Statistics and Probability, NAPX-I4-CA19
U2FsdGVkX19PFKIrZMc/Fsyin4Hzct1v4/hMo6fDlnONsVUdFYgFfJpSPczQimCcOn1VzEm42ta6PW/735kk0vB0zvcDqwGT4C5yHHx1uUdSG43QL/pnvEX087N34sy+NJV6iPleECREHijv2qXuj4ZpzJcJtJEr87tOEeS3HUM7khRqZpzo+rXdIugo218ftVr4EM9Xbufz4nHFQmtsZYICI67atvT+se3KKil7+JeaqUbyPoSpinpZdtBgYlMyNsG3R98z7F5x2sI6Q1O/DMr7fUC2ohuGtIckk/l8CvrPQJYhosYVzF2o0uIKhcCoWyPky0E9I2jVMIl9S7wezvY4f6UbtMZhIOywwWeBRQ8EmVhPmjHbdm6q/B9fcY+25Xzyv8rTPD0j3jx8LgIi+IA3JwL1iCSoliKFxKb0Acm96eyd+J7+7RbLB484lcPdKQtw3KTBvLfXPyzwk4WMuKdTD9WQLFIeKSsmQQpezYbJ36hHKZg2w2OWLLY652cmpk4rsLryvs9XrE2gQcqMKP84+vv78Uq51Jo3QQN4fr117Ncv+XIKxzgnRmPZYCpLQXWjWK64IQ2wzBcaEcABsQ5ozcBAsFdDhPMgAdypbQgQGfnTL4xlhhR6/w3wljMboPYYvz2HocUn2dALfR430yKEZ1DRm29xbdQsU047iF5Ul/JqTKSxNbckKgJhKTA2N4z5n4Xf5Ny6hVncEPKKnMUsLlIXx6WIUYp3OoHa2x5YlNpJwz2wIv4P/OOQ38pD5y5nTexnKN72tmnzmlK/ycn0mpBgU/aTZmF4urxFyabmcTpagA5rSb4nt40TZ0PUxn0XT7gJDW/oB3hr0vFUGpAk7dT7T2QAIzr7PLt+fxb+ObEVXxF/04jdjKSeA5bG4syiSWDnU6+boDdt/Zvgw4m2P7Ctfr35pmJ1DDlamqXlxV4zWGa4Gum1Rc2fyKJeXDoltfyYTrDaMpZhGwZVRZEPZGIZ3T0/Zh8dOEgz5Cjvizy5aap9uWDZfMYvio/OEzC+iXR2kHFaMC8ce1aAprEMuPzb8wKbWeNT99OTC/UW6lryhHMnWzix3FZxEw5KvjhDLgz+mtoBsgU3QQE4HrwyBF5rW56nZVAjB3Nru1Nv2+sWP4SA2O+PeGWESpKRYgfd+gXxCBdnxNfa70OqOZ3qlAn2h02fYJ6PK+pBHAr2H54ajEVsrqGwBQzQT/0QZp/7kfqG5Ah8hei5ttGLT/20SgJoe3S0fZHLqATp21L8tgZm3g0w9LIBqUYwGrxAOSl2iL0fxtcKhtWql0+QdKdYaXxLoRUBPqXbpriY/SLv0fJSGaOUcItB78T/5qR2nMtLVgWSdL4wqixQlLAKHkBNlvhlOFgNk1vceIhHla3AfQ7dpPLIgTES1jBe/tFk6Zt5Cm7GFr/8F8VL4zGxUJNvKe0VejNtDKFVRGg14Vlq0H1/CPb+gqskG86FIYoJVyQc8nHQUcLudN1W/6Gek0/oxgBUUKph9lvk345dmr/xV0YznadgHbEgFI7mMg+eTU0OjTu56IAcSnD5OgXj85hx2M/UGKkhTutB92TxC7/SIrDrJpVaXJt9dv07l/89oOG1C4xoZWVl8iKFdgLCXw28wu830N4xT4+KaNqkK6hLHw1yyPFomgM90SAT8nq3GINnYEe38p8pUQ7N0RqbXAVaSyEqOafEy7hbuCvdVdwUUQ+6zYNMuU/4Nni6p1gY89aX0zKcfU/omKq1QS7Js5gA4VZSId90Jupkl+/EbiNaBjrlprx7rGtRuqYGmVjz9gMI41Uc39KOHVRXDSNjH0Px+V5Hpr45Y1tH1/eRNO8cfT4vNsG3/owLGTNbVzhXlFzncSncP0RCqL4VoVR5AFUQgzfLwi3qlUI4+hU4f187EuaYOuRqExGLj00RqQtvC+B7P2BKJcWejktBsgy08GSvIxMEfrc6tFCAPM6ADw+Xw6zRvmzBoSDFES6Ah9XboIkW/xWL2S/110EerCVSNdg9Dshlv/PyFGNaxK9AhFToj8TIiW5gxX1M3R52GOEZRhaMZ96JqyWslT8DQrK46KDDwqMY147SA/2CkX8OHqgs9c2EFqQ4ABgRsJyU6NrJfBDJTIzOkKyOVaA1oLQ+EUg7XEmW9eqdE/3va6uZmDhTFDC3mHjdUgW/4lLEkJvZWjJBMKW1wC30kYEyjMGCESGYXH/CyxmYMB+sgUOVJ9ShdAShdTCit3JY6pPEW6u9rhOTbPzueOeY+lChEuzeWpCDQbqVvrk86xYbocDJut9uwYaPuAC6dCJPFX9aHaSoKPAIBG/R5icRDjK2xM1xSRCdq4oUeWzn26EDmjjZxpkIsthXJnQEnQ6lvEkltlQm0FeiaUerVan00Nw0E21B6fe0OBs1vmYDTa12wJ+VYyUyPULiCRIEQ38aogQa2lBkzbXTazhZEs4Vezkf06zQvhPnaDeCpeQdRj2qyy2Ne7JpnbhejCPYnM/96Y+QbeeVOZrTG4M2EZUHKRFev9IggRWc8Xpe5LvW0rF7m7jShzOF/LjQ5+RMAUJI/eAtSRY9thQYbjW2bBEFM7CPs5pbszyeLnKs6xgoLBDnP2k3fEXc//kteXyEIxSPGP/Txzej4sBOi5YGO5My8HdJsF9keCAyyCCSt5JIPq34MGhWHEH22PrVXGPEXvmw0RJmAQFK+0vPWsK1r0rVrZPbavve+eDRdhc8sjCsp+j6MtY4YthMLiD+zm/AmKKyod2zcMOfWlYKau5nM07JDnwJumMT0nz0DX/a31UjYlphmB4gNXrI6vaOGFYsfmDFHGXrHNzxdVYL7flpxsMSnOe7nKvAGdzVDAtE0fPnt9J0vuW6tSPqm/AQD4W3aSRO0LYb4zqPXnNpb0i8X0Ihs64G1EY3P5mIJOcpAY1AfgWF2bSlqth6bmqC+rJ4+G/ROLs8Va9Ai+xph2r1Qs1zQTs9JdGZc6VzD70uu0Wj0kaJ4ZZJlwL8CTHBwcY7g+9WRdjj55JCnpI9q2aPOy1oS0vug3neawO11G6iF/XK5VP9b/HURbzlAVCt9O97ht+OTFCLatkcwP16ucRXWRJHedeii2LptUxwMwgNOVoTUVCfEPiVzNQXBXqOlOIIJRG0MQ+lcmoApqjn2JH+td+Zw+kzKIGbwOidqyvwfPuSs/IrTuVsDP1uNacEew7WTkD1EaswfykX1Ix1kiT4RfhDUpi4bQgStqjYq0b8cxLoXF2VW2rBkWGOOX4nGYLYw3sIq1/4F2ZGlVbn8ns+Mza6hN0tNtnYjlsBlkpRzkMhfARIpOACz9jHNeOAOH7EFXLtA6c2siGJY8g1rzKuJ/t+jzWq0DIVqulNiGyhDOzpLImbEgj3mwd2oCIWrVBHGiUgYKfwN29qi9OonPMjdnDPop/opUrlnITNhlXyztsHZM46mW5OAnhTOv6axfqsBhal96VlYcdPty+K+pzHqiLsa8aEy2TTOPqdieGIUYmzSiNysSZJDgTBWOxq6rEjkRZ6UxZlepOfwdYyQPlhnOgl2s2Z/JCYCSqWtqycWLXUbmXYVj6ZcgnIIFWcp+B4gX4z9odd3JzysMKFFLlCEu07s6rlxRxG+rfWTTZxNtgSz4uYjhXFzjKFDMS8+FiN2USRsCAtFtTVjFWK4Sr2dBE9X0F/tDm5JSgP3GswNf8CWVjUn/EOuF10vInyo5YLWG059tfakHgOki6522mWkR0tHdm1EopddFVIJGWEqrxcqqccp7leOsOrm96l6BfffsDLz4Zg39G61Sz06fuBm8xYUwQSsO1g+HdFhM6YBIACQUEQOhxKBAKPi9IEhs10NjmwFUDzE4j0YmyqRzU51vw4/WJ1gxmS04O41besewwzwbv55jhjK0zikrfd8zawzxX4sfJc48u+4LY/qAKPMpySahpg0y7rOgOtq7MPtshYnqR2/lguGh5HyvS4B5e0N2tBv8uF5IFhd1WFwKHrRMvz/CmUGdOLe6s9cS1pCcR86TzKciERrxMswmSMSg2gMTQssPPwRkyO9lKeGmVM4UtGc7upjvUSCGVN4ivTdDX1tcKCduQZAW27jpfgXO8Ap6be0PDwTWxbDhCE/1zIX9KUKSNdrU0+83IhyWFZhvYfkX5CZIuS2vck2gKFcBSfFYh8d9FyvnEWIKPzIW4DBoP2TzfZiHR4b2j9pP9NRyeAiLDYzUC5znVzP7U5aHMO8RLZiowRPTvCy3hLkhwL7BBY8O4GcGxo4sIs77+kG53iwmROYr4xSdXblNoL8IAZRfeBPcFczK6jn54MqoM+J7jU64g7XuWXnZXVA/+2QKWmL4Noufbjr21X61SwOuWk/rBcxpeBbyEs5LVqC03xN+aMmWmYrTzBe1kWf96aGQTZ+oxvNqJpc0X6M7548nPTbu3CmsoSQ8n/IZCqC0i8X8gX5BUUmPX+0A==
Variant 0
DifficultyLevel
617
Question
Cedar surveyed 42 families about what brand of car they own.
The Venn diagram shows the results.
What is the probability that a family randomly selected from the group owns both a Toyota and a VW, rounded to three decimal places?
Worked Solution
P(own both Toyota and VW)
|
|
|
= 426 |
|
= 0.1428 … |
|
= 0.143 (to 3 d.p.) |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Cedar surveyed 42 families about what brand of car they own.
The Venn diagram shows the results.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2018/04/NAPX-I4-CA19rev.svg 300 indent vpad
What is the probability that a family randomly selected from the group owns both a Toyota and a VW, rounded to three decimal places? |
workedSolution | sm_nogap $P$(own both Toyota and VW)
>| | |
| ------------- | ---------- |
| | \= $\dfrac{6}{42}$ |
| | \= 0.1428 … |
| | \= {{{correctAnswer}}} (to 3 d.p.) |
|
correctAnswer | |
Answers
U2FsdGVkX18fWi5h5rbJQvm7EqjTE+dBqxNHR4q4cl/QQNwC/+UfiBZWzslrFhRXq7Y+i1OJnukwrET/ys4tYfnfIocB1DYsl6efGhoHwKraW6BaTrJZfFL3jIrT4dm9jDwM9qP1wrywLp582hN5GIHkCUfJoAewd6Cgpyb+J5NwKI0yX4Br9/23rJw+xLXMf/OBlI/YD2EIOvFE8kSnHb33uptG1VHLnO/Z5/hW1La7wRl+Uhlm9LnoKitCrZnD59LMiJbUIrZoo1X/zePN/eESzlKu8fpJ/sYY+bcA/oXf4CelcAJ0VjBy5RvrBmy0MwtgtmSDp3FVuqTWScJksXykzOAkqDcXv0CWuOspHT8hGgv30gJ3EGQBan60HvqRBElpr+/jtD9qtRl2LFL3p3UkoPoOAnjBhF49v36H+91E+7lBA8LBMAEh809evJlIUZq4Y+aZST53pBzKZV8hMDkRnza5pFtV1+c0SHtSzzqJ/ykfVyj5VdwHW2b4y1mBnWjS1mH1RjsC090f0qWpm23M4iGaD7P3l6ROGriNgPk7PwpZ9PyLSpf2XVXNokXGgRsUokidzEoB9ta10iMcjLJJszpeQjPHNW7cIUscTvwH99mK2SXvNIipDZTIEOGwn6+BjDIGIPjAA2w/fJUOdZHOUka4i9MoGX7Sci0v/mD3ITljMrLHJM7N3QfwCmKvsdLqvMRYm0DtpnwHrXQVH7nq178gP54U0rVu5SJVKS+EcHXOG1UQLE01S8keQXlrRzTYiTMijqLvq01znlqfoFlTv5THvkXQg+Wd3I1nkYz5cnIpc/gapuumqPDhBk3hWI8VGjdIr67zxPs5x7/A+uwXp9t8oO/jhSchSIbvt691Bzh6MMe+9rl/SIfT/1uVgE9rwh09aqau3wGjDUICJV4gKxSm0N6QippNwA/tUhKmcNVwBs9RctlhIzpSZPCVYC5f3s23jYAzcvfBJXgDsgpd2h/MrVbg6Bp0blnGmNJr6AMabqo+koY3b/dHmj97ThpTnUXcpMqwCo2vbTwY49+NKztfc7b2wFzEmdw2H1sRos7Uz2kz8zGfdW9xS5eTXWuI1CkWbXsieBJUkw7nHEr1dehL62zF/uXIgeGD4NNYFFYPRR0Q0lWUMcctxQD3nhpj2KXhpJmkhv+1KE6BrV4TAiMbCJ3CcNxjEpJRpMyaJqJEHoEMn5/uP+fF9rMYWStdFxXeXAeRimI43JxmugcVP2mhp6nW23qiw7speJnc7RelF5XVQ5mZO+mWdVwUgNWTld2iKXebdWDeMThhsdw3BlxqasZle8SaKRbHKUKSw0hmvv0Nkg1rgxPx/tgDPNV8UBK8Cx1eJkcsUX0BUscVPlhu02+cc5PRjKAzHrlKvbvlQbPNlbAXEzbzggyqgWAzWn2WcTozLzN1ZjRpH+QZmAZeid8dKMFZ8wWNOwf2qyZbjdmd3jfo2sv70MClGF9crWhX1DNhlIN1gzrIzWTNL9VbQQJLS18H9xliT3nbJuXiSwwZOC5IzVwd6n63OGs8CujpCwEiGpkyKdaXT/uUb2so8Ix6zEtjUfERb2ndOV6lMwzJLKtfcqNAnsEnvS8nKPyyHMbBxsoil27xPBmelIA51W5qfB5fXCKr4fYIjre6O6YRIM5568fb20ao2qT5DwZNLEV06fkvne5S6On7q8sGMG6yAOKyNHGSl7yuZp6p1xEfqL1OyppYHXKkjYa1eiTyuAo2r+xVwgCXDNIXIRgqdL3yn7W24M0Yi9tPdtcXuf3OXL/Lycl08DbpOPJQ+obItuVSZavWhL1GeBBdexgHujD21imQD56La+9QjOAlj3/xco46B3dYLPFmp/aoQlpuezzyphVnYkuENSNdwxTnvDEeY10GhmndzR9F39A1d70gKX0eXkwkmE7FS9SIdP9e+rLql77TvDFdkzxQZN0+8eYOJIsFDNVTKa/EV8pROKzVnDVvKOJfC+B64tJSq6WbF9rOgeAFFJh4W4rNltIwSKSLg5mpAHu766FjbeczUpQnJCF44ZWcTMCYfaatgkBa7JZGGwFkTtUhsgEQpe7HNSlObuDFsTx718ftqvGut6uKpGXEub4hX4N3/n0diNHjWpZ2+YlXZT1mp2Z5yvDUHWozIYHJMcPp7nTgfkK38dwC87Oai9O8pd+k9t+ESX/uFXpDH9Ngggc9JsUQ0yeWjxAJK7wK4K8AFgGXFjmr0hwqPCDUov/+0fVxItZn7fe5XOTno5WRz7m73Qg+w0jN/8WOE61MaJD3DLEcojl73baCarTR4V6jLwtRmH5oNSpY/BfBX1co1V6pCWmeYqscrSzuQEezlD3epY8Vu2BWVP9L6CGA2ojIbWsqhF6CXKFvKHiW1bXe5HP3jBF0CDNKQuifC0EoYL0XFjzYic6j4Vd76/oets8Qvbs5qtGC4vUg5RKneLD6hBOb7E4WVGu0B194bu7I2KOc8tuJMnVKqOGzex80cXtOy8xt1A8pr2C3053XWRO7hwvaTVOp3HIe0+Iw06M/FsxrjO/A6iun94j/nlpDf5hEB5O4ya8hGy9yj0VNuVP0po5ufoOXfk/gmUncAmHkRlVkMtMqIv15EHa9luHdOp7ENr8Y+GOE3ofwLpJtbzOEF2qyq4s8tkBgHriQ9m7b91uCutzHaLxq8hRULEqQIb/awDO7081gPStIoGOk5ugXfdA8f1nUENs15+FZ/aVRQ64zyzU7wKx8kQlpEhgHhGagrNEIxMjlEqkiQn18vKgQEmrD2OvAsSQDLGDFo9Y+yEBFND3aFlObJ1RMxr5H/aVMTpmQJ6tbgHYL9uT+9qZecWQ/qa2kFc20hvHTvOQ8z08T2444w8VrvPq5TJh6o1M/JudTsEpIJBFFMxyUrjs7Aww2+npHVilKQafLWoelBR1Lj9qTt7A66fXLTH8MWIsL/xWcA+yBtKfcSA95PjsHacU698hc76ZXBV6aCUStN1mXL2M//lpOpWsAHLk0lRbGaBn7H9UmOXm7RpjLbzPrAvRQQ4qchbldUlVLuz6k4vy/0IpYLTdIw9xvhkE32AOxN6OtrzshFTXxSYKrpbMC55TT9CwY5CDJ6A0vcdHSx7otI/7t3MW2hQmd4i4+mXTD6MJnVsqaU9hPydRRYuT2MIJHF6yFrt/lksqwkX8icmkamClbkuawGo6OqYTeRCLOkaVEJXbNlLLJocwl/S0iEtGinURQmRk/X6YS3a3KfYaVEFUAAT4CsbDAgRVzzkqkBe7n8072lz3R1BAoAbziOAgcQ6b48Yflhap19ka3I2PiJpIrBA/6q65p2Ugmfk6Ypb9B6XFU0q6XZUKV8dSjmB0YuIJwWP0dOQYEdfGnLHHfzpwWNh3CfiSoHXniZ14s5mosz6Jx9NKyARWu/PtUmM8X7dijTHg6N44CcI5QDodPJeOkNVdhXwmOXNWN31kr8nE8rXp8iGlGPBo/tau0vIXjhd8jLhuorP9IdU04NFDQEVGqkHvdqFIdglcT9ilptnHEKZN7p9AVLIb288sQcEAONBKDJxBHGyOmPiARp6abAwLeGzD9OTOynKeG5c523Df4l1lyenYeTkrHBIMtch6qQZR62AhLy+UrKZ0Ry0KCYqsOc4GO18mXHlMHs5szzrSFcCu+boDjhnzdHYb8JBQjtqh7NmAou4xTBMx54tGxwzXM4W0+aGZfY5cjn0fL86VrIkcUWPjBgsLnClD8doTNrLJwCIvWMhclgtkXV5lFE47dMwluo8Id3OfA/GWbAYdL6qFX1ISk8fCglGOZbCMAGj5HygitrdKXNV4dn+nrLXcmRXoeXLVXHeauiZgwD3TyxmSZIQ08pHKelNoP14OIN/Z3fNVat8j5n3nNyplle1IuCyvKxfXASeuAxOy/2qcwCSS91YOcORuzam91H7l27BonN4jrWbtAOKoqFRxR4evFni5Y/h47OqthR1Z8vWFxC7087wjbCgJMKu4YCZ36AYuqfzvKes4dbgpOW8XPIo9sThjxgUQ+DtQq46YM/60R12Tsqv/88yyOUY+Al6JC4RobNDzgtcfUVtU4jkh2wPEVrYHbav33cXKwAW5dCAhWobYfHstOz3tI9ac0YRbmA9zecmE3kG9su7VA2Yh9J81No3FOKiFRccGBLJG6wqbD5+Najx/RRkSm2LQKP84nOHVyHmcQfumN7GzUATAtyQkSVjemACfHk+axFWTU/vB0jkqP2UfFSMrpzrVzHiwXWiS86Wze2wNfUnRkfAm8CtGhqd2D87ZU5NiC5EXFgcUxhqSo9VTk/1HjsAvG3uBZOssDeZboAz65woo6fJPZPVWqL3KW2kWAcQTRpWATXqPf47+mlUDTv+NMl6tnvVUOdIGL2mYJ6spUzy9oPfyStyRySC2HaZ9XLl8J0gY+meOjT5C1ZF4V44M8Y9ZovcOqXZUrBDs/jQK/dOvrTuN16maS08CKtoR7RwzYLh1nm6vzyHrMDrz4gYOH+JCe4Oz54iWByPX+pnzkvAazkv2OZw6ZoyEjA6QJm8W8k8JyrARBfATc8K2N4qabakOll3Cg4geJ/0Z3TSDgng4pbC/UVt6Kjo3ERrRO+RNJICQVJrBvVdj9ELgihMA5NyRile0IW6qlMw2mRuRPKyk3ViaYoMeYbGhbyJqZNtdW7BlfZre04804vPlKVBo+QLX5lpJP+OXr8ymqq0pJE4khMrGHqFyZlJhJ8F00B8DJ93gpVqHoRO1+1dCGqsamoqJzg3zX5HVVAjW+TGUPA7C7LHWaoSDsvtc4f2gMNgqw1uTn3VZiyG6R4fVpB3/eeTDN0hq1y/Jk+AnVKT5Rtx9beaZmH33R4IN7caNo2m4R49wocV1EP628B0DFg63kCuvtxq12+9YmAl9hCVZI9ERNsRRZMhYNlx6xvKx+3d78ugpRWCBRIqQGwPpSSOp5EmQ+T7vda/msJ2Nauqdug4g5dsOY/T2RxQEsqn1VFwaNZqX6MHQc270lhHQvU2yqsrg+aSWQhJw1mqirkn0laHxXl1bZyigmojckTJrDQOpbn6uSJ1sPclwlfk6f9ObdmFvzivSvJvsgY+N5f+k9DY5WjFP7ckhorJxCSsbJvfh5MTuqzyB6qwAeDgLo/brokFrO8fDZEamQTIirkiW1KRjgS2L51idC73hT7yDSTmmxpK1ihjL5Mmqe+k96PmBqlZ9GUr3YxQZbzyAACyVJhqZTXMchy19mvMsjcfH8g14Fq0P8ak2R9Y+xmhYq/NmykHjfCRi8DJqeEB1Ijy3gON1/wAZzeEnRZ0wp5/m21qlL5C7SKRd6zeIswb2woA0SRPpLqveXwI5aAAt+rUDZ1I3pTRe/eMod71j92XcIUxbYpkZVgYZV38DTk6jgFONxswFF/K6jerBbSOFj7zVHo8y5Lhi1NusoFuDpKgXYZQPgWayEtF3VZcnT9Bk5vfEHPmHIrgkQnxSFN5eRMo6O7rXS9Oosg+sCmzDHGt7vRyu00ZjCCFMkFvSOxMjx+ojoSKVhoYLlaHr+EnR6EickRzSdkYY0wz/Uba90RVNhwW8WEafpxZ7BzE6EHQrlYxawr9hlZ/3AKkMrACEXeS884u9VnWwihc5StbENnvY43qQkDD+3QKx/UFq4vp3xJyaMoPO3jtSnyNX1O3wq9KZVk++ODY8PdfHbRhFXM3QFSU1gTsjo2Obs7ZTVaarLsEH/FbddzHeOv88SAa3JVQJDH3yAgz7/4FnW6DT92diKnn8KJMAHjlXcRkaj37NKhE85UCK3rDefMqaM5oHhMDtrcSBHVnhcy1gN4mIsElcEIeKcg+nMmCMopVzxqNbNBpcdpF2NqXhE41I86E9ao0JTkym8uEBIcqRZu8F/B3SvVGmxrvqmq6Ncwb+Kyhg4C5h96pEB+GsbOLC2hWBZqOGMO8rLWxMzz0Gk9DXLLd3IQzGAzE70ZVBVY0NM/IGpCfFbF9ek5ha3UF216Cq6Suo8e+kfErfoXyiodUHkwzh/8z8HXVyr+rpJ/c3pqac4tkcb9Ka9ZYOjm0PQP3y8Cu5dMEs03f28PO+W4+mXV5bWIpqSFK1xmGxGqfxG3Vifz/uQ9qtDnO3L6DlN/TKWunYmPEHJ2dOy3DHP5FOwBptYZ4w1XRGIJ5vwkLERVBrQBJ6XbfyaUjJdidmHwYUFq3qW8SBO1KftKP2lS58dAMm9pgQl087okY0csE2rnFQ+fSk85/QFYidbhqAYKlv9a6eGQFLIyRl+EjH9qhpci/7qxZzE0lPBd+7SD4Cl0pU0TETrEk8GBjh0LlEoHJmIlmbwKHhnbvwG6n/iZfE2l3Mr/j5jib9S4DZmYbrM3nSycmHHEhYBirzN6GjBhYnVTf7HzM+Yql5WjSeoPAX5BxLsv6M4iUgo7PvQl7Dz4r/FM+P3zoi81x0a6xzcsufKXy1gf6I4VNqeXIWNZyHdzrxZbPOcRbcyDTClGb+vYzDe/j6VoZL60qbf/h8LleKVFeQTfH0E21KkMkdp489cjH+/TiKGeohS1d7+EhIizjjVUNIIEU2nC8uMZ7SIGipHXg2LC3CXmujf3bYngRUi0//mke0lBABrFwk+bjqt/xUb+lpsti7gk8MsMbWoWP0tKxdsu+N3Bmh1uM0yBSGbgrSf/1dmMT3gno6ABNdw/YyNaxtcgvCd1i7wuuL/4lnRGeHJaHLyRKNSoQ5kMtgwnu/LQ265gfWlAZsehIU6T9lxj3f1PbDULvv5/bTxADECdP80jJz834p3bfM=
Variant 1
DifficultyLevel
615
Question
Ben surveyed 42 families about what brands of car they own.
The Venn diagram shows the results.
What is the probability that a family randomly selected from the group owns a Toyota, rounded to three decimal places?
Worked Solution
|
|
|
= 4213+6 |
|
= 4219 |
|
= 0.4523... |
|
= 0.452 (to 3 d.p.) |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Ben surveyed 42 families about what brands of car they own.
The Venn diagram shows the results.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2018/04/NAPX-I4-CA19rev.svg 300 indent vpad
What is the probability that a family randomly selected from the group owns a Toyota, rounded to three decimal places? |
workedSolution | sm_nogap $P$(owns a Toyota)
>| | |
| ------------- | ---------- |
| | \= $\dfrac{13 + 6}{42}$ |
| | \= $\dfrac{19}{42}$ |
| | \= 0.4523...|
| | \= {{{correctAnswer}}} (to 3 d.p.) |
|
correctAnswer | |
Answers
U2FsdGVkX1/bNFbbuu8+TBFCRSoCeIat0ZUswEoSG9oEWx1URFk2xLaywUc26PXjsqvGhB6Z4kWdbNPcAu5uVBkqpLUQ4js+J3cztYF0N2iUcQ2JsQ/PB7F0qNoIFTzinDwyXo35RnqaHjTnv/dM5YfwJGXckAQK74HBiyY+dQs4xETnG0NoE4xMa8FASkipZ+Bxnf2Z6KH6z6dcSOp0Ol+DrvHM0B4/DA8ofwXk4bQaWTOqSy26KW7E6oIANoaOZ+2/WZxFcJHVMeTxHmsWgJ6m0n6/9QMUXPZU2piBF6OwhsoUUl2zxrn6SC6qaJNivjehtf2wBwyj4veaWkVQsxnsx5f2XgVQinA/GNvJWMsi0MYhtNXNL2TF3dZLBp1ZfC4CLllxNqZvi0DP5vDJoSqCCPhaEOIPyurWOyV4Wb51uZNhs2Hl1ND/gkcMP2AWi15IWK2AkL4MFJHub2sz21fGHgGGn+irc5epAUKCStTqtLX8koBjGdy4P7PEgLjTc6gMvSubTGT9A5oP5WkHCQsqOnEtcoHplED754cD/H+Nj+dLr3V1wGWHbzBF+1uE+rxklUeJ3sRzkHlFxeasHGGloUJ1wtlJ2qHzhIbMX3NDPioR/hajp5+RAKAOQPNIwgLMHX6FAXZ0UgiDT3OsVuQSkH2CnZT1uny3fdeaN2T30jxdmxmpNEuPkzqPwU/JunJjKM3o4zA0+jlxMGBpAsw74LhCBisGGaH707oFLKNC4L6DYCN1ksL2DdStVzT/lQy5KrFhVQePdmfPaeauzLGEc3dYTWjV3wg4xsNaWgRn6uYyLbesJaUBTzUt8Ve+Y5zgvG/X8p8uHiDd91DMauTQRn52uS/53YwUd1HFs8sQGHWV6nb2vitM7FidawK4Q7eJjlPELQJ2T/P1hgW11J4ZqsXjFQMLUsssDwLLdxJcW2b8kmkzHHfxRGYDttw8ZnWDPiG5r2gtEJlIHEf2an2AB3qGlDNLEca3OxOyunBjp2k/0a9WL4hVimQLv5QLvHPEsI5rEfP6uI9bLtN1jN27GFEJGkIwQJgIt/XRp/XAC7jfi1xkkprF+mtnkbCZKVZa1bxsK4IGNKk6509loZamEbwCvF5CEObg5E9HVahmJKuURRcPJWwkS6aiz5imF0yz8kqMfpvUXeQeblI4h9QLt475FMA0ioSr8K34VGoegK2DK35b1xt3fyL6k1rXX3hX1Pd5ALyc5dJpYWviwTwTzYS8vakL3uTbnfZrba96Af/E0KshbMQToJ0YiUJ5kBy3SjNKkwPm6NFB04jIHQgEsfQqdjjw1Y/rpXETKXS1yHBZuiVXBpNaz9pirnf0MdJbfPqGC98AgvTGOAwdQLCyQcL0FIVAdJ/JM6jd+ZUIC4LOcjBdJDioM8lMQOZ0Cwz+thEKfxySI9ndgVAUO6PK1RCB7U2NWyDum2nocHEzTp8sWLXU0ycVnAbvW13PZth+kFFw2QgrwKZWebV0gLQTD6+3lTXg571tAZgAfjBxuAbd7FEX2dIK/7fkxMj/C6r4wI+Nk2BfnpqmNV6CydWBKcMFXAlZCUEdwczNj3Rp59vPiqVmeazE+MmLFGxhJIBhI9j58nEgHGWed4y8KsseDmlQaCy1xZ9H2nCkou0prV23zZ14DgZSj/FuhFoS9LkNf3ZYJIYi3dXIpudKLYGbrSTDbSZdjr3kEbaEfevkTEXeRxuiS0hH7xqm1/ia5xR506cbvCa25bdLwzWTA6qAlHhtxBADNSpmeU5OKrA0j9uyTOdvUjWQFOQVrsMVKybKic2Bs1CnVuiNk9f4hohPRJdgNBsNwq/QSTVX2zJ0kBgATl8dnVc8IRwZiqiaRpbvz0EWUCvMC3RA+0iAMZdGEvdEM1XJqAwSYsgT1OUCLAfnXIzUnyN1ELwvdiEmnF1klRY/Esmr5QVEHrV1Zvw6rDgmBBnVtWA4I/D6Ga3fVfJYmbLbixspI4vVTKOxxigJmHl7Lz0NwSpNdWlqVTq0JWhAeOVTa71q8t+5jAd1COGS5RrodWzqFS/xXiqnfTKaR1zfm2AgaWURfHLkpoXuR7A3uJapbX71W2Yhqsl6yGhArTOfcXOofm+E8LMOlhl4GQOaWuICgLPnULf8cpZng3OQXO6nWN8+V7v4zHpWj4s1Y72s10fE6D4JS1cxXk8+Lwko44xOwZ4Pw2wHmXPXgR3snLigdDIv2+ActZVJvpEiyMkRa7Ca8p8pDAQbBQPfhOgkYpa2zXSNnuX9sXnAPQCnAygUHOMNev1ahURbcPyBOBp9HXDmVwbZ/9jar3w75cWWnCrm4d+CwIEBw9UoBeYOHRwHsNc4GyZn53B8qIxK5cgqitCb2ZhJ1YWt+sRX2VmODau9rHzHSYTHWTHnO3KtMK4vD0zIsEyzfntT7+T+9C1UliwcZxS8Td5ux2Sk+xaEKj+4cQDnVYHOJ3opnGCGxKnV5N0odOnUBhx70Xc9eBszzvLTtoO0+w3XKL4I9eAlIT1LSaCqBO0IWSR3KB7vEySYKHk/pNGm3o7cGdWSsd4RBgKJgq7HqMbqDpdrRNkFUfVPHhfAkIQMm5X3C5A4jGlS26mFUH/SCXagn5E8ZUQ5M5Iv3c+Jg6cPN9jNyo5wynPdA4UaO2dhtm+XRTny8n+wfOKRLastystYmF+Pvzl3K29BcWBKiGQ4LgDztblNzSM+tndb6829KQm/6LheSnCklTh9tQm7G3iDGsHhtNDm5oXaeMRCjD1pcA3ck5hIrF60wwxCMc5DK7nw3Oa0iEi57dZsq+xcIYpX00mfEn2K4dt0el0tmOaIeTLEY4MYpS8vO3V6JJgvEx/ALH/pABflq9jpq9jSWeiXu6hqErZUj7AVW40WFn+1k6y1ymJBmD5Lgn1eww8JAFjj4z5iLGKqg4x86irhvO1ltS3KWUjPq1BRCocCFLTvvwhev0NexLt9qh7bLV6/IOAAtkRlSn+PAMmYiIH5LmHKMWXSH+iQGZmuLT7XGcaYcOuuHuoFi53OiMDt0laKOr+MmKSDFBg5jf+H/ENB0bxeZhPvQyBFc1LXCg+MeflynXw3ngIRDji++pPyUJ4oXxBSVkyYCFGfLYltpbjbhcRIdlb7JJ7fyIBynsrDIV7V3nHExfSfaTRxe9IZpv1wMYsvGOoAoaQxGpofi6pu9Q7vnn6nc+5+lT4mKkKaMmJ/SPuVc/qJVH4a20CpCmgMekZrO9UnjrHx/cXsAafAXVEPePz/PwCnlfHQNef5EMEswT/crT7UG4k25y+o9cUrdRorNOCnE/ZJE3FYw+Fmbe+kwwLOa3srsBhmcdcPkhP72tFXBNRw0M7x7lMCkh+wQglWsJ7A9kMFNGp6w+SiwOURjlMZDGgDk3SpOBYhNk3ANyNH1B5K3ZlYII51oQvNJ0aQA+FBLalCBKDOVQX15Pqn14+diUvTMbdowqwWoM3pkmVp9xSXx8WTVc89aB2ukYbpnAH2DvAlwyx2rEoLpZjk0YKXeragxhg3dg7SOb8GT8Kq7gs/rJPiXC66+syR2wCwRj3RmX2I8/MlQC808ZPSIT9CjD78Ftw7JRYfAHz+dx9UyciY+09tPcFYfmHmsXlGntSGMU9+RRHrJRzdW7qHE1S75TibMed5zutiaNyIWq6s8LfxyWi2sRi+Y6HcK41MhMnifFDL5SxhpQr8AapwMdBTb8y1JHdRcvn3rWHBMDyo34RH333g6ob3jQppTe5y6L1wHFV9tjTbnRlvDGdIA0B3f9ik1SD7Zf0gNbp/b3EErVGiZv0p5T3VGdjl0985SgEBWDZSK2oYC7k6yjR76jUbxsJ3CS+2w5o4q+7xbRUjMH5JmvzVqGUofCCzreH6ncCD61gKOGTZdAKodTqcIlIVLB13TqqL50hVSkzM03yywltAg52KEQTTTDmMX+k895hroz10/TmXxB0fgOAv+Wz8FDsQr4Shg/KE4rE9MN09e9jF+HOhYuJHfeJjvL3TZeut06Z1OWuzcwJTdNpmHd7m+TkdSAKCaVOOm8AOaJbXpNpD7oOOFpFonRapzbi2TyPEJ++Ar0oMx/RLcQOxxEb2j3uuZlFXcCnRcWmiEF6I0z9hKpwktmOjZrgtTNf4pYNgmJ+9WV0hXo+46j7B1nvBst1NKdxA5tBNwNvNoO8gtaKikA22CrvzE/aFlj+61Wqia3gibwJLlB5DtQepnkszLtFzrPFtOcCzOGPEQAUdY6CoKXlRIMh7vGxWqBD3EXXxpMASYQnMvoRY0HIrwm0bpXsPwa4FI6hu3uT3LxLDvtqP37sV+xQ3kJqof/GHm+r8ls1FwC3TwGCJiurAJ3I3BSPsaPEJseM+ht1E8HlzHyGkEQvWuErDXDfShKbqPycioEGIZ/IPyQAs09ZA59tkkmBVH0H9F2CK9KS7o2VZZV0E7zUv8xpQqz0h4R3fgxOm0ghDaIlKSul/dMa041irqxZDiwciLXSQO7ycwK9z0/17j6xWaTfjfQaNPop7e4IKVh1nF/J3pjadIft1I22NFMqO3PF/riSWnSdZAihOS2IDDL7f8lLInB65Lf3LwPWtx1qfEDL1unTIfW7tqtQ4xy7EgKjomKd8DhEaV8JHM/zu5iTIbOSFx0pep6rL6V4tIl4BAHzlMImKt5VpfLWhjehsJponF02doJD35KPYHkDhNj1/UovcSXJ1iSojwVkyQ7rh46jv1Pu5CpUZQuX3Yn3f0iRd2PF0sThc9CwAHpPlvjLmw62TTdaq4XMD1LGDFINTO96+gQHCU+vd/WMh90sCFW3wkWwbU/JCVu2mHbtLAdIu7n34ote9MsMzpFHucvHLRwbe9XIMJvx2jXs+c6m6H5U1yF3wV2S9bM2L9qtdVlpiYEoG8bw16rXG/DOfSvJAmGmp4fl9oAXMOAc73o2ZK1sbFuAvHg3xd3tFcAgs5BRcShmM1dt4sEa+sBQQfOlh3jhZA+AHC+VSeNPmTl/0k5Vhl9ZZSMJv+/785HM/3oFnJre3PmxMwW9sVFL9jjMK+Yb6qLq9bsM5gXiUpD0KqiIWyLG1a+TFbTkMhWlSsWEH9gdDdVw2M2mp+JTdMujYEoRd1UaPsJFdX0sFj4EAHrKMwM8S1IeM/7tcT7CAu88GZK5rPGDHLO2vYlsSHZg6RdRCH5oyzlXg6qsHDDe6/PP9vEdxUiPmjfUgPmwaZcsUgEID7WnlrzDOi6yHj61GNHoPj1+58IH7ELo+KVIHL1DR9CXKvdAOlUrEbS9WSL2k6Cb0UzfBmDgewcNyHFD8/SJLSEhvXaRarh1x4DIaenxkx1bqkE9QCGXi/LbkYtPZRlZgqZ6ZpGgNBL3FztJKXwoO1sZfuul9LgUaurd31WOWWAHKsajxlIsBjq6FxkBeyPyzoY3VJgAIfZlZSZmlLSQ7t33bGh1AnBwSvIsIkIhi0uVjMHEE+EtO0DKvk+arpcLeTnbXie/J36TgLDcdctcVEdPwA7w26J5gqDgj1lty61M9YNhfP6/7vtOXyeVsMr24ndtXcb3SvWjE4yI6JgGJNQw72+fJ7FBaqTqP8AC52pevgjDqCocooeLnTJWWWtoWsx1P3vo3Uc9SVgju1dPxtaJ47qgm7Dechj1nfMiRlM1eMNfjgToISITroNShdph8lDfcRPnAF1auDUjpUCD5As/VH7hp7Z9DMDAyGHrDxs3/9mRmlmccrdvJiYr/llzoHin5Xi125QWesHR4wRURksqqMNX3K8DSFXhwUjM3jDNHOOVgdaDzaZZxHStBzn+Dct40bnxsp/3MixQMSdW0W7zKMvVC8m6q4gasve3iHNwq3rQGRx5lHWanlPoh9qySIXomXTw6lBty6zvPZXxRS4lf5hmfKeks3hpkkMbnAfrkPdFeLh/fYJ88bDmkGDCqlIPK8KJbQ9esJera9cVbkIYAaCn2gT3PHRM8t1N2StpQawZeU+LhetyDJDHE4+VVvtVtXbf7Fvs+3pbSwjMKNuoIG6OgisQZ9b5nOrMAkqs6Iuak6R2/wq0HRkoJOqMUQr42CMZDUlSFCJAXt4MMZM0/aTe+R2gYLHlQXNTlhfZ8vicGTAS3bjUqs0fAaz5eHJJmfl5DDGxjrrcrBEF8UEQMxJCX5HkPJAsQdzhR1pYXWb6+VvZbu4fV2heWL1vsCoaEf211j3Fa+U79QoG/M0iQFPReUTM7Dv3vwmT8/8gY5XqX5IKgau5XTgUl7ZW25KpQnosT5oux0twItxkmA8+H++UAjedbxmE/6k3Bl4nmdCKpjCgJIL+FPVU413fL1wLKs4EIbqyZCdmH+vnLd4EzrnH+cgVdqSgLSCxhywAIBwiy/5VuSbnaaIAgT7pIJHnT9w3BWJg0JZ7t9pygtZYOe8VLZ3OAgDeQGVz2ef+B429NAVGMc/DbK694cNQOI3QCPdEX4b7RaiH6nQyC6Lcq8ZP3vwXxcj67gCH+ggVF7NNOq+wSp76SVowV/tfQD0pjJL6+Rk8qjFBVheOvzJDA88Pdi6OVUrRzlasWHZxgyddNBzKoS1vXonv950CThHQqt3xz22O8UlUMGw5+53kCFCsEecQDHabqMv9gdLBlkV62bqt/G/C+792/Bc+unMcHuz4NWN8sdqdtdkEjGRy9YVVSNcAEiRFf5PGly/5FF9h4gfWHZbHbV7hp/j6X8+JRNln8JA53KIPUFKWhEmAWyFPX+z37sTIxgiLqgyPUHhBLBfds4EQQkkxxoSFABWL+xE8GE3HNELH2eJPkTiUMi7g=
Variant 2
DifficultyLevel
618
Question
Imogen surveyed 42 families about what brands of car they own.
The Venn diagram shows the results.
What is the probability that a family randomly selected from the group owns a VW or a Toyota, but not both?
Worked Solution
P(owns only a Toyota or VW)
|
|
|
= 4213+7 |
|
= 4220 |
|
= 0.4761... |
|
= 0.476 (to 3 d.p.) |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Imogen surveyed 42 families about what brands of car they own.
The Venn diagram shows the results.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2018/04/NAPX-I4-CA19rev.svg 300 indent vpad
What is the probability that a family randomly selected from the group owns a VW or a Toyota, but not both? |
workedSolution | sm_nogap $P$(owns only a Toyota or VW)
>| | |
| ------------- | ---------- |
| | \= $\dfrac{13 + 7}{42}$ |
| | \= $\dfrac{20}{42}$ |
| | \= 0.4761...|
| | \= {{{correctAnswer}}} (to 3 d.p.) |
|
correctAnswer | |
Answers