Probability, NAPX-K2-12
U2FsdGVkX1/JVs9h931cMNp2ii9KrroLDi4O+ps9jIduOX7b4Z6X+weQfymXHeZ1R8mP0NfSbV7mVvuOayaUXxl8JiZ/c48BY+Ei0zi6csBmOfAjUn3FwEhGY6NvnwjlxxvncYL8iAPm7EPRl0SUlTTS6SjREeyk5kNJlOgAzQGwA5iI0L0F9qVwPSAPwWZ/Ez+1z/ddtURkXcE0wcGiuiBvpKTEVAzYNJ5JILPCq3QWhu/QE2+pmBRcLQSKkX8/TPeFuFdYJsTdBijFL81UCK1BxWhMqY8D+wWHOQyfpthadPg1hhbUztvHhNZRr0cTP0P44KhKeCQJhpe+4CdvrId0rNQvuYPd/vDtOVG59U98N1KzDnmZZpa7/LhPPo4WOQV2sFkFTrn40dFteMbTFtnZiJ238mxuHjJVI8krLYIFgcC3J9pz8XblhqKMiz2aTaZIYtiwbpB7QkQlSOuE0ul1xuM31c7t10TRtd5+CBIJlf68Gl28BLmL3o2amTshee0Td7comM7f5UyNTCrmgTilDQbBDm4vKeDm9lhG9OY9EyNzt2KGP/V/PZCeTaVPbuXMzv9IdBkqyOrsPtP92MOqh7Kfebzmsx6NrF7qyyKF2vOfHhkcSgVjCCNT11fbflJe2XAvkVQJdE0J3jEJgKpltN9g97cMZKO7E1649385AVrlxCohDeKUNu5Y0OhElVALRrXBXlddxPiQLUob2WlDii00IN2ieABvNIHp177o43WJb3wajjHC6UvAaepHWdYG+MlGwJ/AHlHlOccY1TXSi0OVye8ZFJeXVLCRDcycIXLRvzb0JucOBp4bcoVQ/MGo8nav/skUlUyyBONQ39Xg+S20NLZga2H9z3Vy1117lx0zgDTo+wLmXXgOaQJ8iPNcFnnC1z2mW9/l5WQlHtiyGj7OBRIU5Ou1Qc54eg34A7Dqs1lMhXcxJB6jU4Npr0zdtPplZYjn66ujTMQTFkcY7uGPPGE2c08Uanm67MyN8EqqqtIvBkpNVnJ2WnN4ptovI5rXyOfGzdEU9XFktQMZxnRoQCzAkpxwslN5sug82ZQ/omuD6kQZUrSQJIbeEoyjvaH9T2CNrQgEEtMrs0qhyeXv3UdoIQPjbDTQCGhZSQv5IjEGgRYU2O4/MSDjZrpx3KGsltrNWIGsGerNOOm1+TkDPcNNHyjjtxVTvjwRC5Bdj5ygK2MvfuICA5q4YqK4B84mQ0E+NC/JnXxxwprAyfmKPtYVKlx1yTy125eTBbZCgci7/gMIGcAZGeRcR4NViBFnYZR+K9t0AoYV2+cWNA6ldXWqBV50a6IQpw8MDVZe59TFhsd701a+QvSz4TWJs8liEAw9utn6rir4lxIz5LzraNUYlExjsI5j9BNbdvnlEKP/YWoV3Fvl0yC8X4+Uaw2RMxRZtnrqIbixs55qkLdB2EIgWrldEjnPS18JezIbNpRaX+lUAveq+xGK/FWRIA/6ptx8BJNFo6gFzGy0ABEyKBleWBGDyAXHg4lUlwDlxJ5Wv+JC/Z0n+vbk5or3t4wb1HcDyC6kBJScxWenKMj12soofNh6hwWZn9BY06UIDHEHY+TcaPn72bOpCki5Z5eqqjxsoXvqk1fW6O46IdF8yUdAzxWAZPhF5eM3pACosJcaVxRCVkBe/y8GeAtS4EIwXh8pHwWwKWayjb77Q8JAxzGv49s8BfPITEdx6Y7WSGi9+MG1WVZRogp+cuLObIBVsKMRJV7LlMwYjq6nkPe/GTCp8TiRvOUQPqgKQqaM5hgH34OlZvLdHohW1kJ1IXduRU3tEWMJGCRTv8F6USoDannyIoEq7CgLlpPNhrzy163DQNOCPtVk2eRvlTR7r9VPbOIBjZHEnNIIaF6RYAzSJp5iQw3iOl0BrlZk0DQWnFtE7uRiEfeoiO6DPiU4P7EVC06msqumHhKrSHfkw0puErVYUTJ4dhrFlUmGY8e1Lf2Xnrm2xlvj1SPvD6LVCtN6EvdKRtqav3B03uKmX/loFYLB9SDDCoIYfyLVm0+A1jdnTJENifQIoaiohM08ZLogeGJOMSKQFgBBso4nbyDePERtbs6M34MCMoJVs/SwBG83owoJJPHdSHFbfTUpipA71wClgcR28RDgeo0P8FcBESuZAw5Psb+OOPsIYD/wcOd8+Vyw6hRjhY5EfiFhKB1yzB0hMLtVxtlQgvfOQjy7AoZC228ar60PjssAahlIRMC/oF4jHEm2+IIN8wqkOBCac3H2v4Osg61f/g==
Variant 0
DifficultyLevel
438
Question
Eight buttons, numbered 1 to 8, are placed in a bag.
Robin picks three buttons out of the bag without looking.
Once chosen, a button is not put back into the bag.
The first button is number 2.
Which of the following cannot happen?
Worked Solution
Once number 2 is picked, it cannot be
picked again (no replacement).
∴ The third button cannot be 2.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Eight buttons, numbered 1 to 8, are placed in a bag.
Robin picks three buttons out of the bag without looking.
Once chosen, a button is not put back into the bag.
The first button is number 2.
Which of the following cannot happen? |
workedSolution | Once number 2 is picked, it cannot be
picked again (no replacement).
$\therefore$ The third button cannot be 2. |
correctAnswer | |
Answers
Is Correct? | Answer |
x | The second button is even. |
✓ | |
x | The second button is odd. |
x | |
U2FsdGVkX18CcGzcdA1hw0hKaII7+eaLWENSlt/5n46tAENGPgooQJKw40MR7WWt07nZXZ0Dn3x04hYuCBUArfwaSHoitMk0st1Ig06dScoAvE5PYmY3lspvuRO5XArCbs+GGeZrv1Ki66gfZO1QhfhM5jUdvoibimm3XmG/O0HXOFb77cDFUtIkaGjsXjftHeu72OrrkMWVkbfvKi0xX+F74g4a7OSeQI4obrzwJgW5kJU6t4eySGTzbyrUxUijucEprXjvaw4hTsNJzJOSLEshSCDwj9HUfL+dIEFLrUfpC4x8+CqHoAdtlYi5Z9+feHImFcMzSCSqJRhMHfcLHIQoFnNLxF+QtzCMbQv3yuZpt89Pb8rxwkQd2SGYevgEaHCoBQxlTmxxaLb/uyUC8P/TBhCjWyKfgGn7V0CjCVCx6csDOYpaCl2BGgPO8zOc1CWO71nuGyKk4ny9IfnoLCopNAvEcjLVJqC45j3uTDN8CZFDk2StOTkAADgvt5DQlBvKsbNcv4NiRo4D8VdoaYcqxSsRV55w93gZyWuMA8g2jeiaLCGf+L1VQ9cX0Z2qzvqKrcYJ4PgD9CoZXY4wKERHB9evhyjIMnlw6KUiCShiUHy35qzqAoWSJyYYW8tUuEimBkDeys3ScB1dlmxLXFqL9XlYFj7QTnXJ78YkC1ivCL8hFJRRKXnr0IIId0j73ex/XVaxl5KgETNm7KYIb4X5inJeA96GTCMQdVItbEGIhIuwVS4tpDnZwcjgtOi64CDR1QyljplbtVKThPWpbFWUbdYb8ZtQciE4u0QY/q0sYhuAMASmHLxSfWEfwXhIziBgzcNjhHXIawdfhGJ4/SV7uFbvBRD3daCqzdQXjAoRdBP2Hs+Mh1rxbOGjVx0xvTvxf2vieEwoAICC1r5xJsTH/tx2WlOfRSKCO+7Vlc2eu1FWf+AZ1E/RrSndyb+hPkuUfSii1mbSRGKroXIOxwDYDS43QtT2RUYE1LeA+5Mbhnr7M55ytAJkb/6ViLOVqx663CAO/s8BFBko+HiMN4C7PX4X1uS39SCVuVU6gnohe6XyydCsHcSbQ/Q1C0t1NMhokTByQ6xbSNt+NmG2FzZUlq1pky0ZD7nGwyy0W5Q4DuJb/7IPuuUGNsGdpGVjKTw0zs3nodfSBVp8BPPI7CQ8YJSWjJzr6tMUsvNvES240La8J/+uMH7FDJ4Q8clMEkp+A3mVP2VwblU+TgAkVa+kjOpyPJcVnfH1U8wG2+7dwif3zlM80QS4PLxKZiItN7av8XzAbS+6azTHlxi6u6vc1DIftvOAwX7l+7ujM5sDfrL1Q4Ls4P2y3r3ED3iumUXjTDBI9jEEwXrhYXcVp8cfo1vG+34oRTmAwgTgf10EleChm1NmhAWMnl6HFLiAURAFQzfzzFn1gM0UOe+2P5oleOCOAgf9BFNBXVpmidh2FetBuAOmBRGLlhC9h20LT1rGCPe4Ia75mLGCkSIQcYM9ecRNINNR8fqzXx//PakRJObr+Z2Cl1u88E+dyYWxzOawTpzosCbMJ7NwFyUcms0bzp3WEWI9GWSLNl6buHgUKCclT+/NhzLzjRoOJcfYKaKX+BoCgrEWhI6xR0C7FVnPv24IdqZ+z94GQRotbQ6lmFWU36W+rKWdWs4Fysd2ZHzc3aSroqBtZEXKGg1GpqBSvqFVcZE/lecDIwjKxFgIghpvOhWOHTrbYq6SpR1Lfv7CiNG1e7tRhS04hvJXJLp9D1GqrwA+CGyrpsbe222Lo0g1QEVjE9NEbIWviVHYXuHDiSziGntb9xZddPbpJveUrkX6wpN/fXw/tW3srq5v8s4sXD5njUThZ8hxrDpYNCx+eUGK6It2wOlUpHUpo2yNkdsguK4G7CIZbRRhJvqd7MlIT1NkR+0RjlOBQKhFCNlgP13gVDDXjWlXMpbNd/32WbqbVii4VhLy6YeZHRNDWh6ueMlgUwyDFsi7jZCZCvMIktGapjMNZUMDDBsPVqJBFtVGxaOAPiyS1qkxQYqZHfUemFGf1exbwwX+xPPbqwVrGagQ+VlSgIRXQuo+usqm6oHLyi/Nrj5lokHn24jxD1Owhc11gLq6bWQzu3m426vlj0aHLuDfCnyEUdzuymzG1dsKfJIR8H5mWx54+MvahcJNOUDJYI+HGVgDJR36XgJ8INmo71PJzDCSrxnTy3RfhSxrjpTDGm7oI67BwR9AOnRz5JQgxTSZvNbhkmJg04kXH16OtYny1nckY30t4fnsXUKsBCj8MTufms+S6GAIh8rMDWDsgrMDqGyb+ZnR+fdxgXUo5LqEN2u6323LfSdze6ca+uJjE0stUcsP8sRGvUAXXmpdbQS1DE2O2R9n6eLy/Vi7GzzfOh5m3+C1KOJ80SmIfUHJQ5t7GtTUKiln9+xrrmi5q6aUrHvo+Qlmjw07LiLDMtUSU0yuBuCMsGaiWcnVhL4e3cJIkAFqD2L6nQakvAJEbdvFJVdl8F09uUKn2eS2PEcRKQryb+TFm0i48BIZwM01TIUPtI3x2FQ8zFX6kavKGsBiNCxGXzsMLdSRICCm+gevGodA2Ya8G9qbd/2Q6NNb0BsODibcDuD+fTrRp00uJVexwyto7SG0OceraJjQAw4vlyEIdBBILdISd7+liTr8HGSCBO4InxIxp3h3KX+S0QYxhIz7g7ighugxZnLeWAAObwc0HkMxGu1288QeNFbbB3t+xqhCKZhr9MvJuSNNPJbz4JYz+QjiFowEcdYPVBSfGBM4N+EALAjdy/oWde2J9Zz3MfaJxQ8O9cO2pky6FYCrc0430LFoEZKitnosC23wbQc1E+WNBfHRKmzSTL6F1Rk0bCnCy0rYhBDR84ZR4iovihj6UNyq3ytsD9OrAo3vPEY5oQYfu9xuK3Go1f0LoYQuG1aw4kxcwUBtgRYUCV414rnN0O2C1U/WSUK7p+MlxHKitUWbSMH5PoopVbv3/q3OFWqN7IMkjzLZQuDbQdFa9PKrRzOL
Variant 1
DifficultyLevel
441
Question
Six buttons, numbered 1 to 6, are placed in a bag.
Barney picks four buttons out of the bag without looking.
Once chosen, a button is not put back into the bag.
The first three buttons Barney chose, in order, are 5, 1 and 3.
Which of the following cannot happen?
Worked Solution
Once numbers 5, 3 and 1 are picked, they cannot be
picked again (no replacement).
∴ The 4th button chosen cannot be odd → only even numbers left.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Six buttons, numbered 1 to 6, are placed in a bag.
Barney picks four buttons out of the bag without looking.
Once chosen, a button is not put back into the bag.
The first three buttons Barney chose, in order, are 5, 1 and 3.
Which of the following cannot happen? |
workedSolution | Once numbers 5, 3 and 1 are picked, they cannot be
picked again (no replacement).
$\therefore$ The 4th button chosen cannot be odd $\rightarrow$ only even numbers left. |
correctAnswer | The 4th button chosen is odd. |
Answers
Is Correct? | Answer |
x | The 4th button chosen is even. |
x | The 4th button chosen is 6. |
x | The 4th button chosen is 2. |
✓ | The 4th button chosen is odd. |
U2FsdGVkX1/vcaYtANRkdxdLbfGJr2SDQ5B785NLrVeFOvT7OentM7AVkyXjfLdZlAgYDNlF3Yl+QG5K0Lw8uEkccvg5ehzzSxZnVihuc17lcEwB3N1rMxCbyVbQqLdWDIlDEQy6NG0+Ptg2/T8nhK0GogAUySIrbCf0jHuxQ8I6nIITi8UDpBWheZeKO8YmL9+1fMForXrJVBW+QfZkogUNTn8r/RFk4nSqdOxLnKBh3dO2ao+pub0Tgc9L6e8PxrX6s1PZJAh4YNF9kEGQ9rJyTBG68+RG5I1pHH5Qe3OHMC6QdlnuWW+XWqr2KdxatYxjehizMJc2W4FrwPHSXNW3S/4AjO5xExoOwJ0zhMAu49qcKa3+cRi2Xr5pzCWdlpiNROCzgKGFG/yx1kcVWKDu/enOLriq3Tw1tKDElf9JD6Maa/cGhMnyC18whzYWNHYEIvOoHKtHBsnYUb29rkfPxKvXNMebpcscoKZoofUpQ1spqh2jiXgtC1ZLZg/cWkF40SXkgUaTaHAhIHWkoARcpvklB+o6EX8nPTqfIMNPNEXcQ/CoQ4ipsjNFSoCM5cfaM9hAnd0vE1BdVXI2r3Pad7RV3QlYr2hiNuycrjYgyEz1zvSn3Uoia7zftFlhmSxiWPsrqsdtRis5/cPuDmlLjfRLvfhkyrIpSlboKzAr8PqIx2+DI14Aq8NKtokFkrbkYwTI3o3hEZroYRMlaFUBxPub6j9hKTMm27K+0kvsND5d2mPWD/xuzziee196wb4EL6UarG/LoiHKFhO81wYtoUUVLw/0G0AFGVrwvvHYbA5TR7UOZyH9ArwaoNP0UPWDzl7RNEFy8BX7lXgYIpzCfi+OqZfeVM4z/WhyPTdxo3dEmsd1xgt5yDbjY0RltZFYGzGORxI+kLMiG0tk4K83k6fpDryzXQEe+MUF9SxyeOVQJHAyaljiIRpe4CXq41WJNJWiB+MvkIASerSooeyMT0IDsGbrkaFPZCLaPz5nvOqzxZZL/3NhLEe9piWXHWk707IKVFaCduBoO7uf+SwVlQ3ogeEtae1N9Sh+1PnQJdyS0k32p8tcFdhselxqCX34GGwdoK+13Zuc3O45Qi0Q4SF++CimrMv2e6OsziXfOJEah9QeRr6FIoL+neNzeb8ToGF6PG/u5cj7YvTm1x66FCDCrVmhN+ErysHXCz7XMpA94UfS5aQwUz5vA4qvb+/6+8d0FuVRHHt+tEXHepfOuvcJRAGJsUSpb3/oRHcKQ0DN+qSEGNktiacmt0IJpZUKjJx1gx07tElT6rcZUKGqz6zFNHtAIozmSCtdyKHNI9wZtOQhe0tqA5j1t6MreRMZPGMT5lw0iGvNLOz/YTNAYbiX3bfwEr4VdtEdq6Mu/gOG8Y9r++tw7UQ6EbZuRiPfjut3XJmNsueO4K78RVDGg8ENW2h97R/OdAEFcOFawykaJm+yFcSMrnWVg4Qj03NJma4EBe2nhdY8Zat/uStvHbreiE9QFaPZhTkQk2VzvcDkw4AoSZ/E07Iknyjh2F1hGeQGcOwoxyS8EbuiU3NX7FwXfpmQOW6pOj3KNMFcsHKdyb380tW2v8flcfqaEjw66Djb8KlmTQ/5gCSodBhBZOj8KZnjVLkZfJT9YTKVxy55DZ0sd+30KwQvqOqx6akn2VqkBj+kvlfEn9s6PJ1c6ZexpQwbI/2Tkg/RaySPALRUN4AIp9bgih6oj0pYJRO88XsaR06lekEnsSkqxE7UVWy7LVW0zE8PpkvpLbxziBXpDXjY5IA32F1CKD2sjwDckZXtZMkwru/CE8QAZNTk9YDnyXp7yveVsfQcfQxo40WfPSfL2LLYzaTnH2k7zZzMhlao96g0NUul61+RQCGRyKQ6imUVJ8zQcb2iTeCCwhoqZMTekiOUHa7fTt9xwtz0WDHCCvQXLTIavlH30JcxdQIxPzqB2C/XUyE+Fv1lnd38P1OE9/3heyVofxn6Zk7FnTIYj73e75h812RWSAE+V81qhpE5BbaW40B1W+H8eb2H+7dSLAwTgx4G/SSiYNPVU2b5rveoFIfTXsrpIW4wAseH1TiRqgBLdAoLeqFmz/L4Gglhn/jbVIlvBQjWuE3pKvJVTlBdguS9x2YOwVl0RweOo9tX34rsIx8B6ECG9/Gi5FxVRnpwZoRzTZ2ueVNhYBvKFyKJsi7aKpliZFZxoac1FWlRwb0HCqHSEWdRNr7+B23Ky7VbVxeYLalh/uerTMzzg5NLg1MDjpETI+fEeuvFrecCcGivcsO14c9SCYJ+4+UlhSaESdfi4xuO9iHTlANEhTz3c/krOaR6vUovHHnxaUHakmiXm3qcfT4rV4Ph81J8jcryvD6ErjXbJHKClORunFo3OWBoa6796612l32a43DEowUF425zH3NlY1M0TJEMc5ZyOKNr+Hin3aDRp0LW25Ep6FBOaIFXP0hF7aOmvJwzhq8ivSAQvmmVFD+aMXHz4xKTgW+97J0U9YaonjmEy1//riucMhA4MO1ivZFlOeYvmvI7cd7NhP0DKhhRzyTqcMfa8qYRET1edMGFnFFWjwjWKvfCDV4DwVaPpJGRQpwwDEBfBRhboEXVodxPX6/oxHccumPhXm0Bw1bdfcMo1lY/kt9fcVeEU60sOfO9iq/1dFd07IKcEm+IQMDjLW1bS7K9Mr9UZRJGR7JfnSxQEE3wxdNtLBykNHsHSrEQ3Uzku6aFD8k6h/MBayDBODBaXJfTxrGeHy+ZN9juIWXdo5VV6uBfXyr2VILQSnSi6Sp2tZ5VcLoWTZ7CYBefmXlsIVikfEKI7Msfi+ULe5pxNQNYHT0SNWqFhuTFN0iuBrMdhV5YehRx0XHjQ4Z6WGNv3daEJnEq39kLC0VZK6aIUG9LlZnWESlsL2JNNcXkP3fWXkfJRaEwviGNNqr5OUrOplITvl0u6M/xSGEsdo/bTKN4ABTUhDQaCfbfydGOdeh012ylocwsPwE=
Variant 2
DifficultyLevel
439
Question
Seven buttons, numbered 1 to 7, are placed in a bag.
Zac picks four buttons out of the bag without looking.
Once chosen, a button is not put back into the bag.
The first two buttons Zac chose are 6 and 2.
Which of the following cannot happen?
Worked Solution
Once numbers 6 and 2 are picked, they cannot be
picked again (no replacement).
∴ The 3rd and 4th picks cannot both be even → only one even number is left.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Seven buttons, numbered 1 to 7, are placed in a bag.
Zac picks four buttons out of the bag without looking.
Once chosen, a button is not put back into the bag.
The first two buttons Zac chose are 6 and 2.
Which of the following cannot happen? |
workedSolution | Once numbers 6 and 2 are picked, they cannot be
picked again (no replacement).
$\therefore$ The 3rd and 4th picks cannot both be even $\rightarrow$ only one even number is left. |
correctAnswer | The 3rd and 4th pick can both be even. |
Answers
Is Correct? | Answer |
x | |
✓ | The 3rd and 4th pick can both be even. |
x | |
x | |