20255
U2FsdGVkX19w3Kpd+ZGf7BRQ1jIHsCYaOWaSHdtvJhJrUsBtSI5nRxNn9CV2ckWIJiUU5jW2XhDxUC0Y8AB+YgRNb1v/ehwXbFhXEMUiQkZ/WGIpbonveru0IF7oF8rwGdkfr5EW5UC2xbcl1tQsVorwgU1Rr92dp0JhTHAL3Ah8qfsgxl/P/LBB9yaInAARiGrYuoyiW5HqpdUvQ6RhH4c0ri11ClmSiw6WFP4MSR/2eF+I3guGq4FG0kRyWiX7TvOddui34lNmGcWq8X+hncbra0nSNZ0McYQXKhfo0zCQdoAaLIj69K5SAFEZpK5ZvUjTXmmc9yOeyxid1SdKsDS0ycWxj+MmWlcmi3WYPsFLcGchPkWh/WfZeWJ/mtRLqfF3lU/d83rHqsSkJP8p9laSJX0sBddHwyD4KSJoWUg3VNptgk75PtHxdHT2cU0ZSGzrTQGGJ691KdyRzA87GMAPn03k7L145vO5eg0zkZzSH16/dhJmHFg1xuIOBHxw3fkRCI3tF7wFTKdS3uBvzYaU5ROpXDJVcN4+bKNjb7tQ9Za0gX5Jt2B7UPwlXGDDLh9QWMdDfqba/Y0itGTAjYxbAKFKiT7KWiXIOEUj6pyZBs1YSCgaqPSkYYGW1lfoStBKmY38lrOZtDKsnklMIFpPCjpR7V6eMr0l09DvCIO2Or88FQHyUpvB99IxjllNoVneVSNalTd23knIrv9tcRKPT5aCEzmW3vFnYjpAm6/MvO3gxrFQwhGArPYi1fBYym1oziuv6ohYpRUutAR5ITBchHz3c9JNebQ1EJTij50B4vOfnGbCqibY1QWdVm58uRlkeAG1L5GR4lx7xuzuugK87I98+hwDv13X0XF/pSS8vGMo5QWutuFt+ZHnpLqaOMMdeQObR6VyUFJ90viuyA5CvYJo3tRAW4du832LE8c1Ob+f7DdRYcGtjXit9AL2twT7UjKY3WueL1FzAArTDdsNFDsPW+1xwmjZVt3MH90qzzDoAiB7BtkNXVsLr/CrugprYJLV6o3aFrN/JLhVJpacU2kJoCpDX/fLfHLUbYCGyFYkGj/zFDsr5sc0mSmHIFUCSoRn3WbJG4YsSSpghuDuZA7H7MASYUIlSRwVHJhAVpZeq75Bl8GQ3v6sdgUXRIDz16bBDGoAF5x+ESLuPrbt+iqKVxp8rFdeZxW9c4urjxO53KBfkBtTXXnfDpR+hFLmUrWhR3nFlglDkCRaax7lsVGC+7467FNBYOpSomHqjm4zSmbXSknZP87agD6EScta93vZc+ONPsVoj071DiIl4uFKN50iqjJu9bsBPYdrvDzdyQ0UQEW1RQb4LZ58tN7XO8hAn0mEcoIEG1hE0RA02gm5q9j0hj455oLJ2eyEMxd51qmRl/4/CVpTo6GFwwPEDpKjGh7sYnMSIa6d710Lfnw1F7lqvCiulvRyw2RxI33VaU6skxt2tzwltRrpQl8pVLMqk7ibuocsGuqnfNwsngkZrY5G9kN5VUxZF2auw/yiMYexAfJoVqr6oK72bLk3jra/SMKk8olYmmLXp8G5QZ1DIxWZDi2gRiIKbSDWuy+4T+I6MbAhV4YA2b8c3HHRpjOES5PMqoSn5ybMeIBvDZWjDP+JE6FLPmO1imYo4Ols/GA5jfjePnmpneD8GYPukTo3GpipJul+gcP2uVKVBarcZLDcxk25qf/oeK13xiMZHFAuOnLYxaEVNjNN43JSCGK8tcKxZOEg5f/GDvLmY7Ov0qfWINL4O3WIgL4o5tsRr5UP4TnCBmjv90DVc9mB4jRoVD3rnBuAGOxW9hHb6rvAjdXBDdBayDsN8MV2wPMH9Ebjo3MnOXhMMLNFUcto22TnfZ5dDM9gA93k/e198P4y943Tqn1e3oX0lAJCGlWWYz16X1tV6ydgcg6hrKjdp6RCtG8lb2Y0zHrXkYums/WCcM/897MqvxnYizhpmDdzqHL2iqikyhxYsE6/sLflCj7LRXGWFhtPh8to/8fmqDCtj1pDYKj2XXGN3i6/wdGULPPWXiikDJjlZHjeLHXbKRNGFs1nkIu4b5jDLz8xTpiY9VPX2pooiLG8/KblgfEXzFxkFgqGQ0AfmaA8HyNX5CD5LmMPXQ4Oqy07wJHNaXnNO0thMwCgsbxvC6wGALF9JSt4jHsmMjyYU38eF1bcPcgepw0huF2SzabFSWrermaPgCPM9fYZZV9nL6UO7g3Pyc5fxNeIVGCkEEXO5Z8oN39jCe6EbNsyMJQPztRt2bUFGeknJNo2ySoWa9YTH1JLi4fyVmoTJx3yE1gdBLyZIVowqoK6AEMYt6o12HmhTeyD3NxhpnSe4Z6+n41D7I0+K0r1yId66zw27WHlxwlXS4iy0VUQHXoTrXprT6QlXw95EPdNnpRLXUHbBB8yCoe4dhxPSCTWIl27mr6l/kUmuVseHV/THwlje8H5gDbFY0Xv+NPcfcTfBkkNgdr7+PT/YFrSjrKtyFjENJxMduzT5G0tF9/xSd1AbljxuzhfAhDQATZGWe5g3xeze8v+z+4FwX7dhrT3FU/c4h5taAodeyTtUmW9K1KQDpxkN1rwHfveGNpam9j59uCQkuz5DzbhC4GRxHs4Rh8vQt/HWx/G3o2wcv4QNkc88EHkPk66UNYjx3I3E0KQzvHiUjDB2QVT2/ANVXFB9idg4L4qFF/FIMfgdcsIyBIx4ZgycVxoiqSeCApnHXLQkUXAw73p/pJxm0JPg0vw9/uSfu6145+SOGkwggAdKMM/3lWhG7gJ/Jx3Sc5vMo4j9OOI9pJXxMEUCRtjRLf1kLUkfYjv9LD6d3NHj76eswViA69cSBVCj+XH6DhMkTP46gBPYlHyOotOxU6lwau8ZkW/XJQn7RDJAaVEeJko1wM100zB7aQbB0lnd+iHbbNJaZZvmprWa9g6Nw8tElqvC3nRyh03Hv0jtbjxLcxKHo/aAOP7cQ7E8HCvvlHLiIXX+fNKisbcsDSIqv3geaDXt4qJ1To82g3+h7M5B8gP6XW0DADPThIoWZWUAUPpeDmA3+dVmUU6RE21vtXryGK2OvSxXi236mmYkeugHTgJCJ+Yoe+3e9plXA1jtsqs8umAFDovf2m+jjNsz9wGeCbLI+pcBsHnqumkwQy8Lv/v26kkDDkFpPIslc3ibFN9SEqIQnA0ZvcxpIDvSAwqMYyiF3MmPxWEygpZ75BaG6DdtBIsIvjXdaPvuxCYbhYjjefhB/MdxwBD9BRbOmKylVPmwYAAM/rOpSaUt/n60286J7wG+ELT+PDd6se8JHJr/XFd/mXmZVp3rG8S0LxKOJEmoGpCglXfKHdM4h6wOskaIPCMCIxkWzStP1vWIjUdskIGbSn0LTIZF1fuMW9xFjNpSHPUVPpBo7QdRBrcUrIsvOhwDrD2++bL00y2Srf92BaJ97V0jfu5gwtz6QV1b86o4vgYmAGN8zOJG09RDGqtjeSa0VSwIKaeahgU1gf7dZyJPdt8Frr44vxq458Ad/c+PbNX3DFXpKcNAI2RKTm7DfI0NE0Wy89lg9QunyDul6qWQKxruMs8lHQsUR4u147dTdz68Yl3riVTHMsdqSXCA0LxaI7z1l6u0Dx8m1vRzn4jxvOB/EU7MyRj6ns1TjbbIIIoHDzlHGYkap4FxxbReZ8/hQxRtLgNTcbSN2SPnpwoKyi+bVYOUhGZU5Vl5nwS51wc2pvgZYrz0lC8P2+bMJKZVr3QeSGejS7/JgXJ1cd5JXN/nGFqjHaTNaRxtprQJlic8KRB2eWB2T602hewN99jXq+T/jBZ2QHatoQ2j2VEb4WM6WPcFpP/N6aZ6X3jk+PUKwaFsDt0zNQOfw6pm0+N1HXsHLGMZQKfxP7y/q9NIZkI1Bl6EXxpLiHqyVNIX7CAWxww2C9SEOR9xA8EPAdBmj+kxpWp+GvP7lGTvrjZMzZ+t7cXY6GWR6e0Vw1zTmvLZyVb9ieKXeOCkif37ugNtQpBAyQshz1FTDbybgXxzFqwBbXGF2HpqlBnur7wsohMb/4L7JPniqWkUi3Nbkhn9nFagEcjrD+rPA00102HSbjumbfTN0RPTMNLbdcY4e71/puAdN36hkjXoxz/fDkttks+NI4BjzfPCsE/TU1XlczBrYiY13va2BwOv/tkuoRy6CM+md57TarOtaltc+iksp9l1FZF/V7ImskDsOYLd513qrM3+xRsmU4v8wfK0fAPMU7h6Vr6mwm2RheAD1DUpP1LmQtkYWVo0OYHxkbihwHCnAFzbfmpjSv8KiavtieaxqePk46Fi63SCBofWoIwGotg8awML0bzsFB+Rsh2szIzQdNhLMjx/j+iDTmmk6V8PzoqTy9vF5VlLYca5Pe+mLOT8gSNqPr89EmDCAgM+Omil9bRfD5qAmuxFDwEzGztKxnE9OKikt5rSXKPUM/wQZ+MUS6az28/3wJguq0ive7b4+ot/sk2G+WiYlfFQWtRN137Gbs8zS04DiWjeTxDa3NikFhWAwPefWsyKXEVV7oa1D3JhhzW0fuqGe65KitV2BkX31+2uijOmT8AkABd6ok1Hg3tU49Lg8knQIv0OXUVnSOsODgnK/Is0RdIP/S56gQ7Bj4Pd7k58XqicS04VbmXZ+cIsk5VAZ9Y4oC4nE/Y+wB6LABVW3epsWBbdrj0Vqm+pQP4Klnum/qJt704P4PzTfTaAp+N0ee/ToD0nRjdvzTu+mKDW6MerN1taxmZ5i8n/FxoBBpWgq76kGV58TFokN3sK58U7VhnZ39E4/LxXLheN5GKbxwnDDZh3RBUCTP46P4B/Mb+UujWtTgkH+Lz9Zu1yYGfWF3bqXrLE4j7VQPt2IYU70L82W2TyTGwLAs6lx5xL1nmlxr86L90B/srQJM6Est1RRXVNFSlmrQzSIb39oEJoujKwuQQQ3NWDTKIc7SfP0pt7SgQNpj9AHYpZCrdpJR+roGXnhWbXzcezRLnnNk87iyYiB2bjyjw/WOgMIW+0fAGfXtcZHtFlWY1xKOQkQqA/LenhiHLpNaENhq0tg2FBf787ECJ9Rz0Ps3MJUnJd4KdECtcTpeSWDKZhmDnDZwGahfoYlZQcbZ4+L8vqXGeTdWvVyPTzp7y5zUEZPhBmzdXABp6Rxdn33XteNVe6hoNjZz/1NY0b8hdFvAkuK20wyuey4ywF5A1Nu5ZuhASFUt0K4lIVE1MPQekWHcUxBEEEqLEx8AtaOz/z9Ddn5N1gVC+qOBa+8KekpW3P2kdc1NMHggd4sRYWqMI1eeZFA1RlAr+PlEueWbhZdXph1ZoOOpQULKggUW+vYuWETpzdRcU5Tqag3+Ah5d2BtTYiI0EnbxVY/Fz46nTXi9wkES2Z6jJCpCt7eB6SjKPmiNGO/Gp3c6Y20JHw6gnbI8Jh9FkjDngJP8PboECz1UU7qHdksSICwiJBgCdl6DkbwnIkMAsTRzRh9fuJmmFbBaRiNT0J+DxFFeiyHYDH50tfu9VkJvBCTFV1D0iT2mXyTTErGJacZ2EnzdOcR8uaRYVjufQOKwF6NrxMkSbiKdX2oZPrcznuAFTwM3uYux/gd90Lgsdevmeh2hUwtigo84zsYTKn1jBRtD+uKF3xaDXY1vmI7TpQB83TVZ1g/zuheNXQY21yo8ku7xeMiev+wriGk8XrdGyymSvcMrKNfiAFAIyxHtzBAqS9MoklMoCbDE8Ksw+dE9gCSzYGRiO7lDLjMkJYZEya3LdWY603K4b06+5ibn+z6zs0Xab3yZHy3Rqg3xw9r7jO91RObx5ID/HWp7/T1fUVMzdBumK3g+F7q6e8dswfastNhiMvwquTjFWkhPMfgF7cvDytJdWSAPeRfF3VLsU6eP6GsbaoD1SkMkg7Xk5gblgAcuq6jkPYGez3Ksw0AA6e8k2LqRDyfKweTuB08JRUqEMDdfkrkT+TkAGGuLLF6N7IWn/a1a9og21+b7uDl+Bnui48arx/0/V4p0Iv8yhwGR238JlCyC/ZN7LrvnlZflCZi/smVt6e+gAoOwlSvQrZB9X76Om+HTePrPtl9/thzvfk4AVwrwQL8AAgASI8+W2HWQSIbNkr4vo35NxplPf4ibHDxlPidvZ3tfRY5CbnIEa5XNwRTLAd7VWnjg1dKdBofm9gqbgGxifbI0qZdhEKWc+tYH8dGqy8QlY20yUGHzWEEPMT1C4eoa1faDDiXcxgVto6/AwLVS3ySPtaoMBkdjBSCG1wLGvLoFh7sNSZ/QYwAfEpTqY0/qChCYmT+ADvbgA+6aZ2+Hi3NDV11+vk0KhScyVRisvirlQNDBTF4NCRRAZWhD/TPkKM2fkbdbKIMwda62YeeLk75gXlpp4MrszyWsy9VCyqObf9b+RlHNGa7yrE7D09N3Xe0Xu0Wq/UWSYXxo4a2uEdVzNYX4aTcoyCftbagW60C5D9Sq6YnsMHH91W1/y907Gl9w8ZrCR55AU7WtaazOEO8YXCE7/14deOmJTPIf1iLMIIFauO7fWqIXTy5oXsCxu3GwMi2qz0HNq0AZX7BAb0pNkN6nASIRhxs0sJQDopFGIfe3td1pDMyTGoLie5Kvk/1R3/sv9fbX7Tlo1z+JjxxN2gHkgefykgA7JDuAtJVyj85Ew8Vw9XZYHYTyvk5wRC7Q316VqZerTBsx6bpWfpBBshoED0mDVsZURSto4OkTftaPMYADD/kQ95P4Ofw7VRkIqhG6XNgcs17SFkeckeAM3FyAJV6ctrMKwDQDRAiDuNpvW2mZ3upNlcdtRtC6IJvlyPWsq6Y+fVJdVT9kImoJNVjxO40KxU7SofyF/AV/nEB1I9YOBw0mIh8EJWX2cFOuqCFvqct2InykV8KewXvacyvU4ChayciGdTT9Il60rmliF2efnKEAgcg+ctsw2hF8BzWbQVlZr5ODV69XXcbxz3i8QLguOrSXqJaIw5JhuEdnY3IwlT3eUVLKvpXPiKZLJYNBY0wf4QQK/aCkk2IC5hfXwxAVVP5XtKV9klPXFgViwCitZouvM85A2H+5liGfumlma3mqO3Q3/v7bSqqKHc/+7ceCxoNj594iVWDG7+lbe3KJd3tnSPPHXMe6+R7xbxxIu+66zVZy382HZ9OWwkoYPNVxP4qluf4TByDoeAqFZn8Xqm8ETUIEllD7dEszog4cfe8SRkHZG412B9DSNoI4oPqMHZ1yHhi0AwImLQyhDWp9p/spL9OaoM6Wz1z6ciGcyyXPodc9wChtTt66+Dh4WI8Hrgw7PSaswwY/XCyunnIfZrSLHvR0+XdKCY7qfIOAOaJU0a7Km4hqYg2MowJB9t4KHe7DVpz0bYizo+Qsdwsh5myF1pr3y7j8nHg9YKN8vbh1F5FB1IGGUoWHI7wUQQvm3UE+rF/GjnLnnTPnFMB4fTuGeIzsKuiDX3wv0siaM6ChzgKXLPz1nkYxh6I1XCPt4aK10cBDFDC7ZW9r53FW2jFpPzjNqtjiKE/o9JOa426taqk2cvxVWu5R90jktYY9b8Nc+WzYfefwMUcdUE7Dm8MOenlL5zi+nbawdnrKZGAG6wRrj5szo5T7JPPP8YqgL+Z+CrUTP0xMCHLYlFxcf9u5n1hQt2k/khIVDPdHrSDR5pC/uTqsCxFwD8/UUfPcNtoBE0qVc/eiB5vabJYkugm3zwJzRmvGjDwOkvYo4ngmRxPvDmPD8m5sHy4AzEIZUqJKtud5t/EkBydb+8mqrAMzf1rX08UesuwcicCS0eQ9fPrVKRu74M9/ZPJ+Kqg5lNWVMtlqNfjyvLo69Yj13FY9GWGaTvQKB9YTHIB1xnZ5J915a2NwdCgJPd4imkRIaPu5QwWD7xZRWZThNbKQq+/rpT7gL7vPRVjqecQ+HxAKEaBZ2/ZSpv4OWuHp08lsSX69Y/UKfI1ytOi+yIyeGYoOF2PW7NO6p8plF+N5J01W/0TwPk0WRQAF9WoFaEFdJo5/MLG/3XbmSwrm0WOl2yRGGERNOWKnSTH1hyzIcmdqfKedwPPxDOvRRpZ+BrFuyBz3Fq9QGhxC30EUkIra/ZBCQ2/1W6Hg+lygTlYbQ1uhgHoHK6owSp5i2dvG5TKWn5pl559Ltr1zUU4v00fi5g+g3I9cHZD+HB8QyQqpGaYfc44awVPeZoMhLXlxtSJkgn/JVsVpMWEVeF/2jtsRu4jyznye0DDpyi730kRioHg4t/nVOnkBJUW9L/hp/T265XbGXMrsvDYLWqYL40d57sJeVBDmDX0d7t4aglUW30bIaTbKK3wW10LVN0MtAEZyElDMr9ganBjVFVKymfypyMtzld5FnTJmCsYJNrJJMQCFRXFQ5jo+rkIB69LgJewzdZCNrSIs8Nkl9tLqGOKzD0Rfl9C69FqfUk1SGaNnAKv8a+H0Umroc8FdN+0tRR022t+yaROyClZCO/NP47DsDvZZfxiKCccyqHt+RXHOdRn6pM0wmQUte0QyXORE3QRWhxIUuxcEkONFoU+YkHq1sG03wjDZQOKSL8XBM78+lRNufM5VSVR0TPkMS/bekPvxcDNiTpyEeIxnPzS6TdDnBx8mYUc1VuXJk1kAFmU7aBJS93yoL28eyaa/RJcEMvGHAFijQnJjr6hGIefNQQAyAmlEPmcMzGdBEoKfFwxbc7XcBLvU1NfQiqRQdt3poMj3uQfc8yy7/96oeqkfftR0GiyLaNN94j/YE0vvxHLA4jmrufIHdsIRca5tzaVCZnSoCgT41IccyXf3rOtvXTTxSaeUJ9zRwd9Ef7OTFo4l1MonrrmffnQvwI4V5upMw5FTAU734BktRuEDfHkFXySU1X01UePc9MErHLIvLLq4/BqtA45TB8mRhG6PY4ZetmNPcHdrBg3Mlko82w6pC0jo5RChGQlF/y0jiLeRMxE8EUkPjyR90x3nEE6f1iWcWlGPFhvUADSpLs+jdG8g3hNd8+BNvmnts6TvaIuojBGb5ioguO9ad9elFxyYx+hRP/F9b8X9sW231F8CToB17xQ2VlN9a59FRYVau/z2UJGSJ54iUW9mejpv1M+hOh0GuZbllZShumc8CBjsLWmkQ/pP0HtsXOW2jpqrvfCHas9PWg/nS0Ib6R3frZdlBmA0Aj9qPUv+ETEgG5tkSMe9c4OtWo6sv9f83ibEtnfvlHH0zT9GBF/RxuKWr/8wYUYkLvmPpYTNg4rMhmZjI5fGBqJ8goVLl6pU=
Variant 0
DifficultyLevel
592
Question
Jarren is buying a spare tyre for his car.
The table below lists the original price and the amount of discount on a single tyre at four different tyre retailers.
Tyre Prices
Shop |
Original price |
Discount |
A |
$40 |
40% |
B |
$36 |
25% |
C |
$29 |
51 |
D |
$28 |
$3 off |
Which shop has the lowest sale price for the tyre?
Worked Solution
Consider the sale price at each shop:
A = 40 − (40% × 40) = 40 − 16 = $24
B = 36 − (25% × 36) = 36 − 9 = $27
C = 29 − (20% × 29) = 29 − 5.80 = $23.20
D = 28 − 3 = $25
∴ Shop C has the lowest price.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Jarren is buying a spare tyre for his car.
The table below lists the original price and the amount of discount on a single tyre at four different tyre retailers.
>>Tyre Prices
>>| Shop | Original price | Discount |
|:-:|:-:|:-:|
| A | $40 | 40%|
| B | $36 | 25%|
| C | $29| $\dfrac{1}{5}$
| D | $28| $3 off|
Which shop has the lowest sale price for the tyre?
|
workedSolution | Consider the sale price at each shop:
A = 40 − (40% $\times$ 40) = 40 $-$ 16 = $24
B = 36 − (25% $\times$ 36) = 36 $-$ 9 = $27
C = 29 − (20% $\times$ 29) = 29 $-$ 5.80 = $23.20
D = 28 − 3 = $25
$\therefore$ Shop {{{correctAnswer}}} has the lowest price.
|
correctAnswer | |
Answers
U2FsdGVkX1/jb3hTxHVDD3NHLzwfqITQ4+lBJxUhvpPENIN01tneOlasm5nwIWDwPst9tsWX6wunZcDXyiLfpN3IJVP7Dfm818LDlkZnHW5qy+c7QiFCkms9BqFHpGB0+n9ef03NcnHhJELodvKakKV4zB9rrdMoaIuByrvUSPr+l2Ss6U7cRIrxNfrT3iKabx5S4SowTTHW/Z0nEBpDzlwICxxkmBQd75SwXFSFmEL/23SgnahwULGT7viAOLKzHvzL5qPfgVPnL6SPx3RkF6wOSEUp9asccJO8AqrNosBV6dG3QEgRPqWG2id+VXdJEEeRguzE/dsFDV2Z8cxYGDkxy3wqJ8XtF7PcH5CBwBnjrW3FjIVDTfvZCfPXYe4g3tZWuc3oakSERI0RK4MDZ1lzF3xngRKRgyFzbcBG10qhlO7RSBV4f/iork0+PJHugmAIfMo/FOO7yNYtA44RemqLqN37H8LAJ83ikoCmloJFjlgKKlB4AY4wHoPYn7OK+4YqMenEVWKCxAw2pOQPKAUtVMwdcrH6q7c+gW73epfDbrhfE8cCyn55+ZR96hRr9VswEO+4LsiwV92t7vF20E3goaDHWeUi+pM1g65RRMGuPOYJ42N4uJKgRu6sDYtpmtzsY615AGD9EnsH5w5mwXrLYcv2Je0KVbzAlG3g+xEAKXJg9nbwdoDTVI7x6aOXHNEBevSvJad2LTCGi8MPhariUirEJjNv/lh/dDkwkyaQysXbqmkERVnNLqtA81VIpsWDJoB1ocz1z6FAp74Fzx9AYUkinlIByMPg4MFRakGcD12M/zEjf0IJ1FRNzBo0rdKjNUW7hE0VkgZKsK3iKQzaMUmAtp4jy0PJwWeuI7LSx2/otjF4SQ3TQCalsLOGbheGkQUKPZnLv3JsXVzcNG8IQDpgG4JxaBNrhRtgT0h1R45irt016ClRfIpkBJFIe9HATrteXn5wGW2ouIytb8dF8EnxWKpCx+NoxXRALTMOSdQ3GGfnIj6WdqL8ZUkii/mN9aB3l1o51hGlFdQo0CYnMUzltkCs3wgXQNgjQJPUNKgeex2BXcj93WrW2fCeTpCnzm0KHAuKzcY2D7iJmHEVv1Zq7J0GqiaH5cyfHAMzlRAlrDybzNdXFc/NaJMK9yrkdoQPf/scTcutrhXNj2aovAF7uGlc3lVivnKwBDuXWGuFAxyeiucjwRQPP7whjIXcfhsSrUNZnttP1ofJZ57x/zz9tDE9J6iZkXlCI/AfRBJvtiUFaKKj8Z60jD23+uf2sn7vz6sVS/yv5/eO3IXY5+QwCIIx1o+oltLcvPlWld0RUBKZ5lmMWpbccTpEaFUoOA56FbkNdjqHuDTmoQnoDue3eC2EM6RQSuJjgea7Hd76CvzIHyyHbyrR5zC3ytE5tV5apz0CK6KRlSbxXVp7aWUrlbjOUabzu8Xyu9nnc58JW5jn7SFk8eDbQVNsN2v8w2/cNG9Ki3ukAe2hirNu+OsBHYspBEOf5wQrNtKnf/YYe85fhvGJGk8rKjlgml+tB8FDaU7UWK3/R+4CZbQty0aPqyD3ZEKZ4lENsUXKquZGKRUm0WuP5I2IcZ5tEhFOy+QYK70co5AYiTnRBOQk/sZUSkN/Xht6vfRgAlArOLzKe3jFPiHYqYjF006oXGBUDy8VFxTQFgNrBQa+pqVTtF6wwoqMijmkUwz12h/rOESPE4XU4/WYaEvuK9kH0lIQ3PoBMRrcdsqCr5+EdFQtRDvCKsshnJYPX4JYDTCBuyB8kbl4qG2vglIxaFkWHtX9K0aBU4tGyRwlPXqMZ4Afr9owDmNIQDbTgy9iCrlwmgCfOHY8Bhu77NPSd/W1RJ/fbV4jptbi3lHR/fGBmF3B5kYh9Dcn0azHxiZM+F0yAXkgs4AJb2OkyJSK4Mk+pyMB7zGk0OR1/g6wpoufitbfdGpthNPlNUutJpoVY+Ucr6RH8fEiX/bjE+9d7n2C1lvMLNWRPSUwav+vaGE5zgvOwUqo1eB1fWVISpLK1+H5YqbJ1mL7ij7jO8/5h06SLkt/ZGGln9tvKRjKd38+XR6/M2UfU0eNGy+rYyzsrb+MdsIenwkGj6wDYLccCpP4wTxxxEz+ettOl7F7p1e4/I1DlpxOBrKtq3Wo494JNElL/mwdeWOvIZnsY9wSNLXTGdPhSFLzwsSipxvGRh1fp1wijAEkIWK6wgaND16I/zrAkQmTy+O8fDS2BEriqtHQDQh+Y6goIWVwXAF57vGsAgZeTjNFZ0ZH1Yq1v4X+zx5VnpMzqd3RIu1ahXj3F+pCRolBndeLIS+jIyWjNNpWutSU1YMk8BzHepFNhnSnxbU5eDxtIsIXFXLJc2GvbLYgE0OSLzYiEjWy+XIQcbeYsz3f+HZbdI4ilLNBeOOniwZgCmsh2PyPs5/LdFwyi6XYA6HeOwSfs0b1piNXsY1Lm5KXJUT8ZZuMkm4RW2GfLzAgloq9de1liGyylUaHt23g05S4jnR8YxjA7H1ugHLZmUNy6pENIA8qseNmApt9nxFw119Wj4QINnumPipevuTRncSCvPqymt0+U6GYrZc6+CNbbDRHAiWoYHeQRTXbwkzjnKe4yC1234pdGnMKeArhLHvERvYFS4RGXu7+4eQ66jtUHNJWHcJD7ZflzLuySPzBlYARtb7PMw9HOIUuPlC7u2ahlTCMNaJrq3frsAgKFyxAmZEHDJ7PqQ6DQIO0ROlx3vljynkS7mSCi+p88UQ5QBhxztI4laY8tJLwAkhYdnCiK00JURG+SKgDA17x8fNqs5VloOF+kH89oE4qaTF4kBY41OqsvIkCzqprUPY0pqe0OxYaykCLzzff231g87lv4cVS9OzWgROwd8JKbeFMQj6loQS0DS4B0eSVBhlx6k/MTHhpTA5EUj2obSUBfiv60v2hG8D5J2B/xrIFi0fp2uDn+xKXTYqDNU9kz0jIRSeRJMWwupilh0Afa1vT/E+t7hR6yzRvX3AcehUmSTFNAdOiNMu6uXtbMVO+pV7+JY3PeIrlQvRStVcDYmngEUBS8EbT6EfD8nKbfdUgKt7DUVlmQYay7f3r0nmhwi6ztmAaS37kvcpIxf+XvUVF7ht/b6b36+4wwsUC9A8dkj5PGrwMRqatQr1RULUr0EDwNYL5uvqA6fiek5g0e1cTOBDmlc2CYiSCegat/VpwoHjz5ujK3vEU6mQTOk/8m/6FL5AFVFhHTnvAcoYJqdO1JPQILxmS5pSmxGRI/bCob8plLRs9qStL41NjC6AyAT/mlJ4n7RM1eg//4Sl/X5d/XXb0e4KOTzjx1MOegOBFSrDullewSa10o7ad7qviS/ujgXF1MOiZudU16ZS+4SDExY8guPN53IG3ruCm8RJ4WwtRbTwSbv/LLKXa3YoMsQhme6xOPLqWoQUvwj+V6NfT27w1p6QaePEjx3QTUHeJMp5YZE/WoUxX5EHEsAT8n4AQuU8d3A6Uj6BSTpH3uvy9Gqyp0M+eOQcgFwDOL7Lr6qGfQzOadZh+77p6N/JlRZ15G3iRQUXhQvnMwnah4TtiUd/qNKxvKacS1/kB5I1/IeVjMfGpXSTJuEhdsUC4ZqSlfL1E4x0y0rQJVKvRefljz3xFVPlguQrExcNQ2GS+8z11o3OOdRFSXIAxSoULe0YdidlNQbUVtiViOjtEZ2H4fEqypdudUgWcKweeNgCwbf+HXZWkFS42xvsPhSkDh55giYMGMZyb0CycLjFtdXXen9+sqZN/YN4OSJ1NLy0nGloZen+GlBT8deboHaeoOoWv3/uZoPqC0tFxqwzbc9nQU7vbevfXJ0Wa54xxbfex++JeZrpATYkHwrNIL2loDnUnufmtVCYCVQPg29Z21xcI3nEGfxkdciebiD+eI/wX/4m7NqVlvUenPWHzrE3suUpBrmS3Am1jPT22ulth+nDhYsBMWSQ3+2ZCnBEeuuOfLDI3Vn4+LGbTLUHIUXq2X0mXUEt7kxBjLcdcIGimFAziwFLdRinVId+4PB1aDf8iQUzvpQ7hVwZD90V7MIOzR9sS6epGzBQUFCidQxMtBGRlBfDcQj1p0hdU+6G9MWtB6YQ36l1rdz2gxmVvc/6/Fg0C3coOV2QZ6TAXGpN8sqjLFbcrzrsKIyPgNcbuQaV51qh2eObfaqhBi/ncZdY4UWzzqMb9KTgOjEyjInhGOrt3JIEpLaR+qFALrRQirbNYJqEeWpZHLpEEbh/ZQ47MWj+OoLgqqiyAVPs2feZEeNfQ553vD6i7TkajGZRMeUVGE3vTDmSq2rdqrVuhxTwjsFvQ9cTd+uY9z0HhZEcO7FJJA5ZEcRS25sJoCsiaaYJVupGl/S0tT3ZIzgaE3F4wy1IkrCTipKqk90BbYzRVq3gNQYqJoxcuEiMnMO6AFp9XryHsPQj3n5P9cvN5G5Dnp02x7g5CzhfNVa+31S01fKPFpFF1RAnaVrQc+qwTTKtlsvlnK656SLQ0vlnSjrtE1WdLdZGpoWn5/5MnHE8tK06kI0IVHL0GYeeKWR/WmhhQaLj07BJVUpxSaMF4dfQJJ5qewzvXfFKiqB4eu1JCeh/t+raXt2rnGC93wPbuz8QkOC1Zf08e5fmO86i4fAjvGDeYv+4V5Z1MTkqj4kBiXpiG4rrhpljOprADlkfiOFq1zF18O6k6u1qSu/IuzqnC0WFeLZ+UncMhjGUg0vORRCoznC6DtnvxiAw0cc2wwEedtHwgHwq4Izr36CBtZakJ7CEzxWsulV2ELFzTQzNbdcdAMkt8Yyhb7SpbM7ld2zA8dvCz6kCCnRbMii74WHbQPxSqpq4U0+I+ts8QEigf91t5Fo4IvA9SBMAhtMG1f7KwkDo5Ta2aAmddGQq7GON5ZW4Zd7JGuH6qAyoPmptiuw4sbyUbyVOP4q99BG0zahaXeZiRjH3ZLHA13uF/t8v5jVVSxhjIzbEbsIGcxk/KeHmMl4Eb1H08FjszQEx5lN3i/D7jmXvVYvKHRTxpOAxI6eQsVC93ymE9qltWAekPm+9IMdWNYFu6HAzy0s+y9gOf8xObCIFO6YQzG7gywyYPACOZhsvoOoDQFw0bTOdHyut1H45Y8hg2ALL/MUVROf7Ehk6+Ve8dMg259fIcrPlgqn4Knpe2wDPIuAQLjPw68R682Kg+H7S5tAgpwPGpbmBHYIpHHLUqf0+WVd5LARiOuaT2asCPjj2EyPd9mGUejCbehujR2FcwPaUHrwHAAPHvsE5WgIHubdIY/NMdGwo0A6ZLF2yigRiOEyygpMEeCY93mJOpx7785n+wzyDsz8xM4lEPJfZjvZ0HI3jCRQ0Bnr1MNE8Fo1rwBniGuVMpuZROOvH3WWprUWE/hugSHadnCNxtccI0R63K3iGpvZmEknVAuDGM0uBDI9LkMkgdD3SQbLyvvDgeJJaeQr/uTGBJqulszlrukSQB8DIZ3QECylMbWyba/7rh44kWFt7gv0nXCnlvMjQat25BG0xLHmeAjOoFROo22GYaU1eeUDsGDhleCfl/p6QwE9/NBwGijWCtfj/n4+XBWOEkmvNoEs56KUyz9wHSc4hKNr0pTTK6kM/9cByvIMPZtpsPgMUdQZo9c+Vx1XReH5LPEyUbTdoPECAaVZoRZyheA7HsjWziUolvyDRZaJn4h0cy4QvPBZIGeuQozwIvcxTTF9vAB+e0xO5gKcOh9UUTw+vp1GL/ZATeuCAZPRqj/wWq63OQfJg7zwqMjHBxPuzo18Ke/eT1NwgVk+T5jDTXD6ddI0UHYGOHAgMaXdrLncpm/QAv9ina8wE4ZfDw2Tdx30mHWdWG5n5J4ZitbytYLepyiT3FTamg70HW0OUHDijkDuTQjzB6nGRdJclYtJdFnM5JWB9dY263jQTWeNsgVkEcsdQ1HBn1A+xOnBid3FJAGeXwzMV5+DC8sFfzjp3f7YKXEER9k6mlynWP8eWy6gwRHBrOSSsIxzYa4QBSu2eEm7TnIR9inCzl2BkBvoT/41kf6UQJVv/lAhEfvaxDuhQL5z8S2Fh7zEB/MS4GdmB78lcn5e/7l1mvypbxgzPG68ckrUuvNu4gJogDmjUTFM/ZWx6bvp16C6EMbaGzXaibBCV6ZHAr5CdqSWLY538aOjyoEP5DCYSc9Kf59SiFq/BEtalGDRX4PYHV6ZkgUBPFqkfZzLZk3B0zD8dQDx0qiHRvk+Xdf6DPIdSXbWFOXzvWmFu8cpUgyElsaTm7ISOLBMkRXyv66AhHQYEaAVz9qBH3oUjAeK/ucN4E4bTpRN7u11dxKmHX9fATmyCT8WdPD+hqcbOi2yVhm+k1jFSTT0qEwzuVmmBioGubywuivvDOqpc7VmVnjUvKWpmeLHoGlMuDEn65bcnKrmSFZoXDOVnFJ2LYlr5sT41c/e5QYYwVx8z6IrGMk+8pzCP2gGDC92n3Ogo5SbWiRH+3/bqgk1RLPfYUKsNqgGqX7M3g3YI4E/d9LpoRPRyuYRN1ELKtWDqwwYqt+QOLngtxeiTs0AbW03aeODFQXKzWh7U6hsLhSkaK5EiEnLrUmVgypq53Bkrz0ZBsagw79x9oHFmP8C6nwyr2B9t/ZmnyiBcd8Zydq/41JYwTG3W/CRcRo4n7g9+xtYA/OO1ZbBj55ZPDtTis3V3QTmrwqAPCe5w6EhqyWyD7Acx0vX0EEZ5AdKNkNwJp2GEjNjloEkUvN6+EVmS3unQViy8HARd2Ya1NTVpBYhfmr/nUrcEGQKK28HBDWHEPS8Xp6+90IueniasggDCQ/hGrt34HLjHNji8bDgQs02WL+U/OflJuPNWtr4RI3mva9RXLvBSJbb1TpJ0RolvobLW/KO9odabTbiWvjIOflUV87UB6LFP92Zl64WFPv0K9o1WGBIe4knqCDNiYl+db+jzln8SwprZHUHYW1uob8wdi8sQ/6+X1AoKyqLEKHmtp1enB5ulTB7EM606UP4iBha4XFhwroleoI2UTX0g2oFaQuaznO1MZn40cYc7qMlr0c1OLC71XZiJgFlRcZOWlUfM30gGvm7YI2geLlaytIS+7B8Ap0s/HUwomy5kqFGCQk0zGiKkWheU/gIYd6xEZaaeW8P0GUuAOQVExtRENHER7XozpTEbBF8j7BaxIGGECzb4GNJoPBpdlmpbvJvPm7AByPut4GMI3Mul5f4i6tuhfesSqV6aoeP/muHc6XDaVMIm6NFINDebsff94wUOIgCDyWjqsfHbI8jq5+DcPoUxJP4fVXx9p/6ehCUBkdebzt742NaHzPMkrCBVimQgPRAsMU/iIs0VBR2LGLa+IlM/+8iS1faIrzM4NFe4eurWpfhsj2rQSd7eMro7Yzmf8NU4pQu93wFaapQ1m946bcDx1ryi36hBrl5gDY/ji/lnFym85i30UmAfIQ0oIvS0LygH6JK+jq+1NRgz/TO0GmqAIU62yMeOs6gYnMULAamfkRJfGZZiJTSvT9ADIM78hU8eej71oFFFXzKqZ89+s1RGqCwQrr+ig69tamlIRKxbRxlIePjwiDJrDmYOS7ll15Ulz78oVIrpOBH7dX9sWVVHSSR6pelPmDr0DxoLQ2cdOhqDItiHnWmk9AxnaS/wbrr3XslyNrF7fYDnPR6I/zQFz45LvY6S+cIjRJwsVPWgDTHbelG91AM7hXjPkTI/1y6LF0XzGSCJ1YcuFIQ2RKQxIGrQm5Nkdvyrm2Q7hQ/7hilKap0ffKcNXuCO99tv0C+qIhsfy8AvC59fEqkxS6KL3ME2S03EL7PVMTKHDamTRhWf0PkJwMx/wg81KNPer6nIzI0SGbiIIbehJC6olSym3P7w4X+PMz0YwIteKmbYgy0WRXUZilnq2nsDEq0fH23tdhUa0hMZYOtUnbrhRfkWZlYv4qc2RZ+TfcrUri6BTZp3D+ut4/SMD1RMMzkOKOp96hsHCPcj6YC7+uXIEvNlAJUe6xzZC4qHe57SSIfQxPfAfdTFKtXeRhrgKVFpDz2eUuN/9aKkr5TNTqCRuo1YEz0WDDvEf89qU48yoOjjdE7SDp6XHThRWNsUfj1SE84J1/IlrjfsbaCMTB23/Yp0MbFFw9sUHrWJUx/XkkQmOKUwvs3UwW6/T7PFH7keZhXns/boujMmlSPyTEbD6hauvli49HIg83Un59r9p6b9MEIsf7ZlG7OUkBIlwO+kI0yI6t8yUesjZgwZxlB82K8M7hMdZQnJECFhc3hz0CFlbeqDJiYEuNGZR/MG+ligtJR/oraADBsv6FnaGi+i9bHv208l/kcP8TEM3KGl20S/wPhE38G3aAbPr+0K/bINXzW1NND/LjW3/+6GrGGWqAIorDcdTnKxjGnXTkn7UaPKJfcC2eOiXn98+MhURMpIGcbfV+UjTdW49NR0j2cIKhBTjRBp6YO2K06eDi5DYOEQwfU9IW28NhGnh+C7VRLzKioKOE8vk0+U/Gs+rmt0bmQOzpYGRCZ2WciyIWVmP6aZEBIDiNx7LC4ipqLU/Bxv8JKo0wkZbvlCyv9IxvZrt1MHuPwtSrMzIsuLmcQzXfiA26x/KarMg76aJ39kweoMgSKDMvH4dcd11cL9XgEWHXXZj12itaGPnQUggPvCs8WSHZoFNnzNflMXJythm+i00JkJjjkbxQpyYiVYJ83Bc0Z5rjgfBFReYw+GvScvI/R38XIuT4nhdfJBMBiEW90eccTg6DdEQeajMCoZokNszxECGgwLCHvg3GBIXZv83FtRYdgd11QZM38ZbtAoN0Xf480gZpOqYDaICNzZQhxCPAK1IladE4khmuDrmGxLHRGNrK71pw8K11TKfhhQPuUvC2gk9SvKZ6JULbBYha+dbZHcN7cd5QqwU8K8BLuQVtUsOX1q14djGlOkOBxjTCeC8iGQ58JFHCgaKS49BLioKJkKTTJVbNyeaYA33yGZe9VzYresKkqUjOINh6XCD1GB51QWEY8mF82jNo6rQlAUn8Gn6cKiVrBpdNk5X/6Kvu/+xr5mT9UxHk0P3YY+LRVxxAk0uRVaSTJScMsRBuTB1FeD/A+fR9p9jW6lJ2fZcwuJrZoAnshXkjtIxYqGukdg2Exq59iQBKW8QPju+3uD2HQjhAoJaR4BCE/YPUvv08VGqg8q7bwVTyzXIGS1GowwX9gN+ETDw8DbMjiutTkNz/KCNFSAndETAgFLtqP3iSVL48XSIjQusVNCl7+xy0bydhQKa14h9JJOZxTxUJiwavtEvGrpLxmHqS8l3F8kSMkscVIio9aPj28p87hL8jV62SZvYsdjjBjl3egx05Wxw/zBQgqKsR0IZQHb07EVRsdzoKVkw9zE=
Variant 1
DifficultyLevel
594
Question
Bec is buying 40 kilograms of dry dog food for her bullmastiff.
The table below lists the original price and the amount of discount on a 40 kilogram bag of dry dog food at four different pet stores.
40 kg Dry Dog Food Prices
Shop |
Original price |
Discount |
A |
$220 |
20% |
B |
$245 |
25% |
C |
$250 |
51 |
D |
$230 |
$35 off |
Which pet store has the lowest sale price for the 40kg bag of dog food?
Worked Solution
Consider the sale price at each shop:
A = 220 − (20% × 220) = 220 − 44 = $176
B = 245 − (25% × 245) = 245 − 61.25 = $183.75
C = 250 − (20% × 250) = 250 − 50= $200
D = 230 − 35 = $195
∴ Shop A has the lowest price.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Bec is buying 40 kilograms of dry dog food for her bullmastiff.
The table below lists the original price and the amount of discount on a 40 kilogram bag of dry dog food at four different pet stores.
>>40 kg Dry Dog Food Prices
>>| Shop | Original price | Discount |
|:-:|:-:|:-:|
| A | $220 | 20%|
| B | $245 | 25%|
| C | $250| $\dfrac{1}{5}$
| D | $230| $35 off|
Which pet store has the lowest sale price for the 40kg bag of dog food?
|
workedSolution | Consider the sale price at each shop:
A = 220 − (20% $\times$ 220) = 220 $-$ 44 = $176
B = 245 − (25% $\times$ 245) = 245 $-$ 61.25 = $183.75
C = 250 − (20% $\times$ 250) = 250 $-$ 50= $200
D = 230 − 35 = $195
$\therefore$ Shop {{{correctAnswer}}} has the lowest price.
|
correctAnswer | |
Answers
U2FsdGVkX1/fO5pyPv68n/J3RUkPO1wuhq1u7c530xIwTFT+HMrLX8k6fFT1a0BcyNcDBj8tyaqNfNN3lCFysmgQxU70UxWyqQ1p4pRJQ3QWkDYtYSXHMFIbgP+/Zup3/H8hcEfxJfMpTIQwgps5uuCS2kHWugvlkU0za4TLflInspSeCYi6r+ZASnxrlMh6JeEvQIkv+O08udQmkhTyQLJM07HIsfGsWrZAIKYaB6+Ux8smnNaEzpPL6X5ybs4rPkb0JCBffjFL9Uy6qRgaGZhr/1nAuBRtLVO5K+btp/9FCnncAOj5M0zwNsXherIV20Od8xfHHelAG4y3H4e7xiautnheave6HU9ejUyQ2vwO0ebfPf2VO6SmsmpiEgYAvcrYmYKdg1NS3hnd7xROPo58aqJgRu2DgERXljVN9Lat7Ag6LWNabTd5DQS72LwaiB+Qg/VqiohsMACiXXS/LMi0JG5l2Xp7shesdd9ZmjCFskCqjTjSAbE3J63QmdwSybz9kul8UUEg2s6lAEjECJwa5f1Ii6/Woo8sGDVzXvqrYSwnDG/e5nQSTqQ1NTr/fjRMrbIYtiotScRWEXhE3LAkZgzEQSKbxbzHb9bZAzRzlTCp531XJVqKLpwEINpsqW7G4She3WX10+ESR6c1wGR6hzjUnIY21C9PBTzdku8UF2uJsZc/u6ID6ym+SI9gHbMqtArO7wCQGHdNvwsCfw+zHeBQ5iz0Hwy5hNkD8OpU72O1Sj7ogIrULgM3eBsdUbB7g872/qliyMjHLK1Pu04U+jcikiRoXzwVHn6quMROKCWQddc2Jy3R55j3hKxOdiPx5dSTzp8QVZRAUQTmQ2rYQpInK34/8vCBSL6bEoZfFXMxQsn82B8t1gs21+d7nyG/zTqxHdHWxz5Kl88oguSaNjPHQqdSzxG1/wPJSHFhnZ7mztrayn4uMqgSUBXmFQntknyRreALtojBdqy42fjZUj6Ixe5qbgCuBNKuvFLZMi3lhz8zrW901gkns4dfdd/w3pvptxg29oHh8G4BhHdMDSdU7JpaLEyIj4nk7pjWsqWrEvztvldc4wjS77VfYwDxJU40rCUtTClYKrnnmJofdVcdVyEus5aLZBMKNWI0bnnxaJQUGRm60WRYMWxNGY62z6rfRbFgkF7cmWPNooqSuLa9FmYg0puweaO/PPgDnpum8uNo9nCNZFO9i681zDdSIs2hzFwwQVrT7GMMdj0uiX29BgOfozyg8HGm1teGR144jGN3p3GT1hqvu5s5ZouzH2drUqKLtRmady4/Gcp5qjU5No8s+eoZmgg3mnev31DaYg/7XH1PwNNycZgP0azoihyYFOC3vsDGa/5HTyc9qKTOO/9urfBGEKNbAZgjVKTgMG9Zjx+7IfLGnufOzhX3h0s5u75svoYZLryXY5vyD4jYegHdofK/G2qHA2AYP2G/5yTSLv5x01fcicpgp06c/unHqC3nieZqyuxhuJLceYdVu/+H6ruVhg5oe8MHG8Ieiql5q/5qbiEMMubfljmW2a3iWyL4YGvGzcV49eGWB3A21b9/eJVNb3MJG9wdO9jb7Qvf9KCR+PKFQGvdmc2UF+SeGH7FxVwALSVJpPg0SmfywlnLSL9UIRaVt+MYfOPQlUAo8Zl10nmgoIRAMPJFAiuCYTW8g5/IHl7AjhNOORo1QOhiOxFx+BC/8bnX9EM1tbd4iBqtgj5P9JA3Uh37rSLOb+LM0PHP/FtrefoBoTAa6FKNep8iCupcOCEM0WF+xxJTHZuRmAlIn1LYN0fWNi9k+nMCSkqGQPFNsqFa/fODJ9xeNhkudrMIh2J7sVF+ITijMgeInHcm9aoSmrJdO+zN6cgV32sK3Z2Lko9XBeGsBiA/ZdP0BKAhOUemoK9fEhOxpb2TWlW4cAl3/0Q6stULTtWBFW9N/jYfPsyurpqUCi0Fdy+2bRnEWAJWelu/DemZotz7iC5OF7C5hHEBTvC+CezCOR5nf8VZT0v8milNMWTWeGtFyCXWsX8ZkmdaqlPXP/c2C/xZPLYVCbFAoRADwAfovC87/y1kO7KpvmU/DNUuPMj13vSuK7ZABMF0BjxivpVFb26awj3zrF2ssyESpiFoKzSXshdoYWDkmsoXIpYxdeHc27+Rd7EH7898M+l3a4fieVBVoYn61lhIRZv2wSo37blJ1M7rZjWA3fPhD8yXo7NDFQOCFqWyf5rCy2POwUpPgg4pJ+Gw1MP6tcgDlaei5Y+9hnQHUpgYhQEK1G1T0/O+PvmtW0Z90NQYXySx/vA0HYDfSOn1Yp1PDhiUsIgxFp5mAVxaDr80+445qfG68OwcKqEcFWhon/YFOaXfBQz6POHM05sKo1E7Y7nPm+8ja63we+TtR1BBmkVn+SViP05L5m19sY5qyMcio1zzCHglZeQ+zb7qNGQHikvPSzZN2y0kN+U2GiweXN/Grl8tKG9twPTICPTTVB+/71nQTRvAT83t++AY8hmlNLA+kvDTXBTrZjC2K1ZWfl6ZlURxgM3OmO9sZ/bhWlkWFAJQwjU806jiXohPIGRDjdPZp8v8qh1LddttEyk8ZAGnhYcZwvXv0lCQk7wlWFGeahmnX+fSF044mP7lLX7yS5GkSNotnDR7+wWBghVLf2kElVdJyeM9g4+4y14hllcwpc2uSLzruT95ZI+FMkTLzl7AIccDS35jALDL50/Mqu6WelkVsIfHUz+RFxbHmkAL+uGl3wq727WkIZWekCR9ySjnCi4lQXPT/5buXA+wvglYN5KDaDPHjkzb7CpKqgffzmnUjBaYQGBZeVMoiAVBkf4Mh+QYvxAQoHbI/YMaY9kh6TrGyVocglFKKedlaC1D7vwws9S67k4ZkAnUwiaAxvMP87KgT8+FHJPxvQ0gUqzqrjM2R8lQpzYzXCVDFNM6MRuOS7H41S272DZ9HVpM5NjKaomVZVmP3sjVFp9rcHNaMhMFCFPHA69l/GnR+Z8wRytB3dp+BC1264slLAgFL6fuCvvihQ+/01e7wpI95bzYJj9ZAr8XlN3kYL5ZdNLfEN5NNOuiwiJpBJKWTEtZZAvBJKD7yA6AP6WAlkWf4zEGgUgkQdl7dCW97Uh5JgMvOVkZBOiv6cM0kf/evucIPXz4aynMfhRQO+w2Di7JDMbSk3ufDKnt1T16Mf1GnYUNlbyJDiAsFoq+EDuL0+zscNYHHdXBb6OdO5oA+YquB/H9NayqwUCCGGvy+BB8XrIJY5vinrRt05uIcXTbIxbDRG8uSD7Vrhb4HA5oX2QIJK20n8KFynGsrS3uSu1QeYdIc5V4AKwuQYHOsyS8Zd2u7MtlaNYBBCBlOsKfO7P9PFzw2pDhxitFCA8sQkpbQa1oJkG2AQBDJc69hYeN381cTpcHVNZKcGdno7QRuf9E9+2Ad+QA7HCi8CZ/yZV0NoO2IZmpa9D5lipTx1cN9AWkCWyhX7gcp2bP3brXxV5aUT/iNy+sOH2hrclEAeTeDtLTZeeq5am/jhh5ixx7t/TDLuFiCB8vfOSlYynfI0NazFJTD3x84VycMTdV3XpwkX1dwSOTESsxtIKg5NIzZInarFZ1hp4IuMYqgg8UaIscGGFO/b3ncHPpTfYiOjLgGTbgmKZEBZ3aVyVDZRktfyZGCOe8xtQuQ+duSzf0yIA3/tkZw/xfjaDb4DfptQLJtjURCpBcaL5YK1Q2Mm3MoUtFHuq2WPTtvcvQRRZnmojUKRzA6Sz1KDmDcODrZKtjNUDp0XMt/cB2gvAp6s7PBMmg2r1XAmDXLwHkJhN+4PkZBUFlpsLOHSldLePO9GODM7V2Pya+d8oxX09XWm4OkAciw3ePc2USxS9KtSY9JF+AvkkfKT6BvuvnfIQrp6c7Tds3VopxZ3Pq/TeQuO+PR/ZciJPbvSRvV+5OIsB60Wx0m6kM0epNNjMHNDbwoa4g7A5+7BKg8jHcp1+jv7lcWA+4ALPOzd/+q5wRM3zSx2V+9s+4Z5j70j5zDGO5YBApALC+ui27LZqwaDBDNS3CTjvZ2G+V624+FTl8ewApVvfYTxB4RcTc13G9bNMNBrlsjZs/OzCwOWhZBl3qZA196MUP4L8fk/pjTMTIKBVCQ068FzYVPdxce1LUSUMbxHuelOza86O8T3KG4eNcM23Wg7ddU2H4tRzFU7M0rfilU9IKDT6ZDaFJXk951G3fNOtjCOfoV9TJ3MemAQ3g9rsfEkIvwOClRnHaOfzeYJzvAxsyh8DD4iTFImrcIlBaz8iwgzRgYITHdpyoVKQuzlvIJBXFAyjnLNgSl0rcL96HpSmXuG4f3N7QJbbwUa8GBspcfrrraa/hxWbiKE4BU/LXyT8nUyjDnaYjSMLH14KvtIHpKa2lx3HTEfGJr43i5QeST0yRbkxwmzXYRSS+iFNrDsIQepOa9ArBo7kZC1FDqpziirzXmCzObHLGa9PIbxnc6qha1OMWv0F/q7bKtdr+mxIxt7V+5cqQYqohWWImneSbx3zrDktK1M3ODef5JK+1lDdTkfyCgKZf3dypzujqITab9JC04hpycf5AFUHEc0xWhxmO7KikNiDHVkpjbJ+CXGlmMLmFbowpPwB9PwP8uGtHk0RU3Xd41CwXOAM4NCC15c6d21l0UOr8LpLg8xyL28w1ViRwaBAR01JtsA7002jD5ZSuTanrHVcV2NJ0P/m1nkphdEis9+Zhd8sEmlcymVG7TcmEytkF2hmTlFFVwXxrbAjykjR3paFD419TGl58C719k8AmYWOn8om9BnCvTx1NT6QawWeb6mfn/glxur+W63mQZAjPn1tNcUWKQwmqR3u5MYXlnP+ILN9IQ8mUqlKEqlzaWluHCRhHk0MLEttGWGo8b9pv8B6qk8Jx94yr8148AkFCW02/WvvUwC9JTJx+TJX3xP8xeFJYXQIyiO3uMqgX0E40adqAsv637cZDI0MJ7udWtlDJOBA1lAvb49CIb2lm39rbF2f6FTB408a996KleSqneTTanjWGCsd9b6WTKyoealE5WBpiuSgMQwEKtw/2k192oWgH+IlOmeademwnoQHM2FoictfsMRYO0ce7EXJGqix7oKL7dMiGCLHnKzaRridfpvHRqx/GkAnKzZdnoMLby3oVm62cF8pQKsZSgfTLX8yb9D9j6pABM4Fji8lHNC5Qtj3BEFlPj6WEFM9lV+d4RQ62eBiwyionza8VuPBAQXiMBUePHQMxDvc+3tUOKrIxOxhPF3DjzlLycZaorjqu6hVZo3CrSAdDYkJCFWyxTx8gIFNNsMNtufptL4Nh8ti2on136/AQbNlJMFH25CKsJm7mj6O0zo3zSeonUjoG8QAiHiBE6F8RUenqvwhgMnHqNsysUhVHSza1HUpUUJxo2LR/y9tvgaXWcplc2OgK8TieL+w1ewOl/EKlU5FynKm/UJ/2tbvj/CXN6wtipf5eFaD0hfY0aAWKbHOu52anK8ApuELYaFZkm5u4hzOkr/2j12WoIHlQvAJtHe+cJUNsUiOTQXNXyaxcCpbEFlnuwyQL8ZtbCkJsFSF24D/03/aGhGFHTUpfW4LAxhUgKNxSqK+9RxB8stK+H6dSCWypErGrTpplRI7oatsRRQjo3JGi+ZrAS1qViS5w8eSiMUqjdkcbGzbryWoz0L5xAR2CUc02kOHmJKx/lKMeDQoSdeWASxVYyFsbswE3rYLmX4SMW3ZNFriauNYpKpm2zVxNUtxanUfxkPK9lZDpq/SZeBoZnwNZK61aP3Nkc0+cfJiHX7xX3zxWYlid+73bzhLkLYyLYMXx9jQvGSDAMxr2L6VOe8jasbmx+6aQJKa1tMuFIg8dRYRP03fuB5gq6O3vQVkIV7KccqpAdAmRIGAB+z5LiuYytHT5nI8KBZi5y1GWK/CtCgU/yoTVCL6VqV70OndBarh+iqbDDKjI5Jr6ghhUXAf2I/13iC52/YDCEc5iNxUfjzPoTvg+aUuhEDNNXy2A649avjjKUYdXtJ29p8n9Y2hHHbkfir6gKj5NpnxYZpURHGrn5piAR6xriCDuOhzVBNnqcrEqZaBbrukilXEjxCLBwprBSHLB3wXXe1mtPSOf9Okbes3iQPnV7aUBmeipDqVtyqMYNadHhM4zZXu+4/cbX9u7RrYNWqy9rQx4DqPa4nFWgLOdqtPaezXn3WQWVGxjYhL27Pu7pUQZ/AWfvYKoXMQP6Y8zAyGm+HrJLHQ4bsYDi92L+y6E3WU9fPgJtOHTd/6ZS2Irp0Td9Fkx7OinmLtVOzk2P0TzuAd5jLVS6hmRssXoqsU/bckSaVl06ENy+kV/sASESH8tcF2+62HOYyTdGk6+3dgAN1dM9WL52J7dVLPqAgJpb3T2lZbvBLp0r53oKY8UBira20GypqTKsb+sxK6yA4QWW3bT2V9DS/a5V4HMtLxfiElgrEQY79UZPBXCy9WzYsnJo8XV+QskBJm6ZBpQtrk9PRps5rgbphVdDo52MbyV+Q5WKcLUt2EEkcJB2JJ/PPBD9COoLMZyKVvISJhU4jnKVBlGUlO3Sl3pAYSu3zAnNCirLNR75g3yjPfFGkpvesod6oTIwYbNq36IfYFPG2s9CPlXsWXBnWkZJD0+VO+PTr+AppSGpLAUPcPWS5vwI68Hf6W3gSfMrSF3aoIT6s64l+qjf0smem8dxlQSV36mg7JyiEyR6z8MYIYHpIIQNhW/R8IeXt2nkVQgYol1r1Hscy5mVioytsuJvRN86JeV4O3caL0Ei8liIQEfM//NDNa9rjoCl508qyrCLa6obo342sbmoRzri9uy9Ui58Mc2QF1bSJxYVKjXmmV2Aoes159y3JhhMfcHqjyDgp89iU+MeWVV55yK2GZ9b3EeMX6u9Ngq3uL+XzBYSiyBOBnFuLa2hFaEqiFrOREob6+xGRgsAM+XYHT9mYHqiH78qqmVDJh7U9aMI5h3S8G5AKTSCVFBfyiKsplcmAxPu75f2+zMj8RL/MzZjLt5wGAJJDEfbVmuLdGjS3ZPwTj/DrCeAVcJUIrH9uvEzi/uoTX6Ka/g+nk8Rmbj/xElPQVCtQK6jfFq9Z1OhL4BMv/nFOwJOWy0KGd3cEyl4C+GBWcGBixhQSwEY417FCPZ8jScBwFMaojfGbptWxzvMll2MbsyICAQNe6oXS1WeeJ5DfTyGVNXxL9HzDGlTEXin1UKa+jzYGaT72z+Hv5gjqn5EpEo59sdfs1lniX8mTxfhsAszeuaYMxSfUUp58GBP6Vb4W9D58RJAQDpx4Raqon8o5r7FhFEYHY5iFRDyZWsgSSe1tAaqkJwEip/zTfiktSlpemKKH8+LltmNsaiV3xlrEK2yNs+ptRmHm/9XEn5mC0EvuK9nDiwI8efqw0uWyO3YlFACrNQI9VXv0sLvB9yV6dRzDXysdpHikD4UZibL9A+nUOy5w2PjmIDHf9nVkkmXcA4HhoxjXsRmzVDK3CfrwiUDDf/wqTJe5PiMdXhkb3S34H+UX1mN3LlVn7XD+9WY3Fp3elz8a0iaSAaY31h5ymyuJdTD5M0p2qSdMRLPZJwrWsQbxG6iRRzIbyrdR/dzQZ0nfS1liSNUD1tZbX1Nb4axe7ffywpBTbNIEwWoGxhsYIjyZExUfJPwUGgy5cJm+LXqNz9BWwvFIsbHdjRhiCQDsQNllDUAlaCINH06isg4jV/uwH6ynt7IRehTNgBwPJKgB1Xvq3C/RM84j971smUa5YXTPCJ0P1YTDd+bVt+s0LWLCkt/+HLBobpJ2wgQk7CHoD/qWAIPhhxy8TZmK28Uf/UqLebpWoCXIGg+ZxTk0foU1IaetV+mcV5UjjDG3ayr2uazSm8HkwrxylSq0Fy0FwNwadi3Rgeo+cONO8WLvUlGF448tprYFp7l3yrzix+Nsld/hxuWajISdElmEEWQNFBmyks4d4N7mDNXUWmEiHYUpx67qhAOOU1OGFB4lPd8UnftucwykchnLKgxoFtEuW0YKDYrvjBiJSgiqJLu/ti69hAiaguhAGCvptb253BA9gPDFzk8Fn/iv6BeFO6BEDFuT+mYggvs9ufn529LofYPrIs7wgpkcXXx28YFqX9fikvLY6VHAK/M+CXzdzg0ddVY3ObJhmlTsF0MHl574YqrJMELtLfo0WPAp9XgXghvpqyz/9UKi/tupyewG4TefA+uS5kOUcBXsc/V5BTWkKKhDyycJ5gx18dC6F702ABOB1pFs/W2shmYtwxX8qDV/WEVGDmNjthH5JbGvZc07tfD7lCVigv4IKhI+SXYXhmngv/fwHP4xshpfDUTz10e+MnGVJHIq3smKC8Fet9VLGuicfqpOIMbG0dRbAuy7hGwnOZ0qZ0WadCx+hx2phRAKyBntGiae+i2Pa57LXNp77s7j09YfdkRPgzzRO/3Oc5E7vFrJsgVwpSuJTEOOiRVBHQslJ56tMgJSHKnayNXEpNRPH9pTzFTWx9LTlzSKfuzw985zJ7NSLAYvHl0JnBheoDZYR9mS7MBaVn3ck79xhB8nTQ/SR+iGs54SL0gYFHYospLvWgIl7GdAX0kcGerqK0DwAbsfwPebH7YyeMBWxYrL+0QEvIpSaAdvGp2lDiWlxAWVatAN4X4TGfVH31OCVrVwerv2tOoyFqyJLS+2mZOa8moUzQmGUHfbym9qjjieGucE5Ufq400tstpPloYORUIbFqQnRJsmO3wYDLcu/nU+WStxMSfl5lLzvtjPPjnBsxu/kqVdspyjQSXPmEhUlDSmhpqlP96A5nmF3Pg770Gt113jiIXCz9PPx0NdYzrTBkpaLZ9r6tMmSpqmyIee9nD2bS0Q7kDQHppPbp61+oMSAgH1D4oM5Nd1ej9Zb2EHxoDz6KpRqh4eo5S8iFCbUAYJVvSmW8RpZeaRJBGfF3d7zVz3F7G4v8IQWKvlnEx2IgpukMegY82SY4p1UWoOpN6VJbqxzE6Ed9cSkrWdy0ZKLyCAA4bkclwrbCbB44dGLwWLEdjEDCb2pym1pIpj+S7a1DEyhT/3LkG4NHNa3TGd9HaYqt1mZe6xs81aBENe7d72AZTWti9bJuXbY1ku++LLI1y83dHFaO7mZdAUy1X618uyI9J0Cw62FicuGHwEgPGx6AgsyConYHTY6d0KB9a45x7QTF1e6Nfkc590u6G0jhrcttCNGf/MfwHAkH6zAgf8QU30WkLJOJ8E28CziE030r/kuK+oWN+SeSdsos1EXG71i8jMZMIEcIgoNCAYNNaNZsHuOjoD8=
Variant 2
DifficultyLevel
593
Question
Arnold is buying protein powder.
The table below lists the original price and the amount of discount on a container of protein powder at four different supplement stores.
Protein Powder Prices
Shop |
Original price |
Discount |
A |
$75 |
10% |
B |
$85 |
20% |
C |
$92 |
41 |
D |
$80 |
$11.50 off |
Which shop has the lowest sale price for the protein powder?
Worked Solution
Consider the sale price at each shop:
A = 75 − (10% × 75) = 75 − 7.50 = $67.50
B = 85 − (20% × 85) = 85 − 17 = $68
C = 92 − (25% × 92) = 92 − 23 = $69
D = 80 − 11.50 = $68.50
∴ Shop A has the lowest price.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Arnold is buying protein powder.
The table below lists the original price and the amount of discount on a container of protein powder at four different supplement stores.
>>Protein Powder Prices
>>| Shop | Original price | Discount |
|:-:|:-:|:-:|
| A | $75 | 10%|
| B | $85 | 20%|
| C | $92| $\dfrac{1}{4}$
| D | $80| $11.50 off|
Which shop has the lowest sale price for the protein powder?
|
workedSolution | Consider the sale price at each shop:
A = 75 − (10% $\times$ 75) = 75 $-$ 7.50 = $67.50
B = 85 − (20% $\times$ 85) = 85 $-$ 17 = $68
C = 92 − (25% $\times$ 92) = 92 $-$ 23 = $69
D = 80 − 11.50 = $68.50
$\therefore$ Shop {{{correctAnswer}}} has the lowest price.
|
correctAnswer | |
Answers
U2FsdGVkX18MoJrcQyh3L1aUSCTi8scIWPPj7ZRwhraaDfAHKf4eWHk5USCQwlbj9gD53ykpDHx3Mydz5Nnt1NoLWvIbT/xq/blVquxRSGi9Ds6rl/akus3fzK+xSMEwhw1rYmgp5elfOPuAJLlxqcIPbtn+HPBbk/F6Uka/3hs2zZ3+5fwBs4WXar6EzeVTiH2K0Uu1YfGvV5//pX6CDbbbsZ8vc9sEt7ibtp6K4Tbg9EE4Hw7bNNfMGRjN9USLBOcsAczGSFCVLPb7IanWpL59Mdjmncprxp4MgUu/BLIx63zKRy0P+n0AeP9T6zWXk89Qs5qsblPlzMNFW5ZYYKxkyvdFhR4uEjAgdTPUB0Otlt1ty1HZQc2xAP+rNl2dsTFdBLe0IZdT5D1AT/R63Tg7T+jZpaK2YYgKVm4oiO2//6LWn3sJE0+A2Wyv/DxL149Df1nYnTvxPhscPE2C8+IiJ6kTkO7l/JOW1dmNV0aEy9yNWMTQmi2BV6eDrA1otONLynXcdd1GrcPXsPx3cWvIOC2wPMihjfiaEBmZmTWKiOeYFBmrANL3oAA8dsMaxiNuh0+bhBURo1PWbth+IFyppXDXl1bjmoTLvfb2dz394ep+4OQfMnJTVcYdMaAOYpByERm5Hi8PGngygj7UZCR4Dbk/59UcByH9j6+8/ejJQEiHIzGdKgXVKsMFtHoxB38nAUdjOPxNOiFAVS/Ob4H7JJGPSwbqi2Ylw9mytNh+UJZaeCrVMggNKWmUeagWhTRIvwi7sfbdlpYD3fN5R9S6CFuK6BD2MiBSVWxKDN6o4IsLXJ8lcYtA0b4cODFgDDkvftcnWYAI9SgshReHDhLsSQd+tMP6HN8JWSe+IF0BKRsUB/lYLfTNgnX60tZrxhnrrx4gHBzIHx1wfRSdQaIj2yny7BQvFzufpVO95PwjllVpHUWXs0g5BjxNpWIvarwr9p1FNmS4ANY6Km3czOMoRJp2PQ1/KvjLdfJu4HettWxP8zqf9AGpx/HHQxxAxeBUpDnM6ZYEpPV3uVaHAm/VlCsONAwfz9GRbe+cnqFMCF7SpBdDdFj0qRaNGvx6e2e7eoCrQVT8ZU+m0DQdnMEYmD6AC7+hyJCFkEAyka9zR5OXQIUMav9h4P7nRA24yb2h8fkeNN6WzDPkCuob4hFvcPs7VXA7ZlY+ibFDzXD5tPXJRBxpcHSYOHR6jfzjxkmMtC1bolMg7EbyYGoqt5PVtbu7YoBOQ/Ae2O/Tmk+np7edHxLDfBXkknkMeSMzXB466OasBSB2FH6g25MiT+4EOO588y7suJFhut/OaJKA8qL3UoA2+ukWFrQG7OyW8oKMKmjzPPj3t10DMhFh9ZLTmIajqMHBIhxdIKvm5nas3WKs8vj4V6ny9fspx2rxwt2fFWJEp+AayaIqbYtHNLqc8GNxKFRvkawebeoAs8j2jMXbRH+1pk6eEp8zPYMOA0ROlMSk4Ms25JA7Bn8ygmqTPC2djhq25tNZyVxw1mR7HD34zxiB+9jrv5/WyE4WmTinTdHm5N3XiUwDaRJcSVdCUQIqw/efU1blYn9UT0CNe4Cuouej015bfnwYcdjIahkQ4xYUftSEqO2WbXObObOlFpyxrEZH0CRFjGshSUH3jW97u/vm0hR0+dijmyACSx7rxaTarcHJNTIEIRT+hgkfV57hSepnCQRpWl5RXls2z/uGckXThEili/zileQjtwNWrfE7GjnKLVHrwzTO7NrgLb3UST7/zn7JT6wS4p43kxQjFGpTZChHXpR/Bb+r4xSOld1NKinBHJK1Lpfp4UPR/xWQ4nlFiZaJ7Taa4hFH6NnxczWovFpwM16yzomuq29PKlRLwJjISabYi4f/k5S2jIft4pSYXIGYuSJS2nXNREH0dabmpk/xWuU1KTUy3rBSafoHZOK7AVDoDgZQXWqo860GIPUGZahPWtKlMZDPccHZQil1lzRa47/UpJI+MezHyXIsiTxubfNtYutaTZoYUcR1i6lqX8oc+pR2bkG4DlqEZ9NcDLOUzGcRcEqYw7Nlw15KsIWKjlPh30c9VItdWJtgQSgGVkar8l6mbyi/GNXURXE575eg4lmJldYivdfCy/3F/vy/FRwuYj5p1OBaiSo6HlFqT27ZfkSDkochoz7dEV+9ePWrYGzVTFcvz6x3WUJWdLVo3MRIVMJd2ss8EHoH9jjEKpILQ+Bkax+0ieDrYGeczBECdO6nfa2jIwFGN/i2blmgNKH2/aN4IMCiLr5aaE4ctPfgN0FjNHFHPCAkZMxxA8QIvecxyLaN4mQviPafLNj3V32IB2grmhQzkU9e4DeJrrC0V9okryYdYOJwViK1AvC+/butlhbVpa1cpRnlkufybPbRlIsMHxcRHkoi2AjP3d96tBYdhY6AL+yWg4doVGsKZ74k84gQLw9CIVH6s2BsVKtyS1DIsv5mqZvHWPhsgEkU2dy5NNQXA9USmaevpJX1ev0QOnM1GMtZjLYuz2Ik8H0egLnFMvo59RukI0nGar6ZhYTEuUCYppfj/rO9c/fNZ8wHJcJWTCKWOsCq7NHEDiUnfuUcxxEoRvR+mnqhZMGSunUL+8wUKkZO3jBvGSue2QNFqNSJMV3gpHHyCRMAVtAz6RvS4w0NMlzyG12xLiERpeRWGLo2Mp/QtTrg2VbChPWmsTWkm6lkqj6d3LSsD6hvJA/5x3nZYhQbUDpBb4vWh2Y/GpwnEEnDWgcuCpTSrx+KODkc5yQZWHptDu/exvn9sH6DB9IQ6vNO6XDoAeX/M6mmZK/0YUdam0NPVW8VQe+ed1Xi2A2aJ5toYp2kHe/UN5xTCf7Gl/E2JU7gwudMwWX4fLAe2m+8/2u0ZSlgVMfHjr1w85+asUb37xHhTHBIT0JZt6M/1Sphcg3LJkmPV+rUMMt/oGeaWdAY3uG4xLgxP7WARRNoFZv0qSRHu0/JFVGp3/sS5VncuTXSQkwDLgl4cZS7jYHoR9gjLHsuRpxNkf0Y8obQ1YenPvUCiwbH+vUkbE1wS++VTOQyakR/pmp8fcqe1DNqkgc4gO/H/stBqxYqC/q6Q8AmEXJMtQWpWUORBLCE74GXrA5f1YRFHfwfMi99bYkg0m1VtJKlFFMSntcJcKqSa/Os0/ZuoVOweTaQAEt6Z/+RM71LJve3zYZtOXEVlBecAF/KGZ3mfGCsj8RskDT3bvxb7z9ZaIq0Mfa70f5LcIFj9pDmZ7wZ75wuv4FAQv9QWxpWfEHHtWshpf4ccxxTFx1AvFed/i/TXeGVqQh2mKa3//29AReJoR22DKYysl3NrIvdZYQlLou+Zr2Ub8z9rcBTVunDLUigH2ysn3U3rXnAZB+e8CWVYd/Hikp11HDtkCkO+cO2n2FdQBg8IheVKETI7wMaaPyZZaIUtqXA+bhuJD2IvILiVBqFQ18DyNvEB1kBkb2ticNMVG+q8v2a1zsLiKj78bWY2t36hT/D6tsxx5Mgny0nkw5Z8vrDZ0ouzpzDW4HoSkPzWdYSsRYSGoUyzTlDKDvl+hTomC2UlNYXllYQUV3eqieFC3amoL4PPpsRXfBmvdtD6wyaG3J9TiMhGH5s9pcNWa0hpmyMmTVZJ2uTPdDKiRpi5Qeu0IbOdFS7ppmeuPS+XX6r7Uc9/cscaSjQz3lCU8tOCzFSVRh5Jleo8g3o9fWKRHVy3cs6O1lm3fRGcvaBmB1VLxcsa3ManN8FZyfOQLza0UXPg+Yo+qD3mrERkYcOxXpVo/kHip48FkWPK0KGKr732Qd4efg2vtoDOSvm6eynIKdFQwCQcBO3QBLvdw70kknGvggdFeARn7HQvvIwMlORipjjWvN6Ut8gyqSHZzLsxNBTJeQ2pJgo/hOep511e44cdMyPu2g164DulKfMUJPoaDraKtukhwIltQIn0piDJMMXBjoCg4n1i/7nPXaJ3SI+8mdqoE1Kr9QbzPxyAbCcTcYebE0ytPYfA+ODI1c090YJw6gM5xAw0G9g+tYQ1GPeQLg8sMwtmKI9zl/TYnnRUtX82Mvk6osw89gNbp8kXToKfzuMExh4PiVL6A1RLS9kHAK7NsEuStb/GQ8U7lgMNny5j720RPQ+T2Q0VwNcPV9oLbGTT+1Mg7MagIdPTpFb1u+/hFypBYLBRfEOAXFKir7UAS1yENrvVRGjNOkgZHGQ0+UYyKOiCgYKSQ+K0t0dP2gRh2ozHLx9TpbtRdi2+Ys9t6TB1W3llhoaK1KvED1I5PuyZ5qs0nKv+STwAgna8gEH2y0T3GVYxYk0aTOSgrWRCGpg71fY08MfwZlQ08Tlq2Aqf5depx84Myp8f2+4PrLvbbcDrB1BG1aAWFq7QxkMPzj4bPMX+iIXr+rKS0CU5r+GaX0yXyZe6ySyoufhYmsOM4JsPceLBLCQCoso19q706pw1Is97z+Q6mC7xUdseKiQWYMvzhXVTvOQgrLxl2m0d+g0jdSmNonibBwHtsSwhn+wCr3AqAD7OAx2BOruN4zBSczhG2Vh7ZB2S3Zkvg0I9y2oM9kUYU/SHz4s1vtgv6322nepGOsZUdCpuROHA407vQr1PgamuyqpgZzrB7oj8JWwg5OMq9LqtX1XBEH5M/ZC+0KBFVJ5cQQr2QAvuxh3RJKvSvv5UdTTcEw2g+R48JPQW34nFg1nCr31cXL8mkTMf6NvAugRVlbgJFvmp9mzi37W1NN2q+pP1vtwUTq+O8hKp9Lf0aTWJyPJ2U+iemWXh7haoi+UTO/6AvmgyeVr/VT4XKUFUOI6CHMbBKL7zUgAyJKs5BfFTSonNQ50RRMABwgB7hsM139RKspu1Nwt3LVYoIc/jpsJ/q5gqBBGCTHe2anU6KqFbW4jLhWrFaU5SwsVMG1QP7qs3HT6Nv21kc9z1FYq6IzTulUrN9J8LjDUyxel6hz1FcxUTVt98a5eIbgJLaWvvg+FlfPCYuEvqu1d7RVlF0O1cwyimJouSveZA/xYiQeTrGucaG80MN8lrSx03QrBfjhoqAbVsiju+a5gqLwK2mmb7vxYGrvUxEkFLO0NIVDumIzmCFTEBkruvkiQDco3e25/t+nm/BmtILxOJeQblwctvcRt1SThhmKHcx2QSoC16/wGZNc2jyfVcLKHLqsFD7IdeY4M38y3YFiB7L9lyjIrlRepV9p17jyNuMBDaoLcuw+CZGk6oszEa1XHrl7KSoYgBjlZ5hdqPc50FotBuWnmroiCs93JRoj4ahE5ol26R3StC0SmFxIYhJW0yYHHio9Wlw/uKqsi9Gb3oDstQyWprm0dh68i6azRd4pSUWdhfKjZYJZXF/1Zi6WE1VFEs9Dv4gQ2PJ6hRcvyF6vtGe1mnhC49qpgop/3aTD1j6HYLv+0aXE20FPYeDo8IsquLrARYBatAyjZg8D4XhtfBtJoiMMBKc0/2ul2Mxcr1Saz7iIIbkqKx1q6qcBEN9J/tNuk2DOshYqbFkB13ciMZWpJ7TU/j4SreQLXrqwakz4+JezgTtaBt43wWLUr1OTCgP3uNWN4x+Jlri8Qy7jpfo3WW7r7CP+OScT8mzqIBEt++/kfq3eyEDI4FyjNL8njXORwo9i/VLhRtnk42diWXAelK8g1uTwysssNyf5n4jBPLrBAEfd4SAVGB/B0y0MkwcTYDrZiP68QluN0GBUq/m7ZzSV5QEbdPE+JxKLoKqttUlOpbiUhoF9riEXkzfSaOhr4AxOVKUGhnqauXNmQ36OE4JWqw9lbg6qdYAtleqp8zEIv5mm5KalsAxMxfNKFyNLyGwjFz1HHI/vckmybrck6+9NDv1l6qf+bcG6cRRYwA4JJIuecjdy4t9DTqHPNPQfTU19mQINB96YBvs1jyL8yeIgxEDFtNmlLaGM7imS3afHeHb3HjFhF2K2No+VFZEAROrY3iYF0yBXCTdh77zlxZl/ob9FkCLtU/qzElFs8wNB5v7tPe/L1ytF09qiTh+3XHrabXJ8SGyGRPEC14jeRWhYkKI8xc+odrqNYqjrg9ypFMj8PwKpsHPEZJr6j+tlsBnrmVTzvKsNqqETJUpIXio6LUWmfdp7Lqcps4/yPdnqXqu37kvToKGqFmk0OOzbu09t6CVhtkVAN25jjuzW+XTozv8TYxq/S9zAFHx+tQvN0zEeebi8cHpDj8d9B8wpJ238frLy++rxNf90P4p7gBk/ZguozHneYMhOxmo7HVtKFF7uHHSca0hxhwiMl38UwGgsy3qeVdVROHsnOcDOsMNjbskuI/qslV1CHsdP/6yNXzSn8Oti+y8vxhrMxbUlyj+13vbaow05qizKnE5sn/vC+dcywkRzuM2k/xSAQfCTYkyFX1xRJNLxoDRtfb6cO/MWEEJ/IMj+5qj18k0DwuX4grv2CisjRswuKlQ5AIcInagH4a4AUAj08KHymE/hQP8GtaO/8Jz+KpgbO68lDIlFTJVUBNVgvKcY13WK7lsHiLmV8LUGJuIuQlpk9jBCfY3xo510GcfTzPHR5NrmefGE4hfmcmMTIX21TseDTYWnNM6XFYQZVIGZI2N8n+2/09G85b0v6wbjCvutByaD8g0kMBOHivZciD42f2TS9SWsshAVAFPOb75cibaOddUfBi2ZDM5SH6ZXQz1pdlIdH0KM30jxOWpTpOVHZaakh/K3GQR8yM4Ohvi8dVafBuNViQxQQwJZHoYwSs0DlTHPb81G0YpXXVzvaJOVYM/3/fUfWH8m7WonQMM6rwFWRHbk0Vjq4GCO0GOH4jsBmxTFwfcKval4Z2J6dcf2hdi8NiW0XBUDRZ2QJoStGcLT7gmRnstpvT8ICWhHr7S4PUTdZvK1s9EB0KZ7t/jyqNZyjK1qkRibjW94sIMJK+2K0IPXv6pF4BOy7VEJkEXlOluVMTzr4qWnVZR5PeBQ6b4LT8noHtBw9U/lI43iq3GBAslbqlpXbHRpx/R/VCxvENxpqr1lzf1NZ9gG5rG4m85n2KlK2gBfnDFHc79zUZryTbmDANupzoFZa58azQC7W3a0nnXn7JKAFQJVxahuzJeOkNy3n1diSApDxZgMpxEIAicb5DPP5hvm1G8ok66Q5ZkmfLuwMUKUj0ChoupTUivf7TYRfTCIB7AuLDtniD7e1wPZ2PWxU7qF2O0Dt3f/9HcLHeBmt/2bcMyRAcp+ZathX/zRh7RPu6Riolls05XcFXkLZh9cprXmc04yKsv345oNqfJwaq1sbEew9sFEl6HCHNv73NvhiRtioMJ/nJPdfrllwLuUwX6G7hfMKwQjgdXrF7m/nAAQ0fngaisp276wtsNBGd0+wTxJ7ppCZE/TS/PAJ17wlkckATd+SL1oCPsZWFj544AfT+QZUOdCFCSdrCaKZPrU72u8UneUCY3MHfgD9xJrkSkWs0/PqDx03aRtXdqLsM3Q38bOBeHodU3Qeck+utIZWrJtAw0N9Zwl8ICjQqPX8jA6xuA0BeHsxbZQiqLKUqEs4eE54v0T3iRwibWJ5UM/cMdbfPePFiI95hYYc5zeSCm49x20cvJ5qCfo4L/wdnkacVhObiRucKsAfjUAd/0oJK6W9FGrfe6dmh88W7e+mNKayJ1tpI1sxMpoQrbFRGzXEVgTSi9E73/fwAKKGqgvI9zwzfC4YFR5epXuvQZ+k2UdV+sEz45D1QjLHyFYEvfW7TOg4y8oV4fsyU6khiq5NKDPNop+s8ojpvl3t2xfMqvxzWcNhAvVjf70Wz+1Souv7MUmD6k6X6TsUoheM1P0RRrnBu7ADLg7PgKklyGkP5kI3GJFuNmgPwo4qNnMCoATZ1awAuIttIwY72cjhjNxOFuIPthSoMXX4zwTxAcIj6xAQ3uhAytmJgZLaqrYYt4Tt7FTQnqjwn4UjED1WZzgjG9pdaBHNtgbtQ3tQaq1DS6NHcmTJKD/IE+JlxBvnv9yxPSxp/lT1BJJ7FL/udWMOknITG7L4u7UYCXgV2bgdKi4jMJPD/xI04iVFJtUj6n1Kas1u449s5L7FrnSmW3go1Ztb1WUegbIALw8NRlI9a+3EZdKtCM71qGGTlf4Or6GEn5UlwVFXuuTC232cL1XXOfYpe7q+5xtMbg08fIRcXYhHzXu5A7FbWrpTCMjHXG1UnAFKRMbBuBIs/rIbVmfPHFgIVo6/rWkqvbAHH2PE1gsz7GvlPhl/giH+3bJooVB9WM6siMAR2RPAXIMjDidBiC3IofP62jcgFkWM1+NqSX4jyClwqmGOYSX8glx8V799wo4sWuGcqBu62sYCJvB6RBK65ag3fah0/8OZfA+WqbCKB0c9AuH7fhPkD0mj+h7wtQ4/CVRnmKcWs8ddtDdVRBFymxX2zm9sT9HPvHIeN2Q4IjckxUgF7wKSFivsTsrGucLXapiOMHz6LddVD+Y2aO/kYTbu30z69FZZn/KnDXO977bCBiQuCniMcU5OcqXSDPRWkAtM3gjJQX8CkqZSwfRH7jD12JvCjhtT9Ub0pVAAlqiBusUTJx2QGtenXnbj9SXKi8OcmiRDaiZWGbJitG0o9ucn9lL0eYssIqQ5T72X9SLyfm5R3NMIHjAAUxThDxIvB9Ah/mWI8nTb4vwc9f5JiUdQrzNkqmw/J3caUVHvhd/pvbQPLW7j5lFzXUJ1VcM2PzmLVCOcYnc2NVLwHP+Q3mckIJZFSj9sBRwRVNhjNfUyO3IzlI4eQWegXFR5pcktOpi77a1bxBW7P4qHutuCqXe15NRpBjmf49JQTrgQcCu6/fmzIoMuM8TM/cOrIziw5T/AdoOU9reYehMdxc001ju0M1PuZ+4n0hFcvtf1X1PV/XmaPI5DBOVpXwJz5z4FN2VdL/PL4aYxUbHl8UNiZT5rJPL/xbIhDAHc2Gq7rAYOYSX34rl4nzTO48d5dKNsu4D3QyolL7qySlCToeElL+WgOC2FOJryfHApNebOhWA3YS745SymadDAfmsY9gRsnP5qttrIBDvAz5XaaBNsY1ux42/9TGcLGSwEZFZaSv51UbhRN8ExLLlUvvpsnhz/DmdO+VU1YHi9Sk/9UExQeSJHuCnL+1Zk+I+xrqhxK1mB6axUg1tHJFHOekkkZScNMdkdlBS+o4/7B8TTkeBNveRNw/j3UgEIE9a8iGyVSZ2hS+cVPVBzQT547V+7tevTRQrUAVSLhG/rqdI0WzSsqgs/zCpqD8w88G3kdBCEXivgMqkHgikiKpmxRuf1x7xQ10gUUggOBBiAb/fnNPPRlP9PWygYwBwDvQ==
Variant 3
DifficultyLevel
603
Question
Jake is buying a 2 person pop up tent.
The table below lists the original price and the amount of discount on a 2 person tent at four different camping supply retailers.
Tent Prices
Shop |
Original price |
Discount |
A |
$199 |
12% |
B |
$250 |
30% |
C |
$220 |
51 |
D |
$210 |
$33 off |
Which shop has the lowest sale price for the tent?
Worked Solution
Consider the sale price at each shop:
A = 199 − (12% × 199) = 199 − 23.88 = $175.12
B = 250 − (30% × 250) = 250 − 75 = $175
C = 220 − (20% × 220) = 220 − 44 = $176
D = 210 − 33 = $177
∴ Shop B has the lowest price.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Jake is buying a 2 person pop up tent.
The table below lists the original price and the amount of discount on a 2 person tent at four different camping supply retailers.
>>Tent Prices
>>| Shop | Original price | Discount |
|:-:|:-:|:-:|
| A | $199 | 12%|
| B | $250 | 30%|
| C | $220| $\dfrac{1}{5}$
| D | $210| $33 off|
Which shop has the lowest sale price for the tent?
|
workedSolution | Consider the sale price at each shop:
A = 199 − (12% $\times$ 199) = 199 $-$ 23.88 = $175.12
B = 250 − (30% $\times$ 250) = 250 $-$ 75 = $175
C = 220 − (20% $\times$ 220) = 220 $-$ 44 = $176
D = 210 − 33 = $177
$\therefore$ Shop {{{correctAnswer}}} has the lowest price.
|
correctAnswer | |
Answers
U2FsdGVkX1/chHmCgWswHkchomhbpQpAd7i0niqKtWmLuWY6ee5HKr92iw7i/85uKa5LdfMqV142/mejf70BQ1gsirJ/X4weaNzWoY4oWPcYIC0yuCaNhuz/5HmWLVpjlhiIyWBVeAx/3GbGcWl7xHoVJcO4GWtnf0+sBXuHsKUFSJ/DP87NOgXuEsjpm5hUXQ5AFd5zH2Cxp91bQkz6tOcWbsIXR1jgzWP5+iWXMoKClNlc9lDEK6cFQznb1iDY/gnpp977c0JiZmk0wZkI8bpZ8Zv2R9nyBH2Q7oYkY/LswJoobyKVqhoWXgz+xASxHAVnGy9CM0lo1c1AhuRA85MWoRI/m4DzJpEZ11wiRTnNr8OpB+OMvF91ualAor14gMwp50uDCa1nE4PyfpeMvZpLAyLMoqVnv8PXX046wFQfj8KQb4TDC4ZOAF5KK1/8kbdHu4i1XMGxDw4PxjYhK76RuIAfIRiI3nJAwZUO3A83EgJ1AS5JRtnR77A2vlRy5P+S+SYTpQ7sE5Z4OxNRggDBv64g9qbKu5loeaHkoolIfIl1lB074j1qChW+9CV7kFxww7p9BtyL7SGBAlv5TjYbGSrxqiETvgKqvyXbKi6FASVVyFEwJi2n9sPvdS1daXGLmLnbZV4quYYRGSdXKYPWzNJneMxmLuG9Ewx1vNdGt5BHFAExP6wSGijm9WvTUrOfGGowvF4Fqk1LDhQJmeUHztMKv+ua7FLNATCikDmzNOIYm+OK03cDZwkTIRrrhIE5qZUjojbuz6eZY8zjmr8p/9qeGrUu6O8inMudkRnoXu2Uz43qv1yUYlAAmKx2IQbYkZl2vwZ/PQHCgLW8TT98r+NMkTkDsUhxx/rQt1mH6u+fVTL0xZp2Tc34lftw4PBYn9DFT3tEmquxQrePIdaifHChtIpSl2KirAHKiAYnLreKXkIrTwS7IeyEIWftOqXI7Rv6TqwzV9aF5A+4VO1yavbk5gN4UkqMVXBWjDA5/PyVwNTzFGn+mKWGDIu3KEN0sp7sUWAZF2fLsnYZPG8+alHCdZxIdsk4pmxl3CUvCTAuYcJExXdQGAGQ63R2GHKhuw7oyVkllPWF4ZTG7Efb3MXQv5NDltpuk8ZdBfhFPVXeDlmp/lDy6U4TOO97owRkxOy0vMDi/o8+lR43bf0OAUuXNSFA0ZmoRivYgltR/tWdtS9hLbMb4Eqkt+WDwMt2fj/k9zsblc2Ar5cWRkVBl1BhkiE/bT0ffEgalP3z99sq5RLdQrxqN1oJesOmHU4OkftORrzx528gGyw8rJBixes9g0h0/TEziLhTLIYA4G4zF/WfkBhIl/BT/xEDQoUCmunaTutQrEr0Jmw9Kr683m7XU2GtD5rXNxrM70fm7Af5rib8nTPigRKvgEj7O1u5VQS9JAm9fTDPYSREQEXepe8mVq8tnPMBrBG2/xeKae1Ae0SxIUfOUOASwYUvqPMzJoo9AqLKZJqBjVcxI4CBDe71YZF9HSite88G7fYk6HqECGRmkLJTk84lDIp3GFHVldJBLOO78RS+vGZjS4w33sfbzxXfz4gb6wEmNa4KGNsWOXoP3A7R56wFhjSfGnKJ/7o0cUZm4sy6JZXS6B4Damyj7WbdDTgkLBLH9Qrb9KGiQcIq9MSOZh7poemkTrPavkADEnjZgJjov/bIORiuKOi03cGhsMt8pc27dPFR3Sl3EM6FFeW2y1bEZYYEVaV4LCSXsBi5VK5crXY7WLq2fxy0P7eFIiqN5zLsOHxySgZ+OGD1HWMe7GqylOQACoyjg5M8FWhj80lheFb/uefLc5/MJLAl432MOyQShIB+WVeOpNrP0JhvTKsZ+EkrSn4Tvxk1iTomhrCwDw9/qc/+h7l8QYwJO9BlbM1pHSvav/HvbHs1UU6p7F1tGolAwH6Hbb6oHpkcmfivNOec1KCZxHI+hSoekmwfEB+iE5l5UVA9KryS2cXLO30JW6q+AuoVL7zBX+85dKnQxkFO/KkHqPgkG5lVDMPjaoNy6n7s/34b6wLF00uFsOokUt2lfzvDptIsPYNfBVDXGPNw/n2KO1B/YC49W6GI3V71bziWv0Nn0wfSWNABKejc+y1jQmpel/It4+2JYoYvtFpHZUy65i9smsCdQFxyd6u3iXWNb0MEHlLto2ZVENS5nG2WnrFqQx7nYSCYs19ttkNA8Y7TU77Z/Ad1BlchgHKwCQROYwg1ogHONuaYK59U4NRMXGdcmOeMKO9eSEF2yQTwNqPpClP+Ap6jlaxR2DrGdx0tZ0ZYl+PNQk9Gs51OavtQT9x67J3zroRfFHEHPUBngBplgBxNdvN415bKxaOCNpoAq/NBleq4v+pRewgk47P8HQPs/2aw/TJmneg9S3Y7BV4Tj90wJwpYCT+THORObCsakW4/jDg4xvx8G9TgmhAPmLoMVDrOllHiJ7cPhLZo+ETnW+zKRkL5bDLZ7u6a7TLwZBV+T9XJdjYv/n+61xHT1z878jJS8a91ZbQHxxo+K/FxSDQWM8CcRhBwacejJRhN0xBC3pvkigaPNCqu36KsidVHrxXM5+dKJlijPN+WQe5161VziobxtSgHEcP//hifwsh2W/39UKV6LYQUbbnK5PXX3vH723YnQuFquqXAUaVXAaYKPzPg10l2iatXwxPIGzrq8jrdWqXU+m044/9WxlxlbLICAKQVhkg2njkoa1bmXbxEmerQwH1SXXadLsTvFziVnomukzIhQ9iOVjucaKeAc+rZqGrkGmeoQRl6fPFjlkxPzleuPDokNfn3jeeLno8U2exOdwrm7bMc9u7B8w0cK1/teTwYgUmqVtXM/6iigSLho+pefdYykq5b7rQ1hwci0n45S+Q9kJxyw+YVzeBQLojmsBX2HoH4w2Ra8g+/tBQenWwxnMOS4995WDT4qEGOtxxJAZH44DeHt68eaUWGdH86TdESm4g1bm4+yEhTbX6rUjUfLhQswQMfw0VNb6ZuhbctCKuxaX6gKkGAeX3ZtkPz2MwxC3kdYqyS30wxT4Tz8cqpl4zKedobDG1MZUKa5ibsYm8DRJG8Ras5H4rONEe5UYTewdGSh47Y/+o4Ykc4XG+MDhsvgJrwRgTDPPnOXp8run8xYIfxdRgicJux3J/oW94DsyGoh898NtbqeTlprK7furaCEcmf8wfIMMDlMHPCZMpOz6Hn9Xa4p48vmouKeUdF0J6ZSWf97uRcr1peckdhpGmNPJXpJMiJ6srxBOlfTMZbXhji6iabNNM6X805OScnORx4pYScBMK+63Ab6tCF7w8P4JaV9Fx1UYgIgTSpltv/46kJFEG55vrfFZcEc4sW9QXcCzvir0DceTcuABV+wBsRUedOAKZ2HoK0o+epP/SrMhXlm4P93HXIc4kzchvdYPuTQ+gnbB9Ay0Rxnk//Dkqe1aIrWXLhha6J+d0jHmfnxAKbRKiKXR9Mb0V43uv3tYL4BTCBJWabfs+iDPqMK0939Euj2QO9ZBE6ocM4r+T+tU/1F1Mx3V4VziqZeqX70ZDHHOLclE9ix3n3CBvsjPUXyhdnrsCWVbp7aEgywhYD7N+GJYYBUes31lY2cUPNs9uNYSNSxPpV0n5ZdOpTzHf7brEjdHF5ldYq9NRYBatG1ZyUKcJAHynhe1J5/xOsLEseiZLW9cGHlgjYBhhPGRfhLYoHxRqOoLprTipgm4r2YA4KBw6Ds72TouJqOQ69cx/UHiu3Bc70sJVzsB/Kytr5uCttQy2HxqUuf24YZpItiM9oU1swCkb+3e6TbGLYS75k+lmKMUtMoWMYSRwNz2jd5GAdhvsYrlormn0RH0BlsuG5IMQA+hMhH8yUk3RM/cvu3iISU56Mr6DFnjLe+ZEoC+2n3tSWWTkGCEvdBBT1GtCSFiORare5QEHCP9YZIUxRPYTmK7Kakuy69jwu0v/ltpSDYzsrVMs8iIQfZawt1cetEFZF/zOnrAfJTLvaYLHIpEAEcntxUg9qe8F92/u6KUFpSqG8NfPZkS65vSrckoo0IAdXcdgEuXxyz/StvgYxydD70oVDwOMeeKLDYQyiHQ+g0sDPkbCfoEBB2FAzb/VO8Atx37tYmfIuhi0pOqfE0uVtsD978pRWVds48NmbGnkffA4bUwKvYsVvB36FHJ/cKRTnXnbIn0zilYTXDzyyW55hYYn33/0BTaBp+g54Tn2QwhHZvOaBmtVmReKUBF9PiBZHDgBvEY0J0zybUQlHjJbCBqEuExxOSfeQidbNfXiNDKdhpbwuIfjTS9soZpgymO+FvM68C86bkbEQpvFP4q3y5ZR2nbIeBkZzVJfIiC2cg158ArvX4UiLFO0eIN0rhsf/v4NSJDuO/emhOZkeJLORGjMXaZYXrem2tOmXDYVgGREdeV+oxbPESMNaTuWR5VkVEBVfXgfT7+fuCA3UQjpK0NuFzQG8f4MTwVKU4v9F5zSZtoHM+bB8mUikwkbncn4j/lma8iRP/auGgStxyLC/ULrZLN9Yjup1X97DkxO2LZcMqWxoz2Z0aTXoe8yimcfrc8DxzDHgGdpES07mpbMANW8OYZvXRVo1e8lDzHG3Cl2oPnoFYtmuaeh3hiBzPnqyi6YI7aM9er/SOxibFNKalBE4eBacWimNbbIdcNuH6yPC6WyXBoYTpxsfj0wzkt7NR3AwgU88xAjk4iBuJfADZJUZQSFWmQOdDBNd1N2T4zWHkkYf5cilPGhYZcZMasJRVrtOyuCtP7UjKu06IIk/ue1YE7Egh5BACVfhmPaF3eNDDOKrUjNledbuTs9TQKMxpsWA7L/SrPVcQ1/2vf72kPC+3/dcC5m7yc+pkkohmcMblsNAVWRfD5GJmXbUomMRWIXE3oK/QZ50ltZC13P/H967E//S3f89ZROWYUAkEfDuXVczMe7aueiAAlTiXzkwjLtYloR+d7j1h0n0cO0rIOJVbBuanwvxGIDA02qaT45bgTOu3HAgscjExboRFlimQ0RCOC/eHzPOO/EWGxbRVW1JGzpwIvkJgmsza/LmqEFa4xeRvG4O4IrpAaM6+kIwoKKR5rTFgejNAQnAJqhmS5jzHOvlKYH3QW9N102YyV5ENfBplU107O8Azy2zxybN0OdTdTjdL9050fFdI9uAJqWL/jS07DYWSM2d7tXwxUudQ0zlMh/MWcWFSKpibNAOVdTcyg8isJeySAoLuBzPF4fKi+IAHPrYyxAFl4olFQAZzUVsnPo8WDa+UoYWeM1YGxm8UL7WK057PuYE/UNNeXs3FxsF0B3L26r8lZl3AMoZ/tJ9E785UM/UuJSbgrPEbBnRc3wVwodAuy9/89DHeIiUuJI3HiIl9QyOuESseuItdcjei2G0fXccJmD87Q7tLrVrLMgxwy+JgmHQ08Gl4NZoRgTYKb1LghO3fc+7kVL3Xqol0fdJHre4O34+yadWgY2NKojuMTDdUUyqunyH4kkejeIQrymGMGMJotfRtVBK9KaDkvWPLoPm7YVPpndhkmxjcRrqe98b+uaSReSXj+NgRqCUOzkplrkihwdISiTDjL4/Z/KC475qYVjXSssXR1OXRX8WuoE5GulhiuS4CFTbjWPJ00Plc9rWXTBvXb6crvXBuzgiRlyb16is0r/y7wjsx2hgRunQBdfGfzpTr3hqNLSm3vHlyqV1+r1Efo/+KhpoHTW3/ZgkBalaIvOwVjKYaKs1zM9kXjxcPnNEQNOPqijQ+fK8mnTsl3GrBRiYYAyDPg64dQxVN/kB3tlbrOStwJAQEbJJe45CuclidrMg9OdmnCJs+0zlji+fpPOPaEC85SltBz72OY/KI++YLhHKLeRys9GLYtOmwjbACzCTe0xrbPR2BBEQyjjW+167MZPf+9Y5PkxleRb4blrVCzzrGR6z6wRkixk5zb/G8tRe/f36GvMEPPFbY91a/+Cm0kBzZOvGutjXIu2V8/QQz0fm4Mwa/mPsAmuvcP9nFFdzQwICKjiIf+OoHit+6OtYGIrqKy+1EVUveGaESMg+UKPN36HejIV4sVWezH/aIiIXNzfzt99dV569GuigVZ/yWh9Gwa2xL2xdHiIvBT4x4GLxEg7dyjoEA8bvGSzNOSeu1BcxWAjeJPXDIPJskgU87uhmhLhBRoOWMI1zA2gpZighk6RrTvJK9AW5qX+XDGGRtSCFHH2b2kObSoxi2fUqlphBIIfAwqUzIF9DhBXZvWeY58y1p75iugZ0T6/Vz9IYOkDtzi1KmkkYqWXNrIeKoH/Zh7svr64ZhgTpgY7TVjVipR290dHXxNJArCTknlLPJq5Gv66/koaGRKvRoOLasckqe9ams8cw1X0ev9gi/L60ApC3xzqvJb52/+BStL+lUh8MneFZOSaKJ75DlQMVmYeX3M0F+sOtRPPQt4xsHl7B/vasdscFhQFj2rUmk5aer79JbeV/xb9WBcFXTrX94F9q7jspOug6m6NMNgvTrNpoUKxtG6djI8Y3CxM6consuQUuDjueNByTQT5EcWjSoRYy90zQBX9k2lRBPiB0nWtIY//yRRaoQFwmhjk//OyKoAOVKW/oAJc7AQKjAxv5d/7xWKbFazCf7PVFJ0hg9rRtorHMDvyXT8iSPoChfugWqM0ZUClu0VxCLG3brCnx+8fUTX0/RFwaDacMoqMU1fDbcj3WeLzP3YnuqLs+6Xis/9fekAnNcOXN4patleBvzWv1p7Onn3rFlEedz3k9rPj7hnrWp5Nr7tpDVp4WRgN5Ya3qD0ejwghlArcuQcRKBJegDXgxNez51ulaTw3oAuIVE++kafprp4cuULYjIYz5lS70APau+FnUVYjBGIo1LO90K3COy5et2GaZ5U9eLdicTy4srREWpnrSAiJhguzjurU72Q7gMWsbzO+53Cop7q0SL+6VU8W8JLUKOhYKDYVIYvXUycgkEVRfDh12AhTZiE/f9dnUfzYVvk7M35GGb8AVj4MVYK+I4kRfRMg5kB9zHY+6fPbz9i5MYtDvz7gT07GaYBMGAPqBj84HuElej3TuSv1ii4Ppc51mkRdPyb6JcDPIQpK6YPYn6RmXzrKcHhsCR7hGItPx9u1h183QTwcD8GL7vxkxtMBt5yqDnxTx4Uw5x4KB8TUyjGFE2dkILAAvNP9Z11ifb+4SLgcFkVmHiEJSTYsJxckQZhwzcHns//cKGwNH0khyqJ614mXrTTOeLRbEwrzXjvmDlOTKqN10Dh4MYNBWBRiLNvMrfLiIwYMyWDIBaz6ASKtf0x+YENMJs/K1h8Cuvnhk7MjT8oKzPKOWbQRDgs+ubmg7wXYjHRmB67vbLvsOiORSQ7kcRVEP5Cag/8vgTLlxF/tBS6SpSWvS1X0BEmNmL+GDpRLI2fFNTKHQcmiPS7AvPots/dXPUJeN713aC/6jwqS2IRIbwmw5oodmIGT56H+PqW9C00aKTacNOnFD3fZJlbJTzYI0Ixp0xZ7Yed0t2e57rGMb2kA5YngLaTEMkKdASKqWkQA3TnOchp0EzyHMYOHENDeuQclekxmPPXjclF5P+JIREiue7BUA+3WbWiWvbW+232yXL9LEScrr5zhcHZ4ly1FY3Xsp3XdGqSa92WI5+6hO0j/AS4XGTp4/Xknk7sEgAbQnByBCqXskQIk37bIBwP2fsZ4SU7oQQNEfdouWPWp2rWZxOjLGyumQnzEj1Dilybh6kbUfVd3jRElljNmRLZ2ICY14J0yN4XpVnPAQaDSrtIiPD+kSC8MmVLDbeynqQWObIX1uyjCn2nKEKEEaeWUTlvYyZy2ee4H1OWUXmOa1N6mJB/MgyNci/OJMODqg8/q7KyQyBLL5VobGqotK44h4HjulfKpUjRyR1DrdeSxgnEOjsOMQlOx924Bic+Wsjn4JljvtBpGYwysszpdxLuoDQHfGx2R+H1wTSEVwNTFi4VTp5LOhIdhn1syeHf5PvMKr0fxCzfn28GKWmbKmsD2IYctW94OSvdLyV5/yeEep0Kd6aUc5R0aYXkbhk6vASvsR7Gj93J+z+Ev3dHP7BSQx76HeRW8fv+B4M1ZNTatAlEeGE9MrQrAtS+1MTo1xfhF18ON3K1eZCoFchlQNMBA/+ynFRpOQ3SlBBxwVj4J57+EQOtbffskbmuLHyGfRbhsPzWwkiSJA5PrQ8RHDNryYLeYngz/V+x5DdaumMTlE1w2+4IN2VKGMUNqhV3lujOv7Nrft715yGwaz3bBx0g4LTGPsIbms4c7tMdWwrVwt8bExvOV2v4B4lcfWk3MlRioOvd1VYEMahZVmPeXmnocRfPHndE2I5PLk0yF7NQuTKFQ3RBfMSV4sVBDT65gVQqg0qppEoR1/IL9y9kh1fbrOxR/gkD4PunaysVwgdssw702wch+H9UDy4SzaDMDvmdBeCao0b9zCZfO0P0lNj2sfstujbW/3fL37bX5nZ1hqceJc9sab7HQGFdweOUaGO4PHND4R9MRPED9BteoZ1e68RZlqiBx/oplp60L3/W3q/04xTejHgGuGHiUgJvIcofAm94bi5a4DOdvR2q36D6RUy+tqWWc1B5f2J/TEbV1Xje/5P4NTTovOOyVsIKLlqPjFWqcq+NCaK/DakAghDmypfjSvZjCx1MIpifP5ujbyhp+bdpXuLHxaXTRCQA4781DX1V4CF1xiLoFrh8IcuvjZxc/+XtPES6fFQOl6NBGSTVDZVt5obfgJdblmpGhhmCqhCnujex2KgOi3Ya9D5RGuF2YHzsvwdBTAqBZqq8daVMrziF6rEiwQ6gEv4o3m+4WggCn0CyEVKcA4v9JOaYBSyIvcdYo55GIPBHMbRUi9Ftt7MwYGkQ02IiHXiML4ossOOVumLY3P+mHmw6zHOx5sDu816CMEI/bBrKBhcqgA5UG01w56W4XPzHdWsWjAr1ZHfzIGTNsgsDC1dT6zm8FBafZkl7xQlk3IM1nYrarXrz/a1mkbYT4S3B5L9gcQI5Is8NPBOvY9KrxgOs/QKWdV5NVA82dieFFwP9KCUzKAMA/nyTO2zxkbd05nSakAXEpYP4C5+hOphXBYaNf7eKny1MfrmBR1+lcdEEJGdrX1YaiTUZfvdUw84DghPOPnteU3HxjPo+JQCQRuxeI6gfze64Q9mNZw/jlmNulqiwqv1qxhzi5MtUZCwZ52oFyGHevJfxeXAZLr1JNhNncvA1uvoWJlH+PulleB5/vTXAUcEu729CHlx9hJaS8lg/AHKyL89alYPr1wDgpouYA0GTBdh2Vym8hN3dTNiCk3k+vG8J5+h/ozcgfupInZ
Variant 4
DifficultyLevel
601
Question
Fleetwood is buying an acoustic drum kit.
The table below lists the original price and the amount of discount on a drum kit at four different music retailer stores.
Drum Kit Prices
Shop |
Original price |
Discount |
A |
$1195 |
15% |
B |
$1250 |
20% |
C |
$1350 |
41 |
D |
$1299 |
$285 off |
Which shop has the lowest sale price for the drum kit?
Worked Solution
Consider the sale price at each shop:
A = 1195 − (15% × 1195) = 1195 − 179.25 = $1015.75
B = 1250 − (20% × 1250) = 1250 − 250 = $1000
C = 1350 − (25% × 1350) = 1350 − 337.50 = $1012.50
D = 1299 − 285 = $1014
∴ Shop B has the lowest price.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Fleetwood is buying an acoustic drum kit.
The table below lists the original price and the amount of discount on a drum kit at four different music retailer stores.
>>Drum Kit Prices
>>| Shop | Original price | Discount |
|:-:|:-:|:-:|
| A | $1195 | 15%|
| B | $1250 | 20%|
| C | $1350| $\dfrac{1}{4}$
| D | $1299| $285 off|
Which shop has the lowest sale price for the drum kit?
|
workedSolution | Consider the sale price at each shop:
A = 1195 − (15% $\times$ 1195) = 1195 $-$ 179.25 = $1015.75
B = 1250 − (20% $\times$ 1250) = 1250 $-$ 250 = $1000
C = 1350 − (25% $\times$ 1350) = 1350 $-$ 337.50 = $1012.50
D = 1299 − 285 = $1014
$\therefore$ Shop {{{correctAnswer}}} has the lowest price.
|
correctAnswer | |
Answers
U2FsdGVkX19R5Bst7lHpoWXZ1DyAYrt4BMQQwGKmfDSsc/nAIZYBoNpm7SDHDORrwg5NwrNbTjQd6eGFOJnUg4WxdloKIULV41i2hBh1K01ok6GBRZc0aKMdqSHO1l6RpBLzzD7TAtX81uVsuUncTxx0q8V3ksbfruBu0GQKbeYwU+bA8asHE7ZVG7Lz3TUjksLetMz4zWIhbUg+CJv5vvZMjHl9OJqHjGFL34+eMqqheOrqMY+16EP/+5dhpIWWnYQ8qe8fQ+RxVxv5k/Su/e5ruupJGrke04Jcu6WwiTdMro2NwNNSRIKaVOrnIdDEYuKSI7vx4gNzxjn3mervC+LqtLhHWTvrno2HUPZtSoyOZ3yjfDWKvdLXBxBEUBId8sUOVgCUFx+IvtXD153eugqumzmxbpcKODQpI23p71uKc7ztiFhT+ZA0fHEd6n9rAiyYPP3uaLCIGoZol8bTsrehApYhE/IFRzWuiVey16HPFP6uaA5F0Thfg1cuKqnp9n+oHw+l1d6x6TdkWPFtPP91b9MncfXQs1NsbtehFwZK0VnPjCEGZp4NKubqLF/g8qG613+7GXACvrKTvMmuz2fGsXaF5Tl5cxPKhm+P8t+cQfe4TAMHRrSIxfmVyznVBuKsxvD/MqzXO90kVN4LJcjzlPYk19wB0boIhyuzbAPLpE9nzBr6zOyQWQtSfa2t+j6Ltb3fd/UQoep0Fwhy0sDRtWS0AYnIVMPUcfJXLnYQwsZ5QuDrSCOPHJX9yZBFF/m4pCuVvsDmzxhpHsjExN47a7OCbEmS7CIXlnAQ8cuE8lSApdj5nfZDd3c9c6mdQHvRr/0+HuuA0iytR2v6KJ1WgpRPyKXq0gDhP6yzV+c1y9AnzVhbbkedzMwIiF/7h1hTIIN7AwtHmA2+4pLsQGzyYBm04n3pgxHPWeTRvX7F+n1Kb13k43vVxbNi2l3lr4jWS32WXyzBMsPvmBwf9SANONNSoiz8C9EVHOS8Zu5I7LWn6V8De12GnLaZdZsDe6RCqtiuFIX3cr0JRZKr2goTyX4nQU452A9ddY3GKNPJkz7kj1ROikZXcM2nho2jRz5xhLE4QZ4kLUgpPHWwz0u1xlvpi+IFpiWADDXGjvWLWX1IU8dHN7Z2S6VQbms2tqEEnTnY6J3sk7YkzVq+jeSHuOAwwl9YhVd2Ca7Z+YXidh7Ljf1ctXHZAHT3CxY7yaGjCZWsbV85IUU3teE5O1qU/SvJlIh3wrCpZCjDihVhpSiROpgd/rfJf+breeb04VrmjQLK/Jt3eN/U4xJmXfUR6b/IhU/1ISrmuvocKkeAJPXC7KRqhkhAc7hZ9yUuHXECXp8SD0kr6Y4tHWoTXnWc4D/bJG3KC8qRg5orXUgH2DNeJDU/7Pnc4pmAGSih0n/ZzFfVDT4kNKqORfOrTQL89cTHchtWp/F3FQgq7pD3QbLfVDEtPSP7A/76IOjn7lN6DjQHjoJBTe/LJ7qsMXaVTFBNQnJ8peJ3tDt3VCQTf2Fqi+SiSW43D3QUeXSRgG0K4Fe+WfGWsTGnWqoJSgWQFjifxEkV5T6TMoSzWZrGM09cHekzMl0c2VvArLWYtE1pfjDVZmxYGEfKprqUZB8rp1erZvkYUb6OKm2Fxzn94EdYhzNLmlczat5E+oTQuaXLKb7dOIEIyNS0Vrb8JRNfC5jf8+ByxGYWK6aVaZove2s33cac9JD4ky+bYGA1qWla6rGXioNUuMjppcfK+4OeY/GfFthGjKMIePxruZ86jpZR0yOPZWZXtBY3olKtdyo48moYSDdqkxkzFixf5GYY2Yd/Ymy907ABaF+i2+2kwvcZ9j+haNtcl6alB2D30A8AUdx3r2rN/Gyf87FoJGcKMCNqiI9N/h3a3Gidhg65pXyJ0uHh8pCepERG40fz1F+Qc1vJ6wF4gKn0gn47vShaHjQ3ASqOWXrFhKM7FuDrEb8EyhPelCIBuRuCO57OoUfsg0T0+76fyUMo7UilbIUScFufYXJ4Wsrioe8dXWb1BAkffNM2aot+RjQBrCSRaYQTBdgGlBIqOKMRtqBth6n04IuqRMBXYWUACOGYboPue4u0nsoclYptOJ6nezhW2BG/SYMCqtY9Cd4aLJ7GYSJBR6fijy+1Rb8PIxUnIuLFwjQA/ydFjvng6hckyqsL73SAgpZubkyBaZhxgadNvZg7eHWFM4dCnRIntZzTcF/C3ic/bs3ChaOAARP4pZ7Vb5UrBVhwmvqJBLuXUw0f+zn+S1a7AEWBv6Yx8Wz+RpajDxWeYU6JZEnVzWIBxTEAmF/pXTH+km3vqadQOmNDzJaQLvMhDp1R3KyiBzHr9/LjIGTb0V7xiaoAqFCChh/AMkVidy9+0YHAR7k8PRPyOWbUwPSx4jqfrjFesMIdlBjfB6g+10Yw1a5gOda0H+YgLyqENOd50V1I1pV4k3Tyh3INPm/swDv5MzT4Op9n/dFl1YaQ1IhFCORFQeNzE0Quc0yWf/fGYbrgL4WXwbvnPtTy9RRxWExYig20hx1uWCaV7HP5nlMAtoWrNvizIvcwGL7oAJky4CVD4c34uhY3LREbpE8lO8vtoN6Oz8m6OOwiUZMKd+lLU/JO7mWHaesQqEEaH27SyYVgygUDWPAZqOvQIT57XXx1DqGFeYtWzlvAHaFSifXOeDRe5LnfrS1Q7kn+oXWHRSbCeAY42GvjHAn9UFwjcyBPcwNxVl9cDGKP6BVWoE0jRda1UGIMPONu5LSgduRNE82KRiG0ebqJd9c3sIFvshz//kkk18LdkDeTEMiLytKgYmSrMzuqHMbKrVp5cmwuf1d2Cg+7sSMjZTcROpy8xP9NHEezzGFsEdxuIpW/8KUd+lHLWyRpUFJNxMEKVl2ed9g3/pIBYTuvwltkPeKuGYgfKUiz4WWgNRz+WwKw/qe3OjWc3geVPhRKB2NHFprN9chZShchhYId5JZTxc20SPhBO1m8+WVZQBIariK+2bulNX3iXAbvYC4kHSmd9Ru6Hmyd10OfKp8eDqxs786qaAFNoq0gQa2fTg5EnXJjrv++QUFSdsOwelr28QFV9S7gieRQI9Aez75ZOnCMfpm72xj9HaPuElNbmi2v+wxkFMlCn7cg3kyYISHsjQ2hStAW7AW6V/UIhZqXRjBPTGHOEh1Z+CzV+GZCE1WmVtsomvyGSfQ9+kZ6beCOWLqkHQhBLPxupfR7WZl+iVsPBU8W1EpMFdEjcZ55Eijlca7pRFr9Lhp+s+H+vqqJXna7YIWMQ4earVYQi7SUciGikHO911xdMym8AoD8VCFvkVyXmS+nP5DCc/TwfPDxT4YQoDOeeh32TCnemlUhj4hyET56v6Me4IHhZfTOjWKariv62dn21pLjakPZZ3ZNul/P+2bDrif7LP8i9M3w/GborGzsYxdK519feRHVm6QC5Uk9nptic2dqSAvmcgwsz92uCQeqkqSytESZRRRhltj797h8bIGzjE+JwQH5LPUcpDXprgpKr41RPolbcU/rtA3amuDy66Vr5PNrz3v5Auz3DtFGTaMWEdHeiHQiXY7lfx4/g55/y6aKKbyyMxtZSb0mOEAEEF3BkBnDvKMBBJN6P0IZ8gHoXHm2Rb+B/zsXxx+b4I3DaVhewXR5ae3b0AUG6ZKT+wejffL9m+Cbdsj+zKnT0ArUr2P8Bv5L3O4MGnxdgsrDRKLTDEfqfGA+u/iE5LxY2KntfhIaSboscRtjMH7f6FV1ZCJq4qLm9V0BHPHV69cxyO5rEq5HWCol1+hmIuiqg3CZxSEiJhXFvr1iO0+MoI9dC78xrS5OucMHrQAy8uHlt9ImGaY31wK09o4Y5xQgm4R3IjyzifuL1oMB14MZ3ajTTS17oHUtx5IYLaKkROIEcUg5nIf5cakNdE+FblduWt+xSyY9lkdHivWVqyfvmu/rtkbeF6NJlhZ+V4qeSBUeM6DBWHCeejN1495+nUlX6WVt1qdDtOwP5wWh4d1tQHvBoArDf2RekZgvQYImszdEJj6EaoJzlecrZKZhqMm2GlFE4PxGZjDHVUfU306efYMLBjgdmuDuYSaOAcTHmTJjaHUvSESMcsbXyqJql7J678aDjgg4JEe3uNhXPoP/X+ySUm8URVGDesqIXJxVAOlE9P3sg5NLm8zcNaH+gYH4C8QHBnlwOWjHwGpeSUTxKwws+cv8N+cEKgBx1jfMMIsQRQdrDXdpyDH9ME0GIyOWSRe1cmpFPUimP1Mwr7mkoEwvIC2boXonSo67urscUQl2uZBBaaR7mjSEibl/JyUo5NsVaXTZVcw+dcGIoBnApHuFwEHlx730CkhgL+MlKjpvOOb7f5cq0CJIPNrO7lq2IG79m12EK+To3AZsVC0KODPs5BEzZ6oKWUg2e9AkCYGUy64hzXu46iyL7rOD2zQ87FO0Z49qqtjfIFLZj35x83XTYyC+l+bY+yGEkgzfqvnugCRJMOz+6tMRxGfVBNn3WoS/U1CeITeE/u0zokGYuiZCevuRo05jRnTdpTWSG3tkRRWTeNI72lcrwSmQ1rAAngW8XhP2QrQWcnegSeSng0dZsQSBEsS/kLD/eQ1ny03WcZITy0ij7OyE4avpAwMPltYlKvgIxModQgAMlamQUmKQsCgm1RjcStuoJFalLfGLa92C4PwrJ04H+AVMgYCWDRKwFrt7MZBr8KcY9eof8mUmIpYLb2a8MQZWJd/TIW+norsFt6gxR6XSIqcB6KmFdtLdZjiNJikddXxMoYhwmXiWVRTpRxMIvHOr4pdQRklH47Dd6G4KCi804EAgVw1E+QuUpXeLQ4IpbztSBJBYFXeiH2KRWjw1R+bc39Lqj4xhCrICNx6euFI+5ZvTtNQDDX0xzghR8O0Ke/2TRasL5ptDLU50PzHl27ffNLVgxTBxDLZC0PMdLAta6htEO5XwXJ0bhUzotz/dp6vSK1eG6hh2UI9ilrqgpu3GPm0EIdHBs8sa4piPzDFWLYIICxgO4GvA9Ef6wEpmvNSfVdSImtR7Uff1US3erFqYBvvuLgex/mcvQgTPIFyESgrvQmYZ0OtOscm4fMgeT8qdN+5dahVCLX+SAvw3JiYFf1kQTHWD6/KRDX90ZLQzX/DYWWTwMZYY7rnraZtJik9CRyPqTEMA6at8eKFpRN24+gW6/j8KhXrT0DHHuSZ250hh7rhveDz6mENnQiCb4BAe8oPbJcOltuQkZwVmLMzC8S36UFWhsWDq3vwOFMPhMhcla4vomiEKHkeDgVL7o8TSK8sx10vGQZDwTuENaxD+kMiBZ8NbbMAbv93O4w0ewZ3qeQ8tMiaUMcaSEky5IR87YJhwULO1/NKrGHwqKadpeb75WRlVs/N3tHtscXr/3vdBMl9bYx061AYajrbQEo6EDyxrGYeRjNEM1yAt6R8SANkieXSXTvyAq3GApnr2UYE5tflVbXZTIA2VG+pTZbEUUFrxGUk/uk7l1RriQrXqSWjPi5gTjxcmwF1TCBYn2z3QDGTzjIPQlSD7lPQYNTIGXVbsFXxGNHxLaPi7lR7JDiBIt061LuilXuWf9ks41X4EYAJ+6tCjfVQIAeFLhiBO+pX+fCWNf15m4ylHvNes0PT2OQkVtWPhd9/Re0cJB/r5tUsPHCf3ArCwDSsnMlXVvsc8f4zmg3IYa8vCK0cFWeKhn53e7Ajyb2ZlG9VUpfO+419q4tcCcQV8VtXyLvBkmlxoZIsXB6zD0JsMsspnIdrNk9OBEJ3pAVCkUszQWrI3nerzn5q0lkwyVwGqw1I5Lbz82Zo6qiwqv+IottxZAKo5Yo6U1KMWLxVGyh/EZpSSABkDpt0ArvF4QSIJoQ+CNTg74NqNVSKgIcTKCU2j/FKgKD2YEqYP0hMQ7CEm5KbWGaLa1+ZSJwreePLK2MRsQOFDTnj0wpdQrxFc5Kh9oiPEXuzXV+NzLDGbGHGS83f2/p/crXDfdgrahuEWBFRX0Nni/0sTW5+dLu5KAjyEtesrVUmRQEHRssHlqvQ9nSOZt8kcSc0aRdAav3KEdf/1Kd5Ilj3SZ+CVjGRn85EsNTJi42Mn/RUIR6bIPxRcAWDSbxQOhTNaU2PGc01D6FG3VoRSv0H4x5iljNmMm/Sn4oxom0r0MdStNvYkNVkJYXMzw46fpYbqf7dRp9JJ9JbCLZQZ+qEbFmN092r77j4jqQVRl80bCrVSz1CuMqndjIZUuEMLHyFHWpuzn2bW6wRI5rUzobLwsJF8yC/xysJK7qfT3hMw6tAXhsHkgyBWIw4lrgzPh7aHhUxP6N+1Ie7fY6kGrdZfMxfqVp3yz0THDuz/T1vKcBDl/KEvM0CLyv+6d7vWp83GdeLJ259fuqjmUJbrtuOgyZyhJsAbGUChWFPrjmkIStetCR4wvZvUPv85HT9Z0/W+jOolVz99frKDCKdEue95ousZ2h3YAdorkhdT1g6zqnxMLwKJr4mcc31SXrXA/OtD8NjkiWRZ2hoWOVxcivYw64PUxkkJn5ZdW3ir+mDla/BbDED1XkYJ1uIFQtWn9OUHc5yXLbPPzRlS4q3r7j1GX4LmqhwsqgW4NMiU2bKOlWiE3htR2SbkKVjmdx6Yw9xFadiC/d4EDfcHBtbUuukmMHM7IklpIV2hDf+p9wWpAq3MvocC6X2t1gJVTbvuNZIQSggF854zzXdXS7aVTlUMmve2EDnS71260VZuwTInJYRJdCqAokajD69LtnQ7QYIdOlPVmoB0IybvTfXITCmScTHIH1snNit5nZDFwFZLdEHj0HkLG0Rk3fIhCq+hzFshW5IbxTzqZTQVACcwi/fscJL7Fkik77nAsHd6vX72HAcLkOw4xn9oPYs9XaNa/u0/S1rRYjBaqEvM2vCRduFmGyxPpy1rg2JioEyWvWz9d3WGiBwwBOakPHPKTwDlAdaOUDXOsfkQAxDFh7MP7MWrSwul2/MyP8L/WhgmlEiunI+jkkzZvy0a3XHH3C8YKWyCTWVQdIDkRPdoaEumY6bGY0N/e/vmTomc0SS1fCdnRRMQaVdVgwc35fdyukfPdrBu+ZNDByC7wWTAGMuP4cr3GD5bsm9KBOrJe32Obk9NzCnc8CLw+OiR9q1BYa96eKCrsYE4tOfdJufDk6/GsxuDhtJ+n77iSEC+pYe63AocBSJqyD7youMY55fwVsFzAaVCEBGRGs3C1WRV3oO9bfmF2ghX7NG2lBVJUi1hl74YLPvQJJvFjEi5UP9MIEhche7CrDxNPPbFgZC5Muc4cs5YqfaPGATlQb1khNPfLdnVET3a4DE4eEFSqhmoPaAFYRJUqsSwcufxlXP20sqpQiAYAPi+eSklcGq9mL5h1D0QAqWigiX3rzYVHz8wLe9zWEEGTFUMzyce/s0olFwcxq5m0AoYfk2aJ0kE+/geVUWpl7I461NBrpAH1aMSg1DKfnjgCKgtPt+Hk5jY59hkjk6DNNoe82c6bFzoWt7q30l4JeXH2Hcez/Y7xX6fRGN3+KRpq65OBSOm0JdeMJjo/uEhXmNnHEnAMfmc/eOnvOdKSLK2O/qKj4rXA0M0BInvnAjW77vKVMRvPK/5QcxqcH2xadaG3cVLVaB0LpS3AD/R6Q6h/G2WjqBQR2VU+cv/8FMW5F4a8mr/ODSM99mKcU3N/8Fh+nvJPOYlyLWEp5aji2ro9JB+0IxiXAgUKb3dZ2906Oz1C4+Km9xd8akqyQFZQkekqplYB7N0c07B1YAQt5vP7ZpTvHT0ZhPlWQeUOgRqfxp4F+Ygtdxx02ub7Ux3uyMG7pCmw/mRhKF68Q2I34pvgHkkiq5bZ1xgfRmsD9zsnJLMt4+pmWLyDACZXk+Cz3iRJV1gBZL2aEqjIRPdFtDVuNra54Q6R6VvcNclVJ2GnLc9+eD0MpSW9rcf6d7Dnri8aw/nBMpgN+LVbFhemIPf6kyfsX1USbjmg65e1JwF7E9A722R+OYrykksfyM+NFh9g9cLA+2ONgTrJBxEC1Ib2QB8IeDVsTnAH4qQ0pB+wipzG4WUs04UUqv9RMe+MpT4CQqlW+QgnytVZjB8Xm6OW4DxQygzyTNSAzpZbkYk3c0h8KVF64IzL1c9QvOJ1sgbhxA8IsLoHivWkVPGuSujcU/K84CslsTJTs8UhhYenxlDE0I3EiuiYlxSs+cn/MvgibVwamcvUle0eZUUR/qBHrqGbGsYt5tUNzxZ4rUrBnD0zLMk4Gu+adPK7jkTAen1mw407Nle3lpOJXCgJXnA+nTSmJqtRSQ3A2CigG4bVZsl+o05wu27U4A1jGtwAotCkbvOSgvvsNmhnfAVz2ovHAGhrIeMqg9MY/GQ2JvgGVf9hWS97C+3f52ISbxNqRe95yu7uv3XbJFGc1Jug16dWRmS0/bdZ77qe6zarAl4DasdJJz41+Sg0wqiUpXl6PckheJMh5dfuciToDtzldYJW/wlYIIQEH23BY7rbeq+11ikZjOrQO0osCnQsu1SLY6mGTqq3u/tM6IcaR/Vuvbx6tRCqwFjD7wnOrdJ7ZASgTf+AQqlfalU3CT1lp0qq4qkOuqEiwHa8NtD8PfpYXlPkb3nqzivDsemK+e0ZbCl6nRkuFE/YxBzn53Btf6SIMNroRnR6h7lZCuWD+1oJ0+w5FHoI9gqJGw5g8em9k0ntV4k7zk6TBb8P+grYFV8iW1MFuryqj/KVvGoNg6xh2BCu22LY8GCy6bzlJYZa5FA+c8dbnwxGvl9P5AOsBptti/jpq1AibdKR7ew/r69AJRCcdmM9cgMspBEemlHHiE5vLKoNVw3V7FxFd+5DAGcnWqPVLoWjaDvo16VmZqs1TI2Vt44WBm0gS1r0wkWn3aY499cNIsarTTsVMtuvihXmiSwxjzQejm/s8JMOB+xezMU1licmZ8WUXw8u4On+AcVyerJST9/o94/LdqQSg5JQuxEEYqog2yb2iDx8jjsZDA1te0eVZOFVkrkX19rRWGSOmrKfwcMnE3VQ193uquoFAAQlDbJ0+He7IegD4OQSfGLbTWR0aLxikqsCaHSoghqCv6NO5ohlbtKnZmtBX2k8Opnkkuz6HyBHJJ5ucBWv7v+C5Re+XJdR0GK7+F/fDFcPGYIh0J9AB8SZ91xl2hyQbUcyXsFAVCypBaV+2SYg9knd3xvl8/9+TEYoIopHvXUyJz8FgT1zDA8vjWcbhorthH/NyC/2IemhVFsgiLYwhga1kgkxKOL7znxDqioQLj8Dw/SUYmkwBl8WcN6ENEXmInkWGNSjyatHA+EPgdZE0LgUAymmwXyJ1xnw1Q/id+xumDqYVigNNcri7KZpEfGypE/ybdppuFR/JffqPLaQP1nY/Oyju3j
Variant 5
DifficultyLevel
597
Question
Harvey is buying a trampoline for his grandson's birthday.
The table below lists the original price and the amount of discount on the trampoline at four different online stores.
Trampoline Prices
Shop |
Original price |
Discount |
A |
$1320 |
10% |
B |
$1480 |
25% |
C |
$1250 |
101 |
D |
$1699 |
$600 off |
Which online store has the lowest sale price for the trampoline?
Worked Solution
Consider the sale price at each shop:
A = 1320 − (10% × 1320) = 1320 − 132 = $1188
B = 1480 − (25% × 1480) = 1480 − 370 = $1110
C = 1250 − (10% × 1250) = 1250 − 125 = $1125
D = 1699 − 600 = $1099
∴ Shop D has the lowest price.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Harvey is buying a trampoline for his grandson's birthday.
The table below lists the original price and the amount of discount on the trampoline at four different online stores.
>>Trampoline Prices
>>| Shop | Original price | Discount |
|:-:|:-:|:-:|
| A | $1320 | 10%|
| B | $1480 | 25%|
| C | $1250| $\dfrac{1}{10}$
| D | $1699| $600 off|
Which online store has the lowest sale price for the trampoline?
|
workedSolution | Consider the sale price at each shop:
A = 1320 − (10% $\times$ 1320) = 1320 $-$ 132 = $1188
B = 1480 − (25% $\times$ 1480) = 1480 $-$ 370 = $1110
C = 1250 − (10% $\times$ 1250) = 1250 $-$ 125 = $1125
D = 1699 − 600 = $1099
$\therefore$ Shop {{{correctAnswer}}} has the lowest price.
|
correctAnswer | |
Answers