Algebra, NAPX-E4-CA15
U2FsdGVkX1+MkgmHkVDp+PsF2ujLoHY+hd1zJSqeoyE16G3sjw82QWmSDtbySx/MBxTlDHinRlnH8Q0x9SQsGLy7xY5hXeyZACe4wmOipbH+YGvswlIJOFzDQtXp8L6GsEAnc1FkzO6heXlz6dUIFE9i+CsOCh9iCDE5DsfTYqxTZf7CoqzWcHAOTYWonqwh9mDtodtcNqS1f1/sjcNcam+ALsr2az7zVf83NNL39Lig5Mn59Ck5KpoaCW6IlHLP2F7LxP+EkSZoaS2Nuh2Rg70TFt0gwuOj1EEOqxthxWBVt+hM4yF18onUiu8GkdawTtb9jgW8/F0AL7iaX3XcCtEHvpzZbRJ9MeV1DMQfJy+y7dVA8zAw8Hbks+j+UeHn8Kwtp+q/lEdJuIyL4ecD7Iy6qCBrKEbIzRI4LBQTDX1hZp6kGvZHiwFy9SkAOzCAVcpllWVINB3dT1uSHUak6KaYbr1T7PJ3KzC850czCQAHo55X2JG8QjrBk29Im2UJE77PI/3XkcyFC0jkhgYvMZVsDBOZZONl8RaPAdB2r77hEzE6k7RnVD+t6VweBi7NGJdJeNZkTgUzbvQzR7jvRtH7DV+O9jxzCgI1IhkL4N7i3V4At3/QGies/CY22YmIeLvPO0uw6gCuhRIa9v6iJztxaP/fH4mqqv+AOYSwTH4q++FnsnHoLu/JL8COd3UczKGX/wXdGh/I12Vp72Bd7XNDsT2O7abQeYtBDiNMfSEzUegJ0LOvrOuINFf3AeH2SkdD5FutG1J8+1/jIwSRKSpLRMkeE7haZ6R8O9KBsETJZDAjS5pWGL4khiSvZPWLp/ihyiA2ydm8sAlBAxqeEPwaSGwAS0hRDmRB0KvvXCkl8EgFMXjRAG76sU3bx5BpY3XpRQGpRYcB8rc11i5K2dKCnUt/0VrqGATIGfKnSYWavTsEGuickzAIioijuV8QsGrRyIJvqo1oujkSnt4Z8nHLkQGRnOCe9kFzQ5Ty26wIkLnvOx+AteEVLSVZcbo5eC3KFLJq/Ove3TPZfJPmExmt/dI9XzcT6tYrlXlCuMajxgIr8VHLPg6RG3ToCXLBbh5r7odCr/WdTfu1jXAVqVNj62AOH5Ay7UGRARx8sUjOM2forSb3whCZ5Jqs23Oo3txwdbm8V+jTlG3Y9S+CiNVvXRql2bMnRNLhf3CsT5E8gxA82JQPJgUc66jBkWpjv16+U+sI4ChketxYOXK8Nio1EtBffscFQVF3afh8ae5sBBz9d5/OnsAyT2aP14h2pwFodj7mDQpc04pIVCrd/Rg+Aarvy+CKXWp68atPFKyEFMy1I5ihSEwij80UjmNX83+YGRmltvEt7ousn4onRzfosFIuss8Yt+M7pMGAg1YE608UfQQh6ssQQTMm+g/2lmtMt7D1fI36vINY8LVE9qug5rfGyio2NgKqEvoRolD1ni2bvkNLc5KjrmM/SMTVM/fGmcR9RCn1mFze2Bn7SpFRQl9JTedpRC75bgG+vWLgGnBHJ5gcvIQFTQ4/HF38tNd19EP28Ul0yHz9nhS2qdvyDlNi6GJ+66aqfNcPW1hizuQP+nnt3DfkqbDYpX550jECvsO69N5o1rK63j/w7I4s9D4fcCzhgN3Bep6I+G37Qu/0tlIv1bRvfVuH1kW9Rgxbimp+L7DdJz7m2hZhfi1fVjUBXY0U0j0tDjngxG5BSTN2+WP96rRHkK0GKsfthdMvZ38e6oho18zBUzEKVeL5coa8ThcHwfYR0AZsANYze8A9Vlx3EJ9pfucj98X7KCvLXjkVBJKF+Q5GgFvES9FecQL+IbszYSZd2XQTwivDVItVvFNlDgt4oo9i2VMcCEeUnsncLtfk+7yRq7D5shv5jMR6JJfpE+Euea74ni9WrhwwN6hof9u6XqOt2yZwdzKG674P7d7zrvE2mvb25lx5Sqjh573ux9zhpr8nrxM75jRqYvxeK3Dch5GCX++2c3F3cXSCyyE6PyLWEAGN47C/emEFtlmmOcojDY+YQqWM1KWNHMYRtiVo5y3nV5SC5+N1dkydUTpCYvrW+Yx6azDhaw9uMuvMdUniliWRkt9Ab1uiibA7+XR2NZZPv01JNe0BoBNKS38kwU0nK3oAcNVeYgVHt0f4ATIxdhF+DSDAW+A9AlOL2W24S3X0uCiqoqAjVMcXTjWJI35TIEWg6+q4gIhO/FLDRAoAeM/O38UGxf44fBzIOm03d+gbHfEfnkEBFsFh20m5AmT/bU9vZj8eMFlAdjvbyWULaaHGRY/oA3/g1dmVjWu9HilLVnTJqVxgkcONkRjRNumHwuiOv22WlJgaMjwPI88BFjHjf8J2F0KPk7YKljIpSTyj/N4D6xUdlXS9VPGbtOltJoXElZdR//1cELPMLk3lMERw2sV0t+jqYlFWMmPugcMXlmc1iqOa3Z8z89Y/CZjHvclLbQpRTtWMB2s1e6npZ65GFzYrq+F6kdqb2kRA7ZtLEi62w6wKLeUro4ykerPehGrSRpgPcxohq9Ix3H6qRIY0KqM9AYORliN1lZb+gDslSrTJXY/xRqP/v6oNHyWYr0SE6z5xg90+KJHK71CdSLyieyIaR8xXxNoLg9sTepVsolTpBBgJV+qMEGyOYop9pNQ5g1e65BzYUYkq2bxojKbYmkwbrTYCl7IabzZs3g6d+QS4qp55dLMNvUXUkSisrnUu90/XWprHwFidOIl/CfGcg6MRXpBe9lApjxgxZwmZq6cH5vkg/MHUPJVfRy3nsIQ+DmaefDphP03EDkUOe5I6HMUgnQ+Lbih/4+dGgP7Bronfe23ORipy5CJaPcOjXJ4jpPo9hUjAm4xvGGawrd2n+mUXwThTrR4kdRYs0HvlwFu1gHNJidPOByL13uW5ztIP6rPTQfLaKPTndxsiE58EW75WPeaM4dvCqoA4dhRcqN7me6HljCnJ9iLEoRjSZ4zROQw1zJI1D8MZ+NJabKzYdR4oHIoaHrAJhN4ypFb2vOF12c2JEMFCMZ4NF5jp0jCbU4Fuqcx4axLy/8hD5f2BpGMth7xJwxJMS406aSyxlmSgbwgiVw5wlqk1+QCvzhP+lsH6jCPpQx2wzLLojmnj1LZrV9ce+XBtgfMnRvJaKIwmoKF2tsjzYd2mRoW0bcOFXhtepV5KhcmOtKdAa6/tXJ8qBAZMd9T7+Y3VXiGtJvfkumtUiJ/h0Qb6TZmI0ZghKNgXt6jHfopuXHWX81MKroGM0MAuGHScAY8n+QgGMAxGL8imoHQQYAY8bUm9+LNmgroGWdq8fNm3tMRUs3qRYfLpRq1EU2XJO8HzN4nLFh2lSp2Pv0Bt2qsXYwz9xG6VCNIxXATWrImccakYX4VbbMm9c13EYXHupiv9v4FGpDjctfnrgodgEls+2SyCV/xhSZrhsWb2arDNBkS9L4AroC7SqS1XGlaH8+Ps3ohIYkesMST7hJgcKJ2TkkIeV6GZ8dsLrC74WCniI7eAAfwzNw0Do4FED5v2qV32q6tzHNLZYonalAEoI5hY/nah2t3bn5qbR7NQ3JldpsbocHQodypCZPHyuaZEJ1ckgcD9MWaVISAVNCabQ4PJ8aHNmYMiaTNN5SRI7GEE5jUHeR21ft2gFMdLSixOkm4RNSLrlVNS/Ja/GD1PxGPc4ZFvm3OOcJj5AOQUHuURvVl/wDudqt152nW7P13JlwyKjS0EtJMR4Jkvev7dv7V93M1SHMqSDoZ1Jif85l81x/KexAI1MxZpsq9Qg9okQoklLhYGj13SkkKH+7bo1eCN9r2cIfn33kz6U9/B7jhlEGkZnfmQwUFe3UCVdbilFEO0PE8qmmglbxUOtvjzPxIJr23P00gEueRhA0VQDKB0SqXPKgfmfp8nmyzPNRcl5v7jZhLK1zGhFSHjL56F+r5MjUEjxThjG7o5JGZt9M1IOYe3KUnGKPudGxJXdDawH2TaDFS+iGFjMvShIdKDAj17a2t90RHi+GmwMiBvazzaF9ppiEiExeWccxYEK+2h3fZm9IMdT4boqFsI2XKsxk/7WQQSCbskSubPuTc97M2CjsZRPmkgK1YW/YDodamDoj04YelvYFXc8dco3WdD7eGC7Thq4Abee+K5d00mdueGgNYNNv1Ob257RFolzCqfVUhHljqijIfSeiLdlTtXgdJZFMRB4TH6zC2LR+95/MjKq0XCWtRvvGBI2m0Lr3wVRFW+Tu06tHBvaM7T7bWIA7EBWYJVmHyojECVd10q+E9e1kZ5R9fZ7gl0R8ygS4oHiopc9wfnaJodvsCuCH0g1k+UQWo2Fyeg03ht2b1AW6kYUoNu4WoLAIdQU2adjLdcik2L0t0GOl+qj1nNQU5LGkIzHG5YjQxcUcgelPJypI9B5MnTQZ4nM9p1wFA9SNsXOubHVM4ixs6qw04OL+ibVuScHzbnJSsI6He1935LIduz+wQe2BMaNVqZoCzDTr85UHX4C0njUKtOitghyiV08kh4oAirCdbO3vcS3Tp0S6RyUQuI4Q6lOkSpP3XA0nz6GQ4nFF4dBrT8L8wsMDV3VTNE2LSzWyGx9p3hQMRtYAAiKt+pNzbguB7N1/upZabbC+i4shxHFcaqoLJxq541cyWkBs+PVSKCasQcFzELlz8DIQHC8kXXwriUUSDp04kqC61Ec1MXEtLBUmlyVdoQDSsIz5c9HhVwyQzut5HyNR8AFAWj3jLY9wwTkbT0cOkoMxGks6/CeSvWr8MD9EtLV39YDVqrwiuP1z4chguWB4oZzA1yzY+IWAoK5+P72STw54/57VmR/g0i3vFpbWpFilcT1tYc+NaZZQ+RDki6cuvhNM3ncZo/lSvk6AKTrEGjLuKPRqgWo/iwG+jIzoqE/3MkBD3M5SAkzwAt+Gf0F154Fph8qOMrRrWqhBmGUGY5AdDlSjesUHcxhQeLTJtVxxlLL8Bz8CdIb/UToN65lc9r5q7c7pU7rCt8dxyKJt4GqRyyCmlRSZK3em99OQnqJkXHApXKVqjXiY7HLeGkHSLgtZkGJrvyrUZwoUwlziUidQ0PVciyciB5vj1slIePX3hbO2UjaNhaEM9rljTU4aCUxfF6p6MOgko6M+AfmaTaynrCqn+Y0UoJy6m1F5AOkgFkBw4CAMqs/qAvHgU4DWODaMaGcTiyimLxJ/NudW3QorktCfW7sO96yYiY6zgRKOJ17GaDZRONvwjAffLV8SoYuiTjoVZM5Dq2A9DK8WgzCHLWadVZl+Wf+8JoIZiy7MtnqRrhD+N9MUR4kA+cNBPmIkUc50aI0ftXui590pW08ki8Pxe9rJWO8vLbpeVUUSlb3iROYJBbD5xe6+LP/Fi6RusMrpHaIiMS4EnycmZ27uYhVUsZ9S+f9Fti0diwfPrTZE1S3sKmFNyoM0km9Zc2VJDkAx7wxZKAombPov0+C79zasKCk/60E3RHtP5KSN5QyZuXtFk5Al1UgJ9vrDvP7Cb/e20EJQoGAR4iBlMnKXc242G7487wJwACcpQ4yspCerRk6/WjAHYuRZSYMELf1IjKAd36XedLSk1KNak0nGU1s90A/yS8mC1Lai9hcn80jPgNTrJGlQiQaNzHV3vFBR4c1nu+fHzmb5RSUcI+X8nXUFrbnfQY68rtr8Oi/kx9OD1HrAmCOULq+zGyigQ6tUnL0qPhHXSCoCLuMsMEjRkDmjrf9G8qpNxo5vk5G0CRjxrZjItFRmk4TOZY18mv2EMyAbSxkyqkzKR9JJaWfsTVZ8dI5STQ8N1A6zd0UrmzzBg3c3XdRawQLwvMyQ5TECajkkTi0AkDDwjNfqph2WPsbaTpzJhvKqS1Hnxh0M0ibmR8pfYgQnugutcPRoUPkRnut0BSvwYWmY4e8AXGdfKA4X2w2b924jdtHiDE2wBc4C3BV2eQr6xdMm+qNIs2mg0S29va9Y1EIJLXYfmA3dK3W4hqA5vny58Z7nEAoC6uti1l3p1b0cV8nUkK2/f15nQfPX2jfTfDyOe4yPj52y9bBFkbugmznLciXUh7UsM1g+vXgIVSaAQk21WljcIQKOPU9pMqTCXNHxN4GCVB6CNtelDaPi9ErIeJ6QOQf1L/3WefpzUxhlbY0oII2TzHxZVjsbxwlskzf84JK2QMtfAgJOZ2ZXKz/Y6UJHSdOI1U0AzHw40rKo6VXHAyYcEkZBP3s1UDKEHxBQWx1+yNz5T5yX6VWZFuK7Jehl+XVDjHPy1pk6nXxY3MfzB1aCYnY2u6Lnfn3N8sxV8WnGCahYXGmnPTEvcAGQDQqSpK361AuTAkcVmZD1h3gnEwAAKz2+26Zv9mr8uDevvIrgw3AlC21ZwvW5XGNF4539QEnwuMvZM1nbq/dJUTHcczv+ZhIqMvt2WmScZK1/DeSrawla2ep1gi0/iazynOdSF7m5aTIts0nU7wvV8zety2e0Xc0eKTy6X9pMoa1HZb4pUSyQOLM5raR3Bm1OFmjmQBxEJYo5fkxT/PgEVcKkKn22dX97ynKiqsy4r+KowV0un8iUFkH4pTVK2rl+ib1+fig4tQHJ9kLbTz6fFw6oaDio3kbTthczz3qGcuu7/lmroUOchZoQJTGBE0U7NcSWHTgO+lod2y1MyXgj0lSQSHdPTYobsFcZshEqeky3aOCfecO7+Q16DIt5UZ9murjNe3j+EPBRZ7QXGlu9kdqQP/YriObu8IV1bl0pHMBpoCbGubTQ7DQOMEfWEFDl9pjbhrgQkKKlQK3gdkZoDty+iZAZiBWJHKWcE6F21lvaY+ouHM1TahXsj97BvPvEADaS/99ysj1pUrR8CMMaqNlBt3OsxD37YrCXbx0aZezI91MB6MQFzCOsByQEGKNbwZVl1ULpyCmv0EiMivCTVvNQqGPYXK9nqbPCCV6vljoGDmjgZKPzSeqr7Fs8jitWEKmJ+k4Fi4F1a0IIx/ajrACX72lUldhqXTwrXX649+zObS8MrE6Cw6xJhmVLNVeb+2Qk7zHclKJXqgLvgQDspikx7rqGdb3U9cSIeW6PoVK+RaI/OJSqX6X+kXBO4jX6OQDZUTbuIk4rdEyogjafHojrVulYXoXX1512Nfw1gGgwWX2lCFGuTghBux9cbA6aybLiY04K/RQ1q0rVY/3JMA7WhHyVZyjS2yDpe9Pl0VfD7sb/xjJ1C1BNTHplSD6FrMiFbYooYpjV+bFrlIrRKnUN6X9tmGqmgN/hodJZ9p1MM+ZkdOBG6QNP/UaopcsfYYJfz2HO6UWDt/+31O9TzIEiy+dQowmkU4mcjSvY92Vi6vF2AD1TYrXjtWpuy6WkwsZL9/Syf0RQFwKUscpBKXowjwDD8PopEJK7KzHsnEVUZ+nEenDGAnU8vur1TTPFiPt8ddY04M1Zzot/57PiuiLCQVQKBdET1can7gPCUZ9CvkCBfsL1sujxBBE71mirczqyaZcSOUuFRiQVOKzklAypeAm3cO6Wi4P7I/rf5ezo9Imompnq7u7t218EmFJQyOgSdQXEcl4sdkZj2sB74aMZ7IRfDxiuRYxbJRyHPDLPfisZpzQDsYIJHGAaAwDMSdRULyRkBRS9XKWIWskl7KEOy+VHhWpoRXutwNhtiT1uQ0pug1+bMo22JrHZy3/dAAc+s58NJlSc+KfBpjpmw4h5Odu2/+WKAEYYgelNqgmyUFwSo4f2VLvyVvqaN7iphCvJF8f4iiJxFGdRsM4H/ujdWgqFrT5GeCAUKFGWYpcq46glkUqAq1L0XORqZzeC03whLnt3O7PQPR5/J6r9qsBG+CEOirXRpxNnYmdKcCsKxmvjSs/C/IFOGOCBzhZ8jMFskndXfTLSzENCWUcCdVchCSOxsDPwBPlE+Jzs9RKC3yflBMXMT5gRzvQkOBcrUzW1oOOBahFIjdTPOHKk7E5lA8RUXQKrkGqYNcxW7NcFSj2BH1OE/lUiBOEyLK+R3bdpTMgC4q+F0kBeX9XsZDDWVV9ReumJ7Vw+b0rAU0UQTw4QaS1DTPlizr+ByXO8gJJ+Ly/QNiRDAGFj5oSSDF/f8zUUXY45MAAb0Ar0F49VQU6lpJJPNMb4+i5S0zxu3gRerPoH19oMW5WYsRKBxOaxf2ywczZDlXOtfdrZLcLbk+1OkTg0rHtIDG19YjTYSYN6EaeA6TZafL9ritbjeB/d5sMYzFCJ752p7M7mO6yIQ8OngKaznePG+9M0t2QvhsepzTekbxSLF4dwvbbb32o2lLCF/5xy/EVl2pelLZmEsIO2JYe/oX2GZrgLJIEVixZ1/12SUcww/fCCy1vegF7gWvYMNKx4wwMbmIa2S/bazHd1hMDjXhLRd3Or2YcSXdRVl7VRvF7uvdiV1jy2H7Vpmesxp+CTdTjK4mFIsw8+UD2vEb4xvdXsjWQxhxJ5FvZlRve+ZnlaM6dm7pUin6RPPer5lT2A/ubd9fTi7nCWyvRgKGGnaRXUiC3YR7gf2R42jucqL0pNshkTFMJ3jrf5V4JnZvw4CSn6IS0R48RZVdrJt6XUxZZtx2UVa1NqL8YAV2uorLX6gmmIe8dw915G0au1V20N9i3QyxbgnFo6xGzHinHYLwJPQZSwIMJzka26fh0qb8jjSbqLfUYv+h0bVqVBgAIfjS8CubGOWb0kCAQ30bBuda1S03bPiMRxViQF6FTdhAqh5Z8ZnO0K+kuKFueLsHz1834qhbFdWU6Sga3P9uqUIaF4UYikXxeDor+EN5nGiGMJ1YuwiJ76yZ1CRXon2d1gMG/x3ibw+ghkKcTrQdj8V0KzywhiDuAE28VPXQK0EMbcWYbccZ1HLCNe+HsfmqN2L/NkPEmc/pjMrjulqsOMacDrhrjqLvV0g9NtsNmYU36Tcx8HrsEDkWHWzJctj6iQlm+tRNyHzQ2qL1AFUOOISQ8r1PPCwkgwpRaN8uiHVTBHxXhp14OgGKrrNhkYP/ibvOv0/m3+VshZVdJvVUNxyXoALLFFepX2tyLdf85qzSaEVAKyPQbV0VmT4Ww9WPXN8b5l0JPPz3AvJ8hMmjxOpAWK1keGAdgycuABw7PNbpcLwvpiuXu8TzMc7STucn8YgRW0nE3hJefx7xnOh0N4D6paGPHphKJEfIQmKFnccmC7GiZS0wI6v3jYGd0VocDn2eT9OAD/G0jaZxyZgcekR7qzLz7/fg84qqPaGYnMVsC04MUxSNfiuYBU2t0vqLqBDmCyz5bug3VB3/Qw0KgYZ3G8YiMzQvodlKH38MOF3xlAAWvvIm53rQ78CX1iiQfnQV7CPMI/rpsqJT9qidWdXxqtNU/gYAGOMUtpXQ/OQYbfUOjLbLJ96SGTpbeax9n54md1oG7vnXu1KSfB05ZxG4c/XLl9tBbepnSnO51S2fslQr/+WrzReD0HMql2njxnsDE1N3+nRLGGEO8MB67TO8SeMXb3OmEjsHXhcoBTPD4DQY5ySSjJFeh7h50P5cS27Cv+eE6n8RCkfj60T5r/IEG6hHEBWeNhXiVSYyy1oCF4z3Px2gKgu7DR5VxtASpTTD7HGlkSTdjJK03CDysnpHJv19YqhEifrIctj/68sejjBAmDY9lqBNVcwXWwZidcqWa8sF/RPnKiC8QCUuGsXDgEfINo1lOn4St+aBgb6VI4y8hFSDQju0HruLACdhs9fznr3FHRIf5XrivOJoQPtDfIHPb99haPbbtijCrytpJYVyuFTnt1YQDZs9e4YSk5js8IlqRVi2HTwYWqFd0CmAB0Gewfcl9/2KGeXXDsAww65DtT+PEqhyzz2sqPN4e8nkbz5zoYAyulzdPRsQjU4mvNdeREM5ET0KFVrzAV4xEhyKAZLj8P2FaJ7aWM4QQNP8oM43Yg3VoaRkIDiLWyMDiHBhDWwZyx+DxEUTU5CiYJOdYC/m6H42LHNoWT3/4dYMZHfVIp1/ZLnbkXrZsTDYSwW9h/Yi/BHZT3gJt8O955e2EoDAPu0K3+lIf8pCcNDdz1oMQpEsOCCOHPp77ouGosncyZHKXuzsitECikkZS7P0XtFxNqjGNYkOeOLIy9ImVgizrfyffOtqf9yGSo1G1bKwLHsuLBvUrcCMaC9TiAaeHPxHohvHsBZ2QrHRfDjWJ35NHQAZnAqCQhAUQsABTD/ijQ/d3boOjPRwdyMGdDI+ymQL5AKYxZVLKWKvLhUsemVyWzr0nxzCg8ehyLQ1t9uOo7GL6qezVQpmFOa7oHWHX7fa0ZUjQ6tjDTa5obpzjFDBt8vQCvwk+tLtb01EzIgp7wlu0ViGSiufBQDMNkINHukVxIqPss18L1KEgd1xFxcUafnub7A+xTHUJybCkQlwIPt3kCieZ5VJP2m/V9mtfu07OAZKmg4AiBjB/elSV4w5UedbtvIfMrTz5SrwtAi/Cvi87Rp6m3iGAqGJIz18MFu5EizlvfhVQg/iESVjyS6aYBOvUnOeflJElk9TJQKzKcvJpLENQcz8rZNy8AxSqn5fjfOE6s3M4j49Ui0+u/gv1hL+7bpHmu06I1RYn6sdC6WxxaOjGdOUXZ26L7Re8GCa59rFF8a3w2ho1X9Sz7lebsOY53hIru0D6g3y6kvfFtE597XI46FmwDWKfD7Jvr2m5Mr3frovIiv1gydcrILWiIgjOeMDLJY+GSLPi2pWsK3AGDkvjVyAdhHWgGaUFA97Y4W2SrPU1KOC6NnMEd//4XlkBZNLUrCg1TyqbFX4HmlfHxMVWFzxsIkydBHGvX4A5jjKpyn2sqxAMuQVtGbf2mk4erzQP0gPg9qjsweng+BGTu6/0iVJAfprdGLgly5bgF4VSSTJWJpgc8LEv5mv7kJM09L0FFYcPt6KAoTUu0dyOxNJ2j15YKWbdIifFsgbUELTDml8cenUiKhivNu35LpdYBy8I/JVi7h0DgLKuNXMkB4VIIt4zrlLNGPp1xGrc84w4lvRcAHQq0W7QbIiAXtoMELtnl9TT22g8/yirLgCiI+CrRkTPvbrkHcY2GdbjlaaitkNAiYM/T88sjwapST8MCVZd60AiwKvscdCL0GLus0SMJ0DNrxFTflpOxK2W4Qu4tAQrjG665MeAU7NHUJuGRRTpOdG7VxpCFiKc9dPUgoc5iGAASI5RBdexXGKvO7oLE3bKz6BNm4hpe6rYREUn+xrsU6hVOTpQjLndqobnHs2PJ0BKWMmO3Vw5glPLPUkcqzS4Up42Yy9WaNwpeVDyvKanyfWTQdYfIaL6KIY1DqQ9/8Ln+l0jPXauRweh/47xYAiWS5h5lMGzTL+jJJC/Yzs5iOMVxjb0pfML2oNvTFYzxd6bGmyoSgSOOHBHw8vi+din0DBUEZ+GgzKh+ofKOpiKuF/RfiZViAgUJix+THw3hHNz5SKWGSj88XD87M8BARLqQhm6Uakgjl0sOm6A3iZeZBtDTepwddOho0suto113S/xqENfoZLRo7Nst7ZlGso/y2GFFtYsvHWdOnNpxrZfs+yphrgHmV7e0EXliQB1y2E+g3oAyWVyK2sVaMR/7xHzl7xvOnKZ1wowD99qRlogzxtgYUV9/fxCKIWuYrE81Ce3gQVyNapna+rJ9oD9kAR/MrRyiR16lAzF0ipaXXEUtfkhWIsRBuvhKueUtRmL1nhUlMK01PYdZXgMJo9+qY5HEq4RUHDz/XrQqOwU0H8BxPw4yD5KpD8FzjfcR4dkL3NdUip2vcoy1dL1lOMhUNzygEQnXyUhWFeuQ7euxm/mfqCRXEXDllXFe4RBSm0ug6Nt/YLJUTbykCO4eM+cJtz78cxTWRlHl8xZ3wPq47YYhIXpbXuqpZrdNIZp13+uve40FCOK376NG2zhzd0H5vVY9HLzWjgC1zfK0TOI5Bri4wblDyffH+1V3WWUnU00SzbsZCnvH4ZIipWRJ8FDiCsCBxaMd80oZyS5zGg+Bs/CZYTM5C7oBOESJPPE6VFqpOLjCBlngCe5yhdmgVEsan/A22znpyKTcLVEmzM0KPg4Nr0xOt/3gXftI8mAnI+wbkPbolHIbsoZyTz/4MM2enYr0ePTG1JnKxZjhO05Xz6YuY5OMnLIeJESFA3KegPbOglirWAadGYYIIjzRLye+gROqm4Xod7aJuvU3qpH0J7mCmGibEjJVJ2lO3pHl7EHbUvjXvZd65+8SP0h1xdOG8IQ+05MLayZpMrKO3hVPvyG5tASPMFQfVshiG1fw06k9Py1InR9xHMGaNzFxwCQL27OZSmtZcgK7o6Z064A4l296I4H1QlDwlceYgz2Wtx7NccsqniAPiCbZ5pWdvQ2XnkCyI9gZi6EWvyjsfFZ5E02Di/isVbG6iiuSMCTh6HwGUtaZHdlbWovF4hH21G+jS0Ib9EjtWoLr7tdUpyn7wWAng8Zmweu8wfoWqco+oAv5pMF8TTAaKta5aFZxdTJAb+efgMiPNaY8YHv3MZ5E9anASPFUPqzaDE01ArR7frRmhVUxywX3A96ks4Qu92kae00SkNZYIPqu3Od5lHMzUVJ785aWb9LN1lvbPEZa0WXjnJKA4ATAOjYwR2wrvRhxoznyFuvRua5cnGOXztyiGhPAiOm2i1b/PflvCDU/wQdKFG1TOqmAi3Ny0gFd5lQmudKl9T6tic+a6/va3cpInnmKusJA1TepYjc1ESxvE7dYm5fLOY6yY19jD3a/yqwjeTLK4dIAP3Mrp4WMU1o8JpAJ/gTPpIoLia2d1UTqkia/n0Yi7uP3vknHNI5ak3mDZEdR3S1hwxSayIxvPdkbZbkrwgh9nq1Wat/GtWVi+2oxERZgyenDF5eNuQaTP/3oJTPEDqMveyek8o2cjaR2ndk0KTLl1EQ4jLHDeL/7cI0n1bZkXyQx+vNCumPkHccuFXqUJvm2jC7gWdpR7DjPFJAJ6rk0a2xFL1QghkAf/k8LdvoqystWPiPFGrVQWSfI88jyfYLA12GdUUQJyWau4Pd3NacSyGB3CxN+kDFy5I1H5B7mncHcM6F5kdYyalva9psGHSOfl13vCVWhq5dJaEwQuxancSGC+llURtx79XwSFRBDpJ2p1bBPKu3LpWGhkTAQ919l4eer241TAnfJhpaAe6pcQ+oETZ0G+ELLT6OLJWJITXYbSW+/DQl1aG7yCaEnbLCt+a8SHolfVXcpbnSLLqvYJ/j0+XSRn85l4TJ4DPEhhu7U9OgNpgkFCXZLa9HpImChg6bgyU/cNKZzkUhON9kJ3xtG8Gm7AUIi22WTN0ind71hYHLMle5NFeGHGGvgWbgT+Rm5TGplZEsXcEdVgXPJLUV3/suAVd1fzBx6LS8bFyltth8CK8zWKPhxXXiRzOVYxGnCwjXx8oXo9DQT2vVDT210SRjHH/mxZf19MIuVBEwRlGXaVe3dFs2AG84AKmZj88EPDzl+1FjsRM6CGXHmVb+x2JPwqKD/lhOIWI8Ry3l69eQUih/K3+ESiQEO4I+LIB1e/ACC/LpY5Ct5QosxAoe3pp4tQRAvIV6UBx6hLuji+oe1iTvEgayBK+D9zWnvOq7z5+N+6d6cXAC0TF/Qf+cE5g4wtnf+Oe+9LYXebp0/1OsSscxICE+a46Y82tyHghcDUG6CT9JNkaK/3rD3RCmfUyRC1Pm1I2L7pObOVUZi8BZiE7NCmJJIonxm3rING1EzMWqq2SOD1axvuW4il4wINP/MyUn6KtR45R0TXRR3PZOEre1MgXzIGvuvDF94i8DjG0mJyhzL2twsKhew8L72gucqSEFDwLquRxi9o8cxocMmBlhAVVgaSDbSSTZv8IdudmIucPWyHtvO8biBlnlnj6ZWEp657Ce4GWKBuZxVRAeJdU7D03nLwcBaEbM+tRyBwFqUaHQiHgO0R+xEganY2kGQuWToKCxbhgREvQvGk++i/8V0hIBsrTtMIwOJoieZHH98LojXzYbJoB2xl72F92peFCq65VM2Y9sde1SRS9XYzG2LEUt0dVV9j4UaroqOlrt+fAJ7UbljoQhTBwDNBoNQWRtQQYjs+SNOuONSnIjuaH2jzMsQ+1gLGxJDrk15amqYgfmuj7hoF3KjBwFca3FKeq13qqQGhWUxnQr8St3Se58g7nhKD5e60HBuNvXZdfDoguLXf13rdkAPMfdXTeKILlUxhSdJ8J99SC49j1kA7/ADGNEo8eYUeMLy+hYsMTdcyt9M7eWheaPnqwLWmI8err382xitYYxqwBwTzxqynVEls01vvtvBGoOf5VaVcOPi8Pd3oRTJ8GItJxbweJH0PmHy2jaYum5Jr49ZRSjqbNclsJbRBpm6J1tQilRh1fx7smj1zG/l5rFJERo8OEtgYwcZoe0FrVvUERCNOIPvUfSw/nckyXWyJATMwJX1bbzghn8GqegHoHYlRI4xZjvrEupzgh2rpAGeHGnvPxu/7Ejd/RoZwQ53J5eSWScW/xMfQXxgzm1sIpuS9chuWE818DbVSF6WqacdLP3yNrPwGJ385ockTYLdJgPBg+zeXeP7EWijTjPSH68W3B0o4AMk388V9gxuLQ8oaZ5m5Xct104oWm4HLGj94mQfYC0ZL6LYcGBwNo/uoVXCmuEOE4ozAlnNf8nrzWv2aH/vYXMFQAmvSE3fpmz2l8W1jEfaLWdl1/tAvL4IxDhg/MfydnZe+bTT5VrU+tLjTGXiM32nuXB7kCneiL6YTp2HqXiCT9i8tUnkLNZYSo/F6Nx5cGgJkX9hzRcvJeyGWSrLJDyHth4TQnFTQ2M5VcFsVMMU7S9TxkWPRLPBKarrJ/JpyweGSv1FXK+ppVmgMIpxsMi0XURoRu/9Lcp2nJ5CTxHpexY6p4BuvNOj5CYj6qKklYHcEuIUwzYoUhzPOHMrBygOSlzSDw2LTF5SzxSwLKY9X6g/Aa3Ee6I0FW5LO+y5mpyVUuUFqyuNv36cgv2qgNZ6a6L3mkt9g+zsoPnYaMl8GF0mBfAVYe3WwHInW9b3hnN7RMENkuZv7PWq3wFYjGHC0onRU/40vSSaCc64CXHX2XDRu8nHhusC/8540fAsbpQjjKXCLCxuYD7HEhpZr3KIgpZFwQCxPetl6uQVPzjbPFYTlabnTb3xmR2d39zvJA50E5SsLUy8HRCRQMCjF/7A8Y8HCwOn44IRzMBub/SB7V5FEk67+lad5IxThT1tEapEEcFkIROQQwjJp3smDBT1mtsAWDZJD+TWRbHnttwaJ2CdJbfZYlgDkUUDJ8cVkXQtzFY06oRaJhrObY8btUDQIbpwCsQlE15CN3ktxs2EBl+0RdT7ZV6vpckVheviKKHiTWBew1jyfS/Yt5kW4K7mNUOWfmxjQXyxmiaRFNXGZWj61dU44itv5vwzYL0HpKbKLuXsvjpwMwU6+ZTCPBRD4NVh56mA93ttZTOJOP/Bbie9Bgna4nyN/zytjKTUuDCGT+SUMB0BC/vomiorS310+qxUgMsPC3yrYAvPlfvF0Rt/Tn1jzOnGZA/H9VFRsyuvM8E0kl/g0OaX196LhB8ySxbQmGJULrgFQv9LepQdM8B3MMQy2mtsbFaG+mDe3+k3vU8WC+oxUb56uvYiyGI06Xs/nVAO1oepfgFr1wqDaqFB5LtZSsr/emurOBAz3okSQOwhFgIF2a7vyLJMGPt87qwgO6Z2q3NsnGiYvzCKFboLjQTWGCqyxoWAm09qznrBsq9r5fcxyS1uINxvA0z2ZcpMzAVdrjwOsW69ZF+iH7n8sUjf9uI4ns4vz8IgH6jhqapR6JbGK7UtzhpLJO2gQEod9XHdRSZJc7Vjs9illSv4W32Kx5xLrPSuVipGkAMrOM3rGHeFkpKLHpawPTOv0KOES1Xb59CotnG1NblaO/9EDYNsEhfZThr4q4KPM0I++dBkqR5OJynBU9nByn4cS5riFG0edPKpWa7OruXCb/ZMAqRPbsa2Ee5tYX+NcXgNsj6Nk1rYrVpPxnf3sQvKW6WY1x1I31gH8rDtS2sSaGQo0YxUnpu1SFjSO5AsUfoFllJSH5W2qIlU9lU1cVw7+eSb/dXcvsXWhHCuwk6o2MuWJs7z8NGEjFXo1yneUg6hCrypAc4M2Kt0oYdyxeX+E05rLLmUTQLd9lxd0qafTDsBcjxlgnC3Tz4XIoV3+rs5ztb92AV8me6U16rTVqb9qAwQpSaz68Xe5bRoGsMke3v1YR0uayL3hFTenDpCIZarxN8pDe3IrLG0et4iczumFnVmQ24ukPsDBlgRSJVEBk3HB6VX7O7BIjbdMr6GUAnF7NebZ1Op8J+F5wxitON2QAtQDUoe58GckEAelmVC4LDQNXRjabhOrwEh2GY/xsh9y1aGsJ+FvkDU4clN7BJWW4SwgsyW2VJ4cInGGBJ0/be+RG80AOMCQasqEK4/xzGgs8kzp3Ib0bdoSCu6qB/xhmBfB4R2/iTiD6zQ9v8jQSghESxTf9ffbNOtn7BWU0PxiiO74SREjhDdPdjm3zTMaLnU7DhiCM16BBNujX3YM80/dG4cA9brsMWFGLu2hEtrxCIj/E2Er/Fd/rNTxVJy7EjDn9NGFUdYVzH5SpVUBYHN9fWy9jxO6x2iqeir/DT3WoQbdxoCtZMBohBgDrR3M+kLawMhZRhgEM91PlDvKWuElGVEs2+QQ1BUJwYUSPHlkhI9z+jTBV9g3GXIL4jZxChWJFFDW8BMUA4QgEAyfXlno3MBlPSHgW5le872iy/gAsLt33Lk61WDl41vQtJmobP1tPJAd9uzrTvj+0324x1XupAgtY7rQ5f04wvUXeGl23HoxB6ilgwJQGqhwJXxJ5Ceh5EEjK6FFMjtnaexaN4LOtyhhhcMTSnjDjjFPaM9Iw2Jm9hAroAhIa9oVNHgAJ4w1Gk2//eAm5QheSg0dFaoLuyG9qTId4CZTFhh2L9/Zp9TeNV7CIhBuvy4vHIctJ2IwKTYdjNgtXX/6y4LdsIKGlDWMZLdlSHqi9x7CpB2gC0IZ8CBUdpsnjlXqEJVLDS4t6+Oy3nuqDdlIoioifllFMRqVAPNtxI59aZXhurJ9ZahR2RV/yvp1lkx6ryHvJI3OD4a7zeJSalmWzIi4V93g0agg/gI9KwkZSEZyKdxExx/PrjXn3KAgjefsFs3AjbaaI+93rRUU2Z8yZn5VTaOB1tg2L2X78duM1l+0epF6ThRaPfKQ38A6MDgMA2AT4xtoEYjqF41cgxZeLWz+RudVYysgbaWUrhw8uW5b7PBDbD5d3U39rfdwJpx2F9tWNUC6IvIpLLcDK+lxsEM/ALr8Id6NPaoCPv3nUsZe4wJrQv6LnoyBZzQqs9i3JMIavlOuGL9sHlSEzegYQqbt4xmT2xP5CPp7jymQ1Fz/ry0D4GcdObIGB/IFMGvDpN09gLx8FbbplTVCKUkc8rKJNbGkbcdX1xURoDnVQkclFV9dPFRFqPz8a6qScODY0zuKXqkCFkQIJOALsrBgXfS5LNfb4pGGAAwCb06edpqVZjCV6J+WVC1WZPDA4zFDp/03DAGTmEcStLQe3T/KsGhiyI/hnMMyD6xQIpLqKTNScl6IU2fcygvbPJyri6WtVWwXTtJvnoeRvZz8J78Cp8HnmmUHoMFgVq6sLNAFAtPyfvozsiBCDcsp3gsoXDYBfur+2rrxK6xkC6mUoQylpxUhFGT3JR33qetJwGN1eLz09+WKgFwcl2N67PwIkZa5KoKqVhsiZznj11IMfTv8z6xZyPMZudSxzVT8GcJHNeF9eW5Zyp+GxPbWQVB6ceQ9fPJpSi5ukL3j1+r8ZYV61G5D/Trt/3zZ+9UhnwBlu92KcrmKnk7UcrCoVdDb9RRgx01GsKcHCA/NzYbFGaJynk7bI4sT2khMK09tkEKTio2oP9//eAIceTZn/31U5CKJ6YAkkmz6k+98rqOVn0OQ9WAUNuxGMQdOY+0Q+G2ZArl6m5aS6BNDjTAN78x88V5ivPG1dUNfmR300z/V0JoIK/4l+46eSc792VZ+xu5ftTKgX5+RDQxb6w5lPIE7KOGtYbI8UgV3EgAsbHFpok0JFH6uZ6llT2QEkO+XgfnpBhK7DJXlm2fUdrjTXE8/IONMQaLTbjGxbo4wmHHN+cpwIcl8CZcP0WU/HV3GGNKtJVS5dn2wufkQUApJ8hy8p0gc8dCIeJZwPVZHPHAmdw84hYrLSdYI6UlGojaC4yxHIr3yFtCvLXtFRoDzWooQCqo9CqJrJ/K7xqTSAP47+zhqLXHcF256h5USFrYwJ4jqxyctLS0ckhsT2yxaKag0lLDZR5VcNLIqjOXtIE155jKAd5Uo9xtA=
Variant 0
DifficultyLevel
628
Question
b is a positive whole number.
Which of the equations below is not true?
Worked Solution
Test each option:
|
|
b × b × b × 3 |
= 3b3 |
|
≠ 3b |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | $\large b$ is a positive whole number.
Which of the equations below is **not** true?
|
workedSolution | Test each option:
| | |
| ------------- | ---------- |
| $\large b$ $\times\ \large b$ $\times\ \large b$ $\times\ 3$ | \= $3\large b$$^3$ |
| | ≠ $3\large b$ |
|
correctAnswer | $\large b$ × $\large b$ × $\large b$ × 3 = 3$\large b$ |
Answers
Is Correct? | Answer |
x | 2b + b + 2b = 5b |
✓ | b × b × b × 3 = 3b |
x | b = − b × − 1 |
x | bb=1 |
U2FsdGVkX18NG+k5diP2bxU7aeA1vvh+k5jMptVOB+XcsbLU0BVBSCq4r30/D2eWzHY4+TCKEgVp0ccgWXe/eKT4a7jY+V3cI69YIxQcRQRxLnClJjXYuoG+GWj0/4+Sni6UBkmu2gbprG955HnZgk0X3HXW+kGMc7Yyq3Rrfdme5zm6d+EEk/BePyt8t7vvf1DGs96QV44UE7Ssob3vqBcBESO5giHKrvYPec7enrAPVll1NZGVbFojbk5VwmYqzkKHkCFisqNqErVP56eZTribtiX8fCiQ7SEUkou7BAh0XHNWiYXLJJSAxzPS/TBBkgU/+89IPp1Aw6oQUezrCgBVcCw4nx1aEGPv9QLgbLDOImaDSrsYZIerZdgwtC/RPd+UTj++IqMrEY781KN56+88pJqzndz9EdAk6M46Si0+pBR/QjGkjDNXaIrqna31y+odqN/raGymlbF4N7TfscaG8xCZF4jnZkAuOe1fZKG4yzCTTAEZ3Ad0uUyLSDILCypbz0Umy+m5UiNsWtKdSIJP6/7ctWfRgra5JB5vHNYD3VnFxPFOntA/V6Wp3tSFF0Eh+FD4Fud1ii88bGqSjy/7wBL9IJThCAEaaBI+tKDd9h4AXCT2iV5Zv8bzfz8kAf0h6y8AX3l61/z1fLFNsMZXFgKfg0VBCvM9Q3NFBXCCSIWaSNoUFI/jqeIWYkKD2qb/gf5jzHela6WwZ5Hi1SOJahgtFigCI2W16sUnPwRs3440+oIrhC12MK7hYoxdrJ2Eom/5g3cm1MWXw/7KJchuXsDTL49Ty+4RebEAQScXuvt1+8JzjqKh8xKkZ6X5XvupoCMBcmmg8Y34mpbROg+WM9G46AuempIyiJC8t+nNHdC+63iHlofTetubiQsOzYaWRp1r62NZdo5aQloF4BWbJqnCNn2KVQa7iXdQ22cIqV17FcL7yrXEHRHELeUXFDwKRJ08ohTjqJC07T44ovbORG7XXGxhvYaE8kMhTDPmMtRPxnjt+JJkk7Wwb9Mzyc8VpLkpmJKWpQ+2QMs59WbCzbn6Dqazo08UW+7CoSPg3p1LrdWdbqgLPJv2/w1btVH9Qqv967HgdObAHq6jU0VgZTVz+0XwYcMmBVRathXXg9N9KB8JPaNrx4FzSXgsV5oh+Aw0sZqDAXtfO2JuC73TbAlzH6rq49kZZWLucSSIKfbW6HVqbEfOCIzwiUHUeKf6oBQVD/sqRU93t5rUGsQZM2cSul1oFDvrrzbA3KEMbJo65YAk1AxfCb5DfydLgHCkPZon9YViiBgEaU6QfWGylWKrwmR9xOJRXRYF61dXNfUdqZMUjpgB2hR8O7V0Klyj7211DtZQ3K/FqgmW701OKwUQQGbCwiAfsmWJ1qftEDJ3jdeToVT5Ael63+KD6xejr2BDHuTJInBUUwcUo3BwWgYCA8eyjIP09w+iJJ8bG+Ukf7cdXbK86CoWzBGhdFh14CemyExkKrwb1lhTptkU3T8aLeaGP+jbwVEWyy/BkZBlfO0jIYvZPY2JEpe+c5hPUqNzec2fhlCh32DaV8QSGczTecJffNx0XJTPdNQ9XVoxU0QZuEDX+mGJlWnKAAL9FI6OSEYo5fV06xLpdXzVEzxLlsaj22Hzt3hQjOwsB70bChvlXx+MUTOegAsca7itYJUS1MJZTKpN7Nxnj2rSd5Ex0CliwivQ3SaEDK79l7rZcmEyficIVcVQfp+ohyu1F3JUgvChTODV/P4PtTgBUuJ8SZptFrnuqfd5vWnGa0gJSatnuvX05ujrUfRHM71+i4dCA1ue060YQQzF9Nwq9HIA0tLJCYEUrGadpI6LBntzBxV3/plqYNkl99E1Q5TasQ5gx+smMj0avlT0qV/tiLwBYO6xdBP4auqyZw4Flx3QYGWqTNKSY3Hww1KuKUDvJIuNjy6SMXs7gWts7mQuWCK5ibK51UuVMgSltqf/neKb32F2l596p9Nj/A5A6LvEGaO1jlUEK4OtIB/sRFUdct3PX2nsvVHJJWXg3hZE4ZlbSYNYehossVQc81Y4A0D/TCQsAEAz3TZw2j3he0fsrXQ82jOAWPx/NsWg3tlEgiwWmrRB0OqIYNpCBPqu88mAvNl5DGEBJjMBAIXvPs21lknZwBtcyu8OITkPr0NRpGS71AtjVQ10cHGJYXgQI+ZumE2B8KTKSg20sKdeayyYScu99/BJGwp9oa96F/z36RwA7ODE4HoUqbvcR4tKI24oR0X2nZFm4Wo+WUML0vRAcalFILdoFpgvMZGSUVCnHmo78yFTQ8Q7JmypBLsxR9BMFibPLrC6UnChMKny+Iomay/Cy3aG03ExfCIZicWAGmbhF0gbDwR1ltf1jVvHS555rOz2OyhUEH2wFPejoRPI+5l3JR85SaIJnK14ApGPaTDjeTXUk4k1O4/gk7DxU0+ndXspOFjyvaRmQowIJOMUdQQz8LXx8KqJ6HeHG06sqM198uVT4doWQ8+Y8cAr8sF+V+ks0xed4AbWC57afLqzoj+DIMaAmNd/yd1gqzxvBOA+hCYXBKoP/Inw3sIYPYUAUY1HbnAuTTxFaV5rlAj9UcrTBgWPC8uLYFHpv+BDoRpCSGEbxoZZamJRThHFhGgTPle/2T4LcnjOldo8AceCW/sYT7Nb1YA8NeXug1hQHtH8FvoGMCaIdo2NqIcpS9cp34KepmBw5FdyvZugSJfWnfvZRlhLrAuWjXPe8grtYEYei9NIcOGYjO3DdQGowClHLCFntdpAb6rGFAEpDFtz0XHerJRajuILLyni/Ay6LyWOOV60/H4z1yCrNfSiJ77aWGCGcZvsPlVNd6Ng511DVVyeexPQS5EhGLhsx60HAEp3tw0blpUxSysnv2W90erEbQNCLepqRwUql/m2MJOzasmi9p4q18+AQ0hNmz3ZVBgW8BBnjp7IltyH8Tf37QaZSUoou36gjnovXJjeWyvAyuF+aZHEWqr5fJ2Ls1AZ+n0pgwe0Qg+RDND8+Ipawr5IUxLhsFzoLpo9ma7py9DHrztTahaphkK651/cQ82QB8JWQjS2/mLTEOYvX1Rr4PtgkfRb9OXpNGzaUcGicDU31wB+bs5VUilTsHzGFWZiQa5liTkktVn8JHu0wyGvwcpGTf0JTg/vC2x+PVCNOvDxjMxT9sTPqspmRr2wB07L2CHP2rQ0YDYotcv3XlPabMaMGzUUBXZxhyRMQUljodErHshAljL1aFTmG/FMrg0EXCHQ3Z3ADnn0CImKL3HXfTPaTodPSV4f0Iajkdx0TXATrK/THzKYaICfDgYc+mW/qYulMT41+/yyb53/6jA/CDlgFHWEqN7YAzN1Xq8uwmoNyt5Mw8OBr9+iUwWZnVsDuk6kGnGqrWHCi4JN0jaYwE5oFXFo/OPCxD9Ni/KVFH8n/TQ4EopWK/xkbu2xjXDZwg5HQsvKw782gJS9n6NK3q5RPXiAgGetnFkAIwt4czK8ofRxGXDxDWL0jVQVPYbdnRNeDAgyYPLbtRDWGku/nL/69/RKM8buZGMgRWQK+mcBGsr2FVWjtT7ZZeWWXg9C8MM0rWIOmdvovdllIwxADf9KgNbmAkZdqBm9D366zRQQuomWmlWWKBL6LzGHlcCFw6NWoZDjm1yKZJWZbElBBDPQLSIT0Z+T9QC9T+BYQy8UtiGiTXrlpQfisHIZDbGnHWMwbTnOT1w4nzAbwtbvnXCprk5jnpphyzfMZ3nRoJ041oo3QFlcZ6R86NJk77HIpPWdypZx2O8Lszmoqz8m5gd0qCifnlszN5YN9m3h4kHEUUFTXhhGH7xxWksMREwerLESBPEFGafEqLNOXVAf8/7g99OOXX+1R8fhkylO8sIkyhqvJfHDadj9VMU3WGiDmqPh/PGysMicL2hWwRUzE4fApYeBWjlFzAc2K36iHkAAuoxJjDO5HsJxey0UKOyH4SYIqj/VbQTPg0YIUF3RS8zbFiVbTfLkSnxcK9Z/Y/FXIthuTEEJeNRW5dzOwM6VBbzO3SOzencSTQLHfQK7ZkZrvU/cS8drqUpQ3l12/F333dtL+0Rew8ieQuLvuryYn6dQqNmEzbWNJxJYtverzaYSUP7c/As+flYMhn/TFzrQlizqsQlwn9Z0BRYV8skT2IsewuRuf/Wv2YI/YkRswz1DOdvm9kQIyk4XT6l4L0sklbBTYj/48y2EUv2pu94dYW4nuwXrASrch7BPid+xNbx/kYFRTvGJK16K1QzKb8ee8nN838zWdbIQ7C7by6LVMDLbA3sIzLF7DalnYjq/WXTHOJuAxOH0sIRG5fBGtVcayFmPi1iNcBNqd/ZdFW4AvmDpXESJ+EQVEQkljYVd8OrmcS+ow4Oh5z507F2DNwVMGbW2/XawnjIWgGQtjlvg6z0V/Ov/B+ck22eUGaupeuwRp54xI+0VZ46y3azJdUoYg9NvS0Epo+RCk95YPYIMj+2sdB8Sz0eVuPY8dfPncNMXRo+d4OCMddVkVPowXZDVCTWT6dSvusW8jKLoljvJ8L29z3z+7xwbDVLTX5n7epgb0TZVKE5Njqk3lHXLpNpCRisyo1FhDkktZULbNuiOu9t+pOum3K2v8s+fKRlOxYplCMG6V837XW1fnD2pbuiEzhF0qeziqn5x3bdw7a/qmCEloiZfTjEiSLwk/xrqAqOYRSR8pNAZrhb2RqJRIOcHm3GIAwRTgfvbMGnyjF5ijQ/DOiW7CMuXYsFB6THj+0RyuNa99fFz6kvHHORuQaABXV6MSqoTfWJOeaThTwm8HFhmDglpmrxqOZq8sXL7CMQrw71btd1BuY97ylHZOcSHpS+pvNzgWkzXwYlQ/TBTRxzldgj6Fr/QwQpRZNqv4DIcB3JkuKla3xTGC7tYEAzewpZAKzuARAqysjKdCUr6ZryomPjbQ7Tu/iyeRJAZ9TRs93d2ZJ8AQZqyw8tyzxyxoDLcXax/L2o1aRCmNG8vRqFXDRqXMzcBM7AqS+ImexEksfvysqgaY/glmsvHMnERPRz7/ehsJekLUQFG+T3QVI3oyA8ELaceI60XpPkXwnoBZl5CmFdiWlIo22VU4MLXdo3elSKZoBkJoLms4KnA2IbVUBN2F4O588+P0DJ9xm4ZcQlUxAUxbp1V3g6HsCN2fLIWMyP/9zqhPKecrHe6RPGbJGvxHUaMKiTMCOtvBisQ6eLUKjOcHIO14p4OZjOLMLNZ7rIjUGOsEVC1RheYNo9bFsbT29/87Xmmz8+H4tmHUjeN0JHQjvsZ2Dpq5sucd+LQX9dXfWe+aUBzOUufTLFl6+ULDBTLyjcg4NLyHR8qI+0u0q4QcRFvrWJ4r4Mg7wpUKza4serzjW4rgDX6uwAU3HOToo+B+/EnjvyGumhiv7wD76RPcB83vZVuhyJRUKgXAPbIIkUwx/jxn6HZ2MVnAQvIRr+uwbrWhZOBu796Z6j/j8UV2PU1MAAvd4PQMtCfoDkWe2gUDAX5bp2knNI8UaKy3UshOTWS2jqoyO+82Y+sFOYuUaZ2opgVr90BWC6VEnlTVSZZUuStZ+IvZ+3pHnvON1qOR9aiS4AaJG+3YBrXWA0aU/hIfe1OfFRMvGMDlR4WJCS+A10efAOoqknjE+c8vS4KHG5RPlyoCSjqLPw760jP/4OmeUY781aLaGaPmWjHJ1sonXy3LYiRPWRFSCpZjO5szhTpwwZryHsOk6LQKsfBB3DWPU6hAwYH0qxFJZFTe5ktEGhpDdEtCcIrtK0pFODn/Z7ySdhDi6f1yKBSnpvfaaRt0Zys1ARYX3htN1pT+WEI1XlUyDXGGsUCdqFdijdFiaONVbI+ungqa7iHEXgUmZYaKZVH7/mJT3cbOnt/8AipYCI7qOMLRxCYEsYUCKW5aeimu6+aXDBR5NrTMFG0R2iY4nCp1RG0ouMVyx3bAodz4q2BJMWMgOFOO0InJBIyNwFgV6UP/5XAsWZspyA7IE/NGyCfI+fNqMh5SzFiAdQzXlqpkCLDWH5KW9cwc7Rt1ceN12SRC2av5KAKc8ClYTBHsHfxsA11TNQ6qO9FNBAnkH6DEMaX/sDlrNdwnmiUf+5X0FpOKQgBz3u+Lzayq5SMlT8DoVyU3UzG+F4GRIQZzkbuO2438NyFA+OPyyQ0C57bqzO07S22r5tPw6CXHEtb5Xb/5UcAggBV7k62gfGyV83Yo6uvS6LCEbVrnpAKHEUXKM9g6zNeHxylQqlNIFDfl4MN5Qs0wUybbe92rHdLh3mtcAYz0jRCBeyaAMeLTb8gAyEg4ZuP2cK8pjkkAP2boruSDIOUGpbIjZzwO97IrE9XqCVgyZM+wmgqS2kiP3xZ+YeCmm6+l5YbbaUh7UneeBnvBszDBZsXT0ElMfjnDAjNC2FZ/F1LzhRMqmEvyyvXovqUVzUW7S9oJi60ez739VhdKYckwqpzAgKjZfEGsDQXfAhUt5R3/73wGxJ8xy5biOsXjtw1Ofmni11wg5mkPDQmtGKmG3/hbTFn8yDV1vbthhFujm94hRa79AzmZZjwXew9kW6MPYc4CChwiTp2atxuYLW9HKEvhbTuSlWoQJuJiY+Z9VGhOvLL/3zOMFGRVZYiCTTnWl9P+YI8Y3Dogo3UAretfL3q6luuI1P2V/yMjqOxed3YV0m83jK/JZk9eCh5dvIB/1K+tRT+sKmH//o+jcIDeNv0eSQ8beDxvH7PpglptW+p8X5iHha6F+CyptKDR1OPoqLOmIYYyrCZpKQPA6U+7VoMC7VWHsr1R6BSIO0mWtpp5PZE05QREVCTqE9AIx2fHrbHOJ69kSK2ezuUErBe6oHy0wxt2M8ggYByQaP9u5An600Ie5KddbVNKSx3JZZbVA14ueyv7jMhJrzcV8j5SHhJeaOU+LvmgBwftS1ZzxOtS18Fn3TMgV4DRehleaHV9pPbyGd0rQJ430jaHSUVhM0pykto9JnV7hc1w/tXFLPLD6fCX9Frj0mMb89S7rroGz6Jwi+Rb5bsxfD5i+wBoaWDOqHN7OLglOEHry9ZO0lUP96P6PaLAoEQzbv4Z1ulW6KHzhJR0bqvYDj55V1cu0T/VTLefcbHxkHFjFmtEPhBibZsH4sZ2EeaPvKq4hkWKgKnxVAI4SHxJ9Ou6rQOw30aPDuEpXUYLDVJzey2jxeLmXPfjB1UeMLof3COe68JMRpTQy9cusISTHlEYCnv88uhOxhd70CrB/EZOr8n1G2iH3WV39GZ8Ogx0hxKGqOIz1q0MKd0wn9z7k2Pd3S6vO495bqANjMbKwKmfgAQyKaGNRKz2PQcmekWQ6hnCkstNjUIWW8CjNqt541JmPvZGHYuXG/ALL8WUO2fYDnTWAl5U0223W+aaw2Hlz5ubFoibtjtgMcfyMz6y/DEQNG66gxnEMmO41s2MT3BqbfKdnKKul+wnX/+C/xeyOPdZNllpfbiUwDuGP8aQFU54f8Z6RWXba9iNECRKhHiRIzWjdYpLf8IMhNakPUNq0A/ovoBbwPnRZvWJDEX3rEDjaOXXtVs9o5UnxVzZt4EW0ptZyH9SWITMyE6R8xSjeEG30ui2OZAJQTinTY84VdSxMG3Ev2qKzCs+i2NKVbAGD0Z5mw/DLBKpZ2LyBhF8c9eQlxpqqL+Pk0f3ZrJlaCtNhTpoivzUVlyrIPw8XkgCECtSx7qYRzxY+fEPjHovxWrZrEKYyFUEwZSGa+tRLtUJUjNvVsq7z3EFg7F71ssXmhWOUcHrpqpAIfZDHNTxGubVSC1K8t8I9BoZULLdo7YawHz5BPKvtYgIgC8bWaUTR83fIt6k9pJHt9HqV8ZWTIVR65HqZ7/v++1GAs7CuKp3m0TCGLFoFhcNDijCqL2huYQtz42at7hK4Y5CuhihPvVSDcG0vp0Nz1NGq+XOMK7G1FjdbAXE5NrLReotEt1qJzZ0anKJvEte53vpF3G/OHhN017vO/UfdY5r4a4loVB/yg5/F7YYj3JYSYnAPOJiobyN5Gw21SfR8TvteUuvnDKbMKgqwJdLl6jfDWABdASOj8+L1HVB7EBOHZjqsT4kdne9GeM47kfstfJPu763+fUhP8heLvKV+2/6SA4wov9N/RL3CkVPyxtOR8qeUz6m6oXhI+kcdkNdUac60auG51rtWR2XgI30UJJI5rU5WR0+UVI67nlulFsoZpo3m3WHBZOjosupRtCVH8eJwe+UE7QWEC/bKiD3jM5ukCITphLowW+0CmkVeWJTg2dAJOxiE+Z4bthWlZF44Ys+8+NEzhqbq5iYEtrCvo9sjnX83Un/VpjF77bX3zTQblcxKlKXdpVmlF5/xZE7X51lOI6rxtzc9jsBKIKG7GCOQ9fV0G2iCt73Nd0A0nIcPca5/qJ0wlwUGZY6fivORGoUIv5wKSoI3oH7zjr3aG0AznlLmjabyNsZJjTbY0u9HWCkj/dkSR6Pb9sjsC4q3ysHfQleuZ04Tt+Cca4fl8Vt8y8NixaQ1bNtlK6IhVENqGch4ar9aXF59mVYVvmEp+PGLhrDqnhwxQW24aIOzKJZ1lj036FWCnM+5HCZ3JvKEaWoLo2fAE7csamKoRXz1eogaJ6XGep+O+R7UGbeKhQXI6McGcPIFhC38uExYxFXoTcA/KT8nyTdwgiLegwT+QEeY/SzgseSsVIkNeSQZHik6mf8Dg0hxEMlInWpeSMGeGvNAjaIEUQ+1eTKDQ2GVl3LO0qsKU3WS5Z7GY+Cj30wWnGLTCX4VKajMqZyglt5bEEMWqce6886/QKmn8BFQqqxaTwGxKL0WrimY7ExDOjfYdVefZIg2QLm/jUkV0mfxyA1sigP0VxkHFCsLCathT0eLMrV6tJYd6dhsaLUtUxW5ByKhPvt2hce0EdI9BNwqZXMG0XtViNz8cSns//XJQRLnjwEyFPPR6gm5YVzYSf9ByNKo71fnmI4WdUTg6ENkdc9GrJknVJoMqaoHw0WOXTV+b+RQ1d5wYSJQI5tYjOEU8eyrmle8aq4hjKKX1SnbK93ZXUr7SLfKuf0CZErtyRqf1znELHpQQpsHIeT++SQ6TF52hP1oxVjD0Fw/NxOuIwH1IO0v5NHAXjJIOcl0D8aglqKt3qyOGr4mT3b8xNj/Hao1UP14fLVux5HA7GgxKSo2S+RmF5pUmNQBpGdY6cgfJxe3iiT/hD1Tmqh6r3gCsVlPwR7Ene9G+90FcmhFcXbRe5q8irOAqF9Okv+bf6TjOOKJC5tKQXEX6DNzc/6JCx8yqsdYHMwq6zwrPfjdMcvCExvKhDJVT7w8027k0SLUjkBQ8VOv9qI6l8M8c2WAMntNbkNZpS6mEcNOWBmjRd+FFiOKy4c/EhOLPGsRwWajO3kThq8hQuROE9pii/nbtP0zqrvGU1KnYRrE7h7l8QtV5j64mLZnfuE4s669HYDtfM9iKom0feOj2NkLc4VCNEH4wAu4J5QtbCED2yyb4Xt9Z+6EEzc09UIyD2j3mkSMZNPP7r3P3Ee4HZFyctWoK+KNEh4FVBVSAIBGy8fONalGDftGqghzMLkunMvPCA33rNX93J9seYSKggBbqgyoYCe/N40XXKcbw/LgrdznjBX6eyNoC7pz2vdbYqy4IyJoZzAxQvSfs68pEYRf4Pd+OIAeYJwLvMEqbnppikuUXOxxsREpt92ncjrAv1XF3xF4izVKwmQ/64TPrQgTi/jxAOh4jcufj7iVqUYLLnP9sBqPGfaDMA568uHsds0I5zfEDCz4rznlLrUi7O0Ojcb1YEtYt/cV1Y8MtBGd52wrNT8B3FDrP+zsyBnuS9I5OCobIDZCKs5YYtVk3bmuc8mPhG/0TzFyDrSKsV+sJ+qjtUFnRlcjmdQwinRDRwDraS0f8PIjlI21urtcRscVBo2o5/rTGUFELL+4THCHeYCWDS+f47EShvmUKlqVT+5/R6e1ug/fY4hPkE6OORTi6A5iNx5oZKy7r7ONkXYrNL4Q2KiFpCXGRqeHfQkkkOLZGqaNXr2iZBY8FRrJd4K3cS0Kdc/5AxkLDu4jOct7DJ2B39Px9SKe+n5sZ+9rVSPcvWuEACoL3ylmoobsV6tjfd/CoNZyzKjfIrdvecW1Ha/1lRLh2rs87Dyy/aQe6FTRbfyTpEUqXBnNaCHZVZm8NWewl1YTFA8cZFq9EI/Je307SETEarE3NhZm4dZx/rJUgzbVX5nqc7lS+K9gj1vqGo5KAt+tBQYiPK9t3i+cJI0N+SQ0KpDFMJfC/X7NsRfeGJGgk/4qKYXEPnyZgWi6K3WpONhWadEzWLObd3nuBGLrbctGDPjBQj+f0d9xxJd/Ah93RMtkc1a5Q8snVLXKAe02aWoahh+EHsB/EJ07KhtH8r5FzBqCYbpneWCzkLo6swpuLs56p2Q9D8t0WL9DGyJwBOc81ELa+Zr/w89X3PnhGPH3svF1CJfvDuVmLE7SSdCKAn/MgAQEUHfCLpHWJV6QnSh0xcJNLfdA1riP3+TZWDupu1HI+Rdg25oWa59T1qrczSc4CmZJR0AmCpwR2Mua4bm5ptP7i1+2rmf1RHcQsTBTUKLUV0SpQLjbR7lFvDiNp8xexVw0gXSLSrOgprA/dCkTel5d4qEaFqIKOox2ue0abSsirdfBpGFPlrWjX6eATr7wZWQcbDioGplQlZw/ffIRVS2zFdV3lweM2KL2OSLtwiWLjZJciqyF62eKorLzOtoxFg1dFlP+rWmMVTOg/f5D5slH7rHjAKGCdXf9rdoWFLmuAnQ3liZUfAehx5PkWGi035p8uA/kxYOwlNCcvcaJiZjyfv6fgyUzKCpPmT0gFlLzLzhRQPUzWWjmB7eaG8AMUjYjYudu3m9Zr2mrUmDoEhCaRc9wUsD5lzgK+JzAGPXkfVd2WMXFWK0Nb27fmN+J1ggMflvJUde/HEvvCA6Y035Lkh666K1OMNQ3rEUkFqbBiCCjQwPNoZAJOQ9TytCtspueRLsojRkAoQSMtVbZhJQzSs9FHe++FRjhqLYPI/DKtxV97usDkvsB7okdMtw/CoQI7SAzxz68r8HRMtLCnvALuadNvBb6pVutFSPjizhzmuXKo0vB50ynf3GSYfZMP8FoPgF6uwRKxVmbm77lAw37J+CeFmUQRmfe7OCS5bEr/Go4ScWWFxLrICpw1XYFpGR4uikfEkUqqbItZYTAp99SV3Dp33gGuffgO4ABfpG5xwrpcgKCuVDYA50NDuzLQNMB/aEemWFAIVLyPh+tCdHc1HtdEl9VKV/J7JiZZsp8nOMphhUy/8JiUknq+HPWf3XOWTjYAlsvKdEiGPf/I14QeJy7br4wsP8gPqsp93ZbOlkoePsMoob75bNoe1lBWFPJNzRXfH+DVMhhbAoBxpTTvl8/bSvag8Jh83TUmgiZ4ykp83/RCOukEQD15OQnwA54i2Aj5rgfy60Q08UjS4UUu+b2u2w9Mk89wmAysRLJWAcCJ5Fk3fUUmcTVlINbXpaK2MCh/ySc4B5kJUB9/VKdkbXEy9vdpcb1R1xEb15iTXIlnvb9Lv//E1iHayXTVCgoLx5iaHvS9ogl2rZ9cNLPTumFCcqeiLDZ/dhLdOzjgsNTNGcjLR2qTQbiIpZZPaf+GMNG3snFdLMMZkHrqD1A2mfCP4I2hqL2NJKcRT015L475nsXWvHv7l/g/+hWO6pegeSsO/+a5Jb8lJgKCFnGIRkDDIalIiP0y3SkPmhI/O2ULtPN8JOagNHOUCg1acEt3KY9fies+GBmGL0qrH8/H7GTfxrO8xvHA5+HVMsGNqhpbM9hRDPgHjgUPPr+oDxsaGFU69ZUwl/Kjt4K0zE2Q7ebEur125uqgmBKWZH1/vb6jL7HNXQvoS03l8dHGBXLv6b4I9eXUbHZ19V6bo54uJw+HRN0mDUP/XdHLvjVIRqypq5ZdUGgfBPFKxs2Nho6MYyPZhOVUWDK6CQxMk+hHKu5aFyNJJseDDvA2G51sVjDMifWxQGaWx2fM3a/A8UVIIq1dfGiT5PE9Q16yXjaoHPx5RaWl5mXQCBqcqxIPx+VtjMc65IJTbbxHg4AJdu93DZIT1z1MUyzIkUspOpwX78KxYCHL66iRowodAeGVisraw+r8p/5PU7FrHzcymDOFf9sWjIjC88Pt8nE0uNARE/qJU+tbMQxKn0pGV26U+b0nznYNiMug0+taCPwyZBD+/J0tQVjQ6dVvXJKtDrxOo6fqw5QCH/86PitGTDhMayPuQV+q/FmwTHTWfNUF0+VjtF9vJ/6qQA3cVyFB0NdF1T2zaJIbQcinc4LV46hlSzdi4jWzZ94MIgkK8XTSCZwTpmw7eCqIFSU7FfjLKpM4g0Qv01mp3MC0GHeAKrH8vwu90GYy0CMbbzpeJHlGn8wSsEW/HqxFZyf3xNBOfbuSzkFebtE8ctPOlKl69LRQ3NbB8D0eFOXj54ycdwd+MoQYbnhenZAz9+ifvBfpJKtu8yoeR/Uut0w+xm+OXNsFwlULM2AtDIrz1Cl/8ZqfeKM9JVMj4ijiLc5CerVF2INs9HPda6zIY4T/A/fwhvIKyuu9FwKUp0DvC2eqIMrpL0SRVR5GEtYjh7oP3EsfogPOqKUlERqU0Fa2GhsbtNxQklcIPk5WSRQ3TuN5fHnw+A0RvS4/7s2iP09anY9jh2sanWUdr0avhJQHqnHF2EhA8fg3LnAl1gPJBOsUy8MXDTfiQVXPRkjVSkI0JXwRxb4gka8QfCbW2EdLiZPSo9Yqzc2fnfKGRLwuP2ZRjNP+IISkAxxFMhEgX6sqvxJAGDqCl/s7PkYxMW+mbcLvEyyl3zMuiteJE/ck366GXPEK4dynGdO3ZbBDn9unMgtQ52KEQa3mZmk/H+7KSLizHYhwkviVYbE4E/JkFqiPsL9QZFEQ5rmaR4iACVvIRL1A8N38xaD158K2Wjbb22ajWuq2gHh1NnmhAm7bQueaUl9j0i3WsiLvydaOD5RGNoP++kW1cj5JHW3fgK7FvK/ely0dlFPAzrSF0eFSuVU2QJ+Ligaqs/B1fWGvbDDjbPxnL/NpbozhmEeKCMkSvXXxlro4UpKP5hR18x2sVoqIAx++D609LVEz5tZKeUcmJ3deEykdK48QmpsgC4hhm6FVzqpPaAiFlrtSY0+fRnmKRDd7LuPSYWESDL97FMNKDOoJmlTmibhYx02TnGUCldwz8AmmNhIWWpkq6D8TX+5OzBZhhUyU6WGom9jYscD5wyTungizrE14LBYpR8ZZrHPgbUjvUc4SHlBigmPWYPStm3xrkca2L+YfbdNqEbNlmEVSm+5pUpe44WSDH3t3P+Zbat76WWOE4wmIyHHnCvUpO2qkRLKPzzvJiqaj8jnaHGNEuu3fACaRbDppGmGuuJ2qSZ17U1PD7PMkLsQkI60PYPjkqKVU5K56Z9MeX+CFqt8O9cCLQgQ65Y1Z95QpKTbfyNSDgeog35vEpI+Y6yIZA2+MIkXvl57Qkv6cXXjGXQKjobxaMKIjnZDTSGwCuT+Gsr4lCKva58OvsJMR4GmrncT6dWia+fWsKaDDWiPfl6UofBVrOKmGZBunzN6iRAKIUYZRCIr0KT6zFIe77JV2w5YtA83Z5iOJusNeUPmTBbYqN3teLZycgsk269SJ9POpX2brdMCm5517xOjN6XLzCEO4wr4NjAaI4CTgu8wUWkHyh+OOqf3wLOA3fUnIFHHd+PjFu1Tz0hICn5qC/Cm9v+ZriWBoXmnswVunK6yXwO7tG+qjFZFCmfDOTll4dgWcS0Z8RbThpWLdqDMZYrUpq2i0cYq7gHjHB5T0Yi2e2v8dvGZd0Ya0QSLZ1lahB8tIBwEfwtYynEEaLJ/pzeSvrkI2Kk7TM4DyO23CmW9RxDdz4VHfdtI9FH6Y4cyMTHOctOojgkHm8kEB6pax5I8DYJg2rB0Yw7Htop8Kjk/pVD0LewR2Ddz/IvJkoMYxy51aeWZXV8ACAZvVn78wzfNwQKAUF5KQUhpwDmniFFWVaoDRzFJBs9p2umkNuBPuhDiph+CyUtz2XFvjsU5QpPYoNiFJhokY8S/8dUBnOnnu/rh/Dhzck4efjOo2t2jYY2wzecwfYbFBg5MgtT8lkLLAN1Rl9zI1uXtm0bJflrTYfyckxVlJXL6eM7EMzW3p42buV2f1XEf69be7Ta9W4h0ArnrU2XMK+i4sPrgEg7sb5N+1n4gOfMVu8yzub/TBim0mu3EhcJBVsmBa/4qCAbhwiMGBMAwiCYhxxrzfQxCFAU3yu6VM/U0IrHcn40mjd+6z4Cth8QNog5Npvo3avXFpLUVUbZgmI2F+kdBGHayaejE3wuNmWyQ9oqxvlmjan92wq17h43rq8WvyhJ+lGZIrv+u1gUOjJ6nmITpfJjiR2bm/tBBQkitEntY1OhrMfiwpTiRlkAhGm0T5YUyMGifYjlFYUjf9wr+NWRnFM+0FR38J/ZBuK6QnIUoz+UCyIMkccIWnztTyl+GSKAXozI9eQmUQ2nk42s+4xJMoOds2kdyIlRqt3tVDydJIRA5+J9OLt20cBZPhXUbBp5ftqRLmGNbi2FQ47Shfs0tRj8TAkJyffQR43AC+3U27MmMuW/U9aCaXeBTluCkXnSkzBoxTRVSX3Kk1d4/jq65acdfjoL1Sk5MzDDEj3IJw6f2eEbkhodr1JrusEde9/nA2/wwCcaXBsB26QkZxHpkpvIrSzmZgFUTFu7Og4oyH4jVJ5DuL+DsX6ENCnhShQqkbzTqvit7gD8QXqoNqf9M1UyLDbaBxQH5r2I9pJETyqyJqF3BH+JeThjsONiLzrBVeQ3EhFI22uLjt/IGnWhFkVkyFYu4UCnVddwVvmSrcvRhtLJGn43zf3VEm9yMDiw1wgt2AhiA14UEXL3fwp4ABLsnwZLIKnEUInLhBW3heqUfOmujpwYe4Nyaj8z1hecoYRder1QKV/SJ4yM/9GgfSPt1XQ34scA25BRIt9Uu2bLHKH79O/mo3MnUbkTwhOu3JnCsKbYyjwNxtY99KE1/4A7kmqJRSvDjJCwiy22yLDumUsRaaovTQyxtvbKeE3mw8taKud7nTwpIhYJKafeywSZIX4AU+xuXMcUzuTwphYuBDnUjd0PBphxQcqLniraA9rG8KFqVgwdUMx0zincZ9/wJEakSTeMIZQuGuiP8aLvylouV8BlV95hchiepLpQgLHrsBABmDK7KfnmtUUk3404KYzr2F+8rzokQsuZtbK+g0LUwF95Roqb8hqOJfvfAEPNB15+IUTHMP4TLtzo/PlQuh8YY/CBhiEQZPaumGGb63r5XcKcVLdqiwMVObAyVwt1KhRuyG/bLSRNw8OiHLM+j1ScX0Or1vs35OfoQAKiLeA6WM0nb3+6ON3dcIT+O4FNStktNfHJ65sGuZ2OPRwFqSND0FTL+RdRMF2aN87QSHe2ZsJlWcWkbGckKOXwD0M6B53NwJY+0b2JAgUJyWiP3t9W194bsAOQWh5cp4EjoqnrNmEe7+TSqsN0Tyb7KrquDAa/3EaNBksTET/iAF5PKxjWe+gb3Wuf7wjm8OhRRzbFp/UGVcToHGEYPJ59BhseRgqYXMHsdmB1BNSmD6zAI0FpLcCC3GBDg1BYHt9SbgP4bSfMFoZTU5AVWBux2tjWa4NAkZyFF7UVQafjATC/jZMdU72tmHoPagsdRj2f9Zv3Sl61ZQOD3Fm3LJ6bYLhwxs1P85rK64XE4FGxRzk2VQLMmJ43W140OEIOh3PijhCvW2WU9FxOr3pwq5hu6Qm6+VgroRmU3vM6MP89Jx8vV9VzBwlwWtFCVCH7gSp7NmeHgrwva776oRdxyu/dO6jEuDYgCT2cknjlYtKVtQ9DTgifySm4hZk+fE9KudPZJY4o1zWuEMTvDEuF6Dv91LGcI+ig3Isx2q8Bx0vNMsMpphAGxy4sZ3EGagT5E88hAm1e5zrHcoPUjCZ1hUqvMAuLEpBNOUIctSWUwjdKB8WyZOas6khW7/bkmbFnipmHlVgdfLXn2lNBaEPdwdmA+31UIN/h2Q4t9JkPvubucSnkuOn1tVCD0P4loCRI83fcvQdM8GZRJobcrjAXAiQve1dBV8VtxGkKL0n2gGjdKgk/+HD8WpACLrA955qJwoGxjdc1l8jcuhs3qi1UN3DBF4JaZ4Fjz9tKAB1HmvtVnGuvO49bC+wgDcdtKdZsD+lPXxO9CaymwfupIn1wzka4N6RTnQ3a+11az6dVdzO075aw/pMKMJuctHh9BoznIlG/dufqDXcQTJHZmZkage6YNHyHeUYhNTCQ4/DMqz4VX1Rssm9IfOmTWxEAIBnxB1QdfGz0SHD/KIbjOIMofruyTRN2P9o+0UrGQxwiof9320hhQ6o2jIGtb2k+vuSDCC2ssidtn6eJOQCd+lsp17QCt+rsJArxEVnwSnAc0A+X2wpTjKqkBLLWkgZl4I5yXZL49ljmHe1xZ+GSb+f7u2mtcYRyMLRq54GlHN9+5dOIfG6kET6WBQH/9px7egRmjkH+5xShgFpTRdiP2ROD1K++e90owLK14ebhresmkJpwppOtGG0h37BHsX8dE5LftTXDHHdsPyawZTCJyncrH0QE5J9BXAS+8Ne0jpoTpU+rJL70anqAq2nGqJEzt2xZOl6+d0+pzT9Cxim4PAdmEZXw8+Sw2ageYMtKBRub2jgRLCzej2qkp/r55SUSLsWQyr76ctVzfZUIhoATO7g0i/GDJI/b4hEcAJ5AvqABlIN0h/7Wo7unBkDw51LhxfHzKRZHoNjS6YQoSrt7RET5yIHd8BedS6ZO/fSI0q6QjThJRAzQE4DIKh4zCzIm2dIJ0MJD5Hrm+KlM9k4REDDOrZj+fkcKTQ3p48PMNRv0cxibBo5i6IEYEYv6lLGhqGfyFFv7n4zcqdvniq8CdA149YbLHZm/CYYsWvUZsOib+VnZNj9omNXQanI0gw6S/gp2QSqbmNvYelkTDUDSdAOXNJoTdB41YGB+rfcgT6flh+ti0MPeDYq00EofpJ2UQ5CL457zsBTyiZrp2BRpYHBtLO5BGYdKewSv5ZKcNi9r7xlNu6CDcwMomXuN1C0HMytvqTKK+RBh7/E7KwZMD0o4Cb4UXExXxDrka0bAX7IW2rknhp4FsqKggOlDYRGiIGYxpjEq9diTZ802UBVTtTvX3NZEcj5e26PvglC+eH07lILNB7+XeaQWMN6CMQJ4Oh21ilyDib2oY728rJhCeKE7ckalU6gdFKX+FE8YOepAm42kpfsYFvQbDHMyvXR+4qzkvV+kPgqDjQJSCqB0V66i89UNc4Yq1zQAhoDoQjajU1awPu71CVFClZCs3wWcCQA2NOwpT6z0mJ997hihAqlbz7KT8B1N7q4Dexewad+dtOg6SATzOiUY16oF6I7XZbcCc+Nl+qJeX7HlIbn817dpbq4jViE77JsEXmBTHhSCVfalA9MIppG57mqe6bXjeINH9fqHPsjS+/L9V2ijvwk2dqjdiSPwPHQUBYvEPURhRwn12G/6txuBFmIepkA3VY9HAfr/Kpl2NDGd6+2RNJDbu+zgk2LGihxg7BGnwu64w7e5UDgosaECtyC0xNpTJKE650LCmMv+qH9j9xFNaoJgQP4WsKbvzmxiHPKvvbYUHrHtAMxzo2/lnozfShonw634P68SadBFIscDjTpy8GHs8Nh/WNIJYoJiWKQ3S4nCzMktP+J2+F567s3ERLIj0dfOCqQMWq4+gy0fAbCLtyccMxX++kUI/XpI9HdcqaMiHVQB3+rQ2udGWj9h8U9HFzUzln2xpX0e6C//olt/DTcUpC3L66bKnoTSD9RMWgAaoyOOlIIUBY5d/C7xqnyImm76o6o/9M5wVvWSe3ug/IJuiejiCKcsFAyZOoeLoYNJvrDYacbVgiPCEpU5Pg1vNpi266MFmj46BCDuYwQnJBt+LFvAWl2oS97Wk+lQOgm6G5iita/8TW0VCNcxFBPd6k6AC1v1wBbK3gvEHV8Nd77VTL07f39EYQrcTKQFOWpPRYJlHhfPATsEWWgkm9CmELjpOltGaHcq/WGDKfeGg9gkvk/rKRXSkmHSbzsd1+jZjyXLGgBSDLDy0wBATzthTzdVY/euiKLy6g56BzU5YWDO0YqJVIKt5AtJD972YgywuAIxluJtDtmS6V6LW5AdpbGlePpkFFSJzjN5GOqFFwv9LIeuKCnfLhLXe8fRNHCK3NQAYVaHSQw2w8ZSY1+rKUrsYTwS2KkWJe+XfUVlWtnbyrIPh7iBsS3VOwyQaMdKUaLdIWJihPybH+EwJxkwf5vqTCVG7F1iCGkPDaf53PVT3/6uB9utXbjc+l/+Z3zpWNa3C4mlnttz7Mg/xtcG9xUAcnPDn2SF5Ug41feU8MMBhX1JpoCDIfR5ALTNrqME3g6sIABETG0rIMMD8jNn83sbiAvNsUqu08ZSsRZff7UciplMEeg892cXlQWR85tlL99WnfUgNsTjG6+kPeezTUQoWA0FxzuS4Uvq9tmA8RFOnuZi2Dnd0zur/ETi8YXxYw1kOMSxWlQkp0TH7YgNg0zGfVTMJwiIYPRHPPgccFQyUKADjXREZImVIlJ4cpQUIp/znv8jcqTB9+XrUYT4OiUwtar20iNYv/wHHzd7zATxYHT1tt5pGWpliqbxedAn3fqOpppuKlDP+pjzqZAZ0+y35KEd2o/BViXo/FxYRCZJl1vuBkFtsRMuqrSJFF+3d6lLOw2/PGAqxuv6Pg9SSIPTAaFbXGa0738UTbRtMrKrGhIAxkYQGC02u/U2qt1H9uCBZ52pmTsUPfGHt23mLrTr3F+GR5ZkZsjvtKZw/rqYl062dHh51P+FP3PJGTYpDo6DoEc8T6iw77eei6ugxudaTYO1B2obFdjdmUE/4QEUqp4nATIClNMGhGO4zkpMCjMbmEaA8Oi+2LLRSDAOM8nx0x+hUYeaq5h1DpaoDrf+qxmghxRZZD79cob1NE6jw5JPFUSw855HozM8e2nfb0fXRJntol0DN/+L4+wye49x2m9aiqxgBxqiV6kdISmmC4P3f8BMD/bpS49RCiY/3fW+u+3f4yxGAklUdd9z1hPJVn1F+DPSCtF7AbAe4vy/z2hEH32jUtsTizO31epXCPaTNTC7Pb2HwFRDSHcVzO+QhCzOR+UX5seZMGdYUsvVq1QmoTkxlC8yHbq6vJceUtWwd0Nm6tExkah8NfQmTIXKg+NILJutexypFXCkpAE6+A6T7E0lmnM3hp6XKR4y3uglRtmBUeWVEyWMiv47iz+RExZKN9AebX9/4al8LsUYC1mYRQGJ4IJR5wXaSTceOpdvq7ATc9LHfyJrKHgEI/TCFD+nOYKRd77GB03n9kmMqkN1XTezLNU4BKQ9xMnML5pI4U+ebQ1XORBQV3HAv7jk258z8V2xAcGKZIRvIbtGxVVqGviEIT2l8KiYzFY5wj1f/bL38ThkJzvFPkC2as62l0Ye6tDNT6KEvOWyb0CvC8syI+9S9trOhwk5VZnCH7FA5zUldGQAMAgYg+IKC8IkEoC+J/CMzC0GJCXZZEnLKBhvuU8LVuzDKaZPat2g/10ldCHp7Swxi6R8QHuTMkiJTvW17Pq3eieY6ryxrzujTKwcRwXjqjX2D0fz5jZ3vkyWxXNfJxjlrGdtp4ehphU/+BcDi+ctx+Hl+0Xaz/tA2zNHa9oiV5GJGmcbiqo8/w45oMIoWjfzG+W9Oj3B6R4jVjqpDmEr0T7xKjTkL5tjlyOMVbLStxRd7OLvc7B39AYh+Ol9qewr/AFDSADrBtb0dX0sxmm5r10XGh8TvakVxa80V7vl3VwPDTJQwkVSJZjTU8Fj/tmGKgzX5kmYuMjEoP6Nf8ROpLSFa4qrxeTy3z0HM/R8v1T5Y4BfZjniHshwB+EJ3DcymEdSBlWGFBt995gVBekKCZL+CpJgXvI0sdwQVmHcgJ7LJtZIXY7NEueJVsrd8rWhmwdHftQFxXUJvMrWbm5Ous6Ra2/r1eXGbwtBm4wRfbPRbTRlRfaXYZGhoeD1YJCBXPvCYPphRgMttmUccPCd/vGHUNUfArPE8U77YgbVwf4tem9oUND/nzjpz9bMaTieL0VFuH8QsaV8V5kTxxv81ZIQvAm+i95Ymakf1pHrQ+uW/cq3lSYWbQCce9qokLYRwtOp7iXztUgL/BWRsLxNOdNbIqiKUymcf7zEJ5uv7ViGZ8Y/XHgCA7v4sDgHkgt3ykpeOtU9q6Eh01Xu8r3b8xAGb+zbPEvt2PXASFIE6ezBR2nS97M/ZbQuhW/3rpPa9SArzphi6KYTG47zu+WA90fwoXM19/LUAtGyGpcTkRpl4jx6MKE56IQeA3HUeYPqrivSr6rPFQM24+K1IhVrAHGkjsYRz0hPbyu1OEpx9d/385kBrtFjqh3oFkxL0FGM8KSBcB4S3ullydRPqYVmwiZgx2d6gYkgMuOJ8t9oT0mxm2885fvBE4r8CE+BpCb5mms/KPBy2+qQ3Ct2qkcBGfbrEN3Tt0ybjyld7QO13RZBioUNIpxfS4McsrQvV+ISHdKHOI4F3Jxp16IfbjzH0IH+EFMC0CsxYhWlcJCMSKoK7Xm/Bh4TkgoHM6uZps/TKghhiDy2Gr690Ztzo/4o1oI0BVvHKnvCzBNaryPcVZj1BbAESTS2SJV4xh+YP8M6X78kPYK9SWbhogP/80heoaMk+7jGhKSCTKJT7nb6NInx9ZuVuZ+e4pYClTAevVzfdbb7F7DlS8cc1y3rX4jx6WcR2z1dThK/4/dmwp423JauT+AVQudvn+asqudjj9B9bm2qwmz7MErBrHoBXPsFOyMoIg1+0+CBIUHT/+BqZFwI/hxECOaT58lYbXFYyAqS6R0PqaW1S769l8dLi2doyKIcQC3dwxn6JY3+Z++G1wXHsuEf8cM6Doz7xwl2fysDbzPje40u861Wec2dLQlJQKtAqHSvmpcLiWzlAoh1aFqMkg+nQGRmuI846dy2WfK66fOIXZuBHyyZJaCrlmii6m3lOYx0CwTReOwbxvAAUG29SQXwog/my4qAxHY0AaSeOZFZRNeOwO577c+VR7XaipJTd69oS2rBeM6ZIL543GltyPV1Uz/tuOwMi5G2gRsH25Arjvvi3o6mWe/dnDMYIN08lN4qxU8gVbyZ8ZbqvE+oyPYXrXmvwPTy6p3Ek1cjU4VM8btvoz567o4ljqcKNQQNXNNi/EGBzyqvPaRtjpnQ+56ipBJwkH8uvTs+Ne/Bcxl9n2SUWWDygcS/NUzUIhEzuyfhCLCPlYTxzLPqsrUJzEoHNSVJey//5zHW6QhiQR8z722bzOBds3Y7wBNE/dt9M8JD6z5GhGr6qHp9tlRr6NQT0nrh43atyXw+thw/y5GMjGNlXFv7V64SRruJTq8iwTH4XNYWM1VnqhJA+qbGxuOIVqOENg8tsLE+3mWLqE0qkPnFO+VTuFLyMy15ObBs7KaYbYM1vXgDv2j88sOHDuV+Nn7u0MLrCapKewWx15OqSkwDPCsTZTWenT5G4ZduCqmZQ5PqWyTWVcbOz/7GTZwf1FIn4Uz3CHCfU3utqHeWq37ATgzYSVnUZXoyLIdqODs7iUDvk7MgzGknv0FCmGVpNb+CSR3PqUzqiKrqL2cYiEex/9sYoTP8GEEPeDptix2BxntGWUWtKvtsNWx9+4FvECtgRMSozg1gpKlKRoy4jso8ZdzNLBKwDY3bdMkqpBuaFrbHPrBLjdpuK9Q4xjsPoHUzBluoIz+yux/IP/5hP5EKJ/St8W+OS5t3i28sEGc
Variant 1
DifficultyLevel
628
Question
a is a positive whole number.
Which of the equations below is not true?
Worked Solution
Test each option:
|
|
2a × 3a |
= 6a2 |
|
≠ 5a2 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | $\large a$ is a positive whole number.
Which of the equations below is **not** true?
|
workedSolution | Test each option:
| | |
| ------------- | ---------- |
| $2\large a$ × $3\large a$ | \= $6\large a$$^2$ |
| | ≠ $5\large a$$^2$ |
|
correctAnswer | $2\large a$ × $3\large a$ = $5\large a$$^2$
|
Answers
Is Correct? | Answer |
x | 2a + 3a − 4a = a |
✓ | 2a × 3a = 5a2 |
x | 2a = − 3a × (− 1) − a |
x | 2a3a=23 |
U2FsdGVkX1/G7HIp6nwX9PfStj1EgrLVSwoeCZAHRHnQPxupVONkzF0rOV0ShGwrYnPf5DSV9eUes4vLUUwwgVXyEpElPptMdAFOwfhyH4BHE4F2OH07Tya83w9fRbgBdOmRK6JralpdC6OvhT/fWZhxbGkABOhoTTb+iDdeDQXoXhgxFX5BpLzq0OJqncvzBH0MiqVmjcVjm3AXEdyPnXkp6utf+MPmD4uqYQX+MKOvBglgxGC90CssxXVCh2JxaADCsxWw01SDhp5D2t+abiu5bwGS/QVk7B/zF9Bq0iq9Tlzy2F51qAeclLteQooiW/qTvRHOreYHRTJPCF2mei7IZ5U8MAwnnq1ZdpJVzp11OP49cFZOF1P2M6h3fNusyJLcTy/wbuf+SfBnmw3PN3ddr/gSlwzHLJApRQbEHY9suUSj0gHA8fgQ+lbG1WeUGKc2pF1FYoRCdqSuj61vchE3v5LeRA6RJ6XzabdxJr/PpiAl7DqV7iIcEmtX7OGU3rrWxZaPcVgHZg3GhivXHMWlM6D4ecIgZwK93lZ0rZMKTOFRyooT1ccMtgqBOH5ISVxIDmCfB1Pt4RsmFs3BcSXLBr0CIrQ7XM43GEIh/q1OrIt/WX4fcupwK3Z2QtAEsx9NrlNQAkGebO4v3JWpTgZWrVA1Q4Awd6l3tqfOVTKgt0L0pqkC9ALBtZRuLgV4ffCbR5gEiyhTj8bMG5KBG6RztcCfEFbMjgKvwj/1RmYrmGyhylOMA/l+iD0abhrfMjh76XcQ1yxSRUqgidxEnmPR7FmKzvBXCxo7ArLO5TrjbIhSv0dJXCni4SUUs7FyL9iJwKaeKsWeFkERe3ccZkLqVteitAPvWJ4uFiv9uR7O+rKOxRXi48atcZz/u26CgspQpqPQRcf+71/m00GVI7v3iN18E9lZQRzJEihoOsaVNUmANeMEvV9mszMIL1qk4Y5Q3fJKSaopuCH5hvXA0kHd2WageqqnB/VJy2dtUlb58ZhJ0Ry2y02nPY8rauehtDbOGekUn93HtoEz6SrL4837SB5RjBGNUBHCebdIEWNGy9nBX3kj3a+bfRFhJlCVbXlHi5eGzY/yr8NUduBW6MRmn93T28QnyI13HHJGBHbHVLG5PoVn/wdNoLg9beiu52XCaUz/iullrZ0HMsLWPw+4PTj3ybuIh8a5McQyrXZGWaKw0bSnmbUfaykHb6GumeP9V9gUBPd95rTPMr0P3f04dzKWaZCnQrHwmV0Xwdt88/TLnyRxDu6oe88wUGgu5mQYMk8Lw/XsgZhS2BNlQYRRGGI7fIKWNJU9nyqlL9Cxe66oKQGAVvvV3YDqYjSKq8xHDrUoIKR2YlIUNoBCbWCEngE5jOmCSOThBRSgDGniCXx7NIDrMrOYW9lEkAp3BBb7bt1IhFTDQ4+pDv5PitfN/8Tvgo2IQiKoOX3LQCteD8ACntZC1irMKncsFYOjB/hzfAtIaI4OG2S+tiw70UoCBt9cWm1jsgWPLIj5NEhV8Dx2NZrHRTgTth5BO9T7RIjRNcC6+eKNARInAwDzn10Ti/e1lP3PGDNzvHmlWd3pco4cKIE2efHitWgz1vz7WYxTO2l499ZsPZuhsAYVJMIQ3rlLyowpPSP4LD6TwdXFsN6WGadFvtWFMrJw5QSSEWAzLlNASZ81oDJeFGHaamSOuM2MmAxCKIbU5+ux8do2gtDkpzr7/1dOwXCInp+fvRtAQZ1apPqk9gEXw4PDnixzCpEZVSyMCI7wevxU83RETJ1qyGZthv0tckpTGQA3UomEjq3cndEgDmkYzdTi6jE6pJU6vu4V6bUCGQetnoN2Xk7cnmwNZcrP2+rysecJQvpJttJfNuyVeWeIvX9IlKVBAcv4IYH+cl+EWQwTjgoeMRDiXuckD2ew9NxqU1nYr7Eb2ZtIJp1ejIvKsmq9uZAwzazXM7JGJc6k7MatYWx3Tj4RoNvaORHnk5chP9XG22IuOtR0ZuluVI/dPW54oWeEVriFcVi5gRbX8RIE8bEmZEZVUcxgHCcJL7R9bGL7359oo4GM84tyFXq6214MmNmq/Uz81gJe4xgzEgK9n4qebNaXg4Zi0U/SMoYEqpYahYNyQg92AoDZc7+FSdKGHg1NKa55CNFAGOdZN9RDOCNnf3vcRhkppgzuVmpYddQv8EKK4YCETMdtBotwBpuxeyoOfGvi6PmsKiaeseSqnjRUIEW9OXeC6mRnbz+M/eL16GXThaHO9t85knvy0wclyWqkVxFofc79poxzlUpcuNjqv1MQ7Gj5rOeqbfhATk85jjt5XCCzPug1JHEDzjfEIYtmyz3wnv8E5YAnCoxDpW33+LlJ4H054n1/jdfpqZ+QtwoGKRLs3p/R4UsKRVFtnD1UJsqsH+IYYdSBoP6RKDoxi+gYJRs//2x65msbM9NnFBWs2xGBeE+SDBdTNy3tycmDNPrhQPm2eRJfcbkXigYwzQM98Fb7DBrN1s8UgGywPrso1EpXDnV+wD6ulyIsHUazEzC778L+Iztg7Zne5fjBJ69PREEdPgFcDQWCHBZdkSDVSebJSRtsImBFJI3xUJiWF1g6NYTflGbsPX3M54RUNOmd5tIUywNMcqpxCCOG83j+BxK2IuatTw+lVaQqrfpnYQVMFLrE8fg8wXuod7SR1jiSxfkGNo6x7Nb3O41IypIAdVwPIA10wa7QbyN9XHJVaePuj5xL9BOg3vnuZHA8L7NJ5yk5r5V7f7GwIYCchZhFBA+AsMlZvGso6FoQ4aZCmfXD710FEajkv6ip4BmRAPr73cm0SSPtiGc+ceyOxbCrOS98FghjKgqlNhSyIlvDjlKQCLRgqbudqj4hNWx4P+TqNit2181jIP8O5oBOC+fvdbGXH/NDJXxjoxwx1aybwrq5E/G7Bbx8BdYaTQ1fIawSQs5npjdmvRJWzNhWKulO//CoSMa6w6AkqS20PE+9DNtvUpoeHchUxp17LfyhmFMl0eWTNWgymDEwmSSy5OWgmWHFIZmjRfKO4WaksJhVGJQ/7Hidhjt9Y/EOyGGUdEBJX1ECHi+nB1jvT8e6AiB/w60iYZf3sCOuETuuAr3Kja9g1YRsmk6LgeqVGIB/iJzfaBFVy9+sLnxHzqwGknDDvtbDJkucp+VewbYpPCcbTHuWO8HSN9HBw7HT3Sb2s3VKPOb2QrDkExSUj/SOMLV3aKqSJ9aP+D7xRuBz3oNu9u/JEEqlcb9PoGEkLklDfyMcQcESde+qQvNlgP7HVobvSOzZuOJCOHBHQrgC5PjNANNgkyTFhkO4nl+1nRoc6d1Uzbj8MZ8JnZZu880rEhs4tWGwvWgr2Ru5ZQzspTsZ6EvNp1jjsSd92lxkclphmeChF5whwvQxHiDA8aen86wTuPNx2adrp1cyoHwR9QcbSa2A0TuJOrkmvejlfK5T0Q0BJnOt5qbFjctBn9Knk4tHooV0XIyH+zQ+M5Vy31sJzKR4zD/wuGNApjRSlyz7OtSLMU0cuE74xfF2wo3o/yCLynFCO1qc7XqK1EkN6i8KPD8HACXSE0NOh1asWdSqXk97CMbB8/ryKat0VKmucBUCEEgMaalsR2truDjehF3Ltdf+etyjafsilfi12gXadOdmdba07CdmVONg2FfKuZ9wi1Xb60K0t5468K+FAgvNUlhCaJTHyXERVrMfDP85B9kPNi+5FT2Voa01WC/E0NcQEFS6P9yMbvvMln/Nfd18hZowh5lfbQk23GECEdJNCREeWUxuPvDCeDsZVlncdHE60A+3bGPIFgP1Pzq5R3V0hCXJfDe6FQZwwq5ZLYzr/dyWYEjJp9rsZwFiM+H28q/6r6MVptrw9tRnLn8POfMjkkzaCXWd62lWI9gxng+HtNScIei/E0m1gIqkThPa4UlRQats0lAfRef8KwsRi5e1EFs0mRDIxxnnzI8loRmuTOoJe5c+JYdDLpRdLVdiMSf4XcfsWG6/Nu0Bur5t4BXtYq3FT5cHA9EoQiK3J6srX/9jOR/Y7agLc8BaL5FEMbQmmaEDdDFDLRGc8Nh5qOJW1+h4B0ypRqbxIX9MYIWGlpFArC+ej26G1u6OQoc7jvDsa3aby5xD7E2Q1NBO/rvxNL+xwlsz3Q+Y30wT7cQlDbF4aQ/Az6mDO+qR+0j+AjxDBYsnKg5aHjmZaaVXCwbjOd6g2NqZVkTri11VUjQOzfYcillIqR+1JxWIUB89v0s7VNVwFpPCswV1u08f6P6VOJc1m+EJbmq6KuxBRWu5eZHWH547QS4B5P91z7yH4diPkBBcCsMNeNVchtAChqeXdWjRXvYVWiMJdcK2lZGGifJlvFE6Eirf3GEZOg3ciPKtr7nVVXUBjACjDQH2kLueqZ5iKbcN9OOOjBEFr+6XpwEEMHJeftGyP0WpgbsBqqtchXmfLNUIpS7hyVUSheR2aD8UQNAhacvi6POV4ZoLJMmmlU/g/ZdzOPulXv3gpQf2bLiaSvlVZWxdtKMXdEkqG5mauevcEsMsh6nl6q0bye16ZeM+DsTkOec+OUtrfdjadMDvmU2xmVzFt7HXXpR+WzHm+I1k6igmy5bhT1GxB6C10oHo4wS348vetYtVEOc966YWhqp3+h5WjVR2sf3To7n3Np4pCP6vWPYYnJWC5fFIa8mW5k4Vf8y34XU9hlHY23u4lNDjSvGgVkPEC+KOUmrzLOhNwL0EhlzFHh4RAhOGOvSsu3FD/F93k5NW1A1/YGWmSvTlpJ1kQZ3aL43SKLPj3fz/fA96w7oNc2E3O6FqXRd+yyAwa1pHnYjMk7gBEVjVZTTTJbQkglobsXxtgPZ5kyYAyuccZ9gwjdx1HEEo6VDSS8czpftjKHFzBHr4Itq9QID+lsQkCGeiviIwfgbJx+G4acwkPuUZoOzMXfSDF2XFl/z1PEtTa6nF/MvDroBl4wysGtbKUZHlMEe6OmVCZvSuhodLcm00tYmt6XuGBjcGKZcYt/fJ7WBGOGwiQp6AzDXSl1L/QYSSfifsJehxWpQf6QTlf23VEEL1KOecyEPYss351KJjeaOwKcYvcwb1YiFdaGfdUoiNE0KgIamZdg6+0lPgHLMS/TlBuSx+1J1VEwHiD5U9vyrqNeouWFsbbmRO3fjnMV/nmXMcWGDoRwtvAO+PjrzLKlucDz6y92BYPdZnINHQ9aQGIG6xyYkuCtVULLHKb7UQFCYIJIBT2WIcwc3HNmhCP1/YCm5BBy4K7TaQfG6QHDhJWFUJvuVAVldxq10vsTLXwggSFluRrK+SaegdzEtoYwiWU+wVcN6chUFF4WWOcQclKofBvPEz4qKIjFQVdYJnchnuDWL5Sz4zI4gME5+PZ+ZlE3/gxuTgs5XmDYQ6LHkkXjThgAyw1Aig3H3cdxCemsNSols9D+OpUbIzkETlSGJumAgWlS10CqsMW9SQfkDu0YWu0BivE2GApYwQOJtJe6qLS7+JWxBlSlxPeLOoZwn02L7Rqw9Q7WI7SkFA9YreO5oa7R6uL0s8CIlaf43MY5bOKxxFdTs/xM0dggFXPfzx2JD6fsQFT/ERymhneo69pFuMCFARqMfD0pLf1jJ0JprfVCEo80WAja4Rg6p6utQ4zMZqu5AbUsu7V1jPvhc+x6msTqr1Gvyiogjg8AjIBbm+DiBitQUhKBL8zSmmNv4nBqJXvjdhcHHBaUE1AmgW01ymNwGAHE8QpbfTRdJr7bJzbb6oQOQM/GExVsrUzC7WjWSon+ynmWDdzKxQyVpvzCgxgeuNFkTt0/+VPgPf/h/VXRUzeV8nBp099cRmXIAYWgsk05GONYa67EmN2rOzf+kZvt3cphT6EDJjyD3FlE8OmGjbPXVaIDhfRPeYdbSlzZWWzRzTBIPYCQfzuRtFKuANh6AJTJYAiuFEib0tjyPOKhtZW5C12C2w5emHyOGRuWkNArexRtCq6cmVjNrQp3F7+OHW1AjFEI7CBnpHgBqglwKW9OFrGCMcFxb6w0r/MJUYfn5AZ0kW4JQFni7K+Htv/osnFzgKBEvJqgPhgQUg+QSXN/qp5WWnLqhirlDhORkfzS/Cz7O3FgiPLsiKU5SI7iM+soqepIq5132c52Ggu5c/eMuoZuVXqmS5udBejOQQe85u0gBmqVRB2DlGIQSwDzmM0JDaJkchtcq9eKi245065Kco0vBe8mno0Fo1Z1o5hWzlwpNGUoLFC4zQxHQ7KWWtB9do50digjDwMWSSl78unAdSdUl7IsoFpaThA4jTn3goL6QwhjpYOlb4jbjD491mTdAkfg6k/9QV8chRd5cZ0dSE8z+BgyO2sh1uj5ERqftEfTaF2aR1VcsGPazG+RD/x1nR/QEuOUCu26WIVOOHbpd8LQubYOGO+ilF3g7QWqvENRwfKCKpfkHY8VMOZF0g7LleJhkdxML+8uFOHY/UJ7rdVxLQS4GHU8USIzxyqGjAJrk0LkYzdwHvG7ZfXdCOh/3aykRvsyx4LIfOoxZ9+FLQhkkR1pXwt/WEKtBmbh4cN2df8091mUFox17haYsWnTIWtHyn6MfGMqLJ/jWyl9PTesq/YmBrXCOK6fm1oT5s3A+kVoROFYcV/37403LGx3mDElzDJe37cmjqLamc1LyvAN2ROcLBalVaizX7aBCcW4sk95tc/nkNj+TVFBk8G3m1I2Q152NsA2k2/dRgsuGSdxsWGZUZLM4uJ0d9t3P4gdOlF/xWY69ticNEV2Gr/rmhpl96dHnCdLjHgCeI2pFmdAS1jP0bDTR7scX+2kLg0kV+cLq3gWGcrczGQImQV2REMugTQNeWI4p1GNelsLpx+Mn8lG4JQgCdqqAIrZigBkqfviDe2BxNWslA/xx3EoAGJZHmM8/lpyzU/XWvbgQ9uCLkD+lzHtRXA+numaXPcvpOoBAJjkWupF0svfgbnBRbddE/Q2jjVT7B6EmhPxKl0zSrTxiGzBknoynhmxT7b1ARBjTmxQ8MvxfRwa8KvTUVQBWsGiuOmf1WW2W9wv1X42DF+fczlbaSX/Nh3Sg299CWCT2PWndbDCx510bWHA+XNAJ8GroT514fXIBkX+AkzA+Jpghm4rRMiqEJgJ3x9NWcFd32ilP7gMyd9b0nlA+vPgJ/KOLTAe31EEb7gy5L1ieYfwOd83CpHr3pFrA6tPIrZBg7E0cjkFXxPt8vjprnvfrQfOsU2WC+S1t2ABNNuGR/kByxcwiJimi0i1GbD4lJeOf4sgdsN4f8HWcrEXy9nq0C2RGpMMac3YSiHk3Ee+A2if7anJIWcFtQSWfD6fQCzyP12eQyjqCr8n2dP1FGRJSDGykAH/OGpYKc+Uki/mP+vEvVUrz8TIYfpo5eec9QWWt/w9haWD7UGo5eVbbHR3bMzFjkSNJRTtr/xjJRGm7OhMWuJ1t3NcifCmPEaOeXsHGn59RQGz5VP2/pFGULwOrqrenND+Iu8GwhEUz1NXOI5RCrWTNpQ7VX2AJblepWiZaRBTw4eRaowbQdHphp5YU224iZstgbji2H+OviKxVL84M1gb+mqMDGP8fyNyvA3zcPhFpT+rQU+HOAlL0t6izCLdnw8LSBJLLepCa4OwV6Si7UkHu/666dKq/Y8uCUFUYD8QVTSNwzz+Mahv8sxZeXY55ohGVM3FtBJF+dpP1yXXKw1TG5WjxKIMMboInxJO1P2Iw48pRQ61xErZGwbg1CNbm0tQSLm3sqsUjQUi0Gn/thMDq5uH+ikR2whG6fG/K1jiCAr3citQeZrT6BJZak5wMpQ8FTMFtCg7w4HTET2M40HZqRp+RUShgh0b16c7MTLPrXaAiAzPJEhr1eUZJSHzAk5wk/zes2RDqOqQroS5bgVUHNeFp9gCOi62A8zy5YgJ4sxQ5r3Pt/E/Fg9S9OFcLQp/G4hQ22F0GMGZ92OSbTBiQoypdECucbq8vwmZwPBoB6yDioXHyg6x/GoinIX2pH/KcrsPCD9f9EH42QQli+VRZ9kI1Jtp6StGtXFBnXeTY/7po6hPEmMN7a3VmQPz+nxfuDwY5CSqgB40dExIa4cXIJnElpaSGCJjuc5lh8vcWwBQMs4eFMC23Dz9VQKzvAUlt9yC595Cu6oYDuDkgdOTQ6xMwHKNKJQQ9wZVbMjZdv9zcT38wKYNFGyuSch/qsrJTqw7hZxeBrCyAfQl6iKo4+enYHe3eibkW1NkTIl4fU75jpOVZDbx97CPadP+J/bGDo+2GSnVzl4MKtHtrMFAOoY8PgMhjC7i73z406Y1Gvk7W5WNoqGI0TL6uV+HMmrhXGMCYxnZnsffZhipeUnGD73WVfsV82jaIrY9uxW4LPuAtZ5YTtyRLSbRkWn76rDxgskd3fbExVxjZ8AWkuyg7JqEvGTFBB33c2KhVpEsW8B9bRP4fXYdxyeUOkM7fYpdBLhWWTp78VVnrXC0EM97sLCG3Hf9sDfMQx88TwTZ98+3ccAx4S5VnLOFmVQ7/e8aglgxEHkOUqRPPdMPN+wHyv2sOxxx/LBkgP5upet/+bpwOm9n5wSW94malbSkPq/b/v5bS6fuojzyZz7cFkqBjZRzk5UKczogz8/XbEXAg21cqzHNY6q4MXVLZ74NOqSOAmgbeCD6Tt0L85cwGOfwUMA7sjCQCvymQ5xQBQegz0smqNdnovlFhoH+HCDakvHrrzPh1UXXVrA+7xzCfqJu6HnfJmZtBb1Axv3Udanas3X80osBbus9D4dD9pYfZE/iIbErCd46fBNPF5/Ixb5I+ZSI8ZDt2VN+wQLK5415IxXxqp2BwP19yp/h2q+jvhIJIVSC2bAQRY69ItYU2PSQHNCNPQ6bMp/2FvD0lBa3l9BfZ3Z41qsZGGoqUI3NHC0e55Qisa3N1TyILLeZeIZep+BYkbfrBNpWPbQpCRYwSYPZan3dlbP3RXHxDseTFWx46H2SWPppXFCKRSVq0vV1iN/MOCEuU70e2hgu/wU50jgluXWli3Qc42DIlkWSI1TmCLq1bQ4itUK365EpJDjXMBNUzKgYiFduTDmBkBfBc/Cj2DZkpvBWRSbgJn86TGjSgg+6aUhMu1QTv+HkpSRs3FYzP+nY3J27CAsVm/CUO2PJ1p5M0ZI9Tt448Pm4CfzQMXAohTpT/Iat9MrmQ5I7Mnt7r4JqTXvSKhXARznG61Y+f0DL0eFz4C+4JfnFXfbkfkTb6NZsb24yiT91jO4iN58jho8asZy/gf65blQMFMf+Y9hllkKXYRfc56bhCKFo9Z6kPkvy8n2QbfxZEYBvcxAiFT2ekkJkf8u97cgl8dyp9JwK13PRusI8Z75T4OAtFbvcoNyInoZ7dLEYmvV1O+AJniu65xd0HTkVgsvpoMdLX1IKyZWK0oGViKMeBPR0fD93JRQvFnfBq1raSWnGgv/VHwE4yLb1gRbnUW/ADri2nA3swEDz2/KnVGoMB7sjIZPrxysAVSN8EUW6hKeRL11F30N1Mgq7CWCrynF/iKRlgdRJCMbdkuTpRYXyGjkmLdw7h1D5cw7faVupc0cwkJEma1BaSXhd/Z40sWCssJViVVqVtuyKEqtW9RGlw2UHQZOrnPPJgLoOjvdqoG6V+fw7NyEyg0cAcHygTwZY6qmtK/kBmsMKKAUZIbm/N51VzeX0tpCWzodWKqJ08R86RsA8kZL8LezDYx8+KDA1p24w2GqMZl7AJSvbdSGLoj5TEhvrCX6Y94fOWx2j+rzGPmTZZty9iQErMcCzW2Q+i9BlyRFlgj9o18VwcotS4HAKiM4SWToFVzd2qXSpul43eY/IyqHFGtqrSLphBQSPxu1B2/WjAL2GHPztCnOSbrLCaJs6aB2Dqk0qH5jtDWDkQ2E0/QVw8pVnVs4ETJjHV8mxi+hDYtY9aVXOLqIQD4GoeUgksWbN7V308O268BpiXgYM56Co7gVBj9o2/uzFrpP0PFICoFkxWOrxekEvoZZScARGPGFq1uD7oF7SEOCaruPh4izDQP3iAsmQ/Ff/vcqEykPYJUxAtIoecZoVDqB31lQ6FBr9MJudlHKwp7gbyBfMcOkK7J4KPbU7QJAq8y9XWp0/IHAnok7cze2++at2pF3I5A/A9ZLe4/0z/CTXguhQMiTPcxEX1Ndt3HAdHJXw+++7oezUql84VctFiwoIaNX6QC9OJkrWljvi+Vqj+o6XISOIIhYjza8LxM0ssKN340WNzd0k7rjWmL/96UKeTLOIVdN5ijRCgnYKJl37cp6gmtk9L26R7ECEkFcGaBif1K1tBHuJn08RmaZQXEDmVjlzqcaZxf9JbcmE3m051R7CYQtMthRZuri2MPrONyOYGHhrlhOI6FQ3km1wjgoVY2dKsHiXysl3ZSiJOxn96GJ1y1muVX9PiY5jEL14QdWtYEIOn//KCOx7izHZldnyao4DCNsEEdRaab+W0GNWnfzQ855HrtwqKiXvJSEfd/bEqy3eANbQqv7NtkWa9C1QzeLdEu45hayjCVrDRG3KbVnpsXkP7nah7nHwWHdufc1eVQ3fTqPltW7+xD/gHgZrQ9TozlfLWY1mLYklCq8rXFROuVv8R7UnXn4Y31z7K1dIVysTzZoy1zrHT5LN9m9KPyMOi7ZM4aNEZk4SSO9zypX2K2hcKPFyJezcxoiyPkQFt24N2sN2C274NtQKmUnznz4Vqul0lO50x0XQ0ACfP8l9lr+Rs24q1zltH3U3zNXSiOnLrwJVzLB6rB7nzBfLnFFC7YCl5Va9p07hAt4ONTOMu5K11Kc932CrbmiZ9yXwR0jAs92eunI4PTEr6gdJi60KVhLHHJOwfxaBP1RAZyVD6gCRKFB361L1i70/p0nR4iqaRXONvDvnrHnuZcQGcJ7Y/PLEUye4FPQ9QUz30krPB6qKkbKaeypLSWAZYp1aRpAxAm3IyaewSc9vXCUuKhSVeviEvUFAIL8qRw3ksDtZNVyCZYcWMIpUphMckerfi0AAZq40mP8ZzB1Izlp1tj9Z+WGHB2ygL0AZszh6jE3eBZubqd9XeSSCrt+zDVcfSZ5iybzXotiMbjRn5yAKu9bRbchYvY8db1GN1NXNv7Vn1hEAJ2hKkd44aa8QqVZ8MgT7IkABIQs1iEPEB+kSooU/JedAJfHXEiUmgIdERi8oyOOhPHBmq7x8a/Z2DU6GU9tFnQGVsQs/GYY/16ZZ0KDp9rjigS8OnIrgVH+7x6ijtSu7td1KAyDY5QWQYwpPQeLuC/1fVnvFl3arUs0+yhX9ZUtVGx4PlwUlWkhAao8MnhiAbvfehmfTxMB+hr+EMoM1ZQe/3e74WCYNpj43UnefF2nSsn+ixC4T93+r7Xw+yGcvETwRqLrBU5aBePXEgaqz1UYPPLm56UrWBot4FyiSzYVMFhj2P6Kg5QPBpDnqhNXUjBB9On/zVDUPzPBdahATjSFAjo5O/eV+PPVS7PkuCUpV4MxzblTOagjRf2aGqwJGKUpftdOYa+/Gx+SZYmK1D3mSeal+NCCqXxJUjvrN+NbJ6Cn6Iqh6BvQOg4BoHYBcTaew7qgcunxLQLjrUmk6mYfzEcbFI5M49vcnsQP1Mq4pnCNphRBKtH9tjMajVnH0Zd/nI4bsJOomJ9A/DopACheUhSe/jIrLqRul9sdFmdl9zSjjVQp84JRdR+GPM4K76DFEP5O/J0+JE0miujkiSaUBXNVmD9ORbccFvQvcrLuygUyQXqoChBCEUwG8zpKdh33aXlKGUARcCLLS0STupggeTrSdcXjNtchMOmRjz5iXbIU2ZlWzl6Xaw5ndA42U6Saf9Px1KEDAh2rXtOUrHdfNJsjm2LUD3gSD4CfPK11IRZlQSKS9p5ZJjAj0dmkwCclcn43CgKVKj7CNpvirdEeYzgq3++y7NoKro112EDFSjdCrGAkvIutc8fR0E7yG4Uc3Zu8eO/0J8gsyxkZSf92/sWkm86WgJBmLQgELZbq9CNBWUpwozw4j34X4x4OEhvsJYNHtyvPh9gmrIyroBQLNMSlfRmQNGKiAMXAskChbAUU9xsFtvP7pHa+ML/lROi9e8f+fElMXkrbcqMLXskqDrr0vb7qgN/ta7SEKNfbQrmu6lnYEut9yqZlj+MX2TZexEbMpUEsjVFNaOYMQQgmOoxFbCgL+T++NZmOksRQdhhtXfCzKujGKSt7GWgaoQNWPydWzkhC4o4yIfewS3356ALiA8jYUluGn2vw3mkI0ABvZLz1lGFeX57xCsk3r8vk1ZFYa6vXxd924A14bNnbMIiGj62gjhayTeeAR/HS0wBdQMaOnf/3IVJCH1Kb3UeDsiuTBI7+05mWPS7lZb9x/5CdO2KLwWxvCC5krjA/HH+q7R6GJt1wVTuw8UbDl/niTCH/wfEcOS3ZnkIiKnZeLWdTIt2OQESK3Dft39KaYKcDXQFWpc+w864EZjklbYYBASU9uqVC0fhi9Qc3jQ9H5NkW4UUHKO4MqasZmIS45MTEV35558ikZ/tY09GjyqV2sifDVeC3xiAdhO9t5gnN1llhCUfIklwkczM6RNInyjXRxnWP/7Gini/Yx/cmc0h/J8iRJNQ2pVBKWoPWIxS3gXhWFd1WsOWtOHP/Fa4MAlYWGYJ2HoH4YMGk4Rk7EcbUXtIfSHPyQcdq/Pv5PxrtnN/19dsf+JCMZDw957Bp5RrNnC3UO5WqputWpT7Apppzh9JUutreC3XT0z80e7ScwlalCrERPE/eXdf2EW8xfYFpqA4zvdqumPmrsFpTbFBpGjsY/PsyYMp8kVbXanNDMGJkqFHvJROkibwekcOev7B0TQdIDkcb/NknMC2S+ebnPRCFc1Yj9sgeJiH8gbiXUt6G/Ybdy9HXgUePf+z6E6ANW+pRJhUjmD+v/vhJGFhaRMxEZIIfqMmUdaHQPX483STNePXrYo4efo0Ddl1VdbXuoX401GhuQmPiNRqc1AWsZVcue+FYN1+eMLxpNOMsoMZ6Vhd5dc+tyajvi83Z7UayeToy+XYK7EN7lEDQl9qFxQ2s5Vcy2mdAAo2CW/Jzi25rU4Eg1Ag8PQqxCJgD5t8RXqqQiaWHZShziEI1oQyVGAnoRrq8P8MoY7tq85LwcK3QHJXmxUnJaH9Zuu2ZT0U0QfoilsbY8t0K9q7WSGf8f3Nc5JaWeuPb1FuDS3hcPikLH/AXhydfOnIRJM1WgbFdYlXIIgY964MDtzWWXlNewOQ92dRaQljDsHzHD71CaorgF+O5pCa47HT98YPOdmRhKlmSQs0BVKwtM44sMsxEaaF3E+6yAT20CbxVtnL9gB42AQJqp1D72Ig2QugXDLCvmmFetlle1reYF/ImslVE9jmLC1jt0QH0FTrJrQmpSQ+Im7SfI8QvIdFwn/isgpFeegdnnb3vT5U5JZ7rVejHHnvm+myli1tYTUEpCYdck4vm9WwTkuY8nulc45/r3jbGut6BR1tSA0/0e60RNMq/b6RXhjNsng6cfxD6T4nLAAxdRVDEq8Jg3kXGev6FIOGa0mTYk4HNcruD01t4LcZ/EUpr+frscnz86xhZ30JyGriCYNIEr31M6e9WxiTH6e5EDKc10yIVo4ickmKHqLADgwS/CiO5Wx4HVINIpYMgp3XhPx1dpu5Z3cjUUCCVzipi9ZBvMemE5VY9bXeIG+N7sbbX3UBB0XYv3j0NUgMINhTJLaRVfEj7PjzVwCWUspfFucd8UB5ywoXe65nvKd9Rwfig0xpIXmwZPXS7DEcyNe8wTBIMgeWaqDWv9zCFog2EU5EZnrZuX+IvMheQykMLoFSjsmjuogz34SckPI5iBnEO4HVsfLnfyEhhAZLqifzn1SFGIk8VQhc00OCUnOVr8TkcXEqTVCCkNC1he5kCJH9Sv3eDqwGcofeiPZIowF6d10nb1mWNVyXLvUJTffLQLjFWywngm9icwo6OpVyeZluw31T9LMi2mgp6ddRo0ceuZeptOz72Vixiv/64q9zAjWDocvsxCTk4UViYq27vt0O0t95Zo4k8V4uQjd9Wnxa3aIJigVii78cHN2dlrMbmU0OR0ryvZ7QWTRVP+RfObWmv39SnxHzIMkAqBX3P4nFWUa+/J3FpCG0lwiyriDkkFseH9F9qQ8tROSxyqW0hggCQ5Ad5YFzs4q5W5XTg/MDCeRsQKIsqV5NnYDDoG9ZIiV7KdX1el/P65neFKNyU9Ban5EfkRtQ3xkHVoLV3i7iiz2odYjIQi4RB1blM+UHhfr3Vdn1Yzn47WntzufCjlCngc2V9OXrnPWV02YI982l5K8QGVVS18yHGWMjyCbMMd2tgDr5HK+drnwUyFRWqwxEmtPO7iODWgn505dTv/ZR06E7my/GShRVVfIXThoLXl3Edy1U+QyF6OuW3GAfPd8pngMcNYxjgk1ccXQxJkb3OfzWsCvKFangaNzVglr2sB+tZlopi807vjIUTGD+9Hb92P/+kYKkLKisyJ33TqFhF7ExH6Nlw5jbZcLi7bsXDo+JZysqagUTowFrTxXhhCf6E8U7Mr+mT+xxQ+w5igsSz2VwyEzVWcRIxpzGcK7QNWZvwpS2AeqaU8givtmW5uwSFxmOf/lXCkCH8xmlpcqS2a8eGcDR6H9S+FjVBav4lSauQ+mH/Q9YsUKLB44tuR1SpTpxIhRsELVElEH4KVOeKbfypvU8v2cFz9ayUkmwmeB4qzH6gPoyqB3opVw0fvsBxLjbaVufBDaWYaCvc0L7hj33Mg3bERUu+8XlM6OEk6b031L4/dthY3tmt/GrHVoilshARVKoPQK8sc6oaB1SWGsdUdQvnG8hsrAI230xSXgt/o30K7c2FdV0vrYUU0Bc2Y7kQP1lhvl6GVS4MQI0TDTeLb+swfBIWFVsIUs4aUKpMjO70tCIcvcrRl0wh0EUpu5FmBcSj5Fl92+ADGRPNALTrne+FtR9s+ekBL0krMRACsow1Vri2RX0PRtOhevh1q5xxzq9JLNFpJvupTwKl/Y00RHMCds+ck2kgG6ziQ4FLG8BMKHdOywB7W6QIhhA4SjujkrgqkMi55/kYBDPjiaT0oRpSqXdIOKluvAYR8gRnvzk8DeFKn5Mf0tiuz/wwgVyOAj+NyXiE4IwWbW/xwUnlJBTAt5no7LumDbIfRTz+jZNoRn0DcPhuQGSqd56TEgdHMTkMIlExMpydw+RqJe75qiuMJTDxRu5GyitJSH/J5PCI2lau02uhS8H3NQUkTTv483irgJ6sH1pilENih/NGgNfWdzEA/2ALGKkENRVuJFNuJCxJvYqZoSMTMUnc7ZyQDruy6UWcK93ANLBnag3gBLx+Jid3MKhaPg/2RlVqsh+Pams3PmtWnjMd3x/rmaKmnOStf9fvMHt3BG/4aSAtTC1E/jKr2/QRCBe6Q9WpuiVgSuyTIVWl1SDKeK+1JTYdQSd6hdvfqxldrJ/9KmdG6JTFFe1d1nZi5+gqYlknvaXOe+DexkfqnZZ5Optdrs9NloWfnuif2gD6jIZBgmkidI2UMAR6wrA+trcLlqWg1BdxuoBtKzGPfQ1FLc8nYr1TuiP/5kd328LR0XzTMoJpvYOn96odZQCpsD/Gins4J9OiVg9xhUohpR30C8hXvQmRugDoRWPBgy/i5NaHHLLBZfCotEmoRYSGyY3rSmmAu2ask3YAwi/nuVIrcgTyNsRfUF3Atk01KzsWfLr6PISDR4/s4c+3g3mkOXde1hD5KGoQsyv5bWqVTdVJRm+LclqdArKYf/uIPSU97prUxTkhpjsP+ineyM2SEV8SUCWh3aTb54bNUA4YUg+14qEA1iXklETBmi3nO8PGepykZ61qjFHc+jHjiwWvF1WaKwRVEHeX59h+d534Ch2buo7g6X96w0htray+aEYdkB+pVdxRGgdTvgK/B1eyxUra2bR6oFyD/YhpAq0DNR1eZ5JSlP8uz3RzSB2fbm9cgpvASDr5PEzEuvsiMPiKIN8sTXElTSTVCFskCcf1iInnVTzd8v6G2OEevEmDR/rTXwampguX295E8BAxrzlZLZxaMrueKhZvb9TUrKT/K9wv9zglE0p4f1EHKTR/VM//Y492GPfh7Ain3uLXc0yOVnFrmn0mLQzUJV9O1++SWhIUi+JvaW3+h3GgldSiXhuGtnpWsYkxXPZhay6yW4/XafJWDpGzTTTVRnibBW2uXpNIwpFZkMmvNyePWgHwfJ9A6gEHCn+0c2s05tpjTISLfR1UagaV8dHcGtwns+DbLBEU/IV3xRPxNWou5dy+s+bxbivlTy7H42dVuStggFfgJnHj7BzlDK7kVjlFtZOIBUgXJq70FCHRnKOnfKOVtNuumiXaw8+hLBW2LlSaJxRnaMS8/PoU3QT8g8OcE6rz4BQ3BZFwXM0CuyqIR4QrOqQY+j5cfS9eITGIYBTF8dFX6jybTIfNtTqG+vJWKxeWJl9KTgeQmCjzkhzpaBhdoV7EyYQjeb+yxRNFXjg3tis79R2XXDOvUUNNix2diUNIxtyrAc6cfz9hgxig4/K4iKfvotriTtNYiPBCTjvvIzxd5N5sw4esXB3nsBaGI3l4rIGDxmf+FfZQ4jCWLGwksaJbf8lmjztxSK7bswHWEhz7+kXPgHi+mHk5X4L7QlDcCNot8a/+o3Had8GzXyLLDofe4t39lRGckGIJ1RXNDv6+szNLCLDzckvl/RwehAnf824+tj350RTBvD7otyKbdinjzXX49Mugl8nLLvqnbg4mUyNA0OcHIToPpDwIjPh1yLQLfRuKTKZednrFEZJ7VzL1UlfuqG5KYOzyM1bZK8qBmuo7a16s6NXEwmeZeev6nfE5SQbZpuvosDlSyWUy19QGLHaoWFDVzt/55kb6yoHO1jUzvnuFnzHDc4qZ/fe49hTJMul6UduNx1BE/k4Qy+51Su2bgRw+BsjBvIiHioDxNU+0RXDwh39pfzktLxZGAfu68uAAzblk/xpMfgcFNjQ846AK4pz7Pxu1u2X9yDIfdr7TndtbhQ4fcGC0NW/0k1DQ7x7OzfwUsXNZzLatHHlHsp1raAtKFVr2+0ugmYeiZUXJ7XzuLyV22KMtZ+C1A8y6osXkWvpHRgKv9lnZkpUiZO3VEzK/FBdAKE+lZDuTVoAu25XOkpFuZWI3yZ8rCHPv0GTydTXQQuxu5XusWNuapV4ZI5TE2tmnTySNnb9An+3LnjlIEpU4C7RPHLENjO/cqiCtjkCBUQrS7yrNM7+MxeNxWtHP3MhMuMebOBIjzYNNwRik5SSRTnTeGa0+9Dg9uHhJepjeSR80QovveY9AyqHkyNuLG4qrg3TQRmIVnsaBep4SELeRI8D1lP7+W+Jj1iEVEWa04PkP+0zUG9PTU6jA7SRPqt0dzDGbjvdGYgh+KobcHRYYUf9LuIIqhmaWhpiYlN8AJhGevLCN9WBKQQqdGIRnGrbbipZCP23dz/qHLQBdNj8svX+Wzd9IukVY8G/Z1G9P862ilpQEqrPgB3y0sgt3jFpvpqZKE0AVlmX2YgH0BZv5Hi9CCHsA9rhYqAGlxzu8dmQJ7+w6MWA0Vyl/8+jud87ySmtab62oBJ0HoTNlq5oSz5q4FN6uJ6suvj6aJDDsHuPKt8HIUvyJXALJiZU9j469qtMIrob5m1MVXxv4f2w1mrKJCxhyl89OnFxXabcKa6TU12kkm6FXqUeeTkHZ4yk/m9UWPdyjnM2lKRgaotRxBNUtUFUVTtHfu+2WrZMyULA74XEeoQqkigzZGoqNVKnVMBAnpLxigw789Z0TINj+VQFCdxdU1YlhHi5jXNgMvWzExxPTL5QlzxR5mMuB2GT6SaapQxFNNgWe1BWCBWsXpWpsZQAyvhYtyBQBiWBce3Xxf0NEvHphgsQnhcQxgvW/D7u88hRRYCmC0lxWvBUuZw4kjP1hFstxC0iLTkUlhEXsV+bBsNHDVrg+wN9c/EKWTFeQTUInbooziQNWp7u5pnXoOibc57Vt5jrkHU+0yurEvYHcgCxMxtAuoVLEyDD0g3EE/9EZtUb0uiVXt/vRVAuNBSxZ8H01J/WYcUMg1sLjRbvNmHnJ9PNI8UBYOgt6oXSccLM2+zlcF33aFMXINM9i5L+GbjAWCLJbgypnSDtvyVHFHpeyGVisSJOebHt0CPinU1ExqNLpmUgS37Lvw/fXNeYKael/hu1arKk7DXir2ZBzpNTlaIBY7/HXMZGl9zQ7xhmHMNT70GJggQT7quAokQWXzWiWi6GMY0Py6ilgrJrobOLfsbyCD7bpdB3vIzzsoYVg8dzPjh4SI2V3xqG0lhSxLXK4xlroHHL0/npJaUsu8i1WKQApZ+6RUbYJjKdypx7U3tAIv4hOFlhgahVEXHh2OOFUuRKgoWPcM3gWIkEnvPEIzpBIqunMQOvHYcmCvzGIc7rTUGh/BuFeokQxozQ8hjz061rF3l/THYj4JesoXLS0B3Mt7aarMmSph2QvXga6Ev6dWAD1qXR5exc1LWNMIFtIv05bSGTiIfpk7N+FGJziYjp9xp5BTcIrGQzVa1+PDsHT70iD1bg4OsiyVx8llu1mw+mCnUBulWxHtlsHsJpVWn5VDSJzTF4Th/CLRGS+F+kVY0++Ln97b3MVuf2fYeYUd317bD76PrV/B8UIVmbx/3kHw3mcaJdJKAmQOALZn6Rpdq5IrYnVPYBMfaWdSmDjDPBdSCCwy2BHk+athfQO9htowxVf1yXBGow4QbSPuZRmA8odM2f9js++CmtUQ3xwk1Koz382d+l09hUXJdw7OI7YMY9vACpPhax8Wn5nSTZaRIKdKikWSbWFges4UXC+DcmzYWx/dEH41CVrEL7vh6/e4MJGO85YlLrWC0dD7xj/lqMjV3AiuSQvks3pN1OQHKiUWTwgQMJrxqDgU7KD6ENkMBZsnBIFbn23FDpfugXNq/v6R5bcxm6NJftIKdVY0l/lSRMojt7+fmAtmpc+Rfyd2M96in2jGY82QLRSiPKhhzq6eaj6wpilGsNRiRR+QUu8UAnDp3fnX8jNTy5PqQr7X1q1pecYFJQtszPRBVU4d7Xr5xsa/zUMzvBUHwurGpeLFdmrmwc3FwLGWH78oWIYyk8SAd33C0DbVIxaijkDUT1/D6Ilp+ut9n/Vf4XX8Zenw/BGa3h5xxlBkPKTw9QKXF31lsMD5XldpysLx14aXm6m/6K1TQqXTexXFLrooFpumtP/4nKlO2lnIU6YS4IqKpbRvkVDuwc5Dh5Vkx+EBqo++5sGy32/uKEHpwwrJknzNXdHzch/qf91BgRauaB5hAV1vCubD0HlHnnydhjd74jpJ+9X82lienelY/jzA5iK1/DFHvQVrRLcMBsekUJOrwp7rX92BHUM25uTxMfF2PomXfYriTLynsbWazZVSUMKlay0CS6+QrIoWejFjudaBl/Zm7s1W4CI8/6jvUcH29DA5bYfa77k+bj8nx27T45PXxli4jg+euQUA6a7B+zrmb6617VfpGzNLVRyDCNT6Rh7tYfsZfSBF6h5fzqsbQ3adMmvYlOIf+ZD470smQtF3zoxPqjgOLpxr5qUqutzivlzqbaZgKL3wJllxya3CqHwAVNcB3IOPc3JqXypSCYCpAYvcHL9roocU8x/RqVm5sBmdMXtSxmOe+p+JeT61dCfy5xBzhkhXEMrwmMMb4jbsSWzeBXDlQ6seFe988Z2UNgFqzehnQiGWdqz56q9F5yJSgLFYwz9lMPqYf8h0XW2GvkRFQ4EQJO8xBKxgQvAyhtSjcfFD2aRwC11jh6CNoQDJsvKdDcodcTdWz4O8vRTadero7XuHowkGuYAQszTDf2VPwZUcIzfDnKniz3E/GRNAbu2eZMRy7jlTUbU4CQOR+khpbzECFg9tbtYAJa7zo9jeRx6jG7M4l6LjP2jGiCapbD3Awk50MbJ6zU+nhMfsIGQaBi3M+PzUOegOx1q7pbbJXA9kxeZgUq9pG4MkUJUX0rBH42pbXqnIRL9y13lJOxUNIO7PgBeRb31lve6kATMC0Zi8RI3GsLSCALHUpjSJOzOlxmRyDpngl1QshhU9TGKkka1EPW31p4qc2NWxAX+uRSvltEkHSSkWLOury7bgq2PJFdZFNL+FGwyDU1d0brY0jt+JgVe4zVvxftcdyMjcvjXog5MK2OYXvkF7jPfq8n2x+jnxPiIuZHJ70osrO8z41K5WdQ90Nw6jdnPQVsexKoDyXg31vcCTJr9/k2VUw5cQaVyFsjJdHFmcSn8FieUq0w39D0hr04bf9wRkBPerVSbwqqbLYO0oY/3B5a+zvu76afa9+0Apxt8RLIIvkutP9LKjQ88US3vmrwaIZc4FGaqLbj5LNPrlG+8FH50vC3mvEKxO3iqNta0Rgx5uQQpfUF+PB4PMTQDuuruHnjPgVR7nk7zpx3NZrXV653UzE/sWkrclfe94tDmc/Io8PGvKcSoskl1wyHsEn3pBRd5ahDbDvtBiV4tt/dXCMNjJZS7qapAldxkToovIbqa4HoaxeoNtzZ4YkgxJ4kO4Bwy+Riy27E3WmsRSSinlrkiUhLdwsnT6VSTds0Mfthm6N1lkJgoOn3sIHpsoXTW3tLZjNMxraOEj//JvNCUMBr/cpy2ubrAFWkRMPAf7feQq3MW8V+m+6eRHSejTXdB9+aKRRFLW1F/9oAbZRiShAdBsUhnrx4tFra9txQBDT/U8lCvvBD0Y3lJ3npuZ8wCV0x1jhcKx0cRitqrgdWkCEaFKBM1jcEyfmHrNv0wZEG6HbR/I4dvGFSx3RC4NT/a1zkLs0QKZyHr0fDMRQ9/m6YIh6mZLwd7xzf/ZHl1mvMb8UC8t+qNr6kIIpTX2zQtdBatbIsxgnqPUn86ZV2e8z0fjf4Lc9Fg71OeGst9xY2vHChfz44yWlWTKxiY3PTR6NspMcoJHYrBFnfk45/Fya3XmkO8gy92u/3Z1vIjZwySunK5rZeAqNYHFuP8N1h9WrKA6UPJQkuD9QGvr/4MpzVQoxIxhDLBpVvUD2XtsGaZpP+GqMR2xLxAhCjOxMDQDaXxlTKxSNq3EV3qCZjMs+ZWcm9PaJNzr0zvTCZDGMEMI/D8bYJ2HSLPNmwFIuH/1Z6EyHw0jS0kNvw2t6C1Rcfh2fchN09Ua+0TeoR+fcdd+3jVB2ZDVM4vzGvczIIR9UIP2+vd5jQLBl+lZeekfgD8jWSxHSDL57VK2RlAfZA53QoFsTzWKnjO8SvwkGvOGmw4HTnklIlVAIIHnxCD9JdFP5L9QfDruNRjSfw7EwQSTwWLLH7vdWvBHOv23mmVmhA5AZ5+LU9B6KU/i54waJLJsgCTpg6xexVai1dAeAZuIZrKH469iVwVwq5mPzeLqk71svb+RO3A2Lxbnm7PYjqp1lmS+BOq1pOYfB3PnpaiUtIiPkKQCQsJj010i9DqKxze0Eh8t4Y3cYeD1Qrsxxyy8H6IM87MUC66hIbsZUAeNdSvkrtoCVK3a9G3k+rgxgHQkoLI5gt5CkmIWsxfwbS4BCbDVs/PVnrOh+sX6atwaD/HRlnkBfAg4NsV4diOet2c0U0d0rmcT44Hfp6cA3a0RYUCn0npXkZ+LCy/saxTHQxvlBe7IpmyL+dgemWAM3/lQBf1KUW1EhxuZbBA5QjTm4cvEboFPkqZSgwcIo73kB2aT4y4rDT3F6QNc7I/C2egJoR5QeW3GcXHRVqNhqpa4QEeUK47MSBSO5JFIZgC9Uu4rm4bS0O4S7tMYY0wvIP9E9MVQRqFlM8HhSaGCFeSP5YnI2I29RyXKLq226upiPfrASW8/JdDlQwIIIWliLnpvdsBoYqxm5LPi5j2XITiS+8hrJqXqjwkfxJMENNjADP6JRE0pz53jvYtI0kY0Ybxef3iueIEtIwYGeNyx2Z4Wrz1GyrKSZ8pgCO860JmjTLSyaBIOckeJsHUMeVWF1OrfgfjQhR9cGBd64h2WmATEMWLwMyJajAIjPEJ19F15pj5Cum8WF2+95WqzMNNOvhyjPg5u8HnKoQFUGbVkVqg5KrtkDXZUiHjX5XSTRL9OKzJZ1vx3tMYspDfOJEK8JK0CX7WG2CGSPISL58ljKeT076s6/62pqmXC9kYj4YZTrODboTYNKHILGNSSZgfrC3IQ7hCrBFDNze18wtjZKMqFTEhovGQk5Fxx85OTw0ilXuIDtwY357ZKVDl/ARyf5a8caIhiJgkDLipQGuCb8GIoRLszJ6FnxmaqmrlozIp4bhDGr3m5cNI4w+yheZfz4hhF0Or2eUCmhGnNWPZLFTre3HSR7hg9JysjS7GbLmPdRWMzj0OvBr7OhJXHitaauYxQfT2cUo4exEGYyXNq0Th281vhtI3zRMk521+KSPp2EkCnkfKipqz9U53XsRavQrTpN2rIZXgDy7A7jWzh+xMyb4avL7RNKpCM4Jr3E8KDO+H/f/TsDZsFQYTQkY5fErEIRlwYH1YzRFZJmLdBW2OejpvwdqdQoQ9SeJcRrbHZYnl6oeEd+tPoMA0vZ0jVxGXZFlgNYjB++3B2giVJoYoAaSV0xIzjHJewMYM/45CG5FnVti6cp64OD9nmYmvQJ0Bf/iyC50q890yciOEpbtda0EZ5RLd8IVoEvecoKafVHe9+NGYpCqwHwWltM7NLTos6CE90P50yf7D9TEhN2Kjx/NqmLbJJTze1R0DQq5O8OWnB620KFVrlLHvCp8QJVd1SNL/5lh4AOo2yptLgO4KKE5ohxggFSKQVshHnOD1CplsHz2FI957DJtKz4rNc8/PUSbBHCST5SBWikS1ZkvL0LNFW5dAFxvyyet9tX2rtUuJJCMz59C5gIUBdXYKh8ZSxRLAELjB4MABQ+LtTzl11kUEfgAUBOjSBgs9xV7kDAxAUWQ0/FxaSXHC8H9E4OjuXydCDnh8vmqVQXBITNvaw45TmHcRpyp39pDJGVM7jETy+p0bh6jZRygHxXZqcx3ZbVBbeF0VivgPx/KmQvFgf08VI+4PmWjATHyKa5gb4qQrWTFQxG1qHUvZirboLDd9lg9E2OCQEWYgu/0PRDsM5DrqQ60pDDhrNAzV2R8TSwwcBrmbAfzj4nG8pUCtNXnlxuQKtwllV2eqsSTqfCXEZGPmesSG+Z74m/Ltq06EawqWcGsmGJ59YVjOaB9K3k2b8N/l0c+0YiasLByVh0MsgawhMqUSuVLRpzBa14owZJNB6w3dLqNhMZu9oBGZSYa4GtcenazoL82f/d/I+uuBX3XU54FBnmww2m5PnN6eqsHEo4dvA8kuADc39j0ZqiGnSma+wxFUtt1eq2XQJJs/4h/4IykBSHSR/FIzlPBjibcwE+xz33ZI5z5NQK58fwoFg5btmbxPn4a0S06kv/X7NAlv5qMxZXjYFaKWY8/GuvjS/FJDZ1rxYWv1cs2nJCtH3hwqGDTojkoJ9i02+rtKP2O6LEI0qGIdAykdiOpdFqb5wVkyBPPUMs1uRemmP66lxahvNOAts6drZFGVUbPwKAIxcwzA5DQOF4c+1wsxbC16D398fLmY0vJ81g+QNa93vmLkPv7PoGfZj/5vKsOdXqiJG2XxMGGaIA6aGgT3glLcurOrb4bL6D7INPs4022EMQTm4zWGC3O/cV42Mi0XvTL+lcWFQcD2IHe9qqormlP7NT4dcRlfckucYEPemCgErrfQi3GVVD99vD9mqPSK0clgEklfTtaZ89nZ/ubQ19n8fPTRyy5tS4RXQdJaw3pJsSTojRchPLXRJ11keC9aNN3TbSzZ082BntSKtUmEOyCMIqtZ0m691ZCQjDL/MzEKuGEiWKSy3iJVa8hW1VbSlkdFRFlk9seIeidQ6HO8P1k7zScIkIM4g9c1ypdjjbecs7yW015cyCJQHC9gQKA2YNfMPMn5J6L7yOgRwirRCK32g//ftj50oNpUh6TPwTBdgjwOJwqgE78w+GsQVlnfp/OKbmWUkT0St23q/57BHo1RqzfP5xgLf5xVM6CN9F7AqXPwzK1JBoKm+YusesOo1XpPNMahI5f3QDEOQ5GtvHZEYtJwb/8+uFWkNn/Vcy7mgqxSmrUywlfTnm377BLUjstFPmwdSvtPO2uegrxL9FalfwsL4tx3bhryRb6HRnUAaIQ1BqMG0aMEcHF8TZpUykC6KmL6v8j9KHn3fgiSVFh/bdNeF1DmTiJ3O1VYh8libDr2lsz4Opy0x5e3TaewSTHfKBayVU7fVml1cPCcSE9HBS32bpTUMcOWd+efRNFPuK79laq2vbZrHpXm+UjU7zkvwkmZlA8CXhQgieapuBCNDlXKH18MvMmnVhS8Kje+Sx5Wq/XQiscYqyK+l+yKgf408mnwcNo/usr4olbkh59dTtqe8TVtTcozCAdBn4uZoI45czx55BcVSQjnR8j6cjOgjDWGgn8p/E+a05zSDs/RK9bPI0D1P1end+OhH5U7UtG4XJa8jmp5QJPGQZb6CnZ9i3bod7YGrtEmc0PIxMuUQKSTpEmC547LfMrC3lXJrvZ0BHAcsPrM953gVkz+7qPePoXlQphfHMCwFfRzmVIX0h/KnGRZHdagI5eRIwYtnGGC4Mb95rVE+TRJ5648I8eab3zJ2ushTcFH62dC1LcFBc0qUbZ+Ez/4kqzQDla7jZzxldj/uPkNS82VatZQ4bs3I7nUStK6D4Eh017asDV+O/w+0fKw2pS30KH/Ky6KymuKytdS5LhfSkvQIkf2D49ItHbTCW3oXTJwM4lyLsv1qTkdjJGU/tbw9Eqc/lb1Ng8hsP0Qu6agm4VP0xX0QT4y4C1HKsuUFSb8+3a+LaOLiDHr1gjsBM915x9zilk1q8TYwYWGSMDO9Xv2LCbgw+nkBb/Nw==
Variant 2
DifficultyLevel
630
Question
x is a positive whole number.
Which of the equations below is not true?
Worked Solution
Test each option:
|
|
x − 3x − 2x |
= −4x |
|
≠ −6x |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | $\large x$ is a positive whole number.
Which of the equations below is **not** true?
|
workedSolution | Test each option:
| | |
| ------------- | ---------- |
| $\large x$ $-$ 3$\large x$ $-$ 2$\large x$ | \= $-$$4\large x$ |
| | ≠ $-$$6\large x$ |
|
correctAnswer | $\large x$ $-$ 3$\large x$ $-$ 2$\large x$ = $-$$6\large x$ |
Answers
Is Correct? | Answer |
x | 3x × 3x × 3x = (3x)3 |
✓ | x − 3x − 2x = −6x |
x | − 4x × 5x = − 20x2 |
x | 182x=9x |
U2FsdGVkX18x76jditAQJLht4AHnA9uDyZZjtc9WBlckVlfCF5s2yApr6w7jXTCfqB4JH883/ozJdX6t4+f7vKIOnvWTpUXJrNQ88zKvSTF6HusmRTlMubi5XCGC5Y62VVA04zDUlrRrMt0sujW/ss2eBwocaPTV4DDkqabSRJbf7MuMB8bz18Zz1roVxY37raCTcdSCwYQkqgt15RIBu3SJPVlP76oG7fIw6m0PMtSzl1Z8G9Lp3lbwsxB+DVr22FOOdmBPZzIBWeaHDhMZnxlkJM4rWaA+SzAEYPEHIO455vsCn3txdUz1Sgqc49X/1iswTub/HtZtAiLt+onyrkRcR2Z3kyJPS89KxnRWurJcEQdzeo6bCD0Mlbpe9Y2TjlWRsC2QhzeJ6/XuxMfbH1NlS1B74IRlkqI9AXud3+cQmJdW967+BDtOoNs5oyvI6MfJ5MJt1QOGHGy5ejdjxZlMDDG5MEF6OavZN//5HIfLwMwxtk9YmC7B66xjzQiYM8Pv7WsKX3sDa1HPtmrFJBRSNMj4pCBSATHfwcTAJF2fqvPZIlZ047GNlunTcYxDsaq6WRGDdrTkFbnjlKFH+Qb4WtYCTjcu/Yn1uP0DID6OuG5cfo2P9qVN7F/u4KuG1QTeS2bqunT7+57AQCHLZGEaL22xIVDcOgPKYIz4whBt1jURvuaSux2T+HBR/gpnQ+ra2+Ev8chCQnBE7xbqz0pEABebBORDP2rl8levkNEiNx1lC+G4DB4t7pnbgIzSoDeWtD3N7N7zjIaAJtCAGEHrB+l8NwokPHiButGDms05g/GWeps5xpEIUSc9Rip+AUsdGZJrZ/q0IU9seL5+MJ/ZzdM0P0kdwLtpMv6Z1KiciaIOO4ri6Yl6ryCHFSQ12afs4u8HHY+goqXGb4EwhXTL+4Bn3Qv8GdYlr1CmpneMFUllouMGxmpikSNPeDSiWUZdxYkUxEG8gP/I88LVrPrzIlV/4uZWl8cvkaFopeDptrPxXQH8yQt0bzY9WMnzje4icIyjFPsTVqs/Ou2veopc83UiEgqHIyF72BHxVQKeYxlwjjhyZLmChp3tr4ek8rjaXApbaMVg1W+bIkiUG6Okmknp9GM2TDSLFzo5n5P0WZmyvGMqR8RMl21JhslpeIaGNoKvE5rcdq/uNoPLn2Y1UfAjXM6lMn8jDQQiSoTRhroQAWJlORHz/xmOm+drcVIoif+AlxuMrf2XI/5a7h74WPMXUknXZq7UjIN9yO2I+UcQ/gARjoAMG1m9KAhiKUJ3Ofx94kM/5dyKnRUXBil+8YO7wlCmAG0yBvBSWAV9HsmDeVA+NZmTVOgOvW4lut0OP+m8ulZEpQyzpAWxlUVo88bISaFHIv8+NG+Nji6H3Zc28w87PHthaMeUF+7SzudX15NcaL4m2EmSfIopPIOa09gnNqlQOD5PiUpbIqRbb5PUC4z6Wr24FjQVCY694xvHH8ghkQwilgRg2Msl/2zjuwyUPeQ6L5Pvg9HgoaPWL7G3mbwNY99OXYOnDKAejWBpz6CzgFKVpbGZ5d6CeRODQu2sb6s+ujGEvPzvw72AGnVHYd15OOxQSHJoj4ACkf25ILesTArqq/tZ3Mel0J3t53ZDVuQwNd5AmUtoq3Sn1+ERoImz8iIJmYuz0ZLNH7uO4RQX14lM2o1XUftaXyfjnDEhaWOTFAvkDz4EFdW1AlxksiI8LE0KdKl+UOBT3YE9zsNvakqje9awxKAnmyYLYx4EFts3+shOQ4vr4Y21INStK5B1q8PGcaktvgAtwCBnpeJLcr/T76WKzkwqNHX75+3SNLjPddGstWA3KCwog1EsMDZrohAqY5cMHBhB0UfmHYQT6g+pUnM/OwqAGN8i+tq66HaiSw+mcoD/F8PPrdroDoQZcx+rMTpxhbLawo6pJh0ZXvFVzHagpJtwFUpVI66HgiiUvscKtdPomEXEydU6nK91U1TD66uvLLEd56yNl620Wl/IELdqbnA1cDIOvRSiH0YH41+MpydFGtG8oZtcZ69OLmBlWBqx7VlxhxbeyJD2bB7NmjdL3pA0UzD6MzQuu67omdSzZJxHargMYmtcGrbhVrNflwj0zITDHxMmLzFuWPi/dvWDX/kX7KpuxkgTSFf1mFSVF6nwE1u5DbH6g7tdg+lY0t9FycgWlOD14DGaJHgu64hWm6kiavanrPOpSxiH0MNwEPJCTE6jj8LYSwu0mA7kMZu3lRre9B7C1wRWQbl8KG6FUZNOo0Mp7Y3o5mcAHLYoKZwrszxgYZrr2+PJjnmSWd6ML6p7Xt2lOjcNWK+ZNX8UUFk7vMWwtNr8zjKNQMEWG62n1dJ4+YGzyCFXTXcqWKAZHAjcsS4WuguG4vbn+uMmkufO3GuBnwE4BYKJw/cPHntvKHRxz15RMy/ufvg9y1FK1fMcyx3iYWeTfy6F6FKnl/L0gXmFSAi4xZjjQUb/eLRYXv7cmKurqnXHB5OitVuBGbSAwwZLUfYMKfdSL2E8wW3vtKMGNNYZ9BrhildS5nuG/ZJvBWA53JVvgUroTDXOVD/naAILESpZ5I8CCXEMU0I440uoBWkfNhRpwKJh6NLI5Cd9TUsgzmQL4EMyTw1Heek5uyYEJDDFavMkfsgP4rkSxBFkPdUrn9kxqo9/hH5P24mBgSbFmKNdOvjK5nQ4q1S8yqy8L0nUslf3by9daoAg1Zsd2npfZhnJAopUUemjxK8nde5EzP7Wn4AUrKjWOydzgySk4YhStZelO/fxTovL3aObi9TUPAf6WnHqMJktO207FFERH4KL/twLJfnAiVNunHH8oGpNfp93ZhysSwkMqHtnUL0K4hyVSELiFHUos3y0BJXH5ds2DYnW33NmgXz/C5RNsqrls+n+EYsejDpdZxmtI/e9KHHl6NOAY+Cokfxlog70jCIiQOHd+o/ILk2J5djajYxD8D2p0CWh/h0urQUS+Tvo+q1yRg5+sBciUlcd+ib445s2xn9MdQxoTsWh21iV9vphnoXhMgaGJZgeQsq7zai5UJWdEuKVCrCUSxZDTXFMyrUExxVpLSvM7rY+Unf3efwiDaAJoVbm8Qu3bpsVt0z9LM86Q93qxH4zCuZ5o/BUpcE/6xCbmP6Z5i77iEPvMQy8WYyv7XeF4kXGBJKqcwuBWGyc6kaFVBhZofhkdiGunTmdI5QmQIMVT5mvfYZngnzC/4hDiErkTQ4ftX7p1/L+MD9894ZimPQrCmKeBwPKadbSIjPUWwQsbxI7633+UcOmF+P6559aPb0bcMCROZza3K023id1f5n/V2508ayQAKCXtOBi8hnCV0kJgHRTzDy2lzDI+1KwyyiXG4Y+NOgSt9hlxtFQwcG1SPiS+/CqZLsN5SYqLVKfPcqhtSTa9Ea4K4CMDo+7IFMcuuLNE9sjWG88PTHpY3N8q3jB5QoIW0SX158vhvZ6NPJOzUmqtsLb51U554N5LLorhYbhSdLESuIdXiOAsdGtoNqzSy28GUz6TjSHL+fhfbCmlmyemipN6zLx9OV/PgEeIpZxrJGa2VM82DmU5AlNfyeEUbfPNjpX6+6cvG9a6BfzEZilM099u7nn+yGF1XiEbxyDIhT8P3RMOdvixm5h23YbLEcaySSznlZovSsXNFrP/SQTZHp0pfOIMG54ExY5YfoKPVOwZ9uzQawwmyHqeBEisgWtFyhS3ZPeZspMqfuGRLIF/x0G+yaYRwkGq3cDA1WkgbJ1tq8wNKOtumfFJMhZCNlC+pyK3kcKJFwF15P5RuZv3sDcboQ86GeABEuERahX74gR2OH9FlktKLZsqT9fXn3sl67bXCfOYHZK+/PJ8fyt65DVKOF28ar/M3vHSL2d5hRULzTnn7tb2tqMwWPiSCRAf9Q+fP4CHMaAKejbvtay9OacPECbAf27+LwbVHJar/8q6597Nl/JwKTSzzPx+0f65U/Swm9aRgAtXMqIiYXB9E88aC1nl1C91e4zcH3WJ47UdWHgToQOJVI2GpYmLikOUJsSsSMDubiI9bqJTrdjPRpZs+Qgps1+CYMcFwCp2ZcjotNuOqPgy7hGnd2LC+rwxrBqyEXVaTcLCldEzso0foEHJu5Mc63aydFdM7+E5W5DU41qT8v0GV/fpFxPRvtTPVKGb61H5Vvw9cWmMzE7ZZ9Oa+SZzJogsOLNu8TypuWO8ziMF+YUMw9DFjhWJ+3hnJCFDqJIVi95OqeRBRR6efIlD08AutM4Jh90mct8pG1sxFUwX8+V6DldNl7HNvNmBkIi+vX2lmNQQiJlhaiGTkOYz0WUPJHzWRQaWCosDqkSW0h5V3vW8mfAgZnmiMPlB4EzP5cCQEf3nmcHSy/JgmzAaOvS0JxegX6kvrzVvPvrapLoZq5PU3+W+SdujCRvdpc2z414oYtJhnm+ir5INSx8WBa90TmgtgvgJ49NUCSxv5Vdds1PNa8Vsu4bl+p8uPjtdcoQMG0EGESegstm55TGDalfEe7eBsTj0PxIWdwfl/NGxtHPuwQq2yOB3YceDB/A1smfxbCGIQ6pn2/J4v7BLVuWiVo4Ex6N1ZaRNgfneTvdSNryxmHvpJw0SheDKqQIT76u2TH+zs29xp3n6GIsjJLMjscfyJxu4I5AVf9CNS26rrpAEOLTj9EG8/rYcA5/hJC4Ny1S3NaaZoa/Qv842CKWF5L1pVGd9v/G1wHrrXC5dvVCOZvEKnQv8sryImSm84eZOX8Wb/5gDFAYAU08Bzj/Ku4GXwX3QiMvGHd7aGLwtbkwCMXqQfnw2bagfpAKBpnZImj0wf4QpfkqDgZSXT8d8VabKGoVFDU0gqQ7IXdjPGamStsN/C2bHy+SEW4eW6OBVd7gtRhPIWMSKfspNsq9IP+NR8UrbKZ+05xGF4+JfwJptXkIILnCnKIeHIeiUBjtGWrr266Vl5vb4C/80yyWGO5y6f/iQdXF/ZKjy2XodvjlYc4P77IYCwIbvVraqDtHd2fxNM2Wo4RzLn92Vj8htsDTh721CLn0FnnAFLCR6apVh6EiYFFrj9V68hEo5i/fJDXGTksqv0Q4lQpl6DOh7p3GH5dph/OjqY/pLxwl7TMc3OkY+3KNZs+k2uubsD603gXoCU4368qwbi8YQTuqgDdiUZ58X3aWyyHPkyk6Az/TtPi9cmkJibKBbWIXmDQ/XWKKIaUNTsJDjTBAkoUl6tMVEXfoMeJXHS72i0E9rbthSTT7NLERUQOKmyJ+3IzPlwZKtX/alQ1kQyfaYrP7Mu5YX4blwK3h4qFIBCJj+iUHgjg9IaoirxsFnJFDxGPbJZWxdPHsURUcaGlWc1PYMIfzUwg6cTlz6uaG/xYwXRBQ5AXmbfInSicYwxtqXDOnIzz91SoIVCauidjjaBFPsxfxL781YoqVDyyVIKiQLt7AnF/E1mEQ9I9iayYxQOMghKWeH8w5LFUbHVgfBufUnM+VAodOBDfyyYqF/+SLTJ4g9i9ohCyHwfIboq6127MRVjhEn0P1uFIKxCzIsMUwkPyo0V801yCHYrMokfm8gqlhJz2GNLCTLWRtbCrjJxu1UWJ/myIX1hunk8o5AfT3N/tRA6QVBISTTEwHJMr2fq//I6Dd6038ltG5JMtiuLTBrjt5f2nHTiW4gJAGCLswx1MZd7AgtLR2CaLX3PlizLTeGrS7bTZADM4g5hBr2ytmzR/lxTiXoOJul5+1PR9ZXZ4S5PLyR3KSclhMKGrJvYYQRxrUfmXKOyoAJE1TYGqmG5Bkh9FmFII9RvebHyYLcgsSLKwEeevY1Hb2R6mxIELBQIaPx2eBfYPkbt9TaQQJ5EVQxv3HhKQNYia3LF0OX4ERsFifZ09cHHJaIyPunpJX6tuVVUWP71duMFmKrKIOL58XSXGXmn7bPRwGdLD9vADiURQaENIa/8Y9WOgXzWwzlzQCh1N6R5hl9uiYdnYAJt2CJDdXeZY/J869gRYOXBXBdQLBLnIacDjnfIZSHQCBpASSvc1ftuYiok2vsjht9vHPmcdPaiCW7dlcJ3O6BM6eSEQqCfB75sVSvDntXaIp6kbFWRtQxWM+EpsVG+9+5AhgBMs7RZju66gLzgxEaQxAij+J/A3SCVT14vhZTNFfh2GKE/tG8K6v3djkn0UbVzar48ljq/x32hlZu0eCqBrDvwsNTG06IQlqUy0OECVFv0IN6XM5/B8MzDS4e6A7I8V6Xr7o3uNsJE/GyRd0XLbnlpUiaZkyhI0FbktPs14NatUfr7DCtYKM85iWT1Lb5N9zWHduZs55akeWrgJtWxt3zSmyoNv2hsO9mNtfpg1uAsUl6HDT2gwyo+Ra6cYe2vkfBFH/8dOBYCPM5JN9dmnAOwIm/b7giR4DW2NCeQ7OZkIh1a84Jh3hDt6RTxB3iti7tmUSQSqKAKXp6Pa58FS9FLuQv6sVxKkoyDv5L1ePvmN38EPC0seACQjD4b1Jyn9RHdii0M9rJfv/e6fmb8pet7t+WKUJgG85l6HJBSzOzZucXWUUHms59a3aNnt4BJ07NDriwELEDWMPyqKrXmX9JDYIWQ89lB84J3c1DBdFOaRdwD8XoG0aRk+EY9SRhmjFJFV1jC0Sw/+KJS3l7NyGT/kpO3tEw6ONJfG65rSuaAnDj/tYlrf5PweOZBrUNJ4r4VnU9dg6cUTzWZUWnGdMa76EpVK5iO9XJgkl7cXngph7l3lJZ8f59295ElPTbazDDAEC1azDWHSAFEbItvDedk92x3hdfwpcMpxDFWmFZpIDyJE4dGrnkeQcyf0D4ipqwNkD1ipqiAZZauUyb/qYiPHHZQ+zf+aZFH3PL4Fr7qsgZ6FnA5zU/U9iHdMi+a6DANipEf08lHNeBxAaBMqTX/Om3sBcxNNefY0QV9oPKjdnlDwv63jAdFg01kI6cXoEAUvGKfWAb1D+lOftqRdUzt7rpkkxtcFqLT4rABgSkw5Lxwm4n84PM65NG6cX+F3E9kHAQYL8WiALHEFzrU/f9hSTyISk8oDC01H1fwG0j2jrUlZNQr4teQVor6Zb+L2+yg509MZKzji+KL4vQqXE8yCnPmA1N55igQIBKiS5eh35Qmuum4DvVRIQiWRoIDW/k6idphdpW/l26rTFDzb6NiCH6hjnxbnYSfAA/HF/bcEAFYWp88LLWUq4ENisNQ9JLXPtfDG8bvEP4RR4wdI1g2w/69YUp32f1KlLz6J5Ip3SCIPdiaRY9hNhdTW8ZECehmaYYB//K/iHsryN96BGWaRRk5KLMXxcaSEngFLb9Nh+MB+Tk7GvAgca4Rp3RCEae3J+lDLm7D8mDj2JBhor1cY1m5XzCJaHkKo/8XxBHgPD13Er8/JKfC+snZgl5AR3yU/Rmbc/ZA9r5SZcF32WIlx0TmJTrrHv7kDoLr4CApDExxeTDH7XT45rVbiodboIUFh2rWq4JCjrR5RW9ozfYro4iHN0z4DjzNrG9WURJFu3gXej58bSLJwT1ukExtn2leNpMy6gXTgmscX/YFO23NKxieI4BEaggQUb/2bpmSQ3VWgWrgsPnkwP2mgaX9uc3k5GF1AaKp8KimMj3mGKe4K6DigBywbPLTKCxoSp7OUlWMPscaF1JEapUG2vV2hPMB3YvidfuNtAJ0QxfrGkNRqBIH04ikKbnOI/1aNxHKt/j3PHDlyZK89HLfp2Vz3p+687BZwLo4VtcVBO9F3zCC7Yca31hpCS+RLrYcn0yL6iytbDFmJRNRttJ1NuMGB/t74qnI351QUejR6AtsMCToBiML1a+NvHd1CraBbSdSNGu2f+B2vC9a/rim6n3P+TzV7a5W0kikqoSw1DD/bT2GDjS+BX7yH2sYPN3dbk+On0v2jOZJl+jgaxnvFx3cMQcc+56qFH/ePxPLSMQRjjdykNpQFgba4ZTSOuR27htzz2e+F27o5XornL6+rBf1OXlfu8j3NM6M1ry+2aTcsQE8XvCC3OvH/KvBBIx1xaK9yvx40a2movd+1b6ewr6xJ6izuz7J4+cp6M29AySZlM3yOqh9+lQhOB7N8wCUEIxCr7uJMqVPHeVILQIJ+5l80HGSbYkq+EDTqFy4jdVSvSOomDXzQFxB4tyXkowt2umkfaJeUiD4xcS9uRd0ClD2Blz4y90ebSUJt0x2RKZ8eqBWpjxDm421kmm98jcs+wUHIsUuJJN5YGv9HMBb0p5KLQCvcDdExXw1VJcVpbnQ/0U7tFPATIeD5asG/RErlwI0Nd+LQJKuTHy9vl/qkOu0guJwZYjx38RAe8DxIZWSSY+jTaYiGlCdWwZQphA+gSqhSEmVKMipNhqRiX+tz3By6Zw96Br+2O8A6PpeOlwKaYGdFoRUr6xqHYsIMbLtp0KV9qudKh16nrr5bU6M72EAx37189IN4JKwa3ntopBLI3ecnlxh7CLBToLBnoB62OtbiexMuNkkjEpKI8D/BIcxBVJXGPSTAGlQCYLrZo9Y1kXo9/WTp7hwjrUF5bJao2z+tsk6QcRDJndkqpTJMYiHiD8855NsHTdHbcxzEsDqVAlB5OHkCD22nLvGbnZsUM2TuvP8Sege1z0pSAPRFttaNKgG2SRshD0+zSyx2NfJAlShmK2u72/vPVGGRBZWH67orWcCWwkGM5DijnMvUtgB8haD8zN7rKMm7AKBSg123DIUJEnwX42dAA8YdtqVfR5Jjs7rWnsIaHjwP+8HTGzRZEul5TOZFamX8u3KRJ6TiMRpFsgiTyVahqWWU/57aqQd5O0UZt3q4WZLxUMQocLEDpkj20ELv/ake62CxuKOjwznST8UWU1D+G0AnPRNtlEhTVtoAJ9WF8WsJTYf8zgn7hsuCvDaO/uRvDmxr9YU/tabwkYtQCPnIWCZwdjr3HP+FLQnF7yiU7BmxwsDeJ7bh9NTOq5q6S3KzpvAJqfriJRrv255qCw+VYwkpjQOC8D869f75Su4VncdKdAViFQ2WnLRYBfhRbE1F3YJeiYaAhUKZGeOiX9APLnqJLpB3Sf5GnYK3QNUZ5vWYb6/2jNepPxqvi5Gc830CuMPnTG2XXCcovpVU1NckfQy9hb9tCTBajy4tBl/z9nAn722VqAQAmk6Hn0w4ff5+bJaOWl+x4bPHIgZgb5O4aPL+9rxvFNQv/lDiv5Zza8uaEYhUtPozgDqfOs9yjvRAfWdmv7oi6wwHM7qCDCg1rrRWvNEuz/0hsbVVkcpHCGHGKWI/IPQ9wrJj+4gYBXUgr06aAeRjeh8psDAOunMgkL82oEFoqoq9XZmfrECP+F4dent3MwTxiVNO6QCPvZwo2UZ6lRbtgAYMMEB0LQy190NLpWC1Tij2EiTbUh16dG+uRJpfSlK1z9EAWfdIcVjl5RVo+Z1ckD4Hv9m0tQtM0zaoPOPRLmIGjB8wNpgk7U93kOeZfdynL3yMahyMH8FhU9cMqiJ5Ls7Xqb2zPRsfxuu3j3oka2czmQ0DJ2LcMpUmaM8Q7DOv96tfmGOYvNBUok4X6GMXHNgK5SxTkx7GroZoxmeBJsFOSXTRzAAJElfO4iILuFmcpb1q6Xns3rW659JbO7ijMD/KzQw2rRWEXdAeavE+u7vTDyzvXzWpuagU3MSSPuSbs+CRwvY5Aq/38lGMa7rf4KDKEe6R3eoTzzQilkbIk9I1M1TXdaKTWmoFhAS6ftlbVm4y63Xh21SKYXqpSM1c0BQ1j+qesV/RiWwZF7Sy6k0I2rxKihviofbiN6giXNlWDcCEdoiFinwSYwLkiPOSDRRSdgZhDdZIhRTOUmzjz2rurd4YPcDhlfmblWtMfxGaCgEWbMVQ+oZhTIVlf1DdptHK/ufcCk0gjOkEP7lCMkXfZWi4sr7TBBo6Gkz2QOoAPfAOo79GtVHddvF0UK/+lZGapPX/S8sjJ3kJ37abVDJRhNUcUBjpAyHub7X806/WHzWjzGe+wQH/zNtPvk5Q6kcbGrLbVHIIxr6bQrIASXv3hpxIpJp0dfIqHESC09gD94zlFxXEjbZyF3YTDr1rG+bTcJpq0QYXrEZEiQLpiQDuriM0Ai0QTdboaLGdpkQfdoxDitFzT0QpBgJ8tsrelvDEtz0siq+NVv8kn9gHEMaEvc1E7NBTNpkXNCFtltdmu3MSmvsgU/RZaEYXJA2F6HHkqICQx7cAEtiY0+kHjpuet0U+iZi6Wh1vcIMqcDNhbZwfrpxd7zsV+kBFSo+50aGK+nugt46uWMuXKpmbtxrK+xvB/QTQRQNAX3vq8cMVMp3G3qllHaMTvR7XasdBp6Ay2tu/HNLuf5yBwiHwSxbfT1RpCdXkDfAaHz8pOELUWobNHklht76UNjBZnCwA5A+tfXNJ9TdTkXjRvy9V9PcS2nYmLORfuF9LRMN7gJYWJB+kCqIjGmhCJMdvKmYlZ/frLHCkLRn6vC3DO1opkvSTQ6veWXbDzTtWnkYJpJULcJuoJN/8gzBHg7E+mBUyCU4lG6OlMY61Nlr5IcJMM3/FFHInXxJd/G7nidV+ODr84FF5heAU2eozJocsEF0J0wC3QOMTDyoOM30UmpH8AfAhLP5DypmNepZJAr08lZkLTs409n03BrrDSMZYu0duUX0KAV1NaTX9aGNIo6AeKVdPsHg/fF+nWmYk9Cb+ictvKQi6x75i+h6klv/s3+fbKSWE5ufwpSTsz8jtLK/Xbm+S7EC2DaeBVoIzPVUTbhY+ViKGQWhonpSgO1U2fmfSXvRyoKi0WIs2UuFYx4SsiJFyCAaev049TZuoBhRJ6HdqX3qXqlTCwfyduaHcBoGsywcPR9RejkVw0FL6K6JZTDQv6ACGpPYSHsu7nYHsoYEJ9KlEMrXtjEqtM59gL3YTanepofEo7Kh2j9jvW1GoWp11ithNw6EucZtEFlefc+GtwwpahISkYQfto+whnaKexkImn6zbufc28gqDK+ftIwZXNaAS9lWYM3gJF6zHkr2BbQH1SA23nSiImjwMGG46mNQ7WM9EOcnRlohcehxGXMVQiky1l4kzwX+dt2gEKoLEyTQ2ZjFk9c0R5cSALlNx9RPcI0MQ62nrZzwU65jdNbJ4dyrkGKdbTzCjJEnWRZwDC86BlawsAuFNkUI5ZnqKyZrwLSkO/ORsejMkGCMEQWPHH35Lf85f1hY7DLjY+fy7rQ0izpHBFcrLxOKuu7fXHXLwlyKzITjZNt50xJqT0LKeMAGyKt69J6SkAWIKd6C97vCNFJf7zWv1TY7F42OPUWMjQPY5mh37yG+9/DPVkFr2u37JNykSTtMa9V03Rh3VgXrkQ0JtaPzZYett1xhDWpdlLDPw5ylysNSYhOgDagysWrj1UY8FyYG4UJmp8SqgZMpjAFSSk3rRmd9jxs0wc+UMe9wWAzO0ak6mBdIiXHBW0N64pomE/EgoykyGDN2dOG1KleiDk85Ipb+w4F6ZfGHZrji9FhJba19jLV1CzxSPGhrJWtDKhvaa0Hl5SlFG2MBL8mJ0iWNxW++NGPO+BKKlZXoqkvLmZpLtXPX89PwjxSMaWCD1F2WUkFTaVCiCeD18FuoShPQdNBLoqbv3n6pwlwwkP9I0b3gRFU8mIQVxQNSNtFcDuSGSoLulCZEEBfMFrJi1GlMr9GVX1dhyF1bJV3jEwVeRN2uQaiUfWYULjfEQjM9YFKV7x564k7bDPVM5QRdr+QHgRjxbXHJsCPCyLI/YKXs9V/pKRJaDIJDuT9r1YW/S+LvAgsqaPgJiW1R+gjtZcB26NUZNhOWl/vS9fAstUrexhALpaMUDwR5AS2sH3EYQ79sejLRdzToRiqjjm5BjipSgB+LkQpzFGJoq/RNWiSxlf4d8kIskyOFYDnZF9n6EgIZURRt6UiX3Aher+Lkg5kZ9QDy6rbwrirtI6bBElRuQBz6QwbTARk8aFfG4SYkjNPpwOUgYkIiSo11FXmxAi2bt7XceWeVbzQxCh+kqj7JlhlFmS+uGX5H7q9Dr27NePCt55Iisc2iJ5COy3COCfCQwrLa589Mh1S7+Z8ktOphCR7vMvc+uGmW/6rGIY69juZjKpyg27v3IZFBCyFxPa7jGaH1AdVtM86VW2vr9rsi5m4TLc/LvCJ0PMJIMGdGnY9fepIYSjV6KPYMlGXTNDsPU82+/JIk/t2XuUiha4RrOFthy/spJeWDhgPCeuSFORW5qHdxt8bAwNS/eTV218VaMyP+/rgCg1lF3WUXJ53PqYANQIKuDNdQaiDN6Nsn2I7pMZxaYsEDAZNyfQkzfWMVHeynPyyNCeZ8yjkxQGJUciqCm4VxPclTur6dyFvCuVa3bcC4CVUsSVVXvCq0Zwc3Jn4veWG/1JfYj9JiaLTk3gttqLvAN1pUpsNqT4FG7IO0djpCRaMbjUdUn9th2N7KZ49aHA+NJXB5jpCdQbhKNe3UqAjEDZ0biYEQkTzi6V7FmloOcNV5VTuK+kS6Dwfbumf149LV+Mgzaf8VQ5f2AcR8XruFrgeYjye+tSRTjRNVtAugAZ/88VV6sGVlVl7/5XfEBLJ0PW55KAtBL+oJNxe6B9U0LRGqLCXMUDpbekesJMiMK+S3GsU7Cdo42u0RnLXKdU3tQeFWCU+vfIvxCc9xcwDjYj4mIPs51TT112pfiBHgdem8oucY2k2gFWlYBqnYEqIf1hgC+OAPlpYI2lhJsaAx+M8s6bP2UDsw/0K8NT4EZeYiXevHm4hcJOVtyqI/3cgtxx8/0W3+2Pp0nDBYGwVUvEV3umQ3qQzlN+H0Wsqigsrl3RziDOz3LrVT/CZcOYM6fzrIxqsOeIxxeLfSzZKEdJ2q695HbliUi3hc0cDJss5aURXIVXNaMaAk8Rxav/CgpMsjyXBPTT9l/fjHfak2U/BA+MwLmtQd5CZSAKRw5aQdnIv2060H6X6oChKlwa+T0jqTldujweP4vLdzlqappymUTkdUkGJvqg3VgU+m1ZuaEaSgk6Z6E6w0F7UaTJOAe4U1gxPHyHoNE3muptPpJnMoxArQVJHQ2bp3rahTsb9UfZ/k3PKSjuR2ZpKFPYdcvolMl6jj5t05P5bSPI4dh7vGHRoKrApJlyLg8qjljGkkRv9vMp6Fg0O5z64SHgjmxIzpkOtudJYfVDUbHJZXA2tT5ENKxJdyGbclCyQYp9uAVSYoC5OGaVji41blbXyk8ggyyMyNN6Wtj7QtsxkUvv8r3D0KY0wE09XdPpTvAuXQgPczQ3W+WnATlR/57TTjFFKG8H6mtV4NLFfZR4Mqhi7BySV0SWeUHcRVBRXRPbU8JRk7ZHJtvRI1NOhg5qq69cRrUmTtMxnHe/EOZi7DdbRv0FBIfhVWQsJMoskhxCWp8hcUY+GMZo7ZXEH+30gW4N6jobSqWJyptLRw2rxi8mEx2TSLZQYTc2nD+a0IbQFwGarhZytIZYnbr1apdXx8usTuCyE5mvTF3517F6bYJgMI28qmi6UunAJrB6erUlZuxJmvQ08EkDbnVcN3lWA6Ctc3XhppYzAAC3RCYdCQ4fQ2UwyTJMXYuabGkWYnweN0nRHUszPkxsQ9W0bdFh+w18kQ2Cdkb/HgYfqcRGo42fhG8sUMTIrM5QVBwsVLlRiaqQHnN+QohWztdolSy/7Erjj91ih7Tr3lsPoGlZwZWJXLHh7oAxCzqWyFnUMmoU84U9wdkyuHQ89UR3iOk9boOE9z5MCqiiyMsefZzYmkzzudPzXFrKWHbflCGJbmHxDPj+mVITZ9pCSLtqrDUqF76CXkcrQOTJz/H8MxKLTXGQtZz7/gQk+JBbDn5K83x83D2KrIl6IDeySiAEEfOFErk6OBgdcknFZl6O0uRuTR1KRshRP4sWdc8qsDNwikjUan6w5BoSlwXqePqPYObcKaUEKZgtkdpRdbE/fSSrtFjUGG/0sizRUYk9WmkaCRRMFRPytLjeCJcii0atSUUz+9uaqcIPeSMTNfcbmvAeTgmME5EgMf+RUgASHinqfmSVtww9eVW7MCdOiQwT92IUscSVVZr7q42s1x2QHqIZ6//BjAk4ELOqWwTQG57DP6NyD76chZ4RmT/wDxpfC9EuYfPAgScEDdMiqphul6cUsqrLXVy07NAFWBg2+QVE4ywA1Ace7QvFJOBJjXYmVH6ziKHK4hJ9/jNDnD/G7NBB5Sz/chEhXmO2LEFFKOdQkD4STAKnf+TT41yBA6iDh1kGMWPu9so5k8TSI2lsqGZzjII9lpXULlCiAXfFoEb37REC3RC/klqeDIfjxv0nJPvLPwHZAKppufoCun4aC/6YS4ulz6FcJPvQcYviK2D5Qv/EYLWJMM78WQYPXTQ0tAY5eO36OyagDdYI5UCOmvnUXhPx42k1pDLHzPIiYkTJttNy6wXPrAW4jZbuLSVFjoIHsnJ7NmZ6stPArVZ3W7GQ4ETWlscIgxkiU9PN8UFdpviIqGPyCti3nLJrNaIaQh2xsbVKi5xqnxZmTypZR7SUdxz+XCyEGIs7aylcQx9MXfYEGOQUF9xniLbeNdxwfxZZztcxpzyiYvPBnnK7F6LV1/bKfvj5xr3FNasjgPJaI+yla5biMwPoKRSnIL05WDzm5GMAEjpNATve68PJj439H//PCFQQN5565TQR7H39YyfxsLcVkz92G26dvMFqDicjLmizLBy8XKr9QiO/E6KnBMQ+Q8a75hOiWQ3VUAgThWeLM0z4CzeCNTojiJFI6LrPAqXnit7jJ/LUuTAjFVXa2me0Ift7CTKVyavQB8IJebu6tOslGfbFHXO7ntFhuoo0AU72S/TVRYzE4mifsnx2Vu28tmA2NniyMWkRrxuS8udc6vfaco9SU71exZ69xC+x+cQO1oDUMeofzDXX8aYTqSGrX8Ho6BBb4PweGEnS3+Ya8HW09PCYbFRMVnvmpmF1SFLPRt0Uf+YK83eXYkCLvkWqD44YAqwHKOjiuSlN5MJB6fqcrTSKI43yM3wBnxMs5aJ10wMhoCnFTuxaDnRe3jRzTH9MVHnL5hF2MnlsqwaAepmmdQGX9dwJQOQqyP91LHNLwqVWafuYV8gnRlAzhBk2FMMGS3sGJVqRVw+ew383mTcZ8Lx6kQ2V70Ebw/zIGWIzAwvpjf/+kBjfxFABsXAILxYTqgjzW4zxFpfd1Szv0ILzrqsf8ariE51bQx93LykGW8pmckWJRDjVp7ThLFCYa24khcXH5YKyfU60yxSFlOFgNL++PD/FmEbtRjaFSXGQw9qVZRbY63GJDZRYp9t4vkMLwnfy8RNHt7hinZF8GjDfut0iFzxuNMvZQ/c9CxJVj9QpeACB2T/XT/4ZpwLruKK8m1pPR8XEImLBveoF+1/+ikvO0QsfAmv/CFT6Vq1MZFYBQw5v5RVAevjw9eqiZE2WOQFFisjapr3QthXIUo98pyi2kDxZQEV9YyJtZZb+36MBvaYZLTt56vo2yNDBAFK7AGp2BMMP4BFgqjDx4bF7wPFx5OQmInst5UdFPl+t5IC0Gg10+lfu6M0yKsOpNSzgq4WC7cLJ8Hn4VA+hMVkz/P1/GlWKY8XvWHo/PRvYUf2zELwZLbDbrK7B+1x5FOaS4DwTzdMpRtTNVLx6iVEn9a+bhM2vvjvp05MyVaE3UnEQYKeRRNXn99uNbZ2DA2tZnPwBcQ9qwB0rcKMDL4stdNsOIV93tUz9oJU0SqL9Y4GKNXDWFahfPaHwzLh0EmuBnPfJ8ZH2iZmsnl7I/DYQkgFYkJMMc5hQznqa69e7E4odlEx2LpyCdPVW0x59nb/pxfiOl7P9tHGMVeFzPaWs/kkqfwU0eY3dMFMYjqbojyr5gB3suOEfB454Ua6xu1n3d9QK+NZ/+bwioKV2P19eHrC9TqThmS7VpY2R5cYf07ssDFVUq5Upmhf8+/Fre+A1/0fVKRUaSwNFTJbEJCgDD0JoNjb+c370Pg3Ua+/AkE2NVavHGspTbR5nuKmZhw+R/ziSYhRoHnJ/aSkEnhs9Z69cjQJOtA4N7//uEkUdTYdFl9QQ3GVhcUpixlmnJVNDIghp2NqjZO96K+C0C7EAPEsTCppsjFsIQODfglx8B825b+3DKbNP26uO/A2d9IT02mu3BnJlSU2+sBMVDxXasuNMMgcj3yScK5c48SBjY7qsd1K6mywjphMI7cBPGB1dwqLnhnsv/b9X8p7eJgXYWMqEm35p58gHC9QUm1NolUQn/B1/JizuWvXFlVMQOJNXgISYur+Et+vvpvnTFK+bKklXMZ0wLA8ZH1GoXeQaELMbBBcYg7O8Q21zaYmkZJGydhh8W68ubkLMxi7nNmgxwgs7Set4r9+A9PoEBQ6vQuvubKZHZkFSYje6vUaI3c3+IervYRHtMmsKaaHFPhDr90IZ34yliBUnoy0aboSvKRJ+NdmbC75fue8n2tLkErpR/TvEcwL8woZi9czaDQ9bGCvecDzI321Oa/1AC4x3gUgj1sFXG445v6GsvycX/Gx1atOdkrFZ4MTMjnbien3FP+3uvE4sGgSZ4XmKtbkslun0yNl6nN06UlGLgj71y7a+szaFL0CWBbVL5o5rE0P04QDDbFVH2uhCNfBHUrolXNy0QIyD7R8HNEN8qZYDsnX5LWTLb6n9nJcNGdhZVyDmx+Fh+qB1o9r+ZvfdfCuWnJFrXPBIBg4IafbU6WZiv0xQHMQsPH2g3ZZEaNvIsGCSa6NjFop7nyOaqgDCz1UrptIDh8M9RBWf8kn6fInrssxqeAm4VZUJdhYIGYcme6gz9v5MjBDWUTGEHYfby6lzKbKMZMRyBa57n7zGxgpXX3xBAZQX6LYhXf8D0Nbbl3m6pAxyj1aDmyMhaIpZ45W/xI4Inp2BfmP6YcMNgdOQBr9/+hoIWNYJPIBGntmreRmGDL6gtU1Ft1nJC74sKse/JT1yhbVbiaJtHHw14Iz4QXldt3P5xVAp56wPUbgkPOyIe7GFE5p7vI4jefl+pTnMnOuI7HqRxx4WyLDrkAoPhUCmbbSkOJfNduhuPllC8SaaKfxcC3NJKBoNlrnNZbu4CpGYkCRhI1lX20/d62wubDPJMeQuU9Mc1fK3A3isQBJkF2cyO6qMSysuFZGw197AePzkVVdjS1//SW44Mp4VAcNSxjZ2QksJBND97BGEb+PlZO+AK++GaALuKZtuvH3SxuwNCshy751N30Qa+G2PHYSr9UPU0VL5MW739wBfftPMdgaHam5Wslfpb1p8VsYE8vNVR/1r0j2F9nWbejJqXRYtWs6GJK1tJ/aA1Q+c2PLz7kr94MizXDh6adMWTQjUiqsBCnJhfFJf+CP4oNTlF1EnT8NQNUhg/nh34lj0t8WKlUsEI0cF+mS+LTWt5RJnQVyYVDZ6UZOgWaTwC3nbiFqtwCqIVTDZQLfOSfqM1LoZkBy/OfZo1LR9SMP/eNxncBOq2DABsSKcooIZ5AUo+mXrMtsbaE+DNVDqzJmoJWz24zv0AGFbxLrULxJbsj+SyZ4AT/pJiR9Niaz0sE8NiBMqq3lTlIDuDOHKqJpyqaDFXhnZFFEUsbZiiAHBGp9sThpLcej5sL6AuMsyxDYe7jmgIydSyrwz/4YJ1AW2Pm3xzvFkIp3KqdbLaklbh61U+3SPqt8WvDWc23xolf+rsC3evNb5y1YtkmEfY1C+45DBve+HzPUbCzKrKwYLspOiogsdE/oMkynWMmOncm7tBVsC70xARpsS6fc0JlC3Ly82qrM0uNmaAO/SqFSeP/rBpDHshbCYP6YVb2Xs9x4+pknPBeyrwrlkkV2e7xQT7gSLtAFPboQoj3NewvV4txst6NfGSP3qHQOn0l5QAGYswxZziNVJXnpLEFmacf1gdPkUBSHyNyKDxXj4XwOTkQsCwtZRfQCizs2PzZeh5kgp2Jd40Q4E+VC1S8muLSqhiE3nQ7tCewxB1iH2rEaD/FGS40zKSOGaEuWPuLc5I6npM74/OHfcUDHM97FD6WXKeYXCNsVG5CH600HWVghv1FjnKW45OBkdy2lHms8Hemw8OP7zdFNRK593UvdjEue8xDisaTf4rd6CbKYtS/sWUdVbXpSbDpJNQbIuCkuwbCVnYdmXZhmTdlwAx+beYJp+1ZgiN5fCDoA9EqeUfA5S52sSOMzdwl0JIheCIiXZxuyuEAynGEMTH60KJw0sxEzRgnDOxnHtSneDvRNdvoPpmqOV0uuxJpl/KyHJ/bLZDKYneBmEPJCSISldnzFfIJIiEs86XfliahE9dGgGlFW2vyD7pKF7GLCL2lvMo0GjWUybErGlkYRYdAeN2dvN+VvLYOuPsyCEQKUupvzokgucCCNpkT/DxNMeoXQH9Zn4BSugjo86Pb3/y5UOpl+qGTk8akdHBWLLGelNXIzkCPO3mxFh2WZ3aYRvQ9N78/07ygPNOMa9U0EpLywZgP+qV78ldZy5nZ/mD02Uz8K7Ob7UUDkZ0ZiSV2L/t3lcobWSNLdBXbAtVGvRzgT+GH/ZhZuf3JGqj3JlYlLGkB7c2PDWBEQK8WOF/O+C2IhCKBy6tQrN4ygXejWABQf53vqlaUyD8v2Ois8KF2CW/jWxJB/BblEOV2oZ9cbM4BJS2resUy3r64v9s3Sx8ojfXhRNFhVP+5sP3IJmaBGVeLjyFwT2N75d14cztHaR2GJDsm2+5SmvP9mYiq+fnkH/4fe329wrFR07H8tsz2jCriBdLXmopGSxLg7qw1qPaD4aJlkNSgj5rFuvu54SvJ8KUt0NYFqWnydmpPF5Kz7tGqXzq01sNrLK5XhBt+EgzCqHfzWoSqWNCCQ9eS6/ovji5Ucn8nM+kXNMsh8Zd7OhQjLt1TjGsc+K4bxXtMr/H1SIHQB+tCYIfFLMkLp0juTeh6mWwVRRLHxeQR9IF1elmuAb4m+kkVhI9j73tl+GWeQl/9TkQmq3oC/LFgQhp/hHTc+eUiG/arRPTw/2W97lftasXPpqLWqtt9T2P5JOGlEwm7ecWYSv5GW0ARboJeLTyXmv4ka+nVp6uMU3rtVDf1KDuBZ6aS0R/F3x3dyKkOmV2D1A+07hqycJXf9qtyJWVDyUdwLV0nGsh+59AF2E/O+JUWIxr4JjF34aHoodHikia9ilTi8vHA7BYlwZTnYp2/lxbTXesEjJrSPB0gwmet1PEMn//nBFfecfWNeZ4hAtGJZJ+BlOwx0LUb1uSkdl29oeD7UQNAAlkF5svgE8U+bB/a++jE1wm0vqKzJr84tNBMpLrs7iUcvm0YS7tdeijb/ss4lPlvOoEt07CPozojzJKhqR8F624anEJAhDF2JEd4n/ZQaifs8vEKQrbOtDPiC8ZGkoJkzGjExKI9FAzeBZlaezTd+j68Ysg7muEhuE/EMO2rxMPf38UBbFX0oanQoqUlMMrQD/jq6thMNLgYpXQTPDutGXzGahJqmJoE8X4z6hqZzJOtIu1K2QdVpv6W/SwZRASQB1DWg35nDaUjKc/VdZJp/9GXDDpBko6SXX1hKN50GalxNZuXNodDG2KkFxCwhm3a0N+8vV/I7lV/nlwRaHS9MGYbOCVPQUqrIF+8Khrkdvmt0/TCtMir/e1gPivB5KeiCFPRvST7Veyv/A31oe8AjcutWnSGYuIduzHy8fvqiPyipjEwXVbZ9nrH6NfF+Gb5iolsOd1bG8vluu2xNXP3XXtRpvXS2ulerGqLJDmagW1M8OXvlp8YSFxUSiJoEP3OXQqNJf0rUcbrTu0PbyGKPdsNLnA7yutn540L/VXZbtW83W3y39QZTQLcF9qkNfvgKbj9jZ0EVBeOeKfFmhVjtFG0rgoMGcAyZIaPn6AhW8nDfgNMQB5tvAL9MfL9wM4Bkq4fKngAcj7JhZ1I4fA5J1RtbKyTod5HZqdKOw09YdjkiTHc06mzW3vohtqS0BZczdGtWAwq3OtKAn3twoLNoI8EHweyfGBY0wYjuTFP7BA6ovW8qQ4VuW0MRwGH96+BNR+QK0vJfbon6ts+itz83hT+Z81Hf0i0WH3EtqWmemousvPm4NtB3WUGRPvdO7BxbfJtV886b7iVyFpaGQDBi14U7xEDxdpwKs0pwZ0801O3MLpyKkOVjOZknqKWFUbZSJRm8BYb8yCDK+zuOgXh7Lbew3vRTDphNTYPoVsugwJNs8c3IMYeLjIWOLVVDv6+op+4EKipMFdrjits20JgV2eR04MEmc57IzdHE1CGyWl1t1pMef5KYqTE/5oznEJ08433GHsbA/PkxDfsw0ZJp96QbmBNz0J0a6L/rBJiP1UzMOUxj0HVq2YIqxe4SGZ/N0AoXfYcftHgBjFnwNYdfTPQVKV6ywaTZIAX22J8hSvzZCy6dx7H6xhUDBvNEq8c+QBYXuKB1U96rSUSM0AGdwUGleueWr8WSu/JxcjlLP2CAcbLkHkfp5SEKnDPt1l5nJ+i8WUTJvSQKriXgCYyrWmcaTdzulgF9fcebRNUUU91UJ5MLKH8FWxZuHrnH7qVcEMaH6qraZb4ZhbxBNRJ+8x0nycI9lTO8J6SQM2Dj34diHdfNr19/eB1YgZCdu6P6Wc/kUsV6GiiS2fJWm+dWu39rjdA+xQAXK7RnhbYcvRRLTxbEKS+8vsq1ViB9VbmbxxoOyk0+ZhSZlr+oWSa6rmA7U2tMyxmHX2Hh0Fd1ergzdKodqlZk8hax+X56tgVwmygrUPjW4pT45yIfTxzsRauX4cWZviESuIgQ05g+koyQ82yHZ632QWpbttfllxAjo/yzzuICyegfJYcfDTPG7NWnptPrSS1327cBegB1cp02tiZRDC+4dQ6ajxeYQit3V8bxQLXk0QXSsZSZoput1bdxTR1xWVVOpDm+6uzj+AZMQyWThBGac2Mgh5EqnBwuLeBnxs0APrU9NINGkbmSzdPlJCsG7cw7wXOTF4xOnewBOhrrTEorVnsDw+ZE2a4bJI43GUbsCks3xk0zvukE/SRQ33CkZj8mi1+YdKaVdqS6nBZaemXVRGZxw6NdfgxbSfCKugNCmjP/aZQbGKmhKhL81sB7b/u/M5Nk/u6o0TK1iSKQo+skus74uwufpmATLAON2fRQUXEGYVzL+Pi15GDPedcHLvwfHWj2FdVcFW7DA2l4WXAfAe6AXvFO45CgesgTqrzUNjD13iadnEIgFTVrhWrnxHH1uncP9aelFXOXTOXYni7YtQHbhzcvIYwLanNU26i4clEVWxHwFveqaiQ80SEABQpcmtkNdXrrwFTaoqCr+Gyp6RM02ol9zN4bcyes0Dt/H9HfSJRP3Ip4+HVeZ388SRd+UIcHhN56fGuVAfgyCIp3Yh/8VLqntWIC/jFuTgUez5ne/290ex+y4kVz9zmqUgCHiz11bWVLfubeWtPJNZOrBI+oN0zvcj/TqRyOyiWl76MBR6ZW/z87LD+1UA7V6UlgaUEKmfT65YlfQPtv8DJ4zEKp0V5cWKai4aRn5SPjUzZ2mKUTn6cBc69nBKRRTJU637G8RUnr/aAUHvC/q/sObjmUMVJtUqJNRVRWZQ3OXatbVl6Yy2UHTnoE6LqePQMcjvrovtrc3EZvk2axaPHyiN6txCam7dJEQ7r6U9qOitz3w2fNAkmNLPqEJfp55eIcWYMHoSeNC3526KexglA8AlDVupAmHvylPA8zu1JVFocfvlmzos/68udAr/Ywi6i00L28I8Hgvj+mptqJWNkNy0K7e4xugVnSE3kVmEtOrar6sB+89K+nBXC7uHsR1NqUNE4p7DbMDvjO+WZu7LrUQvRysjCrtA7I5CW82fyK+hZR2tkgsHDhCMcheDUljCOdAgN1MSyNR0pyI1IUP1W45mj/UOT5utU5HFnQUNHcdBe2LM2sEo/I0qKA7rIdpohzYycm0G9fto5qIuKXkS1kl526r/yFudcZrmxu3pPyJM8RyjGlM0A7A7aeNXgsDj1icfnsbZQ+dkNHISHYzXOO2pr8iEzlsfVx/X1ARwnSyhpou3F6Q4Ev5QajAnaA/MIYJGBosTk40Bn58ZCw6rF97FS9mCuIwiQHiIX8sDP3jZzuoxfJttzs1ZchHXR35nmgU3AzRWMkIOSLAO46gNZ6j97GBJNRDupDZftZDYDlDZU/L/m+4g5VDeeEMQnYnvtXhXrupzxVADrgt4rg8eU8qO4ZrsX+byrgQ4SLxdZ9kxZqbxH0DV1iT4G/RVtsQzUI1YfGPaWpfVaUnQimQswxKf59vLTrHgf2X1A471rcsB7b8yoAFwUZIx9da8syIgAMyk0RN+oeMe5K16xUFO0lKcMJKf91ICE+7df+8n64y8TIrs9njE8pdCH764XAahqcMD3dhgWNppX6y9o0o20llwV0B0mXt5O7W/2VyEwRPgYwQe10EtiieBF726NlZgS3LSkuR1Ue3XXaT+6ekaXhF3Lg7pTe/JRmzOQEhcrkJ9qXAjGw/ZJyBi8j+sQkkIMEEZbqp2iRORZnLMIxkgvTXk/e4bhKGZd6g944+pzePGTfjxKnptTzJw2aCMlgQwc/CekB8nuR+UrtvoaKTWnLQYU+5Y1L0bqJZZ+Xf23b8ak2UsXO275hHaUigllWmvDWv7t8ixEV7z0Lq1NNj4kfC7s4ClNTg8yvGVygRX/7/VGXtKZPCjDZMKEeqVvKicF1I3CbaPIwpZuS+GK09qZdIWAJJtD7INjiRuamGkssQWmkPCEV8b05ckp2Kggml63ObahIaMpeIbnM2EoAMHA4iJcv+IG701ru7ULlzpU+TWpWDdhaoijLYrl6d4ADUKxKxmZ9GHInxVUQL0OII13VNSyl4iBUMSp+61vsycaIXHhLBeOaa6Kdfgm4ikEBHHaqFkWWKqYmpO2DMCwXjwdpeDWrrIUDZKdukSTFIkE3XjgdezVPjiVT7VLuU3tzUKaA4pJnTUtwvlhrR5gKna5I3vFHPcbB1mUMGaTF50OY+hgxVSGEFyRJcOzvihJjF5LACG8R17UQ4QWgCASlNNpkNEDdpaCHBr+UZ2e3A6eLgUa6FQU+XUYDaSHU5i28iVFQNhNnqQtqxXZCRtZXABkR5YX5z35Sotyc8veK9Ng2EABMIgBOQ9nWzoISUkx0j6WAr+0LWuwHDdzj+R2OimtTtk7N10UZHNsLYa6EhRBBqIbZ0Nyy1lLXBVgQ8AJoYhMNQcCRT9AwPjekltlpyx+YcNMc46zzUdGM3DQf3q9Zocz+DvpqBABWccPHGHqJvu+BeqISmUM9wKDs3kbg1WKkl16KyCgMRxRprPerqi+3RrH0neimzh04La67UYoWSdUF7/Sl5u9oyczYq+1eiEdhyBwSIx/cSf9SEBTTWk/BSkuCE8ANY1FMdHuqnNSrS7/h/SbHtwW/v5cFLUdIhv7ww75D8AWguJTkh2khDeMJzBWQeHjZPIDeRt6E2YXpuTPrh/YmXM+eJBCPLzcuR9vxne6PdPG596nMsNNG9gMjJE5wv9ycxBJVt7ZWrjtFNFe1OPzIZqOY7FmSw0n3BYqAwjRhhitiZrvCGH9uh3KZo5yt+gp6Fuv03V0Xm6xTDqyLO5kt7sq2sRDqazE5XKFhMq9/ophC8vJGu47Vwqo9mV/nIaB//APBUe8DO4mdBbe//16kR7L6t17aLA/UU0FGgsdYCOmH1Qbz5F0LTqph36lUwopQyLUHoEPQdysLKdsr8cshDJC/gI014FkmpvULr590iejJlzTo20PsxRRb3JGh92Mc6ZLij9rPwk2KLdZG7DJIhZMHoVeDg0BGYb9hNHdCFt+pHQhR7WIIdqTTfVTFCBWMKaMwEJggZOI5hz1Ifw69yVGzRdpfR8RYWrZQbC06GRRCjIrIa6gyl/W4BDskgnGfHZQU3ZTp3cxK/JeZLtWA1TWxgN2nmF9E+QZrI6ttDep/+ao+USTnKhoV/HXIp8WGuWM4wUsSsktCCfE35iXNj/qaMUk2/DMRGqmdSKOQBhdUy/BaSCEY5lFXwzbX0/pvOSiIrt1U/rbaIC+VGb7AegEXHTssX8VoS0MbmmdtMLpXLXN1zstJ1UOKbZcZeJLFMXn8+xBalNwS0tSuWZsdgIiSW7f/cceGXmIpN/LiNKnACZeOr2leGj1gjIgRPkYcSk6jtXFm+tklwWognqqUkN+YbZgeKzV3uxdmrc2h5WneaZAIwnAad+WqzibRbJWm+yhcQ/qW0WR2S5ajfeWWrnNj+AxoUvcEJHHjOQqy3ms6QJDhQnyk0qKebW7a6OqfRx6/BlLvZalNjlbC/272BF5RUBn+skwx8HrNH0GwyTQfinsEFSYi47Wpd7nuD0bfDOHW7UDToNNKrCkPfaUtkjM3Ke88g2Pd3U8EYmECbtNfJeRVXrokK8Ti3nfUqWcSQGXo8WfJwlFNOi4+jStOvwbpB2FYdm4vUPRIDt4i+8+/ZGKqjzQMegJRiWkmw9+7mrn4IXIY2YF/uIioWzLNlpeW35holYw6seD8Fyzx2+089UpFwANyN12Vxfb3uiTKN0eJ1wSR7p+Q5J7SOR4qVtvbf38Uv962yCQc0M6VQy3Vs0jjAML3/nXZCfUn48dqlm/t5TahgnVBgOsdG+0/2MlyxlClbF0AkuYcjkv9C5jFzyU13KfYHnoouk6kPVw2UwdyjCkA7oQ8zrqyPVMzVS0oUYcbEczocwey5AUqHSyd2fpILBTGk5MahSuFKv4B2yFiRPzxPQTa3BdwM5eTNVlS0WBfIedBtRJx+eWFf77AT/5JOFvmCWFVRGVXVvWBcvehqppb+hSRDVI8H4eQHVNhefCE9p+aY9wqbC8hGAW07+VfdKM7T43YKesYR91TS7Fn0OMXqGXZMRAftP2XzPTZiXBUm2vv8qW6lK91KVZh1S5hI1g9X9SUBww+pBp87bz2Mco/jZ1YegnSnoESremuFAFPe4LzVUwBg0xtCOOMQVJ8je2CO7jSmSINjOP44A2sUSEGYhh+GPEOP7TvY6Jjv+jYKvMJjgLXEvspJot12tlREjjdX3MICTMyyAiMpLzfJdkaDO2V1xAKD9FbQA2FD4ua4pDj6yO03kwN/W3B4Q8d6YgdmrSWGXLOco0CaaC3eVnt3pYmszgrSVmcPvn16dVXRYaRWvwkGwcVag1pCc/jPFwmjsWgHr6NyouL+gH/opGNcu54KRkiKrakHSKzY6XNPlr2Cfp/60JHVDUMfwRBX4bYF22RCi433qGFDK6Tob/y3tq64+IN2bAsEtUfPK3XiVX6Wun/kotJoa1yC3Wiz2qQqST/PQ4/dAUNxf5pLQ1SM1xxSzxThZDQK1X7NVIphNv4YJfr+Q1L6VlmQvTXw3nwm7m8qFVJGC3gD8SJ9T2uVdnPyaxgRkjNAkll41b8z7tYsx2jC25Sq+cH3YJ7DsF8RR2L7uYNTpddiFoQ9hnGkcb1mUMfloBDgaeZXuvJ1BB6Pf+jt59lfNr2AJGH32gQSGdTGIr9xAFY/DKEGRJDGdCOknmB2SAz3GGU0z1qJ9gZUkXixgd8/Saips6W4JoRDQFc1mrKWgeTzXtDGScxeu7mhZ9FOsBsGB+jfeTJuc9HqVxhgUfETmz+dfGXWx0+434p0u5TB3AFeWDAxh+wfMKd28Bwv2zb+hyR754+L4rNcZtbSoPPz9rthUzqXY2IaVVg3EVflY2QU7G/Nb64ACjHf4Ylabiv8hyJuHwsnDPIgqfRWA2moyP1mdQHi7uOHxXp9ohsj817cZS4MHZ2Czc4zJHZSdWitcR2sXJC9ZIouhj8zN66ni3GB2iaeOBoWH/MmdNuHjiEOtjdd4x5o8FOr1FusDTMzbUILZpz51+8MmGOE6fIpGfCflohZF2zHuNjaz5wX5WAjk3GHOdczAKrIbL6ZRM7GjUU+z/YjKBymi2jizpBREv6solsI1O+DpIsUjKIqaPjS7rQWgZLby0nQqABDGsCYYYRUW85VkOVe/jYSUP79BYpjw8k+dJKZVfyrhpglwCUkCWwr9K3SgIf3oM4LtyWTusOXQ7A2RkIdcvBdV38wUmEPkWpak2mpNvNZmojDrZn9i9SQ2OZ9O4RINSJCMacEae5bQGfJcRrf4jsn/eSgmsfg8B0DhgFscidKjSFnY9hZw08fMenTKxM/8UYpQxGnxwgv4ihNzukflsBIWMA5yqo9Hye8RXXWAqHQU1l1x5BHYiH2WGNMySc2ZSSJ+EQF8WQt+rWWmKfOoiZc63w1tbai+JYMKe89xIzg/njKGoibBzZIA8JtZATTIGzN455SUxfKbq+3FwLZmOzd2opZviLB78OPffng7uMcVq07ByVar+AA5cR5J4N08XwHhOlB1oukhdWqcK+wrBiCFc0xaAjmnclH1XXeQkk9mEnik79DygQOzXc5wFtHfmIGr8fWOMp/EBf3KyfOxR9v95k2hJGzNNJeXoeBUWQmL+JyUKyKH79ZXHiCn/2BWQ4fbCSc+tfwHP6ACddBDeZU7e7oNRJQP0yeDSJZXXVK/qAD7FeQo4MRKkS7lvZt4UL3h2nxzTil/c6iJPF7h+sxh5KY72Mjr3wL8NfGalyDjX1Uk6xPRH6E2be29RimQBk1hsJXOsdm6T+TNdCBe3Z+hk8xoJfZP8q9qP47Ran+HDmm2wNHvyFIgDQafUSf/yGazh7OTDVIi8cRcfWnXZeilHL9UhZte13rSqosdK/tv0jMo6CCPfySET3xFC2IeFGtqGBn0lZ8550K1EwPXPcJledRS2cUXk+YzVuWB/Q+4MOsz5KRuMwp4ZKw9u2+767Dp4oGtIPUkThSVBo7tZnJsj+f5x+SZn7MFkOtpv1YnAjK10/Ss4G4iOpaX5tbATYDtn3n235nUEcHjDwskcTgi6BUnHDBCZ/AfFqn+HFgB295JEmaODNJu4T3EpWAvxIEqnU+2oDvnKJEVq1p2O0GcKPG91s9IMzsl3wcJEl92nvKcSlYnTA6BIds/mCeiyRYZqugk1X3Bc0LMQQNx9SrSJ536dVZoEiDM8SZvrRwoCCSvlN+qx6MSyWRTId/6oMS8eVLHq2DEQevkgu7lwdUX3B7w9MSxiHWQ+D0VQOJTE1sRCILeHD1QbpjkwXgVwAlsul3nIzeHOOf1L4/QfL21IlcojdHnJbCnuDoFIsFq5UnmPLB7ao0w1hxUOI8pQRFisuaYpEowsdEn6caLBEK+Oq/JNaMj7MFZjwKhVRs6RfYI8pwXSed8tgso8PV5XxcZgxv1Y5BVSL46h74prlz+ff5dN4g4C45icCEcgVXLaZizJeJoixwJOwYsaMlHjTu3rm+N0EAfEqTAXZYHdoorU+35Y4NDvSqaUfSWm5rc7uVTaiiVHpWusxXvTR8wcesxt3Yh9EIdJEzL0uvvo2ASww4z3vGzu6azr7rRHgswt182RxeAHI5jao/qoKJBJAJnG+Yd+Q/CH6yNSkzXf5AiPZ4YI7Z8jLZ7Q4cWYv0DYWTdgs4NWjjvot/xBKDq72s3XRUETpg3xwSa2xEs9bfjm34ala/w8ncQUgeq+NHHzYpvBjdWCZ7EiYOr4GIy9HHqnAUVjqqZqw5HZoc3EYa56JTQrVjIfenVPZ199c9jkTuiypSJcGxrt+3cbBq8x0cWVkV66CXlzUM7oVfXtlbXAMf1hG5uQesV+AZXYnyc4/Yw0+deRsi3DLWSBuogjgNBobHLQG43Y7Evwyx+S1Bhkd8qROl+iu/f9zNjwXD/N9/KKZdEcB1pSH2Sqn/ohbPHGY5iQMtmRXvjj112ppdroNfvkVhYj8i7zKDrqDuleIkcBcNLnPtlrQBl5SodQRiTwRSA9YvuvCgX2xnlsIn22Ka0fvPdAc47OZj40ex6sXwaBr/f81HAdL4lzT93+BUmddNBnL4VCmnoEJqAgIvigxMn8ABaUhLidfSuvweHxVy0lhIxWebnaRoOmRqwShY1HY3qHa8ZAGgyDnRXcY8MtkDZj6vNpgtem/YwwUCdDXcNwqu2CalHh4eYm+z3UiIvnKA0BNt/vUp2D599dAGvJZ+nVSJ2MOX+eRm3WpOP4wQZ2Vt/7nW15pW2JVk8r+Pc19o0vEcCQVjAmX69K1O/7eTf9bQHQACNoqrqCiHg4yUlSheic4JKK0ULvnVz9B69S+xNvbqFOkPk6g6w4NgzK/XFBLibc5xDKxvYcwDzaOWSqC7NxdiDqi0IGZBtDUa804c6BmXUHO8Lrk1ANJzPyZXuVWeGLYDg0RKaHic9dY/kKXns9msuYjgeSECKj8i7l7/yLmQvw4I+ccNQ5HnJiVYcvBDvmK3dhT2S5Bfndcb/CA9U5A+vIk10eGlBFo2jbxCS+2MKkA1Gg9pRw3xXqtIFSq2j3Deas31VzsCnOkoPl3cfA/BzJCT1yAYd392HAThTa3VQLxWtCsp4E/izu18LIMsTU89cJYICJtPoZ8Z++Uqnr/leYag6nTkxa3zQe9DPFBMk2SaKVf/YgIFsab8j1oScmaCtCFhJpxZbTBhwaHO+LoOVu9hr7E1k3np/da1bTxTQPDovYVDV9hK9nZ6X4DTM0AJzOVDUyHQcSdliA9XOvqafjkqvKuvjPDTndgYtu32wxysN4YsAz5Af8CG8bnoJeE69z/YxZo/uSGmvq2FyM/rpFiBXJ9LzAbnB4aB9wI8tel0DNHzgl2ESD0oDr9lVExiy//gJqQig/Ol2dMISMDAFMSuS5yrxFBP8y7a8Z9kzpr+n7+YEtiLYdDvvkx68NbzGzuLZBTL1DP3efZn+24drDQo5um6x62lC4bXfuaAbPI/27/tLmvmcOOPYuK2ecrmbt0yMPf5q7GKJrSRi3fGKyV7+Bm/k6AGLC+VLTYGdU4MF7Hv6gLAndpA8qQZz17iMgSuXQqDrql8hpjOiMBzJkDODXlo2IhiHwOLkt1hpey7FVMH37Qgg4ME6zxRclOMZOB2Mu6zvlTQl0UP+RIDWF8w5Hzq5iunxQZc3sAl8z6gfvTC0X/pl1xCaactf++Ekvy0be7yyoUBNqNe0U/LJhEADAu/lduGoXfgn2q/8+V9eK4S9VUfrhNKXEvdkmDzDXVk0MVhOKrXaI6Xbcym4yew7R2UzcEjac1Rw2h4kQnWJqc5S4glEBjmLCgjYdocv2mD+VR5vZi2Hp+7lwyTv2vgZUxe2VE8/b4AkB2UrqPnnTvZhah+2FIfzP646MAVgSqK8X/nRnjVzpX4J0x/DKt0gOs5+3hFNlQTmzP20Kx/OWbjpJsDK09VTCy783mT8mURc9rohdaEhXd4rVMsghiRWB4UIT6839FrNkgJ3fXLfMWiEMPQ14WuikCxmmc8wzAZKd9+gXiJI/Q/I8somaZ7hO4VHVNWKWZTHc4rH+nZEAc1GDu23e9hakfVfIfePWaGdWqanIrjl0KbOtqeFOdX6N6amG4ISyWbDQyw7zFSWkT7t0b/+N2yA62fD+64sGXpSMHvBnB7BKoOzyMQ1HbsDwfzn1znsuta/pS4Bc4M735wKxYtWY+Abwrd9qchr2Pniop7fc9PGXkHhdQPz4F4OnYKdaylLQSkiy9g9y5wgPcs5MZmVKeVgS4EEqBlT6hbTj0vk8364Yd6EcN706Xj5+hqpCJ8v/AiQxgBXTIuAbmg552Q7HLjh0aGzeLQhHm9Xv5QU2JDXUgFL7UQM+t9ufxr4POAbRuKnhRS9EOhlP/pqOE53Nwn7i8Z0LMFonjQ9Six+wCnPRtHa4LElB3laJPIdJVs9R32YZPzc7ni/PQEV3iRi562ZMEiGFtXea0IrJLYIEnXfhXHxtUpnBlCVjzcD4d42gknslD2PY5VBn9uzStnoLZ4fffD/NiVj9RdaVGOCtfJHBVaE3+SYyhf6uxtEUeRFYdao3w6mP1jPy7t1unze+6vKkJPoYndc/+oY22LN86iCYR6mFbxtsAhCFpfnnlvEa6uR4fzrwn8vL4lXvbydOuBLAdVDg2k6AWkv8SBn23hsqgyB89f7W4YziDjXZECc86JC95ribR6Oop3fWc5YBPQyKJNVZ03D9GfmXT0lk/IwtkoE+CNWshNlMu6RLQxTbwjrnLTIY8pXz/Qmm6arTCwh9ykeZHCjR9wDdD/03LsbZYABqsiGVe83dIm8eH3BJuHCf+ma49MVAlLSlAVjfFQnb/DAytxqHkFFZ16zkq7TtCO5WSicx+qH07rsFT3a74xZt+gdggmc8y46ZnPQkOP+2nHdSr7TD8jpaKuTWDPCDeck1UbGEZ3n4YsAV3WcRT9tFHHfYUyw1GaRv/7vGdJnSwneC04/bQaXPEYQU1LjWvNzt3EwJfI2aSmt+3s7WgSp47FPieeszIG+AIJtMqpBttSnUIpA0zZfO9fAzjKQUC7dTmdSsmQAQbu7+2Rc345IjsA4gJPTJITmEENzj5rPBa5wgbl5XUldlwlbvkWNvAngJx6OhmLWoh0ZFkYz+ZmEp7Kld32qWeS8tlKK9yLehZo5tir3fuB+PzEuWLueeY1bGkQGk8ve/uBBzh1EWBWNdaGNcXQz3yb69X7OUVcj1X3cbFJxYxUGhQmm6RRFSqlXqg4CJVoTkCFLRZ0665edyAECA78BqivgeAAkjqDBhA8lC/bD3CevhpvVBhf+zo79yNpr5fSMWVl1cS6qEldByQ3QtA7/5n478J+23jmrB6ugfo0iTAyi12lLNUuZYuXPr6DgOdVTqIDqCy3Uq0v4cM3Pn7ccM1lOwOb/j3Pye6M+/ZMj21q5whK3XYM5GImiKIh8U12U9VzQPGjDbUQFGEsxMcYXTd5xXJuccZ0U2384M6XHTptAFc1zePRnx9EawpDexY2r7jMruN/kmpSEHxRrcVJ2fGdNsjdoYRVHW6hDNe4YDa1qs0lPxH5jA1PqJ0/ttNEpYb+oz8D+Np/yvA5ajChnGenQIgjkurm0IeTXRSxcrP/OFp2u3QBwj2Ua89p+t2c6jmWqyV1OpB9OnUmRH+dZLdJbhBLZkU1ghSFfhO+QAC8eTT6MtWMFgiyMVQAjGeRd7CZLD7bjqDAigkYPt7pXHIIGEwxprS5LWPVpZVQqNcVqbX0PqCJM/Itrd321sgtFmfRv60juCiW0vwD4C364CL8veNvfH2M0itxu+JUQG4ASE/Qva4hKpt4pDsET9h8yn2c9ovu80zt8HvBOSzSBaCBn7Cm8Bb2RFJaD5RpttPnG7yF7y+g2UFV4/51a76ruifKGGxMmYsaBQhAKYIGDdlkvH8vSfp7pPxFhpubfJIu82UH4pu//3d+3Kb35ftIbAaEjO04S7fmcehE8cv2efKIhin53GXjEBmw1gWbG5+AI7sifVq6pxxNOA432m+ai6buUT6OZleaIuqXRH261GwQoRcWuIdsrpCLvFG6JgZlztCWt5k4raYTq9UuMsQoStLnNoiuM8OIT8l1SGTYUAIYHfwK1ncj5r1afa53gyehdVYUawCXsP1+zAJSX9ahQg==
Variant 3
DifficultyLevel
650
Question
x and y are positive whole numbers.
Which of the equations below is not true?
Worked Solution
Test each option:
|
|
2x3x2y |
= 23xy |
|
≠ 2x3y |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | $\large x$ and $\large y$ are positive whole numbers.
Which of the equations below is **not** true?
|
workedSolution | Test each option:
| | |
| ------------- | ---------- |
| $\dfrac{3\large x^2y}{2\large x}$ | \= $\dfrac{3\large xy}{2}$ |
| | ≠ $\dfrac{3\large y}{2\large x}$ |
|
correctAnswer | $\dfrac{3\large x^2y}{2\large x} = \dfrac{3\large y}{2\large x}$
|
Answers
Is Correct? | Answer |
x | x × x × 2y = 2x2y |
✓ | 2x3x2y=2x3y |
x | 3xy + 3x − 4xy = 3x − xy |
x | 4x2y2 = 2x × x × 2y × y |
U2FsdGVkX18nFeYvdKyqov0Q68hsKmA52oAWJYqnzRJxilBC7brW6qNqumtzBswrHUajIowEn+FLOJGnnUzmottfkZ6QMXpQoaCEKB6FVw3J9jkldH2XiTmX4edjPp+LIaupFrhzmoRnDJMYTYUDJZgdQdD1id/k0SP+DiJZP1ue9SeolNpQntJ+/xEFxss791/1hmxYXGnEwWtHu2fR4u8q1bpXadWd4u+7cbz1sAIdYIHbGirI+d8QR6KGR56OMQnjSs6aF3EcfUUgrOAh9nDj1vQmIFCW1hhg72jvbNlK4JXG+g0JD4V5V7D3gx7YsUBAKM2SuTLxQUl3bCaLSmZmn2agEfjCq0sQli/p4JSMpvY6LJMo+mE/N3Faj+s9Kt01FW9MDufmqK395P6+fLWw4214tj1RGUZhYJHy04eoHI9EO9QdMoNUM+tcPLKKL+E0TchNpzNzNXTGMDVL+nDg9pn78tDePa95CNwVz6WTjaVI4G8mN2E/olrvQCOH2okwMaKyFYgILEAWcmylj9HU6nPs1BePTPHAYIXaYHQ+EF+CdXS8YDDFmr5g2H3qcuZskpDm7QC3eEtCeWaF0nxpkji247hwqgLn7/P3pqPx0nNzyE1mV3axzFKYG2ZTz3MdevVDIuS10SoXEaqjsR7U5vD3ZfXDuYh+viRhWYx+lf+9wbBAr2b6F+Z8xtr6FuT/9KsBuyWE2MJ5onF0WCNGgRxZHQ2gwd+lo1ctePOnj2PWFbsF8yJUMm5sG2kXVhSsfLvx8NLFZjxDNqgX3hc9u0ciKEF4CkiPTEvYoKKAdUlSfmJcFkRSu8v3EbSBBd6RTvulrFAnUu2MT1G12rwVJFL/l+KdJ9o6/DI+05EJfeZ1Orfvcznyi+bwMLpU22RxXvoFXSAu8iTJ7/u2XIVT/+Jj/OHCmBTf8NfF+cCdjDZFTwgvMjyUN3cxGPwJ0sw2OUA3Bvnk8YYne1ntwI2oeKj6Dprse0QHFu6fcBlgWH1bNShoTN8mMqRknhesEx1hisqM5Ya039xuMa/MPG17msvp2uMyMokWaXmiZrL846gOEt92L/+mbdRp+JnuwyG8pjRBsVi8lG/ul6gLQwYTjcpDSVDwJ0NEKWCD+9W2G4G5wFMejI6PD0nl1Tcujnv1USCP6Drx28vu5xvUSmnrdeRVpga4EqNyvw9R+8qHrFV/Rfb8+AQ5TZmstthBvfWvKMFGz0yEn4eGjQoUm6jqVRE/K+PvglBrXT3fI/QAVGM1Dy5HmRHXEB1SUrOTsJsw6TKOMIDrhibCYKJYA8l1mB482TXdxvO8+/h/x9E13p17DevR6X6rtNuP9kc6+RsWrp/PTjLZV6exnGmPSTkzX2lGAOUDH4B0B0dMtFeiLIbFS/cvgDSj3jOoenCKxaPjl+jLAPZRzefG/FWnQgPEyv9Dr812iSPYML/cI7f0dRzCJaJw+fhzvF3INOfhgbtJFzccgPftx5Q/K6S+HtOi5dGrAtRWXF/AZt742eTv1OSXGk9OluU8bnDSjvTQeH7hymmPZx2Y6UGjR34nw0cV8/9aUzbMuoFnYNXqT+r96Qlm2BeYVZNAK1zsBQV/GUgOL92Klvga6e/vMM9SwEpq35/EDWXJ2s5h0u/LsN4/Sgb0LJThh63HtvBlSDy6UFzxdtQqTXf4/ntBKg4K4/gS7Hr3tgzaw1heJGIROiyeXHBsTVYK8zpF3hyf4vHmhaqWFeFMJzEJ03g5xG1aeceu6KEMh0p47fvcsXWdgW/mqyMZ5digrEUxgVHZzUnbqtdPq4yr3NJ6bfSMPc9tRPdv49FwcasHkUobRdYRuuUcNlvmQlRuDu4gmWrTlFJlaT7hp134KrccUobN/q/zoR6V4Bj3ua+Ce9hwx+L/inPn1WKKA75Qskf7yrmvh5QRTXOFMyn3ST4cv4ae9lkAAW9KXFPeFPQn2sKb/mwndURsKjsR8uN8TG8bD1UCMZvinLwOlBjhtS6IZ0/8NG9uVxOlkYUTtvTPpSl9qXI2Jkm1M9irCu8WYdl1ooLaqfPpGEQWegC18ADTyzEYRwbrUnjRKsEgsSwpUs/rLrPuDARu6zqrqhxFEU54up7K1Yk5Sya5WXjOQlF4Q+OCBDsLHDe+GuIlXb0hqfJBl8Nx5W7IUt5FyPCQTVxzxbXtV4l795Ix9T2msZEikpx8yyx5fNZSHw3IiIBO4pEVOnLrus6fAimnuERqSG5jRLE2qRyo0YVz19sxPt9SRZ1ZsLVkBtOU/uQIhWdWBUOnEaau9/gSifrtp04UuJT90wShswBGHa3OKesHk3tpl/uaJe3HeU5miKa8FFl40EBOFQoyLqCFCvtqV6HnT4OPTALsEuqP9Za9MgmSR5JPqLZM566vyg+dinnBrjpLjPdt2T98dyncHf1ige3ios3WDALx5SkzlIyQEv4ET5At6tZ7XreUrAYKFdA9TIkEY6w78tLMd3bTMOL51JXQcNBb9Np8f0jDnjvPQf8at8rUgsNW0NbTjZ+GZOwWAzbNHcty3Q86hrZjX9N5wHgGXOhHMu5AKA/eJCNHvn+ATj7B5SpuVGOTdE7wsvrPA5iJ50d9tBMJWKPqosa14+KDWgjbdLVpqZDywxQQ2UXP18WYbLvpbdiZG96mvkSVUbru8rM0pNVEI7lbBu20CgIs06Gze2oWvoju0pfRM2k9ykrLbl1nvm6/6s5lwLAVdbTE/uFHFgGIC/2Xad6EXz4afjBCPshkXSfFXECXMYod0WQHVi4W8cOHU9W+FNFNzAK7bCdAOucKQF87Ox5BuWBDj0aFoEwYa+KrMNOrZidKrQTMh0Khu+0cfFKgEbkUCGumt24iEjbY/ZAPW2/WHhW7mOxegFhq2ntZ76UfimEpUogZ5H8QsMBCok1kNv6QYc5kzFARrUoiUXvKsJFRwhOdDvVMMiIQWiix6dtSdZCS4GLGT3dpdmIC/7ZoYcXF7fR8hx9FCqzdeeus1Y7L8yXJqd70Up9jvHyFOu2CHnaw60eGkd/byGt7reFvo2oNiCoW5pg+1MX+lVlzHZCBcClso/FlGTDlBvmNuBp2L7fFUDTtKh5HJ67dCl+p94ICqLN1vPa0wpQp+yRZsDe0iBlDmld+f/ao2ty2nFujuuErAR0aHYCiyq+ZJzKpgDqbxsHWDy81d9YTk1ZOvyDWBZZ0Onr2Nxk8eTCjr2KYZhuQjg9jtCd+LFmpfWQuIAR61+JmpibaDS9A+pDSQEZ9XcBrltvAMdYYcYYjlxxVQYlQPMvDnPDj994GycyV8+jrETzLATsS9jHcqt49fnPIr61xzRePPQOKEfilRaeZJQsbtAu6s66zyKJ8IRhpH2BuxiNlOaXkAV9gkxDa6A2i3m9IxYbkwnMFkfvgPcuGvm4sfFWQJ5RK17MzNQIRiHxeJ5el2lE2GnspKdm4zRH9JIX0q+V3VW7l4d4acw8+n/U3R4DWh+hBNq+B7FcNFD9TTm2l/7TUi+A6mlpFZiWVFEMHUrBAILTRUkBzQvJKRwQ70eaRoGeVhc931KudJCMJeFku+sXu1ACX2evbfvM3pVgrqWo+R/QTA+i5WfFhzQ4KVn8pg1DBoilHeAAqgWhwbxSTf2cq6rB7nxZfciAefBleMQ3wAArNLua5qk7RzPrahR5o9nrlAsOj0zNMIegrNEpA7Mv0c2nGFx46JNm5Vp+JrmS8Zuc+pkhuozc873xwRMOjtuIOZtm5iOBzPsIXU0GiRs0e97OV8pxbFF81xfmXGCHghHDLq5t5luWdDU8QXgXRsONTX4ODIryVP2/3sBVmQZyybnl5eh/krwvZJ35OwXbVwt9WAt9UJFhtERF8mbdVxsCUMD1gZSOww03vjth0HyCFt2Fqh/GDC798gGYcDYVOQ9TFakXPxqzx+L4R3C1dbNqoWU4eVWSNap0mff9zMvXLQpxnywWz/9+Hy5oZvDHHscKXRDiDpJ1CG4v7V5j69iUlmwsp0/WrzXd2Z+QudjLjorewb0AqBa9zqLMsn289WJmo+x+BPb/SEl0jeKQGvt2f/1hCZywvDSo53zDIYchiyxlKs4kZLrYfXEpg/aq+ihOKyqbpyiX2FGXczhvb3LAaG0NOWuPLTD2EzVYq+Bzqej0KMo5TvIOU6Q6daShO1mvqhYBv/Wy2sp2xXMZqny5hTqNH3gPdAToMpOz4G6jnLHSAhFUvfyTAY1d1ivyO5n0gfG6kVFZQdc7SvJ1XuipQbxlDApGUlmmZ27BqQq9cpRTL2nAorq1464LEGycXkfPzdBYekUockJBXgS+Z83/qPBafCKSBjRGqBE5w0O1SlyDWkh5dwsP/PvQCNoecILvFzG6YzNdqfw1u+ngfCXZQ5JDIwjwHkuB1t91sz1KJwpHTKUxTV8ERGoULt6R4yUogDu645XSgwNx/EcdY8S9wo2mOSD/U10vTCJMWLsBvXs1ahKHFG39lfXk5xlMAwWCjeXt9hPESsnMm9jzy5ko9znYoTZkt0dzsk0S0frt8XIi73MYS20saZaXD8T1gk7rOSvfph6lwYi37+ynl/DdI4arOGPYAC2P5iZUEehe3B60pvk5HF0ngRPbYdg4gY9xZ8CNotUYicAhEh32CGAqHSyxcsy2Gc8+uvguxTOKyA5I6BtQR1ueabsLIUKK93DJVgmrC3NKaP+Avi4ZIad91TJL+XZJ0xhUn/yCA7wtT3dEe7jR9P6kDK4f93Z4Ozr31/EgMIjYdy9WlGIdf20vcIIwYznAt9nl6bz+gYlYcuNkdQqXHXuarBunYe0ie2XkqetyWlb1qzV2+69e6HhQpUtPQnCCdPnusFqUjfZPU1P2Rlv18L2zVEqF0p6kF4XPx7zduvC9eiDsxRwa5jLjUfmKI5FpwjLrtNQmCQPq7E4OhGI0lzwm4InaNZsLrJwu9cubIleTXvJgrMQWV2wjddwQXTGKnbdGEc1ZYSPgc4jEFeCb13/h+rHvJXdlUZH/SRRmZzdrL1wDbb7zdPnMVAGPVgr0u4pq6VO2VzeObfpiou1obsRaDCQpN4woePyXqECOt7ly4KgUNKpEjsPDa2eCM6L5iyXhrVETDjziUeZQUe5mSmJOL2YGyu8d4l470SK+w6R6XVbDxAnAEF7KzeZzXkwPC/+mmAQGr9+Rnr09+BYgxk+DJUiVQPoL9L9Pz2UFngXm0h29XI+nc5i+ZRRW3JUAHU/Yw09cBnTLmnoQQiErpi86gP6Hvkskrons/dBe5d5VKZxPkxGeP/oP5KLsp4z7M/V8Rk1b982o7/wMTZu298E3/gBzho7Tr3fJPlEkcx/8ZVJ7GcqAGI0RlsvDuVftdHj8yeT6FAqCc6d0RAURItoYLLG4hu6Pr5NnPwdF//FiIUB35wJ55R9XWqaRGXLu4kvmL+YXiPVk2uoeZ0xbLtvaDOjfzVsYrUMGUTORRusFCMhluIPwWbNYCih2yCqSQPDHuTGQhpwQCsbu4yO9nOAbka13YgA/It4a5hlIUbyaXIBZxm/XPI1osZAf/r2JWNlR38nCbS401Vz/y/lZ2K4nzt7sShyCJ9yy25swpk1OEZiH0eBojjsoB/W3lwrxXArKD3okwKzJhJ8v4PqqQyctL/CKaqg9mwp5G1qI9Wn6JnhGQ+YjvFSd5y9M7PmhA2AqKzRgV6XL+BpsagZyyYcxMGIFIDyIQvN1bnQ8VWqzKOQo7GbF/zXZfq4sP5UvquGqO310MHacqmvI4wMRODB5FhxhzGQGp5mKgwyiygfxf4BXQHkU/lf0u95WSOVP5UD64CwlDcpGgXNw4rv7VVsjGQB583tlk0pToDPKX03ziIepkOZWTY0imybjXLYV09PspCYCdPCPOez37NEetrsrdDaCgrIfaIdTl+M+TXZiDwmWszKotDI8+UKzdgRXCvk2y6VBA4afaDpiPwwi2Y4kdVFAtq0HzJDUNh12PTo2t2kTYhW8gdoKZnFoRza3aJQWlwc9XokGYpJnePWNW+/wVyXJzxxZpdHY9gKnGRZaJiPIlfPVh+D24dbmPXXOpWGuWVF3WYjMAeRdUC34uGZzeh/72iIXCc9YSNU3G3H+wYuJZwbhINJylakMOSV2coofbci4TANRAl42cd5wneF2mS9dQL2auFS3lJ5Y7GQeIFTYomkv+uu4antt0pJXwpA0/RS0d3Ja344rXoTjn8gZdRYqpOwajLREUFJ1A2xIA0hlLLf4Rli/vcSLVKleuwX1UqardH5+S+qEkJzles668a2ihViF2rBrJ5XIrA7zkJGHRFhefn+6Uju2gQCTZQvu3keY7f1oB7vVzJwajtfkmXV3n/SA0fqsEWC5wsbSKDY7554HelCSmGByWHtA9hcD3O98IngzgeLXFuvE4TGD9LOKo5GUR6ZoI1FDqovhzaJHSveoyb/ZRiMJvLzbRtvjCnm3tSVHTarmL6LFLq6og5P3Ax8T5NK4kU66XJEq5Fl3Kg49e/vfabkVda+sW8HsURTXwS50rD5kgfsJ7E71DZ4Uq/iNj7cfPLqy8aqKPOR649y4LWIusaU2UOkBOt4hGlHMSYiLMkGa5EOQSnAk7CRBrYFXffbiOjCCQPQwzASCzDwq5pVJ5+l4iH9DLJFSQOouuFSy7x5W/svElENQ5FKB5WMht/JFvXAjPm36ohcLGoV6NJmWnBYC6//bC83jaUle27cBuB3zji9PX4ijO4MFUP97ghnt+kW+di0au2MimLzJaeg19eg/m+QS2lRKyljpa88pa+yQ65NaR2Pre6ucbwQ+NhgobBnYxEATRPq8SZBRBsxWm4dF5ppz83hA84UTwmnEnep3Z7vSno8EGF2HRvRxo0WoIoqmWe3ECr32qVzRuZaAEaFp6nmZvxWg7718QeoX4+Jf8le4c3rJE7OZ5W1wWI+LNUl91qvrEizom99D1mlZAilPAvlx57ojoCddBaz23A/E9Tkrjs7ba8Ef0bXRz3txvKV7B4TAQ8DNgh2iK5kuZWwPVXGamA7WIGookKMcx/f5CIWsKLzsMLy+hR0mEuiUBbBDY1ENaJZS+0a4W0o4f73gLLXgQffj+CL10ruXYMrwR/BdVdK97RUA8hU0fXNUpgAXT1ikmT9H/Q0Wz2cGqWgvlkfj1Ax+J0GfhdxKhOpsmerBFk0E0D2OPxO/mNqEG3pvB6TH0jhVgOgfYx/0KK5Gfx3NePjJ7KuHVrXVx9Mq3heIkh2ZQcvyYeTPRdvsZCVFXaBL29FKfksZTl6m+MK2kWsL9qORpZYTgc4Y0xxVRlWtXdlHfGls7Z0qSkXBfKZdgPbAEXvUvTUky4j66nJPYn3L5TcvSSHFmtEG+xoTMAXITwdgxD9cxyean1TOgL8eHkPie35nbu28+eQMtoVtnyMMBDBmvkvfXuCF4agBc4PBH8Y7cdujsWu4SrisYwFlkDPKdIvB9c9m1sqZHra3AP3PzXTE8TEPDMvfmIaVC5gs626e6HlqS/BCPvo8QNf8PXn5XRcWcw6/YXqx7KmjFKe26pwF+NjKjMP2ZsjMHd0rh8ICN7zSC5JsQWCIkLCvBfhzn2Lmi7a1lLnb7PyiNoces3WeSHw4LIVJ3PghgeKult0JQ2plvW293MIWUYH/VBURL8CYFUtBz1JfnEU7nbZyCNYYtK9chxBE9bJ67po4vSYVle+BE4vYlirbO0/HA0bEVQH+kLH6G8hAU4E6OcvowCPRrgFCi+wgbXrTOgvplCk/B4AsgHfXVjutNrc1zO06rnBHIS3JTP1Cm5duPf5H+BhcW31Wjl3zY4mjBnu8f53hxDDmxTNbbSGvsZC8L4cPX6x62LCrI7XS1pgXuoyPynliP19ythuEV8bUaUQj/asoBYfBsffh4NaVm7xsyxMM22VozFCL14I/Yo/bqCULkBVy65LtIWYvI3T9UOXd2k3EotzJfERa0PiSMQYGEot6L0stoOnyb1xsScVkgkLiX+ZXWfLD/PuUDjZVeK+yXmNCq9iISFaU6WI3CbJhkAWkiioFmZEGoenhvVbN00P5OAufldpRCBWc3VJW6V4/smTUqAoxFv2FnAcTlrbYhZW2dyhz2kDMgGt7tp3wlQn+HucBI1AWD/PA8Plbnz5xX7TcSYSPwaWCC9CmK0spV6ANvj9Bst45dV0OaOuWZscYQ6zNRauAlRK6EeBClaZrvWCJuO34c1IQ7aswhEefxcbt3TtwulB+61MoHKUrgJQA2XxgjZ7Rlo9o+co/RWymR7iJXHJo6EDB5uSG+EGSZoeZjf017Vg6xKNRVb+31z3hnqWe9RVEP3VCJTpOBiqNWWr+k/62rdICrRvV1GVK0lpo3fQbBg87rT3xO3H+7uHXu/Xz1Rx6bsobLQSIr5OC5LwSXTVDcEBZCFT8zZto/fw3fPZLfPGlKI7GZbd/J9T6lOVY5YegIIxtY3a62jbPNxux9QP6f5uPhGmNkChNbSOGydCCKHMpAvg9VfsY48nAIwIKwV20tKyndOkXqPRsml6uWHeIgIS960tPDpBkfM1cRaktTqHKlyX9dzpNCSOj75HxSV/uAJAnC8EsxEJ3ogBShqahGSLymeQXiPP64BwHxqg8qpgtSi7YudF/qUDDFVsf+GjSSW7wk9OzYDwvUigrviBYZYC4cidAyvtQH5tIRQR+Lh8yhvbGyQGY5K/bcy9Uy/+cIvPa2lwbnJcQ10O6BT0d2E4plxFbQV+bcHuYWrXCD91RZLlFAIxKpiOZB1+NA1QtLR6xq3IOwVhYOIaxp7lnAR9bvNJZf/EBVmGBM0nn0uWTBNeK+iUckT2XSh4YsLqdqbiB7WNCVLyQSubF+73JGZoYtLtyKRVrhcwS5KJ+jvoqRwxswaXT8Resd2ENTEhQVXv9cRQ0oGmfVmBtXcrHxmWm7blSCoA++5+/OWhdskSB9sm3ERskJ36k3aX2nkBYz/3/onuxm6+DA+Rkmb3DGN++vY0JCm1Pxnz8h//121jCE3pNIKDWp7gCWA8vo9Fi6eHoIoytCVAqd9yM+OkeGOfP2MpAcyqgphOVhT9UpynjMklW6+UQ1F3+mRKBxET6NMlJtp+sJl29DAP/9GZHJd8pzZKaP8kd+6tfVy4O7HFov88pSBcqtM98m3l5cPabk03RxPfRP5jplOTQ2TPcz1LxtVBxf608uhqvouERQLdWxGb6j6y57XRn4E+XXQanuzbnfu4yanWBGVhc6z2uOmywE8VkZC/OLUJsinnkSfegrv6ujYW91b+LUHXPqCz/uaXRg1E9QoqU0rycUILMAiS3Ej8k4ZjVpNQsgxGlTnQg/sGqJkNpUKTDF9x1mh7vcQEvaVdLm9mKYDQe51L7BQtUIbxA4JtNnBPrzkkiQMsLg69TYVMULe+iid01EWxvaYXltxmvk6tU3oNLIX+YPGr/jYCBS4LCP0U3992nzs96DfI74amKSz6xJUTtM5+AXSvzRrKxzkE2bs2Vr7dXLNkOjM0OcCEM8f/QS044lTciGvVBqRXDSxKBRgKPFHn4CXNXyupj556DTRAeht1Q/8mwfdJTGRZCmESyARzTFQkFJHoQ9o6jWfN6edsxwMumO3v08Vhc1hlpTOEOS0DKQ2D6OmsVT0w31nbSI/wtRFZ+Q8TmooVlSwkvLqdjeAdRU7fRntyuHzsrAiu4DQ4OJgMvVoKBu7RSfqO/qyVCicLojDQ7fr2kEsPFJrfIZCOjmkiag6bjptxU70GI8P/54zWk5ma5in8LLS2RxAevp1E5YFVzfoNGkHeZaG4br+y/mODi2uRSZp5Zn7bNw5Xq25UNq9h4cY6pSgunT4SD0ooQBTtcKewhLAHzLCsLzMnyLjNR1/ISlqaCqMtlnBldziHJxSwgGLnuYnq0r+ycUspHXaLWIUMcA8Z4ZBKIWpk2KajoH7FNonPTRjcZFVMYbEGlWD6FWaBB/sTJxzS5Azl63iXnoZk3JhHvanwTDolM7o7YFRZ15VZ+zdlWjjXAPAvJCszPJtEVnPCzaUYs0uXYy5WFaVos7mHKWpH18PZaAT30Gbve7azA25eeLECs3T6eLYy7Cs76Eqm/5gYsXCKX02Omfaq8jTgvPb6eNDdX9pAIQaz6A175GSe1ia4rvUpVqgzsoV40+Lb38EDLkbvHPfVMVy6Vrbwd2Z/r/JtHYFK224A/QH0dYY/5aouKoH4P8ViWcboZsYTvxlgf3CfuM+9tVh3EtrPNx1qbC9zKobrGXvznPEGwWLoX/4OENxfdHdrFu0wZOt+6cqwHqrBkrP2DEZWMs+Ktdzb0jOCX65x18sTJq1pl2dEIIY1qIOpbdwvuU2KVymWVYI1nrOwC5mfN+vHlzIUliSVy9MK3dbYDY1XWv1doSxv1l1c3jyAZ9b0Rm0dApZH4UOFMnrmQS34P5ee5qZhlyFZ6m27Qi3KNulpsgR+pMWwNkBrZ+9sozmy0A/f/GO1KYyY9t9NwA+mEcI7bJYavUA5XYZ/MlPOXosN7lZKWI5HvaRguy/X91JqdZA4oeP4dJbyAbSSC009ulZm2n1CjZ973sSfjXtjJwqK/iPkHT93TPG6V0I/7baHhJIwZpXiWVM8ABT7Ua6Izjge6ZcC6bnUkssNpIvj5m5JUdqUv+4eIsffM2pFwxV/F1x/B3biwlgpMdIaBrp+XdtU+bocyUX70SvSqHmryKpVIQzMqN7rRyHe3/7ZmxANOSMOGJjyB+XYMD4kMDn7CvTB/UYttlCs6OdEMEtSZT+SXLO/mBVUt+9kowBO0HeEVDPp5/wM4Ewx2jKDWDHMoGzlDKy+oZxyBAhjoetLjpy1J9FnlUNV6GjDH0xKqJ3ZlpAeTbOc7cJXpB/Kom3fVJEvo8TAiaM48plv+eSOnyZrVJixKn28mmqz4NaZqqde4q8EAMWaY6nxY3IFkX9o2TRkFRIBBhO0rKyuxVlP6vDou3dXoe+94wjHv6ZpmRxe35E0jPJbyZdfpgiWRG6JtLOJLWD/D3c42mq/FjRRgc8nJH8hGHkv7jhnpKCZb7LKMD2pJRYhdJ27UqmCFwQ3LUvVHp49/voSZzNJBhx6eFzqd2KvvY9xzPB3OZXWGHJZq1ShZ1lyovb65kDMtWiOd+8zm0NVoST+Y9KRM0+TXJOVrgkari7u7CgtJ0hjdY9cT31HtxInN2VzQDLJjiC0yIjn82S5/mBsgR0Dr+RxDPMHPo3L4k41QyfHaiVecpjXHj52bIMxNUT6GJtteogjE7LkZooKN8TQqZ1C7Zhaxg8JV+PhJDrb+CQDR84ldbVGJxvRTmfba9cH8h/LVcqkZBil83FQzT0cB12wRu87GkV09EaPbDCV7v4WlJgrBvXOVWzYveYO6LfdGq+ZYFGedftOVIpJApTJqA6ZLiJFHBogSF8N3r7b4o0Tq9mwIP2NOyeCS7Pxi3JY9IINYIRm/FD0/wiDFluheCw+IMEXa8fFikQCi6/JaPU5jz0xNZozjrhwQtQ/whQQsbmRcIDIEM8JAPacSp07gHHg07GTk3XDbWbsjDY+sMLRrTez+9qkWb43j4nwE8naloUzDn7rNWuJ1DVZJYAEMCyU6aKK58kAvLn5vRUwPFokJzzJuqaWhs95zuEALb7pmKp7r/90ZuHljQ3SDqqRru6XsFvhGHGh7ltUDbnOWLp6PQWkQfbvGHqaYUffBu8N80hrSDyxuY42VfYVxek76purQpDEDU04gcAz90R9Hk0KaeWsP6mTj8Cp2SeeRiYauI8CuZxz07SfGt/6cZNDVRzVN1z2XGrMY3dwhchO5qeiil9TuiG4lFp144CrmBD5GxG0r+X7VpshivJbiLTHu3ulrk/kRy3eFDNinpPt2xydywdMjZi3wYK1GVGw8pDEHqipexydwdFFmNO5+yHWTMk25pzB1bnyXLq444pHrXMd4SEXv+6kus30tS6FBkTHmwzzk/cgpu3ZuyEJHnCMyTHxxCrPzGuaeUeIhYa15zRUl6NErD+Z2PIjug5zG42XKh+xbr9kVRy24ChEkvVaN54j/I9PExmqE3OfeCP5OoQB59Sidji+zebrqGIzV05MfMwSLjaX2IBtOUgq/f9rmrEL12vI3MX2he561p/arVM3ciYinPXCirDDzS//yNW7bEv+MiM4oD5k90EU0WkYF7eEYoSOkb1H/VQnQOlbrbM3+0dCKXm913XbzNsiGuhRunn32ALsA1bEt9TqXDDGXnlwPbAnk+Be0HjPmg7ZDj2alsELLybSEGZlTT0Ukjawx8qvFYY9ISzdBCLkacbbo8QPN0UNsSw/5FOC2LZmvgV7rIN1LOK4RL1Uuh6IV1R18g4Mdl9u2Gps9ZIESTjyOEyKuzgsUuTMHFCabCRA5sbYpm0f1uNKrypQYaUrGQfUfuJ/cMqzR06N+19xhMKqFrsSDqLj5bsIvhHh2fQTRnAcusnbc6sBRQ6U/yCkYJtRpgKEiw97pFEbId9PDzDNehuU5JE2+ekRVrQM7HNc50oBmd7M+ZCof6XRU1xgFtUH9n7tpdzrhPGnYCfa9OwMb4CkM/Hgz/5yltGZMlHxtvTI212iKG1cLHdUJ5b/BUjtof5arML+UbPZWfaNZv6AFq6ZDgE3ckwlsj4dfoLbaIkDqugeiTSw7vyWz+gdxUneWUOz87HvadS+h5N40wXKZtulzwEr3UJWjsBO07ia7U9NLzUaG4TiNPjUcTfMx+MtNo5XjysfWqYGztgKk7jBaCzeueZAVA9uxTb8+LZqXMiuhZ3txV/mDDPkotsMmHwiRIvqH2aqW9fOjUk8SW7eemAxZsDylMzYQrFfOv/KNtkTnCpB4Y9o8cggU5qe1BdWFuK7nhxVIOryKJ/3Jsss6nAe/CF/L5IA3c/O0bcIPELmBQkPNNlV96N0ZeO43pkntch+RqJU23e0+Pt0wNP78kosPWbTQeLmsOCfg2biutlZewh9u50iW9TXgH9BGba7ul+bQhOu+aXx/gn/b2JQWKKhRfxPj0fHscOkZLC5GFWdRraUZ4RlIu7LBlY3MEOiRUoRNmxZKFddwk0UHqCi0FH0jkvJsMJTFs+uJjSEXWGntF9QrGQzAYTBkQQr1hiHRhwGjKPoYf3P1fAkumXuAcA7usIAo5MvFHPvYcyHSFSkJdWJzaSmL3+ZouAmyf3DNQSkPMhDyiQz/XoaNAbvpS440+wSRsikqgcQuxfacUVBUkT/neOtQ1us2HoJa87xLh1daPiovRAHRhpXOD6EgK0raNTKf1I9T6zUazBWXA7FU1HsZSBXdDSWRM5SxkLwNjPx4TgE0EfexNZzK5ta4ZitJL4E96BWirLKAnicNOy6de3K8/d5p3SLkT6Xv42y6DKZPJIjn6HYYxoNz+/qJ12H/PQCVKsVG1KocwU1iJGlfnEXF3ci/R6MVCIOg/9J4YC1yRZRnbmXsK6LPcdrXW0ehWSkO8Zbq2XBQudrYjfzIgvMakripGk3msPAYbi5SjAjEUlZjIckG3mP7+9vpJvBh3u75iLrJdXo3ZU1HpaWWlQHFkXBethvtKA11JJeNTT830z6R2ZcWg6ZgxHF6CSD/tE9+fP3R62W2v4B7yLIKYIFvzxGWQ+TECuhwanlSOAyiJJnUy1DyeUmmCGgJ9s/wTRxf/IaBBjIC27Syfj6eqVC+AilKtMAs7AUC3+5bJUM2346s4LLQWrK7G+EwT2Acv3W9bh7v9XlDYkp5toyeVzdrGUZ+a1riw6dmwvAcceP8Bkxa8TuPSAtuqxGETFj0SD+KWp6vOAy6LIto+lOQhLhXPny3YhIaJpTGCmZqCgDirJaR8O+Id8Rm9sTz68KVrycWHEfVgU+lpjE6gFEVPxkjE2OMndJlHRJnhDeTRKwZTNITTrZ2MVA+9ojhEQxQxmct/1avORVkuVA1oMQIJHat4YkbPks6MDOmh2EabwAwq7qMIAoc4JVY/omjwlkITw43q8/N+wWpeannvpeUxptseYK5sY+y3sQLAN6Cjb3T8jOQt/yN2HG3QjhjdiUle7Cuz/g5vM3Ni7ojBxhSvp0GNnSJ4qg3rNhLtXdTIHwn76KyXxvLRNbkRmD7F79fY68UWg6LMXyZuULjiZXpeGZ2sCt4CdJ+QHThAUt1xQ9ulyRGTjtttttnKRrkNnLKQetcqBDqVYNJVtQyn6QMBlu23tyT2aLiPd6DtdW01WkIdmiBDzVFkmn7jvYivoT0sBO0ks/MJwL6JZVVcaveba6ciRazMZFerdXN3Qgxfwzd+V3oa+Bee1VZNJqJ1P+pjt1uTvrCH/2cRk6Hn3MVwh1swqs4/vhJWMgkKCjqCQ5x5aDaMTl3rKbsCLvDg0q+6khUrJT8micybktFUB/O+r3sEhFqp5LstwxHKoIoUKOpuGcTbJepSnhkCY9nQywTz6y6nnm7fzHlsRMlkIPMQfjsAgQoG6Z8Yjmc+roTMpeUXJkNxz8rtR/m7M+uENJxxsAlG1NbSBfRx5+tXuwwUdn08BrHZc6/ua5HlbVDImn0DO02PFTUP0J75AcExTEoJ8JMlVTVb5ReykgcdNNfKgICx1vNmju6aFzyk+5SmAcTWIAUKI3uUahM4umtO0IoFaPF0Em5bjMmOZ6Q/YpWHH8rFk36OJ4RK21Vs5PdI82n1XOZuAECKC6ozWPzFHeyd38BUXvjNgrK12t+O9PRbUlU5AUB9v08bPtqBWdMW/u0S3ESQjDtc+VM5P2LWQsBTHjUZu8aWfhZtMycHqA+RvnKKJ3v05J8HiViyvtA597/H52z2Y+EVrCNKbN6NoWfE8RlzXGFcDEFMSBgTD9GKDTZKpfq5WSQ5Oas8eT+kAV4SQ3te7/VIxcWqOTDeoN8l1GNFvdr8qEhvTAkZWBxEZ/be0m8AmHbQlHw8X7OXu79PIizzCsujXSvCoPq5UZWpcr9vTdylqkWet/gTUSd2kOD/kIkvBqCgnKFYWtOLfJLfQtA/sXfiMit0OKrZRIriPFW9HF5FxKowgQ9WjXRY8PhXBXbqwz292mdQBA5CFOWLKCrxHs8meAL4Aw/hg7AESieXD/Ua8AvrUC2TrJbtWWVp6GWVYiULp+LIAg7PDU5x++lthOQwJWu1oUsY8MsvFJ+O9Z+Ad/9kEtLAt5HgybQOJRMaUFJQlPu2H3cM7lBPlmU04S35+A/p/KmhR422kFtEjcnJn1oeOqzoIqAfmway8pxCBiNec8Qz5a7heQl/5gSswJf6k403w/QLScZS7gqnqGq304eddfpTGEVr8+Ke8vTMZCObdBldqd782lNEWyNAQ1m1C0uDXCDIdwlF2QSR4hh4uBmTXZZZxyQ53q7v+Is7DE57ZRUWupGc+OmzTrlqj5TXYRKxn8a/sfTLf1YCbzXdfbFym9K0BFxmz1tXgpNci9PJFEfXFpZd0kqldmVLWx4uCIFeAfW4JNBYXFpWg6VlVDW6MiYw9G1j7QKB0AX1uWVKC4uPSPTrAzOdFeeeUBRBikUb+Fk1mFn9XHOz5pcmQXZ883RXf28zOYt3HdV2qNfI273hCMqsY2hfOCweqMu9MYkLgcvjmMVT0FmCmA3loat6LzPNJzMIgZS7IsXjE7S9yUsM21KvnI0S3cr38ZzaUUlfhr2pGWruLLPFGDjZf9w2Nz/1cumun9GJ22VB9p2Nic1fi9DWVT19oUe5I21p856UKdJUQbH7QtmnaOW5YTzHaFMipf1ki3/wwDnUqkCp7Ol1iTCMba7RpdRbCEUksMqV1muOgBGniC+ZRdpOMuZymqLDI+oGQj88DVSy5NyrKlVxrdWNOqgmsw4UAvPeYX12aE+rfPByDtUHyz4ZnFcjoukRdXFOyftj2SytbqRfrzCcrlSU0TsvmheD+ZJoLOdv1Ey377Tpzq2X5hRQa3m0qJMOz7ph/EBHnqFlO9Xm3w0uwOIo+vLDAARISlzrEgZYyn6vOpR11WfIeVin/0hY2KwzmBOC4RThwEpm8JDpeLlir1NHF4fUBExjV99kJduhSBSt4Bopo4cCMPmbImxGGov2vVG3bdwr4ruypQM198KooVJHMBMGxefv9EdVpGXwF4fE+hw8gFwiqgF8u9wqQMJjlWALd2fYVIppxSVXYCUltjt+Ye/Q1nTTV73MwxNOtL1K8byRTHeAlczD/Jl3VDpJ1ZRcwCzLDdu9Op5NyEaonFWshqKRQdaGGMQoc30GPaO8c5ATdpXIxVkbOhhAsGOeYbNgFwUHpmIlJSCy6wgoK4fMr4dvegtN3DNR9erO3Vd2Einw24oD0w5g91AftAOGhJvSwhFU/dOtwyA0tj8iHhlIzVN5b1og9Qocw4f9KBsoNi56wVzV9cqbHc4vJtslExc6AQ0CelJCxDpcvhdvAzjRStozd5htydQWpzGb6jnPAqxWB+a8Q1Cd2TPFq/FgNBZpErgLtbuaSVZ/YpkC11wvNDyPx0ImKhxlDg4rH7/045GXdJPl185TgziUkHisF2Mn+giZl8eXQDsDSzcDsjLLM3OWcasIHkObtkjkBeP7qyPMiORqgb2hfL/d0coih3qcDLOEVB8UwWItO5DiEktpBn8+v2RLq9ZGqfQ8OSigMflM8MwY5JIwNtXOkLFAHzCCSbsFyu8uhvRQ3MbKRMKC0Y50uLMpbWtMb8fnnsebeLG2C1O+dWS+8ySySOjt9RchFqrHK/TX8Nmm8lS7hOnEzE/ZO/PJtxeaUUxKG6TFmJJTQsbLEcw2sq/cGRx38W6uu6pKwEIs0TDOcRfPTzilaMzvJCZRT7KPq9nm1D2kO7cyvM7pdXUDF5KOmWwlABCo2mIMdYEGbwKke0QVR6WuNUtyv4tbe2WhgPpcPrhFjdWsT9VEXoaOyAJ4WsZVq3IBZtUeXSAOXY1rH36QP5uapWeF8Xioskv2DUgCR6PmvVUpoi3pnUhwnitsgX/Uapz68tgWSWuvl9HGIkCn6DLthEQ3A6aFgpd0eqdxo831iy462SFKhcGBz055Kf3G8vMOicy0Ukt94gprlA5nusNC9m+z80yqmcnSOy/QIczc8uHZ5zXTThBqFem3tam3MdB2BwMUTgKzbxOx9/IVYSHmwholiF8NrI+ytb4RdDuifCCqBVpBwfM93fiV2WTAAvzHHKe2k2w6lM1bLHsnmazKwZFQfwfn2b8PH8C1PDWqH2i9VJukYWgNdmLTa20Vog8dZ+5woFn7zdcEM0AFwJYFJF/3A3AWYibuiNS4AgTrrA0OUKID6tps1lGElxif6/jUcZ0eVJQRQbyqswoEOSfzvd9dEjj1NLQH339OZkaNb1Zw8Lsr6PYEYZ4IAl4aqIYavFUZO6cYAxdBuiJpsc3O7jOdQ4UIqSaKqjBXcrNnrkTiBv8kmIjlRULQ/+x7gzM+9R4glT46ADBILxuNd9DtfFIovQu66TtHIZmOYBhg3a0YIhDR58W+ebX3x+rKT2YvVdnRE3UtSjKt0GKzLVrwrT/6HYa/GJcgVCsT1vFow5PbqQaNKcck0qFEKQQc2rtRkVAX77ucF/SW7Zt8FaCrPGgyDUIS1s8XjEdEqfETjhmW+tZ5bovzfw0iPjoWx5bn5bEGesN1+lp5n1TMW4YHMyM4nd2BrNVZI0iebjen8Bct2pNaONYggfNVcNG8xS94pezUFzk9d4WPU16ltOg2IGC0v+rGBGod1RYfBkKqR1nsWZl18MzVB20blgPIfrHoVnDcmSELB9noCo5HSPHW8SBYsIUIbAzFALGAyFNXqzDEOzI4Voa2XNs8L5eJsbf/A+pTiS6Iy5YrJ2VDCm9d8ANEdNaWqRAqelYawv/aeNBZtS3czPn63TS0tkzqi9LRxzufnckLT3EFg+OkmmPMtDEFtMZ9TyKChLDbtep5ApgEgrwmfl52CpzOBNlAktfnSkkyPu0Pkvulr7x2PiBx7d1BLWmqCStQkGQCaviLIwsiYbVt/f7HXYdGnHIIFKZZTReBEUCOQBK7uSGccwX4F8KTxNO1VcL+JLa3avxXIWs+lFVLcu6K2ZyScFDCo0JSsKPjAk+bmcdhP84Zh/u4YSnvTup8jhVEsWaaRtKhpda0fZeubQyyHsw70wwzm2Y/JlyHaqm79JHY+dsd3iyjY8DcjEBWLrx3PJ1qUtFStmaOXhmI8enzj/bZLHf99x6EhurJo3DROXuYzp9Zi70ogErB8HnP0Vs+v3z+tNfAA5u97nw5TbfXtb92or9aIhfmU0VgiCHyxbGZgrpETntTo47EhFcEtvbGGjNTXGgFtScfumJ+YR1f7ungllodFFZ5VTzc5GK1ThwirqA3gVZaTvKDVjoyoqIvl36dwBlp0I2SEA31Q6gldeIWrMT5Mp4vKKHAxAnExEh8TS0oRHS5/7FtP9e8U/S6UkX5px7wovNTkGfof7Uz/nNuo2FQqG2tLVnKpqmvq8tS20W/DTiDJYjHT8AgFHEgcY8WwbrXkr46HouUD5mfNUhm+ybp8SIPzaXTq4R5j2WaEn00HT7tzo/upI8SBtN52aNRilWoRbAByFetReawQh+CU5FGnLonjhoLvkODgZctllKojDzaRkTG7s/XBCIVscYjvR/pkCKbt8P4Et93aaC7TOGC8coKQG3vOvKmIplHGkCetYz1T8wEiZzOPMO19hYM4vLXgn7KMf4U9LoKD83rYb/eVxKqTT5t/98FArADbD05PO8giIaWuCZeuYP/7nRZulqA26s7QD83MVT6Ecr1iwFnvwyNlcrDFr+ZmC5sooCLgVYdE7sMvFUbru5c91pUhiKjkAMT0X+448dTcxM8SkyK56diXj+VkTt1e/BqHicuPfNCCXw43qAsXsgop822Q/z8aiONRnIiWlxfNZiUMCu5DnvnZBbqcjVgAwKmOERiyS/BYD0cndOx2vnI3wUYOQ1dUqxYiJTtxDYPquRA1HHSYULaHCYDnKuQ9K6tmzqHc8LPFlqHTdJ0G8j1QgWf5l9+wFwycaY1l1qwEnQD/oHh/bkFGe7X+6ZxiY01hjWfJNTx73YgF1BC1ynQIFH/M8ca+W1DGkZCVOqXfcG7W93y0gyHv67MC7V+3lZns9MHSb3QDtqQxEDp1Xj4ZwlCvPuaJMRqv8KnBsNehb5vc1EoPBbDAJo8g5VUA8m5cxHYqHyeN/lrxKocfI2CsAcgH4DBoqcIPObIELLFnU8gHa5kEwoouihjhn2kuBq7Qq+UOlTFhT+BIHOmkiFNqEsJw2x+sTc6XtVScnlM8VPg/ejo9zkXDeEVZrGrwVF9se2ekMbMUGGN52H+xETRxNi3ZDnJnOWYklZg6EX9rOJfXgyyuE8mf3ZyiOhAFZWYMf8YsVqYBBjMPhlUhsGIianiInEX2XnJWJlAZLvkIGcuLqlboYkSYPT4YRErNXz2EHy5n4KeQ0oHPe2GVFYmJCMUWAWeyXLt7MoEBXg/eewQ1lYfRqM9bFX3J3RyO/6d7U/9lbj6wvkF0R+9lAGeMsRKxFReidJTIJjJppMdY974SM13HCeUzlidU7aottuBje8y7hKUZw2KoRwyO/7hF3AB1PD3d1F2Mc3gxyFxM44jODlSPFR/jX1GuyWr3wcNMesgvzLT8boFBMcyBWaUr+D+7667DX0lktLHmfb+qnO18F6yVuv9TO+ruqrLA2czHhEruYZsjrN6Rm+cQBFqmVLMQCbKwgeJKrMVe9FwF3AnwHoQO8JQW9A/yYt5dHpRJzcVP+aVwyQEwP8PRfbm0LevxxqfD3CE5+7CwaSI/aCsyVDChO4lEOSC6Kph3PPHdj5oNoPqE8IiOslqhsNd3mOBHtyVdW0XqkKGRx4C2ovBYqLNHnJ6KtmzcipthdO+KRGgaSY781dTbjC/HUtrFd91Eoz6iczGD2NJ9l18hlpp/iVqC8/0EALt5kfclJlpq5dhX8fAA3Emw1Fu03WbrhHASncl2CS7VcDte03maa//RYJ2p0qNmO7DT3+LqjFBe7hbQbqTXxqemLFAy50K0iBR+SDhLVoGbVFoPdaNtP4LCtH/KAy2eO8idVHZ4V0ly5TUk6IDR4X85Bhvs6Uf+8KdZrWngmnuRSFAB+Zz/EhU7a9/9Gy9sgXwDX87RGFQoF0ftHTLSqEc8lkN+vxTy5GnwsLThn+nG3pp3Lak07bmxSFgByjKeUp/PcYaBl4niyDrbEk+f8qCH1bWjS/R134WXF7/legAdgD6d3S86voMtqobeeKSq0ZVrzWGM+h5KWXa4urh83FrqP921IoUQw6He/+Hh+eWtyNg8BXI99pFiT8ffJ9NEBkrUKlmA1SXpNlp/GVAxJ74uvZa7Wg7VVJKWfnLbEEYchNSVlxOmOhiENcBdf6yj9Bi3oBKVuwMDgrUW+jODgtfs3NRAACAR7T4OAj2kC2W5foDGS5m/dgA3gqA01KBiZIdBm5dxlh5ahzAxBLNALaJ24MwrDTJbu4jBKIk271PBFbxijNdlGl5tYjQt+6qrlOgpJowntXZqR+dCP3SRFMOiwyCY73ObTDG9TBGSTSEfcrWhuBiQ2VL4sDDXA/HWYkpX8RxeSL1vgs1XTW59YGcBk/WiNMLR0376Ygt6tGrobijGgz4fJKm0PF9zcL38xNJcs76b/wqypQGf0Ug/65YNJWECjHNjZ1SPnrXyEj2lo24Rm6zO3uKPffchc1+VIcHWdY47itKQyVa9S6r7E5C317Hmp8xRwDKiYnjKq97/c76k0s7eLtjxQCQv6+BTBOh90IbNh6PZiQyT4B14b2LoIVZAI9gw5rAgrp2fXauJrTldSiH97/Wut8RSkDuxR790wtEvHFLNrDLJGg5a27BQagUco2PlDztKHg3zmh61JO8+ZCcSviiemyp68mcsgpUf31r9hVh1mYjQ9ej7TEMfwJn0w5oLbLVbvdkAUBnUkegxxi50PzMMeVHVRILxFyhmFDXweYrzb5KEGHe2dY3w4hUnN5QIvdhv+fPvN1O9a/WeX/4u3/fL6WnyBai6TsotNOl+Ellsv7qHakvGQuch00wuJU78GiTnnKVSwXgN/vG3IXJxIt2xQ4ppgFWnb4hWKpA+cvpfQfu0wVq+nnzbL4bFn0su8gFJPJyWzwED5UnTVCRbU4jyBRsGnvUkyEBR7wKZCpbuTGQ5l2Kp6dqVyY08i+2AaTxB76YIyi9ZilwRGuKc91wAK0TYHzo0UypvaVSaZYB+4Mmc7YuWyATpsfndSZZXONGyk5LjhK/Dh1b9dWWUaeKBO3luhKnqk0qD807otLpvL9E5T2Tsy9RuRBtyKSuUsqORKafghIR35a/yfr/1s+ELVyfHS3sMnOdnXjKMYquCtWDxDbHJHtfJJmG9D3IolWIlVXkz4GmGY9VT7Pzq8LvlT5OUgUCzgBaX9HQ8UPtoqc7KSnq7tcYEofaTes6d2ay1nHcYb2n2EO+udRLs3XSwmNkIaDED3naYKMUCw3IR7vEtYeSXIfaeBdWAJxyKsSrJX0IOjNvw67RtKsJrjD8m6otObsjDi4NNGOxMPNCT6UURNojtpOBmEddiMo1BVehKx/8K+ceeC99ln7iJYkyn3Xje9Rc3+gR1CSmLJnbXUNOtksiGJVCg8/tAj0TRXkQGT0hKPEh6ALdk4IAgkHitQ9YvsbZXpEM/sWdK13du32hGwYIeGdIIgaBBzOdDRUe+oqGS8UTmx6u8LUibiYCBaq7CuNVS0uMvqiKZC9D1OVYERWvPIZSfK6nDCE2wM7rXMdGB/BPpFYm5mdTXlI2jUA42I7xEjOy7HmD7qep/v+MrWMeOXhUo1FY7rzUK3CeWH31jvPbvO67zYy/s5QqJGjKS/Wi2BvjBewc9SUKl6jd/rm1txGXoROoFbMcr0VsYeuCCdtZykASdfXxFknPbCXg4qiUQQe0BCWc2aFphJHysa+39On7K9oXUWoemyDHNutMQpsqk0FrcTMYgtbqSoWyl3pR6N6oZVCnInxMApbX56efdfEM5O9snoGhr4rey6sHM0BpOIodssUg45YHFsh3zQQHN4EHNh1dYF1jnr+9LYaVnEYOJi2d/oYujp1LXwKATbFKcfz6jBJzcLhSxYjO5s9qJ+GxZdcvL1qkfAA9TcvCLnLAIj1ZMZBo8mhqnbyV3jEQ+YqFK7GYrAui47h5LY+idIJU9eB5ZepzIbzvjjD6DGdlaeaB7TPvE1NHsPItU2eJ1WUpGbK2gItPB1LP+wuzGMgWc+BZznZ4wIua2y4rwLDwQkfuH8ZXoHnJ+GKfNT2asfsKcRV7a3Y6PXWu11nxY9pdYruUSu2i5lvtQjV7zWeAe71HXtwb4R9T1mPGAXzCDfz7nCAqAz7jqi9mMv9MTg2X4nf39z8rzASFbnMOr0Ar7BAAuTCDBfPzJAWfuTHIOEJNkiV74YTNJzp+B6uDdwGg9kbwAqlFoFdAyDqp89LKtt/bcZA+uDHL2kwSrOthZwLvDGoy0zBnu0w6wqeSTnL/naxdx3dBCIX288n1aWMa90SpZRHuOrmtjeNkBb+Qj+fxx/E3LaEqf3YgT67tRPtz9VPkgll+Ko04j257S7MEAYmkIEMd6uN+lEz3Mav7aBGZZzohZqluLbaxBA4GD9sFypVi/C2WYrfkx5aPBTuaCjkL0vgC5FF060Z9ob2PQDOU46Q4KLY1fxLySwAe8Ngk2Tvpef+vViiPU+Bsaa+e+/c78b3SdV/zgT0Cp4YX8huaE9mRqxvKn+Jjre1VU3+YyRF08eVGhovlkfWHF8H6NYbE+NIK/H+c+9HjoFKZr0dVmzwMObFb1s5SOSlc4n8eIfmzP6vaJudzF23BQC6srC6U9SHhXnUmGQNFuxEgrySMr1W69nxCLqwn3B0+aFu+vSNbwC5c2IOPnEkHaD69QjIk1fHmzUBtpOTV/ZHi8JHMelMt/Wkr3gGX0wH7F7tHGNOmQ0yHucxRk/cP8du/bupm75PwsgN5MYA6ZLIxsYwfTbL7FXGc9wcue5C3lY2KK+ShWnjEw0ul+S7m9CD+GZ+DxKEMnSTEc4xJpWLGTfpleLoSP4pQ3aq6HcCVITTFIuUJgw98T+eRH3QbjFe+sQ1rGW/A3RgFqLdgO089+cPzcxOoNIBAO8MlOzPjdBU9omrGzs7SX9x8t1MvD5MDfcK7GZOL+FEelflc3RsxhrLwjo/Kdgm8P2jNowTAeJHDcOfZue6toVXMlYGZFoWt7cda9aG/8qRv6UYVfsAoutHI9S690B7kDMFPtxNLdagDx4aDDyXzMd7+vIq6CvnwZg6K8YY/H20OVuk9Bd5OHhm55FdE/xurNv/dqhlCEvsXIY4fXMS2w6LOLj7as3FK4MFHbFeHv1mT3dUh711XwaiiYjfxFEiI+Kv/+1qp5rF3AoRvehfJlMfbj07251TwEQEeA1NmrmxRgZDlP74G4QSgHW75kVi21o6QG2jVBiOEiwMIjM8sABfdHM3i4rJb1n3ondU0JgI/WUVgwd5c88SkFB8Ps6HbFUhkfVrg1TDd7fMqHizc3ibADleVxWaiwwmHJlDmFJMoKo6Cm3mfDiW1JMuS4/3dQOZF++LCJwwHnoLLRUng7Uj3cYj/BRD+ebpFr9L4R1xk7e2M8j5qpExCIrgZEgP/JbWxGHLPip4DDqQJw8HlExlEkOk0CY8xV04ld7JfKFvBJGpJFUfJldnRALgCPsvd+MixIy2AhSzbDIdwheu2FNVguroi9hIIDAH8gvWfOCupR+h5mZfUx02BzwFjx4Lma7T6bp85rPMFk2oq8UsqBJPgFG9z30fc7iSAdXlECXiSLqaVzuIo/V35Qpcv3PwgARDBSkYZ3xkBuaYrcpjWgBSo4VDyFcOvgh6I8rQlQxXNiuPud9FBivGgYKON2Zm08NErapfJHyy1lfiJGIrsJBbPS5hM86WMC4So93MHno3oHfe++tPg3UAQtFq/TvCbc50YDqPZ6P6SxWimN7WGwH9slTTNejx+CqDV+3j6cxZAD3LRyFHioIyspXuQqgyHr0QVfSWJ3/F1z3nMjwEFPEHz7OI+HEfA/9lD2kZCzGbRgZ7p4a+K8tgiMu0faEawHBo3iBY+Epkg36HFdwQDy/l9bOW+R/d243WZ6dy4+sLu71vNxH7yphtZsuxUEUTQwhrlRyaQh0+ScevRUH3bTE0ihmEv9FQDn2OvJtz53z1vu1rKq6BwtZReaKNulsbFa1pzAsgxrNDkNi3G1Z6RY4DeT9jCwUMRiaORNN6UfI/s0odCs/c84BEqF3lbpIGvmOEcaEDuWU8y5k6cvaxovaLVFarhlWrWpfD3FlUK+q9IAzVlzjB9zGQbp/uEShQRPQ5Xbi/wsKMvuW2OHflxQNb5CYivPF/BwjcI72cEtdpvw7V4WXti8ysWJ3v3mWNU2qYLUyzSHzlyX/rR7eeuyBXBpA2mZLO38Ka5/HzUTS7YeZxbCP675mwhRAsGvAHrl9iNayx4GPIqd1GtGRCcCY3ryzLCbJfxsqI41mY/fg/9p6Zqb+jCkKa9pzwz95G2kPI2gZgdxCWw2rw7hVQIx5I2gmsql4/gnnBSnmattS49hwXMedX1efde8hDzjM0SodtQg6qUhGC5Z16K3M22EoVdRexXP9Dwq75FiV8YeW8S24mzDqSOC/tx6zXtXQYMKFyU9KweTRocURcLQ+r4No6rfgtVl8Qv/u3LNZdWhFt4pAzsI0jZcXXpY89h/q3yfJXZZgbPv6zOFMiNBgPfQE9BTzA96q1iVlUyEgrtJCuxqWPNgRlWbdEweUe4Q1JgIOafcF19hvRWvnSmSrxSmV7tWCDwpt33/YD08swgI/sRtXyPWoPtFVCDR5rEbeqZbX73dvPUgeX/GwFMbuUsNZfB48+qa+is5n8rNqIWiMzEEbM/Q7xoWIkx2Mrb/hWVD0bUtVkK9dVIfofQel7Gv6YsoyCJQdvoNcdsKlZ+aG1myLVx7NpIJFHM9haz7/gsCZANh0GNzz4Ibzbg6EGNs7O8qjHYoCRZ6PLFqEKPpQRx4KQj4X8wHYbYKpmW8i5GCohKnuCuS9HVNumBoukzA0wD30zXlAIZ5MBrjyo+HAMQnunQqs0/kvzTZXqRPO0SDNa5/xguF3V/kP940xtrMpBhQPdTmV0xNyPv+tdNNMbcd4+jT+joNGSxRvz1nNd5Zp6Km6Ws2t8VphgOztyVID/PK4UrI8QO49TuS7Rs25OUhjAugZdZXF/1oLk27I7o4dX/jkEU9UOkt+asRC211MrWjbp3HBc4TTRQ8+YYwkKk3qJ+efzqhNUwD5gzsj1JNs/9MLWdNFANPaTvcscrJsjjCsXLxe1aBT6i21ZJ0XU6WHo7I837zedEr3iOBjhU4gwluVQjvHhU7hVrHEqHIFC0jexq2s+YZRDd1Yo5gzZV07pzxjy9rn+wULsJ+mjfr92n0kz8eN0hGmr66vYicBSLKVGhyfRFIpfBvaP9l2BWoc2gCtCKa30c5HfEqxbaMy8hwPjf1laa2sZzb8XBFeREmjp6MBDi27ibW1yNVw0VBiGblCxvUqF8jJTUfakStzKE8p/GwKm7NcAWsKstgz6F1sERcQvLsV1Uie6mA1ja7AUwmueOI/B9TuzfVlTN+oNQf2KUlw8k680bOAOKUQTL6ZFhOnkBiA+8j/uojx/Zd6RUTYWcGNtvFzTX8MhbJ0hm3HAoVnZCJzKqCvaVk3l5YUM0OJxxJCE9/VcFp8a9Me9y6HZ9erdNEz02JR6YhmBmrdwFYS0C4ixSBh0IvxPTVNgRDX2Ta/qijWOLF8Eur9JhZN5F1PG2L4We6Jwp5/b51IQ206Efv9UC4KrPnc/O6W+FKTOb41DDBE8FymGxLVnRvYapggh5lYS5gaf8RxBjL+2YZzoArJzPz1zgUO3PrxX02UsOhAjrZ7kwkju5a6T1suBKAEW5q9z9o+l2BTkvW0uJvUIuLCQJuPjcaJr410jUOjuYgyqkj+/ZtLxkp3q+vHPRhzR5c7eoCOYKWVXgYgUlGgk2oDYE8YRyopEp7z9ABbdVW1eLs03KevEZ6XBc5M35XUSMyLGXuoVZupxJSE2M6de+xF8EjC68ZcNrDE0HVSauqksuI/Of4ds2g+/x39QFhzodIQayHMY9IJW3EcMlVCHX3shq8rjVi+Ob4Jo9xGKekxs4o3sy4QYb1XPKyOZGSyua+9M1vxLQ3+w1aryzbw1+BvcKN/W6QH8UNHk71fxqfB0Tt2gis4paIHJ4xecKr2Q88tgJYTI3RCCCQh2ha+LdhUewhS95e5d+AkroMzY1xPdklUhdr+wGEqMlACaSU6VOXmWSM7ha3i9spNCfp6hDroCwVcF7v7j/p9UzuFbAb+hi9AHlBG0CkGs9a+LBGuxGkHOkdhCAMzb9tOjKYP2ObdauNEeE2bXehe4Y5E0xte9niBm37R0qDacvir9U++GKPb2A/5rVkgGHURMb6nXKYJ3yJDlAD3g0aGelBptHa7daOQj/vAn9hOIciVDAWzvtaP2i3/x9lHeaNeBL35/pDqf52L2v8A2jNHcKwlRfyQhIcCsdOvpbCAiebHn4UZWYneOG6GJ466yXw2n8gDSoEH7PIzmUdwHk/cgfmOol/0AuUojQdq+sHBDAKUWp+iwFZ2JsYRhXcmdH+bS4PJrHHqsM6uGf/ujW09Bs49Ralzuop4/DMBYnG8AcrtOVM/ekhvYWxD81Ua2nz0rCmxltr9bLAb6b2Z3vOH8e+lKFwtcvRcjh4kbd9Tp0OEn3nwjnL8csICyrmYBVI13mOpkK+jWy79mXhhMDv4WVgL602OnD4mUbpgCOILgPmwwOkAUyO1NOuJWdz4m1Ul1y9KQBS96yss4H9IwKdjVXJVL7IJrpOJazX0ide91603XwxzWB4bHWmUsaFSqCT4W1zx6Jse3FUZB7rzQGlCY7GR86yjY2SP+O+RhpFF1OP/UmjF7JzhXBnfytk73PT4HhM6FeufjW4WEUwDXWX835QEq4am/lwhP8zCvzctofVSxy33faJmbOWsqxyc31Qp7XJHEhRIqu2BwLQeL7fbIpqgYiUDSNTHKmO5VYSE3Oo57s3UwpVFGWHN7vl/bKvCLNMwuDAsxa8fEQBvJO81Z//55PtkdRUwxNVeZgStIP3GqHqMkMwPxV/sCTdHwN6/OkJrZraXitQXiSlCdR/HGaQnCFsQuHbvnaCi8Ygk8WSxNU2qO4FOnZeSmMUeUBBHSJPevqdmwWAI4U21KxbfIJJTQOCpV6z8WY5eXKQvLMaCNU1hawfXeh8S9l5gcTMV1O8S7gKp6PvuTI0ZUb1Li3AGgEeLzOGMYVzSnOiOi6n59XAN2hOmIOGJ33L5EDg7Mlapj14UZ99ZgoRAAmJQHxWYq5q0i5AAarSMEEce5saWfOl+BtNEQQHBtA3AsajlrfgWVQw+4TqB7sDXcufk0Z8Eo+KGtEcpjNKC1rdGzdHTYduDuMo6zsqtcRRtjPAQ+W0CU/0YsUXpVJeeyPbIraXlj8nSyzQlm5jG/pMF6QyZvPRCgBvkZ8ba/Uu+xKFdoITo+XoWtKhy5f81vmKYAges3di4PQZawgeltkpe7s+gP/pdyGIY0PluNhS9xTT/TadGBgXsnQyMKDWNw4uxQLMcVDlnURv2otQ+uwMAOMdZKNmsgwqQaWb+idEy0WS4+Cg9XzouW8d0eaAbocZPtR/eNYp0jw+VdEFRETvOcj9GNh8quJbWcpYFMH93ECnfZy4ybTV1UAniWTSwsO3bAyIGwKjkx1wrmMi7S4MKiBJ2Ts6jJnZUxtESpddu2HcFNo5+OmBKkMThAVLqSAB+6IsxO+UtVkWlJVHwNcNtAn+RNKgFdajIlFqvbKqmCsrOkxjDL0BHwgLqO/gjaWVrMV1x+V88uA5Vjt3F8hx5KlPxqjU5hO5Ga6U+FQtjTnb3JZCRlYA9vle/hmujCKoroC94ia+qu5p6Ifygou1YxN5J/vnwt+VHJKRkxybG6i1HxBeZ0YSEToi5TY/b5UdiXS2N2+gs83le7oxbUBv7m4JKQgpEsk42R9Ti6QflkSOSrpJRyN5XeZKRaiSIPhDNlwfE8pcR36SCGStwf9kqMsHS51IkWeBWqJRpOjqyFbh2Crl+/yRaowfQMcWQQqrOo4IofCayitMCjQ3Xz5UEPOC29qOsw33pOSQg4Day2g9eaYNWkHs/Ipup8AH1VV8OSCtb+GMSTZHBWWRvKUutGs9ht64c9PVIHlP2lIVqWG0PxYUOexdHnxzVGQ1zHQH7G1MArm8YUDlEIn04q2eAn94jfo/Hq3HlLdWp5l68EZtyPchfYQAkwbuTX/H3cDtDtghtwxjQO5VDBWpkQTDX5L2JtKqAXBiEuFWt1gS9+xi0wDgHTDwEzgAoGE6e+K4WMGkR7Mncx588zwET3AIhoWpnui+1rrDU2ELyZwxIrfaLeB/ij8iHguUxcWUGKbWKgISd2rPfuF5wX2v0k4MJkGJnbIKOn3dFT/t7InUZNGFqTSvuUtYuTNp3dxuOUqrtx5VNU7f4jz8W/qI4PvOAhf+e2sYg9hKwUBfNskzJLENewY06t2cGwiaom7ay9+8S5m0HALqZRDM0/ORdlST6Wzmu7/UwG+ZbtACWg=
Variant 4
DifficultyLevel
633
Question
m is a positive whole number.
Which of the equations below is not true?
Worked Solution
Test each option:
|
|
−(2m)2 |
= − (2m) × (2m) |
|
= − 4m2 |
|
≠ 4 m2 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | $\large m$ is a positive whole number.
Which of the equations below is **not** true?
|
workedSolution | Test each option:
| | |
| ------------- | ---------- |
| $−$($2\large m$)$^2$ |= $-$ ($2\large m$) × ($2\large m$) |
| |= $-$ $4\large m$$^2$ |
| | ≠ 4 $\large m$$^2$ |
|
correctAnswer | $−$($2\large m$)$^2$ = 4 $\large m$$^2$ |
Answers
Is Correct? | Answer |
✓ | −(2m)2 = 4 m2 |
x | 4m2m = 21 |
x | m × 3 × m × 3 × m × 3 = (3m)3 |
x | −2m + m + 2m + 2m −3m = 0 |
U2FsdGVkX1+fSWhJEKWDihY8vu2UJ84dQmC5TEb3oN0O5wEti2JJ8UcbsvqukA23Lm23z2mLzz0E1pYzgECL8N+BivyqW/iRl1f1CV4imrupODnntGf5VQ65QJtnCHwdmhJIJLgvKadt9rDTQWXSRbLmD7PhaYcCsKU3Ddrw/DS15JFhB409kJHp2i+5gQU/j+GRPN85P6GeHSm9bHfwMXv8k5bItVG1deu3VnWh+qInSZ8XfF2z4nrFX/Aq1H5n6bW/4AdDx5/LSmgwnBnzqaDgYlQCOaZhzvE31M3spHEEEx01pwyTJO0JnKl61nqLmXAFLOS1ofvMjHeMx2cz+os/Bc19il5GMUvTg+qf/DjKoyQb6swce7UZHBx1UXcdouZemJ3xUvd56T/kQfqjyC2ZctDDL0ah6ig46VdT58G/y2y6yJA0E9w6KKtN6NKeO4niRQ/7Do6bYZD+hkrkbati7ZxLl0xIyPfSFyJ54ybI8taQebpYYTFMNQpIcLRCqSzy6yciHrTNg8ZsFePZ56OtSk6nnBwyCVQy1IqQYVAEgnwjCm+XdlWay7TUwZkKgIpYHf3753M5N4jXA2FftECmuQ3lcfs5973ztNEHWS6iDwK+nMwfiTJ/julBLH02Vw2RlYga4kr1+WXLCSdZpKj/PzzDdL5L8vqP866q9vcBvRxtX9Wmq7ZKcF7ILLu6Nxi4/J6f3rnnbhZnBd82GqPYbAv60jOPgPJ026OGFJ3MS+5/VM4H5bo0pOLB/46DXmEozriDGI2qbUa2UZLnYeRMsDKbUob/5cmD8xrabwcKFS7JhWAP6lqYl0OMzf7rQWvhvBGQM7b4wGoC6e40bcdcnpwX9BjwUkdBl1qkvwhFDhOaWl0Lo2JWS/dz+8WZiF7MiNFygCHc46kqvTYpSpRHd+/MUl4evkayDcg4zrpK0hFtSe0XnIlbnPc5g3fK6QPyk1MskGcC9gsNjL3HnJywOxQEW8Q8jRCwVgaOIic7Ihzu8Uqy24xFVJTnNAfN3wbrqycm5kUarTtuWe5bxBI3J9E+OEYpmYwvghcMMwMRbKcHb0Z+/U9X7vouEiry9Wi3u573rOSR34n57HQ86gR5f1Kzncdc23FKq1S+FVrMdkDTAdiXX7kIPzzzu7uL0CEcQvmph7jCjL3ywFcAfRmB+z9tid92hsqDJF9ZAFWB2FmZUPUzOYRoqg+YnXikDmnUQn0H8TDadtZppeufwZnVw6Uybxg+UUs+midPKZZhWQ7zZXLKwk7fciJok89IWDN80cnJoXsTLyR7LcwZ5YFBN97qpOKKAvnx/4/AMDcpgrK1mLV2O5BpiyATJd8MWi/ttPCZ6dNBSvNVbdTdAaElxBw+4XZo0+mGvUFdVY3KxybXMm5ryIbNGFNI/xEUQa2QgRNXKPuZ9zxFcHp0xEKS3mH0OYXhx73mGAPAAmpn6hKCnmJQ42hQw2XCop2w7qNsHapeH7cgJGc+VdNuu6jxrQ0pSgX2wNC/PAQzWNLvFarI6lVi196XlyoCKmINApDNiLH8HKRquPJ6+HTDmzo2D6nFEUxauDmZdm57vtkyDHsPGhDW/K2D3mEA9mmG9Y6MjIsr8UQs58lR9eEhP5arP/Hz2WbZSZPKzswpYaLEWl/MjL41t+KcBktQpcRipF9hlzCKvRtDYZ0Dw7o1darR7Lv88YbwWahqTOzLU5cJ8dUc17Ti3vs6TNXAnqL7d76DD6UnmthnbRBiK22/3leFV6edA4lUtyw4vqu48wcRtSmouWjbEqFn4+FVNaBf5FtYHYOCHnuI7rj++bRn+T5AFAUHmSmouRVkyreqlbchfQ6VuDbNyDX6EB0oiGBDqsTm2QO/nqAEz0ZIYsjg9TKMGgRYMBNTtZh8vn8cyRViACoqptM+DM0gbbsgHWEwkbUw3IxYHGcRYUtkzsf6ngHNkSgrYw3mcjMXBYsDDnviO4ZJZsyRFTCjwn/yOq2J4qEHNbzF9DvlzKjtsM9nlAP/Imfkl8vAALYOlP0vDAnp49buGCwFevAxFm8WYXU3R9IT1RiB0yFHu2jogGGa/Ed1t46lENnmyzLAQGYYeuMT5hx2ZpFFYBR6WLsNO0/wtvHtsSo2o7lMjqqn0cyPKhR5Jkfpi1xipZJWPo/4yy9pD6I/XhsGv5ZfDsJTf/c0CgZnDSrQztKeHosMjuZyMdavNof1G1pyYSUFc/FBUw83KXrjiZNx907x2yRgfhQKFlb999v9ZgwJb8172QFuYOtq3xpjTQmhwOz6g/TT8gX01Of9jc6JZaMLBCe5cr4/IRDUWGGGw3mgd0eaclEew3c/GhQt2W00bMUqAvyvcKBM7DJ0fHfoI8nu9mAJax/bmrxlNbqmEs4WsgeV+XqV1bzAt8Alljtz3IGDgZZyQOoQIy1xyb7LeudX6q4kojk5JvgBp3tKmclDhfFVtIqtG9Oao4terZ6lBlyVY5M3sIQLy5lsCLoy4PD8bAz6XdP2Fg3KPqls1RpkTtruYtoFxAH3NUlWNtf2TuT5KJuNkDa64gv0uKIbM2yt/aWse65UL+4qE2k4Rk1AnSfz3FoSXHcZJbSe2Yo4vfN1zU+tC8WnINlW1DBCHMClkxk6Te1yQW6RaNjjQV5irczwwrgXMPFihQck4Jtabnloc6eTanOL4X43himkrvRIPBmrRmQpiTCQQ3UkXZHFYMNVeKNv6CpDIf7PwsF9E1m+EVXttv10J5WWYs8AxJMNo6Ka1nQgcai6i1BI+5D+75UbOyJJNDA/xLMFvswkYxY5zmIWpkLa7pMp/0tje9TEWOhMadRXmO2sM8yEEVV7rzDpEXnSD6vln8Zn6MB3BkBX2iSH4swniLAVa95DgaVcZxWsEOP+/ovU3946zRKo6LyMBWGPOpDYW8qe9sVlvVWcs8NbiLB+y6uhczwbJb35CZEF9MsTBKa3UQO7BPna1tGpb5+8L9HI2mjUShWYtDYS2YvL3CLXH1j1RGJZSrCYofqHiP/F9/FM+iVQL9fwULhc4m96v3DyS1ejib6Cn/OusJn6uduLlg9LiIT3fN/ovjEH3+JqRiPGApAW7DtQsvJChwJ1pP2ZLzUFnG5XuooicAhsAcD7xwEnKb9SOKg1JKmq5Ug6WOavqafEeH3K3G657emZg4R182yl92Yi4T0hnwP0iLFgcZB4C91Q8Lg5UmyJXm57wg+Efk9zfcCC6JfwnkmJInDyUXJu6QoR6XWFdLTucAN0XdxkKMYBPRtut+XWl1dFT59HroEa6C7kf3229XKw4jouWaAE15qW+eFE3SMH8JGHsDY9+4e/fkGr+OGo8DvmkITBcsCy1pVFEk4ZenS84k/tZzlrYowYQpUcBi6QhxUje3Rzc3rF+LFpCSqmsGzopk3lkrisqNof3LQXqcw8467wOJgJBwV559Yg2A4XKBeNrn89Jr/8jr0bVYetKZX1CFXQp5Z85Ng5zO/NyIVCHAXJ+uVQI1gHTEgoelDamlUWZtWSaXZzPyAlZlmVYT0OJGhpcSEayilloSn0ijKDI/EE+jJVO1AQDP2pCbRXJQDCdeKUv1f8ohWj5f5nrrBtWiCiratjrpjFrL6yR2ku96QJZ/5lmY0fL5dPkL71qN0sHboe0rJM/VHLo9IbRESb/zp8DCuLcCVlkFRduaz7AdeeNAJh3U6OTqK7zeZ2aC4Ygso+0qH6EZCPf5XW9a+0sDsVCvKpjarF/oRAIfONxQASTuYR9qXEHctMmwa3NYOiBiBoqngBOYYF0A9r1+Otonp9n099p0pg+Y6ATlzxa9ejhdW0DgxJKwVAwI//nZ6brHUFJtWePcFKoFjZS39w9GfEnQ4Q6i+dtMOVsjqr1QSTn/JzeBBxCLdSYXGHKOHzRcidCsiDmKlF0U5LVQ4oRBLa7/6CBt86iTZ/xPH1hkJztTEs0NfRCKU8lzECq8m7vHLa2KTdLhze/ctsnRr8gL2ucFg4fr9Ke3sTtlWuScr4ZC64Vfam+pm5ZWBTwNHo6AQJVXkHblOwIes/JrlAD6x4U+ccKgfDEc0eA9rk+xat6KULgPPDyi5garAdcnhtd2IChguU54/WUA2Od32YBP++riA0j1CYSfiETsXm9wekeKxMkHAc5iKEbqO0Jiy+KCUFPphpqw5HMvd9DF+M9eX6lnvAK/YAS/wNHsxst0J5CB5Gtun92+EHjvajXRqnUx9tboMSWJZMHD3l9b+8JOVAHLwZd8DfuB8Orbj/hltMAWr8mGJJuEVrwX/LldgFqT9DKDm30gv+CvGbmfsoMp+IHK9NI6VTgD3TzsqG8cS6m0gmJvgncgukSvEoC873c3TC90XCK/4aITl2ltex5qqODL1uN0kvpeD6NoR9u82j/CdPqfNT/IWPbjYYmt1COfwe35aQ4EAici1Q8QHgDVAVnoPVFYlrQM7SKeIJsfE8VcxvlUenVzYLZxLf89zvBaTUgTO1Rqw1EfYWEmxdvNpUz2Rl+enoEWKaw3F1/qVr7cWXryim1ch3gRKORjRmuq9ExRqCYmvzrnFTNvj8DJcxWD1OIiilEnEosmYoaqN3qYXnQ51BcRypOV+6wph9Udfjmq7bKde//tkmCJhvcw/2YTkr7FCT2yajAEVsqlRM5zBIAcwoOpiq+CTEGu0mAt82hJ05iufteuk/2W1oHNwtULv+ilVPyXANj9oP8F4yx9V6Sfg+/JzCP8agica49pd57cMwmNSZ4xshL1rFcbxPj9mffdCtIjAnh03WwIEtcVGx8AqlbZuq5Wb/8CZdVSPUOz1rfHvzLSvynJ+x/9mKuH+rYgi9p+lhowu7JlgiKu52ktL4cL+gdafYy5P58m8JC/1aZUSZ4l1PfEDGq8d75ZW/O+3F02VWJBDt+9nMHQNoF5I+NCRf7G1E6CaoC2XcCtMMRx8+R8pGw1dVruChtur6am71J5CItyIZ/SnxhF6++CG4Qe9Uz/sI0ect0jDf0Z0rXu9FD5vxknJ33bgPfEx/XlGGXPWKz1KmtV5REnz7j2wOGEry0Cdt9Z67au59PSxJATHBbIuzahTA0xiyXxevPmG41mHN+k1bUkVjpj2rMzmluMamxNGYT3RVw9NwS5G2dmN9d+REEnhtpR8UzufRsra5Au0apFC5K08udZX4AHzi3C5g4BgFhlDGf2TC2fTGNar8zs4pjMkMnX3peaO1pNjeORtRiMAMSy4Hu5fVlnW8cKbnz42O1G02q/dKKs7144gg1ro56ynst/RppUi6Q+29YdBBeM4IMJ+ohZSUCai9PtuU1wKJHluqD+Hag84uz/jbeRAUxc0OEb+hocuh3UEpUKHvEGyeZsHwjsGLZ3SgkthJAVdyfaVXjMGihC24IZlB/RXqmjweiJz5JMZ4U7syo/0R1Ul8Zsu/8wsiQlEcKZ491lulDEyrt+GosYsuRCMJqg7CRpuwA0ri8PrErHAQiVGY4huLtbK/0pJGpMuACs1g/F68pRVtDXwLnhN4OV8g2FdwVTEn8m8KXZ4mr4Idct5Ab2Qtv3t9Lkj5LSVmdb2z7/FaUVtzRlMjPnckUkFF3IOso8NYNIFOItaxji/XWkn07JJ8cYJzu7OCGHszig066WQOub3CYNj4EnJadQY5r5pWlnN5cPNNA4YvbIb46EtviDQ5DhvLmtMQotW47lTEbCPcKjFoB1uo8SKsOlSMN3IEv4oY0OTpiyOrL6XLMpVU4+o3qdZJDjEXDK+8yNz7ZDhHZ117ZoCYh9Pq+Am1hLhEdXvjptlCxT4vRmhjwziY6vuBbMlFPk/UFTekUTcAZZnCzoCq/lOojrafH5E7WtEVjg7XGPjIMzKp9fNkhGJ2uQqC7Smg45v1atm5wp/QrRRoXlihv7SxAnxfkR3vqqpGrobZXZZ4FxJZ7N9h3huvfQ0slUW7uIImZp12n1yrQZYzMwohkyaOthz73fgpb+erCZEydZzui7zCvl11sTcWBbnWfozkiI/mDTGYjDxAwwMc5P25vae0UG8NE22F+Jp+mJTY7P6+EDH0V8DSpThK9ESL3EZjAqw9Tv4PcjNHBei1o8AwCXvkLI4bvCG/YYBbuMxC4cVJr3UlmhU/LHLzFbKxR2RbPUFhQUUa5bTSqrlLj/XAXaWEgloNqBpZU8Ug8347PuyK8SDcT6LZWScsW6I6yKMixhs9K1WtXL8FZuQf7Gl7vQcp1IXxvl6o2xTwsUCu+YKbtnXtzr3N242GSqTF2I5R6Te6o8v8ShGhKB9fPTtFPCycrm37DytA/mPqYS0MzKbLwJYs4aK4NXQFXPQOAB/wWEpcYFj8nKc535VYAJrGC1bGR8hHNZZ8sQaZG+uEpbLidlGsR7A49q84Lx/b/uQ8z72BuC03RLBQ8pkawwgZGcK3vshPP/VGqIRPNi/OifsRlgT1E+ZFaz29yapRjvyyotazETaGkNFIcTJ+57ZvAIkpL0D95wQfm52Fk8719ZaSz3HjslixwZ7Cfl4FmmAz86qBdJ3ix4CvvKURKZDNrH6hGT12XgFgVIddJ5cDmvNfcuQfhQmHbCaugDcR0Sw0T0mKGcn6/NlBGAXWBYrU/nakhITm2HtIl/+XUEoOn7d+ih24FE1xNotPYoVaegRs1WjAOckU+YghiAQVewn9M3da/7WCcDmU2+2ewL9+cr4iPPc3SPHT1sUt2fgTf57gJ52xommCtFvibvPUyTQfePBucZy8gLmNDAuTztFt/Xi8EH+dTacSAttkFBKUAy/axqbUyjvjKZPpJRgn1B4FEx/bwgQCrlgjt5IEzXaepIZeSijD6KWueDQIybYmx/E24aJ544gllL8+bcDBIa/5b8Cl7LUti+et7c+RWtM/UwQLOcF/Mqi1rbjQq/7u7AuymJs3HMvxZqGxCtiWtMSrui/j/i7WH2A+28QnypQau9XcVlDhaMZZUZ6qGwP02i32Ck4qE3DSkMqJ9WbZIdZAEvaPKyrwxIxVP9laJh9ArG7MD5XbTLrvrg4S8vsTq4AOkLNQYeZICVybDW8fj85M6t2XIFTlHYhcZBTnBe59YjD2teg4Gh7pCo0mIjd+HVyxDBF2lAiwQ4Ypj5GmkMMhqHfRHySyltOUbXZASZWwEwCySQVjrBrS7CkGi1h1rMlMHeeaLw+RCNG3t8Mp0AmYIa7TKHcDFGNpUoEIC+TtupvWSiRjWTz/J8bD+cBNmzlVm1d/tKUD5eeqB/ooDFbmZ2ydoAAj1ws2tZYOXVSkgm7jimH+S/hJkeW93cCG8vIJSnnMre9df+PGkwKDErBrj4djq0FddeRDg8HUAQxhEHx9YuCibHRqexdRxRgwGaSiCCAah3gnmqTjAe8sbBL7/njTI/svm59eitMmuXdoEPcMHUWWQ+w7nTnWPIkGWm2UHFfbeDpCmw3xoxSdqfglnpWG0kLXPYXblVQOVAywOwW8tB3l1VtE1Zc2tXX8VmoYF7QVqtSBxxmige379zCslSZaT7Llj7SgnYKozxoYylYEwggRoSpUhAsuUqkjYlfmUU5zZThuD6LhTHC6tU4Mg7WGEKsEkM9aC5BSv5I8UTxVbVBqixwHeldvp4TWB62im7cRgm9QwirU45mUcw0FHJIyaGoSLS4bTMIChyKGKNLJBKHjj6CTf2S4nO3WpLK+TFCkyCawAtOnH9R7cIg8H4d/7lVc7QDw405H/VOP3yeyqSfFxdY7bczkAiH3+NKVgog2k5S9BoilWZ5vGZuM67jGIGw4jdC4M9cafGOn9waL14cyQ1QoEhmuuN40Upe6s3TVQLFRl1kn9Yjsy8ubKmKdFMUAbMIPoRNAZL/RbTqj2H0qnEgoYyMibBl3R5hpZhq1UKcuL63kWEaoziUWiMqZ/M7suTEercI69iANwElX4Q8oH/AbUL/zshB/rARWg/mUar+VI6Bs6kfq9cLf10wuA1lYLeeMyM+IKD5cxvtPhHPh1AxFFTPEuzUQxEy+pQpxLFdyK2pml2qGe6T6xsDNVagNSswUGCDt3jXoQa/IEfZYHYgpYjk4g0hAweOdEYdMyHeV+rKmugEqGWmx2gSWowUPFOql4lG47wn7mfB/w/oGUobLZCa7/nEJXbc9Ne6PRzTqNlKv0wTaclCZeuERwC5meSneSWPdKbxg7KqEic18pyJHKoPGBbdBfwkG2GeozM+CYBMp5/WXbcXhJeDPSRNuBqqomlt9Xes0gSnXreolOdWH7dPjet2GYG/4Age5uMsGvgD9TkG/z/pB5LpNHEPdBhiUaFrPoq3OE3pC2/i62mS0KmEKeKlvbI9NLJbBC3BfyjMripmfmcZhnIzm0MYcx8x7VCMMi9tOsE4ZFaBbH5XJZhz4Oc7CpPONiv+sNjSd0uSxr0p9AZ1k2kdzalaakv0wujqv5xXQN2K+87+E7fwRL/AGKsqfn41nLQQ4Z0QXdVUAnUCx+gRJw81yAlQQKwcOZ82XPS9UBq7iSSXJe2hNM0mD/QCgA0cFJrmCeGSZUqY9Pl5k8niKzu0XKbI859T0XFObqKaN6ygqh0ckvMQ2+TfGZiaPpk7CS67ZaFQM/OI9wQqGdit0Jk8HvrozJLbuhwxyCWObXXHQiX3BpFnkyaxauM56zypL3SGhgYxVxUEi3qKnghQH50aAjsjnnKWFf8110FGdVAfuz+20l/0uUGRYt6kOMzsjD7rJ7cfcVFYm/tVkhOwiWYzORvjxF7GGIfCxxLF06ZcA9mKI9ySLXwZ0mSRhKxcK3LiMO5PdE4pGZnV/UkvBFTZoh08aEEfb37aZ1WHF88AQUmx8xpHyI0D2x0ZdUa9O+5vgP6Bj/Qrcu9rKt+hEDZRSXyTNC8TnYP9GaV9IEDISUQz9owwB1ijFaG9oiutn64hDurLXpqsnCoZn7PWyU2EhAXJ3qKmPyARJR8/znLDRl8L/fqYA1J3y3sCsXdb2tyl5miDXXfR0kh+itUqVia2jZej0zJdWRCpDwhzymqPG31YrgjZyyJ0FPnZ6hzh0BTot/pkWprff0PV4m9phtCZYyb6wJXgyfp40AvuP9daGUFdgljLhAuJWHUqlnyJ6IbEP8ltI0Sib6GoEBA3Fx5gdmJTF2akS6y9mX+OZdKAokFybPeoEtxLd6rXT1jldZsUVABD2UegzURC+7pWD17/+nb2OzG70W33ssjBj70TJ+W0RcjUOxciC/Ji/W2ogAz69ID9ewUeiSdAry18Osy1jW595Z9C3n00GjWJFnuTPLLfppTF3oK1dYlL0VIjKEB/myzfADpx0lwOI3h0coNR6ubsYRz0qUnhUim8x3SD2Eiq0+fvnAR7qsn/sfnxqZLU587B5IalLRjv/Li68bBb6X6lr4VTYz2iD4A/IIigYx1PYnBmUXLZajqGeSXQz611dHNNIbgWS7TOBGV4lx94bjRC48jNg0TXC5YqsKBznptyf0HJz+pAIpYrm/K+4PGyY2fkqnu0t0HZmpWcNB9JjV1Qmahqf5pFoszqIioqjgu7uxb6FwP4WNi8nTUxYqktAqSLt++SikULFgq9A/evXpckahcUhC7p/nhZcAlZepUFhMy8IqxNU4SoLZ64CdSFEqHzlo4fdDJK5Im6SIa2MiBNO9yk4lCinMO58WQStEu8jMqnvVA6E9p5DWyNseelXxpE3jVfGTwXW0HDLBoU6X0zTVUZ5QGk3uGNMzsjjG2kD2yndVaITWbZW8XVPu05dAyiObMuZP4rIv7x5baARCgBL2TfWLQy+XCfDY08+lTIA3qEKj0JSprNIHDmFWhrq9vylIemCUOJEJsc6b/e1W7PSLE8BMZpurUbIkN4/Uc5AjpJ8T6ILhZTDvWTF2cHaN9igKTnk8uyWOZj0yFzJC2NPH54PeXlQ29kEWJKr7trKofHVJ0NTxKPnIpq3yZXoehaOyFVJ6DSZrkj8iGkeJeVXKnUwd8KW7KXIEYOnpTTv8UGw3F8BkXSKj1CIhzg/ibSKYhdRwiTtbyalK1zV5zrW4buTmp3NAS9snglz3b/xBf/MDomB2t2OCC9BgZzco0/7YEXrL6ct2X3hj04/c6Lf2vMCxGEx5lxbuZTGt4V+0/GjKT66LXKt2c8Rw2dBkQbaGQ4hicg8OtklO9zCramDxLiiTZmbolRoeUbQtc/9UVteNxIT4iz2Oquazd6tzK8OrmoSY30F/rkKeDBeAbUV0rqGeywSap8Cvlkt2RIc3dF+njNKLak+6ujm52kF1fiFzz4nyTQN+OQhfhTreuahezm077jcSo03ij9wvAj0b0Tyo3B1SI/eIITo9wfm/41ziENbZq6kpMxmkEKlR3SlYSjxnaGdSCIez177aCLUkkKqbD8n93EjI/Tbn57zTu8ChsB/0FE5ACucmU/zI0mX6yL4Kat22J2HD8OzZO8s8LEjKN7oudqx+ZtwRAvalzrwIWwcJZUOynuI97cIIWqQvRCQZSdo/sZjcF6GaemkrTMaIBippGRzNH21GS32wdWzhakLjsDcp7BLhVMVpiUK6D+ynWq5fS7NvLgN5RsxvhvIdE33TeE8CJ9ceIcsdHu/hsH0Cw1cXFQD+UJgrkhl0C2sJ4zialTJGAYkhsENWqYJZYMhmsQj64IWpmKOYcH3vSJfWvb+0i54idVDlKXmD2MaZIN7RwFZYMPLaN1xStS9BU2jI6QIQc15sz2YUUNsxCiRfgPX9th01O/Ar//LQqBK1JlLRRmcfDezWpLVgWGgo4ByKLoc/RW+q1yhwY9sUDOWVCj99LQOhqYywmToVppYl1PKtoHQYvono0fVgf9d+f1g8e0P2QNyqbnRdvNL7eVNqoCM9PV2F+eRq+VkMYuO6SH11uEvdmGOnQ99+lxCxVVYT++VSSPA2qv3w9aukP/i3Vixr6pUwzgiB8AOu5MhpgoPg8Zdgtnh1xnWI37YTE+v7ekU9Kwp/Cae6IgtjFiVbfJ1VfQSFFtugYyHKgEZd+qFHS6QVVQAOgHvPeGyDEbxYiOiWzPrA2uTjjivT4/2NAdV3sYb+/AcnBc6bdSEbvBETauIKvnu9mbbhipolt9K2XQ+L2e5xvXqQpEHtKzIcIj0aNbx0Rt4QEr67+8eDGlxes5OnMbanOsYzXtz/Ai2KyYwzQX9GXcakTWIvfPaPfA8XKyEMQ8sQq1V3LLLgBu8cz8EnT4L0Rnio0oasbi5IX2vMX10lhBc57cyvXNYal2AS/Xio1tjmGjr0ELiqQVvwH4AwwA3VXkQWwZ8mIsrLd46117iTRurv3U31GqxiQRpqilcIlPCr9fOwwtu01KLlzfXVLVj6WWcNFpIpSdfPuVSKhqM0jeP5jRxF21RtdHRcV8ZMpuJFWz46jcQeBp3iimUCjM6kNvwAsVTMuD5pczH0cDwytPzQ0KUqGCKR6Fj3X/Wd4GsOTn3b+OjTwYqQbdbWBDM5AZRfsd0hGwNQbox6Cubcnne46arakBWIRp8SlUvw9DOf9CKKS43hxPF+FnkQT0uNnP9enH3AxrDPXLy1fov8oNr2/rquYk0+KanKuvVZMVjFQ0A7qDsQVezbgEQKeN16NDZULe9rYg92e0SMmNVmjNF9ARHpct6vxAa6pVhdQ17EmZsJ6JgY94ajdV3pVFiLCyWwpcjy8dJX4XUdFZ5F4o6T8OEr6bCJlwQliBBwnPaTk17GBpimz9lC8ulYp99tE95HJyeh4hj8Eq3ivNQ6PtMP7YZCns1kSEhgmsPAcFlalab73bWuNVNWWjCebkVy2DTKgDSac5i6CYPVHrph4NviO9+9tDCmsVMBSEVp0OwMGCd9b88cwlmwnXMxpuOXNVyQEw8dkBmkLIEK4Kzhv2P1l6Fma8TXayzONLJi4F5BW+9hiwmhWJRoYfbjaopEDq9zOIwP/GtYQD1uRR0daEBcHRuvSDGLIYRvDsMap5s+Ti7YvpfWaShbKudJRbzfhpiTYjS99lhF7+XEoM2qwYxK86uZx3JZiDGNhbbrJkeerQWZALC+9G3SRE9TLw1BD7iPWCFAq1l4mTraCqRFBXZYeOrdLzEmq1FAbUjBKDfDTtztoTeS80QgEN7WOn3uDem+AovtAEph5vRQz3q9uFJLCv4aa5Otoue0TIYQCXMkUsvAw67REfJ0e6yKPG8KVh//5w2ki57SeJ+KzuZ+i+milnVbVGabsl9PdBd9HbjiahXhiBSHVxaO2n4AY99eoEa5VEBkfWGdtmZife4f87ouFcfDrZcLvPDzCnWXb8Xh4GLZQKM0uTqp3Y9I+29M8B8Vi7Z0nSaL34vzDSj7fEnvq8MVWAUJNLDakKk5yMm3dP09kuId9sizFhZXxcHIrMK9LDpreWtghg8G1Q04qxXJn7iM0PmkP7jqwF7LEG+SlcwzleadBH1Uh7jBEcM+Mzl+ijUdypg1jfiQwKzrEdKiHauCUZHutAyXncCK0JZTL+G+oQclJJxgDPTivl8kC+vPwoaawYrC5TToz13aI2C7Zuu73f76fU53Rdo6KK+bbFx4DSbChQsPOaCJuNoAM3j+xiVJfP9D5umh26aNfLD7LJyrRjPSLFTDgbpGvvfilUdS3eHg7RTb8isdS+1Z+hFTF1ZeJcPDNOs9RGPMEceiQaTnRWAy3r+LqrYl4I9xo3+grtYHvH38raWXRegQMmYaVi4C/0WJVaqGwLHgx0a3wNM7PCZ2NroQ/tBYow9J4aJIlZI/c1oLHiAjqR7XvgYhCy1SnTwTaKO8EgeT6bB7PjOHYIHyHOF4aDMnjutOZz/sHx/8UGNh8vGjrRcHHJaTBywotxMkt0b1wnz2seiK/unGn/zFc6NoHwics/5CYZPJcIlXLJYnS/Gy9P4bfLC+TNEUwMtaAobs7782dEAPOADSsQSiG4DBqksuBjmOK0Hoxu4klrUx8gHbscifmOH/e8P6fu6SD+U9LkG9CkCSPqgIUM1iAlr+oOlsQQkLfI75Z4PAHbLuqulkYBzk6ycqjDfe64f3uWLqmn+DepYPLV1fP2yXjcXC7ig4Um3ey5I/HGOagn0RD6F8fbOjqRZ4mppHGnQTlq4PjM2vjT6aGE4og873Bl6HcRJ3lyHnurIn8hHwJw+IqM2jw8Vl6DQr0ZY6gus59llQbmOwit6SPLEmqeI/ZgcqjOj+BADGHu34kd4z49T1EhirjBFk9cslLJxOKcdLw21idt6zpQ5M4jwrripRoliDAVkvt8dZAHiBLIxyo4YNhX08jrWanIFmjTRD4rTyeCUWkZFJIAHaK09DyIOH3Obh3Bi6MaNYxoP4AaPoyVb8YskIJyyG3zEmGNiH+8DQbkXyq9K3hAcZbDHqxh07KOqLYL1JzJJURQrYKwkRbmNt5fqugR7PXkA6k8oIKKd7XgIto56BIPXciIvacPlfTXlaCeuhuKKnpkaYwsVnKB1fVSD3LDNiOTJ7v7PQmmyAcXRZFJJKc/3UFzCWGeD86BEoQoS+5Vlbd9LMcvzf81Sp5YCr+EtsFDzewUZsuXcsMf8a2AkUdaSuIr+bK+bL+JcBZ6CMtfZawn8Pqpfmp8o4mFEdNPeHTQ4BEv+tYnAz9fkNArS9W6lRFDTjSlbxiPA4iGKDpLj9ay5hIaQDYaQZZwpfGvnrULjJVya2z0ndNvsPxFWeU/8eZOtrSGQNFavvF0oN5n0ngGFB8/3i9sm4T00u6s7MmKP51i8Z00/lhZEZiPX8uapHpFgjp5YHFuZfHUoLWoR94bIsUg8rBD7o4x5lDME4jVSR3sdgMYpPvfmESlgNjK5O3in6WOeEDSpyuTmHmbtortxKAUP+Q6c6Fy5PjlPYoG+C4Cq1bJcw0Gh4TAOftv5raWPwoZ+AIy8uIRfcunFJeT6Dzq12stpVRnl8bnNT7V+uW5QYRkKoER2Xn8LCKeGo8sFG1er63YB4z17vdfY2ONhc5LYYDLm1KLh8LsOmrLkXP0lYauQk4wqOMwj/C5rMhwVlU/EqR00FjHDJe2+WuAmyt+kBWZyA6B/w6V0KbzdBTUDXNSAbY4BDqCwFW3zRJnWTbDtEZbL9qLx9sUOvxso2N5897oZYtNmWcZcXmliZbbI9z+PuljlHalcvn9ao22wIWnCUIZDfA2AW1awUSlqIXCxvnqSpjhMh5lWqW0luGKKfU9rO9E2ykb+mMXqxjziOyxX5I1tpldzPDyN2Lnjh0WjjcqkDhaN6Wdf0g4J0MNCiJzUt7ch8Q3m5E/LPEAt3P6WIg+oyLxbE7/coOTw18ikVDkIJM9bSMehT1O1Hwp2ZKxbGYak8HziQVCYqGpuWkT0GPU3NiWW8KNyKTLHzrgdOdq2ZsEqktq/Yw0iR/fhN2XOFRVdsHWkkCEqE9c7XYCh/cIJ63U/FtPhcmeyrT6zQlK+4onxh50nlEvw5kww0q2ZegnRR4NJY5R23bDmku/9bihfo4f3XMNcJadvM+HVxH3E/8TT5Bf15d4toUEcVC7L+NI6SJB/eeGKcZAikpAze7ci6FfxFpTS7RBWNaRd1rSRkmEXO7lJfMx9YYtDgVT38aiLPnXC9BFQqHxVVMYiGpiyj4FN7VNsnkkdqfZE4ljOWro3+oBjgPZ1l+6iqb+9NSeb5UKicWBVuJqGErsl5f3X96PWY2BClMhfbagkmfW3AVTVmAVBujHJpH4aVpnQVPs1gx0QnSxFH3UpnVPq0LENr5wf0qt9e0JLiNiooeonFVApK606YUnSizy/Jl7FQcUDwIjhj9Tyw7aFEWcuVReQ0oMQE3SKjOQ1BUWCkwemvJ3N+l76DP5EiW49/OfaADAyIh1cEjXbWa9SBWY94DjTdKgjF7XaLPCJ98wtPDvuOoCXefLoif5BpORMlNbL1A4j/+1SCk1avEPKvsLiqTPTqeqolLP3C3Yz3gHnpAjG9XpMutrKwrX+Tz+yKPfl0Boqk2HAsyd1135tsl00152CD8DTUaxBRiISzvDDV7bFQupgvu3q1JnHB8x9mRLELjWvYpzOUDf9+LWdNJ/GW4Rby7aI6XV6oCTCFxDeg/kUC1T6e/rE3JBGiQIfFE9RaAcE2bEqYDKX8NB1sXi11hoabJHc4gYP+1MjFyXlDBMA3IKQAkAj+3k7RVAQFVnVev2u157gZ9i0A9pz18dSTOF5FXbhgByXPcp7Rh6+FVO7oRg+aXBoMKCw2yHXuFz2prAJFhjgWEo7BHybrnUMSLgX9ejM2kLlQaGzBtburFXQiLVQi/r1bIT7g4VtHx0qvzCsSqu3iR3clhbNvoDH8NO7xtEKEq32WTdhZTyK4tq3la0BUE3CtmaNEDvtclYkhTeyxxIzCEzYIBffQbiQUT73ziw9l6EFCKSGJcgHNO7p53lp4NZtPQXC80NKg+tAsNMINFgi1lzpRi5J1mw44+yszS80lfC0hJn9Ti42MwPhbIINLuOP5ZGcMlCk/qGwn59Pdb2XLAj5UfMYSTg+ZOq5qh8I207E/TbzUHLb6OK8U4S0XfURDII086S2PvMWKVLHZRCFwLPRj93J4HuCf6ELGyZ17bJl9F2NCiIWYWUR3z5rj/tK98rT1QTQ1Uo6UTwEj3vNZLd0ElWEVT6vqt3F3RmUPRhqmSC+J8QtH53QhzxMXtewrSyqds04arc+PkqWzE0hP4c7IY2Y0aqQEmG7LMiD+pmpOg3Gfe2Z94EAa18gxJA1Tf5D12XSjo6yHF810iA77unxoSmNsWXaXjWmDbikrg7tPRRUrnGX4jHTGXeK2rRa0iJRKK7YAU9r+98FVylc3aU7ppq4VDQNuENymnvUUNrB0ugFZb1b4by1QwfjjtJuKVizD/tFbFteLTObrNJUYuIfxO/CCAlYl2l3jOc7iU+W+xAdleUx67gAChFLrvPACP9KtgsIuCDzS8x0jkTnaKuuMjcs5/+JB7NGSpSUpLqEAMNB8FM6Dv20C7RoZ94rpEGA2JBOLB/vp4NBVUZHAaTBxZP+8aq4yTD5VEKlykVfQC1eDULr1mU5oqkvXnZiYIDjtQzax+nb3JgktSBjFmrT/mGa+hmI7uj/JUAbQzDU9y7aYxTN54ztFLrrQhGD0/1DKG07JjUVkqIbQRl7e7tJo8CyW/f3YBsmAXI/GujCs1P6dFkO5DVlwYnDFK2ZaGltKU7oCPgBcIoYUZ8/DoTuGTqGWS3DIdygh7/QU9AaZ/0cKqTFemN8Q2h/JjbONtBp8gdlfHInGn7OcYeyoi5+QEkfefJA2WAbJTW7qCqFfEWZcnt0gf9Fs1t5yg5818NoaIT+ULEMY4Ll1B2i1/zrKtdAARP60VkbYcyUaF2ACMgWPBfWNca9Hb1+J21wzUvh6gLWE6qUEKNqHIeEKTyLXeyJaTiPNXoir8rCuV03h77TCHipftB/SXg0Unx4gxJv6bSViUKc0hrCEBmv95FC7isQwEVJnvs/EdI9ASltHakaUuLuHC6GXzilOOALIvc0DE0OcQQJ0an00H/lTsQ/+ic+8Vom7IZwwxqPD4dOk8GgT1m+bDXvmOMd/WqtB9jq/4H3/l0RS2BvZKUg7lEI0BV+usu55S9Vk0OuB2b46A1TvesouS95mq6aJG/Ee8fbGvavEapYcIJwqLD0qsWmYlPuTRM/B6yd5Kp491y0QYx6o3p2cJJkcXLdKvhe5DLnraDfIGyuVua2lyZTR1+K+0hxnTPgYjaYhyUUBQFfhm+d2e4ACUfl+BCISnoMbmP63IhPVhOQaq3skfr9qmnULTDTvriRupjxllsLfTHMgKu1EkrWCCGk7F3YT4RH2aI5LoGo+H6AW0eTEutTGK5/QphQiovaaZyKeTnpdmTD9gidjw4A51xlDai4fRQnv4R6Buoc0ZJ0uY5fu+AuB5uRY+xi39wqjhYawaULNNNuT6Xw0r+1MgSmrHgeZInoPn8ejDw0YFpw8vSiq5uu5bUyG5+tYkxECjL0+7NVlgbFt57c4OYx7i4nAtU2xgqKQ9+8qZs8/4GxGtvxeDf/lApivhNw66IhmHVOVIh828TdxHkbahG0ECnWMJR6MJ91YC2+tcDIrjRk65eLMJDCeWAd7uzzNzFb9msvLn2zHNRfABobM+DYL5b+Q1vJN7jlpX1lWvVn85Oot5eGE0IfYp9P/nVgS0JpUyJUn3ZJbbXdEWgK+5r9tcwso1/ayM/H+E1sT/1HB6M3l02rudJtpPXZx9xP7Q5QX1o5ch2glO6dE6fXT7gEJloM6AFqHB80vq+2OUSHMxYP9sK4LVC8xPO0/+KgS0VAKoaZpg0cw5d87tzuQ94NYGQxD3MkGCMnzW/g3vJa7qsb8Foq9H7juw4a3rTo9j/s2/EsX55WGoTXfhXfywWfqyjx8isN7UGWmgavlPrWF8YXYT6I+KkBaHWaUTVBC/LdyjeYZnBmLUmLJXQzoEBH8WHkvrFxQ0pVP2uflul0R0Zo4I6U1XFlhLo+/HP4LYvRpSzFJQQh1gtDuIsEk9hLeSU1ogGpZE0/S4V50YCByPz2DFwPnOaORVD84eE4tfQPuItEbH8HNw4rM2US19wrYyqOEnLlKf7QSHgbcEjJ096u6tzndHYo6MtG314qNLUbRDLNkwjMHA5kiUb/VGkTO3NzygFCFOMR/KcUCFEmeRK5izE9O5P23TJkYsITOxWKOj3+vYNluyMp9pa578L4f93p+IWYtLvZVpGxpZio65XaWNM9DYwlChCjQ7W2B3j84gjaNGXGPBbgRSBiev6ET2lu3YHYPjFOtKssk5SqRfW+tyrsyxoJVYjU2Nxwoi+/8pjidnWI4BbmAK/hd2QKZ3gbMDUvk3E9T3nYBEIYjAGW3vXq0tmngDoDqQCK8v0VSvTMW/1LZUFlQBxmOki6W1mXTHdGcR8tAAkNKIV3897WiBh0SRJ4HHUyV4DXkzf7xcXvbtburRbnpSyFuuJ0MfyQ6RD4ziYj0Nao1z/KupAbP8y9ZgEhendQ6/xGEfdZQs0mHMydJPLnh3JNm76csOEci+ZdY/2gbc9YCUbd/U0Yk1I0UXeVEbv+2/4DcFRQqO/3qDlNVDwoIEuOecEXWcnI6YpEB61GXZOevzKKbcYdd9ljcxSeoB6QwXIO5nAFnHFtSab9PxS5OEoEDxXZ5WJR7PyOSLHdXW1V4jLcvquH9gymMSG3JTfM83Z00uITI3EDsxnib1ZESD2KMCZau5pmSFzW7+9quZCpTJCTZSde0V3MbEWLwLkZ1xnW9/yA/aM9dftGq1MvovRe3wDVE7MBqYxdLXPWV7WSTpzZYLBAdoAAo+0k3H61VR0I1lpU0ToAq0jsSlgwtNsdyOGxlwbhUadl+2daRjz1lE2IkNZXa+6S3+sgw/G/WTD/b3LhKIq5meMQAIhk+p3ktiw1R2OpZE3e4jaiPGVARrvUKzHliO3FDhdddRR2LZTwYNDhTilZNPtReItKlZ/USb/KovWmZI19yCK/EnESxWnhY4Si5vJZwwHGr/AXUEUeT8gkfOgtOI/aMrDxFI4MIG5FOm8ERpqNsvX8XER1dbDRartrYN3VoHw/EbttXCmsyTPs7HhxWmYh3PnuanDhAwspjBZeUT5NxPrSmgHe0Dzp+ajJ1sTRafXyAakP/xKoy7FkOvRFFAJQ8rnI9viCGelclLsQV/Fh6iE83YXpurZjN2fRqDez2XJJ7EVnz7PmDLUOVcflaYDuHZx2XJgoKPVMfnJOW079m3tK6TlBGuaYL1vHjjP5UjxETH009xE0KmfJgynTwtYaMo/kN8J2sgVkbmbUzdzfk9+LymlRKzyrbFq7qOkzE1IblfqH6y1zqJC5W4z0UubS2yXjOkrSOyYakoep/OvurGxgP7RkpJNPBl7jiwb6raCOX2igUkuF2rbmdrjFckQjdmjgrqy6iAr7Zo+65BTI0pX8OxBYK5GaYDm/RO6Gbqv6+rS7z2YkJDVvqsQNxIQE1zrAyoqpYDYtCEQtzSvNUhYSMeX7/6oGk/WPkHYj5XE3ZmiLoEoAUX0cMabFmcCeSS1mEcLrrSEJl9j4rUA/ayFEmBuR0KDeQoy25fXtXb2kz9bFwuYYjbC6MwjTinO/Y4HmXaaqFcm9LvSQv13WK+uvY/7tXMsepgm49VHBP1+pcfcjwvSc9GZZvSsiqSmvpSoq/5GXvcc7FMhoyweGFiPAUhjHk96PRFlJ+v8VJmVr/MZxy7rmJVQcX50Vy/vB6oIQp2WPGgtJcCHtNewB3CC4qMd908UkhXjj9Cxz21ONCP4Mykue9Mi/a4fQ/Uuaf8xCA6jfjfSr3EPRnoTlvIZCmnjNpy7dImFQ+C9OwSrNYHqD4NsNUT0OIcfIoxaGbLOWHjLOdC5SVzj4L1Ea7fI/HYzVXtTAB6ZG55HMCg+9MstWaZXT7qlHU+u8mQy5cZeJmZCoOTWFenrngbw/r2Qv6T5qgssDA5qhu0ooo4Fe160n3SUMyLstTkhl5I9Y7cQQMuyb6agiGemfN4UhTy3LrOqbK/rJxrPpjVNTIa9jzULKaRnGGKfctxnwKzfOir3AewCxYP6qwqq3BU+xasF8XZgtbtys1IKpl0ys4Cs2SK787LXdembQczAI+xs8eONlhvAHBd9QFkdTWUePHyvLlylazpvoAC6ySQ9l8u+wntYX30mybo2Hlcu9UNWSnNUoI0NteiepLngbu+BmW4JHGYIsx8f7O3UzXEXkQDGS0IeekP4G/+jcargpwUe+P24AmQlQ+ZBEHLO/quCDR3IN4XFdTCi1u+LWBXy7uPI7TAKcrcKyxqxY+Yvlq5EHGqE7wBvBXz13JH8wnP11RkBIxOJJaT+nkAlR0wbq+MXR2yoqrzWQNUzrRKBA9PTUT70haqKp8jGf9Fo8d/3YYI8m9fUu7ajBg+/IOUBiHyGNZhSFVwYoTVuDQVBtrWzmJEHk//9w0zI8DYpSu4N1ARtDktoY4Jys54y446DrObDmi2qKdNmVQBziJ9Hr85KG09wrYq7p93gH1xQIBj/Z5mbDRSi6xH3cubo7f5X0I08VmnsfvKWGAGMyPE1CD8b4c8iz2LEHgC/Po23BmSRse4pCzcVWxz6yDhFIYkj2/eXaoornKDBlKbY+VtOvlf88IySAdQskIXBabzd9HCQwrmF2ZRzNbFWa7GLbJ9o7mxAeTv7G/bcrDgZmwoJiS7CUmVPc7wHSkIznm6bzq/N8FE7F2MUdP9unCY+0Xctj+2RXqq0KGqLfvcB4O2Z4/dTinFFg9bS0k77nm+3MUMwOtoNFptg7ylTTp6tO1PFkJrX6Nir4av2vFv1T61qAy3T6K2klFoIm2u2e/0+/qGJ8h16ucsN5IvgauMP6ttru+8N8TxcrzS8FXkvlAR/d4Vc4DtbTRrw8fgKzX7G0ObME748Qcs8cWcq0d+GkT1Btyt0zjMz9oZG4YRn7smN8CYo/rcUZVDKYcK2zYJ9uAk9Qy9SN3Gq22yw7QwJQAHp4SwceFgFJR7xBHY1N/imi6qbBi4+TJ1p7rS4JehSwDRUgEwOlnK7mG7LF7g47VLuSSMpaejUKkH8gnm77wP4p3XxQVJYxMyGQ89tLdj+7+QaEviP1kZBgUpq8Vip5vjOBbEtVwQunqcAQFCLA3XzaJS64dHAM5lRmHKnYKujf+yd4xJSqLLhSbybfyo5A4S6gcRZnl2mXIMVaNdh9PRaayDqAOFXHCAf56b7vMtEU+tyFNJMaDbfPCKcx4zwmmf37WLFFT2cfXqN7w05ipDUxDqGn73LWMVyeAv8QkfqShStve5zYQpfjBb4atO57tLNvsFn9ymL3nMTSvrTPfOHAVsFdYLcJnXNwPA7aUXYCed9QMIFWd4Uyuy2wpcsJiKmzRBHWNyGWAGe8ryvgb2tde4kt0oiWtODKRReYh70QPcPTMjlqG+//A9nH2NgSOPesrFvaU+AEwS8wNF3u+EYQerBf1fGSv12DC5CXHJvkPK+a4Bfik/ifD2wcT1+jru9WLchV2IlzhGTXYiocr0usfT/Ivfzzj1xIVQaKjukuOS1q3p8iesMTy/nea55RXWUFy4G0r8BAkl+SgpTIbeaU3J4N21gFHcUwMMvsQZbQEqs91nZRwNvuD0r98Y54StYHf03EjwkD+2/YLRf4qWn1KNaRjQ4X0iKXVSK3K2cFwvAGiQt3YTw7WAOGdNLJjN7UMC4j3b+4CPc5FLZ5pZuyhc2pAzw1/crYYrBGksjADwOq5rt3ASMsB2xiLP4IA7wy/4o8QRodJ8XUroFlUBM/5HzPqQHLrLm9EfWuprhKTKmjr8oNy95ajwpRgLXMt3HKdoLRrzkZHgM4ry0vpIXPyyfygipAgKdbtvKL5TzE0vtA6Ye/ITF9lLOxzJnmjg5Z3Yp9EP7PDgAPRaHdHvI0pLEMBAb4a/vf4dJ0JmIPURePseuXUkwIB7wBvveDKJG950J+lhU4Mp0TO9dbrKpcGD9kGFV6Urx4/qNLXVqVeF5xn2B5F9ThSvzaiiFiTPxvZiHopiUQwz/kalmGx0QsjbYvhc2iHf2I5mHztykS4u4VD9ik+peofvY8ejuzrynQIU6/XTlUcEAhNg7iT6XJFZJNfPvkttR33FPKDIB/y49F5oRG8SmnNJjfLv8TmGNn3UPNxRxVOxpr38C+gs1idE8i3sHt9KOVZVxaWlFC2k5KGqfnKA/kwdSyCPxunZ0f4SxtxzJUZCqXq5oE41oEyYKb66tzD7sXCumXSU0HtNKv44//68WKhq33z04hrvizArsoOXXglTZwRVsicOBKiLbdk6L6u54cMhtMHGaCtyBWoMiLqLuXIDoy4Ag7jz7HdCZfzkmVaQe7dhVfAHn7+qxUMtzakvroqy8Q5lyYrC2P0ONlRYqkj0sXmrUm+yoc07A7I9HMRefnLrvazZVebc16geyemmISkR6MxtUuwLQLiRV6PvgATPBtBWBFL+FrLdsbXyXT3iV6KWRU2QQVqR1HaNwwO1x3HWIUjvOOw9j0T5fL+/SeXrHfua9goFCWdjnADdpQgCvs/qJCF5tXNtAWzYzysl+9E25Yo1qr6UXnm6XG+rooXbvTHyq7H354MdadxFwYgWt2f2/nO2MwRaJAfjwjtvS3fYN0VdCSdwzBcwVsFCEKtkuqcXYlitnzT5NqmQxr6Ab4uLU2pdnbo9Wzjx2VXNw3WRuSzfaIYc3WKg3gpFIl96mZ7wzeRFM1kvPKRnnMJ1/9a/pAx/R9YaP2ofYJHfGEmywusJcTgQUl8NzlBqcSIZrV+Q8LO6FVOKgix/awbMlXEI7xV5edt9WX5yjZ2Jeq3dt7BeRyK+ZgpR3JhRRGa+c0Vg5rmb2MuJn/XdmL5pM+z6gaeD9oOzzVSA2k/0PhEEqW6Izqe9CW5iMefdt9ylgz5F38RVf5JehjE//bVGoakGQBLVAwWdNG33/yydh6bJHK9IP23Nvv1U9ymRz4NUuFpFQX8Y2nGMNCrcqChmVgFW9d85z+dXBAtFwmnYYu45iMdxCzxi5qf+8mv7U99PzJXRR2sremLqE9hbydEstQUUi842ch/PaLVrQuMwp5YWlcZJUq2T8BrTrzm80BqclvQPGkS0HdrXApY5EnMkbHwgCA/QDfZfdJk/DsXxDMOAPSfDI5idC2gUUyYPb9XFq696Suc5GnKyPVkTuMrqAXgVXFB6drijyQQ9x/UkbFl6R7aLAUL+b9RZ4X8TkxDRM/hRaNRMQo8pXR7hR1vaiZFfB86crixUiSc/xQxXSglH8+uMCKlay2022b74kZOREMq/3oI1Xsf3KtD3IDS8wZy/OKT4u6CU4m0yPnvZzyQ1rY049HJihfBo655XlJPss4YuzId7QPhRYp60j/JergYpCmCEpvKOpzx/Rc3eDu7h9b01RI2BQ/JD7fHwLlsWZB4vnzWiWy3bY7QXart5O1F8Q4lC8vU3AI65cC9/FUSB4ZeVb1FlOrHoIYvJq+pkHO35/DFueeK+NzrxULpEsVscYZ8943J1ectOUCa2MTGGYc0bi2jgZJWD5idKy43Ib4sRP1d8+LcsNUyr3K47p0PEygxtDRMKCqzSO5eItpFEUB/cZdf4WbZm8GULCnhhzzpT7hNV4YGLWNEKe5MmhAJTmaEjmibGlVap7YTp/IGIofjIhAtqkXWWiJBFfRXYkV/mVON3nl5WnvUeAw4ZxJc0KaBkUJmtcxTzBRpYtXPOsEmpIHO7ZUEulmepnh+tauHlGar8e68TigCS8Av6IEM3iJlVocTsEXRwBKM/V/APjM8bKwkGNW17XZLD15osQSfgaRk1CbjXReqhf+GtKmEr5rJI5RXezY6iVbgi44ATlPtbAXaHz27w19yUVTJ3rWiJWykvbg0rs+3Fvc3kHO+FyHNQPPYUOYJzg98lPbFVee0JTJyqfPrJRziDV/fSFKqIKJTLhBI1BFHW7/eSvFk+6cSc3ZdJWnwpgOqhmrRnEHmteTlJ6TWaFDYH94vt2VQgArcd04ziF+53i+XJTNw5feYt6mZdl1FWonJ4qhiWRebsPaH/LMvxafsIAKgZ5nQn5mQn5p4HuSBLELSbmUODOTkHJC65y6qytmq040vohdjDHY342t0BazVFMqvOtOnsEc0ouMLA==
Variant 5
DifficultyLevel
634
Question
a is a positive whole number.
Which of the equations below is not true?
Worked Solution
Test each option:
|
|
2(2a + 3) |
= 2 × 2a + 2 × 3 |
|
= 4a + 6 |
|
≠ 4a + 3 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | $\large a$ is a positive whole number.
Which of the equations below is **not** true?
|
workedSolution | Test each option:
| | |
| ------------- | ---------- |
| 2($2\large a$ + 3) | \= $2$ × $2\large a$ + $2$ × $3$ |
| | = $4\large a$ + $6$ |
| | ≠ $4\large a$ + 3 |
|
correctAnswer | 2($2\large a$ + 3) = $4\large a$ + 3 |
Answers
Is Correct? | Answer |
x | 2a3a×2a2a = 23 |
✓ | 2(2a + 3) = 4a + 3 |
x | 2a × 3a = 6a2 |
x | 6a + 3a − 10a = − a |