Measurement, NAPX-I3-NC30
Question
Ralph has a rectangular puppy playground in his backyard with an area of 10 m2.
He decides to make it bigger and increases each side to 3 times its current length.
What is the new area of the puppy playground?
Worked Solution
Area of original playground
|
= l×w |
= 10 m2 |
|
= 3l×3w |
= 9×l×w |
= 9 × 10 |
= {{{correctAnswer}}} |
U2FsdGVkX1+wYamv8MyAayxT/YTpmi7wicM3bpbDHhy3a09G9ATkSbYsNu/xDAJwJHL0JZ1LPXnW1TRx/QdgllGmXPDVhSviOJ1QqwtIrEWgO8LaIWqIgWSpJeBXj4DkA9iGpwnqbJL/y0Dh3vkDJUvTXs4bhVJo6X2n9W+SCuXI5ojg+IMmgetjubgIBlfMEtZPJcHR690J6vtR1LoS8qsdiZdmHQLSLXNjACklZHZpJBz+xJYxgjOUicq+V3HNzQ2A6LllydvuNIiD4fJV/kbuZBmFl9fx30hLB7lAVcCjg3D+kdS/4GQIxhzosErHhGljO6yTrnEnwYcFrKYjZGSOwTsR0d7r/f71grMKJz/egnfsqBuyGuOJMNQIKlp9AutZiwGim8zJ5NMQsGfkduIvpu+TxsGkcZUWXQXLtBCH2e4YcMVmAIeQcsnxM/OUz7M39VcT/n8FHYB6abt0Gx7MBcRpavekozaCQYmWGL/KvKCbC6yOMWzw07Kj604TS83NbpNfdT+R72nmb8+C4OsYAj4sz+gTfAzxksi1ZCNc1q4RggWMPUrEleHaK6Ozr1V3gO4SMWozU7zETIbWmTVq1aIoHAOud059SPUv+zl9rSygjWkXIW2e4DLugcJQo+VI25jgPBw03mKn1Zg63sMwadGTpUQnD3UBEJtY1zpqhPZshU3qs8i0VXlCaKHGHY0l/8i4fo1xG9T3BWN+QE5jjIEQfMkp2bR25tENWhZjG8HcAuyySjHbFye3W/kCRpwXd/cJFJtCXWv8gbXNIAnDIVrVMTVSuSvPE70uVMaGNzMrPdvZCbPoAuBkEpuiIjl6D6mnB6KWms4IeTq5UTTekQUzAqOUPxA+MTfNH5nikYxuaW7E6ifilm4DlgZlSqy2BWMvrY3ukH94KbF5gXP2MDz7zkux28cJ8XqrdX6+j8Yixbk28l0WC1xMxVYZ0xid7unsvRu5GHNue1flsh63uGOxjuQ0S8wbLlLQajPUu7hJpScSz71jj1J5VvEXAx/6t72K75bpNBoI0prsxxtCWd8odbKIdp3sjUN+p5vX2UwOPn/alR/bawJ6v4bMo3gn1ZIz+zoF5dh0wD+8YUUO0U297zQbJJq5u0ILJq4dQ3shCm51LB5OqM2XVuFeB85XpzFsgVy74/KhV+M6nHrCo1JLOOa1eQ27ZiCwpOS4ua19u5UjvOjFrA6BXQ6lE/JUGsLvwDwPm7HFeWg4ZUWpKxjCamUV/n41HLJfDG/Fzj6eg0dHalBS/FqYzht3c+/z3dG82PMKyov3S6LBKo8rQzmWHlGOs3uNe7FUUTtowam6RYNuW4FqpnkiXUrpR6z5VjGjy33FcXYKBnD9cDd7p2XXAIfED08LXwjbB/CI7wjJGNY+2HJLIofw82fCFagZQaZgQviGF7XJ+iQCk6tezlyRXnIpk80Y/rj9nQ5J8BGrmYskCjBQGwOrdQgFiMBmI4y0kOHhsAzM0Doa4FlEixDe7PnL+ujUqj3tySrAPA5NUD5GYVKe7NY0QBaLoPyzrj2mXmSvisoOCHshV35gH/fKiKSxGUgpsNEeNmxUmbXlDOz4CMOpfjLTfWX8IFR5VFoNu/nT4sExCy4uTa6Ws/M/146qi0wc4wJGrkrTbgT9t+8p4UR0617e5ck+xzFLMBU2UZ6oZ9oFOuLk+zmyPw0KcpTrYOMQrn5qgc5a9VTkaLGA1OlgK1JUwFmI9AI4LeESuFrREL2GGvnIxzOMk4WenKkWm2gZ7NVVYgUBlYki2LtTlF4s8JpEmnDHYEKKhHdAAUh98XV9gm13IeSCyIdDShZJA2JgblovP63N9Px2hilh7SwYcy/Zg3fNXfBYvY2tBi/ZEY+K7x9exjENsujFE3zOuYT8JAOm92zj7lVfFJb/P9bUTy657kqR2IHCyTkCXbTkgQJpBqonmG7NdYYi1xGIvz0wCvIlHW4auJZfz3EOV660q/5C/vfbcBh03VCqS6nXZDof4UOAW82X3R6qZWL44ds/DFb2odg+4JVRBVam28oyjFsI+nUZjrOAwmVVn3mMKttAXpFbR+O+kPx6USpd9MJFetXyzbY2JlzeyhQnmFKEa1OHRe4IyNKiqYeAm42rwUZQZxVw6XcLY99mOfVfq5CINlVWNXMAF7ZmsTvHz1u2FP5m4dS8uXe9RXD9AFbP7/Lw+2p5W3TE4PDjb9jrr/V9rEDEcqd2TCM7qX1qZxk0kkRS4SbrbV08aGenApBz6iGJfLAROr9dx6qhbvfjNd+584SAD6tqqnl0Bptc1zAAMH4DXa2fyVkd2X08zHePz4dUqHqU+4LJ0fMXSz/x24yW8XnmHw47cBIISxpphuf++hwVDmL7/xO/GIOoTjCcJzAYT6G0czURXTOnQyswHQLVjFbqUyei3LYb7V+HQwJon2CUqy5fRTdMtpAAZny0rPSrY0yHuN5NumcVyjgD566xWadqvIQLaH0fYQZm1Ui15nDnnUbHSQSDH5nbzxK9TB21a4821sKcJJQNN1SSrGemQdP/idpHqNilb98Qmh9RrAL0YyvbXHNH5HVC+cc65wCfdBJRHGhDPI4yJgx5DLVrYd9i8H+VAvMxRNLz9E9sLj1QW30BPgHlLYTqA1DDdE9xy7Q/Qtgi9zJDRgenJ8hcmCck0ILj7RsIyn3PJYrQXLuFQ30wUSuRvs89F2beayM9Ou96t1KCvXspj0IMjpVUjH0ovBcu+uVjAt7h0sQN6pYBs9UFkzVOM98njfZTi1+997EU5RAz73cg74dLWh+ezOPCBdO6Js5CNHnLqJCnnYWJ9ngUrKCln2EuI81hAVYRyyuTIKaRDqW6INZYkjpu90hIGld3PvL+kNzIE4Zk1JFlfg69iTHFDF5eqBPSdaQywfD/SdhcrZeabVTiI46sotBceDrSIrWnFg88vo4Szc7/NXozylWpZGwj8Qb0XSuno722+o0OH4/vrIbIgLLyfOHO28sQNuzmxHd5LgDCgdy8Ye7+rogO7gW+HV+vvjHpWYKd6JbbuP1C3FoVE4MkAxrX5hZppXu88Qy0BfhJHksAnblcfAGeC4chbQ75p7GK6x+2TTPBK2+xfgNTQ1IO7vyjvFgRnGYbj36BqzXOGImgYJksl5tkzU2l8MjK7KTJ5mBUmCOH6ZZneoG2hiwtvN+KpUEF8jrdZl9GBvczZxGQdVIHYlBT+z4K3OSHpOnmwKetk+tazKKwWDgMfD0RDJT8F3Hu97uAszIwoe5J4CbZtCejp1ESy8UD/SFR4Ialf+rc608Ox+nD1BEDOMMZbNKyyjuu8kiEoAq6mTg9wvA1o/jADANfPFCmHm6oH32EnrP2wq24KhguiUGQ3Mm+hYzED2A3AzYT91kdQOFRcIfw1G8vgSzYno8pxPHMY4/UlA7jEVnVx46mf8gUdzecgS7d9wCqQUZZsxsTmIMWPhNfCqY5fTWePkTgcsSSoqfoED92FZs0XRxbPv84wZagw4gMPZtrClR+CPfZrwMqF6Y3DB2DMfU+viuxdUpyCesxKqLbs/JDK7SFfnJDsFC3I6OCsFehd+1QPxGKjSP+vaYc+EKzBbmRw1yJ4xYF+oFx4psp9wzL2FpYeIEh5c/tGMSRgd1ShRqSkdYjjlI2kHo7O9iS+/r/Uu97kzkMODMmSrgXNZ1KaZH+sAq5pWjaHOgGloE7klvykPobifCLD62Dd6ibbgb7P+nqIG21RvUfG9PdycNCtMW/31U1T1V5TUlKYf02K278kUDiWsd/kTT1sHFTEezNTEDr+PF+ItzOuDnJfk7FoqxIxWWP9b3FcCReSziPF1ZWKMqBf6d9E3ZXahi1y3aAzNvbahgi2PqvpgfTLOa29a9GYbINYICIB4Hkfl42hu5zttm1YQcdjXvaugGQNxXQROkjNYeFz4K3jp0deHk0NatNuv9W3hOWU/F4vr75ya733sTKgkjcV+dLk7g1AfDi37KyvA75VcMzi9xe4ngMcrqAHCeO6Ko6PEsakP8iKHVFyOcjhMMKp4U2vpbMKcH+QHx9btz6XqQMNi7OBD6k+aECBshge7XobpWlYPBILGTCnA8s9MctP8fOtH91ORLcYgtcCjN38i69DvdZQrYi66sCzjcLUjILXB33XErBppNdbbaxwVX1PggTN/9SrES9dyXCaWfw9QtIOcHkFJqU8L0q4d62I6m/aObALK7G2kTlg4o9N0fxraTMhLnx2KkGNTs7rdyRpneLJVT19PQlsTH7GAqxwj2fDn2c7u4be0Rh+8YiLwLZ6nHY+l1RaRasxT4zjJz8ZS4A8XHuLRnTkkuZyYXLSHz6PIOhUJcGOtOrFhZFV2l3AKiRTFXmvoLAisMJ0MD9yztX6pV+0OKizp6IVeMlaSCzy03SphuaaGqexYdiTqMuyQ3zC8bCtN0VZF+sulnnpVBqo+UYCUwhDRkpO63cuBjBGL0glUNuP+z9CeieWabjD2t6qRZhHSExPMMBcVYpvEQjvn8GqKFdpnR5pmbn+RTzxQPx+cxRoE1Yr0RjuxC2vVHiCZPJG0mWh/m6zIuu50422gc+YHdJEkAl1+z088wux3vSUDqaSUkJWqds//JJivmupUzqaxbbHmQD/yMgaQ8eajD2F57KVtoEgXAmbuDOQhqFYMFd+waWiggd3obX5vH+1WxmT+ckyQlQjGNbaFIcl0WMmQWAO5ROnwkBzYRafS2Iu1C9i8NEvLfcOqnZFO7UbhCCN7xL3xxpnVcaAYr3kQlPcp6BB4PPqvr5ycTKr1waE5sTUAmYgNMu16PvxJavysCQGD4nDpjsu6XkEQUaOCrFvVk/OLvSJKBbl3AjdJybUGEAZ4J1r/IzNxMeELGiAFh7ufT7MimFHIzfhs/oSJGn2xOg/qn5z8CG3aWpYcE1j0glNeWO6e+B3zRPQBp1RpfscelyvBZGvTWlu2j/CQiXxn9572omER0UBDPz3f1XiKr/c8cRGSpiaUwP+5Iz4CGxZWpgh55qVEyH2U5hCl8b+We19pOi5njB+ntVaWrrNVWlSyIk1VY4FM2tvAFmA255vdt2K8cWmZ972aRGOvrbNz4fo9qm9NjWvFt3sfdw09EXya0fPhQR30OiNIJUcLUs8SDAtDsW1/0A5y+KIqmr6vbnD0hwge0KzlPtBNWGWjGa4Spm4YySRv0eEcEm9gDcvPILu6Zx5Bye0RkwbJlZgHjz9HpltDPaDZELbd90Di6eK71KUqco+9ffR46Q30ALfSI5b8vFGS56oWdp9dt/O78y2/MkH9WgiTzrIFli30wK2P6Lcu0MPahHk95vKA/YnB2CXw4Clb7Rnz2qkP91iMY4dm9sAr5+2uzlCXe6tKDgpz1q3NqCdSVEU8e0KdjznR6iIL+qohgVUzRDTIbXft6Y4ilhKSCR4IPTI7nHZLI4eRHG/KjROtmMRnfGRpYFwWYMphYp33shNDDXq/Fs5a6Q1zYs8YcPl6tuhOPm3rM8WEP6//IxHGpznsYJHcaVYTK+b6yUrrhT/hrLN7A5EXppBnglGdQal2hgTbTz/HocL6JJeszCzONmjPTm+0OXiGZBX8v6+yU8ZNVFY2naSaropcRyKF0wDQU1o7xGEqOtvQApWHnRtjTj1ttlDFhYjF2R22i1sq8khTTM0NV7nX/Kd2teTwicaKV3Q/glGzWmTEsrxlMuWMutQE0poA4qK5VATDu3YWkn4s09M4jdxTuhAJuuGfodjE9maxhiV0ZLWcr5KNR2K/P8k2zT9e1wPV3awGnRqei3otNo+S4rVvPGB/aRsyvQqI3B8suCZwgFJt+z5opQMB2FrHUj8ZKypiTRFHhxyn59BhOrhDJgMhx65fjYdOXe2YVQC4H8cX+vgSDPcc+10/3bEN6A52pZYFiNDynSNv4oM4d+zgWGeLTWkq3Ws4zQZSAJhLyLaOqC/cCwlp/d6fdbDytLz4GzbvMaxBhRSZwunJhDMBbIEizDhD9vzUh603pdTgg7TmhTfywfH/jDKgU1Ge3ZEm7F2PYL44k6MsGy0A8K8T1Ni4xsdxhLfj68oP6j1mXY6siynu8kJLV0o/Fd2GwubwFRTUBaErVA011gXTlgNVeCVbw139S2LbccsZ+Tcjt+uSoRKG63hu5asOsybsCU5ian9R5ZswOuM1idxfxqK7Omyx3H9xT+S7mPcw5L0T8CrDNFl5VVhfxqT+8BoBZwv0GkHAkoRYGivcqe9RoGumv1vqj6OrMUsNAS+eEYRA9bi/hkZfvemHlFj/0dMBCu0ZZ/827h4WRjT2H0ffN+8W3xk6A2L/IHBQg2F8ZlMpLro5N9hILRXFASg0beKMDnGJfrSVSUALAg/zxDQwL7D/hDHT8m+V+c6srIR48XQ/S5OvCcq/cYF/y0YcYOR2inf7YrOHiqL1kJKMVJ2ELQ32tPG2w32wEOVeM0Jb2dOceLbA24q3D/3lpJwQ2ZfCxumLLMstLTVCmxPOxed69EjqsNDzA2sNqq/fIiBkgrYHnOLcTMw04GDQ64Xr6/cyNsd+zPvRsu/sEC/sLYZLghbL7ey1/m6i/47EfbWFvVO2tHl+jWk3vCZTlz+JABxfemaHbeDB45VRDaoOCiKL3Q+mqHf95QzSG+yEJW3Z8eF8EL0pxUBXRJFTiBy9PxltcDXOHN7k56XZCBLuTE5TbVCvAIZRmAfz3NZI6fr3t+HKCAo54V3s4ar7UpiE8CcGSOPuWRqJ/S3bxY/XJGNw0RkdGAo4btr0HAViO0aPAog+7h9eYxrs0eHz5mLgTs01MKYzqapfmpek8L68O6LJIBMyjRbr0UzknylS+ehNCtiCEo2cpG8U9lg9xquP7ga2djdMpip2XOO1Y78YF8yVdhgJ6fjZPGfQjdEsIb0St/mK1p9W78p0lAOXkAs3QHfkfGV8iFJQPFESC4dt6MP+WJfy0rO0rWR74JEBexH0fs4aKRlGztYJ81l/aQldizk4U5b+teMjtEotL4jXbc1VnysCwXc9HR6x99N5ndm79ExPQX54KSKxhtI90zxfPWmTfsZZw17vmDxRK3+EJIeI66+gtZcfcXyqZWtRxwZzBxxqSLUGflNw/rZIV+qoL/eSGYGYAQ1pJMR7YZvYXf3my8OEZ60Kp5jsO+kFDL5xXvetRX+iY8jMVkwSV5Y7dtIxJVX0nTwHMMR5/pIzO7mgWuTkwCekPLSgz+oKleFIDlfGdv7eWQRdujbjoWeuuNh1B2VL54PqS6J+pSqvxzGqRiS3710PfZSRf5cKqdhk7lBUH8su0YwAObJhCtaxEZCm32gYoqUvJsxfCEahqsO+SgEnaLhtmTo5XXry+7xzfLePblPXiFJQL1dnWTOj8My5Hfk1/JUbRyfIaCzw4i0XqSCKt1ZWoeOSoyYfVlzUkmk6u9ee6s7YKfIJ4K+i9Ko6df9v4sF8T9lOnUed9hDWghd440H4Foqpvk8E8BNlPu2zZOsh+P1iFobeLGfXMYvKB0pWk8a1XIWRS1wbi80qxaFTJ/HpK205+z7EQWnxolKgO53DLK8mRAVsWV2JPlp6dG7ezT7qYT0HZ6560ARrMI6B3GyKRq6dvyQXK5PEhRN0E65B+F6nF4Kz++30Lyy02huZEB1lwWtOZAuecKyUhoMT1+pAXTor7I1PzzmIWzDMAuaer9cBc8LvOGKviYIVaCV3XZtWkYULorJ43qAwBXWHyefVg9LgBYo0wVTESBb1fyeJki5LnsfdNVIeF5eaNdAMUduEwLwYj8vqmpeeBaX3aqabU2e/h1lTAU5CNF2mt/xbF0zLXsyEAHrMlRJB84gdmMBkUr5tdZV7U6DHI+llAeTouxkYDl2EGuEz3f5XASvga2tkBYiUok9q3i6lGKp2UYldPo3OYQ3GtS8gyUgYv712X6bX0JJdrJRIun9A008pg15bX3AY0cXNDiT+YMwPZ9BDvB42jMSTPEGJDugRv+e2gyzfXfmtJB6WMne1Yvy4jJQ6PW5XC5ttMeistOC5cEk2yVmrRbCzrmqT8u97PCJ0h9LSNlrmvKOX4SPic/eQBUYI4FXjfvTjAyC0UbwC55HZIqNe3kk3e4lznHsjU9dO1K/AXAvWqjKO/KtQQgkf8GhJdjldK+2HWmMRkgyEc9mv6eSDOWaTv9UKulB4EX/Nrpp1r0plgY9AA5Twjln8D/gjLLZDRg7oZxEQ+MP/p25W9fUR+y3CK649c1g56YwVASpsofWRQb1jaKNE2RuEI3ciPP6Rhb0ugbEMCHuN43p22qkcdduaK8T8TS9MjUqVckRrMmlu/wQ+7ZKmiSk90O/Z68fYZpapsq9jO5bgQIc2Mgi59lkRQS92agu9INQj3rbVRDQuQvtj7XGWyup5UqKtWor7vJ++5Go8XZYJe2KcKvmne1B6DuiRCR7eQw04o25h07s8ZcnlrErTilOjmBF4OdeQh0yznjDu+6hcJELexoWbzuUn4sEtVw2gIYtg2zwj1YsK2k0QxSp3Ay8uXlEOc2Ezme/wPbllmWpl4WgPBB5Piqeycil7ii5DX4sgbeGsZa0CbCljhTB6ubxxYuxJLhNUXzIyt8bT1xHQnyZdRZ3iK32LqG3EL9YnEfcSEEr9IZxzBkhxEKb/X1+E6NabbfizREFDgaz7rzdYJa/h+gmdtjRo8JTZH5mQdc7ERepJS/9cIThzVhuQ92CQgZZmRjM7OtRgxT++6uKkJgoCBQqbJPKjsbMPWG4myEX8HWsIai9/KkzeaaIyHD8mGHWe5eEDrj5EP8i57uz3UJX0KS9plUV8nrt9UFJ8B07Chnwhrw7cJrCCdRPfLaM5XO1lVCZPdNkZLIlrSbOy7psuLbhw0K1Q9jslAsdJnDxAXbU8RlB4W80P4Eh0oRLhltWxv03iOCWxeb11OyB8L6/H3vb4zG7oxx28IaMks8j16Ja9pQTtsClya4XtRFIqFKES2t5lTMQc7+BjPU9ldKr9SN+zhVzfYdydz/uhNEnGxDexLic2wJLBG3WbyoZ0MI1bQBMhFPriWy3dEe89iKd2JA+mlvRfXndRxIpln9Y1NCXVoCqqnrWBBZ5L3t0snS+UC59HxxK6LP2dDiQxdbzN5apZb9tQa6OvoOZVvjEjHYBZOGvZxSKoLgGfdw2GjlcBbn9PtN66Xj5X4jUDJdt0JioY0Kkfp/Z98vmTwZp4gWr78/uG8KldITNWtYf9ogkUvlHnYodZ9GsLXfmhqvPbcLdABELcGePbucdBwowK4M3Z0nQQUPp6hS4L75M+BU65xdIAyvneM1v9Fyep5HNbsPxlO6EH8BSFDBA2u63TpDhVzMHeu2Lv/09qSYohDiQ/3Wr6W5ZqxQmIzKTzkUKrQw3g1n4lKuJrjEiSHNh7FrOcoZQALxSCAiwuUMUrYX7WFMbt9eAcyCrjVBRvZMW+ZivU3JuyZl4LLAVbq8g6QNbrt4UrKOg4DJwdZyFqOnNW+Z5a6f3IXxAhOO8wuDnrvSwesnI6WrbmOOW4qSBOkNRopAUA6/V6CmTi7gnQ1QwU8j5c9X4eR1xsXeCd1t3AB3CZ3l99oo4BpqzPRaC0Pia9ZMS85hpswtnkZfyL7f9oeE2mrluuKi/cyJX95ybt7b+bIKnKmS2Wg3/+DrWHNmoyBWhj4uGMpjDN0W4aToj9e6WORwdPqayTA7RNqQZBvdMFzy0FxigVT5ER7lD/0uEvekN7DPwwCwPl1K1z6v9icyQom2CYBeJ0vbaKwUfbYkttNE76b6UoO1yS6gg6lpZnSUpg92aEL8Q2egLrUKnbIyDWwmt2buaAPyvxugWVBwISHBKDrl5hSeL4LzFlLvF4nNjZXh82q7WIYA/7SxN14BCtkVxlCuOXjTE9n0g4F9ZDGWGbDY9/1t16ewmPHDh1EX/R1UFT4cr/urNvDK1ChD35yB6KZJnNZfFnCS8PcGK8oVukOPRZNae0cc4PgYZ0jk6PFSN4xx/N/NzextRX7Xo4UoSbqEbQprQUTlrXTnh+b5BGSEL5yG6IA5/iuHgTQZBuTvKtf3PfbssVsF6RXFlC9pszgvXakc9WJW3ISzUffoC2i2+7kQLJOCpP67ipl3Ul7jKuRmdcCGFmEp81VX45g9/IMw9+BVGkTn4rIx6Ol6FjD7gfWWV+IY7xOnioyQgr4w++RdVC1cgIYp1GsxgDaTrQPity1J/xzbYwElmhayKwzbxQhR6QkkD3EE883/ap3rnlUFbaP2IAWib/rQOasu9LR9xFSKU9/sUVbA68Z3nZ7TGt5YPf3hOop/F5G4VWF/hy9ZDdj2qtLxnqn6m/xyIcWlUheAyjJMy1U9bP49eDjgpRU0+ErxN55F6Czu1zWJYN0bZOzJ3aQfexSOyaxHHOF5xTyTeCC3Mhiopzq2Jsjv+U9pzYW8KhICiaB3FOZ4TFRscDse5v12Yi9tVjU6PklQ3UXU0Ojaw03XLUt8xOiM3vn75mKGwY+X9mgJoiTPjZj618tvAA0UdwlYB4LSWlcQfTv1l5+ZwhtHXSSCd28MCLPOCzqDYN6S+vaqBSsFjg2g3lwIL6Gionv7oDkWSuPpDoLvnGbzVBzDXajxnwlFjZeBNuFsdr3/F0/ZkbvX9usvmpxd40yHBxVu9EEe1d4OaCm1aHljMWRF6Xr8+K5BL88F2Wm2k/Ttz3WiV/F4q9kR6be3wgGKzdz97mjXYlPIP4p5uWzSkUBsshiLhca51wpwJhFCECxy6cwcxxqPeXUAzWYqbSizrHRMqXq4ifkm0G56Z3JBOvFtvC34hlq0k+C8tVV8p63xFNwI5gHIm+1CS7XFfMQDJYup1HgZaduBIv59lZPs7ZLgeQTCj4kJeghvtAmAYxwvM/W0xZVf1CM26HGPaOGo+zvm6jm0JikmZC9HRs31pl5jVVmZboR0nUQYPCH6j8cpCs67c3B9eRzwbOf/usyhuPnDnD+xDtY8TuAPJi3yvAlQ+dVSIyjnwT6LXFLCaLxpkh/akkqy6VwFTBaPomELfY982FSMxHSi/5xUoOjYg5pBLmGcwZvt5tkXZF0boEBbHD8obeopWxT+s/FdAgHa8mS7BjKWumkOUXMvIBnVRT6qEXPYs1R+4Syp+KazdPXSVhknmHB9HtGlmW8qMmH7V3jLphOsRLqPsMvulgAqiHYx6Ck07so30gRqBVDIGz13V3TSG+mEgslSCVIJXVFuonmurtInZ55YOfKWul0zqFYiPjqkw7I2RQE41YSQXsuYzLT9px7xUR/R2mFHHftzWZZROQq8PnB2z0r7lZ2ktnXyMOaZruOpl7tHaKz16pyALXrNWfMi1P36C/Gh/cDeUNYrp9j6SAWCfyDKiAdq5YKQADh2HPSrv9ifp1wnOeRCcAnZxjjllu6dSRu5rif6r7UyJz8f22o1HKVJ8LDP3UvpiiyRaX1p8SraWd6W7fJai0CMI6Qk+4dc3MzQ0+V9jia9OCbg8/yITubQcx1QmOh6MqgjeLfiovx7A8boQzLLHTq2CH+KbpmmUIOwLzDCJxAeSVgAOgZk2HXIkVj2J7sRAN2QU+OJqI/eOGPm5+19xetRicCub5sAzjpqHeCvNxbTqiYY5nyjCQLFod0r/RQhylCaBagx05ay0ClSz9UEV0CmxFNLWSnMAhkijyoz1k9Y5AY4WVtQKwfx8k/o7O+GhxvNqwAfHmF3apxkpqT/6Zcnjv5VZdDgMl/+hWpv9az8+aucH97Pzgdo2nZiYvAVq7LRIb+8eoRQhIlQ4f/T8BiD2DQWYLx8rD57QABbhNXOz/tqFpyNc4fCVTGWq9l+Nz6/tK/6CDpB6et5hqWctkBGPOiUaNlRkbF6vHKfCuLbRnIVi2C01Vh9uV/2oNB1T6UyGkYmXUeeISO6eNuRx56tKqtrWd70OnKt2cMVqoiv6+w112ivW7Zbl1BK+XBuq0bqPAKTllbDdAhJXfWBvuaqDZ25q0q9JKgDlRxuFe9t62zOUcNZVbkBdAiaDE2IyNd/LPb3nVcfZ2cObGls8u+ng5YLTE+sWh0t6c7YV176BuGZhfR9p/KbCQFrU3k+gR5HNbea6ZhhWEvb5+ubRODtmeOLzIt5or0yRjO49hxQnboQ2/vycx2ui6zlT9gsF1M/+uEwbuZdD7hJwBZXUnrNZ4ZqHQgSrtqwMGKBWdN6Ef2ilNcRYWTonB0q9u2pk8/cilm8m0mnqRP55GlJRFbU4smb7GfK8BNj8id3/rAYKWjvkDvPLczZMp+AOXcdIN1gZFeo2+DU5h8TUoBgNBFytOK8cp7z3zw8fXwynu5eh5OnkWjN++CUZbrzYRG/Tn4m0nEQqYn7MPdOhYTQ0dhWAhrwYJlUYaPVhw1prxPQ3lognffHBlE7sjsEqcwSPkF6Umc2kaCGq/ftB980M3wGFFlHDKAnKyrpTjntsApPTOY3aQingvcUm4QvlYaA0fexWviq93QoR9zXMbatew1Xa9TbraQDFM7VQxhpt4jnWmRfqI5azf8QSsRqKOQhvrlD2xCZZRTi8AymhBAV60YAkAQOFaAPrdxqmhbKRFG7y+m4acPrGAj17GnYWPwF5Eicq591iHNd0CygZzD0cnLnDprExt7PYrdGAgY3T9JZlUcVZpRxqzGHFQ9WmUm63ythiZVtzFIsCv58GEZe87sUut1iOK5tPlkXG7S0ElgEYbt2d/Wl8LBTnv5fPJsansdHgucjTlAdw57ZGyHmsYvQsfdeaDgmgOc0a2LcqM138XZN92vrnnj+LQ6MIASUR6AzaIOQJ4+CAuGhoYWG2xcbcXBfKX+q6JOCtOKFOIhvVzEtYQ26l2sQ3OegDax4cF2r5b/qXZxk06nN92IeBqioUw4niKMp3BeUk91wkg5JcuguepwW3Z75MzOC5r6NhuYaIqKQLDpTZ+kqZT+/tIzYCv9szSb27EXlcLbUGxzmnj65w4gT7sNt2wsNB8MrMSN2FYUkYSk6lXB3xUUuezNnm9jXhEnepmxDc7SgaRGbTcaC8iOt8xZIaItHp1ug5eKh7GFWZJvaHCpTaFpxa1cjhPEHT1l+yLxQih8z1orTzg7MzswBPrtlkOCIsPgP1RwuKVU6OUfFnTItjwF5sVRAuVSJeObsl+SgzqE1YyrfGj3PYfImOgEy8YFmGhZIArknhMVHgM1L9k2dmbR0/l0iFuCxut9EIEmyyOBNFcuD6vp+lXBBgypdXVDE9If3nGa95LBw5mz80g1wrwenErpkaGpUt5dn1YjecvKyNibO52LGkuvQoFvUCOy8JQJDZcMzTYFJpFvE4VXjuVVdXjqt4o1G+OuxbPzrhTQu+w/GjUAHvzahd3fndXKjBOd2/tuCrx+kkL7J4fJyZdzmto23P8K6q+hSe/YT5Mrx8o1XrLRfZRhlbSVy6noxnOFV3lbE0SDzVNHNDzOLHAly8Q3F3/CvVN1zLEpvAUmodR8rqzq0jpn5e91pUYaSZfbcL4Y6lB4mZnrcWT6Y7Q2LlvvbpJIoQWjBKYKLEEz7PYRsEUT6i7CegxIyFf5BtbXPXccXrqVFnIWEJsu+Mxx+kiJMSCJoThFodoGrA96EpV8QFpXRCrohnwDpC0N8UD+38h9HD3sMF4RJbYBEfPQss3dDZFGRbpX6g5imKgT5HmO7xqMuGQw/L3EgmwuYzae085MTh/eOI+MSYtN/zWv6nmYKTJkBPHjsMrOmo1KEli0EYqk8DbpJ9ome5ffxGC7kH42DdcaXiQ1zLx96738Y6FBMtJVmAviipt9pv0/cT1gIiB/UqNIR2IRseSKpJlSA2uBwS1cGWfPZrLijsKNUG0NWubj9aZSQCYAVoMDO6Zzt0mCZxW1c9PgBHoVVIaHlgjjHFMYKDIaNfpCmMZTEnDfmvraPnUOMt0JJdTkJmgdyOVqyHfC4TJ8t/L74smwrOW5GJh9ZlGgLPRaUeQBRXUqM1XjSioUMia+DC/EcS91ILx3WfinzZ4QyrjSDflUmKuw2wlSQrw2xRrm1KnsJHH8whgn2mQZqNb8i93M1ugIdNCe2b8I14U4OKp8hE6nV2G5y/VkWBIn8JPv9xLGcu4ax7eUYKQdNoxtJ6EUs7JlaHRAZUBeAZknR6tzfUgxrZluKaOOMxjHz/TbtWm8jkND3biLi7F6rk0feYvcAeNtkMSPiTiozUcQdi1w4QN7KOyQw1TUYhNskZZ+SZVBKG3R73JlkAFrYGaVaaI7TbwpdsNKVKcJSM3Fj8Wk+rYZ1JdADw4Gtz8W0IsOWzfKAwvsk/Ts80JA52JtjgjvdlxAn1PD8m8Hr/aLzwlB6kdSAJNbre6KK9OwKJL3a8pTsjIBhCYU7H6Yh5rnZvJRopeFBBC7SQeF7POtdQ+be+5gucWLmKMJorSGDnlYDwjeI62WBPPlnU9M7ZZ4GVp2DzFSsVToHsOttXEbloc2gofckNyAzt+An6UJLAYOsTcpmRM8niPnD1WeCuWsbam+kDON0vz/VLClYAmZGHkRpvzR6xZPdzOec1Mbl4IkQhgyWvuu/Xu6v2q7FFAfH0YECytAagMAWefKtJTEcQDfC9VFhK9LvjkF0yJ3eUe3E4TcR21sBjBjfwte5wUbByQRYy1IU2CnQl67hW2MtoyVXwb5vDvJ686JZdv4XqYFBN5xX4vmFw8/0xmWu69VXhZZtrt1WkwOWJVK/C67fnaT3
Variant 0
DifficultyLevel
679
Question
Ralph has a rectangular puppy playground in his backyard with an area of 10 m2.
He decides to make it bigger and increases each side to 3 times its current length.
What is the new area of the puppy playground?
Worked Solution
Area of original playground
|
= l×w |
= 10 m2 |
|
= 3l×3w |
= 9×l×w |
= 9 × 10 |
= 90 m2 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
correctAnswer | |
Answers