20126
Question
Murray has 36 red plums and 18 purple plums.
What fraction of the plums are red?
Worked Solution
|
|
Fraction of red plums |
= total plumsred plums |
|
= 36+1836 |
|
= 5436 |
|
= {{{correctAnswer}}} |
U2FsdGVkX1+3vym7vXkbq24YVVInAsN3964cV3dm1un7keavdiJNb77jeXGBKOa5ilvpAtrWihGp2Xb8fLUR9mJ6go3Wzr85Joe94iWAQGWdF1VbLhthV9KPhoIlEtbKw1U2ofeiw/mFy5DgOlRtDgxO5P9RSbLJyC1+5pqlpPBsJ9ZpV/NrabjOzE8pGaAgMj2SXQhYfbv7D8GJqpj2DDtWqXKfIS3b+aNjJ2KFS8S93fM7qL/v1BbKWkkV5eqwjLyUTV5sOzEKzjd1TCmQFR7oLn5bROlwvoO5nuwjPH5EGIWXVpG+GqIDGcGxlnfDnPeNf0+Ir0NTr99kFZWfuPk3/iHgSGe0lTNk/MKtYG9mIi/tvBaG2Ve9+bLBJGmzsSSrz5S3anwuRPQcvDmikTLQBZMpHEkXVWUQ978F36XP17y8lPaNBw1R+8KZ9KYAgoOpEbK2cZoLOs4OwRpoixFAuWwbVSMe61xz4mZzffJw0r1TlP10CKAJs167aUCApaTuEbkZruLIWampHGiOJnpzJQtchcJ0rMk7JIV3S22X+Sp2V5fXW1TfKgr6dYPTTqXAuliAwGD6NdHa0F8z8Y+n9qNCiMwKINGcsidoOhTlUzNXzhEw+Mwt4SOdkfVKu0+8esE5qHFWa2053guYWSkOlxj0cr3Bk3keJqu8E4boe/TMf2X+56FlqkVYUE8BD6u5byPWX7lM3vOEoBI9VunhCOCs4L6c+yij7A1Z/ed0jaYOLzowi6JYeM0pazi6zC5CQ4oCHJe32fmqJQSWQ1fJRcgN1U+mqJ8Uvp6Qd/JzIScgdMHDUQu3XJKAOqfYpOTDrWFTejTWSfBCLMzQQp8dLfiEB6+vmGQM+us0rwp9PiltCJcuiGnjOmj0TEJZDkQ4T6Q29WjxA/OvDiajYF1GoorZfhIe/m3aepBZjqaWZrvlLXE3IW2P8eQ8h+NzMwwzZM3q+MpBt8rVDGCSxz8+g9GFjTFW2kmtPuzKqCW83KuutJpNq2zGDSaozzMNHWWEReYjIACD9p/nzz1NyxuNE5ALi/uRr2t+g+WE8hBb8JEaCwr4LWowJOfgCUz6ooNQqqknmMTRFuTYYJ2dCg7KTpQ3LyLG4UqrFJ8XytmC2sZFNdfX58EHohgO7Ycv80lL9t/Mz195GV3qbpd9WwvVnyxISTWEBZ71Z3qMnL1y7DGQIjE+YaBvnRP3QrMNjTUTdbkxDIBte0/KAOYeIUEmnX/KRDZs4oQNjKxPIrVxX58EmdsTbsBfnnfJ16CxGTenH2RQuh7s94lD4nzXbpaEMYVMRSe15vpp4FT7D+0BMFWHJNs+Vx325bFaPFAOlX30x/gijBCWnWK642K4FUdYDb+oI/3VT8QWJRr4L++K9/m2F8xuLS95+4jFXoHUM8Q3C7jVjV7zp48Ekzi5GuFby3++LZA6z94dHPUaMu1xxekRt1ed1/93vEizhe4Yxy1mAs0ZP722gwKplw+F5NNAxBsg5L139QwAFsr8QBVysCEBzTdutYBNpTdOpNdV+50y+JfFH4DAoy7GuF8Z86q7wFmZguy0WpohDBW1/JGSNEQBOGB24LrRiObYIZFXbrvgbG3SPBBj5eD5UPkrpa0tRk0RJeSQbQnNIdiEKBDc216CpqS5xn6KsfacPOqZtz+MxDRTKQO11rLcgcQXJyxFX5txdRyHl/Y5bx12eeKksvLYxn7+TCpOfahK2f9LT549PvIyjJEk7rl8pR1Cs0QLonGzUPEA+c35rTvWzu34RI+Y15amM4CTeagdckbzq/fxFRK+tQxrmDCs7TGtU5wkpFyZaVKXuW1rTISlTiIhfeHc0g+629NQXsoMHATcl1Aylv4vEAC60cvOIkmFz88foSoXWJnjA5kW7BGyt97gofaisvvuJP0ei7nCS5AMZpHpCWXwPjx+Es9jWTdHdw1OmGFvEowsHCghItHNT9t9sVdEqCvhLTrKdc1XvRGlLrVh8qKlJN+K6Q/lfFVZQYmxMTZcQ6grgGGcYY1JLyvtijH6G763U5l9gPmmRozbId8jWHsFjhlL+eDGP9eToJOAhzvnj3j+l7a4x8ZTK2YAoJ/va/q/o2YNLNTpTFg1Mu1lGA+XeoOfNrSAnMQhnBdIeOaAMU+3FGiJSJXxHwKuAfKv+igxpC9SqQtQbRKbejLzja2YTdh3r+CqMMugeqCL9qB9zvvA2kyDriIywPSmCdiOrVta60hTzFNXNupi6kpxeXbv/TnC1D2Tl5g7hcBUS5XuRZ7NEjCkeXil61nOpFkKfm5w+bdev3KmvFIUeBFriLautxJVC0xc1t1q7AFy5PDiTElARhT9QZtakvs2hry/o+BTz5RvlG/WBEZOSb5dvxsg7uCQbKt3SXvBQqFqhcisZ8FBDjaK5eVqk/QjtB8aS5XE/p4xtnYtVQQIpQClvLw813yo/T/akmzzRzLq6NOo84SqzTUb1gb1tORRGlUDC5JThx7A/nrrPmFnFf4ZPPDUAIGjVFVHkk90mZBTgV6bwuYaiQuV5ptJ0SUpIgqmxwEhiRO0g+F7ei58/GYGowE1KmdNvZFOWbOtUgCxtC9K+G2X1T1y8RcNwCOImk3cfkrU7XVaJBhmnUgd8YEvXOqx2TvCbYPtuHc0ybMe84uNnwVPAK6VRKegeE6434EfsmTNEPw6XwT26aF9oEVU5PX4MrQtrkwVEU6byz0UFUneLGgofsufZtJ/LSbmXyaK3C+ARJuwYYPUQKaRG3InEQTuDQhsAxkVQLy0WTVwZNSVaEA/4QF/J/NWaocNYvK5xmy98PqnzLkaxvKfiipJ/5FkWgxHSho3kGYj92D2RoiP7Wdn3S1pjtWeqcfhKSzTdM2zOjXgfTNO1SeRgE1uL/fuRZOArCqJWI5gvw/ZyTQE5KIxQ0V5jsst34AdlzGzoL431Z0tFRE8WnVPHrl6bezKkeVPIjae/pez7JtMgql6bsYXpqlolxOZs7U2YEhCVXDnju9PRqNXrC2pX1f1VrV/VEsEFRTpxvztKBC3GUpbYl89FKxfV64dSrhjW3O3C/+BY0YVmN7k00Wqy20sxYXHzRHZZPcxEfpNgifEXVyfY7B09joNooufwK/SvKwK5aGlxfowOMBxyV4IXw33q7/RKU3EfqcszRD97xF3EP71iR/jXnlJ+mJQ4zXSwNEz3i9IVifb2giN+h8gV3WjRJSBoR3FvVaTw9RyGc7fNH3LOdeKpCl+VMF/jmQRF02OUj760bQiBEnZSBCd+Ly7PRFUwNvJx0TbMd01gEs9CSAvBCOr9GXkXH/DPYLgK7jPQxLn4ZOVP+FaStdct5yG/2+4tnVscD1tHoT9D9gcY5Ykint7nN7QA/H3t7e81bOKoyoMzHe7cm0GO2rk9yB4pcVKkMyIHxqQENGNk1zYZXCx9qdhdYwMTSplujpI+47xJz+F9ee0RXom+ZgIn8jmhoMSC4xqH+YyhHEWE61U7v4f+SeHIRSyMEH4yE1+RLyanbELL5cYTWJ9I7NEMnUEW9XtNigGu9LZVonqysUtyCJ5DF5cx93MWA2+GZ8QASHll2v1nYHE7j497bid1EhfGwvRkRoVGDrpQkxRfdv4VYT/vth7lg4u3p8Y3A+kAa8io3+1IcizYXgD7SIwWjzDf23cB7F1xxaHVunb48Ycqs4EguuwVCkgVPlr4ZbKqLCQEcAwbNzJ/+fpiD4tYAszFnEuLs+K9FCMADsp4OL/jqFbCzzJUXlpViHfFPGwb9EiYe4qZmj9CTKNucZS/qQNAZnYSMXlpyLsGWP6SPd40axIjREZTS5PMIupViVm7FULn/ZLJvtZclDwuhpHPM+Mfdw8YtbwaAB9yYhRBHKBx3uRztUzm81WXyGvmQmF4mNvrLm0L4Aap65jqjfC/wDiQXFfOF32ckO4PLx7Is5taOx9R9C9bD8xLBO0ERvRJl3rMTGQJgey2Wg4olQPgRcDC9p4JrN6StF5/jFtOZxRIzx+TDBB8l3CfwsICwHW3CdK+bXD3vV35ncaA70qYsq1WfWXO6mCcP5V7dSchUnfKb6UcInGLFeaIE5JLPhIqrTB21hsWGRtrnPtD/s2DdgdxZ3dAfbPCM4ggl1/HcBIQQVdX/3NfGdU1nxG1hD5fR1AShc15dLfnnFMm6wDioMg5VaBzi0CoqKcTVZtscUKy246bZCVqyxcKaWBucHKszBpm7ELgDo4Sa0hyGhv9CAx3e9zqxAocq3kXBm3ihV2ffsifqc0NnQgVYKLjZiCo3IPHqy6mh/WTbQp6Dxf2I5kMvc4OEPSdDM1V44Gdl0gaSZAas57fTVW2O8VGon/uTpM3qCgvHyD5abuKQZYMASl+H1PKaEVywqKY/TKyL5m/tHtz+I5qwUM3gMrb41A8dajVtwq3eXQT/zSlnSop2QIUSAptBSHl1rMBm87qbF/6GpnaFcRbMYtZuf3MUjbXU+42HHI89VAJHf/Coz0FAOXqR3uGCzX8dBtt8Pm7Uzk6DM2UzJGACKQDmkfJewcupCM7oL/Zt+4fAsBdcqh5PRRVAZwU7CipMgFwYZdQ7hxkFIwBmp/w9/CoMiDl6EZU2e1EhAhQtRTIE5dPCqSkK/cSwbSQMOL1OmT6e8mW4GJ00CK/C7Vqkyy6Nb+h+9vAl0cnmrMUi05WKlC891ploFCsrdVpmiZeiD4iF7DuFZUB+uwJIWec18dmvhxzYRdcRPHrPNjAHiN9psUQ1RivJb0VC1Fy9s6eVF2yUiwFDnP1VY/SAR9AGww8tZCrM9FFOuFPQeCskVTgmMEBKdH66IPtunfQ+snga5dB/9XP1eZAyzkPn+M2n6HArTqpzL7eAVBhYrkAR/CuY0sEn9SUOVgCeDW4+/0+ltzQkQ2HNPqHrVG4UX8eZRbjpnE14Tz894vaIpLu6Q18FS8u2EmuK+bz2uGGnGrt7VHH5XBaoHITIj8+roSOix+pMCc3NgV/yvg4kOHAoBjl3kVBuWCF6aU+wytvgWmOoeETK9vqGnWWQzwriAW6gsVwPS8NS5/mNcI7gHA61ycuTFhfKgwWJV055kn1zYXpb22ER1HXfaHPNQK4aJ46zi6nDrG2JQy7+jLGAefRzLXxyPKuA9tsJwzXHO5RV/C171iaQOUmcNYaKi2egWiaMEadrt5w0fD/2LM85h+DhPotuEmKuUeSx63alsuDJwV98MsAsXkRR+UToDTV9N05quw1avB9dlZA0qOOFc+E3azpeyRW9rS+qbXqvSSg0MUrHAuuMnWTQYhT1NuQ7RFBi8VxTw5YTeoOPereOgmBY2gE+xNmqgjwM+NmX/+WuvmY2hyICnrhoRo2Si/58ZGAbZjGVr6lUhh0jdOoVq8ULWEkF/l3228M+I01v1BIVnOvxEaR2bZi6Hu3eXz+Dvhw4c4jHCDmhI5EkkDD4LQDIH349Js0W06X9w9KZO5DLrub3/UdsFaVAO4F0FCmSGdTzmbdOj2OUFsh8ZlDFg7E5vV84aajaE0y/qTcqBLjprkoxexrZ2BM8YPDy5SlCdtWK/5VcR0l+stUzOSXLN9+JXNCDsKPcpyKG8NWZzHJuBK5hErj//ein4K+s0S89px8Ktw1Pt2aO3w+3bfpEuw1XpSYkwu0H0fwxEDvcE1WprzzbH3TJ1/xfSjVPUD8Vr1uo8B8WA8z/uha0p3ka72OXsXWbyfhqMVO7bkfYVw5WPawMkKO3JwaVNQSCxAoCi+aZqJ1tLetu+A1ivPS26YkaeysFaBuBYFkptSMjmlDV4ObGPBObM04sU+VXEQk5KIMPTl5spyUrQ+EkFKqR0ztRIkmTwu6HZpK4oylg6jDJx1If7D9c6sA2THRepjdUZT892J3IOy6D9Qyh/hKU+88Z/FZJhK6V01ygi3H0RdSEmO5C5rl28/Y118B7f+qKcXQ2qtTth3pbEo2DloznZ78exZqbtgde86D6Frjs4tcBzRI3Gx3PhCHTLRutiodWEOEpWMTVvrertNuD4kBT4bDptCPPffzCugWsXaxH7/rsHM5luV3+6wbq2oPD8fqbmJ7bf3kTSk2LSsCdT9FWrrW/8W3ru+PLqJql/3RkCBJi+13OC90z1xxVemH5qOiGXrihDNmXaRxEH7rCdSqYE1s/2kJDVEy14iFSXKs2FO0qekLN2J5tv1CxpSRamvEFSjJX3ErsIwHV35ONxqYrz2hXVv2XyXVKa4vpVsacipzE+pi2oclalshEPmYb7GXa/LQD4uYQ56m3gFsyxeUEEyROtFG7ryZ827zfKwVtDTiETwshkAyvefQCVIGwqitufXzDDNl58cfo6+7ogHwmNPfAeLE7rXiHvfaHk4OFl3T20rekT8R9F6eNr0tP++4Ro/06rVUZyFG0J5WGO+4bmFqyiLq2iJSyVD69IKcPTwd4wznFBraPf4x7S4S7F3ZMSzW3iBJ5Q3TApTNfJYwuqKP2D2pYpO1ELBnPxJTBffqIGCQrJw91w/k37oFwAy5nxXVugnmAu9h+9N4v+D8U1wUbpySOnCl6w1YFwJZDbamaWsHZROlSVrFK8AQPWCQPlrEENr8J9Sk0P5Mmv0Hv856f8KZZqy2ix+EseNgFhwC0DVb52n6+KdzsJ/OSrGuhDef/DvIaarDf0S99nqlU4fCphkHnCDB9LFL2qLIm8CFqVEuosGqcLFPgqiGqPs1BMqZJRDIUTBgFDdps1emPtEaBOfahbvp1XsfG5dslpkslMCxt+KbNEE64KJZ5jPfKIwjcbc9ysX/QffORjrsL8UZsdaUhqhKo/iBIXIz+P1KO5ibR3jRBxe+BYBea1SVvgpv5YKBmQSvYrf3Gr7Q/bNKe02HLbfRUCwNUwfi2yN1szuziUVX5e4oxTJXrlbs9Jr2EksUTIEhflYhUBL0eGYyvNGjJ2qRksvn4TLmBoQbfpswQfrnxYCT1YoTrlYpH8H/vbj0IduUR9CekOWQ8fFpLFOUD/AQzk61ZQGpcm6N/j+T451aP/0qEj3/YTwAHiRk8VfbpuLoOPCeXGjiAB68hK+LC6gNQq38QsbEjC9J+sI5H7i5kripICr3W/glUCdX01JGiuuVXdkkjpB61ATxkhQjp+zy9w2uMUMD0B462S7XJUpNA6WuVqxvGDm8Cc3n6sr26EYrzUcLjtM4wLEMa+XG3+wgTsM+2RJ9bJtePzJBtfp65Dx5Mcq/E68UBPXOaEcI9FdhDSjFaBYrCqazK6+K/+3AmdTjhotnx/z4xogsdU5D9a6EwQADmYH0rKqMOUgFA6N2ajlZvKhsc7sQtzqH9wyrkaAp1ku4HHZArHT7B6ATbaxqw+keqv9Mk7O+YNFSqIzdP98ymHzJpeiU0Au3aySf5AOhqPcUVOzu7pHmVlwWWSeHeVzicdiAtcgfrq7pp66+SdvCeNnkGc54eawjdtcjiLNKxAozK9Cm6KEPA2eRXXNPPiyVc/nnOeTnk0kBf1vAOLy6muAIdgTE6NBuVfKoyLqsceeJ18e9dHPJL16NhlgoGmHzcJVBIuyYQ3lJ/5GnxiJxmkoFd/RGdf3vMk3AnTl1Hx+AIZmAXqxvw3P3Qlj65XxmWqRk2gzgkF9r45yqk6m68kQ7ecSLaUrjn7pVCKH1XRVpu7j5vE/f5YfmV2pClyiOYYChtTdZoMthFNQaZrNEviFVWt4eoKdUmPxOyvKJl2w0yN3kZZV61L1G04dplFJdE47CjRoxhxg+4JQQ0vqRR2Ggtu3uK6SVIr6Wwinj3NkKbpJINoLUiHaNpjxjK9Qbd0zc/TetjHq9WRzuiP/6m/6psz27+zlv21V+fbBht15lalrAJq6rNI5cpQz2Qixzk+UDyB/T38rBwcaD8dEU5GQNXJ0kCPgbn4C5EbECdD77CaKgQPIbuXxkjJz14flfZFjOLNv7PuQ4c+4FdyuK7I1O0QoDznABrt8iukmSjo9Dzndl84WZo1CyHFmaRf923Uanz2cXHLhjz62AYkKFOIaFlAz/6e2kUMekmww4wOkxif1Xm8UzbhSxgCwXAc1Imb8lunhceIegaD3MYOyaGKUXcV/VwBQaHKh1AZxkT0rd8vt1SMI+kXxQZokJ4QM25EedlefQH4OdKLwmT3w5gdV9Jcv+JwjIYMej/UMtmMH2HGmRd9HRL9ACXxVzFoOq1IWj4HIZM+oj7OU9shutAtLIBN86dFTRxYt6etqa2uHfWy3bfcHgMv7ZAFuyJDh8pVOdgtc5xvnm0H0ditBe5nNiB6eCBrscmpG0wMS0DLRl3IAbynkUYRhzP1nQE7ZExYu8g58JPwqfUlp+8MyQx17jabOVBCPLTT5JYt1MBYwOdwzgyj8nAf5U8orYJGOUVik54vDDwjqQFijHzprxwN5pcjscYBs1utRZGeA4LdzmnPvVVWo2UICS/cS+OKsua99jF6J4VAX6A9Q0iRXAk+HBK8gEMk1IM8IIBJeOpvD2oNKflzm7qCs/xoczW39XapreNOF4+CeBV3jat0EiTRc5A4/oezYJfOC2HU8UG6btQmaF7PXzQsNcOcQGtWMYnm5mXcFV9sy4zRe3nYgRzZ+voic7x0Sh+UO7LMTjKWdVcc9SSyNJiHWOphAxXPaRzsXEJfDh8LqOQNV7tZeK2qRHM1sbcKMG8+o0wAh4H0X8w8+ZRtwwXCWeWp8iZ2TXN0Dqwl/L85I19FxOk+S/ybyOBSuS8qSzYPHnEulsyOOGJMIqc0LwQbBQ9DPxV5TnJc7+6GWkW2rAgqMBeyr4EPT9DHS17pcEdez1UljRXI89tVvOyNkt8ff8Jk0ie98ikDX5b+GSnoeWLLCwLjIm6rcGiiGmV/sj2+TbYStm4USaPLMwQq1SMtLqNgNoPhtpBktLfM7YPwT7Yr0+QSLvSWcx+lcik6zm/2N5F/flUyisnsaOWCCoTVSETFSrA7pA6rIZrQJgXzatfcbpKMz1A0t5wHmxMAy+Q0PG2E5822yOt9AAPxMQydES0bneS1S3UBoNSrLlaRQWchuOOOLm9RVGNZdX/YSMbiKHwGoyCd5AGWXeEcdKRPCv5EeYSWPfPIDbz/6XhyK/6C9IDFHLZ90Q7gHyO8aV+7TQIq0cLS+KEYsedk6YkJ3O7bNnelVwZBGjxqG+zzgbjiJUwufJU7P+mOe5QUN9Q8OD042kv5v56rOWN8ACSjpbFSJ4NfTastUj+aAJd6dynyCOR3o3s0eJvbMgaSDCxYUa5R9QBz3vgxvK0yJSMHmOArIhN0QNKdTAyztCkW0Qu79Wp9pR7ID4gCH8dgrJb6wTKPfUsaP4/CuYPWHtw7u2mSrrxgh2762HRtBexXWvE525x42UA988/TbBSDluxdJTFeHS4Ea0TThRNRVTcGpvUEc9luEnCdX+u4nRkBBr9UdlmCl6Ld9nQgAO4D3POB4Up4/vF0ty3qQ6k298X+l2IdBgclASTwRkvLQ69HgJeODqTBk7/5hhQEvs4Zv3hoBD6ocz2u7ylf4T7r7immekvFRiAZyqA6NOQF0q/bqLTR9YvopRSxR72friNMxCpB/9jf6oI7o41ExTzujB+E2+QrGsPMlCYPiNb/Q4tHCDAPKrb45U43uquCGa0eyV8OikqXLnRQ9uDJlRxPYkppjwJeLioiyK7cWFzO1SCbMqSQQdMIwo3VDzzF8I0EqqsrpDPzndBCfGkVOFkuVHt8p3v4eNV0SS7AAqcFtCanryXixuCj2hKcx/2Q/AVSlTSeQkC11115k0q03yF4BheqDbT1/iJIlqxHywUNAjDzQH/7qoALUOQ7KnCy2vJW5XKuGXgun3Y3Fy7ydvKpJHWX61DYC2OswRi1yrmlxDqVEjnxAd3m4eusBO3CiJOfTr7ZqP0VO5gjXoO3qSAEpgjmrNm56c2DMso8xx/Kquzgf7GP1Xw8v4WR5IoNwiUDVf4YvWbLgpeV4ThUWN0W3B/sOAXAZeJJmx2jm0MfM7XgsbeF4dO6KzoQnNlLRiuWfNNDV0TqRRYIBHgWcxwCJQAKwNM1R8r+u1qgnmtx3Mn6eWvfWmgnRTla715JEVdSd1IsDVxBGHSDWQzkg7M0e7GY2jWsQjz2IOj2Dh6n7YKvKGFbr0D9hKg+I7tfu5377tb5mBcTxwITEoWdhkjV2WYUXANxLdmwAShuqAlWVvoedVawd/zKRYXrxW128M7/h0xYOQ1grXS3MqVRkCEr8JEDtXYfD5jGqlxDDZGeJTykk3c8vjHlujoy2Z+LteHD2WrIWc0DpbIyYhiMS7RhAvTUmZa92+XmcBjkzUnn/dVs9O24BRvFCw80M9rPyk8pvDdbWeESLkOte+ofeq5jQdQ+T8hzQXR2vP9udw9khcQt+7Fm8mGpkTrQIYsARxPkN/0rqXYq0xr/ejSpkXQmdY+8NqYzHIrbNCOyfs58FbLi6EHkcPnxvu1UgG/xoad/jkFbtCqDIqwmaKJ7gMiV1U+zqvTsob1t2V/OYyC96wSnfAoUE8z4u3WbTDJHvfvwFmyLO+d9afQ9E59zdm97lkS6TGdgSND2uX07rBEB0HI33XjRl6XNR7KX+JijcAJQTxkJvrw73QR005JFclftlO9up7WiWatjfU7FUaGNGwXfHOoKQ22D7FVgL7lw8Riwabbly3fh/jMedTPsGz+RmT+7pzK6uyjSRtekAJqC+meokiYaLkOeyXpvP8QmWU5pf2q3mkQe34vopyyXXRFHIj6f3gKVLnmMTB30sCGmihmcLrJ8TGMZmXzrdMh1jdfZ00CR2HBzg+AW/3z2lFqGI4N5Zv5K9qB7PCl9Ni7nQVv2MY5/6YxuWt9Xl5iF8tcRVLdItudwfuTwQldT7QQr2nCBwhQMSAzGrj3Usg30SXBOlg2/Yf3ed2dBM3uTEBeAqaHBkfGrdbGDgvjY+K73UMlXCvgNLrxkDByUTap5j+csndigvG3tONeAg7E61x7fW1kZtbnLumPjKRotzhOHuk16kkIyqKZMmruKpVpLJpioQWuCarCwv1cmSuOzbkdfIFMi2rMis7fcZF4CaZbpILDp2wGaFew1KMLGapR8OGT91CzuswrjZCz0hh37FFMUbiQwYoqR45145JLxwHwLuKcNiIoLWSHM1hSikCotAfw/7KLW8+R+qe+17frItrUhtV29y1LGxmKlZM3OmQpmBUEskUFDrQ55TVCh/FVUCZJ2/qTum5QZaZQGLvyg89m2KlPAIO8mXpf0tJ3TWpiiRNiOqfoLOrx+6bt73CxM0ruHTjitGQVKbXkrU7e/IWRHf/8h3XxE1Dvr0Ix4lxkVdjJrXAdfX5O4OSIwvfFGI7RiCgLUljp8jIsJp4MTZeyE31MboAbB8geIE9e/TM2L0M7Uw68TjMrS/BUcb9r1nZo0xkkjyJ+3Qwc2Can/ipKg7wBNR4pQs6S06sGDYo3DNGNp3+ihU6s2Kxjv1HV9AhS7FpkKzLdzRLZAAc0X0eT6/rkJKlyhISPfuPYl2IjZj24YpvMH6HL347EBbrzlsWxlgNakew0EtHvNADiutdqpfwHmotu24a4bawR+JTX1WKxW/fqNXQx+er9aihdX2N8afCmaISBRojIko+BtkmbRDapEBOzQ6H9rZcmTDY81aFDk3T2eIqWoYhUJpiPDZkKffL1aRAshO40fHo0t3JVSOhAXV2yxbzyMG4nYcelRHNiPC5uoxcvBs4DBAxxCFGRAQt+oF+wja09oHT2PhOl2aE6drHsGrugKimuZJzhq2ql87Z2dCSaSiLRz+irZoYK1Hc1P8sfpohbzMu8ECtTVDPjRipAuo3Tlv3E/sLcQD0KRHArp92DrlfJfM8ZsgRp9DQZrkp5SaktxE3PvzVbXncYL4/pDivMUKsZ5js24Wn4+QxZcH0jY8sSPdFH096Vxd8G0PuEGyHvXk5wpE3x/SeGIBtE69tboEMyHctHOOZ1Md0pJVhkJvY99vrGAh8fYr8betFBeMpZ4O45zzmHqjblKXU4DEDG6hjYWptBgMZEdLziAd6wKFbMfn3Nl56gD+xo3k2T24bjm28zWlz3DCXKYEtN9JkQzL3g0JEYkzW6i6BI1kclcsMqoyMHt8CvUQiLbSnnPftKhEe9xaNTekQYP3+wwrheVX+6EU0pZ5wKydrlGyaH8+d9im6tAjoQT4IZKvJWBrM75ai8t6GY9wm9TOcRD9Zdt4LLsNQFTXR+obbwmuEy2VXgET3jcqScZHmqcW/sGrn9HWvf7JaTN/KyDGSsWKIc8cL4KHagfr6SsYdq7KRTSibIYosaXX2yZgY2DxMCDAL2pEeC7UzYPNdRIyCbfpZuyWaiXTQlNBxblWq6JqkX5tWKlmVGuVmLZQz0i3FFtY9j4/GvYM/08ViVmevtjH/P4cFr5KevUJ2dLo7UaeQ0ilnqxJUaQgLVLupALKxIe2PQJtkQB8oSBjhCKU0mONOWhAdnkq+8dCpjrwfW+C/bTBpCtjkxTvNMpkHCfQl98yqMftaIRgncK3TNcK5OWoUqOEjU9WvE64cd+C51dAu7cQYCKpKhthrosaNM0xU9FO13smcDMki+e5M7SgGEUejq4ckr6B3dMZSTF6oWJo7x3POlDkjMbbd7Q8Wtn5XjwcRiGaHc6+EQ2dkgO2cq8Qs4A0GQq69LEJ1VZojCw9yqWUjUtDVLt1HHa22N4QDBfXNplLd1H7BAMHeT4MRk7ZMdJeP24fFtzhh7tShdbLXKlpPDS8oPd3t3w/BsF5na2VhrhJdgGb8wzh4E/hS4BOFo1P2t7jXlzCRiw+YhRXdzp/+7xs5EJ5+H/CZMOLcoagLPqc2qfm6aA0rFQJWJn4IXl5SuNuwqghNf2RZoUl3HeWRAuhy/IzGu2Ig/+thJ0NbM6WNwuOOUhzeZYI7LTnR/fRRh/sghv0zN6gzDRydv3PzfWi294GBbmqFkJcobzcN8fdNGKtZln2uucADgD4vhglqff7NHoIMpcDuAUXGh2EccGWk5EzMzi38I9Uf4eIFfMS3GZKyN8GfSQNoVJpDTLva8TRW0AgJhqVcDxZIZyzJFfWtTk/yxI6ZjWeuL74fb+n8gNWve/hsblXU0Zr2OMps46NiSESKMFO/i1g9L0qwoCkAMYPI56wxlJx9mabjhSrI9JrafWi8EsOpnzdCne7MYPB8Q3A5LnM19bUdqELzcGyjJzObLh56R9BQpxRmhWtsj50BDn3o8mXkg7hTmGXzo95IfF2mD2E0F8MTyuc31WELA4vDoJKZxVIDZ/y/95gHrIkTpxqowmW0o0M+tRveDS2+8KBvu0gpHUA1bakBFUQKhwp7JaNrn/Dn9jOiBDjxolvjumq3RU5UbaKJtjlMvo64sYjbXwc8Ti/UKvPTkAyMvr0spnxH6UUsVC2N22QZuklwnBvG1L/ZjP7SWI21RqH0AjloL4gXcGMGQ/WczanuEutNPR8mzMtmwBTsuXCdqWDCutZNPS3XwKDDX01ql0Yegmk5HNn8Q9fq34wa63j1fcipyUx7TuPQebKaC9VgjTf5adBbjbbpYmY8s2mm8zdQ4qdjt5ZqRL/+4Opk9YcRr8KyDBz2uw0vDVVI8a2V5s+r8V5XbIwpKUoBOjL8wu3h4nKUCenQdiRLaq0z03tXrL+Qr9vyHrWbPzItou73Bc0HGd3NaIU0LGtvW+bwycUwXg1dFutDsSUKASqObDqXdqODN/DCfbLBdusnnU6JBEOZWcSeItiRSJoUNZ/Nb21cKwpN4uCccOu0hsFEJOStRXTuxoU0rQgn60kn/y4dUfwIkT0zF9HTGp1SxKVDJ8rQvDlOepeqG2UQBbebf6zD2KEWpA7LSg3c8VMEzqzD/ITQazxxqhdxXj4thuSQupej9SFDtL3dBHAJGj2Q+XUJhfoRwqxKNjNE7Jue/8WNPeAgDstI+3Tw0HvxTPvKD/vSpoKp72MF0IEDGExLqU+fkONkxkEm7CVu9bg5Va4YnRss5RzBFI3/F1Ji1hTo50Z6ODF9jihiRQcRZHq9ra0uGH8/WoDNHOWk7qRyNIbgqvp0YTjUGA0PyiQe0w7XnarQAbK5A5COUJPD39QFY8IEdzYbahVFMUJ1kBYBrwDy1LsinS8XhZuc1sCVSr9tzfLu1mokqLxuok+OM7eR2o5kE78l+XOL0MSDAkh79hDnawZHB0yPWShnov3JnblWMXfCnU8WKqgdWP7Vh+V8j2ET21eBrzJtzhzwpmlFBafVB+QvscrCN3O2oKpj8GWGe+bdSe8V3cw3LLPxJXgOYyRoETVvRpDFL7pRP44w82yPd8cPLCMAlTBJyaJOj254/i+R0XDERbL2t0krBRV10Pej6llssD2VJ1ssurRiqJRUu8GgL5tCvx74ntHhEzvdzlivoW7osymr20NlysfgLT2qBYqXd8Bb0KEOa45f6RvnNTmkkq4B7GfJy4ejwnn13SrCtrnA/kHrhnh4DREFNayE/s7kaSQeiL+xf2TbHi+oW6bTVqZx3AKnKfhEik5qt5w+dxNXHbxvfcciRuLHMjSldh0AYxDtYCurqOE3LDlaTm5q5lVZ1V8oMq0ORw9e0bgrGyOWd/GRyUFgLRByRWCjIDlu1FsJuZZ8OUoTI5HLbimkrJWzi+p9pENZFc0bi1HyA0Pbv65MLkjzbiyA5vi9pTYPz604JWsqEGNdTmU1g1dmFto34IaS0cQd1DsJkv0RafLJjnRT7opjyMeGKtJfQ6HNnNHwAmFo1lbusHiWjaCrqtCZl2maWJF1m4ds8WrHYd5diksR07lXNC/B8L1YpP5vzklOzJQfzwcfkIv+496KGO9/O0Rau65OHpm+uv76w7Slbem3pQY3yEgcDs1E9tfLfPlQ/5eB7g3iRmqvBe/e+CnHggURRvMftjL1RlWm2FBv8u8igt7dIHxcmPIvkE4OdPQwWYd91eoaOGzCnTOZ4abr9CSRMAx1aRE7vAHOunqNTjTvShI30BHcsf0x860mSzdz7YERtgGTB3BeTFi/X1aea02ciXx8OKcMMj976bjGwkL1kpQ8cObQMh/FUWcUsAQoRaSM72BQwPLEg5+tTDWIschy1Nlxys86PfUpfpjn3+7GiT5Q912GCSnF/h9loiHomKAl975DVMHZSOADwPTwEFN6cR0aqzEuBVGGhqAwJ518CevqEjlWYOQC6XMtVrOIwL354EMJx+UwpDFFQJP8PiuLy5612Mq0+v9NsYoxTKMYff+dSLG5cW7X4/trQtiTrAPgqchGZxZbI4ZZL770SPTcpjNfnjPcIz6BTvV8nCB3+OlcL3+ky7RaRo0lP8pWGSa0tXCCBuX38gtm8KBGtNV8A+TlKG+zy4btGgjzQabbs/OQy/uRK42tr+zFkhlSbJujTo0OzLV9u+wm2oWu5lttQdcZHg4uaOMMfQB5CoD4FfpvUvwEGfHSYzgrDZdCST8QwkexZUAlFoTyFsizt4o17XDzeXNR86KWWDmh8b3zkemiQx9V+igX67pw6M1cGniKIE8lsFsDC/WUZHicQdUsfNztfm8NW4wwS3YHJH0wamaL7TiSlqJlQjWyRbdDN5Sn1+PZWq0KjYolndxTY8YEB/HCICAGyoXv2PcJb2rmnC+0wKHPUd03kWbRVAzsM3DfXIJ6VsKTrAoWc8OPPAa2hvRUQc3eqmuwUyPB/5s6NiKbHnx5uUXvyNJuPoAbvJqIVUOZ6yD15hjeQa2Dc5itfKRvPOOSDl7eIftzbJjSRLl0PUzdfOiOJBHp68umzTU+IFeX9iJwpuiH2IloTQ8IeifRUZuLa0kw/wFi8YNpnIv9bfy7L5buHJzdI2JDcFbbeG8fw6xthEGeZdIziubLTe+cfzdrl9whaDwWgzZjACmcbh6CboZOChX2YDF9x3Ha84vmTiqWxvuLh5HXPYV9cIdjnnka+Z1bcCPwyc4owxZV2qx8tAXCfpvnNw8byAtHs0bvAog19E5dqnwpm45DQVfZZQ6jn1upnkEMn/cT1GickTXGL17UfzFH6W6cf/WODmZZ204qoRJLEKVhzrYOjRpE8LlhIxLJm2TQM2Hjwq7TG9sTCHRbjRrv5NWeppXVAd8rlb6jzdBSWihwecMDWVxxY0QZGhQqho5dK0ToYsBOlHm6I5ei3ygBM+A7vZfGDzFmClDWnDwIwpz7bY6HhteYW5wJ1JoVA5wByk2Un45NouYHC0ZREd6Smw5oJGAytlhvhvqwm/FMutdI/hI8x8eDRRnqtZOEh7n/i9qCxhiK7bD1H/C5TFkBkRH3za1+dZVOru4kknxRbA1ANThegH/KweUZT66kxmHVQ4PvG4wSW8hcfvVaMrh2PNI8NrmRWMDSRU/gMZCNfGT85txolx6TRLuS+YVcZINagLFc99409RkkUfO0XNNs21mIgLhJK/mH2p3YEdLY6Ig+sGrgDu9WZHd8qKhCKremspfJmy0PsOdRWS6xynHKI8pvv1GzkKO/KmGoZQNdTyfebQVDWgNGzHPC3qqPJa+2dSHHHTvWJl9ij3WJJjAdNbm7LdoGZksjDY7rSkffutj4L0OoEymrqtKYuUddgNLK2GvKNYIKu1rDGPC8NvjnFjEiKqwbVTl4aqkORg1W/+wAJ6CWwJSqitaJ6zqZsAiLG2yOtyhl0d0Th9zUUv9CuRWFaSeTS0+EJEKnscRichg3AdbL25tLNO2ZBeQBl3yko1NNxmcLHwGqfCQ44ZNBX5mYhIfLJ/FQmY0x//R8IPdgA3KUMj5oKo16uosa9Mx+GET6qTl73P+oL6J40mxGj+Y82XymnxrHIFOAfkk/SRVvxvI+FrmoVIodUahVk0Vsr9hQFm+7yWzsqinPrQkovN3sGF5E84eQo95PIqE14yGFjtyTNKFD2s+2L5XBf3GIi3+oyF/0so3rv0RN7/jZLYP+BuXgUQ++Io2JIqmT+DPLGWh1eYR7fZkcFyiBMHfzegQFGc9+C3W0PgsXwOfO+VTYujHBY4Xu16BuOQ6au8TII6nKf0v
Variant 0
DifficultyLevel
574
Question
Murray has 36 red plums and 18 purple plums.
What fraction of the plums are red?
Worked Solution
|
|
Fraction of red plums |
= total plumsred plums |
|
= 36+1836 |
|
= 5436 |
|
= 32 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
correctAnswer | |
Answers