv2EOCAE0p1Amr4cblLqmYj6G3lFpUKk46RaZ3H6whItSSqh+AinhD3aRh3lAC8DUdyXTeXmdmhr/fD4Da5zwUWBynMvSXVMfhzybLs7w5/FZC7JGYpKFW1ict1xPb9iv9YqUFzqxfSOaADivKevOnVH3JfNPgkV73TvmwL2R8CDORcag+QCObaThNhSdcFT/fCA5+bwHsRp0et0R1ofOQJvc4DhzN63CW2c/XHOJBUI/9mk4XXH4yrHHicMtWW7FGV9ulFxuZoStNslps+tcYB+YoNrW7ZaHjPP6PkpItlCj08a9BF1W57fqbkE/RZLcLsvV47m904X6qYhHVqRieYU0wuN1kHvXoCjbCDHjr6ku8JddY+CffvvPoeerS9ZEVmsUizOeqHoh/qStBtHxvK9cGf68+sairyKQK/K5YgHjI0fRpsT80Jdppq6pubYRNLg2oLsIx/Pga5NIBHfNoLmL3NJ+jKYfTd5ph30Au+HHNx0KtwnffNtCWAfK0e8bd6zW5eL4K1ziHf8v3ejhpzR9bfQgtQYsP0f/nbEu9OUNfz55J1014ubRLv1wiKEde1DWZXdZoye0X2aiv+d0KEZ9bEjortv7c7dybJZ57o6gyZM2/EGuf9s+m2a9pRh3ZjJVnPce2Hwj8W/MpGMSow1hn0JqDi74oPdLsJFQKUfMdapizyFo/QZqHLAvuZLWbBNvx3rZjAU/GKqD2Q9WXlJUDfIF7e3MtkTbFoYWNQHS1+wkIYwp1u3Gdq3Gj5w31XwxL8rdXiq1pJOjsjNF2sJGfhLj5EYL6hQutPIH9Xh4xSJswaPYQItyKOBnQKXWx2yH0aKTNlEQqPH2ORgxmSrEe5PrqqeDybeG6NkJv08j7Ut7W0rIpe1h8iQhqfd+xkYJU5E1xUgpJPTMU3I/QEnBVhkgUa0Oc375WnTb0HH3rtPxv1IcRaSiO9wgipZNH0NOPpfOLxhS+3bivMet4khepXC0E/3DZja5EPfqiN7ZAM84mZye16CUQeXL17RwfgV8/4i8WLrMm7IjQofz2IWHihRB2nTHD7HcVxyXKItbmmpf9zxhFtK+S1IHf8opl7M26BjLmYJh7fjEUGo63Wcb81ldYmNZV2hVFNIOXWMeWuYZgT+aeCNOeMlF4ReuKyYeGyxArhijmZXvql+54O3sg9XNnqmnBeYFpcPA88qq4YXjhwz7LR36HzUvPZfA1agdsl8ueh58UKGdyy2TP4+AbN+7cZFKOSHbSzGF1C+fYkTZlSM2KO3m3OGG/14Yuvby2V1A+5B3/o3bKviqvuUIK5TpJlivFSv2dukAkDwx6XLayjjSeFjnA5frMTmHsI6xG56e/aEh5b+N51YKOEUh6p6zZCepUD6mVjolU9yoN/tUK4JOJzSBOhMpIflVk4vKYqrLDSZGGlBDgUAWVHTh7nDLJd355FaT5oJX6putPM+5njMt0pm3xa71PSXsaIW+oIDAm0qCesUMjezu5I7jtl1m4izUyJbszzBLrq7lkWw6d8eomF17dtZoNEJC/G7cEnBIkJIr3cqrIDvgVOd+BKe/LNioLpnJWw8tqTE9mg9uyuFemZVU2Cjofm6h+GVNgD6ZEVvI9CCMevF4itWA0Qhmr50e+6jY4DMey/DaM8mcPole3Zef56iZYCqEGfNMgEJHyqi4s7p+vV47YcEeNbnacm/IjaKM1JokeljPZjIKcZ0jfNj+rGjn2A4RY71SGKB1gxEOztk2esUc1ZVsXa4QUF/fsaSpDarssAKtSx4H0EQ2juSDD0Onr3NxoNsY/5xA53WZZw51bHJOsJ6puK5M2yUg72+pcb1+XBQGW99z/cSBIWt2z6A73YlLjJbZEPxNU6GLsCN1tD0CBv4HNJVOSTO4bhtE9LPiAImV9r7i4FIXXzUyHI1KXrdAbsj+MsqUaS0V89olvVByOOvX1dc1jzRK/frzoyptS7YKY7EhdkuoIGuEhge2C2sS8ipxa9NB7FTfaRPThYhw2GmXjgkWm08Nu952OT/d0AmKxg+QeW3rBkWFvvK/pWN4VZqvOPKKkfsMof5I9rXL4Wd3trnbFQSdpusIPu9Kh6VBJcNbr+zSITV0RNsqe7THXC+txVssuAknb7akhaIEwcwg1e9nEjEMX2TUBF2S5fxAcKoLushLfV/kZIkTj81EgK4Rtgrz+rXXt3E5NXJTZ+/lAEEd1sqNoBdiocrmaNKZEzvjGbOJotMxxIsotH2EjN3p1Yerx8Byh215we9Bl+Kz+aOr7Fkpj8oIDZNKSJuLVub2ESTRo8UbV0bwOeYefFJDuAnoUoxn1D4LgUrTo+fK7vPMhed8PYJyO4DboW8DCH87OkT8leQuDRPkybiEal0IQYodXwmEeD+bcSCBsO/u7WZe0tpQMB+FkY7vPM9z+Rr7Ug/uUss9xnOQFn+BgrF/OtoOYKKAfREu0VsiKS0yRdNFjtQn7LdoLsUeFK+jT5ZRTpieRWCohr2knWryKQmioojH8+hBttLQzYK03YMr40Prp9pJN5ttUXCWeGZQAkdPUvxW8cv8fzZQceH+UxcDnbeLbJW+cGDhPOtTPvCCrBzEpcSInqPw7m341Ozwi4mxu8tz4IuZcsWA8hyDsPlBDGMrgEQeSIy0LmH/G69V8V4k9Z7sm//ABvZ/gpphA+vhelX/fEPkdhauew3GYdqQi8g0Zm6QRW1OZKQshliEc+QZas2a4LiFeWkcRd+Iglx1UQjubgDRBT7lbc30w1Z6wDk8I7EuUxl0pX9Nea3cYsj0lekpmDmIqQKDzII+2XH5MkrLhXMvp+clq8o++MvXExGy02rc30hV4Gbllshw8iO18ePso48niI82BndIr0BbGPEhyp3dktTBdCPlBcDr+XdDuMFhC7hHbggsLK86bvla+iT2ZUEoYYbTiYhvZAodH1VrtKwwuxR6+P94W4pqap4LL403uM/xm/2dHVEGBYPpJfyvn09akjHYyT13lsQEcKVxqBRZvoywiSSoNMfhi7B2WQ5XjUFkechFD1VFzXCKrNvbUIlH3zVVc1pWQ40fggxPhsk/eX4q1mrUonn3Xq1pGOpDgrDppUBt7CqnZLZEaMjgYfyzJ3iVmjRKZloqQreMJCuIfdnyv6K1t/YfYZflKem1a0M/gdhFo+WFJd7VpKceBLIBRSuorMUoqvPbfKGVjFwmI8mryQtAzORnLlbo9hUMyiFD1gMnD5NF9cnIdZK9blNYMUlkpCTk4brzzcvP6HvQMe0pKLYxQknEzmxKONAQbBec7vR+I0FZoEE49c+lAP0xU7iqcy8j/575VR0IF18BnTKoiiGwmAwxdxgwnn0hSvv8bb59rUmwbeonLC0iPPK42q9eYmb963HsHAqKmo1o5ARc+xBwqcLLkAEV6QmBAAobBnV8yIz/FKyu+cJt6/RsxIOV4oH0/mxHYFF33CFOx5Cwp7RxujUe9soBwAor++H7mNp6qBYWEGIbiqA4OCrrc7pYWuGxRy8/ZQll+e8Gafe3rYv7D4WmakKkyE/caz4qN6sDRwGsY4WEmq9l7Fho4JaxhknC4pPRTbWz1HHG+Z5iwSqV/CnQYiCO0vcOoV5wuqQxQnr+BNqdboa2c6Ro2RNonOntG/l0WS7W5y+D97y29kpojelNsxf9jf182VLKqk2Hqr1vFELyfZK6q2MHLU3RU2YRAdY/zHMyYekNW1ow54EcOqJS5V/Tn7vsPHykS7MXY7Z1INXh4fgO0K4XPQ40/YDlT8VjPeQL7goKRD4Lj+IMVd+N+7uXDeJiHhwbNjrYhnY/SxJgKql69nLGwNKmlI96yFOCw6wXrCY1gzL+w2z3S1c+ulsPULppKnue3+FyMled/UbV+MJtAmSRGJi3ZOWWGTDEkMXDFJDE1EXkf/rCbyTDbdlDLlYIQ0c42L/bpa6LR1/lfaOuijgeGw3MZy2QOAMRFMckmfkJfUXBMFfury7yRtmzc/EmgGIzxtz4mlgaPlbBg1EDx6cJw10uGqNlI4QkHO4EPsVQP7jq17rNHhBTxIj7oEdGkyOsbaD0CC5NsjDRVUpPAGunFRqXoAqLOHlZZkXA1QDEYs4VsHvqcPtZvL+Yf7L1eSuiUs5fpdcLcdZBhIPzYLIfDPpLZA7QRpScikeEOaxZbfSB8yDhjX/NLvKpp9mdyFZnmv4TXqtk4U5H2BRQVJ2Nw+hCWbrAL/1SuUe9JekL6I95fkEJYYlNvNHQtEuF4cBGpKy/TskJcX4QOCvPcBcZ5UJ96qjV2FVaLKLBrNbjM9CahN9oi6EHWlUel2LPEFqYjEX3vso0A812MtNyPO9/X8F+3zXCKm+w33q8zV9faEDjqaBkFZQ4Sr5IbRF4kVYp1+1BONAoHRq1ywmhdlskpeR/NtpVnDiC+LdOQmlfOqYwwpymVPUS1lkSvPESoUvW+o+1OilOz41/RcSlUdbBjw4pME3t9BjBHenTApvzmfq13llthYfzQRj7lfCBDKD32epVl4D33vaB5RgyiMXY6QXgE+99+ZcefK1J4Z/CrJ6drc4tWs9bXjIqI/9oXuPN+jhJDPuAPVTDFO8aEK7L7dF5s7xuEqGM1R5/4Cv7RoCfCk1fjG1oCL6N/klrvO+90EHDqjpmbRbBKQoV9yvQiVLc4U/nu/dznCL7cCHXNhTTAR9jgAp67U+p9+uu0bDkwEaf6njlix8GYGUtFLd1V8qBDMAAcswaOIY4+ttDBPlNTXesPcpC1zVkkJVH1ciChvwVPMOTRWF846DsYgFJvt841FS9uRR+8ML2wo22INPRP7vnBOdwk/WhLDImtjGULjjvXI7bvFrG0Pao6w4HF5H0TvGZ2bQT6lfI9DvVbZYmw9MAQI3fFqupWnhD0KywMOPEJ3d+x/RXtQArCbgaN3VyH60M5YEIlcujxAas+D8FKa/tnVt14f4kcSdzRhMVtkWLAAepnHo+zVx/OEHCvJmyZq9feVRSPFM8N0L5cR1FchjFHe16UzgpwAQd4r8jpSFHtdlPr5i67VQpryAKNA+3oSYaVVei/A8k4Kfr45RSspHhTqQj92VMy+/8Oz9Ao5cTldMZr2d1FZk81smqWimwBLCCQzD1YqWs6OsixT6FxNI1Pe6xtM1i8MkppWQQPRHzBtR3SFH/DQdkzO1xc06Q9vuOmzqM2hsVkl3Ml/OkVoQqAu+g5cGkoywDFNVWvHVCMiOhghsYx8vYMu0MxAo2LSpYfl5A5Wgmny5XKAQU++AhSCAjCqAZjb6C1fKiaQE4jozs/BVmdx6fZ9Mt3yoFF5Zic5rXyHrVJvjILo5sl2VO0ReEBedfhsKyxpSFWQ85+gejUSKIFKsqtU23UhvvXPYDlfPsGiigX+rzB35RcpJuCa3V9pOek3Xp4F8+tU4JSUb0k/8w3uIld0MBzj6EkJBgU+GYUlF2xRfdr+JjvoUr9HPS7AZhMmU6ixQNkX7bpP0i0wtU/4WxdPbSvCGw/K7gKa4477qh2STeR1pJn/Myx8wMF7n4GK5+7gN0CWw55wzdaLuDb6HYRlOK0h5hShypVE7c1tSjLUmCZoJ3bWNzFT258ZGglBqdbVZWcB4FKwASlkAJn3AkQvP+k1WUARwM75iA3mUoLRM3ayUXA2bwTUAMTec4UNDTcEpy3gSTXuvagGutqC3F/cT+9BWHs0hWm6jWPB90vf3hJDUJQyTLhv/PPFXHWe5GzBhRrrvbHoUbAiFCawwjIxxDcKsedETccTXU3fURU2M51NBqnf9FLbpIipPOZwyeC6xFOjjCD9QNlX//ItLAcvxE72QfpRqczRb5nTshxF81nH3uVIJEXW8/cHeyRMJBUvBwqVxfFflWvN0FkFCCQZFmr0nLlmgt0Um1p3IlK7Wj3tWxPwWq/tmDGdyHx3+PMBGA5o9CcCYfqeCes4QKrs/VZyIuenppRWHc6SU2oM8Z5vM0yAZMmqmB8Uw82VPVaP4N5hG8HQNRCRmraO1D3TRYMx8YG6nCRzcOBIxQZ18hLaSYKFLV4KKcEABrTrIWEBonpR+Llkb3InEMuO2DjQPaIn3Sv3nxLO0lTa7RqvYMadYXcyv4mjayv6MDo0C0Fc9CM0QnP/RN1ZYgt+tNGrBU8cNt5XsiIIdXa3BzREsyCuNIo8W4z8rsyECnwZQ8luJQzVeodxQJxvVvl+wrbajxsx0AOCfikIBxfvWLaCnK438UiFhWO8Hq8blitEqwbCe4evJXiewPlzxJA+E/DYOurzzR88Mb+1XCUG3UlX6Bj0ke532f0Vb5Kl/mgupbi1dHqsCCjjOulKXoQVvVX74IUKl3ns2cEgIwB9zPAfHov7jZsrhnMZu2tMcL9mP1XC3wqBzZs4/kcPGdP2mBbKdCPPT/5yVaJA2MaDu8YRNDgHpkSf+OyE/P9/zS7pQLUVm4C13m4Es3Y2wWt2N7vh0pg9triOuNe/0NFl0nyb+qbIgBoJkkUXFnm6j6mIjVt8ZJQbfarhxrUJDM8aMUxeYr9fJTa2qmWovnpDHldjcK2nYOcrIjKR1IGx147Bqmzs7nxs79ft+Jj8Sa/nCgVp6rWWhXYA3h6eWF1V7V61caiW2lY1fu41s5QKE9rboGXeiVA1bKUmHkGCRJPSC7m1umqjHug8tVaR+blf0kNrHnQg689IA75GUQzK5nazdsTtFYE64rNKYU5Yn0e/lucwSop3tNkwhIuIFaqhxdZuHEM8KAPqjQkWwl++nYha12vHpsd4HRJE998/7S3EQFJpSAlRa70zUdgvzY/SUOs71OTe0g1Or+nldBkQMvyM7omx2K5aIRNieV4udfZwPld7oKSnnD8srejh+T8UYD9lTsEuy84qSHaS0Q1NOlBSJknukIGDnauem1xyp05wXOsqRW4cYLNjjPtqGWK62TCNGIeGN/cw2aorBv5umv8L/CkxQ0NB4oRTxHcMQX6gSCgTf09irAcQV9JcwhpMZ7IuIv1S02MVn4AFLRnWd5Knj7NuLl7xG/YbVvsvmGRT2gYERD9XSaebpTu5w3kr2A0FpdOF1EyHFCLQOl5pCSOf+BOPq7b/PkFjtfvePDu7KX5bip3o45qFWGSljL9g16oPdpy+asPNqjzRJ15EwNGmRGf5oKbAVWlvCQaljEul9Rke5sirC8WZFEhnuQyQqZA6J8ObGJL7koY5Awmzy5t2hkOr1UJm7A9SSIXug5U2iTB21TzlES+mRe5CxmoXxkZbXTemXL0VCJe8Dw0vp8hGqj2kt+tBWAEsXu/tgb23oE8yCJCPJZIDOn4q46sjHgquHNq+aMgqe/vkZkBYUIG1ptC5RXMUs0AVcvm+3BXmJKwtn0AFjEawE8/uMM9jiMPAREsfgT/ohx1jWpDnev4aHZULE9DYvWMFrtI3PH7OUJ1qhv+6AJZ+Zq2uvucQWCLOfhUJt/AWPSXM/IdX9fQr16dIFpQhdFGyORLJZbjPq0mrsNtAt4w0cW2MQPTOPk9g1tFawebJrUrRVSJRuvdRCw0FQEHskK3J51ubnQ0iuznnIlPziYbtOjT1ri3Kk79ep7Tve/K4hHc8ENUBz9MlqtEiKOVY9jEFM836EjgD39upr2JVe0Y3yCqc8eRKujQ7tODUuauvT6W14Vzhx/ezVMvis1wFGQV8rKYly4qJDDyBMnFvY+Y0wRSpew7JOEcvm/rUbOSmuSHW6OsgwMoG6+tcXBnz+kdx79EmVVoWTBjVP6YZ+hE+xwRcIn5R6ZRanJuilmAi9p/AeXC/cHqpnhayWEzyslxgLqL4Aw9IUzyB0qATV0DNVsA8TQrLj0yBM2Oa5svxYa2Im7X+xTB4L9GBI9QeRIBtzFkOSSHHOlbNGPEDfqH59Qm/OoAKHmkCYjeNHkrYbMM/YQj4nTyKah1XNzpi7mJJzaGHMK/f01KNii6nY2+PQ6YmVngAkogag6iXFcaDR/nQGQviGAJBZg6W9FWKsge7idcmBIX7JMJryZvT4FZ/Ht6YI85XXUw9dw3S4tRAsZmfwboNG/PG7phNLDjWQCtjrCx/cQCp9s6D6Zt0IHIVJSZ+OlwdqemMLNta68jDGg+vrZLsFcP9oMgMjx/jvAcbIPkw8cqWtBmzhBQfg1dlyktX5UlmDFx/yM2CN8f41BmfZjUXMmsymg7f7ctajK4LkoMCjvY9gOJXqi3O3m3b3aWTrMWffwMj4BKK2z8ssrr/PorKcKxBCr3+3+dX6kKvElvkecuyEAPPje6xK05l9Gpjvi6uikIpQ4bML7cVGpd0QuKcvFHFUDEHf5tWIJ70QiBK0gzDeC9m84aXKwoNCMIqDepwtRdzkVCGxYR8LsMqGQ1TtPd+iyjlX15FAk1N6rSzKouIcB+djREI9xLHXxrUabb2g2A3L1pPokFTepiL4lyyy9KBi85AF9nkDRXjJjR99vu0hggYi/IbOsoTVAQR5ugUXcNNCRw5PvZaf6KAA95lCPA5esjSyu/5Ml3NZTfzeQsYbIwrtdI32GOQnCNSYR5SYeLQ6nkEKJ4ni/o6KO7V2TgQQnfQHsDIFpM3kEaTxnJLLIwNU9xHalTaY+adXz/rCst06sOgZMCOOlXBXprkB9nA2sEvHDjJGvEI70TGF9O+8iFQHMind+vRkcWQ+i58dc5tf8F3Ti/+YqkbEMcreHsPcij9hnZ0LgF/uahl3TxgtBWepGaRJhRFONLYQ0S1jLlZfYB5B5w5jalirGAzJeKJcAnWdKx74FNG0DXwFtQXFp6KuBzQBA4N9PxVatqr5Ruj5HCPmokJQiVdf98tRUW5Va1fA5qEsaT4M4zIL+VgvIKZ3ac9phSL+M8KorBgfvxxPFCaE0M8ZZkamzBv8i4a22R4jsDvo13d1GOA+88oqgnIsDECMegfwIUDPOTHPmTHsouuyQjY6SofJnNieJ+J01dLAhiN3BWP6fdb8qFGJb8ZUGN/ep8OkxPRKl/yLHtoUUbmoCthBgqzSbh024hR8FiqeQ0YizMEYlE0DcqkS5yiYcIOhGHK+3teiouKmfxQU6SONp2mUPKjKzkJDzBe4lnYfaiFcdcHl5WnAlxNJpXO0Ed9DcDhNYVBZgCdcYEfldmNJeUWjs7ZjHLxoT3Mucp7nKrG/eZHEMG8gl0mM7MKxYZ99zTqcakaZIsaaNCaoAIMmfkAGygtZ+cfnPQbZBOUQa0+7NQm2lA+vthEV6SgQXZ8Z8/jU+chw7okfJq5I7iGelTdjnr8swgryObGPJU/S99qzQyJzKsLBL/tDIRkUym63MeAoj7DlVu1A/iLtp6CVN0doUSDuRsE0twVLW3qpYAEqlFu1FrJtSqz05flqNkf0nUu7Wtt6dNQ1TA/A+eSmMLKWO+mOfSDnqWyCXIP9NRAXGt6yhpERQlt7vg3p1BIj41S7cKTxcPzAh8/ZqaMhcjGkrwc9N8LNLT5OmGjjGWN2xwgY9OVFcHsxWJzsKD71s8ZNEc0zoRE767SsapL1UJFaEJLjMT8WcSJopPXlh5vUmACN2mmQYWH+HVHvls+MELOQIJmeE5GgtNv6giKGubDR0ne1eDXwEz+WTcEgVMMmzMvZxjbpo7A87YEukODeOvMajNl5xwtSj7cqSE7pPowYwvVIxqXAnVdij6faUNQOT6tqFfQZ4E9ZNPurNTzYEiWoRDcj4fMJTkAOy2lPTeCXd4+16fAZ5ViFpEuPmHSxyW2woHyGYMpOHWG+kM7FbZOX8t4wjRstd5vkTVC8QeCGl52Sc2R5N++g312jET6LkefiE/lq3c94uqR9ZZK3VUDnWhrJbJOwHJ6q+fKq7fC4e3gEWf28mH4H3aX/14FPzNmjQL0NaiTwSF4zJAh2q9g+ym2WwTv9J+KwuwusyvzOy67N3bonMHpdU6iyGUO1BxNmjJbvFCzIn8hLxas89+wVgWiiGOHpLfMb9DuaGLxQXlbOtudThDovIcPY+6bMuBT9Mkks0Uhrj0Dy+LxgUsT0ie9yz+vTYC/FG1SExRrGH/O8pWMOHWWVFrBfvyGVKPwY707SoNr0uI0jVFHqQZxMdYM7rBDbmLf9oweG4kLEtYSy3LBrtKCaXi9Z+fwPbIU09JvZwD1JKjCYoo5Q1qC0NPeavUdT4wcWFxIQl749eJk9YYHwcct+xlFSI8G7Ck910sD4hZwqY5BoYqPqLLsYuJKPhBjFa0EqKPECSWKsfRBcRevqj5c4bz6tC3bEYPYZkh3lpSqY9oECA73MdsMBD15SkNy5OczDFSLkDv9luPSxQehuebs4+GRZ19kXNk+qCS7wZzGu2Iw4yqAM2oBua/OUpr2+cWehHtwq6vxNP6PW63btJesAH79cpzLQL1Y5/cWdbG/dxpkTQXRZ6xv8glydXyqcNnA1NM1RTiB2KGrG645atEjLXKKYZKnzV3pepNg+Oym2/d3zGvVGsEzzBfdw8z6C49e0elqVP693sPOjlNJeTEll48/BmrRWbma55pRgiOsyPFuWoKXhJQrv9AZoWphky+UAMwbr86dUJHXdDCuV5TYpsR9N8gNIsEG0PTSy/yTg88PWHeMUT4iZvrmqghV4zBV4ouuodo00yqWCIL8FQRrHoFnVxrDtd60NEGlcTAjcpgUOWhZDeQ24dHnPsD8W5IJpzoiEzhPpNkipS9WIBYl4RiEH/ELx9RNLX2Rlxs4qPAPUbZmgWJh0LgeeFSCLip3yed4pJ58kZS6HpMXNTpy8+9H5ZcFMZdCpo9AhfbOVRSI3844ap1ENX2doQHsBg7dC3EkzSBcBBAFJD/f8JPzOqG+cKMD08e/OFmRk/wm5bzt3LKBZZjwl04RVYdOtBO1F8sLWKUsPcsvwzoPmIsKFMIVWO3VCJ3Xzz3uRSLZluHgD/25HZsLM6NC/KICRofl8rUI8jy4XbclRb/mCrYgZr/7N5GSHY+ME4O9Jx2MlxdIE/zJzXZ7XU2MB8hWhdnRhMnwATmyYbU9FE37wqhcEkaNAdQxAkaqFmIchdtGNhsBCZdhje9kivKy7+lNJi0frl0LcPnr+M7+vpBHOM+9FSXLFTF/6tCo2QOoL9Q60RKaN6XH5Vzds/G+E4cDcMvESVJ0xd60CLLmYqjGdU5BsQx7xaRLG1NBgyLN0Ln9l4VkN5Mq96YPPJTuwq2ma+RqEBhhT4aZ7bN8Cc55l/6LvYK/0GkcbQaVsaKPHnZzJ80a2u8GlC6d6rQXpIIdcBJfvcZswHZSapGDUqksvSN9kVTiz4OZpjvuTBeTz2RKsfdBf7kahVZlQdhs7BpnLwPz+OYJofRP5/JfN3RadMbAFQVtkOfh1Lz5fyyROL+/Zr19zcIvfKExRPqSORT/iDLKBEiRFSeoEvs1xNmC5tAUW8gu9A9IwCI2GoWHRS/YLrM6MjNWUayutWaPf6f7XXU99RJT17g/N0G0uStOjcEs5cxb+esnp/euBCS1mI2Vee9GlvOcChHBlw/M+Ox6GRpJzpsWxgBP7Z55jZjQSQemjgAMHoP1maUHyLRi+K35C+9zr8r27wsWYOeFSrRPTaKTkFW97YihWmBW7UcwflEhqtdWXYUeaswCemCo4XWm0bkmf32J5DSuWZaeegMVfcZntOdyo5oMn/1B/Qq9UcU81XAywXTovdZEuFvgDCmhmP6V34SzIwLFd9JyJy+hmcNX76r7oQLgRuK3WhOysu25jc96afrzJ6XGbVwnd8oGxqlzqyA5omugiXpv8pdnLUi302lZyJC5TDrc+PUxwCSBx8898hjit3xkz/gjHTNksPfCn635zDx+KN2x+6kPdn8jNfvf+s3yMd1FOjFkc6lYULHKMA/A/aD3ZO+DIKlvVOfTUjmeCG+pz04jYYYjSh9XsfkYWIAx8CKQnqLUkhK1CYGdG5E8J6w/514ZvLygQbTXOFgIa6xexxU3MWb+a/sgJ02rDInM8ilhCbuK3bWYC1KkrZhG6Tf/J/Mxn3q2805PCQcyPYB6+Dos1FdpeQD5zV36/KZan2NOYsiWv+/I5eRPChaVBlYDu+q/t83iCJuvBcoMtccZWPiguxbngMCSpWzJJu+PbH5s08A2bfvuwLenpmOiEgl45GAqwdEU5OvAr2pHq28BVxskarZsaCG+ogq0g+ObG+ary5JMUt0TDNb/qwFuuoHWYllAsJ8qsoUL/hh/wV7xUL5iKNYJ3NK0tUfL00fEUy/4dk9tDZia9LrhP8LMY/51hWM0It2QhBaGJ8j5b4hk61DI4aQC0jeOAHNiMqU3QCzWZzN5EFAmKjZvNW9F1ueklp9bMz0XAF7W0d1L6pPh73EXYbDHX8SbD5rnXxHzOac8Xq8IG7HDeihwD7MUjVCpq2Smcrtw7zBxXCT6UfQVOn+L98CzAb82u1kiOHYP14KuMGu2YWfeKWeTd/ssW68sHSZVjZyCKXYJFhxknSj0cUdG9eu7icXkGwhoe/Ixg5Q7ogDzJtD2RzcxtTF2muz5B3lKgQde6zDDfJqukh++ev0q1ImWC7V/Ub0ZqlE0Yh+SjEa4ZT/IPV+Q1CgMDittUvhCkLTemBMBVgMJ0q/2kK9o3pvLTY99lcm1Nft2hcrkXebpKVSvG5IoogZr4rSums574+aJwvFas8a8/96uOVlzdGCDGF/c1bEMqjx9jaWSW5s59TTXDyur0oR726gRjAkHRK2AXYiuZUO94syBXIx27y28nSamVbdMs7oqPfictFXVlNNLpJEf5Z8qLhaW4lkl6H4ThfLVPrOsMMkfdoSjDHby9ye+yh1Coicn9iAKT6d+eWzbFYMZ057SWl1qBKXzeIq8iz82dUywkAzkEgtqKXJVF295SGA9GefKm7dMxIm4rqDkP2/XsESbA9RM7Fppvd2RGAcUzzmOObGC7APGnPH/x5KyY05ciJq0LESekHQBva6N3Byg=
Variant 0
DifficultyLevel
588
Question
There are 74 year 7 students enrolled at a school.
There are 12 more girls enrolled than boys.
How many boys are enrolled in year 7?
Worked Solution
Strategy 1
By trial and error using given options:
30+(30+12)=72 x
31+(31+12)=74 ✓
∴ There are 31 boys enrolled.
Strategy 2
Let n = number of boys enrolled
⇒n + 12 = number of girls enrolled
|
|
n+n + 12 |
= 74 |
2n |
= 62 |
n |
= 31 |
∴ There are 31 boys enrolled.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | There are 74 year 7 students enrolled at a school.
There are 12 more girls enrolled than boys.
How many boys are enrolled in year 7?
|
workedSolution | Strategy 1
By trial and error using given options:
$30 + (30 + 12) = 72$ x
$31 + (31 + 12) = 74$ $\checkmark$
$\therefore$ There are {{correctAnswer}} boys enrolled.
Strategy 2
Let $\large n$ = number of boys enrolled
$\Rightarrow \large n$ + 12 = number of girls enrolled
| | |
| --------------------: | -------------- |
| $\large n + n$ + 12 | \= 74 |
| $2\large n$ | \= 62 |
| $\large n$ | \= {{correctAnswer}} |
$\therefore$ There are {{correctAnswer}} boys enrolled.
|
correctAnswer | |
Answers
U2FsdGVkX19+8K3TLe43r0UNIaF1CqVYyE/D3lX+wM09leY77A0HkywylOeMaCyQ9uO3iPEHjuFO7GDAxBQnt19qZRzl/t7rdMs79qDGHGzOCzQ/0z+LQerTVLoyYD6OgwKTfPR58JV87HTZwbbdjaSlsdmI6F9/1PzLHLpgPcNCKCxjBBu9fwYTXs/5s+eDtQAFPfhymbH/TZjfaMrfxRhuVrFqQGzEz2bRWa38UE1OeYVHmceZhJzrOO/4mYO69QQi/a/X3p/w2vR4j230DSDJpZL8qdTAWYnBY2Xban5vdeYMjYhAiTGKIBgqM+0KiSNW01wX56NrcQ/OWq5dtojcLaRcIvPfFgDAn3CIJHA+koJJE+yzZCIGzWv1t3GB/W4dCJFPUOWx4rDiaGh3Lto9OP1ljRUPAOmpZ/PbaRoL/Ro/75xLV+8Y1wLWpTASJCTGIZiTAZd7AxvmnqzVZInvFYKJLa+hqCJ5zna/jYmFfPRuILJgXQgLevafgDYEIULWaj7vYb2Fd/T4Yh1huXDOsWvinriJ8byApGbDAbSARqrKRwn3bV2rV6YYJqRDfwRHMJEU8alJDkiV4R1SYXfgQUmgrqpH+q31BAiOCg3vxUD7mgb1LVAXgxicOEq8RRs2ulPP4n+VvlTQXpmSgerMNdUmRdpJdGGeW4DvaKLh4xu+RPDqE7Bxw7km4qHypX41T7BFrRUXcniXqveHkUiEdtRDHQoF1OJPWOBnzrz8Ho9ADtKCe/5XFiog7BiStf+e9ISGlVjGbP6h6aVpC0xJeyT+NxvMuck0FDBWDX8jsc69A0oJC7oRNeKYgJ7FgFHf/yiXAu6Bzqe8zqGK2fNjzlYvQR8NBZrse7+cBkDhRIUI/tmnlCOIG8g/rr5MVYOEXk82Kj0I4epZtThNCd0vHDZPa16eqGN+WQ0ZmhpkVYA2elurvMiWWZIoWHy4hxO+DtLnfHjaE6oJN2dU6rGi1IyqZPIEeTwbJ5fajyZYBJGIcm5WijX+scK9hXOKhD7NzdqW/fIxjBmAZAbq4UMVCQww2kKmftBQTyZfpxePnKJMousdP7hDmZfVFe2q9s9rG1movJw38PoJI7bzn+N+48YnwX1khPv8rhPIIGfFmzsX44CE513b7kfkdO0vRc8OKvjPNMhj3muxoFvMmn/MahSw4k8Vz3J/zfnNwMdHgnDELCnPjWYe3PZwkz+sT/zbDpZ2lreKQNVxZCZsbR3kvCablLTaERjBqbOcJiNxRifQRhvWgwLnoxrPat8GL8AHTept4CWZQe2XO33BzzMdqwuPM18fs0SA8mteSyFXdkG0tf4JoE3nwy41hgg2mVUVPo24l7GO/9+Y1m+xQRU93TeMITnE1+bOknquH9HQ//XTK/y4b89f64dYSYH3Z0kKzjTKsGltpADj72sGDtuEDF4UDWYTgtlxBAFJmwQop/1qb3MPsAZXorqP80jwPSnyo8E0ejPv9QT6MOO8JI+M9knoRjlutAmb2AoHPJAvfaGYPpR43Ls/EiF7ctQHKDC+JVTPcUQTF5mcEExD22yd2CPNFg/H8xEi6EUgD8BgEnSusIi4YQ8t/C1dUfiY2apGzjWXmBdnm9+L4LlzLhPgHwrAvFnAIsWr4hI25+uOze5Nb6FnlKAk+aPlmk6pu/z9BqmUpH9Ve2kkFt1XmPUgWBDASb52TUcnGE8rkNq8eurghmR7ekYAH8rmx4buD43qvS2udFYx2IVLIoyHkqEv/ZVPV6Q0uopUrM4VkeEd5/kdjPYFZUwKnpj1hibDGXGIfSlgV1p1ECBhg+6yMYQFczTnp0nxgS9GVXwB1z8S4P+GCaBjAcZhJqjJEwZGLtI/4UTT0/y7S9Vn4C/F+jPUzkaVI5lP7ClBwhUO+oNJbju1M5YWjCWn9iaqs/2oVL2ruFZqeyy5rIlqYlskcuIrnBo8k5xFu6paHgWPYp5QMM+VdSA0WdxcLPvCETKiwzoth79I5bj0KK1+yzQxvkowG7HKFJh87UmL4T8wfDj9elBHgpPM/ANRvHGqnxhV+vICvdMy1lbLmVmI9FBc82jDdx7Pedkvm5c7DgKgs2OG4arf3g0apBh0C/fsahgQVzC8MfV7TOgJsT7xz2ZWvM5YbLZ3sI8dK+GWHswLmaTOTnDz+3GRpde3fc5Ds4oaaO/hm1SG4dq9oD2hh+60OjEcyrBWlTq/0mVTMn3UKpKf+7IpfbJZbbgTO/15QA4AuRHMe5HtN+GEIs5CAL/5W/m91x7J3e1aiqaSC/JR2opTil5Xyme5LRWt2+BkF0ijmExNpZ2WZWUlaCswHTTXu6B1mEa+IPS3CU92T5POn9mjadGIItO4p79/F6Kq3Sqcul9JnrD7ntGeQRfcB3ZP7cT08UsvJrjr4Q/DLh495RHZs7INaNDY4dRB4foKaY4CzTi6Ajna4yjVaFR4HK3POYLyJ3mrU7BUJlGtO/pDeJcbV29lhcc6rGZecTGXXmcx6Mb8CyDmrAaBHYDzic0hue2aTocasW6+dVbsY0J09XkfyWchwsY1JKvQiL213MOQb5zsvFa8U1C3Mn6ZcpwONY6zce8hPFqyduJ4wpVk0eRO9D2r/XGt8YAJuoixxnAVpI2IS3RUDLHopOwSe0IwPPMYlKuoJ5/XOYznp2YHk4TPHJO2jmNtqhL+Ke9R8vzWjIRWGiLPhjOchjGPYQdWhu/69snDZXf0NmviGo2iM0hbnbnIuKLZiF4O9JCaUJs2AjpBKjLCWmhxKetkOIJJs5rjNIZMhZ0f3LU2QMAEYE0mGwKnfQf6kU7CdR7bqzI3A32/HfgqlFIgVv5GCDAbxsUH1El4yYSiYTDiRNzcN6kH5So5bo1BPDAOYGAiPLb+SwkF+AZwZoXMlb7qaRKe9FKOMEesLPkwkSMBf43FLw8FQQes/4EaZr8fmRFMQ54qyCwFKJAtNeOjLld4lyk7Z6SOgXFnvKkZEdqMdy/a9h5r/DxPlEdp1oi2fGsCiOzuiQeGPQOF+2JYmDkUONPig4+lsz+TPpNNw9ALSdIgE0QW9fb9JeSpNWF+ux4wVcmmbzm74zOOLPG2KYKv4aXRNyrOdaaOII/FJRXyjAg51KqT9udFA+4uLwliGscz0NRluHOIJ3EiIUrVcfLfyNk8Q6A0W4QuDqVKWPgb3IAcY2VMImmlHH3/OgPyy30Enr6g4UYNMPhxmGUTHWfK4z2AsptZw2rAxl2G/32ztyhCeeOmVZuwfv4Q7M73eBe5N1EaDhdMTkysI3f7jm5RqcEJ7UZZ894Xw4myNC+IBS8ajXFfv+PeTEvD75+/V30OxrFIrmnlmqgdYynwCCCABBw5MGrZQKAChaa76F8R/c0DPJq4YK2MMYk0K59Gi6fQoOHszMUKOlxSk/Vwm95CVf8c7U30kVdjOUrVb9xIiQDjDwECY7UCN4Eqj9lJvkblAxzyYxerp24H0a2Y0eUkgNVhrTTaLBxhUEThQ4zodjLkTNXfUSMUhSN3K/+b1evtCJCfBT+/lbo2GOxxQU7NARPhYsoZev4okyuxY0VOJRk6LzaGSEzEDuVrrjuC7yAlGx3/19AH/THWJTdjM5dAqF0dF7scltBlF84YWMxvoynSgYg+jV5U5HkmqqhewYbfuIHcUO9fMo+JGjxA6YOmNBymHxcnlJV1EocQ0kKqKYjlYxH1QDEDNKVCzcLDtSLM03/T9eAsmyKOimATqpo3DumwqmxhhmXkMR2QXSt8rqu1bAi3XdQPvbhumkUyc+czC72wyaKou5K2w8236xqe77TEIFwcyYlsaZ9XviefqW71LBJ1f3vFrvsaJIAfaJ0/W02cEjikcccNJJBLyzSjx+0dpITj8zmljuQqpO7rLGo33JHGp4TSurUHTzhg5A49u6UmKDs++A3xOCgUdKnzmbVKs/lf4ASl+1yx/1DnV3o5NDaA0sG+qZu9c3xCQalogJHmwUyd7I+UvNTtmGU2Gx5oWqGJ6FnshcGnAE19jFkiPFQdi2r4kJ2uZs5Y4+sNK/sh0TVZcERF+hjAAzsIutH+Zuz6G9bR853tx6a7xIkieV2avNLBXMon/VoinTuv1+LXv3JhMlsLQNfSJv0F2nPpHBoa275c/6wputw3djISw4OomrvtwpYNH6jy+DRpPa3meD/9g8gC8aUMDdVKOK9mZgwzKXe7yt0U3cpDLQAJgQRd7+nVHiLweW3IhcmasdaxhYTx7GJkCUMP8ceOTQwJx+Z1UWlybQTFvUK66uZo2yNVtSUhNU0qv0g4JF1YOBRrP2iuSW+jIyxRVwrbmXZFBg8owu5e/KSsxiEphlZzrbEzVpokNHCnNG6jSVHB89C2TLpm2iqdpOS4PuVu99TO8cIoG29c8ao1bLhDPJugstpNeAmZ93klWMtr4lZaDctzzBVqJL2aMzb+E+3QmxMkxzgL++X9+BICjQPNnssgeFI5t0MCFdH28aE6PqmzVfBnC3vNXkC+2rEHvC+kfJ4Ubbd4sqyXWhcjX+M7R45eO3dhZO0+Mijbe2iqd2Tegn2xBKzsLEpQf5jXoezjULqlYKRgzcI4Ww/GE/xtIz3IhVPwylcs54xm3smhBHtXVyv1zUQOhuYIJraRlvCsato7zRD1JqCBiHJSDabGGqVsY1Rj+lfvRpwYbk3eo1sB1jftXehoXUTUeIBw8DIjYD6Z0SkWjZkrpGNgGsjJ2+XdbSWyeNf7uaohwpWxna3CdwZrM/3zBNVgIWd0HRy6fLCVPCbTApWXeQk803UDGDXkToh+1zKDYhKpDAE+K2HSYNZfknTEqByKfzZMHMZJJ7IWJ1UVehqB0ZovC7bcQylXeiG2Oox9vfpc/1yOu2iQM2Os/uGUO6onD1uz/kx2OLecdKumshN2GbQfKynKmMx3BaIZOOVU+qlyTmEVb0wY2mVx9lcXeW0zgvkgjkSNs/863yyzcAV3oC0qYRSZUZ+od/ZrXhBFD6xbp5RX/7zkTJvlfSETlSDFbVwJdWy8mE8leNlR0gYKlu76sSPjIf7D1jFAnH0aU1WBiMKNxRFpnNSLBAXEU00vlNCM9YpasxON8cpnmp58K8S77ZsOy6zwrOH855mwKuYdd2pLMg+ghGvVKxQrrAin+RJuOs8WyiYd9Kha0g2kXLSuxSkgQH8VfsExRo3AvDCWgm1WvymrznQ0W57piSlnerZU3tZbVGtorsLggySz0csZJf53sDwpCovZaJf62jtUu6jevUMXQ2Tb1vhP6tw2H2+9cPHPsjWbh1EK7/OoZ1kYah/8T1BUK7AYxZpbJ/LXjG9ipdaUSsrw53OzOK1MCkupHO0C27mLGGAmA9/THzuRYCP24mu4LN/yGXJbeHWtP9eySqKVXD3krDIJUg/pLTJwUUvk7U5zEYcn63WY2ES1Xa8vQYUytO9RvFCN4/ybKzDm+gfpIaTY6glkcMwepf9HMYVT+bCDy7hePDPVrOwGdkRXx8OY1eNtJI7B2pVIviCgK05wShG1FWkU5V9ujbad2CroKAmen9iv72aBt6ynmrmxpYSJZ8vQIheq5K6wIXNu/aMfW6LqGXOIterzSxti24tzry1ijtKEXbb/GPqUqgKQ3n/OBbCSD2aRwJtp5JFd+R9fd2b271Junlgdi+zrkM4UhGCeGn+kwKEcBMl/+XyUF7lKypFiBVyd0el/m6tU68o0M/d+Qzi8F9zJYAvp+Mf7ry0tjgOYKwnyLkiKjVu4U1biQa9QILMOXVbSo/f6fjm4VMmMPItOpvzrzwFHp3LpE/WEp/NyidKF3bGdzQ/SZ5xaLygUcmynGx88mC7ZvRVRnqgIScQ9GNkA+EIdhwqnVNO0jckyO7NAhY9Ylw0z6ZNxxNufemEoLbk0YZUcUohw4oXRpKrhlNPqilqDU11e7PAnNRb1JejMiUs+K1OwRXez70nR89/RTl7/pz+de3YUj85mZ2oFXMBBvxGIUmGUK+kij2ie99mlLHsQhuG4ojMFd8901suXfqB4AoBAzWqMi69T9L6x6sQoLWxYMo2DknbHG/WVhZxakkQam72UrgkW6nxQoyfBlouAdso0ykAljqxNarbiu4s/fpql+Fl4ebyxiXDScUM2TPEhRI/iDipQ3snFOQT0CnSAeCnI2qKDd5n4swDFdUE0BnllradS5XsKlGxSExN5o3zY8lXGIiFKQHnNp0Rj6MhOKB4JOHcC4cWaYIIYatlJZYdPCH4+72WJBSJsIj0a3ujsoh6+9zogyJvwb+q5jW7oLkVgtk4e43mbo4c2I64WXoFy11e0lX0MsiU/UkoDFNfOeF/2OMzwzDrfwbzSWR2ZlQl6Imv2yybeUeZocs9GxfXLkfDGG3Vkq99szo6LICAxE9e+cioD0P0f430Qdf4YCwtTDbQqOzF6vMsJyBJjDD3WScuhU0m6EwlhTp26niOAl0k7goBbhENM8N6VBlugxAt1SxuFHfBU4Q0iDjwJu9JXhd7cln/ZxQXPQYjUacYJ+F1Am+BeQ3qMagyfcxq9+2SFWvUWckVC1y2Sk39ZM56ktE9EX3MV8qPt5PaiV1Zyn2D4yuxpVTxNjyXvWW0MExARmUBcR1UV5hra1q5o9GqAFUIAGpW8LXx+v2wg4PRD1GhDSxC/Tbsc6qn0Lk0rPgJOOB1I5Kqqvfw4Gep9gVedENYCeQPFv4WDzCAbARZmGP6c7QCs9k/cq2c5Pa7wLEQJ0t5MOt5s3WbzR4JjZoOUDldkPQF8bbVAmIYryUKe5qTrneAKBbQ1ma+RC5sFvUB8eAc/YiZv5n/JMVrgpmKie0uWfHpn7U7n2E3qt/fbuOktPJDFGHTkIJOZyZw/a8VLz+D+EhUfvb9fymawNBw1gmRrH4lX3ql01hYnBbOXMhugk6MV62GBGWn+2n0GVA0B8N0Ebrh9tVKlF0ucnB4I3KUazqcFIQcU7jfQMf+kSNpAzj/UMXLoQxJCBHBDg7kwaW4QsLyQ+OIGrleG1brLPqW3x+gk6qxOwsG/HcJhD1tu7GlvdMeoNKYSlvtxBNAragUfCudLPk6waLYWMbQlDBA38zU7I5Nqiuubf/QLabaiLRDJ6xIXSlFjdR5gb7uyCqS+fE9WCOJo3yrj/9oQnmwypbe8w1L/Do3BqENwFzxFo7HNLyOyjE4YOrmxX3utJStFitIL4/vbjKbVyByk5oBnWr1MWfYw/2SlOS9QE6th3skQJLt9+/vH6sptYkcpyUxzDg/DsVJHtwikEv7C4aOckKMxWPrpMFhrFrdm2tL9n4YfdcsQPjV26XMNdpEIuJ9aVB1avd8tU+9Psr2gH53MJ5CqmFW45JUTCEQwzlWINP8ns6iBrd9CO/CdY+ydRDiRMpNp9sIhjxbtNWqymv4AOI8iJIfdntsLpHSte0XecW6Ybku9L+cKxR47vmaYLQElVELvGvexmRGIAk2arRStn2Einw/wQ1I55l/StVwMOhrFwTnpg2YZ2d8FL3NCceYGW+C5wR4pDr0LEXqf3BsSBhRA6auYGjaFAtAFmCIWLfjAftGWz2eEpNGDgM2Sujvp8d1y/u9MMFygZLrAhelQmYUvzGXFGCHTNFt7AQxcSa+ahaxRMrPxUnwpNW5b8o4XhIKruWh7iBoYnpyXwUUZXE8Wog0ZVTtfrBVWhbTu62gH0OqkX6nPVSnjTxhaaWXdSUMRUwNR9TEi6T017n44HUwX83CAqo67YCa8JIA0To5FOde5D7KC3d0vASizqnVNfC33VtDhedw/23eOcNwVruO+TQc8oZxMT2AzYwMCwLBAE9gP1dAREsQscJa/fM9Lol6KsjoJKknMpTARfEF8xW79Ilab63ZLGeKnPYzoE+kaDcNKQ/WRK3zbnasr0Ug1RMS27RNB5W/79z0gYib0vasajh1m9iZeHFNN0oU7pETWnPM0mLR6Q1LADWp+SWQC8mU2sjhCVQnfT8Km+kRuH6fIIk2jeAkXVOXWp09NdI8GED7MnJ6GJO2K/R49ocLLvSTqXkZfxzag0RWF/gsVIrxD1TrFyG+1h+lje/sKhVPuPPpgMUO3suBeKOu6X/CaoIkGUBA1tGjykVPGoa/JJOVp/gahxu4QFJHX0G93YeWjvimx8r2N8byE+UiN/h+gBePDoySb4JaLOZQlEKpyGfw/wSYdsWP7SmqWCURBG1E13JyZiQPpOJvdxc/Dj5GhKu6uFLvOjn82/bYVuc1/0SqEnOEnkUGl3XiZ/w70lqtMBJNlyuFiwtSrjgle6q6USQmpCf25Zmm5wHX6ypHiZmXgufijeCS4iDrcYXJWSIO7aThfzeQloBfjLxO9aPbjwtG8fhThC6j2G4wrRc33RsO009IyDA5QSdVdUfKr2y4vTf2LkhbGtrufkq11TY+NZ7kxYBQKoCCbCm0rQNRJMLowrXX3j01nS9ANqXSQwJS1Cu6H8S+oczu3uIC0NRF+hqcP/Itkp4ybUW/01kvp6OiADa2UoSx2xpOlytIcGtbBDb3QhCStdFNgE3CnCi4+YQWLeHG8xBO2xFTGYDGeQz88qn54BQNqjJ4GYL3UGBjs6RYtkV7dGBiDN48JLHxZMAvd0RUmhDFtPoiz7qQCInyjVvjd5REq0AwJJ8A4B1DBMyOGLpovhiznQltf3KMeX0ShjA/lac/cDZsOAs6uAdOfi33ioWeAZDr4ZiTGCoKHMrxUApbM/TR8wuBF7FOm5syiKbVgk+aL1g415fYAS1RbYLJ7z4WpQotib9WglGC6/A/J1WL2MvF+808aLKdBSka9RZyug5Bbov4nMpu8QyK+W/QzLtUbYqSrKsWsNzNKYjSEVXj60RsSZkXj9iZ7gLsRufv0Y3XgQf+hT4SZcQb16iyV4z+6r7EEtl1zJcYLLCc/aycoX2wvTOES4KtFmZRVoeIeZHTKROlNoncMSmadR+OkJ9RC0FA21kVA1OXTnCFJuEmyeLtN/cJAdIqIDaPQQ7JcOKQJmhLbnaKNNcQOHEBmRmEWngPEhHodMRa62s1HgkKZq16JSSq/M8pFuPCgwatpnIGs7poZ6sSr3XpQkZMMcNyv2TmLQdc+uH0G7hwGlIBjkszKQvsV9s5qAS1z5Wub0uxDsR7ZqUeqCQ2EHafdG4aLlJVla+oGdXubkxQ+TWI0rnoz9ndgUHlxB8JrzNu0BnuPrQy3aPgIsSPg/Sl3sUKdcwn+m6DD+aD/zKq/+U3Uv+8qYURTHWSICFETpbf5vNNCpCHsSj2nKpLqGm9AHbvzvsdIo5jQJzyWXGk9KAmgec5oKqXTDWmMqxvfucLLDbmPx0/hDbD9T+o3BGp8Ibe+iDIhbuuc7pm9ywBq1MzRgMW4Kk18yR67y6jueHwA5h0cpsib0UexOf499okSdKj4QJahhekiYYQF7LYdTKufkoDkruQ+tukjHZaa6Al/S8R4V7VhqoqnvMrn59JLC8MMQWdLNT/dc3WoKjbF0zq9UT3xacSCGIXzBB0OPgQ8nmcC7iWJjrkL4XuMfOm177EWJQZ5T0WJpC1vyIbvDU2iZImKG395LUV/RuMnl1+MBT35yh+GDaggJ2pgWo5SfH0IafuVDGALYzcCIBaNPFQ+pik7yN/VAAHsTsZL4jwgRYw62nQlT8di/nDZ5RYuCOzMFcRjf9UrCMhc9kUhopVN3SS/bX38XJ/DJjoDzrP5yWs1eG3nzSGSVIAiI4mKPnYVbOcnsd68eVaa3oGisCm4bWqA66h3AWA4qNSzJOXOdzFkBYLll/DHfdLqQmyEJAnJd/156U0fbJDQlAc2m3NVo6wt5b253wrlZ8Nmbp3/0GIl02smxp5QNebLb/+H3IiZWTB5cW8Bdr6D2aVp+hKyztY14lQOE9qyRVyTn6aMA7+3Pfskzt1JJLiuNuVxDs2IArL79y19K/IUTuvZX5B2iptsVje7nnXEN/myJZ/1LP7o4rjUoThMObNpW+gijX+GeBtEfWHwhMG2AThiBTMxj4gJVRpxPdhYLPNZcoqDsw5b6hd+OjfKM244YhbtkIxpeIfp3euGQuyNqJA+b2VgQ43odSCc5BZ593Nf4DJnQH4ZvnlKNaPz/3pfBJJKYt8roZCoa4p10Lniiv0qXadko46vdbR/RxTgXGsTGL7idn63XRL9FeeZKOvHtRkejrMA6L2bxsWTKLdjMkCAOKlD2KF0RdC7aQHOSooNOe39f7wZsDsaSigkrFC79WfGcWiFIzPmAgJabMGxSwACULg+ufk86SCIpIZ0rI3YYWUsJMTtSbrlqZ1ZnQnoIwJd/+odJrVrzCin5q03+yG16lCmACKV/6pESdMVjr2TTjQqCfNjeuepPjBdeBu4jcjlWJiBjqmON4uJroYqigE+0MKBjH+cW6Ozxrtjwsf4tRsY4xkgIHhs3tto0fo9f0T9K84Sg+xrfGEasz45L1k8k/gSscURgW/yi2GxhypgFSETCjzIKBig5T2EYuPKrD8QPHJeB2llBlgtcjvq4bdm9SaJwb1C66EdYPRNd+eqarJWhazNrvKmpuKYqmSQNVJgvzq/dzarCD+0kyvAMHOnFNuaT9MbB7yPAq0HN+xGvVjydxeW2hK4kg6k/7TtTX7UNUK0VxYpM6lxxF0X8TBwkEb1QthejOx7Pd7EtN3oUg+dkZ2vcb3eEHnvN+KysEZ6VEQ9etp39DT98f+w/DXQ8v2eK7n1lCaVrMUA1HIR9k/PCdjQ96KXdaAmjAZqj8zDAeonXxUTMuUzkUiR3E9lDHv5zScrH0dFUINROJNKfsJTH8SKIYTgUOucPEvzk1nZKWLv89+/MBKE71Nh1LwghbVcR3eDaYSKt9SYH1PDErW/Q/iB7XRYagadti5Anqg7HPdm7otlwAiY96Uk3hovTr59LY7DLRX8yIFKi0WgYQ8oIqvsGHc7OD367LDoSvb16n2dGeDL/vWvPjtGP9WqmxKB2sS8bKVcaqDw6JwARDe5pce+kYWzRVpqcw697giz3+7w9hs7BH7+oTJ2JCLamqmasAu6mtKcucKQx3FhGu6MIkvDpH5v5bGotrSvzfC5f2y2678MwpAQC9Ch07M=
Variant 1
DifficultyLevel
590
Question
There are 190 year 9 students enrolled at a school.
There are 16 more boys enrolled than girls.
How many girls are enrolled in year 9?
Worked Solution
Strategy 1
By trial and error using given options:
87+(87+16)=190 ✓
∴ There are 87 girls enrolled.
Strategy 2
Let n = number of girls enrolled
⇒n + 16 = number of boys enrolled
|
|
n+n + 16 |
= 190 |
2n |
= 174 |
n |
= 87 |
∴ There are 87 girls enrolled.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | There are 190 year 9 students enrolled at a school.
There are 16 more boys enrolled than girls.
How many girls are enrolled in year 9? |
workedSolution | Strategy 1
By trial and error using given options:
$87 + (87 + 16) = 190$ $\checkmark$
$\therefore$ There are {{correctAnswer}} girls enrolled.
Strategy 2
Let $\large n$ = number of girls enrolled
$\Rightarrow \large n$ + 16 = number of boys enrolled
| | |
| --------------------: | -------------- |
| $\large n + n$ + 16 | \= 190 |
| $2\large n$ | \= 174 |
| $\large n$ | \= {{correctAnswer}} |
$\therefore$ There are {{correctAnswer}} girls enrolled.
|
correctAnswer | |
Answers
U2FsdGVkX185gfSWhCDw5OY/U4O64KpeCLZAdaYsMcpUrNX2HXRn34f5kGD6HLbmuJRPNGPvVSoCPxz12LTvZWD+v4RItZmbOz59oNC1QtiR8z4sNUGH3Dd3iZd+IaCro1MxV+yOxpcUu+LazGiKBZ2NdZfKG9ZVG7jiA5HyIlaNr8qAvQRanT/4DOrQ6N0HyQeYR0iNT/8NjOj04EAqd/sZHEKNRAsYf3e87kdPQAqOlzss6Aa9F6R4Jn3k2PmRsEfYEtghJP7xjMtRppPoQP2J+ojdcsj5vvmmOq/2jKzE6/eXXXKNfj7NBe8pO7eYfCzWwFjvGB7JAAVLAKETZIr9nSekOVHFvMPHotq4QKkOW7Wf16zKCuDNN/qGLTs5rwR4+VnxeZOOVZJZjLFWJOlpkZOedomstZ9sF3qFqmc9CrzKMRLvoUJEKQkUfuwOvYSfmRaFcvVTLzxYMQOp8P1fJJauUoTEakJzonWhY8Xr5d8n3FpRBeUapAb6CNy1CGKZdDDLfxTM1eWFJcMMPmQyGIxIhlEADwGi7FdwY7Bepom6dMAfuILhOZhGaIi+Jso2Y1ZXu6+4577ExFhxVAIqExu9m7Lh1kW4FDVRvzW3ULVDVZ2pIoFbKAAD22rTYy+l42jPa4PxaZzQHZXjKjnULxsxsMBrlHNFFRRWnFZj+P3vy4B5/T3GxlOZMZQbhU9d90HlbQWVOMzaSOjizZYK4wtXt1giwbUXBgJ4riYpo1zuH77tlcJtFeZtyaeoYz9v6PkPmksBrCR0Izo/HT9gUmtWumtDSgtyCGGZ+xMtpCDDR1J/KnwHUXm2ICRPOEX9R1y3tCORg8myB4XyqeWygI8BLoILvojRBI962OOzvVzAIRncpfv6fhb61Rj6Rmy6pZ50jj/R8q08SEVJZL4fwoX+rNaJO/FjfKo0fVClcdtvftS5R8GHKIAOs+ICnsKimOWgvsB3JKTvLKLtt3Vv+EQqywATn41XPWJ9Q5sa/GDuGpZSyxFwA2XxWEfz2A/ddEaqHk6VbeRgJV5JKXQ8RS1Zlf97hq5wg1nuOBSsUfmLAkEXQ8nax64MaGeQgMMxb+r0Fb8oPzr3678hXzhiLVZ5or9kj/CE8Wl6pAViENHLeq8j6aOq5dBytSn6siiwFC6t5St/QqaMSj5SWXJDdaFlLJKj7WzurZO8jsb6viPkBpulrkuk7EtJR2r2mG6lEdkpnWQevoOmr4Y7BqJmTM67YXGUVViytHoj3DUBX1xvLZNEuXFEtz2m/j/Y0mNcG4aRwd8KwqBY6qD4yu1n8AjFR41GR0bZFPlFKyEnZVplhh6qU+3xxnfrNESPFQNPq/XTu4ZZx7Fy+0f/6JsPSV8X3/ZbUJQeXB14RlU4nCDo6j5c9WmNRkhe0hvN4Ok5V3CKjEmwAdnJGnAAuH36smzYgjzEtAtvv5Q2cRp3KRAXBW8Sya2UELiCQNVFvOKspIW3wDuhl2bpKkGD9LP7yyUghaQ1UHT7RHhZdkw0m9ruPOCP2gGryHRty+Px4vGs1plNu2WfZ5uCdbqZU+FDI8OhJmcm2tJdK4g9QOYObmgn/hayx8cbhPhhkXSvfjhbE5B6EVt1oPEQuQOVc99mjLU0KR9q43TqoLQ0bipek4KsP3Vv5Le70VRBozI4R6s807TCBtn16fOET1O6lceOUpQasZuY1L7SRlxZ3UXCAQYmuv41M/I1L5KWp2NrNosZz4VS74TIw14CwdxpzNnzPgxltZkTF0YgomGZDZPJK1TmLjLkZy6cLOQKawcl+4LAV7CK+kXwup+0sh3dZvQt6lTut158Ba9Q3SMwcg9FmrCKdMs/A812lNOLiNxRupqhD9RAYz9MS1jb5sm9BXyaDNaWzb4BGqfZbyLHjXQng6ddk+LF2+9uPKWgHDGebftYEXx1ALGvWHC1U1ratgHXMtKMgFlvWA4Isx38yqh63n/B8XGTlfNHjQstt8JcgQ0FB178AfJY4hXmoKDwzL5sOn9Du0t7vKxVMzqFmZhtS0cq7K/MaQqEEIpgMMvGNAA/tb+i/9U0snbIRdwC7Okj6Gxv7zZ7xUQJYh1gjbpKpyRiDQt6WFg3Uu2GRjQNh58g1uZXSazyM3CGdIQuRK7RAKTP4tLQUhQpELEineSx/iVKetbHvT0o8IcY4EvNzat/Z0UJ5D5FnrenUO3AYN3WeBFTpJti7Nh6hXkvxL793IxezdSMDh66xoj2ZKH17Zr2MnqvlKzzZ5XFSz2hYB5TJ0kfY4+sbccOsiAHcr1Ud+5MkIjAXTdQ+gUAPM86+dT8+ttGqcVNe+DdrwnMMh6FIb41npktWjyA7AmPgmSnkcYrNsErH4SIesrVvwKWUUPJarNJwnFD95RbjtvXIs2zHct5uakUvsgKfcXrPxPh78ju8Lkhr2Qm7eqjFufYqsvr2JiHCd8Sc2wDctiH4FhHXBD2zJ1Prb6A4RHjwHUTMJAdjRuejfDyh693U1Ezkm2bDtxA9oztJFBmkV/X+sUEd5u93eL8uK4w5knt+DsOp1FeNF/E4rK+GRlQQnKumJuXz5Iw7UZ89AhoUDPaM5X2CDK5JNZre5VVyl4ymBQsPizF0/LtFqdKuHu4gFywz5/JjshWDpZOAn/DaioipUMKPZ9DA2jzBdrPOdRwh0PO13KGSW0dnYik8NWW+88J6Lu1RJyyVrmkGoMkrhFw4V/rQ0yK2Mv1X0vMTvBOpIdspyIMjI3GkMkiVUBCvv3XJwv8AdW7WZ0vQzzIbt1GE0njNMg5uxQbrZLH8U+ov0v2vWgPafssftEs/bc0ql7mBa6GTkhPerCXoGKp3rwK19+wT1TbFWDwgy0s+NN6mfbnbI9a9w8Z4Q305wio39Vgbd1XjIdChINYvBdWbsstX8JaJPpM/eZ2c/Nkd7FN+QAbPlMWfT0aGRchmqPn4//BAOL0mOZ5scYuoGkPEI9iM0JjHSykAV51b3N6vJlITwUubrJyfjrClxBqPfgi4MvJQee698YPTVICATIsnXOCRTKLi6GVSVCapxM7gwuyjzPTgZg1bXKni+p+JPIBOMgZIx7P0pC0F8fI4NK2DSxau4HMxcVAtl/2ceSvh1PC7/ISnkQMNapwMVF4ykACCbxZR2l1QaInUxhIU5NaUJFkQ/adRsP5WXeywE4geCenkTpIfTHhLVLgop19ctGFmaAGx61iyM+VhWg9lKgKI4EM2GghQFEVRKNJIlsq1v0LNpvZKUDptGY/CahjsrJr6FaVnq9U3JkcqTqiR2F87mIv7E8aAS4Yrdz5rQ9R4HpN1vUC/4LkOZhcToh1q/mh98978DRlXbQIPjprwKIZJFO8RLC0LvKjgfscvnJ1jMPIDb5wM0v+1jC5a3J9sPl1UdY3Wp3ehi4pABEaFor/vp/6g/xZmuOzyEnWVaBTR08ROi0dAJ3DnIhQI3P7D3a+fNM0/jUnZk5Y2seV5c08NC58Hvrq9DEglLdXCHzsVZxAU2qHYLgIGay3KalwFjKHy8keQMicPd/uj4t3d+wSkJgwAwTrAsypd4el8P5xlK1D9bCwohbGjwc/6Y6lmQZ/Yi13f/l9Y2jxgdtxPYZL8fwG7SDBuJoXI5pefbLlqHwTRU8KiBzGKD9UenXIRQ+2BDigM+C/e6fRepAq1nvFPGbfEXC2j+v3eiAT24OiOXXKZrqc+6PYWJwTbqz/hcvBB3jSba2zz77ZuHI679vP4ySFumyVXSKYyJG13OjVoXwLs8pk33wSj3aVMQcAVGcaE0Tkfj2+azFvAM26huQBrOZDPYwUdVbLKE008CjKltAn2WeTwekSUzqYTH27sGnXAsVp22YsMDoT+DRMhPuM+UgpP4oBL4NfMKK/4Sc69kr07c0zZoR+agItHVIyfk30qSnJgZm8dC6axXEpyxxLc2W0WU/FRCHL1xb/giEBwGOmhpOpuJ3T3xUzN43KSFbzO108sh8YcO9DirLk9owkTetErl8dO49syploggqgfWUxxSKigJJpcHdVn0UDxJxFFA7JpY//2efLrDt7rcbISyQGkDBOLR9VJlfUxn31YobznjfIXheyQAEeNHHduiR1GYBBF439+kH18IaiKpHTwoIX4m8RwnJLUpaYVI7WCBuLCwT77Rh0eBYwn9vdm5Zd3DtmUJVBaFoIsx2gRZt/wVEF4zc45d7ZK22zhn44/obl7zi+23MOMKMhZxb//op8G11+GqvhVOMkHpvQsXckW8Kb8ExGPwfDsnpB44usyqSbTP57PXIiku5n2znd4z8Q4UDmV05r26cCdrA6nZK8s02dr3bho/CiIQp7pGMnLwg0L+TI1JAVd+RafoEuHf5t/w9KAw2TwiHb//aQZAkLQ/14h1ZkSdf3IdBfk4+TATTMb+Vaev5RinTVL8QCgkjJmG6HncDMInR4X20kD43DB71c0baoVXRvrRDD6UpNGS/utTm5dV2e+MJ39UTYXmHYMYNgDtoRfJKHffXL70eRp1IZ+JWFfpwRlTPCfNvob1dM5/WNgyyLpESeSPGTmBkuyh1INid3TPIOu/fUX7EeE3YnyPcby9tf0VhgdBv5/boZx+aZ+6HUcMmwRZrzY1JG5W8DrIljXRSWLHmuDjkosPTevmXAAFz3nEKtbUGQb1PePncim6EKzFK6pJIazdPxtEbKye8Up/tlSkJQS5Dml6kRMpZngupunuyYT3EoiIrdVnrYLaJert7ZrrVayAiV+S+yxbxRnW76RenY1IFzmu1Myv2dKDXVYcXeqdztOQvt+WYJA7JXtGRYJh3OAyB181XaiX9jDDvkLi8Q3EYxGg+4pKAZMBW168MyQ8cQ6FE2HK5rQ+/iOT6e5u6hKso2fW7u5aqhmHbh6fwyZQi33B/BMBpVt08jENNB/J6hThUqi2jw8ni3qQzjf1I5BLsar+f9SKFvUIwii+8XIdV7L+orUZETLS37PXDiGn8yr/wKmVk8vpKIZ3p/28VLN2/6ZoaObBG5n6tG1LM6r13sx4vKf9SmnUkjIhTLxR8CTj3cs09Zx4ROealIDbK13I/7oSDfWwp5n34p5slWTRTSaLrudnuFN4zap8sbups2J7y2HC+K9rOJRxlv47cEInfXabvN5N9MHERcd1VACT29lH0dUlx4VChuAIti0xbN/d6wxKG0Yk66qP3D87kIRYblsxvEKhggBNnFr8GdK5FVDS6VG7QOMD6DdN/cwFdKzWJjXEdZpKWDqABjtyc5M0BZgLaeJhlHFXI+lIE6IWKkZn9rT5KAWAoG60S/CNjsIW1vVJOgyZzhGvDfSSpBt9iVcGDvqAQMyS1bgLm+Eb9fHjw/jO+0qyhmD9eZbl/PWn5XDmUAEpoGsEDnm1XIu8oTO22Q+4zddT2LHAj3Puvx17b3Yu5squoZtv/gRRazakURYC2E2lNPMwQCTXLOjbnKHo1/Rll5IgFKpcQsFy0cvzZSJVW9DIEct7TnfYkMJHZK99V7dEOCTzL4+STcyJTGZkOfEdRsfEyu9HGJJVD4i36BsjYq4vZ9y0gtl0/BjFMyZM8VX0umq7r/3ZX9Qwj5ZtzNEEU+gzrJZguTuzAuqgZBevWeY9o1VBeL/JRA7MbHv/RPJkhC1QcQWE3FmVpspO31/tfVRRpAyifm+8JbofAA6tl0LqOJPEyxojAsryRlobz6yHugry5tXVxqBdAThzapYRTQJy3nin2jxiPo8vudRaXjOTt9n6fZ2ygjf1QqQefzIyKfINxhFii9t0ODdgwd2w0nNOTYRAeGsyV07KYZ7+AY/Ga8/ikL/fAhKrp1RkJGJala16OYWLO5MJzr/qo7+OEg7Dg61DFzUOGvl4+VInrGb4928BAyaBCIJHPmSEmjF5vcB6Rpy72Umw8I/O9KA9ma6obdp1E1F+qr8A/8E1lk+440s++UZZ2pcC67xR7oD4k1/yonrgb9jJqdKU8PJ5EGeNfF62C98fCruh/ett7i/47DixYLt8nhkFVhj2OEF3S6wu4uNQuWPET4TC/VCqkfmar+d/mJhkfLuuS7ycsthi6ugkROjNGw4IJR9x0lkt/XI52IQm3DIoJQmSt9S/aXyDb5q4/NwZsAf9u5H2XA7vqxYJPWRjtU8SRaziL/KfdtB2ncSWA4IK/Jk/1OqNd8XRVpWW54rCHg9mjrKBlRUEdNxZ27Cg680ubC6hyLOUqBLwLKIrNqFRmiJUnyZ4YGkFeUZ9bDFpNpoUU2iFsrWLRW2OSvRMudziLQcU2JhMfAG9/i4ey++NQbdAy5jNnT6uf05cOFCC7IaukHCqM/BNtGnbtAkBwMHV+0MfkstFi2FKf6kJxXcAbVOHb+AaUCK2YY02MY1cvT0UAWKodLjS1KGRelch8v1dCezKOqnj/Ymg1UWMXPCeuZiv53i8E6dS4xDko4DvKDXnLP1+veyUza28kBLCd9VxI99rYZJLJCg4z9dP7SMR7flR8BpeR5c/Tad1IW2RfFg5P8UPIWjtOqBaWdmN9krYqJEh8B9+TSIRXyyyW8zBhJQa1PsocPfFf/NxhnBab/pIWzjH+J3YPvRKQLAQFI1ZUnrg6P1KFuakNOJ+i3Tvv9BcvhomqT7aJgHHMDEZ+DLiHiRte+2+aBs13p2HjbGOnuuI3X81WfzY58UWzc+vmdgDMNdb3ZyyopzAZSHFouyRopfR7gDNpFthKwvXV3Q6aj7xD0vIZeUARZ8DIwUgEWpEV005UCykexD6pCyzqF06mbsVHYeRZFORlg362AqibVVKjr/isGyzkP4b2JBEf97jW0dy+C0sbvqwLXi+AbI0OdLbHZwLcOd8yQ0VHySz8TkKYFcyfuhCsChj1hKlJof4gJ5E7OlnH0ZegXEoouT3WVeWGrNe3w7iN8i9Eynz1OsXUvDRH51f4zC8kGhEiTWzdCyGleDoPZMv6TBW3UL4ZOwB89GQtUQO29vfYHZiNGa4E7r0hg9ur78+Czg8E0/I7WjGXvHbDpN5+eT5sIuFfVk5PXP6esDwcGEgY9mtsv+Gk6Wf+kbeqVPebqFF1jMC9jh+8nq3HkWN011WuJiSSd92kGItroYkfumDffWAX3BfxkUyGsI0iPnnPYUALlI7CaLhSU480df8yZw3iwDTJNf+kmH4g/vizbZzhmTKCBg879UolbvkvQdomHQXxilRkW2DMwMfFA0ou/evY5i5vFM05WibYQmPDZsHcNLgmriLq3sfsj75TJuE42fvc7E7DbyLkBmr/GAFyCwpRYorslJOthtO4Hc5EHKrHREgTM5q2qH9nZp7zeFz1zCjvRk6W99w4FwtMJBMj8tqD9ThhO+WdwBYwGXYZ6Gy9sSbT0WA3d/pvMC4a+GCDhRTzZF3lqeh8f/M7X/0/OG/vMhAWSrnIf+7CxqtTb0rhb8PY14XocD05YsWKzQ9Tgu0rUY5ciuEb0d2yVrDPXqY03OwhiMzCQwaTU5bzeZYv0QKhXQ71eh8q9orUXTQNMG7Ysn2+Jh15znfOrDhB9+JQwwXXVML6b9f31plBUmsYT0vX1ajfmcFqSuWZCYDYOWHXR5vbD16czHxRIuZDGQRgM04Q7wMymRzkJSrI80wnZ3WPpTOkYVvXeJxSt6vl7w8WuqEuuwEVOfz1ElLLhBA7MDzoAPCkmZkXNNmY1+CDBItig6QIVXpgjOhiDscrp/zi0ZE9WbIwUaI7LDEIQLUWiqTKWpAzxJhLnBhfK8yYqMrWGHff16+mr4CQp9qPPRGRRqb+rEDguiHY1vo75xwwJsGyz7C3tvvsADfDBMdPL3pXdkueAEnYgcw7uHEdsPZ+DhvfuGTB8zk4myG9dX3c9oIZjn31rn4zNI1USCb2jZS2DgN22bd3CTf92uAoYtolqi0kALCPJtYIaY685SO6kO5LzXCDetwJFl2IEToEqY9m0qt1B7ACbvfBoYOlX8M5d71uQp1HJ31lvO5VHBDRmbA/zNEp7gcvPpaTjQfckwx8gLptB+pplmq3RoFzaOXnHDSvXZPVK/B+D1NrgZwwG1Mrx4IfizaclD/ASSDWipL8/FAa3T6morEOMmPKmcf9xWqbigKb6XbK3oeDRBHaZGUt/bNJAsoSqT9WZ/CcdAIiVSf1OwrP2LJK57fTbw4kvGezH05CTORrOwuR/R1LrlaCab6vqHR7liu15SxzPD/Z/st1L3b4rXpkinoqazLbl9dsQvhUwqbAU2ytYaIqpEPOwrAsdTD84O9kRTA7fFo8TTB287NAb+j0vl1MyCfefLCGvf6jCnUavLH/zd+DNWJzWnUicc8MWY6+34ZrwCHwJ+t6XTGGmr0+SDHS2XhIOOVKICR6DJqK5D3ZRQChfoRFJVmMLTu9K8F9kjg5cJmd6L5MZoI9h7fq2TyW5fcQVu1ShWjTgqIWpVG+URl9dK7HWXyfma6R3pJ6+7wnCYQvFMV3jYpYryYzAH4/2gf32MtIyqLFpAMcEbDUlEMdScIFslscwdb6S10c6WUDkCPnBs1M3ZHAt4yN/ivnLOGkHnoTfdl7j1LZRed/pFog3ztI4oWMfu9bmkzvMysUcn32zOjRCc6P6IOeLnEbZjSFab/W9ib3mIYJlsFtXScm6OvLoo9CnxETOqTgtAhPpVasB+y34nG5jVQ1cwZ78cBuzl4KRV2e6lBTmac5+eh90puAMqGgjzO7dbu8Q9lentMefvBBYra9dEajqYwwUlLfR2yi0KMppqtHOMLatMfaTgDc8aH8ni0+FpOrM3iipSiS/v0I0YXQgUQ7iT1ZuUvgX4BX4drX3/CBAEZCmVoqlI7tKit82lhc1O25EKXJqPxryi9doX3YdWHT/dhEuhkAr2wFL2NpyyLV9G5/cviDhbcjYb8FUM0T7v5Ky1aC9FGuF2Zb/Df9yOw6mSIbDs7hDrnbZgQ9GNLUPJudNsfCvfenitgL1BPEkLRZP+TF6hV+Tcj+9yRHxsrzctN0gI8Iej6cLxZ5b3kMuH3jEmTGMn3c7eDzuTMuuBV9+PDaDIaiFBT9sALbCyVQh6CL5kODHYKmemHVFTnqfnJIYC8j0h4YH4YSBXVKIRqFQYTM6LfniLH9JlxcAyNq99U5Jqv2Rg+hfJnAQa8iRjg62uptnUJUT+1LtbsiPArqi1tgjwwD/p27tnZe0rzLBwghxtGHwdrvxxjBp/JjCawcWK/dlXYHs22i8zuaFrUrKabbh43cJTgZ5DogeZWHUHU+EMQr+XSeYWoOi4rouQRB7cVPVULRL4U953G+h9RuKNTxWQNb8hHXpAQsayViiS44ZCD6ffwszyczIeK5dTR9o+cWAqfu1kgA2YIkfl3DyH/izBtRV7Lx/A8Dmvv5ugblcEZFFpFMQFGyBxKtEoPy5rUnJwUDN5vwoAhG82ifN3kskthJjn7+s9U5hrJRESV5QUIbA3Z+Ijica8VmY48A6B1BGWh635WCCGMhw5O9LFGubshgx40G5SCnFjR02WdJ2uhC61KyUDwEMn+z4RiaJivdalq4oQiYa2kBI/WZS1Td4QMZcU+r6VvEpR/aL7YJDx1rt8gcUHzf8aVbaNcZpjvZCAXFU3VJ36SoIvHyX8NYT1ujHjkHvXI/IYr6xw3bxoPQLokXixoE/jzqN9XxyQ5LLtOqRxTV+2VWUAwt6DR/OEQSSE3LFRjD2tcMRLVuqRQmXODrLE1xYBs9tLrULO6gpPny2RRWRu6uKN8jT7t2H08g9O4R9DNepMfYzMQm2kdLCShZM3TgBosrrykbWjVH8pm9kmDaaEU+m6kmVhE9d2CFIOSvTrrBevCMbzhq2uBn7hACr/OlkFHEMVkSkN7rdwMDlcT9PTWwwwGwNASoCgVNsv2uxwngt6mV0I+8ZPBL5He4Q6wtTV2n2nn+dNJCQFL0AIuhzP0zKyarLnX/zHXR5PYF7qWaVKtiMdONXJKrrEj7B9O3m0REKKNnrte6HP1RrC/vMCZjXum8nCxdrthgpgRaarN7kIVjcK2OyNQwjDLLbOpB/adLU41P7OwWoCTITOrpRLiz+0SuELyWYWKyeOF9qwBYZvx6kwdT75VPQwAzm//9QF7PGHTTDUVPJNNAzxXtw3QMa9n49SEwOsAHADuQdH1fiUZicEZWFCYeTP/fkBZ2Cy455/3BHOCJmwuKhVyZxaAiD+JOJw5Q1ZOQl1jGX8Z23Z0rqMLV0/n6UBZXPpNslNp2q1Yxm8W8bODQ0ofd1sFI4hB1guiXjxlJPg6wrGl2qED8+AzbJwAXQiT4/y9KmiRBlnn5MYcOPRFIqWpzurvzvPoo8bioHJ0A9MBT7s8ZCuY62fq2n7MTwdxBmGwBWBpTYLyGqMFRWLTRGBAdeYNgajZ6g2aBZ68kdyymIzQ2q/6eB7dyRZdJG2a3KcUnGZN1DbO7LdIfJJGdrC+6NgPXXDYXf2BJUYDiZmjq4WtTszFUHh4skPGAyay5RaDpZFT6+WFE7nB5s5iFd3k+pWvLRcfFLs3q1YAGUDpwJFaMdbM6C8N9o/Ocbc7CsVQ0Nl6p9eErOy4dSSoLxpmtX9o2Kuvrm10qnwITf95dpr2sNTGWAN5t7+RyxRxBctceFlkeecji28xB3/ilKcxW9JBMMoOxA5eQYFiCxnDq0iOIM+dTkYlGRL3WPIDk2KFHoDE1H970NPMNAY5IKaxavuAFOREL9lmLydLUg7gqhF1vKRyXN6Mj7wthJybhKV3C6nwIpNZEyfsfelnnk3cQgb2zt9Gxzpz6HpAoG7tuYlDVCYwgZV3x9BMJF5GLFshShd+J6pJIHTip8k7jqnoJnVU/qF4D4f04qFcNAAA70ltMZhmo3o2CauUFoUReNYlof62IxsliQShgewV1THL7OYh9iK+D+RdioEnOhkjdMQG3fOKb2t8Q9iovZjs3zKvw/6yYjHYCuk3Dsb+Fw1RC3i4llWhkloOj54bGO6kXkz4/67g7oPeJv1gPHUEUJWLp2iN8AWROeT2w+SN4OlkAoZZU8HH2Y+kIMiDavaptybx1qA8DdOgz9bgXmxLp8odLo/DB00xILQ4QxoZrd1Ej24WmBt+hdNUdzckUBEf4H3xJIPt0Zjgf+yy/jB3CQWcn9SjcYNLYfPfEAr8mKFvbH4sxOkZDvg4Ji35I5raSpnJ6Oe+7vF2Jpq4KJQpG/N5rQfCuUq5qF6ckUrmWTAZKLCpMkQHwMaQQYsrUyL4QulP2mX9htjZbKFiwpIowiS3dR/fZL79P0WG0C6QTNWuwxJ2krbbn+s8CsLZg1lAHXyXYTufv61Nrr9IQBP/eyJxXNYdmwWT0VKLNSyngbsY2kxippPv39YuXrrGW7d2NkgCFE3qGLRIRpMfZxcNH6+9YBGcQH/oxCXl9hmbpIi9YlqheS/7Ao61s7xFfoYeC6h0/eQKaZvOA43cQiwJASFUwBvu5ELj398cbmhYk5atmFLd+M6pS1W9fxVe+M7s/sIGXW8i/2aRkQuKOSAFk/lPrIP7OFvdXE0EwUp+3TZsRkbumhraWf8AQpf0/5k7Y+0IkfGo8VqmGe2AyBu631gXFrTan7gbvp8LU6vfzRjiciasKhv+FM5D4h3ZVHGL9qb5OJ4XYqX6kdau0JmKKJJmavKhskXm46sh26j1emTgXZ2zxq3wEfYIeIpHArb7yfFb962b+oQ6DTYA5uCrTvR472T+C/MSnbRqaVvwpFs4V5tMPKfzrj0akT/1FE0draiUIiHlpLTRIK7IaRldrug0XsOoBwJJPE8sWZt03UJxXWpR21kZQL3yDXhwoY+rgNCwQwiX+GuXUsBo99E9RwjgQt43m9jzVhphPVlAscerS5IaAdaQaHITyVVsaofUloBExTN4YU6j7a0Er16sw+pUeJVyIJd4R8FhB4VsyQ7K6/rvZzVSENyC7vh/TA3g45tfiR65pEhEQW0UfBR67I7WcO/Njbv5TjiTYVwUHng9/etzFELIf/M1HbCQ6dOCO/e/YM5Th5M1w7BDBWyanTbzXPtIAiK6aCAXSIx9xieTue0VQWNCOllCVpD5zfV3JMzDRFZ5PbWfuYq4BUmn7HPMIYuzk1xdUx5u5JBALXO80KjbfFGjF9MiIPrsmiPTULLqZkdojlWP0P8WIGiF6nhikYg4L/Xbg34NokjKlfGXYMGTQVtIKAaIHLZrDC81Sq7550M2FsaF4EPaRHW2LFfSH+WS4j8qrAWQygn4UEvVsHN0QRuhjRwR5vsaq1CBMrhNDCo6zIa3oi9B4SaI2IqLKykIx8yEQ+qdjqOrsUNJH3Agc79U+JWfbrGQtl+TlYkUgs5LNaXUj6r6+2a4UH6TF69HK4PjrMY615eMRqboxwO9Itf7UM3MP39TN1EYGFnsb+tDR5jn3xykNA6qwffyDzNdv1NQh6ufVpRvDjHYLnbZyV9rns8CROsjVpNZiEeoAagqWK53ljRpVeCcdhqAZFTnUpkJZcXx1UonQ6TnSox2ERTME70XLg8iw5igY4n5chG2YIZ6JrNqukqtRN7nB9T+8Sgp4f8IWUIJ6eH9Ooe9fblYeKtSrCrHFQL+mMKVNOyX6DrnxkhwMKcmDmfxywkhW8/OEno0Wud+6qu8Em8TrE8Y4AFiDQwfTqEhqXj6sJd4mzGygQSpE+xq/uQ2IuSbepfCL+0q4FaBPmpTM4mbktXiNUP6bLR4r2N6zu+0ovElzPOoxGhN6m3Dkp3u950DjoZv4nhKX3ee4ymAvTPchCMjDmLTb34uwMwNKcQbK652lDA5Yy+RK0zgOGHveoEQHAbb4O893Jt7agqFrg3zw95encjSAlDF4iK/sJZlAU+x/pQ+jeUBTqFR3yw4ihipF+06mMudtTQyCoHf2iUGb6Xm34y5qQ5l/HtfNuvPlSuA2XiYHlCj7Dvn6n2cX6OMINFFH6700md4ivG9atVF/aEtgalqLRFDVIgBES34V8i2+kJ0kWM+PBzoOitJoUJcNMeUojGR5paSWewBRZyQfEUn+lpror3iufnNW9aeKnNttzKtcdMOdplY+FeGpp0F0Fs9G79MeTHHDJM6k3rS6tmDGEC3jRBtRwKDIndXH7DpZfi3Kt5dGwA4M8YxnFWyGwybf2rxZu28grY0t9ALUo8cm9je6mtRwF/EMckT/Al3OEXbziCamUv/HbW10+XDoyiMFeDQcR1UE0UwF0DVXrKqOuJOpruewJZv+x7s5UHLFutC+7uPPrf3rBUx1iybV+szqa0uO09TdCMO6C3jfHwkXLb5F2x/Ad9rXmTSM/7xKLQLMJcKsNUgmHS8/a8827jU+SY4Ci2Mjg1Ahzxovk6LZ61I5Lol9JYVZ70TDf8KiqHiDz1dYFykVGoVgBb+G9HoTX4a8IuZlrVhGb2NdzGzhbfBGSUgu98a+P+y2xMbO+gZOaxDcvERROlOxku09wDEPfOnrrT9lBSr8A6g7ULmfqU+lgO581IVcsAR2mVPrUfEDyHZN+J/NYXBNS0NNw/wAk7ZNwZIqUhuroGIqJu4X0CYq7pfHfM4NXPcZ9D0r/TfWRiX6gmqHltc1rTjWOezSwUqBGQ9Hd074z/BkFex2XdOG+s9ol58BRXEYC274T4xMi8EFqFQoue0uDFqpdRj4KPygvQqyIfBIOSNiXG5p79QBzIN3Oz94BGikhXFZG9tbF8pLmKyRFAtluyfYIcJq87BRZYyIpZMtzLywAYX42RObbz7MlQfgI/45hsqeIbvk7ZNtZ66mOO06sBF0n158M/DfKIyo6csq0eotXrS8rS3tLKY4dXIHJfVcgmblb6tYrW1QdcTSubEU9AccQqEnXkky6y4oiWPzX8+gsEx0LxVbfjmSUcuFvlFTC/6M4ElLONjYWCfKE2YDE+4TL4ktw8LsknTl6iNK8w7cdujL6eTrI9kpvuwa6VI6hXR2+1+S2tx56YG4yhD17CqtoegZadrVBMBL2lNDlEiWxmr8amT30CYsp549p2ydRGxmubOUvqP+40k/kxvt/wgOHuO125amSDR3hFFT3EWtNCY4HS7jNIfngpex7MFvbSOqBBpAOvwlZEH0VEN30VZL6Oo9iBiiuTvd06VslsWUsaZeJIg59cbhsS2Lxo3Mkk8hNKD76bQ6MbE4hKYUkGizE8e8GhV2pcJxePxeOK+8mNE1tpEJCm24og4MoXvpgilh0u1vvPNPBOsmVzvDcVhSf7GKgZyT989NmEzq3GtJ8NjqOz8VfSWER+x/I9+/VJrPJbKcyGI/LnL2GZHRw4rLMnxs1RA60ynUVX0djewciMphXsLPZf5Pxl3Hew1SPcAicTDz8/DxjC4syW+SjuTfZuukwVGsoVwuTeMSU/eF3LFv3QvJ2vvnoBK4X2Zoh3f6tmN7tRBhfjCA98qWimtpZipdnqwpc/FsfBYd76g0A9jZ6irYu98FODHKEhnRcYWtE0rtE1ZHDRKqYl2cbn/bBmlInUkJFj0gd2hczE99TifvxRMEjvK/oBouv+OMbU6WHOG1ud7bKETOJQru/ZXmnO528rRpKypHAnmXYQuxKt4ujQOyvjG3DxY90Q8FXFv3yemYdjCwPBMPhPgzvO/QD7+mk+qV5OLBBrxrtWf/LsQdjlKhAh8gULaiD7UAf7hoLcimr7ksMLDJU8Nb2c72aueaQ/Ee798xMBfoier4JEZnxxcfLedjb2qDUMK2b9j4gd3oaBwisjQ8u//kCDfEhBNekVbz8fm3NFSpM0ZxVOH/R1Zs0QeAjWWoOJlMGabdsfBfuOLCvfNb7teH5K/TROZzMsxwQgW2/2xgIm8uAQceL/V7hPfr7mKMl39AFAmGKaIDyBwAHI6YSFplFss267iYu8VACrOBSdAr+z4Afus211yUP7v2gFXe3SRJsLIz2S/c0Mx882PVJTcpnagLYtjY+6zG4PxkP3YDDUvSWxrZ5D6nPTJIpvwH5bUmlLsl8JXbCIkYAC0pmsL0Lor9JFn+6+VDZ4vsLpOoEE9fd3JeQbzCC8mgRvG+cudRbb4JY9ouHGW4dH0FWN1GOaGpvzKwzYNYauskEoAZjiR/E9r6ygs+/LzeLitpjUZjhMWxtJnVVI6slV88VoAfAFjiQIiCU+ZAtOe7jhd73CDRNrOFfFo7Jjanh4i98Voz1WJgWuAGsiOiOKPcimI6XY7yLOMEe2dfirhgK4G2b6Vk1TB7f+ZSM4UaffSgDFvZbhWDf9YEZ/fiicNZgW/jIXITZLbEk7nM362QDnE4EZ0Azv/Rp1XFLhcnkwkaChnS+L8iRGgKKIuIb24WrOppBv+O7NfVb84mBufk6P4jQy2o2+qSbvsw4Q4bBeYX2umyT9JNNhkBhx2UOi0XzDi9j8ZbqNEu/XsUkzlnMGgtddAXNlTHb75sXFuUzO5/zL52Qn8xV/VeACRwHsmz9I8EANNIdz3gf63yS2mKiwa0UpkaC0bkvXSzzd5unRT7mGAfLlLqQWXVs3lXtnofrEpSRAzSwKpg04N40LhnGLfR8v5ohPX2P446TZB4F5Wu3H1o/Rhslq2DLVOipOObga7l/Ny47ac3UUlfDbAFqEahlgEfK4UCW7WrraVGlDWZJZvWf+Ocy9wOiZ7IcOLae7G/7v8eSdjAwn/+8EKghRHoyUO4/gT15Hkd6jEmSAHl23IZatHssCXnTzgnGshX+H3Bi8tFDjsj/LlEo+xnt9I2qtcOdlNuNTvAYwy7DHOe0RGrDUAsmfeF1H7LDXFGlqCugtoJdjS7yeEbtXyGx1dtR5IBthBTHgvn8HCCIH/6FoHKvrko2cMRTFpYpohP941goQOacolQjSTQVD5XN73Z+DM6wC1hmW8CVw4YvGrKCRGMmTbSjXy6nknMGLw7VUnyBLcb83f2yinwYGx4d8UPtfCTPi1Yl6mNmPVrmbTPWu0pThLP4cAF1CI4KKhYMZvSg2JnqqZa0d75rGQfSCcZOf0oMp97HwLyiuVlk6bC80FvppQ6Mtas25PT/StANIpyunrfEd/EPLcdni2ioDM3svLQP/VJWoyLr486dP87aJ0NrmlV1W3BkxsleF6rFaFsXzJmhEpHNk4rE2+idjurt5fAo16uT44lZaE+fDBfqWzRSBw2bhG6covl1cOOoBjAghEOdCziijPLsokGqNg02Dqrde4To9bQkxXs5yX+fNKnEmD2tI9F7UFcHPPJmx1bUTT3e4Owz1azXb7uJwNe7njfz3G0FILb0gcpK8D4gUlhLGTj8T6zS13DxsgRo1+sePt7XRKBbe0tALCK/z9S3ZH2wYRGelnINB/mZYqoSUHHf6wfEglgffBhSHYEtTAE5H5vvdRE91DzWmDNYIUPw+k4L/q+w6hMBzYYHYjSSXCu52FauoeFpOVbvRQ1UpyD8VMoCSPOg8mgnRiSf6kblR1dSILn6lL2DYsbCyrXozWMsU5CJXVDHJMg2utWqDxufb0ZqIoeBLjV3ik2sFmYe1od55YKdPCGVyD5A7M4ysrnwhZJE06KM8FAMVyHX9HDClqD0ULhA1WIkfJ0v74E7mX83sl6uCI/vuYg3698hl8/JD/NWyBYS0tu2yeZEY8qZJbdh7LyFI2hMDcoYq3q1DZjiA2NS9Ov2k4hj74JleHuMtHSP4KZLGJVBR/Mq3GFP1fDr0Tk9dgMuP09gze1pZnnpb97125uWZokSRn0r1YuCUJG/gIiG+ohDV6RmDIQh7bOG74PwgkuR3QrygiluCObKrTVfjTBqtCoNNWRvahPlR2LIxGXTsdfQKNFZmJnfg9ZQajI3u/2i7UK/nwwToX2AkNRxaq9eFfW6tfTGVi7euJO8cAEe7fpaenxwESTCIVYjJ83gyUjCxm01J0eGMHddR4QqMVcyGYFuLWO7G++tPHM8i8ORhxTozDcK5q/EB7M9lOneN9ilNu/0AddHd1NepDpHt+Xt9ri/3ZJxGYHspKy6x1hs0Q28f3jDKDL9F5aHkwyca5ggqCkTw2NSpU2g6ZsCH3CBo77vENDoecUs1CtJRv8Cvcg9/PF7Kojq64sXz8v1QB8yxME2az6wZeK+f/evCwbUSLZw3xICT49QVrZho/NqTRIdcsmrIjO0gZI6t7QoStda1LJX1zOFk6I29jeNbWFxY2Wr5igrsU9kNo/wwVp7QvIOIHTc3Hjz0c9WxWuEKxEHQqVaRn59Qy2RIKtzxRZzK/QjjEDfvuJc9UFk6Zzx8jlqHn9eevgF8j2Ysb5H/EXfYWUBE4blWTooPQ2lIisrM/hIMV/Ol0pijnH8vgvayRG8kNFxTse5suZCf/Z34GPPWAeSwT33voAd2Gr7iLtMIOEUPrqnYEh0OL23/Je56LUvYsCiRI9/jennBislqc9VsIF1kXjMSqhAUlZKs/AtTGJ45QzORiPKXzjNsGpaAnMlTDXwgq4oFVbO/BQWUjJ1uKysH2oP6lZ9ThWmdw0ZvmkXZbY8NvsccU8okdZwVo1Yh/yiRbm5AejnIcApyusbigrb2nqkb8D1VS6x3BiCnA3bxUxTZ+AgQouMfTJ4wpA52C1kcVXCsDrn4CZD2nzo9hqRlfBdHUSBb0o1uwotUksdIzu09GYqottVRg2o76s5AqQgGJ7Qdewf1Q4d8XwyZBtmEAMyzVqc4aN/gtzqtqoeN0j7GaGq1KQ0RfQym/aWs5+yiN2RxoAkYUExjnAbcDMFfm9EKI0k2CmG9LPQiDaM1XJc+Bc3Li9nugfIxVtob0QTTqqMPkyy4oZdozZoKEUj3qlSR9ic7OKfnTS4ll/rrwKW1COlS0hS/bBtMWz/yNT2MyqL1daciZ4koR0gvrzBfKXcqXXhYKMUlc3NHJdlFHHaFPZmOgNaWYDRZdTaY/mXgXhIMEVoEEl09V1UbPlPQ/PYD9oFprAAl1SpIFb44X3Crc509oyPbOML2plW0b2yVSD6emvzvKHCld5k/Vf3BscWghTYtQOul+Xkz/IjL/9kkXG//SMEPgPhObB9OIo84KxOrXxv0/LruYTVfD/iM1/vp4sZPi3/cDkqFMmuKtP0o6L5bmqYXO6ShFajlRl90cKRhm9rXDApws399wrYQBMyeiS44+VsnB3l9g8yAQWp/qdnxS1mTqrSRamvpbn5nj8VOKxGKjKndN3B+0izI/WOexkSnc4oJkTZgR6Pim2EwHsSm9Yg2nZrXCXFAahXY1yUTtue5v7JBUY9sdMzGiPji8c4AuZ8LE0jqUzCXHfV83Oncd/8k1vojRuVSfpaZIf4d5vCN2memGi7/x/caO7JpPpC0qaCvx3rcUh0XHMrHiEb7WLzCYAdQr27tOWJhTKIXaQCSeJw68muK9XCqEamh8nmQcdGHZZCWKZr+e3qIKm11YAYJhJRS1QBBafyEkrfnuilqcuYicmuIDFzxA+i8JlujITD4AbRFhNcKPZVMGmavTrve6wLmVN706k4rlapCZ0rjFAStqnBt82oPhDwKPdZ1S30KQa7d94GlwPQ7vD5BVMR56JzDZQuO8g7SmqXcDlQSr24kzvCsVHRroiXpaDaEWrsXX9YK9b07XqWNPP25u9NxoKhMBvSQwCxDzx1f1Sx/lMqxlQyk+GGCaZH/tKbBb42VeOXBzt5Fyz+X1Pb9CrC+Z1IAdasZI2Ll2RApGcpGgY3kmhZFO1IVk+QXjIHAnECBo1pRIXsc82xYLHyJtpVapkQ6YnbDG+nWaOU5Uik33R9W4XiWTQPW1xArigfAUPAGjWRfs4QmBuybbbWzmnjNq+m9AOaq7rqkXrQesC8rfdRDN947WO1oM6BlTGnofbMV66ZXVwiAFfuDD92ifCvz6N/80JaaYHee9eUymU1gIpYSB8x5fDkRa9/qDGLR6HwQOKKeiuJEH2uHIMPvh03v0YUQbiPBefeEisK5jjy5lPjNb3OQ38qXJbmrck2mY0qAOLU5rufdK5Wn34Y/T48rO4pYfAl+DoOKZP8r1ZBDRafeeXd51WF1uLePhaRELfNY7bXCx96LWNmlyN0d4zZbbsxb/LEv2DYa8LdDgA3F7O1LScnWjBETgD3y57C7/G7G3BKXgoNPUGbTgNUmXvE1tEeBcVfAcMklIODCJ84slMy41jCUrepmidiJfpHusD3qJ4Vk8u3vOzB2Zqq259oWIWcQt8Z1A8ISHB99Ggh9Wl3RuEBScllGtvVTKEWmtgJQU9w8o+U/3KTq+44lNcDT4DtRTdEaSBR9CrrS9pAGZdYbLGNGne6ewlbXN0kUynX32rtE5u9ouEDOh0Ecf9YJ4ejMJG/tGZAtXkM9CkQm/EJMAkG+rhl6C++eG1D17hiPuV9T0RSN0ZdKvjhblcI1hbx/vuLkEKkvQRjuf5drH/GVmJNr0aKqa/joEYbdirCh1AYttHCbZCmGxfUUH+SoGJZ6iwZRpBY8Uh8s9KXwvX1vAWumqeIy1fXQMo1Ajr5Y8uTlLSrkEx/LsZNhYqZYIoTudz9e/T5s4X3z2n2rreUciC5pS4F3smt60sUUqIL2qGfUr76SGKLyzVAzy9a9wb6gp8TnXJues/4JYLX31x8y2R5Vpc09K+cw8uFLNW2+5zg13UGmM0a6Fe9dUUChkeiOi0tu3qQStXfZAfC9m+c5uXf5qidXc0YrqmJ+7nZSqly6cILU9oVLQrnPmYF/DPmj8dpRkxdWgkHqzSBFmJWXwESrAgxlAshitkA9wH5zeKKnf2RNDsOi2W5NcOU1UrMvWcRPhyidFSOfcMnrpdmr6UUZ22hVQuSeMDobKzo2aUCFCFiKVZdawkNJeE9+VsFrlw27Xt04jyOllalk8IZGT74peUL09a0QTrI8lC4ZM00HNDlTacRoYRX06ZlkoTQM4fwd9gioMp78N2Cktpt9oPlCDNifJXauTMNcJqtmzLZWBbJWZCDbQ+QjsNVVMNWJPAIZXob6N9aLPMdXmcMFnAcBdp1DN4W0KGdAI/jgM4HR0TAyMi2AuIxjq0jLytDvs8P+n5PvT4S6Hzgbzz5RvaoKGoOXBhzrBi2uLmU07mtJdLuyaDL7GMhfBdbAtdbcjkAg2ZeXcpMJPqOcXAxKMezQ12rIX/2Rs843zQ8lDSwnBC6tr2O+EJaWKjxG+0K5qOgZSqnX6LNT703AziKTfkEnwtIEO7DqzcfOakA/JHJsbOV2fDUGOQ+N1bbRBGO9iBOlJxhdTTZpeaaOQB3RbowvqGHvCOc3haItSEtGQv8Zis2R+WPzGlZWMO8XUyrqliRjN23dgPy63hlyJWRp6XS3yEGHyk0mjGaQEgVpQC2R7oC7uItty4yT0r7o5q6wRSRKpnUqx4UMaNkFGTDjLcP4KLHFRQu1dZJanPBtr4Rp3XYKuPYcE0+7d0QHxCqN46tkqfYfFULtRAmKMTVvSOtk4379l0tJxS9ylf/dqsj8lNyaQFByvjFNMviT7N+uASFj6Zes9ZAWgdbEvfpKsOipmTbDU1UymYhZ7mJVKbaknpORDFJ7XT/Lif7Z6PRT9yzDKiyAsRhBQOtwG43n4y5pmg3yw==
Variant 2
DifficultyLevel
592
Question
A junior soccer club has 315 registered players.
There are 51 less boys registered than girls.
How many of the registered players are girls?
Worked Solution
Strategy 1
By trial and error using given options:
132+(132 − 51)=213 x
180+(180 − 51)=309 x
183+(183 − 51)=315 ✓
∴ There are 183 girls registered.
Strategy 2
Let n = number of girls registered
⇒n − 51 = number of boys registered
|
|
n+n − 51 |
= 315 |
2n |
= 315 + 51 |
2n |
= 366 |
n |
= 183 |
∴ There are 183 girls registered.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | A junior soccer club has 315 registered players.
There are 51 less boys registered than girls.
How many of the registered players are girls?
|
workedSolution | Strategy 1
By trial and error using given options:
$132 + (132$ $-$ $51) = 213$ x
$180 + (180$ $-$ $51) = 309$ x
$183 + (183$ $-$ $51) = 315$ $\checkmark$
$\therefore$ There are {{correctAnswer}} girls registered.
Strategy 2
Let $\large n$ = number of girls registered
$\Rightarrow \large n$ $-$ 51 = number of boys registered
| | |
| --------------------: | -------------- |
| $\large n + n$ $-$ 51 | \= 315 |
| $2\large n$ | \= 315 + 51 |
| $2\large n$ | \= 366 |
| $\large n$ | \= {{correctAnswer}} |
$\therefore$ There are {{correctAnswer}} girls registered.
|
correctAnswer | |
Answers
U2FsdGVkX1/C4iPZslpmBCZrBEbSHH3ig0XjnDIQ9XklqsCS8SqdvWfIDxf0u3Hw8jvcTqKO7qgzGtidSpqoT4ie6j5z4Go8557dN+DHkBGFGNGOTSsOT8baXhGEFuCAk0Uwnbagwm6uK8/4O6cSWjeu7n+ZxjayEQXnHReo6F8ZZ7BNIiKsb2H/vC3RjkvkQTSdbCe/NEyzdPRpMC8/sMxZf6sNq0IT4iFvNrAB5BqfKTkbYJYAta5Wdgsm1WIVp9x4XrI/MnhO5Y67leA9fhY2iwTKqERxvarnEfRccvNME4bQZ7/lPUo7J1cbmUu0X4qLJjUuzMAVLb47KqsH/cFa7bLe8CBunIDhmPADlgASSf3mE0N/hTBAdOFeVPY15zaerYzkt5meIDndV+ql6mWqKJakWCw6EW3HwDpK9hzcD8ANf5BU2zJY62rJvT4CXcrNtA0sPJKvaGDJD8BJHACJZioiD6xe7RvleonHfAlqW4M8oQeFJ+Z4JDz6JKkJKbQycmEF0Mx1z1Uo9BVcBQwU8VXB8MidJ7MDNDUn2d7aSVyvx1UaTHF8kqAzCFuCQ3+oRmat3s4FgonMriQ1qhNbGfZD5zDZ/q9TIy/I0ghNjt1pkjIwmC43LZh3F/inGBlLySqQhSegbF/Sz1dBsiN2yNnLDW1xvayQWFyX/9uJu0I8JDZGVaL1fNJtoKR8g5thMccnbXzjlKoHdx4SJYG2iplRdBs39yG+edT0ETR9spOLwyoNdMrazjUSaEv7fDoCDUmq/eXS3yMWY45pdEcRmapVB3pJwF9OsoBliSFlyQljWROO9pXxrYRh39PLdftfHiATbXMW2PqOV+WAiAISpEqccMEr6SJecSWTTU1aNzuk6+WejkWKTITnfhIrlDKqOr5s8dFaNTE7cu9dyKhCW7o7DeDv8ypPe75G/9Lzj/BuLsO8yXFRHkbVGo7hu3MeCgKwWfTeuZ0HkrltSmA2FXKVfGBpnvry65K5K5gV3XIN7Wdk8jRWSbYRbJFUWbHevMS+7FBOG9iGPmlQ2lII4TnldKwDxYQ/HQPMS6n+8YFb5gqyYw3LfxfS6YfvOr/ZjpnUT/mCiAw+QQa6cekn2j+maSNefI8jsY77Vt6KishqHlbnIajaJn9A7U1JkujA2NCf3y+mf1DWg+3wPJa5TWXsvb3YQfrxgJ9XCtn4WiEgkscBMGxx+0XbXC77naTF0He23TuQurrSFtwi+ARXC9BWS5g5NxiUml3AkjeGKtwFvAM0qzQq78YuJYIfDmL2mBG/J5DXbO3NDiQRfrTAALY0iSLwebGNjBpdZMpvkLekvvtgWsy4q2SzJIPuLltgjHK5QjIXJQCPwF0a2CyBsV+EnkL81dWJaTpbqc0vG2Nit1bGjQFI0Rvybf/Mw6biyf0UOvZtsPsjGXOyGQKKrt5hpH3sdx7tTCftFh0igNJWoOvxf6jC3hnpHslQKxmv6YWaz66g4ld571PP70UHmK7EnTH0SaT0FNeVo09GwjHpeXte/WDiBzfPtrMZLL31iWyDCtM6CBaGE0evA4aqgvQ4uSgt1hU+XtPvNE+cf5q831YHM9h4NJ5xWzsXTW4ShpKhkWJAY9rKzAb3RUC+zr2n6CSP5J2ZFYRseyanwabPCP+Z+IAVumvEelatWudJ3qCTjiw6NnwSITZoYW8QwlJh+z+w2nIANGQ58MFyIUrnylkbtIVcurHNdoZvLVNvl5Ik4xRCBwUf7wjz5nWYI4kBCJ1PF5E2L2pOU7klQfAAORRr1btweQYrMn8Ec7iNGCj7LwtBHvx0rdC9Qb9RRuhHN6U4igtCv8ETcktkd0UXe91YUZKi3ohlg++HruaKbeZYbCq1nEbf3qQyHbXSMued36JK318NbH+EJQptL1S1XuxFpFw7RagcWcR0DpZVrcoD+Y/bXaE2IW+JP8OWphEDKlojn89yb09hhrkAE+l9rGEhEQWMmIDDXXl7jIamIwcd4BSVAmZwjIcREVxkk63wqvD5gsDdntjGpU+Sxqu9US7z+0fGv9qAcB84tWIEJGbzvMDYsxx2WZyh+pGVh4P6yuaEMNCjRiR5Y+rP0uzcbggCzfF3FCvVxnszIeJgcOz0yZOObRnIGU9/Fo5suZq8lbfki4B1PrBPnEUpgEj7CZcm0DG/G4j13nXsAXb9AAk4fiUt4sOCbnEu5M3CnD7pLp1tN/GqQKpHpEOA94aNdxV7z9RSwq+yxLmBvQNkso0Tdv1cw6B/Bxrz2U1XJtX/EZDix3kS883mlcveBklhjL0egpJP4CPQe1u/j9aXnq7pbWSDV3p5+Y32ygCLo2NFwvAOBRpG91caGrEgqEauA4TItJdWcXYJDPJAFGzIr8/8PrUvMN9tY0bqqoHiGmZ6vPMU9jAvN5LYwOQB02oCg3cJQhuy/EaPkH47B5KyLg/lDa5G30GGiSwJCdl6rhsHmpSm/HZxxQnzYQOuRhiRITFJi7mh/JkGL03iHeD9QVzjtglj6R5hfQFsquEVsG3E9Fg/vcNJZb8QTCNlYfdGGHJTlKw06z5WxdKzC02HwhufsQ2JbLO+SIjD0mdi9WVtJmMKKucP3lec0wJxXPdFCF8u1yr+u7tyu8fskUPWVMkF/INrSjQ9VJ6stCUC6HJgE/FTtO3m9Sv6Y7dTheXDYuSce3bSaqpLw548ihO10pOiqMMySMPwDNN3soKLKj6U04gmq5DSmjZ8mznkWkGQtILUWtXsVndFKB3otpmC7J32aatdbwikOLeSZhMhzwyxAAU8TaaMoWRiBAltQ7Ahm1HHEIc6wldJU8UOCAepHpJTy3SjauNY9pldkrHfYyZ6rh+OSfZN7jm2cOjokYtBdfca23lJXGFsSZsa0kcakJI8+x+78NR/g+f5c/fR4NkMWdYdlUOE7hKtAhSxh49DnNDvWEaU9asrQGV2nVjbH41Y+3K4ssEvND2PmF2ktXiZiXp5WUEe6fW6DFnuUFqd4Q3qC0YonA8mxkn63ZYwb4G9f/AycQqJ3hWMo1+E5JIOL0oJTKhllmZYfPsrE6Ue0p6GJUalr6mlANfH3FEv0VqZEZowoitlvz4Y2j2ShdSt2Ve5Kw/BEBqwAlfXiNuYWPIHz0b3ha5CdnQ62eb03SZn8WfN0PYccuEPERiYXvEaDb3TN80d6IxRVM9At904p2haIyvD6w4e1g06C+qTTtFdoYTBp/GxW4N2NostUPa3/T2vQDYwNusLbmRzXzLZGJmfqit/6cGQF8IEVq7YzVPctDb/VgK8pmbFHiK3Vdb+LqOuvy7+tRmsdy85zHrGxBt7eW4FMJuPFxVTJ2a6rujN62K8Pf0xeW687OEu1AX7T2ENu1YCrf77HSNdgiAZXY/42VVeD3s4715qWls6eQck0Pns1lH/Z85ceaxvquMK2XwmJGZhJqgKBnPrlp9vXBpjvCNfBIkGfMj4SAtbo7vwR5eYA4gw6bWwrSFTrsFfny9O+BUuHm4GTdOfucsmp5RPPaBl90q7IRe+a9DpTho+Mx7RGqk0X8MKgJwSNwUmjf2hw+0P4BlSzNAqm3xpUGqKaI2XTL2MuN8d0cMn4BTIfKKR82ekMZAotEHZfw5XIr6Ao/8T4OtpMYsv0NVJ95B9PHP4LmkzIVNPmqlGypOPpmnofn3WYLo2Owwsd5WTaLP1eSOmH6gaX3tR+q+LSpXybA67tpUPe0TeIjOo/tgJojFLw919ntuBrs3AL0Avi5qO1v2D1fEcJQRV1Ohhrh7Iz0KIZ5ZZ4XXJg01GEVKso7BTzpGohcAq+MdT2UGu9w++wFdLBuO1Xb0wjXxrsPUBP4YY4qzVfwpzR5rAXzu8H/agPdP3RMfkwG2TweP+veYvNdGzcaYvbBzpndbeExkjMuzzJ2BqrEGNElnQ/I9AHLic74np4o2iNTXWTxnzw0ZSbUEbWMeXG/53+c/nKV9r7nHA78DCq7HmiHzozIZJfNsGfrqAwWw7gLiodbiXC5yWlgeWY1z9ezIYoiVmuI71xYaKO+AWkzXiC1TUjFnvyYLWThN8t4wZJFv4ED8UH71EOhIPWidUsYvaVWfl3VDYAG6XcwoXS3UOBDkQudq4QQMIObojHiAXWgaZ+9BIkdQYnWJGLHoAdooTQTZa11hwrKb2hZY0UK04cT3+Wti/H8ghVJEQMdKaO6j6+AVU0avwZDFrQLV8VGFktyRWTaws/YNvQPwz5ctauTXKMDjq09DQTHz8I4Ml6HHyerxmUl2sfICgQpp9foLUA4m3fTkyuBqLd5VJCv5dzcH+Ti8Cppsp3vq08KES9oA//vQIYFqUEghLzQkyvx4g1D+H4+QKqJaoUA7tD85KEvTPtwFMLlveOnqSAlyMCWY0iKm7sB7tUE3EbTZNr8tbV5qmDbH1BX4ClC22xeBb5KBfU5g31YWJVWaUSEcaNQSeX9sbHPkxy1TqZewf0xqiAfJaJZIZfk1ZuHkXL8WeVl1XGuM0iEIG0EGRBg2H2WHi8dFBkSXcLkwMdF7CUGRLbpraudLRohUQlZxz1ww6SKNZpkNwonDGhxv7fvdYKe/ao5Qead6JHz4P1Yc0hCN/veJcuN7TE1cc6hnKvNmJtoFVT/EGKq0W5Kn6NRK60oZM6tWY11aOJl/XeKmXPlwM63lsfcFQAPDAx9PAmwf+O1HNMmSvvvdt+XDA62ZZmO4D64JyC3y72PS7Z03PP4OH518lt37Dp0qLBIH1/qHz98DlTnLKL7xMt3uc0oAzrHgeVGKTxbvXi3EtndAH+9rnkLy/KSCzo7+lnoe8MVDj5czm685IDPhwix26J4n+EjPapzKBBxcUBycK1/7g9pzRTaeTzXNv7bSVyDvvkC05cTd92oS6GJmOY5RytId8TTF5l4kheOaf0SSyV1h2sTPLM7hNtDeQPoHitXif2+k+Azok0qWJEJfDd1w+557kvWx6Dqr/qqfDjhwE3jZp+tNYaomGl/ynfeYbspaayHcKHONBVJZF5KjhnsH7sgs9trm3G7r9cHnQoJtiwTg20X6Z/uvw0dhs42eawhW+9j7147bSWv1fZm+6X/4O17geWscaUMLT3iYmm6/pvJ8KPXCiqS2KkfyUHANvyxdIpYpb7cjUP063W/kGbxbBA2CRlMXECLoIYYQn+1sJAVkdYq9N4+0QvKW22Z8uLTO3UNfRPZG2WPUe90lV7bPd603jk9t5nNzZDuLHZu2VBKQVTi9lSW6M+vDsg5u1LVCA7RlCfsEYMC0KTd3ikYc94BuHMOEmftoS8s0wzRgzTK1yJacYZGXEnKFCS/BdHzEqAzgzvgDYXdOy0dnT2Q6ATVEo0ULmOeu00NUJsFM6aw9TzhdpcD4wA6qtF5IvkW9hNk+PkGEd4HIvBsVKUQ8We24upPfpYmx3JJtqJBIxch8pJI6ZIK6eDT+oxxY2QcJfBLzHDypvstLqLTPrdWdY36HoBkezuzWxweScsUtx9DpqdNfH1HNnry+/g45D1Ee1bU2DTS3iAZiAJSBKtQJloNN4vVsrp+e5gMpx2LfXg5nxxZW7c7z504x1KUe/rIWwt4ne88Hx86jQgnQ5jRQntDEg/HQdxlYk0I5YPnY1PBc3mt7JMuUad+ATIqeXDuFSAzaIM9W8pwT1JWJKGY6Wfk3ezQjyUcOCkOLD/9RWIftMOt+4CdJTFXoHB4dJmy8XmIQb9dG3liFMezr98yqg0K9v0rY0Dc9NKWlcdX53GvhBD9oxf0w1OZ6hYKRy+6geG06muGM8O+cC8MhV49/2N9NfHKaNXIKU47IGOkT5kjow0eGdavDtdfTl55T85kmEZK6EOR2fqMd23Y4K4Ne7upzk0Ik3zE6zhZFixrGQD2Oq4psyM5cajRKLxYb15p+aRlD1dIbT9Go0C+9p6Sh81WAFUQF+gwjwXkesxIVQhnrquhqJnG2MCMnYjccv6VUu5xuIJxRqr70044XZYPva+dRL6d2wsxzSn1h+V1rrvE0fjV9ymzr3wT+WbK6IOqBrCBxTHGPUjZDkMakCpoNsBIjkyUE6DeApX2YxeHpTRJP1e2mxRLhxqk8c5R3V59oux0yW3kXi9FcSx1wYch3LZf3GITkDdHkRG3kIOkhc/GSPH8kI825ZvjGM41EHJNKzKS957B0prBc/x1jYPGd0N/ynbFG08POHH32aJBkTykwHhwXguOyJGnlGMxETpJz9alABQU36dd4Khfs1QyNskA2p5L5P37hf1Jfy+gT/aHJ+Bc9ubaNyuW2MTiPJ/VOBDV9f5Wdv13WQQteSzMuYFVF671DGwnAX3KV1zdGPHCXR7gQItgUa93Dg5VmTZNf1NCYwAluWkiuwkXMu0E1BpH+6BwqUu/nlt/vPeH18iJI+4LK7nROFIVSLTTw33npyaWo7ZPr6qdYDGOPxYayPjdyW44rd4P5YyffIv0NFWdZfT0Zh2YnhgIZMoJsjCNmzsVVvVucaIuGIG0b//FDM6E9HyClGANm7tSEMQvpeE2IO1/jm2zGmq4aFhQXDWPzKiR4wr9H4Vq310n5gEK2ruvJ1UHvbMWvjqrSu6sW5RWklYBFtwe1j8CO2KkMrwXkZ8sZtzzgnj1buAxT8x4DWHG1AoKUiApnNk6UO6C1y3TxyyWluEKwiRnI1pfvk07XaZTVtSAtNn0+ywrwD6chELVrM0st5mofFveKfjMIJwQfnznHBzK0c6qMmxmTUyp8Xo6bp+PjV5viBAoIZHGzmLcaWEKWFelpy149wxcgRET8m1La4o9a+9VXZA9+wpMtV4+agaPNFUtJ4K36Xx3SRP5jzzLIevYVUoE1Xs+cEwwlFG9/yEEjsMUGJT8BmpY+BmDdf/h7q5OY/hWXaSqvSopTuiz8vZkVtlBT6aK0nia37NiiEyI0Ui01TZL7icrNikhELHYo6l/cJ077n//T5YpWgbUWndEqZ+cF46YHV88vsLq2cSLl1zDTNCmFjMWAKlKAUhjJjfzxmLaWRQVjeH5Ike4u2LE+uaxhTXXQBIiIieb4qOBR7i9PZ2pv0kczFBF34zVySWaxjAG0HvhoN3/L3oGsREXLyC9kIiIXXDvVvzDknukaP0d+qdYLu6fDhEGyoDmn5gy7dVyFhIVSOfe5rAdDSy1tRwksi+yvqg3T90O4s+ZnDAdxdlGGFJedjkCvIzRBMy9zhS5Yh9Ml6ceF1LRzV/Sru6nRLBLSHNiohkURsl6JRBYlouR5d6NN8VpwTvuCokOeJeuOTjIRGfaEtQxEwSwHbzUwFmZ3mZl97bKFiddfjs8L2YFjASoUtMHTuuUejJ4JOaFC/EhVzzNMWyDHpBDXhgFMc7bdQRvx5u8hwRgxJq1r4uD3tgqcZLrMAe419FnbxxbtuNJXG/ZS+JpKBGs9P/OfLFdREt8a3fufJh8QZJy6LBxPT8FXAnYXg+wsTwbs4otxiuGuUT346YY+JMZcACukSyh9g3MC1/LyH8Lf9nRjjVogOVSOw0EE5DOJ79lJUS8cW6o9kKg6dJsLMQPxf9+h52PrsjRD4rnkBeSu6AjCmMSVB4vUfqfeU30rJQjKzyzGl+QiSpAKYaqkLZAItniL8s+x9ne+CBvf6giDOJngG242oPluo7Bqf2J1E22aDL8IaJ/kMqa0N/LN3UPj0lvqc68gikF9w3vIO+w5n0Uj1248pO45IKTgF/9hDQoSZoqglLB8pBqArwacYYqLpwTitNHgVaRt9VZzPb+4Dl2sSqhPwwoCxjTWVQMO6cNFqFX/nXq+zh6O97BiA+i8hn/J2nWbyOY8PTJ294N4+y7hYx2svD8KHurG7r/9AB/0NtvEevRESStOtoGLxU2J05Xuhita8f+jh2q/kk38HUJaWTAVcve3BsK1rr0deu8Ufmston2NakKrg7sODlHBXueol1AVO9MtylHL9p4Ad+KX0xsUGPBbsvVQN7T9VKeoUIzqYYJSpCGTbEnfBCe+xzP8CPkIHqbcse7Xsvt0fn50Ehpj7DvFl4kEgKwcKSQcrKwptE802ne7wG5YH482+J8hpVuWD4CluVkkDExiOOMgJ21knL+EJlSfN5aE2B/uGyvIQY2QRYlPkguQZeuRKen+OaX6Kj7N4sGPJkKOBjEAN8gTm6BNPKCA82ilEMEtXImmK0/cjgAqhGImCezwwypkPXa4XBpKB6YDbFWlOahxLE3hZTyyCaU459Kf3+S9S47HgIAwiU5ioWrh8tTNYaMoORFzEyZTvcqXDleaHnKhWJ9C93UtgtGswwWekAP13HCCwg0ztfGVGz2pRDkH6UJGROEe3LnGwQElb1gEHrfPYV//tpNQtuSinqR1JAQmtV5ZseuP6ASd2HDz8dKcg98JYdSOuKxhiiHTdEXDEPkhJO/qoRqg+0SWmlUOq6aQpDD6xh3xfscj9sgEUvn3vopifxv4A7vVvdgWRPTMB/FM7mUfHZ248b9XspznxgSecTnVpGo2DWIZzxC0HRQkNTHRxwNgBI/b7W9WE5N3alNKyDaiZi8Igrq+G0LF/JrytXbdXZrbzBDoAsOAjI13zwoeCTl2y+HR5BNS7dllBPJ3Yvp+Y5FsX+kkq1xFSzt1z/4B+qLdjDviF9+bH/0YEF6gUir9S3mRSnUrEsblKm6QfoeqFZ+fGmxfzsd2mySYur/GnpicpczYbOC8J0yDFDkBPk1yfwrO3XYzqxZ4lnaLyTSuM2RFGgr7J87VJyXHs/FZAlsTRZtliQxIjFCOwSo+G83KKZtg7XAVeA8Xgf9qjbcQopbPyad+r8VQqC7ecG5SVYiZT1WWxSEweYq/nGOMpYdIOpNlNfNxt+UcUO7mK9hDH+pCPDPfofJDMTNKhAw7y0JSeUUE18btOWxVGt3kD37Grth7JQinqlcNVvA7SV78gjSnCa8zKNEQGDw/bz4K+9pi7BEN+3BtUHWgcILe3TOFRAx4FI0ixs0FjeU/XQHKbCvJp2dx04P4BWD+3A+jIGTQ/ssoiRbCsr2vEpgIVx1jVfcmSHDMW0gr0cfpwq8LzmlY+Ns91cmi5ptjat3P7+5pTnBgLE0baeKMUgRgVovIyCbqVKoNYp3JzaQKVVEUNsRAj98u2AANSw9V0v2bE+B9iRtMaPnTFgPIBHpS/LzW/u0i9/MQZWBBFK1ZmDOWiBdiekE9NXkkDsVVXFhxpZZ54JdgdTZ5S/hDmCqaIPQ0dnPyktHF58It+PPUbbTKmeJqINi1vaXs3F15pgJGxmod4v3kWNyDCvs0qVWfeZS9nHXlH6SYsxqh4C+49pjYNRJ55hClqc/vcv+brWOVvhbUwGH3Z2SNlP/OehaMw/cPQ/LHYddjEbRwby0rHDof79LwYmCGVhqf4S6h5HSWRTkJjNDWgDYbOtsEvpA1uT/MLd/VtCK3yCyAaFfFhRF/pLKlmTpWc2TyVqVrHv6FD3oKlKbTgTqfOo5TqiNbaoFEjL5F1lyxDJky8T5S9TLIJc3tXcIV39nX/lu1hYCsp5h3ww1yriQ5A+lV2FlbC9xd7OX3B+J1zTjx/O+T3j/qsOQINlaqtT4nTQBIxuTeNKr+ffRVVXiT2ssUZJZ1KSA5LcZPtBs+Mlcrx0hurelvyjb+mby/sbNIwgFPqEDYOuW9SKAaPsqI1Z8fS6w00JLXPTd9UqmKoORv62m1ATCY60p0tawYfzgpLjkmYrchGB6WFs5CWttFVUcp5HRr/tQbVh+vkE4Qb2Tab+B78uHyZr9r5XLTCAmDPJsK3IDqnWr5cXuSsRYsaNSwC59fIXY53lpVUQ6Mi6Bhyw3EDZGWQnQUwUPXJBkMVJHw1xWTd0nEqjzSBvE0hjcPgVb8YXUaXLp1jDLF+BL9pYQ4nELiZgaDM/2P5TsSjecRWsweNcniMEsQvkyWXgy012qUWb+5vWb7w4C2oiU35WgFgT7tNRND8TUBb1dQYfQA/46banpvSEJwl85eRZsFvQJ6MNJqIvsDrsrr8IUuu49sJW+HNILxGsiH4gamV2p2yLw4k6Vcd02pCSv3mzfA2Uw8XFW7tVAxLaUREwhaXaPCuTBH29/A6DDzqB2vu2yks/0xpoxwtLCDgCrdBh5fwBPA1ZZ4etuGFIR7Mq4WPSZ4Gl0OfScRDz+PD69ja2EpnV1MjhxOQm0Vrc87xkTF0tJd8CeOrABv6BnRI1+gF/LwmrFTy7ZgEUDnNn7arVMThWnKl/BtL1rlGSR9l0ogRDX+W8MtB6A2jGIGGPiBUEWOGswJRDguuVAPTTv+LCW1De90nj4dIKUoDiORhkgaYwbgScHBrU6hvUpdO4s1/3fPu0kNldD2OgVcmLM7aTxYRdUl3pUlW7T3mLSIq4Bqk5QZrrUaHLuUxft+VbgzJDUeAMRAiI0fBWO7T2yI1Tr7KM9K27qSv64ZKBRnImqTQtT6vGQi/QFE1Y2HUsvaisT9NiaK3HDBHU6ajFdJ70GV1eKGpBhLxaZ4EPn2AhZJ+MYnUvuyHey3znuUwRxU9H0Ot6T6sR9735z3uiRC8wu/j/Y5YVxVcLao9AGrl3M0+LQLRYDaEDs29PjgkMesUXSBMLDoI3NWG/xg/OfiVEmb6Fb7TdwLGuWCqzcShmpB3oFU54TpVuoNhAyn/0USiViBBjHkrD8rUK18G+nbXO9gc8EAzwdw5+SMLK1GaCKcXVhHVPqXo6+mk3Mrrg0ToHXuEqr/reObNp6VOrUZqNg2e49ARXGSeYQd7ixD0vg7qkO8HFPbjiRiuZ3cQIDQKxk+TAggq8C39/zSy8zt8+Hv2scAHlyoqI1JvbeTTFEJ7GKashxmasJNfgMjCKTc956QoB0857kqZRAR4t+eubHU56LavgyokM4lIjS3WMnNR054FzUUi6buxlnB2cyWeCSoQCdm6txd2VXxI/B+DfK+RUDYfcqD6QJ3s1u+16kcvcseuzP/mcMjqJyAzn0i06+WYyBO+ftUF/Xv7ERsNUq5HFYzfKzkImn7G6eGeCXFFT5EY6ZtvLbhnKcUcDipufcKx08tC/FxP1dfTwz8lJOXn105NgeJOg6QsaK1ee6aHgH4cZydsR4jfYsDcyhpQ+0gKECgwkdZiR7aIPleQ38ljXGNR1/n/iBEEYj/GMspunkj3qWowAeyyWkhxdvN0BC7WKZfpcVnbbS+WCbReLWbnqm9EjDqvIYFccS0mccbVgMmAY2PxlciLc46viAeJScj9g5PvHmcOqjNq0ax06sCzSP/67JKN/1KKZJqx/cilVmR9zZWKPw8y7vnRCyE9sFDT03sJbBvTtwB06xKAK522qaySPHO6P47z129B6nZJQkJXzMqdkCpZvpXCw6KZEfOE40mdmPKYHjNnwd7RFQ+x0ByzC4um2R5ttXf0hEt/EyLBYQ1G7BF9Cmk+xd50WxAPhqg4+u4QFzSfSY93LLBiYccrGXxmZsQTciHxWWxL8ICK9CvOy9tLI6qFTPF52/NTsLSYfyU0sXtLKXA6AW0TNlDEaebhspxo79KPwmAi9p2kabjrctuHx4kM4Frp91wL8LVHJIGdaU5WKcSgNuiqIv36argJaDbijrKlOhzoUYGqNStCGA/m4Vik4mdOU89Sqd4QAuElp/JBNMpj5CDd52BcbNR7+YIUhSKbbXme+q4kX557w366l2RrOYj9PuzMcWJ4PHHy7d2vUVcwY5u+RVqnALfFcuC/VBSU4duysAgJr+WhFWliY3sfVUHTDU1mDR33TPgfNcRFpCU4VytF3DiinCsKexnkUXcFFBi2LCp62gAzlq6r5dxJ1ijSTi4Sx18Vn9p/4+Z8BrSpvr6AxpinVl3toSfoBBZ3DRY9hg4vUCI+lOeSOWRZMjaHVUV1VpHHQq20Q5nfzhyuAF7wmeUADSqyQqIeNUlJ+E9ZhuWMoTys7oOvyxLaQzSh/Vd2bY9s8iLgRda9FXadSpxt0rLm8E79SQfW0xrcST+inXPLDlOsdT/bUbYuDMlfjXwoulPAgbIRVa/KOT9hYcb72cW3NoBpw14A7TaABLUpIFWSJQdx3+ryuBQp/ERsr0w6xdHVi7vaMScD6Ud4Vs3oVuITD//AZjEp3VuSL+n1UuQ5q0tQN8r1C8tDbVRtv6q/xkfoQPIAxQHi+lgok/t6wE4cnEXTocDiz/6p7InVjTkeCU+t9azpCW3gZBPBm+WAc7Usx/nP1RWodphIxM3ao5CRRMqlqwBS7DL7k454qq2cFZkHFGjAayse8Pcyrcgw2AVxsPs6AqjG5ducNU3jiHiAgbkQRw/EnBxiG3m0wHLbOxsr/nyASUlTuknLnO+ayLzmM6q4OoIrO4uWy87H9bGAxh4NH0YMl6oQjoP14W1iAozAFsPBAwi6Iy02TR/8pvnXjP2J9EgAvRyaccwbrOvEuYPVawxEsB8vLNRusFFyqju01K2v7CTpB9AXyvCPaK/DjSAsAxD60Bp5piU4J9DrU63oSJNBqe2fRP1vq7+dA8CKzpuXFAEL8mjwG5T7w45Ojwk33d6hTSU2Ny9VUc4FtNQWOlMFQlMFzlor0Z/tpqmAkzD2beJMn7x0p/eVaMVyYoZZzWU39qDPHU1veggOhmOtR2cFmBp/L9uDuwK7K7YS0qBDE+zVQTLjtMjgWVwK6OwYCV71YH6CZD/C01ZLR2Pd5fbi5rYOuhDXPAbZu4qES4YBlJzRVMwq8KD8YIY4WsMwFzZrbdSUeRW9E8iyOSDCIHYeE/P+ORLS6Y54Ta2PnA5mW85OXoquEhzRmYjB9xmwLwqEKXsokSXUU+fgxggSBUuhEXcJZLAo5tsCPLActyDVQ64uQ/MSP3hEs9s1rUZdbm3WvmL3ns16jVfHFD5M8qP8natcT5T2/uzHEJKgQCkXekdBb/YpkXBqqEQT0y5k+53ykgcKEUY07erzRTLzMw3fE5AYR68ywCXbVQVytPCV5L4=
Variant 3
DifficultyLevel
594
Question
An over 18's concert was attended by 7000 people over the three day event.
There were 5200 more people in the age group 30 or under than the over 30 age group.
How many of the concert goers were over the age of 30?
Worked Solution
Strategy 1
By trial and error using given options:
900+(900+5200)=7000 ✓
∴ There are 900 at concert older than 30.
Strategy 2
Let n = number at concert older than 30
⇒n + 5200 = number at concert 30 or under
|
|
n+n + 5200 |
= 7000 |
2n |
= 7000 − 5200 |
2n |
= 1800 |
n |
= 900 |
∴ There are 900 at concert older than 30.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | An over 18's concert was attended by 7000 people over the three day event.
There were 5200 more people in the age group 30 or under than the over 30 age group.
How many of the concert goers were over the age of 30?
|
workedSolution | Strategy 1
By trial and error using given options:
$900 + (900 + 5200) = 7000$ $\checkmark$
$\therefore$ There are {{correctAnswer}} at concert older than 30.
Strategy 2
Let $\large n$ = number at concert older than 30
$\Rightarrow \large n$ + 5200 = number at concert 30 or under
| | |
| --------------------: | -------------- |
| $\large n + n$ + 5200 | \= 7000 |
| $2\large n$ | \= 7000 $-$ 5200 |
| $2\large n$ | \= 1800 |
| $\large n$ | \= {{correctAnswer}} |
$\therefore$ There are {{correctAnswer}} at concert older than 30.
|
correctAnswer | |
Answers
U2FsdGVkX1+aGhcv9hFhylw3YBn2PkqQevftBB/x7GxWkxY3OCc55CvnU++V4OYYF0CXDr321YyRGziFGVDHGM8sWN2N4+cyGWfk33kcPUaSIZ7jR6OTzE67hRXhBxbttZ4WDSvO1eUO6Y6rGvdqqUVfuSDfbJRAU+5KKOxROk9cB+mZZ78G/OccL2JQaXMOcDT5LNbVcr/eAWLy/Wu9Gf8qvQFkOd2D3oBZ3eHac8YOrdMHqtkFU2UC6jwgzd8fRWS3ONAm54fTtEDRFLFWLuBPuNAGyPyO5Fg8Gxab4HuFgFGwIi0jArAidIMMmmwbXLAWELutqnsdGMkO3dF+EbSrNH4ey3u3PngFPBkZ2npO0pK+bXy+ldLTABqNpkPRCI6l730rUqOo46rp4gVvc/2VcSZDMdeUPC7AtizhVzjCk7YOKsFhA3mNT/VFP0Q6Vxt86bzexzYVOh+viI8BV80XGxUan1fm20EKIpO9lMiL6ID/6qcu3oX6LtUxoVVi3+PCkBWQ7nFsbVWTjBEMVftyttvuNkyN2MJgCOA+WnhpRH41ALFyuha315bXtc0LtSo9C2KhWv3pEKa69E7x5yFS12HBgvh4vYAaZBM/uAnAoKaosve4RJ0Z/AkdrrpHq8TGyFCWptXwWH8QAF8l0aJ3YfYgtCXva8jYuq+L0f2wNHj9gn1Q1cj8VYOvn1VeL13nlobG5b0rZMAkaF/kuf/VrSu0Rob38ew2Q3gy1p9JrIFyXHg/c4oXEhKFfGj8bd3QOeCnDxBiIH2L1Ah8sQaka6fxtvqAXMKQSVEEDL27WLmjvwRDwEu1i0OnI69O/E3OhMGfWidqZk463cGsgxq5SjSzzyQdqxFBA/0KoQMfn2fNJwSdqaZOT/IG+kEYU+BlU5btTXU4Jk5kF2vmUulNRqlHMI5Q7JxFl69DDbeNiahvstFA65LnH8V9a6uYfV3EZGE7Lba+5CQO+1HJdXfwsQqsRfzbqmflI2aImqxQN3x/gpiuukXvq8GcnPDSORSlS6SBNVS19oI7ldOn04xMHDd7zcMVUiVNBBpnSIjLZNNubIhqZARUV927HOISTMAPY2MdVutyiq6ckK5hWcee2S6ZVP6qgIU8eDBoJuU3wlCOweGLdPx1ITmOcYUBeDScGuA7VE/MMGMosdGRKTlxW7zu0QyV/siUtPp8Lp01tlCBI/qJMSPpBUG1pUjEzgH7OvjRiAIjFsO/imKnxKNCUoZN50bTpsvLeKOaZkCUWJBIB84brizP6lzgoRXZHps3hRzsLJr0Oybr11cks17J2+tEz6P4i4Wl4Rap8CWA9gZr2qhjiKh7vjYY8V3pP9BPUTLuVXTGQIfHSp+wfJ1kCmQymBeC6xrKHRbRapWw9alD5ZpwnCdpYlFDwcanXg6h2a4U1sqK5WPUU1vwUSxdrl8Zfo4OaWuWdvAOQYP1NJkG02TEbmSzJ/Pgq+hpRMJlMRyO8joRqCVMpFebc8AO5lCtzYBSQS2DTPyZ/28F6gc5oj9yKeZtgYJw3an7E3mNlojaTQiEd9JaL/pocr1yuFesjykhRJCOLSdO9CHvEh8YJyyqX1s861TFRjPeJCIzVoK6is1TUhPecApq4BO5Ei4tpn2G2/5f9AtLFLCGI87VJma8CMI69+oLbPj1byHUwVmiwdQZ4ec3aWgUMItfrYC3Z7AU85+yLktcA1Y9LVSw3nzQCzYOEXWF5ZcMzPiCo3O7Fh0Vr+yT86BQxXpoiKdSAVXi6u8Cn3FS9DHivfVtDMZLmsZqdbWE0fjX1poseaJxcARty4JczFmJWWHr6FDTOBYvTLhH9+xfmtl3Rv8ifmoLMA5lsm9XxY52ulMqeo32bwrOcYOCdvoYNt/LC3gNSnbvJg4C2J+++/G40swnJbxKW+8CZL3I7chO5tpTh0MfcFFc1RCCXzxL+mQ3Y7m3K1fDDzPyS7z8whZxzxcy0NXi5LwQbGXYB26Zwd+naPJQK63m0LOzb0yMjQgnkvg1mWBEEzZpiw05XsaUvjwh5vokkyAEtLigCZ+R65DoUxdlP4sMxwuR+4LDI824nOnoN9nsAr11OviowR2IwjzlrGjSZgwSwnyGrVEp8BfPbYlOFBvxXcQXmal9kDxee+w88m0n8cZ72m1bYGj58AqgB0rN09gQemqmCSHVstk7nTsB4FpzESb8qOqK7nXhMqyv3hZI/m7Ewj4n9+4LbZKAV/+81P5tswq5ka+VhZlw8CeWS4fHlFAavk5it35CeshjXarnLtC0R3kpPsemgYkdZh33bq+2IggXnEB9QRjysY10x1ER8vqPtdfWBar+BLoz4bSLnoXZBKeQqROJWPPTxBNRuGLPTKJWE8+v8IwHLGpMKu/MfKNE1vZuyhTe7JXaIsVCGSkK66D0f7H0oODCuzimd3g2RPvBFkycMn27s9x5YCzmO0G4U9P21AtMQjJ+QRCvAS+PnuQi5PkRLOki7UuXrtBjEV2DS1KfcT+Iu9upc4+fpQ84pZRvZYntaIsXXh8nTgYWEf7/SoJbDNo67icaRxVHAv81hoSwtNsaZ2xH5i/WS74X2AzrOk1vK3r5Ss3Zf5HhSCeTK13QfLDNJr0PPX/8Cnv45edWstQZif0waUpbzFdSjAonVbwvwIlSOGpEO1AOj1Sg4uZagGX4H5hcODus6CHmewGk85EqVbISwyalM7kZPVCT2l+HKdfk41LeZWH7OtCrsdZWpU1+ynnqVVWgXC8yZVS2uBV3cXynYccD0jzC6fPB04mE2a8A8dvLYkNhZPWKVpnfnBiNovBIK3EqbekdZDTkcr4O7svXXQPGuXGrT7etpZRnrcjZrtgZ8AiVzjKEK/BKZXwx1mSMR1lpEPxdR8YnX3Y2J9wO3jAwFe+zK3171vr2dN4j7ulA7QsxQJxGwb/Y0dX3nNbLcHlvN7ydZpZ4U1YBQpjL0IFi7FE6l9LKJA48oz7rvdkEjV1KQ59mMDiwmQNPFzctoHIYSN8qsSntCgTuUR8kp2/aZMwFFiCje7LjE9VqfzncltTrsTNDaRHm4bGJFi++jiEkABgxyw4ApUvpzF+yCCtnvWY335fx60tfcZtTmti5tR22Nk+sb6ekUbaK9Vu37jCoWBnlw7U8pJRzrDQksMjSUTnsFDeD/FbOE3OK7f81xwPDaw7KT/KSOlab/gBWRaA7npCwO6OLXFyMWs5uZIZixiuB5rIE5AE9VhG3fqfm3v9P6cmqogqSVA5qZL2rYQJxZeGLDo7lu+MMQoDZsmUACZeaZ6y+OnNvIKjxStThDwH0PApc/J8lCwF4dZhNsBA44trAqJ1G2p2389s6sd+1eEFkIgY9jTZyO3kWZSO2Y/siEL5+F1EyetNGYfYwr7nLR7/byPS2XzI9TQICqPjDcF4E8/mG5pB9ieGT+h/CTov5QZhynFrXJJVO3R3/AT9cI924DxvBGeY3dgNE4qIsXlXfyWAjjyXDlF90giCNH9Q9GrIf17Dh2nwzHBThqYBKRV6E4zWL0OgL6kUXqo4Kjft5k5EOYxEIrrF+z6BgEefvoAmup7yT+IlM+xjhhVMQPGfEgYDf6kMLwqUqZakXEAW3TKqd7V7ATtVFYXahFHsKOStXJMCjyJkOauAEilXCKzXTzmPM0WHvhlyGtOxrc5iNT7KJkeD1QPSfT2H91tBxQ/Z4Ugl0IitsMZlxu2OJ7tJkpEaN8rXQkzGb8O2U4zSeDn9+GIS9yF5znDQpuZELRtdwf2UvdvNWQrIkyZaA7ZE+o9efPoyaaFKLI1wAar+6b2fOYjfCdk2IP37lkKJUbC+2gpY6cAyfPWD43r/vIH+pvlJzY2SydX9U3nHmFcXk0yycoYpJScowkQdi96VU3ytnSES13UwUm5HRCWqSNtT4CKPU61VI/ILUCK1n9r7c1zw4IEbBnMA8HoolR0SA+D9C/jjXxU1ipis8FexkQrp8EdwCLSYCMA9WYmjt10E6zUuHgDdDjACuhfeoawfwmigepb2b71K070IBtiDQ3Q3hp8n1J/kMF0Qs2vpbQsxxUKWMW/lDt/EPMTnMKENRQOhlnxnzr9xGPo1L4cP2Vd7eBz1Q5soRPGdmqFffbWi28fdc7URoP3L7uiItWAX8hsQ+9Uhlrf605zGnifNqYSQRaAmDEIMhvZpmWQ1Gj1wx04+DG450/pDYVCDvuNUc27WGalDBNX8d9cQFaETytMcpm0wZ3GYbCj6yl3vOMInqMV4ev1y2pSW65CbYRdC0Oqo2vSbhfQOGY8ujeX/OQDvW1/v7cAMdbT2uPUlLuZYLyi085fYgI3Ch02SUVBleVXnMTe1U6gqbvFFcqoh/LTtHh9kIUoJ2GMmCS0yurRCkofjUznFqxOIs5H11+rAf51LXM/mUhnqnhez4EmLyaomNBD/V/pLPR+XjTwXKjy+3cV2OJkQQ6MC4uVcl7tLZpQhgEgSYmLV8qydmBCurS0nv/R1SmsWJz8vADuQzL9tBf0rF8iL13QTUETIuB9euGIyb+0egBfkcnxkEObfCfRy/KwdziopZYPOoR4M/rL/b0BM9/erkD7LzzcnkW97/iAS++mCOq1vH0wTm1q6l3pS5fqvBDD7din0AtPvbn77Yx1fPfhqbj63z1bJMpQcrrg+8qeGHGm5jRl6s05WosE9nhZc+37XvZ2uQLPCcKkBqNUnuHdwYc7ThrJ86vbhzySQyDnS74T526Ud0Ll+DR73r3dX5LPrWT4W5hc0oTFDL49TSsvds7q5AQpJV1VEYGUgBksxilg0yR6q20Ra/5mWzSe++wKm3w+k7Bokye8s85PHWRcOjfj2rNYQV+mDZH/M/J0bhckf4VHp7vZTn5opISxIasUCee630KcReqa8KQrAB+3CmvnHccsLAyH/GNRQVfVuXy60AL59AHFHHesZ4NqWKBQja1kjvWYfvrVylogspS5KXjQ/1ugVaujb1cl+7iqHizbVaZhS6GgvAJsx6v4GVjlzznb3l8Sjd/s9F3Xpoc4QadXazvTdRTnK4qAbpPuZT6T9eUYvLXhRyrP2TNvzqCbMPOB4pJHSJTZWF/bKPLY5dFx8EPdgDbyJ2srO8QhnIjAVVbjKW8TuVi6v6zjVkZS9A1Bt9y0kzn1757dTseIRZvl7Id4m7fPLfHOD2QiW3mxXrwrbM//6GXgaPXyFI4wQinrPf+su+6VxSJ50ca2TWYk/FtaCbWozxa3O/e0CfWhzp+j5LCh3RTox2c9wXm1b6GDaZEVWAYooVD8S1GhK0vbtAwo0ekUdVQYy63lhot9gQ/eQ3gKcYE1pSSTpQHi5qtTxpYkWCS5ke4NgIiq75pIHrWQn6cuprJVLh8k+E/UUefQtMdh98FuL7ZLNFFsuer45SD6ecVznbsr0l8v6AzXylViinAhUubGfipsyRepjIuMfTfvq7pMyYIStH5eDyYWxLbxYzfI4HDpCu5oeFvPOFTQEC+c3jS+lfi9yrOH/qy7Uq3aMv/vUKryEWErWj+82A4lz3srGlyT6piNbOriu2moooYEZvFWOSNtqH3MwZnKaUeA7WquMLmZFhA+hIRydgB53a5U7DqBcuAz2YFY53lm4GmLdiSGeIJPicwRqDMPn54aOmx4jHo6F63lIleI6zlJfgczvnOLxcvs8Ew5TeRRRzTlc77PGQK4MadxuD9EcyXS7HHfVjyIbiHcuBjQ/hS6MPpfWdKoao8Lwh9UzNsNzG0uBydU8rXpjZ2f3Uit/6Ci+SoEjkqhP1tErvUzUu4rseOiyyTpZk2I+Tayy/jtnBVQ7jsro010L7rDV065/6hGIHQQPNEqELsIYa3BOCu05xgKv1P3x81nLay2tQVs4UXf8qWKBd8NNxHZFroH85ERowrq6FhYhNJ/sQ0Sapz/b+jDPshZNVXXDg0Wk5BTRvb3MEUofunan2TtDv+QqE8Y17hX0nvm4pVGpXTG/KV+IC9DdC2/QJjMnAXpNlQGiwzDw7nG6uvWE6PXlge9CsW/0mmAgsR/awwhnjQmWn2T0p74KwN0pnhF6GQlTtvEtP2CyUevd5o84r1dxrTcAuJu7FLrnOajyc+N1DAZz4BS4aHoG7nn75LWpHdWbgQWBRq0us2gGSNQb1EdlpTn7yTTNz3Q6qYEn74NKuFtk76Ar9Sx2OI+AghyTctI3Ji9U6rBoXIvC5AqwP9gt6/s3HaF5aZbPo8AmDNmRVt72oPrrn8M6HRduDoBb75Zorizv/IUuAcr/UpypC/lTZDoewHdTXwfjWp0iQGEoTr7cboMeKrXHkWXUYzbqk+GcjVlho2vj9D6OlMjNnbwXSEroqTzr97TCztbKdV0oGe66oVF1dCIBo/wwpoPkz3nIgBPefdaChJzcgyG0wFTMd7Edk77Io30g//+BmMTqLKaMFF6Se92b15j/9hqfXxCUekHXt+ANxwrZpOIlch+DOY4LggBP8t6XBc0F9qZoj7k9a611xBUaueiKoUqbx/Z7/ikIzdF7WREL2rLXdeJyLd/vh1BmHpCT9pXU1ypuoo3Kckso+MVbwcB3LL7zHfh4zrXHsnAVG6AGQPhXpGwEF/Xy544PkYGBiuJM3jpxOpNKnHG7sTNDMsr1haDVUKE760kE2rS5ND8IRoQLrxaXVkWp4mvaXx6hnlu7q2RryXX1nrvCLFlt+33+4Cza3TmagKwtl6QTt1je3KrLtDpRksv7225U2bp5tTJ+pzXSKFZaQ65AJn+MM4nD3BgMK8P/H3QYacdevpw1a2vyeUJ1TuMgTkVDO2Kxybp7mMYyYrVx4m/xyB1822GeARTJiiHnaARIfwt12WNdlzKI4nOB9BOnPvzg7n3atsNtL9pDjXsgpNwWvqrhY2MSaQIz1szIWPNMVb2e8ftq6mhWFc//K/tCqEZnaWQmCQl3qzXYGpm0t7lovEN8drzRY/GtmiYyN2Fw3ALdo5JZeDhcR9BRO+9e8h8BYZtfht08grlUNLbzjeCc6dWTW9J5cTzx3CCzKqps9Qd25Xua0toGXCEcUuGFK7YtoZyTRcDOl17RgZCGLLQODPZjXgU7639cibFpY5VuNTiiZwy05xNvC+OILFNqBt9GqHhZxu5YVB10rergk5yViFfqZ1Bt0IokdDkTew8ygBu9RanAmNLLrVIBVGnvtHeLixhgiy/Nka/eJaBNppBg6RFamkiUvq+dqEI9CHcUNyTM1nGHxBtlaP4PcqyBn5AgrWhSQhAERVHwTXpIOgjeW0S/xGWI0WubSg1Hvf4gZzfWE4/vwcElkTvGaW+P9P2iGvGP4WLicDm3LQuV0k99eAmCNNeGTIGygiXfOKL6xZ2u4TcmZS0Db9JCkyGKkdX1pOQe4wh6eouofz8+N2MGIKbko0wa3r3QXJcbEX7obeUF02KMYu26HAXuMbih51zZHlUfdYQl/1Ps8DAU1DCWmr9u33/CWV7KK28YcT57mjhruBZAC4J9QoQ6YUZ0mTz1Pn9MTKepIovSGQqayUFAoEqRUDxMKg3pGw5JTaRYLGPzDdLPXGkkMVfGyPp/XINTy2WN3rGIeBUMgE8xpIQulj5RY5OYxuDbIHd1lKtZaX/mgz4xWUNfi+SB0clylbYspdZVal8PehxnDDVFLzIXaAnNm+k7/CGI3aE++8Ypo89k87ys2IGaAWIaEl3cdPd7dWQ3xMCQm412jUDZMQW4NKM+qgD48gAhaiOXTYF9Ko1MpIQZIOAwX3Up5L3hwMVBk0oVO7ogI79IsW9RnB88mci/EOh+cn75uc2lzVo3ISkKArvuM7IQwFDxTYaoJMdaJ3lkn8i2PPAuaMjA1E0Grut0VV7uGLy+PbE7z6RueT3+IjaUohWXs51ZwKrfGKOvvXKHGGOHlF1JmYm1OJPSdn5LUDD2UbEIZgoGYlKtO3oyt01ByZwmNjERAK7ReLyxO70dEeH1/e2MAhdTli43aerVkkM+Y8ce3GPrPqGPRszm+ugCFyqu94YhR12AoMoRULKaahlX0LOX1Q9P+nYGD1yLZgr+d91EnMrQf4pYbm8m9hyazAe122aARYFjZKX14CgaBQsxEQfXsJhcVx1l2vtFe09Md0PmTlRAzh3vuqF/J+Spgut1jbC4LCmrXAJSx63rT445O03OhBzGft0nGlC+9N73mc6AzFq1mkuLTdMfc0dWZCnb0cUR3yiXi8dbXSAMSfGfgH4j2jHGgQha4vdL8k+DHm63stbQPriHcONl2ooVrkDh5YjFTI1h0xuHSCAzO+dUcJ15Qc6yqOlSdWTNWeTMjmsrWs0SHuetNxwoVDe3h4vIQWwfpich6iZKSSZqR0/xlC9Cl2s2TWaBDnyNF7j6ScbCkNzr2QRcpMLEQ6/ljL7B/VZAkwEVdb4mYqKwRn9IpByulFCsqbE27RarVR1MbZ1VVTKyD4dL/QjYcvK0Kqtj/l0jLNQuJAQPf/PG0Coy1CUSSgolE5v9U74WoLA2JF67iRtFnIaptHUzbXV18PDmVo7aYHhNzA8D2miPXyKVpteMQpAs2UQgoaNmAm9NZkclW0PwknkfrxpUCdp8HZsOQd1WnEW9xB285kaxIqN3AXRkdVR6KTHkGVcVBmyFG7sX4h0F6uQfJwhJAOiMErcITR/aUQb/VoBd3fxlU673V+9TNsu68x6WjRAcsu9eeUPhtH9OOL3eDPAa8dDi8k0yQ0CbaJ5MlG+ZIAUgRV6a2CItUIEzVUCY+EYMI3Rn2bNple2C4Ju+syW/rAFRf1A9pCJX/0gsuExeJ6a27fXCXTMTa0k+IMVk96mTzVWLQsGQOR0W6eoSlg68B3TrkerRaAuKRF5g2uJIAT9ywbDAPzCwla7Z2d0d8uWwHH87DFQBq3azuPoFeG3+0T+CM8Avg2SKGAiuWl08Sqebdo+p3ki6V8U9pW3M+YipnQU0Or4NmgR/KoZsIRu5qtqaqyw2tHfch0Ys78MVoZl3PiI3lWCAtF8suCjFaUBJvd9kbGcjAiPDPUI67n3Ao03PAn1wSWQTDs1pO2Ek+E6Y8pY7sqHA6wHDI++LScw186IYOCLp+n97bQoSM7hjnNIu+xSPrCZrjhqa35RxyhfWy67cpssqaRA8a/x0H7Jn6+7s+6o7Y7Uz6RIeZEdrKi1zkch1/Ch0PMe2l/v3/H+C8/+ZiwHNxUMfdn52zOhvycM+J9AEcnrT5J2Vy4MCYH+XbzzefB9wyVKn0AOb0Cos9rSaK7nJup+75lNaHXRVfSey05UuIp4hm+4dLZbO702yomvWCH0SYiYC1jcNDWfWKbn3LOYZvRw9Gf5mUfafV3bbPT4rN8KB2nFfDZt7xwUBj6Oj8GPW+jjYK6zLKWGuIMlEInURiG4CvKycI1/M9EMgvfZb7/DbQEIrUT7YEnRgzvEZ2M6MigP9GAd0Sv18Ma9W9XKCMwGcFAnBqFUSkn+MB5wWoa9cMtAoFIVpHcDA9OWNYOfaNALjOIMfLXOdI6kp5sijZ1phBoUOgWo9SYsfn6KTgAIKV9yeQyZtbKGvEspRAhEl95XldTbSy1SSvjHT0r0MjsS1tN9g3Phv1PKu17py+h0mGh2lRfl2tWVbYqO0Pb74PYcRdU95ATH5ox4Gh36J8apJGOQoqI7R/sbaouOggSxW12v1Ln+usbUGi5DctG2uccWcUP2SMgLDaluzxxtPtfNq2T3m6BXg2UkIU/UF6j5Su47nSCDDOFkqWX/NTiSXI4kMnUm9/QcYHo7CzRLjXbVqrhMs3zKQiRHsXLMLj2ypf205OJnBMfk3wNgpSf5LccDT12kOeI2tLz/68IG/zT1ut/uqFOlrY5y3YZ/9oI+XhxpEMYrevNS15DZzo/rx/vpvRbIPoQeLxj07RzQchHkvNRlBad8t+eRbHjVHcqzCzs8snAw2wSPalAOfs1TupzMBoELyBPSiGxoeHsu3O62R4cc8i0UhfVizcVz1Tw+San7KD6QhKj22jvA3s+3C1c9Q3lvZ8EqH/NKQRy2RFkDPYJ/rzUwa7JSp+2yJwHrV+5b3xDrKPejX9e5GS/uA33CyTVtewpJPcDg3nxgM9IXSCVzxsuDybeFT8LeqIvb+rSTVHUt6uvusxPt8mQy1JYRcM2SVz+Y0euAwUfkix33EvhjeZTKBwOLFN6LXCwVwc066pA3iQYbIKJUyp9X4NQ5jFZB9Yzql8uGG+oKXkhCSL2vWJ+cVMYzWKb5fT3eRjM8lwdku1Z6pKNkUOA7ZEooxbM1reXW9oHoeQ+KL2JCvFyc1Dq02MsfpqKjs84Wgmu7bL+zOIaeVB3Sk1K7ct690hqtO5hmwcLu49zTUiMxN57ugAtpHoK4m34tZciHXsLtZm6zvTf8SYvq03Slynkh/cxI0aWtfFSx4NO83fcJXFkSDpicF3d4TsKGI0eopoQ9P/Zwc80wYHV/pjj0+6kpfbtFiVxtAx5KmPRt4jH6T6//thNEvaYS9qQxXEeX96X3fNePmYO0mqy4NrIvVU3PKlEYciTJmEgNO1Rb7HIfhw602J+Me0pOlSAHay8wUePqIuc+UEb5N6ekiNJmSgjhWhYasPNw/DAZBBgUUeidMju41C3RUf2CtfWtKoLq2WGUOIowg9Hk4udJuevF+z7gN3J/CTSTq+6xWRdvlYJaUwS12gtwdwRfmiRzWCqlZB/4AC35C8kjJkyssnVqK2hG/L1iWlbvyuFjtPNJ1qcp1MVr3gf4OnDmp1okTCZ32vj/9x06qM4CEMFQkX4jAHOLRExXx7ru1GglOM9cQUiEbzSiAv7dOORqC0P2pwdvhHCNw9bOhN5nDNQIZG9d6Ju3nlCRHnnvDx6eaxtGC92fBmwSJRPyq3hc/fgutPkOpAsfsgWwWtpnfCEah4VC6hIbCpdRjdYt/VpyT5pTQXMi4nNzQpivkD9gW88N1qGvKyQV9i2YYSD4ckvk5KEut87Ym77TEs3y1f/GIiRePPcHNkwqNT3IN4QG+vng7PCBeEVjps7sMK3ZtbJEuV2SAlrDiOJ+nd/EdKOEngWz1oeSRZ1WjQSSj6u5znC2pO8nZF8+P2+SX08VW+h96Lu5O0kik1wL6ESeyndJL/JvEST9DLt3jfAeUiIbtBMjfCudmT4WKVKu4v6/Ib490J2RCy+rmkIs9lha0p7a0LTVLMFxEqPNObftv8Hw6rUdaPDAOWKJvR89dwIwys0HErMwXFHH4WtFogaOWq6IceyglucG39VatMRLlWTiy9d75Zr2WfH65yGTIzegcEjTsnBgx9IEUNulOa/e+zz5JrLjk/1b8pRTr7o/SnxnoykiySioASYE90ERxqQtumSzaowgOll3dSDDoJGz6jE00ukBGDOFv1vd2ULJ11TdM/m1gq3S6HhnBSJVdGofybnaNZO4WankcVbteEarLj4Q8kY1E2RYP+rARd59aTzMvd8ZsRCMJi6yYrC8N+lfXPFmMMqGNpwNINqSpplvua3equs+q551Y0OU0nXTzsBsgxe3Mo73GTVu4+1glc5WP4KvSIrAIWpEisn9wSH/LXLjstKlsPN08oJoS12PGefnbjEzlWznHz5FYTlL0/M+mbjZLx3PcpPF2yO6CdsKQzX7ZrxRc0cdT1jkbZDnwRdCOdshF+EIGRG10n4dYn2IHi0q4bPyhlJ9dace1zcz4pTWQ4aOYUQa3OoOnxqNJMBVodNwPG14o+EriXiHgq2lYRi8HOxYjLBj5ExRW+wiIynMqCzr6YM4tyUAfePZcWY4h7P0y2UWncx2e8NTCSCqatNsGmxCUwp4SjJ9rZLb3B1v0RD/UHZ+L/Yl662AkUurm0YgBxZlb1aQRGvDrXpdnqnJLGcye7t7Ut9mNWaVZpU9sUxWevuV0Z4GbVfkBdYppb+p5mDLO7ZBvxAwTgl2zIEep0VzkLMcWR/N0y02EhOLDoNpoN/D/b3vaj0z+xGR9muU61v9fVS4PB69+tNvpvKnVY7hbfcQZOeGFb2m6jcF8KQTDtXJY08+PEQYF7ljTaqzrcITYgfUiU6MuwSjSHTJG1cxvwNjwkt66L+2FNMBhql7JZIfXLMVAUBMNC3upW7uqD7uDHq2Gh0DjOO66/mp6MjMlFZeSGTYRKsR5KLpOb888vSKgSXAVPZvtHYsEclDNdmy53W9Iv60OSYADNwgqMCExMduoLRT+Wx96FUYOX935KZ5shFdL+gzzEeLVmPVE6NQvNG0vGMQkvvQZZfv+OK/xPLQzQw/foo04p59DGKaqtkREbDcj+yn1wysdDkzkrp8VcYEcv83+7SWmCRau/LR0c4VcR4J/GI/hDPjtBO2wund+xtnTsvR4hiYHkV4YsQJVOdsPL1ZtOVeCuC6RLPTLOwm6ibS3frGBR8opuUD+GKFvCEMKPfRKizd9nL01ECvJkGGB2uVrTneAXO+nO11Gkw+YZbAUSRUmKMhD2oZnsFFe234p98rTDN/cAI8L8CTx5AO0lXGWo+z2j/vR/zWBV9W9FM2LtkhdLsOM/j+2h+zaI7WZtOJTWPnA04vtKsBRWjFOcExVJqg6YFNPoPLXd1RiQFxG9wWtma4aiAYYpCxAF2qrL6CcBt11+zZIQRrYEhQA1I+B1u0a90wJqBWMRMVUT0qaU8qMlSyMMux3k4OtWsXrihwzkSTrPAcCzmB7GuMEqLntWQVDrz7PhTEXtNbxGsARn76rIPLkVwnAiCGWkXkt8R6kuQrquEhoBzwC5dSAkdFL+FveVQmRIZU+5YvVMuUOmQrrEb5Ch1ajuatuh06je0X3sfBbmH/JDIFPSuFPvrP2nk8axeciSw4fapkbbti5/+oAhalKK4BOYDS/54aW3Oo4M/xqaKoq9NKRB9W3xGiwY2bFi8hfj81+oT9Yt5ecf0XOCqAAMWOgvmdA0E+/V13cCPzRYlC8qL7z7y3iH1aNOes2j3fqO2pgm5TyrVnHKXelVvMmpBTe7e076IkZuKvzT6vVEhMvLtpVh4ZZwFRsYDxJUMJ3T0nLxSuJefbJBakBxmSiykIfWGx0YPeCLNx0vXfBCc64E5poWGwBwnknVlqC5o/5NhDtcMg6V05rJ7oA/l6fDjjDyG71c0BmovlJp3g/uPzOcPkCYAs5rY9HcKaLd0v0Peh4pGh/HzWx5/cfMzWLQUnK644n+WxwzlIpP7JwoAXRNGBImdIPUPQfyrYradW9/Fc0DyGXzP+1O3BQzxDCuYFMkzuFGvjjHqNquzvU2vk6O2WCok9/Z7ksp9D67U2GbbYl3NkQt82TmSP+KTGixXEUa59/vuOTx4dda6IR3kY/RZTxXlX9nLVqT9hLObPmiQ6VwPWYGcVRSouzcan39mhQYn0xsCB0igYKgRgrU7JJ5/f8ZP2VevYzP/wCD6edZDABPP99tN2ws0huNwoU/pP8y0u9km1k1TGgSd6qttWC69D152P++1Fmxd1w6YlxBupu9e69UJgzAfXofg39htZ8t2mPQQV5Uhq1rGYpSgRShX07Em/37EYcgPAhSjez1rgBp1pQwT8tm6udIUzqh9YMbFPsN8FEuu9/Iat63vKNBCTuupDKErH2Uv7fCjYC7Gk+BgQZexyJtyOtNiyFWJ+YdDQGH36ml60qlzARGYWxZ5qSwakuQydpJ16v0i5HH7/hiiICefeaHChTTJcAiVdTdihyVcxMVP4KE8ZBockvq+ris2Bl8FO9OIk/enL7/bCxwk/uoxrxVKDd1IyWefenMkiIkZHhVNf/vALKWbcXobDpQX2rbo1/CJ+hvEUwzRLZwIvrm5yNNtCSflwfLCFzGGu0Cso9fmNy8R2jiEap7RnIqAW//OspWpeiQRqkDIQaG0nZlO0RjKFpF0ZMcYoZPId16zxF1C8iK2Pxy31jNIe6ERfg1DG1j7a6I7ncEuMlpe05n3il3ku7ByWoB3IpM64ku5zHf9hVsYqAcoMRonOntoXAYRYTsN0HITlKZZ/rRcMZTXcJPei/NF2pSUMy2EKkzrwrQek12JJMCcNRdzOaGB4KUFMhT8mvdfQwIMkLon3L2fHg4yg/HU3YiSXK6YJyC+IL7Jl2qIe5CBtNbyfCrBGQZyyyAeJi11qKq31eC1UAIggCu7vQ2QqmwM5qNDchr+xnyF1MwgpX5CftTA7065LI2BOSfGkSCgiqMXRpNDy7A8RW+GQisyX0KbxZqaHJzQepVVmqT6zoF28VGBuvuQUvvdFWdpwiltdAFM9DY+as598SgI1sqF3whBdNJkLo62r+j2dd+6GowWHZ0gKnKBSM6o7F1mxGw81PGZbGzspsn7ns9SZjv8Z8Y4ybY3Wft4AzTpDZ1/mf7H+XLmo9WcV4NsTPRkTA9od7FjdrwYl2SrS38Waxb93KI4SMJXNvTzeSxp7RfTr/Is0XdMu4vtpaWkHuRa8enOtuVZQeaD4QkqIum3w+W8IJ+GHpnzKPa6PnYn+p9gtNxgSYUsoRarIVyWnghwEKKfrdSHUG+fM0J0rWBTMrzkORVLDC9EZiX/iW4rRvktkznJFfEY1nX+7SG1Jf4ivSrEEupYNHMINBMJ1nibYliEeLZH5wj+M0ZU+D6NM6V/jOTMmFTgCNa8td4peig54UE6LGpiwGTziFzIZ2X77o8Bi6y8vn7TkHSu61Xlp4umLYgYXh3Kv8YOrc3HKPFtrG3px4pfnHNb6QI3OehddWHUtRBBxz2kZBDgYttJUjQ7NM282ZksFMMw/7sv+lsCXcvjf58rwYmpKn+G9LM08r+BAIV+Wr4/4ovpbZjl3Czql03GIu0nOI4i8V+8pu1V/wEE/0bCKyFykvFON03Sg4PPqBfDEbU7WP0A9XDfO3Bs1nOa93Np6HIDVg+N9qnyID8WxYDyRjcVBokQPXnHWh4HYmFA6E/MznYboy2C/FCZ3nVx7w5LViSQ6ZTt1RRgGfVkbqCAvofCh6xp7mJ9xZ/pSyu3rr6zyxXAu1QbX7izuX0tr3+QceJExJK3NQpPEHCuZ5SeMj062pz9HpQx/4r+EuGt1yDMb4kaE7jfxU9XZa5FVt4hCx/Dho944iH/q+CF7CWoqu1AEQaK6jU0Urn9G+Nc5ZRfrSeORcn0plFlXdE7+ezJWcBpWyySN3AC23qC9GMgNQJsUbGtdpuw/Nzxq8egHPMRuGu1S1Km5lEqd6lGd1vVgIkM7mCqJinmrZArRKIytMS0b0HYr/qlQ1n+4YQEc3t41MO3kaSzSZ43IAjbzuTvM0XaH4XbZ7bZNxJztzmSA9GBIb1E8UoQqAn+hHecqY8gdAqP/Acbj7PSlyW07Walyj0V2opYZYm6JretxzAmg1Ahy3E0SqEkRdGCJ5TCzo2cu2kkB9GUnNQKd1Mj6g3DXZofXNnbh3I0XnDZM3NW6Yuu4LkJs11gEYFUXuwF2jQ59HAFu9u4DRQo23FCzGK/mFVv06MWlwWbuDvuLLkW1ZLBLcW4AtjajbAzADuJPGIrz8q4JAaGfCDHzMUJVy9YVTCCOZVxkavMn42tZB5500dlyfWD8J1NY2oeTfY37S8EqIh9EPlu9Vr6HO/MhhJ7YQH+lzagBtvbxtte3KAxDMZN60E9+A6+0ipJCq0TYvofZ23RgdMmTKm4Uc/6fcL0ktgyy95FbJswpYUMT/koQynrR1A5w23Z4O8QiT1Kpy0H9HQfSwm8TWZutammJNg3/yVLwoc1+HZzujyWGsqmqH/hbuKQ+nlpY6H9pGaPXsGh8yMIG8q4TjS7NURGs3RboGRX4b6Yb9W/Sv6J31M5q2Awe6mEFJ5zUZvykR5Gn9oNPLoQrRLDUTGK4aBHChOci6pysef+SDClQTvhFyhS5q75X7O7f1FADivJzhBgzlHqutKCrmnWxGf5IX3anCBGFHEvv6TobwsbMq2agUi6K2ylWY1CdmhvFDvZJlSguCZTDzn1Jk94f/mbFue9xY4c5HXJF3NqtQ2NFfsvIsT1JXbNR0hA8ANlUl3zrtWZjSkX5QhB+lIlX8d9kzAZ5ztV6C7PVLUhf6T1fnEb8QLWIA3q4tOd2VGIgcp22g7xapzMNlhPeUYN/+yz8kBM+3xzC8I7HPXlptjgQHVQsk5rOn63RIcSDxNgBrnxev5rWTEJbryCoStcIF33cPJumcSjOjKk87TMuZbocaqV0EvgbBuvSpZ0lr3jb3Y82lRlTIqn5nC14oU7pA1OwaiVqvYB1c4eqPrp7nTnlLxiveWjg/gF+IBepCjXfsvFhdzuaJOPrz6RWd9u4yZnmV+9w+ZzPD9Kb7TfuazvgI8zErefNCFchtVRLAF+z1xW8+zBhB2d6XSANt20scitdv4WPOPU5uL27eqvh9kXX0wxjTjV9840hF9sTxM4oFvqbLa8nTGHUKMM4lJrqbz3lu5ihVrmkUNSln2G6CJg5zJzHHpJmFGSIVw9VoufSI1kl0KRSKmNpA210tiBe6rOkQJxpn0Sjxf58GNIiTSP00CYNwhJ2v+mMLajWvvlXDyFBHJ9Z77pAWta2dZ2drvmiTy7IrS15QgdwPbn9gEIl9+onCujXiOcGQCBOpLDxhqgSuRuORH5Xf3r6V+/E4C4OszxVKyel4Bk8K/gFsIt+u6m/rDh+pAFc4wL6K9rG09PUsaG0BK73ravogvKOddc69Lb98p5e/uGFXx6DOnXwhEXlSvygnSbGT/48na6agiPGYrRg6EI8Ej+b5BjPSsJAxa2cC+qZEErdK+hVKFg+bwDTO9vbuD2cSHQBe1XSplO7aY9xs5uxHJsBwsvhbqNUjBldeitdSIkZxFxCYp0dV2/58IXH9NpXaf2d3PI4jHKKH2m+G+ZF60wHMvULFvWFjW/OI5bmUamFmSV9AEGBf2M2d11nE913TtlCt1hTVw1oI+8WyhjGlVX0VhDXsrrH07eiOpBYXY4uavBfbIcHA/UmmCOmVJT4iTsXGes9aVp66UP4lD5jKwfFXAxf59q5ltGGRwIWOWZy2250L2rzjwFGTc8688awp9Ge/sv4J1rYOFVIWDhF9Lb3PPHM/qXnjqVd5KhPnfcV+hN9SbIf+sTYxuYvIIqSuKk63odH0TM7epvlIIxSoHzpe7ADTJZd1H+TyXiiVQ98YOmt/765+icb9IAjwnwUQ9lyEHgZlVUKV49zC2bUXN4CwtshKWYSiUUPm2wx4wpPcyw30G2wf632/m2wuIxx7/hzc8iknwnsYrdiN9X5UfjMev547vLMPwum2mpXBeJkwdJftTIYH2gpMLRpx8NrGcjbpPdoldCiwi01qCyVkDycZ54yVcaz7ndkqGlErQZGCt3H66K88UorLQA9hQ95qgKfAd6reA4U4Wiv1RYijDYO2e5Lf1MFmEwAUT1QgN7s3wPjd9u7xBoDPpk2ezUPlPC3prFR+aRVX8rF9xYy7/rslmfR4k3UcwZKDBPfAQi1hmgs+85lL+Tybir2s76MJ71n/l3O4dMDUfdIOFWpBHB8WgShmKrRR7Klrp/1CxYjgviKose6euNY0bru2Ag+o4WH1FBUpGftzFUn21nd3yFPedxHRNJT5ADUTEeEI1oXU5zmKzAG7OX5aLjwT8KtDsGrv4A/MUvTrwoy2UxSXwhRvikGWmvHqx0Zlw78RBqHvtLJuT3+MgToRh9XBPgDYCpnFTRWNLKj5TWrt0zpdnJuvt0O2SsFKYslu7htEKWwFuwGA05f02bprx+K4EBeK42gkUcALikvhryw/gCCXWEuBxxEQk+QHp8gSvkvmF2SF1h8IiTERiRAqUNZimkfwrpBdwljpFGX3vQdYQiWGKn4xmiTAMFgx09TAGv1Jru25UF8GWluZ/ix2QWy1vAuk7HgGpq9kuLtg9Wo3Z+qZwfX92xuVb+DxT6WcVyg5T5Om1lJ6vMwYnSpGj+dWDy7egNfK/YnxBEk1CgDFEReOsVISCJ8M1NBDUQzAoHrnfNSK3d/YFc7BMABMnsBhO0N/4ooXJtZ1PjF8nit9kUW9jXPqXV24obOZUsgRCuDVBbmxJYNSrb2szfQSugUrBlt+xBgc2dJ1YhTp/OQTciu89fpyz/OpaVPddxjEf7AD5uXuRiEnK+ieWz+8yKkeJIYruaFbrZNg+y/8XrbPFZSDFJNMZloJrpeTrjYHV8ZIjEx4wweLc5wTBw5+xhh7BgQuxhRikkZMcNor1qfY7QoI7t+ZrFJlAfK59dGf1O3qhuBkOEV1f6Bt2m6bl8jmppPL4KhdakJfmusMt36RFKA4kb1zyDohmUl0CFfzJNDMvWbznuC7FAcE5p2tWMEqtCSX9VvzGpl/TgexrNWeHphC9kAsB54hOpPlmo+R1u0Sb4GymzRiM5QSgn+OEtYZOzEimzS8aS+n3ZxCoMbAROktzmlZ6/m8HbsDSvAEmpZjY/9Ceo59Ygmo5U2YAcXCBjZPz7xFYegPNK6jNQcvg2P17M+8PGD1JI7LTxBP++Zwdy9Cr+Q1avHI0IR8+QorAKRefzSzMVNbgoHvePAawv/Ierq2LVYbPY3oHHLbWyrjyJQMjWlMtJVizFrK5aWLizAURpU+3VAwYc/OJ6XIgkyRpbgQ/i51oanuSYDSO3rl/Z6zYfwJtYYBjv3RvAU0h1uZtap/Ibmqk1GaLjqVTasCNUdxCDdycm8i4z94EsNetylJNP897qXbP4kyuh186uimnCypgw+VUqxuL5ErxOrKrBLRfvO5zrGOj7T8YC55NB9b6jFpIC+bcTrjlKmZUXm5sdt0186QUJ91zp65HQ9AByfL6LmcZP5P4i1Pt3N8MDGW+go6HrqdkUHV22YzxWe187hHLgr1CXelo96HJDeCrQuYd7bQ4AGDeJ+u3v/CkZ8ApTrsenz4zQ3Min3EIJP0i2XNW1hlzx2qxiMd3SUYAfKednYpUi6TAQq+A/JcPl14TlWT/I16jIIiGqB+ppqfcoiGxHWFHrJmRoSwqwZHxvoa/FiU6pWwgU4bqXBVIJ3/MDIIB0+V43RnBASr2KOBcbGtNc+xMEdfYRtz1seugf1wWe8YyYzegXk2cTPIHRtdJf1AFOtOCGv3+wEgR/bOdWASwqJqWoNV0lTMqZ7ZeYyAV9X/kDd9xaC7yAUG3VRuXYjtHfr3kSORH+hPq+fPEhW7ottzzsQI32DxeEH0iatnPiNI4bT9nfQHImv3gmEXTgZB2/5MsQZGEcd7KUAYUSojt99Om0OhKavCaV8V+QvI9VWOGdGLHtURdyvFhHt2aJQbZYewMKsXaMKEQZ8uqB1B+M1MJO0MlszaLYrnMayqvinTmS/CK7mL96FfPtw4b2+JenfgEsTK+ahXj3iwg5T9wIoM2d6Bwo3N0y38QEkmX0p8/nTBd591mdbQkB4brmpzfBxYrXX2KHmZD3bZ4QdeegeRZ97dCnLxVzrW+poWnf0PVHUzB432hNmPGUzuCoh5lK9KxNyVX6fyk1QMIEYzsdkQ0XPQdyboQhdAieGIfY50oE911NCxcQu4OK9VRYxIUxv7i2aOXcsbwN2TbMWz9HitimKhrLYESZWnwbmimgXT8oDm+9U3+QIqvwMG3uyKkC+C98W53gaDhq8MxG8Acz8YAT8leXlVzdAx6gi/yiAsYtm2bkRQ7gGIxXNspZaCcUd/uz+pMpl1abcB3XOc0MsgyoxE1052WfQDz1kMpJA2mYE6+x+rK3W7dCCedZL0/wB1CUnWYsMyiQ80lVGPSEe6Yd9HDQo3ag4y6SraBmGCo5oaSimR37a3fXaQtG8oXbrplylX69BDA4ppuaOCl0hey8gdHFJ8ZbOlyVNdLM9e5dJVZjELnGBu8LfjGCVPP5L5Ip2QiwNSVbSrU05Hx7dBk41CuebZq9zv/pV3Woj6/KRcpY54f1hJO9ENWLniySLSGF8i/kK5I6NOJ4fPEBrn0rhIuHBshIgpcA1BgJHxqLSlJ4W/ksIFXIwq9Nsc+ATp9Kw3knDer//22Axf0kjbrtzxXU4dk+BeBJtNjjE3TM8UZo7lQtEh1LL90MX2/cIZqbT+hUmgnarjcL3VvEaZpI2bPqPPIQ4iaV5LPa7b5xpFW3Tfl9g2aQ4TFwJfRR9n9cVQ7sT9hCnTbbR+3d5KoLQp1vv+P0RAOlpxR3DJRSvCB7ELGqRlAhSSjQxL2gOmCx2ONaqvVCLTBT5mTNR7ANg6/17B9wD/9D1GE5xAgBBnReUTLjCxlPD2oUBiJAL8RZHPFSOtpWwgMtUEeSKbq4lnqCsD4vSz30UqK6BBhNNXMeTVTHVLOlvjmFBmIri/R2uhwe32nE4yk3lqHLT47OPUjmpb5VAGSgCKENqQZEj54009rTgy2eBdu6Q79XJ10vzIAQAwE6khI8xmHB05nModRtc9CL0wk1pPsjRhBR32cs9jbYWnnpRUJQC6Vficdy6kr4CAsomw6TCekE8tqOo6iUYqb8R9jbhjxdVeX19tlaPnUVYbyH93A8UpCE+ZtQs+2Xi9HsZfkWI7RWd5xEhglDoyZpiouvPR2AbYbMOcVijrIcUmH3ioPJ4+qeT1uEytvyqtKHK+wgBrawfhoyO4tTlPuc8mhI/RFC69N+WD8N49EQrB1h0tVAKtsQ51IMOqlZRLqSJR4ftkEbvThxnsuyRZDse7ZLZEIaiEqROGLvOcZ9ryjqBhwmND7/Znm4CNO9QKWGyP/gkh6MWB2qeBkqmMGlHExSAdsjY8fy+FjTCq4j6mCCWIf1DtVXm4rMRbkfC4tNotBsCKAzxvWdKmN8E9k09xWQVtKSlCfGy8MIwpbtNBYwiClLj4kOP+QqukdcNmh20Ff8kCGTEFJC+2k8EBpyiiycVstNOh/i2FJto6x4K+zWaMJ7n4Ax/MT494=
Variant 4
DifficultyLevel
596
Question
A rose farm produced a total of 1500 red and white long stemmed roses for Valentine's Day.
There are 600 less white roses picked than red.
How many of the roses picked are red?
Worked Solution
Strategy 1
By trial and error using given options:
150+(150 − 600)=−300 x
750+(750 − 600)=900 x
1050+(1050 − 600)=1500 ✓
∴ There are 1050 red roses.
Strategy 2
Let n = number of red roses
⇒n − 600 = number of white roses
|
|
n+n − 600 |
= 1500 |
2n |
= 1500 + 600 |
2n |
= 2100 |
n |
= 1050 |
∴ There are 1050 red roses.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | A rose farm produced a total of 1500 red and white long stemmed roses for Valentine's Day.
There are 600 less white roses picked than red.
How many of the roses picked are red?
|
workedSolution | Strategy 1
By trial and error using given options:
$150 + (150$ $-$ $600) = − 300$ x
$750 + (750$ $-$ $600) = 900$ x
$1050 + (1050$ $-$ $600) = 1500$ $\checkmark$
$\therefore$ There are {{correctAnswer}} red roses.
Strategy 2
Let $\large n$ = number of red roses
$\Rightarrow \large n$ $-$ 600 = number of white roses
| | |
| --------------------: | -------------- |
| $\large n + n$ $-$ 600 | \= 1500 |
| $2\large n$ | \= 1500 + 600 |
| $2\large n$ | \= 2100 |
| $\large n$ | \= {{correctAnswer}} |
$\therefore$ There are {{correctAnswer}} red roses.
|
correctAnswer | |
Answers
U2FsdGVkX1+hqjMAvivnvS3lpWtvkcspU7HkXiHKkp0u5iTIaWGChat1vC2p1Z/+thkDDbBzp1cdiWT/qbc0D2gJBp1igUz9o8Qnu2U8FJV89SkbuhXkegfVdiatGWa+mcHVAtoPc6t2VmBcN6s9CwrNfPcYemh7Yei8KTxy6M0HufwPNgSapL0yx8QoKxWnebAbCI5UeMlu9+r1aCsfzRsxBOA1NPAG/TvNf59TYfh9uVX0VMNhB/k4u41Y8OXFw88RJFe/kKwFvFauljsVxhm+XsQFs4crBR5TlwAc1wwhT0Q8QDxS2rg+9FbYRMQLaNQHq2MHnAqhVkjHSoQusiV2zsOrYCNWDmVIFc+GawsjWYQFTglGtqXd8kX/rGOgZW6Egr7IcporBciZV5DZfzeJUH1orJfA4lZeZ8bQABCjet0C4jtKKPpd+w5sp8FcyQy7sSA+bcVSOP8pZjZAQLtDZPtRGOhQQdpa4mkrflNVDcBq9qQ3/d3p6nJR+IWW/oEuqhStC3l+Ac0sLXwq5NLtoK3VJeig1taVqGEV8Zg7HNPVD2kFIR54T8Vo0WwLpseLXI3xJZVmiAP+WiZHh3b6SuwIT/Kly4sQ0Y7iPTQFTrhzn9FSqijHVm+9yliUWK+j3LIy1+sdl0+o2kTqCNUX0OI5mVfa2v/x93RO8+Bp0pziDwYcgUZ5tJpd92TBt7qywTwDEYkzgvnV9QFk2UJFjZMTOwdGEaICdCwnX943Y4v8FJ6sA1/nMjG6gtmK3TcQN9htx7Bp6CsqfNdL3bWszPpmPtoIUGcJAh2trqZBEw4h8HKsLyxC6wWWllW3lZQCqep240i2GvfQZo1TcHJFKk3z4+JKDbnJQGARQsWel2NsklCWE3ZMKsXcoGeSjLtO5DIEv0MxnHOrf/1+Jm2AgynOK2herDR8cpHBtAqO2667B6c7Wz8qQrOzUPyDoZVLkSFb9xNcSRbrQJAF29xZPzfak3WOpaUK1RCA6wVQpKsTUmbgZ2A6E/ESUKZjRrusa7R74nmTGq4+ddWn0iqvFwADspHLF6E3EQ2pVLwLhecu1S442XKlcysfLj3fOu4luGWEUMchCnJ17VGuB9kulPcP7xDRH7yhDIiaEXAwMPDunCQULhNqLJ2t04zwHJ6gnv0naKVunW3UdyqHT8rS8pyNO+ora/DhUy51PXty3ONYwjU+lTvftoX+MpCSB80LCUkXKgxCOYneTK7iXPDA7qcHHd6eSnBJTOZFTfNowqiXTTm03+IMX3LQ3mlhON6EFjWshD+U8CYDkDoaxgTePX9bdUZx7CyACDzkK0mKPt0n1+Pi0QUU5tmhDSmpPdWVq3GUgkQwm9NvX642ri6RWqVrWuWov7lqBJUYAqKTJ8iNavkpcDhC9w+3b+tvbeHbqrUeM6kVxP6PEbtWFcmfgmDFA8T1qTeapMPq9v2VpVFmlYa6mgJgEJp8J09FcX3tJ88giYBdk31EZolNN8l13v6H08l9LnOXWZBGRv1knQr+TonON+P9pSeuD4NgjlWW3I7zbjkQ4LXpvkSz6+v4nEF1L5wCKRvHIeSw8672AR0VQ9IsGykNmEvS0Jtg64JvnJvtXqUvLMOpfaw3VXUffqzxL/kyZppKRUnINrA+oWWGOjuq1MPOiAfCWTzQyiuUxjc3dKqbN8m8qO6/XVhY1wpninWXpmAAsvQBrPSriF0wvhfYvH+h7HiaUs7GZLA8AzEcX277CvxWpsqFdtUlwfMkvMvQgI5PhyAHUbjPOa0nDop76GDARnYCYrtMmH7w4b+KToRD2v9s49FKxmLuvonCLGluQ8rYAqc+SLrh5NAk8UzuJPFrmmgILKkiuMupnO5hKkE/6zwwubtuw7zDuZy7XXQtQW4sl5ZIvj1C0mp3DS39a2/ZPLjIDgPQg2huXCRHedC563opZUoQhrcBTZV8DfjmriVHmyM/RWLCb30UdGzHpAwYJRjp4KVsicqAuSmR0Sm3r3nzeAQFQIKFNPfyZhhvJC0wQ6Po36VRN4xsBFPkyaCPFMSScKeBL0pcbee+kOqJ6ZfxgcuHvV8zNYHdNzSuPIJ9ZlZyJNCNQ0EKqyqAtwwOrhYoXr0JOSN/Vq+8hrvl7kzVUz3jukVmLi4XhVAIlPGkzRUiA2ZcdQg/h3xaMqt7xc9GEp/ZUOSyRZRq4xmruwhdSzcD+0SVVAaxI3L2bLTpjZsIW91tG/bn0ApLCaAgZ5u6+8DxDP0RdHFm4h6efWYsSbe/gExVMIWol4vF6IQDRklCsFFvcf/VFI0ALeJdu2CJC3nceShdZ1g6M8xbAzOm+aO9yJqi4R1u36ONfybjU0XkuyMo3L/b40tlpO+Kp1XojdHSNdhyyF3b/oY3kqoYwLs6GIKhPNUShWFtQxX6DOkQ3cKO/ZtN1t/ya0Vi5f01pKw8lknIk+Q19KD9TwI2SJ5VCNx1NtF6ye+otrmEz6TgN5OUkaQC/Tzig/BBuBzmcpeCfYvK9cqNknYMYre9nu/3AcOGgcaDo8pYyLsIcB3jJLpoU2Po3gzXmDo2Bxk+umYSl7zIMNd/q+K1Pi2zVbVaH6uAp3Z88Y1nc/yZHmCBOSwe9ScQhD+EDiRKgro5kWJf7OB0qclMmsEdCMM8dkcj/mT23BUwFimKzOZml2KqB0/LjhuZmERa/a9qe+fGYPCt+xELOch+N9i4A0rZfrCXFEM8tNwinlK0ZGLxtsBjYmxd+Whl9gTcjhw/8HMtVH+k48kjiIj9MIcXZJGeytrvfVhz57k6fIlcLukJ9VWbstO5XZp1yOLvcIqFUiIrDCNwvzET2l2+SeuVDuRQh4d/QKP0R4zjDE/zg1PxHKmz35XTr+ImJrYt9FLrCQWseanQiFBCwafbQ255WRmcpiHKnqd9hIPQnkWvPcjzJ2Aj0DnCWWXfkDa+d9en3r3ZIriJcgRw68LHZ/St0pM/Xvm1cSuDgX9w/xoV7Up7Zg5fhTaPMeMplwRSR3BzgODbP8TCuYLXs2VoyOiMllKqZx1mDkEZgL9+40Blggir7DFd/LTO5ElNd5jRWS5RvcZbIHEBieFpo3U1MuB6kVFAp+plrS3nDnV/52I7xY8kMl8mg6dT2mWHPY33iTp9lJlHMDu8hconuoc6fiwMf1GFkL1LHRbW2+aWJNihgr0hFWqh4eahHQBJY8APtqUG/Dxxcf6AiHC4T0u0oOk2CoveFYKmbvA+3LO8iSKeHZdpsmqcJJR1oiC45W/yQSKgVKINt0z31pPsBDppxU7GvCHrVLVKwYug59kDw1s6aRpg0zZohQiGNgynHLt2zl/HOZDvrPXZjjS/RtkK+2KPDuzmbZGjtAA/PTH+waM8UpvD9jonD2xOGPHkgADKQSxZd8tEgoJHOsAfiGD/1NlaIs9NJE6hqEOvgEaufWS2XY6UPk+N9cwoJgUK8BBwls7aMUj9n2GXSjVa0xX6l43Wz7FdcN43CZW98CPOD/iL0ezPgtvLJbip/36l4Ptu+CChZtLGsgLADD8KIMemI9pAl2SC/0J5RHiNGi52O4n21qjDgpIaPUtNyB4Vrsr7/Q8NzTRIyqDoJrlPGs6ZP7lD54T0IuZXz1/vQ0uIeJUCcz2ZwT8rKMFuWMjV3CRNDEDi7R+HacZFuPYeNDiISSPi7umJJJkxhMdXCD6txMPXID/S9dr7KRJwBc3+l628megWjH9La5rYKrhRbGyM+GviNy0lMoSPO5hJO/OdmHJ7859KmS4vgiSD7VAydtckpi0ka4sk6X8e36xkhBoWNqwz8P83mI0J4zKBAhBzxJ8Q2WuLipnJ84NfLlo3lejZhQlkfc6tN6rFjQ4tOavheffFiaJ3yuYr4O5lrBaR0sbSEl6y44S6w0kJhAtwwjAUAzyL5r+dOrYOTrr6ZVysgkU9WqELR8uP1Kym5eLUQWrt8L2puruGMz0lPBSOU+kbUu/74Ah+UDClctxxsA9Q04wzPVKI3dfgUtrjfEv50oP7GWMiBaLJZBJuCajObJ2sH9KmPxhgvwmLuB+BIxGkPB/kjjxM+Hkl1jtNg5yh8fDlaShAcCkJD9Dp/xQwkcbxOhdJS5+0ZuwITjvCVr9OJDL7TaXfLphJMuFGKlSwmGnhePhnxkzmS7p5zGv2VpYaRMCeax9JXXgb1RR2388YdnL08xW2e8qANDVN+TDe8IG78LaIc0hyedyx5sDVKUI/0eEgjkNsDe0gD84xIDBMQyJeUYV7KvPZO7g8CBz01AvUL5gfEcYWbmIxV2L8lQNY013j6DtWtp5Hpqc4n5Kt+bEEuMQFXPLYlTtZQPvdif8vy6eLnV3glBB64iZQBb51v4LYffUMTHdfRJ/jVCSWFtxjWeaSSM8lwEKk16ioeZ8taz+Oa6gA6RdQHlqfEHJHQgSnQ5w40Dgvq1Omn71LyN97JZhGNhI+vNQZuJUnhzWG2dvtcQ3CUbep2jENDsSAgBFiOmkVYIxYrLxlQZwOAWAEIgp95he6oPk7s/E3qB4rWPy3/1yG2ELWV5IDyUfv95Of1UaEMKfRiiDIo0vrNqheICzdm0VIdyL8b0nvhQe8LFg8CN77n83AOfGInC2oLwKghi5oeCgZ89Yoqw8FzWxTiiepeGrcqY5boXKEyDs4tbADZipvg0DBlMSv3mo18PeT/09+3+MZnfwAdn/NtjqPr4imgAFwQiNJ9+WnSyAZqESKkDlWHBloXn2xNim0z1REF3jPZz1ADKGcvdRvhu7b2zPJdZaxzQf3S7q6/Alm8yQT8P52NrL2K8IMDGC1tTBWVT0kn6QaVGiDmxt3rfee1AoFuRFUpZEwFAQsewin1XftaT9V6F5B3L6kvy9D3k+rwFETMufXaCsld8bkYRikFa90PR1mxlDWbBsx2B2aNVl/HsUWm9KXBjmk8VYAUtarPA16QWy6zT0/LagAaW2IojZoqPebYZApL+f3GxzfOyYn2Wm8Ecny9Gp7JsEG2JjsQjA4adZCKqdr2NN9RHC5bB8WMxVfZqZIQkTDQXsX6kIhJ9D14cC+zr4bw+I8aKqHXZfq/HXJaz7+esJAQpfOjPg3YdoStaSyH8ehCYUi+AWUeA216RIoksn8asdOwXK/i+zFVgxq2zgunOchYJWiFRgNT/4aH5Y9qa768pFeRAeAJH3Ky5ePZk5SP9MGj16KuR3koRR46mDjo+I0MQYEJ9/cjKODqi/Afz7jC9IuGt1Lt0IKWb5NJnkiQEFo1Kb1r99vVO3DjSSYtks+BroZUjY7vBBoObznZVF4ABxxsLlZTJDd9ffsJKaPQTwqrpRdQ0qEqLY/kOVgzAYz/xeHkPk+V+kH1hHb22/af5Oy7waTWVpnZmBvkmGiQaP8cX7RlImxXHx3E5nLvMrnLLof8DX/L6cLfAJote1VHROIklet26Gfo6kJLjGoTEp0ngStZwhiskJq/l9WWBW9M6E56ru8RcikXRjURJ6UhXCkHyokyL/sA017p4kmIlNNs4bQ5gadDqbrBYnZZdgvai2R1iqGq2ZL1OM4tWyJNlc2zdONzim9j0S44TWtsqjIcZEgsO7B3oeIfNeNBVRJYHLu2d4U36qlChn601XKshJU4MceNkUTu20srO8FFe8+KVhYfDAWJoGeOXC4nZBcn3u4KHfajsY5QxsVxtWmgYDdkRPiWp4igdJ2wwEW7h3Rt4H4AQZQ9OZDQIH/3ws0+6SbUBz4iXaQG03LEefkBWJaAIRYJ3OaKD1463cy33ztR7tuBhsiq3KHucTWOc2KA70HoJ2VD59KkJ4G+avvJpKdV8Hxj+JbG644OL5gnJpiuEQT7MJei98vEkaW4EB1CIC4Gy4u2JvqEB0v0I0ANXKNQep+PaGGyYd90iFQdXWFDbCF/m40nANEKDaDSFi+limDTHIx08+bGyhpxdKZxO+4IVy4L5VID/n9X0N8U+JCiPA4gKiA4AVKSIgsQyLtFmJi/PNshkVDKcZvoAAuKZB8aGYEyOoXApo6w+PTLCThu2Nt8ehmL8A6li8iqJ/+gQUW8gFJy3c2o9ZqAORGSOLbveauOFX+oCmkWDWQe+x3NOXVI578NPKuzmap1V6iWca2siIIXaCkXBmwCqsSz3N7/xBwNhQOnj3gNSctPLoBlc/V8w7F7TTC6TmN43wqxYoUwh/v8IicKfVFD8uQ1ErmI7lOt8g9qmsD2BPCbkf5Twh0e2uyPSilGv8vayPj1CaI9tqgWQMEx1NsIyU6EMKs4R+qDrLMQ2hMWLoXnAHkV3+h/lxTkprQB0MhZdahn4ZYg1SwfDTH2s1HgXD5IV1KoYNcT/9sIreBIUQDnVvAG6DCJ8uxUMNKZ/E3nkug5fNQTVFz/GMBQ+vx2FyIOL90dtLwOLKeEVF4pdrmYQAAHEeeuLDuuayVP7iT+VbEGLsX9xaEZPkfV1GsVFtVMsQ/k1Anz0TYfQmAyU/vQ5G3NY0ROvASo8DAPXNjMuroDSAKkd8g6gzUq3N8XVcukU6UopqBhYOsMxVE1GlnDISPfgJXJGp2XhnyCrC+4xY5E941t/2PaAahOhVyE/vMvMjxFIPaAys7hmdyMiEAesW5vfJ/m7ZGqVyQYRLJKZ+smQyDN0DDKn+FQMwrL9Ymi2WgoUn3lzesEWF7IXXjoCpFhOSN5VVK9f6mwjzcXZ2CUS6TrXduAQ2o8HgoAMdxyo6Y84dplcZk7ijaN1FdToo6OAv9pj82XVNvh7XWsIXlIrZLvyhHQVMQfNP08flYEcinyGvoSd//EpREE1N5Me1ICALl92bIo3QM1fMH5xQjmPTUR4KwpUtLX8OHHLPNMZBZkDZJsEin/0Unp1SZ0s5GguyaclJklHTyM33c7QXlgFYQIZbsPZKiZaYbjGmFjxj8b/3E7Zcp5o6nR1uSUlNz1sgthaDg8qw/RdoD4V6WckXwhWftn+sOE0hmxixqWyT7Benua8SQiAsGIj22To8yn5LcmV6LJ8GLgpiu3Xcq1j23rzh5laNBgOOzUuD2Ur30pUAyC1XSXADOg0K5tiClu4Dezoho+/7nEAGasbm62e/q77dP0+nr0Jt+NYJLqnOnBpS/kuw5gB8bKEnWV4IrQZYPHQdO0tjBiXxY8k98l1phNLbUu1BHGomTiOG2XLfCF3Ek9UR99nHQBRHQFoZkKiwGj0M1ItiP7EjKcFh/SHhNAaszZTN1R1CNJjKHIP7NXWWq6gE7dvQfCB9ihRx6SMqiOeNmWVMZ7fY3NYTcNjdFt7YWKvNxcTEJpv6fIpSUGyJv8eIMcPkNx1jj0hJ5k9j60WybkDiZ1meremqTdKgmFng5peeF/sRS4jLWp9XCVToQIYiWFzwyZoplanKw7ehcJpY5hdcWAOOR0mSRcSRlSEv/aXFMiKkLXfq0rOBfC0JEzjK1QJes4UYfV1YEajr1kzSn+x7b92busfGa5gbKfB+OAf7hdja1wk6OaAcbsavvwoQ9Yj2VlpUCgjVOOVSEkW9kTNE3NhJzJVnMUTZ4hgbcPyHlpR3+pcsSfVbeko9AxXhDL9L2AmJXK5DUbygHl9LQRTBUIetOpzMHgAWGUJyUkT62U9F76FLuyn0xXD5xRmp2eO5MuwSfOYCyUrClCGrMu0G/vtbNoG6XTajDlQ4VXUEl9R/cNVta9wvePgmlrCx3iq56dnYj+n5RTdXUytief1GZp8SaIla5O8eEfjEQ7sitl0NDPtFBZ8LNpSi5YyOIzbAYDi/wHjVeEfYiLPBh1Jqdv+TuR+IAAHconi/L7a02I4Gz2RfOZYI5DKKRu9UGuQmZHbHSd937/zHfxCpjWhSHfRUadmheLliIMYnH3RSsh/zLr/AlLeJblMVnvbLTmGzAyRU70/789dOOfcdoTjNLwdh0sg4AvNScLDjovVtUbVi/wqOX9sSymhDZ/u0z43l0WwcvN9r4KB5ZhBZ0dz1DS+zaswGOZE6aKNYWqXKZHs1Sq2VzdY5l8XLOY4ZRKgpkPidZ4tEvxDnJNMJQRAx/+ApefyvqYuRL7yNgiuIW1vI+6o+YLmL3jkc4uN5pO7JoWwyKU1NGtIFj70J/w2iSxTh9pUTnEt5rD1nXBhIv1hQ/+zLOA+MjNwPlVUbS1kyPrI15syan+jbsVkgB6JThgBN90/+ByjSdvLrHuDtxHvwmUSa6DO5NXNOGqSqXQFiv6W3UPa0p9QL7p1rVORNXuWSdYkAkqGooIloaTboY6niZJXDg6aNjn6BCfG5Clgdpm9Pk/q8Iqd7WTjWPgxmsGVo1FewhWxYTZ9FHpYaT6Lw96ANkCiFCXWNLw+/HQLNhlRSVhnDkqtfUAW49wiR5x6i0i4X6/cMTZ/geQ9IkI5CC8DeNWq4rurWjlt4h2tceR2raE/DBB/99aU64AOvZp7yCz9yJ2bzjpx8vknO4yGj8iVPjq5YTQHGgifAs3njcFvIQ25/N7BlmZbGhO9N2Y0V4xtxGQ2UX2siavaVF5igdu2tuz+9W3BAh5+EcDC0eWUm5q8YS4d7TMsHWWeZSMJH3izjikC51i3jycToDxaq6r/OxCjQVjz9slhaug+B2+Tlv2YNxew55HoggU8LGtpZSkCL3E79JS2Uou7thwDN+YWL3VFEn64OcvdR53yIzzuZUsBl/t0zPHsVl4PBeeRs4gprTtcfa4m+bUNZhEABtJicxnVb6qAmgEnAKXk1z4ALsnB2PI/No8iey0fURcbtqJ57h1jSh8lLZAazD0XLT8HAw3KscYWUVtSBaKgiTcfiAuzRNnchoY7r1VTC9yDpVGU60l8rZXLQqghdBmgBCxVaREQw/7CHV6c04xHPwQwPHX0l92LpQbI5i8NHKh88Bnm/d89hQ/tSZoXTV4rgcYfViddEbAMnV9wnXKOppjVLSrutCRn3LGnCdgHaWCrXSPPTP9hvqUyfhbLfvg05LqgDFiqkk8IBe8b0ZUMVG0u8/OyWRwN0rWGwOuZqswPXkIbXs5G6teNxShbPvaTIc9jEKGQea77i//QsAHkBsnlLche1V8HzwYuRMrZ1Oavl1jBh+Tdg6eUzW8zkg5sPU/dzC2SXh0IV6lKqCQJcxgK5VjBPoRhC9b5ZZIAVvr5zTSKDeoKgWi6cn+h/uRE4Do5zdjdfTbLPaGN8gsuNdHhFFwzTcgJLFFgfBJbCxkKIQ9fcyv5FAzGPBWsWSreuUDMuzCEdMJHXdzyn++EI1U6lE8PMeun0SsvAcL0aYIVWmp5OkdNabMZGEOz4rl4upO0aj/OyeE7KCwWZMmzhMt9q30+mb0DnT4xVxeHfSIZwb2HDB3Cz9oQtPwhAmCHi3B3fUxK9ml9htcP/hLhpgFD4rSGEKM6U/HKsdmPtytv3Cc4YCnHCpW92KwAF86+YG9PoM3e95U1hZQdxlWrqc1fy6t90QrPOU/VYUn+hrDoBKbUchi6OMnSekXx5Mq/3wJ5uA7wjg8ZHwzcYVDah/xoHTeG8SEV9pinIeqWugl0hvLLIdJ3i3RPtJS7S3/83ExA9R+4prPjZ7xtLW3GfSzfhE9RrX7ttxsCUDZtgWNNexhZ2IoNsuaIZU/zyUIX7bqFjzHNg00J62dPLLayp+XFZKbaPe8GKxunxhvzQQ7Lf1kGwidOu8aULeuUuK+9tZpBeipGPvP7wZUOKDUgSx9yLKj/6XFDz1XmAGmRc7ThwZILK6UmVmgok49csWaZTEwyznf7PnOXWM8omwf/1ltnpK0samcz/L7A+kXYfqS5ewBGest05tAnvCDX1AFi0yXe/SYetnXRWyaAJH49dosAnn151JQtojKBK+cNpzEQDdpWG5jLBZ0Jo0VEQb6HPtMIqEZeAceU+RLj47CMITDNBI6OQ8Fgb+T9YipDbi5kLyjIE2pFpHO/EC8LG5wWVRzq1Z1YxTzRdSrWJPkO5bEva3DFpiaTeHXu/38pG6gssiGmD5GZCmxy9xT+ETLw4g1b+ey8/w+931DTjq7AKjsfldyExyRyzuBfvK3RXEO4vTbQnZW4JXHwq6UX+aN6tulDu8qEo3sd165XSTLJVqA6Nzgs2NtoKJjdAuWh1Uqby+C7GMlSo6fXsQXF9nxW96N8DKJJTDoq8z1zGWtAjBIVx+6YLpmT4ZCRqjB71G00oSXZc9ERePbsaD+34rs9U9W7XNTjJKu//xX2ecUL64d7vnnlFKzbM74RXySpLl7Vab0CHH7yRuBYuWeIW34aVlFsUwkY6J1UCDFpWxW/JaXBqolC/NmPVlt8Thno6+wOqp0kg+PfXdTvzptvoCB1nWnIWiHdgc/u81Ug4Y4bFyndORH/yEEHdAQY2QiKQVKVX4UvsektFLUZEbHscOi+E8brTWuRaTKLc1mWrC2ZsJbzngEKYfUOBtC1xWvTlXqZgQff+Qv64A2k6fvZmH6J92nXDb6WGSHchThbAFQFuNamgTQJFmtPPIyUqoJF8HJZhviBvjbq2eWu/4DP4k77UkKlEyiSpXiZutDwYDY1FZ4ByDsW1I66garYDe5JX/JtcqMZZ+FZRBCOKKFIIZNoAlSic7BaH+5oLy57wWv5Zi7Kr3PCChPjbpSmIliIE08KQXKc72+QMAVllxjyoatJGZwfJ8GMg4jUuyO8y/w6NKJSKSNbEEaTzcApqDiF899WVOR2RUFRLhRKET52rjGl2R9+2ucolFuqg2V2/BCxwkCk61m2caPExndswZYqnqT0utG6e+7LakWETFB63ER/B9aGPBWjil37YSpcBuZBXA8+f+pW0naoIENLYqyD5d0jmLJ6Jp7TdkKmYRtXqDx+QHwsTFKGHVelN3gvdkUYxIteZXZfR4YlBH3qvMjwtVVXG+mQnJ97Fdvw8/Qb9YS39HnSOf6rg1hwX14H9ldkL6qE3ozVmX+n7s09IPmXQCI1cB/YStBhVRQd9BXhlv7Ff5nc+WtUkzBmj1cJaLzvrDpTrTRWuX95JerWj2N5PDW+DI0hUs6d2lbuEuPREPsX2e0SgLZuaTI+Fx8YzZXeVVIHptEL5xTL/Sw1iAC7M4KCe/crcmljW3UDJQ+BrP8gw9cY2v08d2tzFLxajIJqDSYjIIV6UR7m64tdLkfSzGZtlCH0WfY6YwakGGIJDYXk2+27jlnucP8GewJpRtGSTKIIM809B6y0pcVOdv4AqPHJ3J9jYFWhmHajuTIN8GnTGQ6OWS/W2RvTXy4lx9j3X8chRDfTEqlrN4FGuepybFWayMZqLnK49O1n8rR3EMnLUjQr9lv1y1jSqQ6AsDTzW84KMOW58Wu139TNqgj9YWKcfAPP8xL614Bg6TuU2+qMWa1Ij3NlG53G22pacFiJRi1y1T3dkyASVBDJCu44q83hSPzZO8l7mPlU7z3CkxvMIap1YW9oSfKj6yL5B6Gzk9tZmVjD8AdSBCrDQRrqLp0RFySw2lGX1fZeoftvmF2O9E99Y5htEGy0xLP5C2HmFzWJ40pJTfMgq1aQ9dRNWFThFRtIYRXCqfeF6lWtN7zb1n+ZXdp3HB4vDeEL7GBReYqxnFd+yfLdHL7Z8ct20NmRhVCK4368wGGuGKDDQF2K1eORyPpM5U/76yNqg55QXiTqeqbb6hU03JgpF0nWIRxDCEYYS+on5Fy+amTOBII/jC8KtA5X1hJxl5IL+N0+ou6U4cy3TtCIWEhyvAM9nMWfAopanD9zVKcOyQrhzvH6d9IQivCMoM2PPeS7P2brf06j+niyM8T9rD+yQs7dJMFBvdeF4lRhEdM6dDxyFv6hBMvFcApcHtHfJR1uoyA+00aqWvg3+DyNYkB4RDl6/p+cfMdvZicLT4YGv3wDLwo5NkRkzUMTC+wOcMMqBRxQzwRBiLvBOaWh6tx4LbWj73YVnO/OR6o67QNoPE9d/NjeG8o2c3v5vqUcyq/5nBQSdODMJZdB0DMf4F7T/y78F4TbE9jeRl8gl7iFjjDL1qINpZxOXS3jGFJneHyLaoMVW7vvNN3PWkLjCLHxV2cBrr4MEjYQ8NxeeNP8GOBRx2TO1Szafy6CiHan31RhZ6CNzfP0whME2EWAnvyOotmmk3Q5O1KW/v6Hg/k3QTkA9OD/54rEkoG7FlWHXlk44sCFZpKcJSQ4c7hLpEzG6SoMvPT+zubv2ygWlhBhZX55tar8dg7rzlPYo7id3FsMv5DsMqBqCgChiKjT4zGQIDBkTW57ETzhUi+SX8Xc16rwAC9r4Xl5KrnpBja9TRTvXicLFxzbHZd9/mTpSXU5k+jJELr2EkyYNO+2E6BbSl56hfYxPmzez+lukkUSF9aHkZ27l+zphNVafxJypyRew1T2/X4ShvVNcn2J7emh1FNQ/ihSCwjHgTQ5HHVAYm5Qikd0m3IfDkB1OXKkmm7TTI+DVENjW8ooxHnw4nuHZlBBu8Ig4PbXQZQekwF0mQvOC68Gf3TyW+jM9Zc+9vIdX8HApx5O0gVGRJ2BMyrbv2LqMacuyu6rhR0o7jzSCiqHgubLjuA/Eu8BSkBxkix1gSQTbB5BbPIoCImN3FjHeyjFGEI2wjG8IBZC0a+l32MBtPGLwIw0oUthZKh2tjHKKn5R9JdFZQBxoas8tF8TrDRqDSfQvELpVlXHuGhRbCiRdQP26ApP2ng9De7AAjINqfApSCi8L2TEpS4QfzsnBIfIFYguzfCSnf/jm8E6+kA4yC08AR/lkK2JUavps6naQojhmiOh6Fb8g/vLmjWJCSSYZ+YD+wXC1ZD4Fi6XXZB7C5NJNhLPrz9U6/ckYC5j9pNIoUHVl2d2UTXkaxnsSCqL6ASiOS0Im/h2ltYy9KLYZi4VK64tAQ8owK3nihjagjVFKVG2H022LWLBFsq0qg5M22nP6qFv692u4FrLRtY867O1+gXM4Z6mLzWa876ZL7AzcKxcLeGsJS8K60KDjdvx1vjOgizYakmCFAHshloTbd+PAWSguRe/8hAP91/dQcCeVy7CwGOUUaANyhX9VygsjDKfOM/4tPRqdrOClRxd0TuYOFp68YX7ArAakOm5lKKjd0HDaAH+DCsV1zsfeqDcgiMQ5jGke+P3CGh9qKcaBPVYqpQG2DFN83fBCjcvLABT+XbIof/VhojeRKzAC6ow+ZBGqf5tORsjbX8Y0YkDDnMaNqCCwuq8QYSZFsSTl01WoILVC+pxx/od3M8B3/Tak3ymKjsKG7HtEFNEkNd3WYdAUuiY6HcfGTlWfHlAtF3GXRfSSspfOg+NgT7rdWJiHv8dQO1Ui+zmTxI9Q7rpVDahA/MEUj2qSU2sdVPXaFXKTWoRO9e7TryQZlV4pCMNCIj05tpBIAPV0ZcIHM+4iYy2t6uYXY7KUjkslz7Q9mqsexiUE4Fu5nLYXcUyAJrdwLz3L5paelWgJUUuKwS98iN4/vVgM0LmofQ2vmoHPn/sUcpMrSsl6zZSPNb8RXzr+MY94Bafw0WJ8+Lr/oHztvC0N19mkNy8M740QHD0Bp7V5aVFnlh7y1L0pvn6etndDCbUwdWSbNqnSnCXF96R3NAuonz3H+Oq+bXwWWRNvA6VAHjLXKpo3ptcBvyIVoAi9OM0Pmv8PxoxsU1GfO4pDHcfc7yez+96HHAgQrlIPkEvFaTHtv+5mQ38ywbq735b3c0dC3Rjy9nRHYq+AzXlwPXX6Ms1oFbpKjjx+zwToiQHtMAfe961swtaxZ5E4z0xMnUwuxRce68ZlQu5nf1zycfOLITuB6SwxIIK9NQBOV8uLxGf45IVg5v9Sebrwq5L//70NstV8QhNBIoLZnZLab6zs7YBEP10zMV54M9Yoi5Gz3kO8ARA2fGJX0nTwr9Nyu7qrgDbacvKDLRRvjVAzUHyZZtRe4BnzZAOXnE/sMn92FUsBiL/8Dea9HLxDqPAEeZlR/UL3AkctILcZ3hGqW0dmZg284v+BiBieT94XcXwJmeghxOrAFDnKddmyOByT+LecXY6THrxU4Rt50+neLmZmobWdP8zivdjHpOnBlBz5eAmT9L5yUzqTwekFlhBpZ0d88TnmWIKjYmyZ9Ig+xF/BaT7aCfUCQHBVShIIHMtLLymUy4hA0/jhe0IYty/+GHA/kjtb+Xy80gadQLFl2Q/USU8UO2RppcdGj06z3GpRtU1lS5cOlv+iAMKBAvomF116ms8eWZLwkrT+nyvB7zIpD5kdNZ6VZvAbq/R7ShYLXdv8MoUnKuodNVvmuWzLYaG2H99V1Ae2Vuqb4+1tyg5LaK7b2wBlhDQfQN8SfgW2VuLv9K7oshr4+adTUdr7lU5e3u3NwIhPRTzivoiG5/opPbxvj3CaPwF0BOWKBhfGvMX4OqWHeAxsxxHheaxlfZ4V5bWRGieX/lobc+d4enfQjodo/GtWLiWLxZ81DEN3Cry82qIC0eIdaMLLwRkDa54kGu51vJwjYZzyTXmSsTiq2xFyWleXV+nwQfjC/QMn0XGGiXsatU4/gDDFS6HljSy0+g1hkceQAejoVXM2ZqrTnX7qNLSochW1hQAcWeT12ZM1Ll3GYuGx2TytZDVTtKTrDGOpAp+lwi+HPq70sKj794+xZ5DFdG3vSAag57L3FnRTHSY2D/Sq1CM6mSbDVRf2BGLdGVARCJ8RP5Ly03Z+JylvTuiFE5x92XjCSkrC2gWHy3zj6sBJ4IBNUqUGay2k2ojgtzLzkFatsZe7pY886O80aTKgMSRAR3njZl63+wF753y7Jww/Fqr9DiwvtEEP1QAMPpZV+8GjV+FQ2cYNusKvZxzlhbpJ8tG3+lB2rTTLiA8ADxVu8rAYoOJdwJGum8tiZ0fStojrjfYb0OYlsIruKIYkqQgvloN94kSrLQaS2wT1CFJl7K4DFTQOtaBoGFEmdZ9hJMxYku4AZnTDEIBxx6ltLdpT9Rp11nmt4w4cmmy/oDnnXCi1cSotgbyajwS7/LV6jWywyRrBNXZZMOgWUllJLsOFkYppjUTCe0qMJCfnpXj/hzBqgxj8VFA==
Variant 5
DifficultyLevel
589
Question
There are 156 birds in an aviary.
All the birds are either canaries or finches and there are 82 more finches than canaries.
How many canaries are in the aviary?
Worked Solution
Strategy 1
By trial and error using given options:
34+(34+82)=150 x
37+(37+82)=156 ✓
∴ There are 37 canaries in the aviary.
Strategy 2
Let n = number of canaries in the aviary
⇒n + 82 = number of finches in the aviary
|
|
n+n + 82 |
= 156 |
2n |
= 156 − 82 |
2n |
= 74 |
n |
= 37 |
∴ There are 37 canaries in the aviary.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | There are 156 birds in an aviary.
All the birds are either canaries or finches and there are 82 more finches than canaries.
How many canaries are in the aviary?
|
workedSolution | Strategy 1
By trial and error using given options:
$34 + (34 + 82) = 150$ x
$37 + (37 + 82) = 156$ $\checkmark$
$\therefore$ There are {{correctAnswer}} canaries in the aviary.
Strategy 2
Let $\large n$ = number of canaries in the aviary
$\Rightarrow \large n$ + 82 = number of finches in the aviary
| | |
| --------------------: | -------------- |
| $\large n + n$ + 82 | \= 156 |
| $2\large n$ | \= 156 $-$ 82 |
| $2\large n$ | \= 74 |
| $\large n$ | \= {{correctAnswer}} |
$\therefore$ There are {{correctAnswer}} canaries in the aviary.
|
correctAnswer | |
Answers