Question
Which of the following lists the numbers in increasing order?
Worked Solution
Each number can be expressed as a fraction with a denominator of 100.
Consider the 1st option:
65% = 10065
0.7 = 10070
0.72 = 10072
43 = 4×253×25 = 10075
∴ Ascending order: 65%, 0.7, 0.72, 43
U2FsdGVkX1+L0x2sjbM2QJQQKDRqjCJrYotSMZDGHg+KU4g4dCJwOHuH7laydQRLYnwtW2Md88sdVBSncuDNni5QrE57ZWI5F+KlgwgwDLnBmUBV9HR6tdwW2mJewhR3iYzaThtqR37ZLEjSmLdkDf9U8fQyOTRF1QgaMjP5mV2bvv1hOdjpU7HONowsRo2h08K4vJbzdTbO3iaQvcAF2yIjNAhXshp5x7polf25Ps4V+dRKWMD3P1zBRer3AP9Pu9J4olBHRjdx+0NBcQtXjVJ0wuV8V7yefc8nNRSPB3knnzyx9zSW1w62/J71i9tCsVbZ9umnA7swY18HkpOWyJSKGQbOp6M2UIDzahUbO2qDcTM1f4eA5s29JbB8IvCGqvoLHlSfB5JI1PMTHFQ89yev7JY8OeB1Ylpf0TJvsjlEmnIYaxIeSsb/C00XzW7phiw8Ah9qGFE9X9DZl19FuMGbDX++r46zNsQBfWDroJzxcIprVwrtulod6ln44g/s6rnqlKm0x5RIWzz+rhjS9EyRCOK6Tt3709nxhruFz9emGCIWap+uHInmwR8UTgVp7m8m2p8Gv6eHrPgTmO3HDk1xWvxoFbd3qvOuAN7X7LZiqtUybwNdK9wOimP4dFyLkMG/szORY5WAeACSg816+SGNzX++IdDtPzbGeaSnUNNx0rw0AX15t2sTImMeVYVImya2fyit2xbzPYmlZ2j9K5c/4ZrTEQaYqB6+4I42iIeqBdmu3ZEm2xjOP2qjUxwwP8cNX6M1Iwq9kv7ZqpQZ33aJKi/LAtUlwE78oPg5z2/Rk9aSz10kzdaSZyxXZOTwptY4cTcCTMBYN3TCm4k0XueS5t+lRxv3J12gKvtHL7imAC7+qIKWWt9HSN3fwzV/VxYDzWAB7vEaIUlQe3AQhd7U4BB+RgV1XwEQsp8xsYH45+/EQ13NECHbA8HvJf/T0Ry/01kmpAYYNnZRFnCco6iTNPrbPq/z714OmHCsBVZFKU9WZvyxfJRPxgolagpEBTxtcmt6hIHMECthV1SOjE3ySNTkKDZqERmoAjSuQw7C3sY+4cZCXqNlA0Jc3BoFZEzfPSrZZdmfbNcZ8M9vg+bNhpGLRclnDyylRnP1ijSaWD1/vGGcAx4s2Ro2ycUCJL0GBSj8OgNx6lr1gEfS3AIWheoUb1Mg0EasUaplcelLl/fydRcNXLBzKLeQNGFtk5SV6otP4CWT8pMHCav4a4HqocA26imZRcGwVAQdc7e0zdhOGixcHKNZ8GJNZxQ8jOhXZ/lxWdS0s+KPZuKgVaj1Xo45ZI1NU/MCbDb3XzqipNTiMXF955OPJozYhZ1o3rW/nJ391FsE6cDO84yRP7L+Gq/UWhj3NPYpskYcfkoSVwe2zAtkIAU6mduG2nsxJ/n8txTmYCAurvMZWhVp7Y3pdN0jkNtWQpAfSmzwr6i6/YQhTZSML2rBYP5oPtFAfNt56gIAIVFJ6XvEn1GcmP7MJOmqGCOtS/QfS5exiX4BCqqBVfHFp6H8l0EYynCdzKPOvJ7kEezhxRRQnDj/c9ytC53VPru1q8y2KWcvxX3M/uEI+za0Ns5DkbZZsd+q7YwN5xFBLti8vf2aQMx/F/DEKCH5TmsTZEMyJzbZwYfHaKrN/j3n0J9OOI4EDe5z5LQeDMjesX5j24T6ONzKhfMj3EDsECnextpgBYk1LLP78axlu4Lszh5iHc4LZ0TC7BQ0iedcuE6euthJAWliiKqPrQTBHLUmq7+1Cgt3xEPQRlzhLLfW3roedaH2i9yBpzuuMyIORY515ABmWB/Ey1N7J8roxzScLyucCr22pKpITtiZzrnuKHIXwalHCwIeqZ7p3rQ5jfAbyuo1ELdUcCh6vR80M3xolpL9P8YuwO3ADXxKPCnx7Iqqi6L71yKFy2SFGzoUKTQWbvZZzp+WF6qpxJms9lDHbaTryDr7Fbb59ZfI2pXiYoxcwsqgqwH4n2qYqclC74uWJEiVXnhRPApvbjP89TRaj4Uc3yXcuNJmo2r4Gp5aK1KUL3LhvOahMOba/V809g5GY7ISaWFNITfdNDZ3SJbn+zITGMOwDPi0kGb3E8hoLXSUeYbE0p+LpIJShdDo01omOr3IughCDEZUkDQhrf11cizZKR377KiIGLXPFsJPEQ9Vx4Qgjd7tDnaOGE3liA6wN3GIxFZHOwQi3OKRoS6uLGaRYxctvaPqNhZ5aeDBxhKo0WZXuQO0dRFyo1gT/k6lADAjiW0ue0y5bknVrRNcDB7q9Dqhnp5mLnKt3v5sDZ1aOsX5UUmCVmNxKtrtUyQt9onVXdjSRBkMMz4vpptnM2hI5lpbObZIVitEAF8vqx4Gj/pom3equ4FrMqiOIF72iF70aSAEIfDh++rh3+hFYPT9kQnZ8X+0nkUSz3S4Omy8AtVPL8htbWTDBGvlwLmkO/F9cyN+Ux2HNq9WCyRjPSzD4O6UbcI+D3HouuLw2b6CQi39FQJqKUyUBHY3zb0tydM1j1AHJICcC2jLhvWsskagE6n5y1OqqgpA8YWOnjjLdQ3RCZsq4HjLWhY5cx0nYPtvarfrgcoky3ms5JJw/lGxccqIncuATEnMWE6P4DaCZYxKKMxZke0X1Pqi0uqa0R14p3XPBEnxWkUkTl8eIssRZ3l4WwmBsFBrK1X/Tz0SYWbYuZ+kNfwsdaoJ1Gh3DBtKdJlmEKEgHeB6+JsA74QVvQJHN+8cIekSUsMB5KvzUvALKFravPQA7rGFnwnJaz5AK8f9n/o3K7M3r2LlWK3xwR3giQzKVSm1kXwHRwj0UNxRB2QEiEYmXaSANqaLNc9QOMHf2drDrn19j6QB0veAV6cWT4Wg2hQIfaSoXHqa7p9wOFUCDWlvgwTdX5A7RAX6ejxzN2WlM72VGzDNm11Se2kQNzQXysPduk8feHjw+ycbv5iRAd5zBqmaP/OHR+ogCXPBCJuvK4duOJjP6RjDJv9CiWFBwND1FPcxa09KXxUO2i7GDZUy4tEbUAe32jR2j/x/2RMU7KJwCBiriMW4kNLJIiQ4xNf2clo+xvO+2FHE9FJMfXpF8zHYLitvoDZ551wHUAeaibz37AQLSLvbse6wgtCqSEQkFIV7VhfkQGrqGO3fxjIMIfTuhHp6jiiSlJPwJ2nDkxHg/GPnWaTi3JYDUHIz4Wv6kE2La8UVNr/D8//AIEnmENGHgbbC50C89nnVopCKTg0P7fXFrd/U/pUCKzcM08DHE5Cn5QN5C+R0jLhmvMargYU3jeakySDXiEg+2vIrDQ+Riq60y5bpoyYHCzcTon+IquBs2U8aXZoZNmB+CABtER3hi3WdCjEdUNy5LKxW2YB+myJ00Nk6fTRNtC9K4eMIIqVWsj/4v0DcE6r5sMaGTd/DY2ehBYcupCQiuO3OikihHTLe6GlnnPy/YxAPrzrbu1d7VRXAvd7LanQqguJVFJjnxz1P2NVVNwEkajOnWeHAc5Qn6qAUOpAynWIEfJPur8KG9vWG0jclRXW2NvNOTz6pGAWbXP90vhdtXqMUpgdTzNi6KB40LslTk6BGEA7kPqdpjS31dWptnwkvGsXj1m/+6GrO0++Aq2OkJ+ZsEOLcxpOToq4kQnP8yvy0xmlhaxFYgZ0n3Z8VKu72MJo/HkAVf1a/A6Fv+a3Afu8W6tbwR6zbVJupWExfRzfjvpZg4/uMZx8WUvxTJmfyMS1u4RLXdavNwE8UOWcf3ToGwyFSWi1ot6Q+RwsWUVEVZ5DEflq4i1r1k/75LNOI6ocJNVYD5/9/o0R+efw4cRs9SvBZUDOjg0cYXa7X7RQ/ido933mKxy12mvAT6Y/tMP5mr8c8gZD/nJcY+vasbvd1S3Nw6VbWKZ/sbVC6K+bzWV/Pm14uD46IZ1OEW74HaprJC0uy7OfpQR5ddQVjLe9Ag2oVgSdIo3O2brZL+M8Aayz2KhpYTmxaKMd9xFTBuNEy6mCSctLSVI1B8wQy7G95ZY5trw3iFWmKJeMYNEglLVohoYMijMw1eMEzVEOSYCIJ+MIX/SKZiViH0roPcEYKBLuWsPstfAg5c6XKZc6bIeA1605s31ssnP6MIvHlNYUD+kwVZ9mnPbuax0odu2mChktM1SyluIc60etsgmAZfdf+g2cTZA1VZTOkAuP3gmQUCRRzJDnoiZUiQJ5H4MZqChuze979QpfssYoNhUJPJIcjMgg9Xa/pS4sVDzGIIuLgGhtwu+6Bd/SJL2CsqvScbFHlBzcevNLWyWLM/VpamMCDuPw+/2Bj+r29ylASLFqZSwQG7Uk9wu8KIiBnQlR1gis3wvo9Ci/7y13d3XpmOWzAmLAVrJ2JsELUgxrRT7weSH4XCHJPymCtWwJUMFOEdhH5GqjM6EatTcgzp0dAq3n7NcX9mcIVkPkr8c/WVU6ngasmCR4qLm9UVxvNv0E6djP6YVo9KLDwRY4ID2kxebrqhyvjo6I5bv3VwvmmgYgJwAMrEZNhCqCq2fWzfxGTC9g6OmtV9Mwgm9wVH7CU794+wl+NiaWk6BCJMjYYtJmvXbznJS5CTg/WGTbD8WMA0o0enwPW8pb1Aq4XURgZFu44SM0eW4/0LiKoqR0kwBZfowpRmfHaEPj/tX4R/cHrRvjSIdX5rBNca/RBZyKcn4ELE4HY9Zdr36d88/NRuDLM+U2+mYJC06vB8bhIcCDQ+hkC6Pl8Y+rPiFHY4RslnFvgGHWaOMrqe57z2VGRvxqRAAOO9xYXzyRyuXpwbROOU22sXAO83tYBGEDOPu3eD6u1ELVsirN0PkDriz0yuXx0wWIx4eN+tSZjbKzWOVYYeWn/zKNAtBn9ch/YUPwas9XLBEvGCkt0MyHYbgHWUn2g7PAqRlSpP+ObKYBCHvxHWEw4qvkFsTC1YTtvWfU9UOh6wondd6IZMsdheL4mALgKCcSNccMh5XxHV58AojqBZnh9J+Pg7cg0ccifQPZmtm+NTYEk6ODPUC+qUgmJK7bPYHHMaRMXQEqnf3qgdwKfnPEuvrKBgVc9fqmHV4PQFJJpNHoHhwYMSCe0NE2FSZ9jzW/QABJQqinFLEpoy+hddv7I45X8FVBitRtq7B/kGC56PZZ8ff7JAV13PWyPWekSVI+BT2ShrqbtH4P8Gof85NYONHmzVWKdXib0FB+Y7aHSgrkPFV5E4kSzl/CO8WR+i9+m0vXvx7O9y1Lg93guEY6fgLPiLFIFVo9nPKq5KWtTMXlrwkHmRQJDW8cGNtOdlG1QfG1rJAIFvwy036S0RrRkfhr4XFS8jsI8KD4vwMbClk8Kvm2AmrOM8ZbZjXoGU8Dghcwl18OtUPnnbv+O/OqOiZkRG9D+zGmqRtrrRWeBQPbqCvvx3QPTmdKTdoNwzIa6ijBzUn7EMqevIGiI0PzMUBnb8gq/fUQ7bBihQx5yB8zmHzDwEJIo0VwWkpTCNfFCVBQJHccGBu0FrjrgelPyLJ2pMw8D0HF5ODJ/fxZsmfOR1ueT8IZCcp7quKa/qa6qq4irvGZ/vXV+AUPfaLHChXXlMc3MCsw+Y9FePcOXl+ol6iQ0gdFSJ1lgh+cvqVJI/ywYnJJdNbZ5XgdXJ9QrY7UUZMmnH59h2qNEh2Wo1pE0OoZojJ6mjFin6Cqr4wdHngya0R217Bu2FDyKUihEGh1AzNr4Vh1SeBaWojcR3Ssf6bBAwS4yojBYZ8g+bCYTo0udYw+jCe9HM0uSEa/XrQMN7eMIVMtRE2OtU2tHpaNIhTHm0UwrIYTNMSl52pxwmJiQ1K50zlNCG72D3TDlOatvmOQML1LPYicd0EfQ+W/+/sV0P+k+h8Fy6FBFUKJmiqVK0Pfhb2otkHutHxbtSpkaPzhlAkohe9KW8DlKmSxkfUHy5XFFJEtXqff1tHYZRlld47LLWPU7kCu3N5O3xmb4rTc7yFTtufwGjKEc+l/aVVgUmnVNmBGwChqzefvicROb62Ih/n0XEhyteVhfayZFXy4CZfw1PKFbdseSoLRV0MuaXuNphDwB+Xf9HqCRt0G+VPK8TlBHSZn7obWnKiXFKNIxRE7lzEnhestto0CLXT8H31zJYS8z6l5FFGjpYsCwIXz8E+LMK7C8qcdvmq7T0McHBnYwNi6fF8y0uzr3D2StWeJfb20uqD/16sgn7mq/1o9exU7PT89PwGsHDkBrr+hV8560z6iDqMXt2/9Ia8OBcM26CgwHp8ZzR9A9LGLRWyZMnMddKRRvu1oKtzbWvjwe3bEK/dYrQ2Ch5FH5aW3otK1JuD/FWdBJGqOY+IPAcoZbBsrfkSFchIQV7cWTYK/85M3nyx+ynOK4CWzPXoLqz/h9DQgxQ0/n58xeBfjb8NtQ4MIvYGv+iiW8tF6qBMucMxino8BuMFp9neHeaQfxSjK/PcveX/0xYjMlLwR5eLUXNgA81Qi3DEbiBf6BWkrLBLs72xqfgxL7LUdQ2WmXe524hORpb9cf3NCkUcPeL/dyAjKQWCMkOJ0NUrFH0NM/uUZ1/w2TQiHNLnG5UooSp3wDnsAB3kdT65n5G/aLQ0/4FJB45YFweHdbJGjco/58H0XHsPNlyq00/S4moEJIBAfp1HD6kVDcn+lgf1QALZHkbybZnss1nEBoXgRGag1j9PC99iwb9rrhqdnD95t78cq9n8M4VfrrJuIzBWkxheeKQlJbdQEKZBTA4UxhEZEmZN5N0yl1TXipbxJHNemO+uf5SIfmHsFaff1x9N4cQ9mSxWJdKsVZm9W4AqSkgNgN03gulGak6LgWpyBfUdIW6M4DVZhqca8rtjpkEKKvBe2/Q3gT6fccG1795c2tvOnMAjdRLi/BTOH3cRuGHw5nH+OgZIeDkwRnoclW5trwv+68USp0j9P6h2OmTxvx2/3D99P85HdLsFsunIgdMqt5WWa6vD8DlebxLq6aMrzkkuF1tpG6tTt5PLXECxX0EE4A6WW3jnGnYYzCWo2trenj4ww0Y1kFe+HksZ9E9U0alKwLmx23Z33typ0S81QfZ4kSbWG6UNkwqVo9yKPXT8twrD+j/d74yECTVjYJaKAon4xuwGcAmWx5ZXey2f/DU2ryokS0lKKcXpEHPU/L0hEwENsBm2AKebhDrWS9ANqumCbMN075p54nr6qzt/k8nPdOiBPSZOyRiBGtChOYDpA8l0+gLE8pFyUn5OnclK4gjEkT2cB8kdBGapSCuI5+RD53Of3H6SuJyWkiIo3c7za0QXVIpg4N9hcwyoQR4C0OmEW2Wwxq+v/fS55umaqM05CSgq89nzB5oN1xeP4Mhb3r2IPd9NxvEIk5obselezGiTAcmHAl0AU6oOwVR3VZ6L26Qys7jWbaFuPB1s9HkdtzGvfXZIMJCzZI5PWLoQEepag3Zjpned0H8/8u5UBdOUVvsog6UL/928SwyrgcQd0PO0uTSCn44RJkUF2AQDSNfOynn+OBSGhjfyRRhdAaCQlMGRTj6lXrrkoeY8XP+v7aZB1OJCiOHSscMcHd1P3r5FHdCl+cu16JiJv4/miTt0mntjVY9Kap34NFcnI/5LcOChuqip+bKcct3Pld2/MthtRvUd8QCHpes6v/AfEv2j/19KQARx+egcHHKDn2QMtCS0W8xPMKg1BoOH+VbBAIBrpqjNPnoBCCOES9kj45BA8XMZ/20q0E3TmsnUqmEDwS3UwpNoxoJVneu0/yj4uU1vT+FegYm0syR/HT0Xnk+crh2oOmdJxyLz59ZC0OcBEwYVmQMVmL7PucNQPoixvhQe1FjsAAYI+scXZG3kkQ5UCiFPvBVwTP1M5OpafBNinR8H9RolhZB/ivOhPMbxh0sNbUxo7k+5c6QaTqoWEc9329Mjau8dU48SKFKF3w0rVKgKKI1pO9Cgv9QNwoZ7xa15QmX/RqNY4usLwrg7orXWEOvNPk7fDfh8vCZAPqz1nL6avtL1wfX/gApLnsFnzQRHSNry1bPPRgTQtBzwO6K3/QQ3nIv36COHdTiqO8wZnt8dv42HJixPMTFbKk6+PX9HB0TpnqitPXwUWDP3Ag4bBWFnlQfNI47LUuYlPkpbx08A2UGrUYpj0NgklZ1K79dc6u4sHcaaZl2oF2pUtnkxYyq+9vkFgynFsymGSkh1j42bexvivsz14ljjfEgCVg4X0veDRCMw+XoC/pSIfNiOR/ACA7pE1zSNG5Z0+o3cPwNj9ix6q4VWx1KkP8ECQVsAZv96rAHA/ZxRUcepnQv53PM1brlOE6qni4ekVTSEowYZpu10cqil5sqyXM2A8+xUIu3aJjgAFY3CAmY1uW0ba4IMrCm4dxh6ui2v2SLSBGLaf06ACngs2Ofm+KOxJG/XkiAkoBZIQ40PKt4WBve3NTU6mVr+PjSVm95suunF9d5y/wp//clNzUWeRZ4zKATjiHSV7PAOA+0qr6E5oKF0g/os40WPkQctttmQpRE7QY8fxcisjI6lCob2qq4/gTOhkuiUJfQe3DhmxP7qMpKzi+LVjrW4FLCov7yoFP7q6YpxjrOeCFjjr01IPHdfjHHWcm1S7zyfSKw9/kfKfgz/23MnwqdzOwJUE8YT8EsmgO6k4RN+92JZEsXaus6Jlu/5JiSbipWZtkKDTEhJTNOPopLzT91nkE6mSy41eKMl8xeZarKruNOrQNqZrhQUIhawGvA9eQ8VJyw9NmG1aAu4kq9grrcjeiigsTeBItKPw6dq5QWeNzmBJX411R3dduGzazg6YbjHhFQM1E9MA2JpqqJtcY6YJ6Ot3L/gozk9kWpc7EEvu78yaDfLjD/0jlzEi2yiLH9CFwiLJfNOKA1h9j/Qo2GhfXcZ8q4KbT4GvSPDWgaiy6Gfk1jZUPjhdI8dqxeQBMnCX4M2FjzcWwsoXVbyvpHxgah5CAJtWeh0eaS/ixSMdDdQVvh66drdN9ZOEkagimJ/nPUyoj5NZAs2rKiSl6SmmCxjgu6RSY5EoP5PQ/6qj86NHGl1bjkWBWQdZG6U5foVulFtYo4zt6E+Ju+jxIWz/YbkUAxmJOazchh+Boji/2i5Pp9iFrO2blDDMlbOt/KeoLz4fhY6XZiH8mlD3qBs15cPrEikP0kLpC2Y4tKNnekh04OmJxFhuIIDpGbl4coEE3DRBAGqsivrBKT5BFFl+nwEHJulBaFQDYB2YCkJpAx9Ylq36wGebemHbAm64bhlLKTP3oXS7yd+btgEn8kXnjBFj3u+fvhBLqJGrxuW2g+KJiYdBBqcLcc+We4dq438IFx2cF9EgM1DSjeiZelenyBcOCHBHuNzwM+Q0J9B0ra2DVIUhjxOMSrmv514MQ0VKuO8h9zoVtcxYhPm+2g8BEw/Py1I/59Oo/U++ux5Q7I84H0FqeryLCmTrA/b2TOMV6R3CcQ6B1GOP1zlThhGo0CghIXq6nJmZjiPwbeKo/Kiw+YO6ps63RXVozNuSd5DzVGLi2AQKADfTi00qtv32g+unZmndFZ0m1zQmYZ12/eAHL2iUvJzu5qmiZpsQkTzv8hZbQzryPdrkt57eLwuzMYSnXzh8lNU/bW1y9OEQ84wwXdVGcn5DG9RM/iCNL5F+cMW5YCTkUVgQC9zolca661D5tUy+EtIWumu9ifG8Q0m9AGKMS7ZeuG1iMfV/Dn2UBU8VdVfIGsslO9QSS8m7o2kdNTTYTy1Jim9RCUK2kCkNNmOWOKkacQ3PEQkju+KPPxM8Vdv+ZlslCXuMN11xtapDPrvSpcpmXrZhap5147ZVcb+05lwu+z/GoWn6CPHDOAiSlvBMtD0xbH2h4+S3RNPvfKuYc02fF9e+MV+mRzATx5OnRVtvAmjfRBS1w6watrsWTgSpXJTpw76rLYO71mIHyXDJHHNwASM+RNDuZPs3gJXco2uBOit6Vx0DWbrz8m/Ouw33GEt44MVNW1NNBLiVw6f2ZoVCH9gO/0PC/K6qI+QbAzZZQUE8Y3TZhWSAnYZKwUO13pPlhnHeVouAWOvNMRVFVv867dgTvKllPD4OjkN4neL7BFBA++26LIk62FoiOGPSLxBK8LZKRnadbhfahITu6ZFQYxcqvQZJN7F8g7VwznvjBxl0TUoW+RbS6RntpakqQBI2xcVnV1s0EemmEW4xLjrEOXCkGh4DnyRdnVjH3+euciFSCHE0Prn9r0sq3XTfjA/KmrrRLPw2SifFg4RplQl5VyzjGLB3tFi4/QpA0oSxJkI0ChxCSDlO1pIECU6BavrTMIEYGWzN88fukDX4yxYeTjWz3J4sxHf7JgBlc7lxBhqj0ZFFcO7knb47Fay+mTPTKsyjMt/LLz/hVrF3cs+JNtj8H2VfzkAKD1i4cQTZBZlhOd6vc8zkm6wax8RIjQMYr5oteCzdTp7FtXGNyFhFBB3MUyEGdfKsAO5tZNb1mk/wgZRhYE1YNySdpOUZ0RleQXmCA13DZZZ0A0KJmf54BzHUpXvNnchQoIbeoMBMSsR84nCxbg86PWe1QaUjEL4y1sBAbVD3Xiw4iu2N8pHq0fpb/ssEYKn77fa2PmWKz11At6Ihv1tgc8uL1n4oWMuD2dKnPpuR6TZAsH8BZ3Tzs/OO0TFBnN1hDNCRFBE/mQlVyJbIz+X+BU/yO+BMwFrB1nQwZEF81TO35p6nh/JsPfX7Uw5b0NrqAGitQFe6Ujl6Q3kFuCEO2vbVROXYmPjVUfBQE8plD2ZulBEaUgoQNTO+R8ucDM15qqMGHJsMqujnaiPCk9GxPSU+VgE4qBqKSpsokxs++IT/EhUXbwVzbi3tUJVFvO7sGecwd7d/yXKbxpHGdbfJFA1JwKyebjSlGQkO1v+f6Gw0csiAtJfXHnGe1bBMzhLBk2NhWspwkCfaCNdXdeU+rSRZv0CEmPFEJkimaLDxJ8tC2wxx/Cpmu5CQ6JE6iNc/NpIE3/ceAHWoV8UPIiETocNCtuBUv/e2XFDY0yUzSqHMVx53sRjej53MG3bkgOH4RpcSfITwEHgeqAUwrlm54O2o+0JpOq1NHPgrb87uHGfhWLhsplTr8ZU284Sq5cYCuIgEIpUJ4JGdRpQ7Xkps3Ibgtn+AipHNw0GPj/MMSl/3zWkbR5VMbwoHUNYlDgnUwxtfxsGUqmkIKzBcqeXXXXU+d9eMWybEzXbNp1Cmli+M4zUp78AZN0CA5rJwhxyQCJ5I+db7vev6YZ2emPcCR5OVsEOokYmK7ixwQPyyJsySeqN4UqPawNEYSzaPfKcEeG7bVAifpcmUwvxJ5bocOz26CMlzdcQkYL+A58vvbDPfJsfoY8/L0+EYuJ3YCxzWkMW12k6DH67jwvZxEu6xS2tyS/1oFFtNE9dpgBPORZn2OqSsuwroWTUF6UdJh3ATAbTnpwel4WOM0rQUW7xgdjvEcZuUA+RRAatIUQDtd27BTFuaB2AAIAZbWD2VZ3pPRGw69HXVLEYaGSZoGrU0MBGqezEg6J9RrciwKDb86ebVAwx0W6xuhFR2PLSK0wxOgFCV4+JVw8mz3ckNPzsIL82FjZGADxbCFjKspBhfyeYoYU9InDTR43Ua2fwT0FjFR2jOumn8ycD0jGDu75h1hcuKfJdpIeqYPjq9R8V/AyR34E/RnKfsHRs+DR+vMwOn5BAiqHrEgdYwckfY0goKcfDuR1//yCPXNxgL0iIUcMdZUqeNEQCssueY2pzrqk4PJsXpiO3Kx5oV4EZ4yEBX9puNjdYPTnRSoZTBjKK/q28pvwIngv523ZXftladij0Y4H7r7LWVYY7QNApvqxFjrMsCEVaQVcHi3ttOz8OJQWqTUu4MtI3sYO3pcyg9aLEH8s9dVGK4OxzFEacwTn9RRQ8231xuq0iNv+qiHgKKoGmN8pf+09OsxVQxxH51/TD+XkIxkI4J8r2Zqd/2fEILiGeJ+IuqEVrwWQ+BchJYJtbFQoQI4r3dK0YPM+Y0Kjd1Q90KiZOVkfWaZG609t+PBCPV3YspqeMjzZk9+yw3iea5g33QJtIBTBPYSvq4wjaa4MouNhW9zR9qKp0ZzPyDZ4UKNcvT8gKDOTn0d590d5nvKlg3Cv7StFt7r9Uf5lSgMbGucVjp0E/gfHsFcpPooUBWfxE+rM1/CX1TXnmDKSpb5MAn4ZssMURjMTQqfEByHiu+m8jwzrOyBq2N3+rqctiRZ7gerewgsFOrvVkJMZnv9u9KZEvSxJwcsajnteCrs7noEMUMFAHJQl9C9fK9j3Mayn4/Htslg7O9C+6OX9eNlUecLXZ28R1fCZzMdHtE4pNHm0NDCe8x3JQOK/mjFFw3d84TFgRjpmhWA3GbIkX9xZBpAJ36c3KWdRaN0zkIH3T82MuAC7mwFfPnEnMQVGbmSkZxeMo3QUPI8Y7ZE4zwKRT67Bh7enkzbUQxmhvGOW3Qahu060zQolxDasDd9iKquKovhwPQyU4JfApHstGGEm6T4VVT5LiCkrpBaPLKzFt3dyh5dZXe/FYy1odqa54d+QjrAqHeUdzl42DNgf8aU9QBD7JqtHWQQQFjpP5oapWWd0Fv4KglWciRm0aOZjzG8fv5E2kK6GKanS9DPfBtglkFteSee1ZfMAKaJlsyb0JOzV5e6zNgCbwEZL172jGtbyFgElS6aAi8twvSdqb3vPUPMXhfBJjYZQ7bQ9iPPoEVDBQOaqtiSS25vYnPipO055SQUNhPAb4kA212hI6J4G+2rrcC4D5eynX7pxq4KNCZMw9mmgqxw/t4gxWH347/V7c5ywC63tjyoRRf3hP5DIoVq1bD177Y1dFt8RBu9PVOgcwkyVr5aNdAZQ5o07xvmU92nBMGEny5BThFDtmpdplH2mK6+DyfWGedyG7sQ36q4k5a+Pf/w16h3zX6g+of12LPB9jcpNGpga0dGor5gqMBEPS7zT+Fmqix6rUcje1tybfhRM2U2D8UttDliqqUV0eUuzuUizsngFbWdgyMqqNRy4i0vPCrprBYixgliLxUO7ey3TuNo5EcZG4XQKNLLCu5cLjDWNeVnXxcqYvD0ToAnCs+ELpdk4JFi3Jag0eH17BBfvrHvETB1TxZ+o3xMqUuJrfKjP5W2AfDfcV2jbXVAdVZnIuF5WYaLEvHSa2le916RM8zCscYgz2h32KEqlSRccMxOBbMDQQbGaowJkJYXMjfWxqsFK51PqWCXIFSgWbcygSOv0Z9XGxS6ATpOm6MVxoapD67fZ0upmzlPKB+sr55t1VLGtT120PyKTZjsJ42bxH+RZ8DvBb4hhi99TCuwqPU4yAgDmXdoyQ+AA2xfFastnzuRLRhqChHZlcAdBDXTUyyqY1lamHqWY2tUk7ATvWxgd5+r+aELDsHFVtfC4AOtbweRFYaJ1J3AO6QUzOLyZRG6sN/vRPVVWVxjjH7GNJlZkZudbTzQi8do4lD6iNlNwuNbHqKG9natUq9Oybz6o02ZxUGQn89baIJ8QtCmYBO4jsreVIAXF/6SkMfPfdA/ykLffKe/e2hRG/QT1WJp+Z4jPjIeoJ/TF3mhvtWUSZ9aBaoDSdD0PvoXkuwVoaD+IDrdADLJghFlCwIi23usrHY0arFI/BDWrj2nrKWABQ5JUvppaVCrztdMBM/pePLvOchbAesHK5/YArtDHjpVJ1TPXXw0cSpApcp090m9/F+2UUp67RRznXZgXQlbpCY8orsetf1QXbUvHYrHNzQ+TJr0lYL1cbYto9qinuE6aijFWOYlTlD+IlGPwryhuND6ssVShIIwcbf7Aq8QG7V0a+lpPJ9y/2dFiCIDQEdk4iQ19kZOdNB2ebf8vap7JpVYbmIKKnrRO4DRHl2ItQ0kPCCYSSSyRf9mE9hAC6Zj3wz/F/ZBYFu4mTasv87jeZMDBNaRKB1qu/vgL1joZlSgmSWhIxYaxQ7KrH+gLtYI9I9r/CzP7+fEkj4WvjUXlQQacACp6GnOL+NU+nutcwaeM30ZLmJtzkj6QeXTxGfjX0whaTSX4g/wL4L4NaI+E1CynrtuX9FqVAGa3zVeCeOI7/XydhgKCsCoDArHTxT1P1xh+gXrLLKNEn+Rm0WFWFzojuHeiuWQMqPkT++EBHaCrNrjqm/d4kFD1Y4+Mt0UATFab6z2k6wmLNhJK/bWNykbLc9wiQvRi2aLNKyiG9r1sysV/D7BV/dd6bKM5+7nK0xwtlIg174uDVfcmtkXFTyPDd2fwr+7azHvImBCqQfMyiybns4LGFRRM8J06CkClppnj93CB+V28c1ttrvofu6hwx003ck+7Y5IioEg/cKfl8qUWhStdkuQoWiLVGmxsjBvWZ9hUCj+2gUYCS9uUwYdQV96TbCAyBpN8oqplLB35hlNSfCvdCJtQgl+/AdvQG8YNAjjnagWB1WB7Nn0LspYeh/TKUDhvscbskM6uGdJehmV90xpY+n9ZiN6RkCswQo5xSMY2E570iDzgcO9xS3NZvWPi3PDp1QOpKZUSeCmE+Igr7SNVmsJ/ZI9FEbdCXPCFjztGR8LGqfRmnADqnXyywhfLyGJZeRkEveItuh2NlXFA/JNhZKOpDHJDfaaULfgC8r3BR8CX1yGd87ApLWiIxR7xkfVWaG7s9KXJE9ACW7rq3OxxOGen351vB4ZnRuZ3w2ntXwBUJ10AeobiZtD7MekATcxfNCvRK0zblLtQC9C6mMhfTmgNFhHdTfmUzXiwvep/TLT89n8jXlGefJ6F62uuzAZttj9Qkw3SUZ3WoTuXC71GnOg1UCFEpsxs0A+wAiVESaz2IzGTNIqFlnUeHmAKwajKGNPJiSx/UIP5wcxAgvkwc2chJZMCTtBnEwoqREgQbinGtK5Gz/hwbHq9/UKgrCoi0wB5v3kw/fbZf10rH1OPH38ep1WlAywuRk/7JR41q3JCG8oUsLzrZmMCEOsXRZTl11J78sOswSckhgib5YbVwmp7f/d8UpFNv+TvkRc+6y/2HeXz2oW0PyYY0jR8RNzAyZEQvFyVk5iFsh9Cv/Oo+65W3NGMtiunddB20dUw1p4aZxq1tE/hbJ40WZI3ylKDdwfCqV9UxTAV1xg9h4x9/Ldrmxefxh/QhJ/dV473pg2hscoLJQWxOYF84zDBSpPHJD8Ydn3qm97IYjRW2p8wowJhP7yXLt7MrL5/gqy7NizmwaFasKNeAKDEjCBBm6GRerHJxgLi2V3H9EIWf2OAaw26PvVKVHcUGdxSuNNHyhbAnlnA5ZaOThGoqicH+fSO5k6MaghmEjFXZ7+JFewZjtUctyPhJKlHvCj/T4gmB0j5vkvRRmnE5neNWuoRmRnpCEKn+GrEoMVpSPxgouqZyAkSRsJtZA4CCCGijOolkpaZokhli6589D8u5uD1cS4mTAvkBY0lE1CmKienoal6Q1cCkzUMTk4wV8sq9FBPjvm6zEIuALXUuVnAxZ5tBareolrtgwSLGWlGyFxQIwc2YzogQbzOJ2o0RQIegwEdSxttaFTN2SNvFm6j2QWZ1tdmnJP3rid5Eq/CfblsWzkSs0xe+ESO0E4Tgup3esJ9z6H9Wmfu0h5W6/QuPS9VRnHlsDzSX4AnizcO/r2K3nZ7x9QAu6hYVF2ZMQzkYDZZaxf1WzIOiaHdJpV258s+JmsSXz3szBSDnvRGzfGfXSCZB3pTIdgV8O937/SjOlFeI2n2EBlhfPmbx+fQ06bqRk7ln3TASpdhoc8E9FYLYh+F+/8KXi0PSQTR/j+u0LWKhj3pEgOVMSOYLX7ym1tRXj9lKQDDkWJjrKUA52csqMODRf3Oq2sPUe3q+d2G2owtN02ZztMQWi8Zm62GiV8jfDPkdyJCbwhueqFZGovwLjCeNAgeKB5oBDuUngUCDz4Bey4yOUA1Y+j3e0XtSkHlUc5eJzXbu4SnFi4F+ZsU+zz1eBTGbtbpX5rJoRSfnQJg6lEYX5sIDCvZMFAyBD7xQ3QWlMKym5Ksp5skFmYP7OyUQxMbl0eKAqApqaCEhQhlKD6vbyp2uReUdAz/1QhOrd6mTppr1wUmKaLYttwM1Z8ypMV1k0Kej8d/scrFED+JshtgCO9oNBeTK9rau38kfAlDnV7EcRYaKxjKe0GtTAlzGP7Yuftvi93gC+ROWUtdZSVzTfljjECjpvL/JAw5aNwW3E4+zCY3zto2XAsC0rsqdITxbrHzpdo6Hr7n1bTozhCkyPD/vQy9bJDpceGtRlqZuV1PM+TgmFcDCgLda3Wb5lzWZoS6NBWPfD1V9O2deDzxQoNSU3yA7EryPUeA3+ut4e5cHf8SVS98lhAQB+SRCr+urWDU57VU7yNcnhLTvsm2eZMa7wL4XyfGO+EZ3EaRImNj7teWbD0JTmASdMEqB0OAcWOwamTJitSoRrNnGxuxWWrFl1oyCIbjXRWsZq/0It6qL4IcPMBtmBeCnDnNIV3Z/CLMrCU4HWAIXIgaK7labKcGuupEKXWs4HzpVzi6APmqKGM1+BhpgNdRnO1sRHZ0GwCfzvUNgnQwpjvEQ3zWk9HO2fO3Lpcch7Jc8d0tXKrvYHvGiGXhS4kcW1io5fTMUKrmG31m3nsGEo/WzhK6OwpmJgyix2f2EtI985u88DmVOL5VBtgEOOwJv+2ZvA2XGJvXto6yBThN5Shu/fsTdmsmGwFvmJJ8lPO0kSTgjl6MVBclIkmx1bAO9WqA/AwZJQIZRZ5Jif8MVLmpjwWLbf4hGL6kw19tGrgvc7TkEMfQfAxhOc4citzTwVQ4DNS7+Ll/METrr1CXcGcXR/wA5+F1AmwQkJ3bKihYBCj2d1IMigsP/UpKBKHIYba/tSXLy9uxFj7YCBp7BE/iWp3UF99fyHiL6LaiQbdQo21vV8xutw/SdyuV0WCRMWX8NTjic/Sqt+RH54mHls2CUZnNpfh/UhD3v1Irqkqwexz5UPuVIt6v5Nm+dM2iNgciIVa6sr9Ude8WG4o8VQaL6fFA6eMCz1il4ij02KrQQ8c/09MLjFIf356OnQyW6KkG5kZTyDKoy3gwF1VR4Q5p83pE2+JbnFmH+gW3G7hjK4+AfVQgW8IkG4s1xBYN+C2hsd/YR7ypNAj3/IjGMRNoop91CxBnctgKeBtilGjwnE64FAANK+ZeTmr+YSBDkGiS3QuySefXvcvi378hFs+cPvOd5cRr/8GAJVvXPdj9+8wLaz8GlY4dBkTJQFxBEhW0+rVe3UX981mbbqNHeyCDIvxiD0UBjw4/qc3NqJkLezJ6JNkxSxHAwgQCQBw97SjdgUAH/Lz7+KZw6yhcCCX+qWsOZYV/CHwQdwDRSY7MUdHn/bMfjoSJhMpm1IguFa2n/VHUQ6rBIE7PBogYbUPGH87zCFrHTHEXrmcaiLHrE+P7f4dk+Bzsgb61URVD37H3ReOT2md2Sp/tPqdnm5cFAljcN4qewrscC1gsXbcR6zu+alFc2snN4ldeAdpGapA79fQKk2++ZRvjlvDPBNrD1CZjwbcBzdU5TGyydolcUM8sQUpWTiwMBLI9E4XGOlJdAPbMCgoT5aWyvIe0ATPxK+u8XEHF3d/EeW70/9BzjkUHFIeLHBh5nVnomCdk0mhZM7PPp5rzXIosSwSGuiKlm9iPqM0Pd6olzxd0mMeM3bkJV113VdVJRWzo20aKMyatpYZpJcE5ZuklAsrOsrRubFsGrA8ACJX2ntcJVpzeBqXlvz8+udw8T/WhIeqK85tj688H6iskQlYFsWxhHl+VqkYt0GLI8HXcRnnxc9HuBMbjzsSI1FnymOqYxaVxWCR8SrOJLGVLSqqXOtuxtfsJCUhbxy4f3oGnB2mbereLHO6bBxfYOLrrBNmkPcnp8DO+19g6S4cKPLdQfZf1U2CRTTU33adfUiI5LVgNhgXcE7pncAZ4M2iKeoKo6cXZbG/RkIXBiBlAl4fIS1xQJg+OU/57SasHTB/KdCjGDSiwSYya3rWfQr9TxY1OXEoirTvM9/iNaaDFjQyi5I/5HD30rfvR4qYfVTgbpE4nD36tYw9n6h7alaXyjpJMwMupx99byuFiCH2G+FzzltHo4vazKFu6SBHTEBCS3rC3H1cTh0j8di9K/LvFczCKYi9Xn63iTYSzBnSacGiPD/w18URVWBFVUKVBZqzAdj41xDl9C9mNiOPKAzWOLn6s9yjnVtDlZaql31RN0rmd8JE2Asjm6PIQOzIsC+oSpJmKMfdgrhRw4sxWCj+8AJtPlZMdh4/wNoxd0CnxUOY0W+JtuscV1UZX1TvyjgACwPaJ4HBf53bCsl39bgvvIl4hV76B3DM2uSlDg56J9uAkzUYdIa4pDeiE5n+mCO54zjjB9D1RkdHP4Qn3Xo5ph85OoiCDfCyIwH+TqEZLdmf818JdaCmCVKAjpBRdRCVUiFGpwHkWJkYe0SogSbx0El9gLGF73ziDjBgz+4Ayrk1PsR/xLFY7u2SIFxMsI8/94mwBg8oN1ZF8kQJ2+xq+tbQFqqnXcffDKVnRtTb24dv5E/sM8WNLKhlHtFEBlAhhPNsR6ike5isrjjEcTe6PpYaIPa89Vgwx1+XY3OaM39CoCPdM8207ChxoSx//a0sw5fo/usyU+gFp6meHge80tyjZARR/IZ3wwSq9VECR8uGHZk9lMzd8+2ux2gvlbBm5wxkLoBot1IU/PuFnwNjvD2r63osjB9Lnvty+dX2FdQ0YGNofA6rSk3LtY8NrMNstG4ZX7yy9PCTk6JuT41aR8Kg5G+dNAZN/fvWYH/dTX9nlkqO5l4S1Zm53Z6F+CS4DECiREkvLJqUlaEtuCglcRo+ivaD4zdOCoU8QxxR13VkCGg5WZ1So8gv5jiJgPwPQTk6iK82/S5mLzoZzfXOS2Nz8qAhJb0j2EIk+6xWqACu9zWOezWoQfisAcFMfW2ov4ETsY9qwPPB3D2+925qHe49KqWf3S04FMas6144UwuPcwVdpU9uvk3OJRMeKb+yFiU7cAfTYJ0yb42vtyuBER9YMKDLGxt2w+W+9aM64iCVvyuRYyAkwOpDjQhBogRyloJQ0bgsf8+sTXWjSCQoId1REU2AeAxjriIshcNBMZAyr8Hb7ZhYKUkBSmTfbIqU+GgToo4zwNVXra5vr088D1bONEJhfUIbX8cf+jJ77MfpOnp7PqGvWWXNrDUwBFogZhP10UhD3LyZw5HJDrHfW12cnrVzT6SyaCBeImhBdOCBWuoXZhoyFuiW1rccitq4IGmNUTNxKiq4z+NAw/3blnArgYAx0YrgG8wiT4dczE70T6jW4stMdBp9Lqkb9GW/j8jfRLnutS7cvfq3z4a2AEopnJA9uH50lg9RA3qau5FSFUMj6oRGgYFBr4MiWn4Vj+9i5jiHaEEdkQLROr2ZB+5FYy8WM+0Y8EANDYynnGsg7E9IToYgIr/bWFpJSw06meuJR1nxTc8AAFkFpjRbPS+OX1p422kFo88bnziQKBHW0084ps6yzCxEa7jUC+94ae92l4BecxsfRI+8bP27fFIJO8TjxyQ3GifKjwfJ8JmiK67+FijKaFl9w3at3/sXiztmlr+yoLlE5vkRKa8pXEVQeyW6c7XMZ/hUJFjUxpFkJvM1N9Lw/dzDNTsbv4xJUymN8Kkyzl5RCkXTW4+ZhhAfUy0zCjmTWP6B1kEkTvqM15gRSlx5NptbJ3erwyOQ6zVBRb9DAYE9/3Xmmu2wGp9GGwJeW6TqMZFYm2uVmjvkW7Lxyv3r9/zIh2EjswbUoAfv6EJH5yFdKkhUgmeY/MR9FjvRWSKAnQlDHkTmJjb9DvgM95I0Akqu5VmzPapFi3b2NliEklXHMChInp8dDH8WchUsmT+28pEooNt9W3fuuDrUN9vrdOK/nKIGdDHvFs6EkQf51H2mcykfajE0KFJSriRcKEXRYs4F/B5Qehon9mV62MGDWZFmZsIe3GxYyzrvlLsf4kcABRZQYCQhwMaf+CiTpaLQxNtX21nnvRsM6oBcgXeCnUPjvGIPAGTSnBdkvoB8ScvvTpVaoMUBtEVjR5XOQb1zsxrOPSQW87mf//XK6wn4+yZA0A2tf7ZjGXrHBu4hD+XZ0kbou5Qk4elnDuPSPgOkhd+rtMWkyoCjWpq75Q8oLXlFIfg+02lL8KoXDW5o1+NCmkbxgDc0lL/GE48Zk3xI1NSnBt/jE5DCHs0zAn4Rm+CHOT4Y171nzdo8H+1vnyxd4v3ztWS9Ilv/8KlcAkRN14gAfplZI8n8ZbZQF57HFjsi3KaMl45vhyIoo9L12sKWqhA2z8F0Dj7Gxo8FCRv5V1AA9To1iW80Lg+EO1+byK6J7zRu115L8KTIEatppOAc3vjoXvRUsUP6iYIYlAtcRJjOFS/Ri0pVy5O1tRD4b0C5dIvCEp8ndu2SV/xM7IELlJ8qAHn07q3ljrb+f9W3UIIMWyCMeuo5Mr4xfrWw3/ea+nwDIIyMZztXUOAjs4ueaIDnUXc+Jib32zvQvhPXoz3sVQPGmReKuYtgyu776aVhPfsEAn7U3L5ozteNYC2E10DIikcvg3skD6yJD6bmo5+EZ4MpRm7et2OTTF8SL/amf52uwdY8RGlBqyGWP4bqDGyE71cGG+lyrhousPI6Dys1243iFAT6ZvKA3CkhiPYt4quwRto+kIuApqdFys1JfGHve6gXf0gZ2RnTnPBRkw0kK1+2Z7mapFf16kqe4P5ugv1Sg8sV8EozAPJAy8VSlTlrw4jaONkPX9tPuJ6DOY5muIaki7PKbsBYqio4WIVa5ZRzh5ibwog4RSnOgi4MZPImPYUhwxKNo8AULCU180Ar5RSJkOm0gaiPDJrCOBGnaFJiQdIhLqvORIZwinLVYTrwzm1EGaC3dTAVV6bXxuUGmqFgqcKUa72J/Kjjz24JOWO8w+boCwpL5CGfFTvEll4Vijr6Rn0zU9iHJ371JdThoJjscCiB/RdMLdF+kAETT8DoHfHO+lHJ/gxxPZo6DzPfluljTvXY/fb8eJQQu4fRpGotnAe+3/rdJ9sfcuXNe230omBDenU0lPRKKw88ekUBCFYApt+o/HAlFvU61X+OXl8t98aNjyYDHeiiEw9Ib/EJfHBsvGe7j9vskO2lI2fO4iuOaLdmyDRJOPW2C7EbxxEXwDoyzIoAcehkPU98Gd6b8cuqSYiu/aBOILZwYqbrNuog9DFlrFaO3uD6IjuIVdno6ztyfaVh5wFF1YHX4IjLsPDqe7dJ/F+6xLXM5TlwdvH2sZGr5Ybcxfexjt3LhgEWY9+LZHkNim9tDOKXEMOv5ae0gT3Rqx30gqLTLXFPn4EKyilAlmzWNX09HPHrzoB8uop7whKkmmeZDBrZvmIXYYFeOmWXaqEzEhLNLd5g8qIa9SUHg1RmZbfShz/Za9qcUUINGa5Vh2in9ObIs6z3Gjx5eOY5Bo2Fk+yS8K0jz7DnH+zqAuCyQJBqBWmdWIi1zqGviKe/suGwtR4YBPga+feFsB+tz0DkwETXjQpZV3d3gi9SzCcuXNaGAeUk1NbKPmsVI0VRY8mfWIVOYDRh55qpm6lN6ls7RalPeIklt5r601gyPS51r3oUakgHLkVrLcKhk1xzXvaVnzpXHc3GJ2wqZrrwn4jMutOpKJt1NlzmynZigKmCpEmaEfZnr7UMUfgu6g5neP4kAOoAVKG/efVg0lAnJn9TyKUE6/HJZdpVxgDtaZOmhSUQKAsNbDPztALFH5qkqEZnqBsbQi8mDTT1zAtlO34CWSyxDjLa86oadchYYlChwAtNFNvseyX+2fMlLWp139+pZX+scSMVMGYFqFgBtCfHffHQEr+k2qzd5B2xueDQ1MgoMwbJX/Uh/h6orthdQ18lVWbnnv6WQ6WuNK9Nm0cof0+wLiOL5+YBwK0A/EOFUI6GJZBeWrq9/VJoPExlT5ErW2G5e81e6NlvqGkZSaBeGJZsJPQ/ABZBCL5OW2jsulr1lu84Gyvc8g5tYyUka/NBAEtwZ3pLAAvvm4V0LVYkjXYfkGyOcZvUyVF6Vy6o+ohlrRgxVV6wMWae3KZUg3LamE19tHm+COPg/0gROWdsPULxk8a8J+1RlXYiEc1dfR1NqaX2UV3AKrH4fcB4eX/AJ7WbnnGmoO8drrgpAQPrOvBxDbc242VG8ZIDs/YRIqWzMc/EqpNg4YbAc8RCnpioPJDLaDHEKH8P2CSqNPab3In4D99fUownAKXZ2wb3QOzhQ4Boyxr2GOhshzSc5ckpv+blDGDIFcWSv/oIeVPuhbH3hteV29vDHMZqM5gAqteSNOSumunbEyMTBVHwVv3z5bTeDVvdJ3eTKbTRosho9RGZhnbHxuBcAG772iub+nrGh16C43meh2PvJhwMK/viUo5/w716jD+hmIcb5MoK71YG1xW+wRQpea2F2p/arM167uorQC2o3Je1iVAQnK/TOjtFqWPIN6440Nqm87Dh+avHqFmKI5VrtDC0AqNcrdv3Pl0AZnEXE183F9WeknjDV8NCg6eEi6IXBQ6EhdUwmWLDn6SzRthojeTzRSDT+78sXy42q4glq8y1LqFLeV4RXZ9PSZF4sH/zrhNviyWkOXjF59oym5FVTk9qWaqw7tUgWZMIe1bdzpiHDxYgKVSzvqEldAO66k+aeTS4yvQsF2yk7dLTuSKCRBGZveOmhMvMUpNaPC1SjKSg2WZN78vi6ApsR9kDNnaIm6Nu5qg+TYlz2d31ElXQLvY7mG0zcKUnSyvx9YONV6buN1+OixLlrMwhrNp2denwSKHOk5nXiGG3zo62snWz3LiTM/SXblH9YfaXd1g1bQo/xOuNNwyRoPDjbXNmVcvsbIOFfCP1fVXf4ppP0HADuVWPHVuxOf02cJ+ioF+Ci9Fy/Y0lJ8btbyg5RstJXpfY497rXCY58MaXIilR/4M7jL6BYtC3/Vtrvblv5BLPjSgfD8/IyHw/kxDFQuGIDooCS508PeWzJ0dRaRY7uqqbZJC783EVTBO+wdMsdrv4Y+HUkrQlQkkW4Txp7K42v0xTKN5Lr8tRSgSnlOEIyA1Vfj9xY85GtTx/XclY/wZvJ9CtYqLNc493yzximBrAKuO5l9OPqmc48Dhn6BUvbn78c1s/0MgUzuhA4KQGTYS2k/xvL+EMRUq4wSxD9ChmC6PSwah9YF9PJyiSmE3bygyDHNSGWrlTGY6CIyGrZekdN3ZJXdlR65E8U8kR4NeHt5W/WcxcJyUk7gwkzxBu2DE/IzAOpn5slZj5RWhgFReeVHkQyr0IKimB033N3+g2ZcvXGQ7xLnNDc0WAzWvirRnhznfccQPGTvVyt5UnjiDIOYuQjN0+06P8UGErq7jZeRxpPjJMYXDkndVFrjU30DF/Bi1Vyaou/j06TywkQoeTQ/k6yB7dg0X9eDyCpLTkqEQdblSDggXbBSZ0+CvgzTVXATku3s85Jf14WoJ6xg/cdNPf5toKXzHJFO8=
Variant 0
DifficultyLevel
581
Question
Which of the following lists the numbers in increasing order?
Worked Solution
Each number can be expressed as a fraction with a denominator of 100.
Consider the 1st option:
65% = 10065
0.7 = 10070
0.72 = 10072
43 = 4×253×25 = 10075
∴ Ascending order: 65%, 0.7, 0.72, 43
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
correctAnswer | 65%, 0.7, 0.72, $\dfrac{3}{4}$ |
Answers
Is Correct? | Answer |
✓ | 65%, 0.7, 0.72, 43 |
x | 43, 0.7, 65%, 0.72 |
x | 65%, 43, 0.7, 0.72 |
x | 43, 0.72, 0.7, 65% |