Algebra, NAPX-H4-NC32 SA
U2FsdGVkX1+5fJ77Ew/yNFtvPR9251hVNiXEx3ofOEiHQlmyP7gNRcmvDrANNVIUxzmQjIT3sCMft1bj26mw7nqSeEFOu+NLxLrXQnjOJWPbpkYKwdKDTJPexRWpNqpxeJIG7hFa2QShb2tVWhf8n2mjlATL9zM8O2AJ1dAlw0fGTbEJuIQMkP5ksqusi38CD2qFwIGaCym322t78PYKRpekFPBR7CIPjCML2A4D6/RmioxvcQ26aBiWLq+9Dad+rXrrJY+1ZwgigaIbVRVrQd7hhHAGvKlSMw0A1PUuH8oA0xpevZw59zy+u9t73aFpqzMNy0fU7lw1bj5cM5TAtacbCuyRlZe3+stBSsLdX4wu4RDMcSiqRJYvcIY2m197IIB0kKhOTApOw23bgrx5uE9lf3ixle5Gvr0A6+5DwEiX+BnWt8c2eQULfjvXl9Z7auHWycyRjaNh7tZCnyK6PJThh4GTorKQUUbm/moWqAkKg/VY3hN0G5bxCIZ+wpfcKGWJe/EuGZGlTeedbFNffTUD2VWjyEyR3vXbN7CQCcjxXge0VO+xu05syMqWzbF3FlA3lnovF1fzGMb3z4X0gu7DSO8q7Matp+nOU60vAou+AlRvxse8sfX6LaKLWiq0oaPEG+41UOLNWIYVfjtRbpVpBJJmm6CXCjts80Y460cLvXJiaNosXzq5DVjNTyupB9t8tGC9lhIL27A1DF7MSMD70EAcfYkepaSAiOkAk5egabFjtgiSy4+PHtewn7MqiapEYJROa3Tnh7w3qdXS+duOpn2IaGrZuWd5wOED1fSNHQd93plKmb2FOAg6lEj7O5dXa5ebv0JdnVd/qhDWkcgOB2ImCjJs8lbq+HhMXaLpNJqLwPrS2HE0HiFmoibCCdampzDR0v2r+xalCVptHRTnZStlJwDbKI280BATeAIPj1j+dzwrGyYVrCXncVNaW7m3E1u4/juAGIXkNlUo0ygJbpRGS5jgrmgneJhplkKzN44AFcJOY+FWYcXXhsp7ihRIAO/5PdrhdLAG4NCRYfnITqHAhmJdRL/jCym3Ia03AgoxHXkqMqsE/Fk452VS4+p2KNGCDvBlxD/ImVPlX3jS4w+DUiu/gaGwChK3D3NY4ALiETLfJKU5o+sveeaSqpf23G06dyRt3emt5FZaglVoMfyJDEDEJvus8clksQKW5dCoy8JMCNgtW9AxNZVR7O7w9pSpMnBUGzVTr2w/Wu7UUmKXZYTQV1BueCOgWDlH+66lhx+IBIxIOiTJ45GmKcvxSr1N/v5fbnT+/6de6D+Yxo1mzfmwvpn20UffscS/Mn4Y214vRHZ1s7LIFC17jNQqfFqOz0Sy5L5IWIG+xg61+gxp/BUxFOJ0qNe0usujPGGEC+ma3tWcvtcKnz2rWBPaWEk+31F+WvahA8ZxbfOzK5Xuf92lBYhEzQ4CmI42e74Guu6Rps6kAj6vVuyqS42+ZvqW2uL1XNtg14d8Q3AbRaRr+Oha0G9d0YIeRM2bM3C+IitIlCCSQiX1vwzZ9Dopr3EQGgjYgU17pjcnx5/jxh2VQOEbJ1g8zwDjNooQ2AtyUu1ha3xzzZe+0Q8GAf9LtkiaxUz0fT/N8+YlhrrvbG4Th6j6qGov97mXJUQMHDp+1keB6OlvHEEP7Kx59IvRG9peXKNar0wOW2dypuk4DiOakbsB7rLEiaaXIcwmsptjfE5ZkBVriweJc1kJQfTrTWmP1v+QxVCPDYBhvB5yrt053qMqh518qjZjs7sAtIXFHMH6I94r/cDqN7UlCwFLeyEbwHJseKOxC4SjiZETOfIT9GaxDu8o6oPQbNradhd7px00KL6ezP7Wi7u9/kdSWNbWyoj0j+ICGptfONa3GY2461gIcQ1RPQz+A/7w1ZXX2UeVXjsGUKOz7NRpfjqTfR2YVXPZoEDyxEfhpYKy3OM36zR6cQjePnaIqq39uwBLTKiFK8uS8Umm0nOwgTqv3tSnsncE0s/gfj6pfWs4/zxCextK1dNg4iGxFBOph6sS4THbPa5XP9SoM0WbOzN55ENqrQLxJZ2y6CRejRlw6aTwT5kGo1yqhSRhADB8Zrck2qY3IGeT0kEUAy+zngA0Tx6/jNN2qldT7SIQvj3sfN/qLujn+5qY+SFvJVkK1nL6uFYYGUtd5RyDFeOS+XE83pSvGG741rSGzmkEge2JaTpe5LTUz51sArivbCynFQM4zCNBAEv20u2SWliE54SNghJomRUNoOmKcK+k/n38mBFlMBh18eT1pP/WOP6jFXEkZsH5KYBSZUIyXycVeCAjgNCo0kWiuri2tWtpbXSwnxOJTovhUNLdLhMQZKQ9iqobjmt19+FTb3JnGC+6GnBJhU7r7GP8n0E5r7KQH8+oK5tsSeTtQEeOjwbAahcpxb0MCv2OCglL17samLP75LZKMrj7CZtRh9YhzmIbBUIBp52wuuHngK5ydijfNwm1h1THMzHL4sF4P66yBNNabiyotmDv7Va66Q5GnYnAHLMNbnOSOxsWq+aGlkDpBxh6Xjx2TqVd936D+S02PXrVdxr8V84+97eLC0cs6XYxVwTvyQm2s4cIDsgm31KxzTHaDuQVu5kKtDC0mZUYQTC/QKmWF+Y+X0ySdk4XtdwqjmYZdQ8qsL7OaTO13QHL8UQBFSD7Asq2Mc9WKa/5JUASRvb0mQhqOlURqrH45xyVS86KRI3+otkpfvx2cMQyFhmtVgz1UKq4R3IQRW0oJjj1UB5ss6WL+D77xJoq+pQrt4FIrKzr36HUe406yKwPn+viC55umHEy1oQBf74EHkVO8wZ89NzFZjM0/NQOv7CTwp1Kt0ERk2tWdE8bwIJnlKFRfwyRg0K72CX9xMeV5PMiETQQPIOLk2QlQMLCLZZqby/CX5GOEyJCe9bhr7HTZ6s9O7fT2pPQmbgcy2SnkZLeEmBEEBPDJEeDyYfJd1gsnTFCxnqud+Le54Iq04gyIbhwQkN9KCAUeXaMYaQXIFLXheLPSVsEYpTVGX2xha/VjylxUuFKQLN+sB+kUkBeVwiEG0fQ9wQ24lNY58J6grGfztJB4iSd+gbYJLNqLq/1fccDvoRq3PWdPSPJs8CY/r0zy/ZXD31RJcsPXOMYGTMat/Yc+8GQgq55Xq08WaLRIw7bAfzcgaEIWjlihShl8AHpCcjPpu14hmAaPOxTXwpptljRjfx5c3XIeyLVN4lSl1wNepASYrY5r1JXJTNeUmi5TdaLWESeJTz9tUGA3jzAkyRqQWeL8bkKboyjkrTOdq5QIV68wQQ6LJYa7ov7aUa89geiQOD0LJMZS1XV+eJQVNfoCobJ7DcGu8OrQfn+pjSuCGCgGADP75aM7l+7CXpDNubps8sC86gOuKS+NrFuP84/DVX+TEnZrVW7WtCuFqhPfEslk7ILHFTr1Oat4HpeKg+th33QoVvuL9mHcEsoz4BoLHpwF4C40DqEq+bKxBE5tX16o0T1iWoKY3HdT9i3PFtrLRO8tMg96/kFMETXv9OfzxR02FoYqkXP3xe+FYMnO0LLW1uhFCmsDp+k6pYpxjAIfcaMm+Rn9XvYwpsWfXkWvlbczKE+jmbRdKMHEJpejTJfLiCulktdOqiChO/1WGD6VpWafncgDaX+3DO5NmXgqnw1DvnJLHGOmm02RUzMDl1sejz3qsS8jfYy99PQL8bH7lYoaJQyjJfnFymB/xlhqty7C/ijVW5q+sVIu5Ef/cm/z2TuHzdBNCrUs19w4IMSMGQB5ve3vrilir7Mf4z+ijRO+ZenmIUjY7puqET0bA2oePFljddPwH+tzXiajEsXx8VqBPfC2Ufz6wqsUwUmG8DrTBR3K35IJVj7bzfvqicQEqGhaRc/7MNyEGaX5uD0RnSLlnr1fEE6MJ2fadzbfbh7Fi1JP6si4Vxo9Jz5+I10+SKzWtD6+Yolw/9nQNit6hbbFQxcl+dRqXMr9fIsWu9SswMjM5zHo9wZcGKLXZxo9Rj9ZW/gBQJQweHlQa3TvjW6uvoXDfQiz9GRrb0vlEh997mheExFFmeGKj06278KQkbCdxzTuPzgp/eXRXi7bzDSAbdHDsruu1YZQx97bK4DdgzdNcxhmui0HX2YwVorcglbuSm+CSjazUmsYb0PeIjIUadZA3x+rS8ezew1p0HK13WRPh80uo/XlX9Kx2pcP4U3uEg2PCybeA8pKCwD5t5FheBhe7TzX26YuZPT2XTg81Yi2Xof5W/J2XQiMPNMW/M1825l6hQUvieW2rqAkUKO+fAcW9oh/f/Slc2Ae1k2snInsy6mYZH9BIbExhMVslnG7QEGEo1OAywQH0zUr/xy2aCn7InFshH1ouv6PNWAv7VAjMI1Aj1v/EkaYlcBqFuYqWjzIslb7jbGjHGO/rD5PsTxxQYkz1P8m8Icoz/vBlZLFm2vTxKJ0AVEsgkgM4doheoJYfJ7ZXya1/qf6/F+xp1bKBkQpBrRr0JI6wznz01qbd/aETHMMB6yWgQYr8t5YsXp2oGikgmhPGK1eptGRsEM3DjmAKUL6D7VbG8DF7yI7AOnbDutUjynVimcmHyMy/+zKaIH66Cbq8iSAIAEG7jJzf7OZ3gwWQxRf/iIeHGyk/PHkbldcBG/3aKEZxg+Bat1MDInuLRlqmD915IK70J1WwCnOzJIoms26iBVKjj4x3UKb2SDYQqzT9SNS752vN29sfTkQOcfLwW5YO/Ya0gmxY9C72T1a3VypHcuMo1fogRcJnQhhghBXl4R0k21fPtfDoHmV3wLSQBpDzyKGRZVUmvpmckLFeVHdeQWp2OQ/G3MbeUMCQrEPa6jSqvU4LrqMzgRxQ9l9V/jSBK+pxRNadhV1bzcHO9zpusb9H4SJoH9jWaSfmorH7nP4Ru7xiECpphV9hnqvYBbIzkUSsEU87Whpm3+LbfhshgbVBP0YMlAwWpxmU/DBBZSoqIzHOB7l4vCKnOSB8LTymd/kLxL798PhiqXEtFoyOxogSCxQh1d3ShtupeC8kLiZBzpVUm5BKEuGrd0HHz/CvaskcCxapyDMrRjGykcHE+Li7BTyxOn522RZvCfLJwYwpSwx+8GCL2vhHvWB9a92qFTnDfa6vz978T/KKq3V0/riwhReDWOOaORsm7CPVxfBfpJT0ZbuMeRj1WRzqVZ/qtW5beqlssqvmnAAL48+EBL3CNGUoRvttUKsxx0xQaMsj4RwgFL9Kt33KN9riCsifeTBrBhfyfB9M95fWz53wW4iwlpa9c7dUl6d6/eTa6XXHw9to23iFRfFCVU6ELo8Y8/oy3dHYSme0ls3us8sBeFPJiqicmI0tGrg8OLAsyd3Yq8aLIhpjotGFhIlAnf3MlbOQjLZ0CyTWICeNoK0SAA9BcOUWT7bpR2fIJELkTCTAJeeCTXwII7Gxgzd3Q8KDoCN13Wo5PDpT6yzJYahvPugSsLM3iRg10SaMlGk+WUvsbmpzc+YATOdaEQr8NrzxIdLoIxG7/q++OkJZC5L+S7AAjySAy+bZChHH9Tl9TbqWgsdNALAWVdosJz0fyPgyNT6rraz4+LmlkDqjPF4kT04rHQk6YUsLtvdTBZUJXHpw0G39EpFSIjfuq/jlyy3wOzUCc6xHyQaOgxHxs9U3iJIeKwQUMNRi160XvGMtKjAqpJarmSoJE1QxNqlhpXV0w71ApU49anQ3adIEo7hGJhEq0zIUmIYQIEU/NnttSTQshbNMyl8A4HQm2bFc+CFUrShN07Q9pKQ351yEaoUcoafCQ4/Wc9u6gSxl5RFhQGVkpTt3UNb2p4rTCBjKP4+fx93I6tclTxzj1AGxa9uD0K6gBZfr7fVmzOMDtQiscvkrqWyuRj8inWDEerP+VJBtuxdbpibZJBddyx3jjpWOa6ISe1oEqgs5+DaF4C/RXAQfp5OzpJsxT67OAhr5Ixy7hZVHA1WOowxiBGv2abJPAAYVkMBxN2xfBJu4cKrn+Ti2L0OgeLoO6LZffgbUgZRrpsdNBjP8wV59E2LS8A0L9iQwBqWc1IPF4IvNz2ZPRfnODefoJGXBJe0iHhAu/13vghvTRe/87iyjbgaSgucRDZlQvXDAOC6K8f34eVZNlss8gDUEHK16PFnKWfGEn7UeYWSAaM2XgE8B7vX2HTL6gfJe4ezGiw28jr89bwKhg6Ta8Jh/OAsBwyF//vwqI5kl4zi9MNM0H1DwMoeRTm+DoFIzktVyUKViSseGecJ7VbLrNVfvN3UO6dd2I+mqhKuF8YZg8uEt/e8h/e22bAN9KulWXG/LUKwT2fC3iXbgJeZkQTMNQ0PZR6SQsxWCSzW4GMNFe7HJJpwo8TZF6qLCxM29mOianf1KQyT2J9x0uQOx/M/3ktXYi+FctZspcaRut7LljBp2hR6sHcvOwGaD7Oib6HdjhBoKicTUhcNRmzlNvZTkKT5kDyGd6ilBF2DphmAIfsfiBYG/P/WZHutjZu5ouQo0uOgSUDCpHPXYgI702QCxpYgIXF/KWOBOn1Dz1yzEY/JT9+ZvCO1eqmwpo8ZglroNBb1bkAuxVB09ctzIjTMn6Lf5qSka2phCc/RjWNa+nE/VgI8jziTO/Qk7pfF5ZTZxpizo0WMSppgTqrsxivhgGrM3aNfcBZvg8hna74+mB1Oe8TY0+oeE519xrXDqEgnvKjb/dBI1UN4vQqQe3PfInaGmB7yUB++58at0Fr5PD4UOLbRakMbzDy6XE7pmSLEjcZp9LctCO/u2f5z0dev59RuW5lfeZP8J0hFO3dHYWXR35fRqYgZiFidCpcYOrHZZkAq3LnNuqbafo/ExjG+T1RaB//dXZ5wE1ILyOm3thVW96Oc2fM+jwDrjqo49pQpMLkl1bLg4hdkozpB623mb0uIAjtpfs53tOzKDJQE1IubU14t40b7jkqMj1FfPeFxKs6oBc4MUx1+RTeBWMn4PLIO15mLSijFcEFyCTL6BQXiyrXmGrnFOxulYr0zwrZeO9ulIhuABaP8Ofgqp//8g/wJagcREPZiu4A6ZQjzpIbFt9fuQfC14wYqWO9428HwRSjy2WboDWD0B7zc0Fv2IGB3HqUO2n6t01dA039SujgCNF+DwzkUU7MXGz6BARzBMn40pbFOK/by8Hyc1lDaWFaEtqFiEmgNr7KN6mTL47I2k29dmmFatUtWcD1bybfDog9dzhR+f0Pk/ccVL9LYBVutrYCiYgm/MjuwcTYYgg1yR9ho7znnP/jBCgsqIHFNPTq7UEsbAeh4VKGlcl1BbyAhYzmBxqbRB4MAA0tCe1Pnm0o3WvjgQxpothciV3wDDUpR7YJoK2aNTKMJRZ/4l2VedQcWN5IDVGnLc89FfOqdWWrdVCcWfhWtRnMT4BKOPmtBDsok8jCtFdcK3u1CWwJxj5x3KK9QysnXxoDEU/7GfTp44HE0kWNYRoTdr0Pkt9BnI5ppvG4wz+sOECIKygZShj181ZVmXb/YZmFTN//sOnGIiDeFeymECKorafzM1t4e8CSVT337+C0TITDjsaxDVnD4Jp9+DgFzJJcZ6QFdAq3gJFk5HqsCB+/qNrJHRoeavLQY8BzbgTw+4cBBu/2QmGF5kD0yH0IFNveXGH1BD6/fk3btLrelJ4174HFmoGbwaHkhFFJ55AQRE1iH9CpRwts+o7OQ82L/jZDqaNa9Ic0HUKueyOdNcO1QV0d117AlpLFol6c5h3glhgbAcdBVi2OQ306LwkrK5sEDbsDRIN/zYFpe/2QlyfvwR+xTk1EXFhC6Y1heL/8Ujc8n/PwtWs72Dzdd3SXzBhlUYiuxWXDlbRx0tHNXHETCgPsfJd7EexX2+gCYw8fq5wdv5JXbz3RjwSNIgWPvQKjsx2wbSPox2cUh2kejFkrfEeFaFyZeCE8ywIlMObKPvc7/hxtGa794sS1PfMAB4cNkwPbc9Qvt095TA376MTThGq7K1f+PmqQyZRCfq7bqpt0BVGfM5rN+MiHdpsffCxA+L5XpAXeLyo5HEHfoXzMZthV7YUQkfZLmZU0lxRz73i2Wv9B4R+e6v4qsUB+2iIJOAYf2T/bfiA0D8iuyE1L8iKo783OuvJXJVJc0qgBrXVAcQ1iI4ftwJ0SqZcoOZa0V5ruDoBIJcfnJWkj5NPlb65koE7qWDD3sG1rndeTkOLAStjkUgs8x4Tp8oOqN+3H5p5IN9wT0o3ZtYMyYyYeVSM+Vxs8WAzJE3H0am23NGVtTcv+6DoZMYkI6EHQXJLaXiJ5YHdrPHMA+2QwO5ACPDfRNbQNAUaY4vTOXKZtqY6kW0Z8r/Phn3KOpJMk7WJusJIrnA32edGe+J4L8DDXWvHlKphyy4Kqh1xebW5VEp0axu0+HIGtCPsPASVeryIRjTvHJBgtElZAvUnbFKHthv3TAqwcQHgXJZwX8A8e9aN2V6ueG6o22ACQySUSL1stt7rFLXmosvsRhrR8NE+JOGRQXpGQ7yPGhAUTLwcEM1S65UcL68YIT93ohpmJvKNGl0PsvNkcpx+z0ptD6BYJGN+JazWrSwfp8kBt2yG29ui/NWZcQVvHIDLSasgiJgUTVrtfODco1XHZaGxpftt/DvupNtODL3cyQVbhhV+RtAt+qVj8ziQWgqW/vELrUSE2SaLOqVBV896JANF3Yzkl1KWB3RLV3UeqqkEj4pJbhFY2ZcYwAMAjIGJ4zImRFyE9GXXgCUYwDsA0vrqlQdS83bamkrn1lg0Bx4XgWOtjVkWgrU/6b9HSvEP7JV1YqsHSRfVs6BXas9hXXMe7gqVDgaSqn7jINR1zjB/69tDK7DsO2uBpkvca/0XWtX2dlgLK5+LLb8sAh18Kih0AnufVEhjjBKGTqCfypBrf5PH6qOHyKYYIK+ZvHWNTjkUeyLutXPiZmRiyVTXTcCJMj8gzEGZoxc5H1MF+JY9/HUammuaPLKsIhhKzfIsX1oBmMOa1+P2yGYsHbrgoyJQjp0hkx8wq7y1a84wRV1xKFgi25hQgWqIHRPBl/SznavH2Ow/FERiW8tuda+7wLzQdyY+bexUYvmAHvYjR5QdO1U1Px2W4DN6X7vP4cg4g/9AeLZPvVKrWu6KYsjbVIgPT2fUQw2ZdaV528m9CmaOcbQJzKkU/a23CRvY/7mjukcNikM5XHNlB+uotR0vXwJnfde13T+1gTSb4ZhKXjh2VRAR2O9kHfYzdfGVE18Hzbl2gCSvlkt3b2eceEYoGHIH7OEQk3nJdLwxjLdFxsy4v5QlVZS+jAbv8XDZgSModVhYPnSrl3gv4ge9HYEH4xuU/TY9XZbQkSpxL6F4iRY1GQr9SxQXkjhrg9H+gMiOflLIrA91da2zPpBajItH83bdHq9qSbz7/Ue5nm3bT1z4ZDxWeJu1HcU2voThU+EFeX/8ZdGzqVTFXedExttCutQQl68sVR/nf4jF836eg0Vikb/DdspiEb0Vqslyfpdeg1KKulvhyo/kATPYq8HKvIh8vV566lugf3h0tyGko/f51A0Qu+6RAbObsuF7Q9yRqoNlhQC8rg+EYedGxZLYm45dBWMAwywT2QadAQpb1FG2rNKwGAe7XSYsEw2hJLz1P8wur7SNjRntsNFeSx+ugMMzOJL2NYErnvl55xSWqP0o1f/P5Gx8z7kUV4EyrtjWeuIGagHxhDcThKzReC92Bd7IikLkOHoG+f6Niz4o/wkJekQytYlHwG+byhv06S110e1WyukOEG3k8SRTxinonpdkFl7uE2xg6qAZy6/gbPkgnW/nGft+MzhfhLDazCYkQOKrjEfm7spk/99oVm+P1BYe4DFBNZRPA+hv+aEzhTY2HnAezwYzWr4EMMSoTo+hHAMVkpKCGPPzPTF8UG+UN4TUeic4zGhSDxhfuvt5rs7J02a0Osryd0VXhhp+VTz4N0nHw9VYNATiAnFkSZzYALV9F8KBGLOKkegoyPG1TFjZ85TO3B6T6q37SQ2Xucetr7BQkW7jKYHjLl9MHkOkgleOAqSIMD4s2VH0kMvngyzEXLO+G64A5+N8TsSoCSMbVjMpgW2m2kRsoUsSdoX1yPkCJtb/Me+Ptlj0MYGfcCwkw+aL/0eum+FIy8gWN7aNCifjD1EgSgyEm8oBbSbfZ2QjxW6iMrHchMIh9XPWdqXiuV9u10iiOkqsbh1DwML5Vcsl/X7RMHT8dtU4gwGQO21tQxMRHVhj2CRnMPj/BWM9hSOGk9UxfvPXPUeCu9aqm0WY+dHWAE/gj9qOKMhSwH8xhTAyEUhVJ+s/LitiXK7E2cSaipNHOp/u9zhdJpOb+jbOqBAEg6qX72E76HX44at79RKBooPSH5EjUIMeVL2PEK6Ke3CU/o3mEEUcCQJ+KHBUWFUsmxR9o/+VkMLV+vT8VWNTxUOQpnfgspTxrsrhvXv0lZJT7djkM2/RlUzBqccs1PAEdOrcuc0CQih1Vzt6MwztK7i71SpFhfHI1827GPgb0AcTEhI+AB9dsvnub8WZ3faeBEh/3tPxr9ImcFsIDy6ItLsQs0fYJrfhjRVKsrU/NNpJrgmzdITaFJcpyyFsjYH6+cKYvU54iMS5CAOiaIoWdMAM9v4Vd6V4qPIsCEoYFQKI0KdIw41Wgj2phprYDKRVtEJDMFafrsUxHcG4ZalnMK49yCOaGuc3Ry9B43IQyhyiOtv2xMq3/ICIZbrzveu8Se7UD+xHd85euFnjvjI95nLTRBZxNWgjAQU2QKD92dECXcvoEO/2RMQ/Q9egAvza1dRinmhhK6tDlG+1CMUGCJuutsL2hv/PK75Fji4jf+2Qbs8EtCMNLrl/GvVDxzGFsDJCDNH2ytBDotzW1T0hcqJn6ljTD2A/Hc+OkH1mQsfapgVCMD5jV+XEdJWQp31ILnBsMeplrKsEigvVIGJL/3fGimx13ziQuHhjnUIrdgG8pM/1r1tvP+nr/51g0kz0X/mTJv95rNDlIKSrOZrZEZhY5l7uLWT/nsloo4xjX86LO4rXBE52Pkzictmsx17d2EwS5zBVK5b3Ur+aMtyxYnL69fsnfK9PosKp+xnOnVr1V9RvO8BjjUtMXBMMcC6xhCy3YPo8M6+a24hf0EHOgFDxpliw0uhFj/ZPoZ7B/EykcnnQpzuj0X3b//7azNOLZT/jpef//sGCfA6Plm0qbid/3Z8cfbdRwpPDMkuUmcLKUos5s4bRZxr/+RZZ2RjVdtjI3yV6PuuOwyFh1k25WEi9StvKicFFyE5dpGK63LzsOQDlky18r2EXh/rTEgAAkt1nt5wvi6u2fJ90VqbUHn/BRpKa7ueLNZKeJFdod82E25NSbdqbzJ3r/B5yg8VmbSkFw97y8TEOvgQma1/W8/WGUEzUqZocNAxjTjQ0r6mANwRc2DQ+OKcIPlYJJJ0IF9kiO6m41idohdQubldiOrPBfcadqD5NlJEG3eYegDfMDOetexHyL5EgtWMTptSgAr5u9kQ5J07dbF87o8eX8uE+JL/zpxr5EO1hABi9kyTocUnU9wMbwfedSzgRG7wQH8vZlAXapQHMUQKcxo+21M3fVB9DBEBn6g6qwuD6z6QjrvAEz0igk+lhE5ywe7TEfOETFEjL2XAwlgBscXkBDicU3yYe1oF7hSuw+OJEEeKEus7qQamrCXSjO4ljNtzu/XkuRu+gjBrpGQSq7CPOTxyBVhZ/RNBf/by7B9ZFtdFVDuU62AB3I+9bLSRJHChiMR1wcMS+ZOS95P7wl7SKGj2EtfT3e4RM8TE8zujXm11KjgEqBNAe363vdEn4XUgfxThpJTpITqUYEj33v6uC6YZ9hCQb9ZPVOge2HrRlSNI4g14YhrTEToI/3xytWsHCsNKZx2GTTiGOo2JM8I7c5+iSEB2uCF5fVn5Rycg9/k0WAB9p730225wLl0TxHpjCQhxGxDe9Dylvbi8LXSg4KwYwbjaQYeaQv+yaJuJbmdPZe2QFk/HV0jD3hJbTCeL74Kgf6I/0E78BPppcavcBiSgPkCZR559yjmWPvMWDNOZSfjTf1G2wgirwOXgaMP+TTc7vV7KzrRBpjbnGNJny3Gjiycy5SJxjfdF6slHK6YDXkzMx3gDWLcmrkBeNzprLv1wpeK/c+6/LKlzyPxAZYoEIoXg0WM9Qx2ik3n5yeYRZFVhx/pcpnvpDu+J1uLAVMztnY5yJodom9wb7254mrUILEtxyHXoko+lZ/0TEaYLer1rdkMUD6vEfuAgBRQxF9cKaxPX9iyClv7kZ8jA6n/gSC3GyLZ/wDqcUPG3NOqKE+UK/zgNsD0NkqjsUFsMpA563pfB/omnaTBPhddEdAFYIMZS7nF1w21qZ9R7G38icxcEg+ilbypiDp8ivj1Sjm/j//R7YWVQjiV5hHmLZtfOdlwMKUGyzLoYv7aLTlyKfp7E+2bSoyizBWAakUR9ByREYi5Aj33XzMTYVNuhNurC7v9RMbGSmtrZN8jaK2oy8T9fJrNoChCCVpGcD0iJANcdA/cnrTvzJR6zqcLYawaEGR9j0c0l8ASnlwiMbcQXsl69xPkCSBhS7QXYsmTooKKKUsgo5zGLehYiD7scJaqmdFGzCx1uN5D2RGUatMQT5aW2O7lOQ3/tFIGTHFbWgVxTQ0NlLQltE3oHtlNqlsfDVntQSp24/aTlTrv+rSq1gD7T5FhiC2AAmPSRfpukS7rOAKY39N50E8nionCkcdDlgAxpK15f3fvm0gilQVjS4dwzFeeEw9W4DYiEkdVfEihI9VAsOogBHD8k8J+6BvHFhGiyC7VwcVf4MHJ7F0BQ/HbpILFXN3EW45pNCBVLq6T9syLb9mP3DSj1mhJrzW3xG5JshOyyYbDtypmKxbz5lJKwRonz9EcPxkrPehs+rN/z6Dg2fFJvdfVfKSX8UrL/ZFCviQOO0KubvR3n7yRrxrs0Bxw9jILJdgWqkKg+LXeKtjK/Jk4/j9GV0E/st2L0MdL2zKqR/ODIKMHFxv6RBfEebXTZ9POu4EiyoFE68gV5ITlIS2mmEA/mnyeOEcXhWlR9y5ER1uDrGqckDxK0hEFNrWAxr2pvLe2EUW3TeXjEZJc0zQjYfF2NMT4z2NTTwm3riRYL8Osf/nQvIIMxKd/Cov9wsmLzERHnw2P4ekEVLMQZvEi48tBfNw7NocMIN4vlnXSgVVWnwBXNH3FVDiWniu8IdjkaNM5w0yyIEOcqR6Ikfr0SHMw2Z737grxK2l7IkjukuTY+LmuS+36ET5XVCL6nunTbrjQAmJlnxfEvMOvvFm2d26iurQxXH1wr/+aCgsZHkJ9Iccn4yX3hKlMeSKBVfpGsRberoweS/ronP8WsyrQCHpXCSZDKPRfi6wHor7cGlpjNiv+Dw5trXPbWMg1YQaadGIOCC75eS8cAi+GU83ahwVrHYAVDWwgTIU7VnNGlliMQ9Bhz2fqyeFvNJPUccO2UzUovEd1QTo1uYw2uh4So84RGXf1ygJQF5oosXq6wyJFZ3OxX+eUleDwEl5VnFDrutujPngfzlgJHMYb+/Dl8BG/EgsyjV9+Aw4uXSJSejiv6EWnX9UBNqZ7F8fqDj0AOOwI88vy6jdWb76NfxajwEMpq4e2prPGu+mD30neXvGSQxAg58IU6mxF1BGdXPaZ3+7N3hwY9QfBp0rp8gGFpUs0aCW/ZNtiB8OmP3RamHUh0Z088Jmq9Sx74g+wbhzgPBoq23mwOJj6T75klc6tgbW8K6uSjc9B4jhaw4uZwBivDyAWFk9zEkW1a2zjOMsIN67ZRp+lcbsKXi1eGV0pU8o8feuPEcYDXG4wug1rp1RhzDaZD97weZLn0EHIdvxLsPUph5mL5MNKMKwsJVOCrVKugdhpOt3hYkSu6A70GzBD50NZIXCC3/HzO1nfp0rsjyqDp8YgOflbcbG4t3JO+DJ7P673O2U5Swh+umQ1xckZlMDxOGr83eqFiYShKL2E0O2ePYgdl2t7Ns//a1i+MUlIapwVEClig6uRGMLEWQ477KMBZBUbZosHFZQGvGTce3hvVY9MqpgktqPSqsqkERLu4eV3yLQ/7olL3G6t62Tvv5wABhFG3HG8r9gBMFMw+Pf7d1ADH2wmvs7CS08gq92YOqOZ4tU2EReuOUg/j4RErEQqAntlx/cUqTIQQqdejKSjDZwQ6GTEFRjl9ob+q7a0/bwAc0S/rmjETLT25kflpfSoTV/wbxrtpewgegtEEHwI+JLVSqVaMZ0bj35aTCrV02aFjcrEwUa1Y/v+R5gn6f1nE7uZ4YWVQ5t0s5gLI3cfYXec7zW7/em89m5IJBEe9KE+b44IacDATK1pfeI0mNjtI/kNeojNKnyXAGfnCCgB3ODvC/Tbu8PHN7FaYCqYLKnlpKJhoZlYBgd40qzGo7L/bpDCTUL1CwkEkIxLWqbkwgG4YyZ+9AHcwBi/BC7C3CKinceF7Z6/ZXC6mk53vvd4KUEGGrWcKHoCMX2wS62lJCkTxwNUt8R9eiH1ABzJU2ueXNZfBoqxeulX4lB1WLpfU8bvZcH80uqlZbK2npsO7pRS+U980GHrE6WrYv1jC7AlrIVOyF9rRf41zqot6YRDRAfLA2NI/K59GfusOZjSYRPjCxZlx9gWrjHt829IicMRyUZsTkZxqnhi7Ji57Qr0bvJ5C72olSsWisxdAQuofHn6/HsH9b1HzuQBPQ0An1wyE9FQAZBk0VwHCO2RYAb8N2yFG0BZjBhF4AlrnMSxKxtSnKYOILxGlq2SHUw4g+GPuPGhm0KLrt7EsUP6eOb5DNWgFxybj04Xj4MqGpsB83tW7Bwy+mjG6oRcbpoSx+P/Qi7LW7HIJ8kCEH01Czq9o5HW73teLGvK/ORRSYB3Eltl8NOSDWSQ6jkhyNuIRNi2Y07qFkx1Jr40U35cRHgciA7ZhfHXkVRettPTIjZbt4iUG3dDY+wlXR1w9liWvkrdCIB6RseMUWdVWSuD7kWV68Qg3oT98FZFZh2fAETGtiVw6I6np127WDMsblOdS4Ai5p8pUsymzLVkiTqq+sMr/MYzHt/r0veQ9tmbj2aEtcFdlE+fHJxsKmfc+7OLLOG2nSfAGE3ECv+D42ZUcPwR32Sk9EyKgJRL7Taqhv1z2MdcRjQkZbL/Rg+FiVdY1yBmRv4cNSrUp7sMnRhW3P+0edckIT7QkcmlyiinbjTM6LZwP66vHXuABdz/c0xFInhZU+zl17wr89Tci5E7A9IGBrv8T5roH7zAVy1S0Julqkqj7TN4ZNJcd+1/wupH72uarrKJ1Ci/VtJEXOCSOqK9DaL9f5pn/2AEN14cVNylaZeGckzv8OzEZumfawkgd7pPBBRbjLgfoBflGYecmijIsQZcDQwTNI1GOnjGY/WkQ19BOOZnqwq1K6I2qop7QbHcT9thybEZbLRAAhSdvw/08YPkTzVJgE7XYk5EXt4qMyYXi0lqg5WN9awRPu7339rV+96mdSiXxKPuLtmm/g/l/V4ds2UuhbXl3QVS6+1Xm3US8bw0NsAo8dQ5Sw0cLArRv6ZFXd9KWkHhDkXxGpVh4N8UmELdumQZZTVFcPDYbeKXhyrTtgu1oF4CyzRPjTOD41KO3tX3LTlbhXQw74eR0NHrxnas0MNo0aV3V2Vd4r74v5pw64SI89MTJkYzVzF93U6/jDfYUyCzeIqBoDzzwDGl17XW9T3/ysx0xPD6sQhDMoKZTYx7W5avMffZPZNFmX08nm43fzW1IIu46j6LWQY3GfN6Etwy2bJzIZEQhHhH7yIGDRX4cwr9V8uJOtRS1SWllydeL9WKXUDzoE2X+41Xf7lbEgsAzvH3Cqk//chuHC7XQR6poltWB2l0Fcbf7IZ8o6G2K91OW8B9ve7EgtqTMMLPRNABFdCWaFq1a3Rraub6g6Rz++gqGRyJGAPUO+b1lnhL86939TAqNR61dHMl6hIaTGyalyne9rr+xnm1VTMjuiSlDpl+cuEo/TQLLk4YHAW1y8tR5JIeoRkEBgFkiad3bZqnXaRG5k8dUtCegOA0xPEEYNvhM0tmB6qSxeTlrwCXMjsHFXaURNbA170SRBbG09mEy0C65kvSVaHEadccYuOzSMT+JbHJh3i4u+68/0EPG3vMTII6lTl7SVHBdEjkcQbhrdVajE//LdK0BEI+ykj4epN96wAon/dHuWah2Rh5Z13pG1oicVq/rfOZWqgxdOVV/PFhCSN16oVD9YZGPyIr0Xlgn71obGYp/nnRvuQEItPqFmllucuvVzvZavQk1vRF1+NcBr8Vwi38zAG1WwyQ3ZmFbMa53KRMaSMrDfoWf+9VL1bF1LJL/OLbEd9SOJoqFsQiW53IzmQT3h89c9Rb/nFkJ46dV9oFwOLXB9V/Df/CNeYKL5Fn0yaqiN9ITj316nqZwb/z4Mz++OKfDDbuI3fhR1s+DJnD75vEj5k2M34dJ6JHmF5yQYbGFXvZjrrPGD+PbuzTKIvt6O3QU4dmU5e99akEl4JwzOxHEdxwAi9n3m68mp9HdYPAAUShRlEnfZqJT+NfltxpDHTQT3LaQ9L6yddh+etyQDBz773shccQJaI/++EZ+4mYKbo2hfk9sdSOU7lHk/cWX0TV9KMo+bLy5XWpFQbRzIcCuHr/VqP1X+r+yKUpoo62huTiVBWBPOW4KD5FSQHRjjc91yE12ANw+8LEL13ZpdqvhIBWxOwNQ32NbsjrGtoK355yVPgHKvflhleBs9WWwm/2eB5SBUhUgCk/pf4VlUk7YR9cWh9FVqHuWlw9UVTcgG/uspn0O6B4iAIRHa1ZpGQDwR3x7k8boqL14V8RigdMAZYn+oq+Wp+Xs1FJImeT1JXc6wp9+Xa/KV40SdYo19DxlafcVJz+wj7J9OxwxFcDHq2P9moauDzcT9JLtHqCXZgxlRRKNSpfkiiHoUDOYp1/MVRqFk4k+DCLCE7jFsnwYa4dD5yGWDcsheEHvPl9fWendp6EXNHsJYLMlDSwQYheIbBZkhnhF8FhrsWUOZVts7qpajPNlTRIa9hXCkfu2A6zSD8xZZZIeGmYgng0hlRpIXROu3D+OxlumZurIkc3JeNK1xAwfmhwl3cGdml4+EucngrsMS6aYbITxRQE67Ktk0JmwYBYaT5L3QrL+YujPsWs9Dda2GFtGvvClsu5zBQQgJDoJQdS0nTBg3AxKm7iQXsy62Xg1ytOHFV+aFwRVSQHXwbeQQNtwqCjTDLKqLcDfRtxpdRb/m+udYjUAhG9zrDlZ5B02uXDgSKRhNZgiSGuF+DleSuTwNZAUmJ7WtdeNuvW6c649fnNus+1WJrf34C++LSOqikgs8Mg9XlgyrXl+QRz7pELwIFdQbmlquMB9r7p+KSCy+JVfqS/MfyKzZX6UgfHm40u5jSoPIOZ+t+gEigU1dJ2H9KMHjq5qhWAgP24BwzCWP2upN1KPhqIBBmHLVZM4PXggfQMefBOreu0F1hd4YJTkYq5afhzPl6C0CQzpNCVziR/dxOpTBn+Fuurwgmf75tcUfIoI3OB+UxkG1iPIw6eEKMEAvBqlOC1tSCAhDc8Yw6g6faJslvClPZjyrEFW61g1F9mNfqWwrk0aaSRJHp7VftTfpWnkipEUdPgxtjTJDMQdKe1MlXB9iz93wYHeHBqEPgg+v0t7VyyXB3HOg3NjNW3Iu6q4s82HGstQYDnIc4Lyjb2q1rjX1RzEpFk8EYMBm3zliCsF3mEXu8nCAt1w8vu/TApgruQFaJdFccZjue2xkqnfoQesiPvTVBm0g5iqVH2LXrDccuXNR2OjzUiMEur+yR0kR/cHw4r2Agwk5b0kKxZGwxgE+t/ih+uUxlGj0sITGCF2RmLOKfhwPD9Vd/1CECMZdy4HUUw9imbNDxOy/uDFSwtdB2hGnN2DGbvAaF5iSuD035gKnxPROD4P6FY85taNwoicOyeGdOjpMB0K5CEIGzmNjvkY0L9eja0jvotCJPratKYFfeLsxHPzUWF/G3UQtiHyh/R5Wo3b2uRMg+zhAtckPllu4CJc6BHeI5jDiQSgx/NmREASdMNR+HoNCxTAQGikdLfz36QARADTWgsOyS+6jUxwnx7WFbaqSy88zja4hl2th1DvOUAEGARYHPFMFZzUK4L45gWLvbI0BEwFlkkbCJrKOcexo1raaQeD0pH6Ih0L3FXvip1lZc/tocQ/GNARueC4RA4y/lROsLpADlqunCP23Ys9vob1FiYVhex2B7+cXzqPwi8WrPpgVi7SnJu2n6Y+FoBti/E3+4R8Ee6FteJWTSbw35Ft0DPCTL3BubKGmfMtz95WMtJu6F6AemAIj2kNcJZTPoil6vze7b0wdrD9HUsk9pqYlzP4J4Ast4q+CVuFz+9vRRKz/J+55PUIq1G/L6KU+drT0Q9TgWVYEwDGRKAiZbbmvYu7/ZMX/D90uo2hmooojfaaQ2+6ViikASwXCL/NF85uvSFz8QZeRNgh3LPO6YlamiqTjqigX7GjnxB7q3jCxGu1i7+fbOW8IqYd1W9D2K1VdqYx3Dfxg4K2DvVfeha4dQ6wIJHjwKaeFT2PBU9qZ4V9TFM/qbVA/VMUx7S096YN9m8w9B0vhDm5CgIe3eQPqimhzzCEJpTyXzQiAoqpTIORDsYD4SXkOqA5li12U2iQoBlJANsZA6g1JI7kmxQx5IpEMYUCdcVjLDeFu74NMNyfrqDR6qYLtax6uGMLgmI61QWbX9VGghiwyCARtM4PoGBFOudAl9aYT0rBkOjCFwUh0zdlLrgtEui8v0cxfugn6Aha6o+l1ItVQcGp8WLVDp+ucA2SLMn4bDcKw+xiFkJaF/nxKz6Ip6onjTx51+0cOX0KElqjyuYbZfwCoN48ylVHkH3hHSGfeHRKwkNlz4ZGcfgxBb0PNk8bq17w/110dWIdWVJIxPPRCb6IFsz4GPNZfNLfO/L8/dke1M56+LYQSHIpApIh4GA82b8E9vjaQR/Ky5iaLOLN+J93qpKKDx2cvxq40FPI+gloRxAE//0JITk8MtgjcEfEvTUbTxNI7nVuGZpYAFWYY15q5k+n7GTt2hLknPk+yZFZHlajadR5u7sZU8saMB8HFtrbfVqvQJobwD4+hQLBINQlliRwFm2433PtH/Wyza/4aPErMnCiYjn2qoVOpWluU+8DKM+/9GiXOOg0uX8Ms0DhcXMZ5Hh5Q3YoEqGAfVFjINiDgdymEq0+15nlqw8ouneuEPEBdXNm2L2OLtT35bYYrrD0qCZnXBlFlQuQweJfpkw/Rd5UsLoDebOkx836nsyeE9QlKIDu3SpBuPsa/Bug0vHu5iOXO1RuKWoe+aXu3y/5yx2QErXXVsbWwo0QnP0NQT8MUccXJXWQts73qF3kcQ7Owz2SmgK4HsODxQIzfHpSKKgye7gXT4FguZKPgW7FKN6H3bmDkR5Ky1aold2A+gJMcfxFbPEXOLFcP4VNOn6ETFMOGjQ3/+tdDLy9YQ7e+iB45PCoBnZIZX1PhsMFJafv8hEFbk1jV7D36QwWiqCszA4ZaQubFFLTYV4Q+QgERqD0MNnHCK8/QdFS56pPKLjBaYWJTPDqQ7fqJ8+cniBRaJd58AzjezrusBr3e6+GJs6wiPIwLejnE2LDONzt5/1mX3FZtnELx2eLomIG0t96VRf/qOakDd1uQ8k3txCEkkzn7KJ7p2JAe5+MKRcJ4Xm41mAc8jsDfLeqR+g9o6IaFApo6j7d9IfzVrfXGx+wyLFa9gTNIgyZiRnpPMbHpYLrMxak5Lc3nACQ8cM3bQfSMQAOfpnh2iaWb2d3dyoJ56vqXMsxOBkumgZcNQC5DXC2bHr36R5z4ElszvC01P6jBaTyOpE2I+19cGQUou+WHGsw/XNzdzfLlN2H28HhBowJGHe5KBTQxGuRBczYGtaUTjiGo6Q8dcRuHUUsjw4P9qWHhobn33sEiE6H1P2ogw4C+zoAAjROIcj2xwBV6E4/fQBgoIw9znIWfe4vlU7tVgiTf1THZk0lP2fGRqsHBCx84wRF8t+Ir7u5YQtXtYGMk5qaQUoBKaK7BaxRtX0I6lUnZu9FDqxYAifOO5EpqiMJHIjbLnQM+trcRYkD7mktCIFPJ7plxN/Uye33ACuZmOSL0NL4xriaziWYkA+DqXpIfU401UQ851O3/59IKFbINOMIVmVBwsrCS/2YeNulR233YDkTOK3SgYBpLFq+qJ5DqF//qrpHsCYF3uCTNKm0IzjqTsdtzoeRvppDwA4Jqmu05gCWjyZ6DNwxa0jY/TEiUkS6RXbDg3j056ZqW7K9xpc7uMP+P5rbYisVCkuHrDHl4+7qJMEg96Nu7hqgE440KeEIrdQporTfcGyMOaNRTCH3yeH/BYq1I5o/4ZyqsxInR9+JWtZuf1C/AspNdzzguq/q5Tmv80mKgU9nTMTIiCdoE5HM9MoMtKs3HVnOpLQxnOR2ZJIRGWbrYU+zdxkn1iguXEMJl1wCbIpHqejEoMNuIG63oHeR5X7BIZlwgBhBFwUFLPYtnMqjMZIXpaergRhnV2WPcpMqNgdVZ2fH+7GQD5ANICfMeG+usWUxzbO6V/2dXVbC+aORQTQ2NwOmw+kj0zmf+FAnwECQ9kTnWZk85OyQ+XF6Q+bPFLOVTmShOblZYfMcJy58qnA230Jw2Cpb6I++8YBmFnc5joVq2ADdQ31FiBbNOIdHJuTdHRy83v4XShlVlCVhBJQD0Fs5+sDcu1t6CCi3kdp37emhARHuSz9YTN3/ENNdGoYe+IyDQ0IAsVoTkkACye4fgMrz4G9nmk75NWzk3dlSrWOR+/sH9Od3RH3yXAxm+xmMgNU51o3er4tkDWx6DMJupceJvr2fdIJA/1Qp3C4Bno1H9kQeCatEVUTibQQY1JhMdn0itY/9JDTEt/YIzaCr/hi6AUKrzALx3RGedRPDd1o+Mbbd/HcnUCmcU1Z2OsESCk7eIMRDmILrokuSJALGyNrBuI690+PnS0W+DPm0XvjbUoX6bqim8bFesaDELfdMI2MAx/BLH4JhQrLasSQJ5PEL8Diy/MSUZkvJytRd8SLsT7vhv2fXB2NNBevzs/Iu0Hvo4CQn6ZRiulcuAWTdbZxpheHvOQicZZFi4s2fJwMnTjZ3sZM8Fkv921Qf7KOCXFjOoF//rb1Me73LgYQ667J3vZVygSiHAz+6Vqkson/5BP/kWvDV4+s9ZWn5VGpiuFbBaGT0MghBjYr5fdCW1SdvhOaronYE8ugeE6OwMNsVwKhN8KUPpRmzS3gfoQD7PmJif0IiFey2IPDrvaPEgq4ahhqCKJkwLlR+YJScirG8ibg2VS0JAlGOHeJkzgoA31dceVrPrfXiMktphubpSMJO32Zu/nnx6bV4GqnBzfxEClWNJVdYZG0hFPn6N8K0MX9HQHkyK0j3nVoJNXOdHzZY1MHpCdmrhD5r1Ft723YtL+qZcXMPgicsGJpg3UbMk6QRAxQw/nCpuRU7S0ceBcqYedWGuaPWtc3gpjqUKxdBpWxU9V/MMbFSYd6uMQe7ByCwO6VKqtq76AMLT5L/NrY3vS9+YXLwLJwPpwOMO6TLWwSXvWUyQVdn8V7mLj2z9mzOvSMDYiw8CytvXsMIqF8gEUhB8fYUsGwKL3kViMLnv6Wy/yeUshhISoMzbftttOyI8xozF90MwQBPmda9Y2QiSe2wpv9ib0Kc9IkTADVFNLC726GWr3rLma5Zci8tj6kKMk7Ktx5/u+TdrvlW7Vepp2M0vnmFII5qm8boeMpBHO4GfIFSurATtmgWyaW0UCN6BKigqNmKalEGfKYpc4WvnJs+JMQPKoMXumG3tQpbXy5eHPQlmvsV7CRPPsPymWmQ55Et++D8IN8QU7GuZIUIxZwUrJ9JtPWNOIEuAt/KtNhsn5SsWzHiSWWW+9/axDhi2dIYqO6+bG6sbNN27qu3S5+WQqfMWIkRLNiqfxIiKSdL8BYRGKiFR1xcYPCBSBuUogJ8/A7of1/FtYbLewhvfN4Pno6E8oaavBEMxmS0BUZatrUh0e78o7qv6z65q0z0hDdQqZeYVO66Bl/luUTxcSpzyypEPP2uAAMSa7rQ1mCOGnQclGc5UA6AQu9Djd8zEtIqYIu1FthstM5JLqGPhFeTTXZXW9F0/KSpgFP1fTvbQZm+HSAONALgy2ILVayEnO8djhovFAOlRgZtNdN9Jdbmt+Fb8BKcNgHs7WTFjU9j6rqDHkqHN4eXkWNHzk0+DAe8Myw75WhX/3gZpvLda/A3cFgm26XfZdz6GSwbWnOy9FFw2kFSfVbpHpd8MI4OHsO9qOOyiy+cQcxtPFXWKciVhrPDcGZ2z20sWazBX0m30HFtvogdKlmzlFYrY3GGTxZV3MRyOoR9jl/qBFb26M4S212/30yQv0hER4UCYbIm6ypYVpVl0TXSN7uaproIjGwL0BA1dKxOr0wVqEpqpIYrGPzHICCSqm3ufZZj+OKYzgCIkkAF2a3rniWhtK1fAQ5EDVSxga9VhZzzORbcphwtWi87SKvbMXNMSqTvMNHKdQMKfKnl/XUmONGBXKOngSDfiQdFtGt3jgjTW+wFOAT3VwYyzzrC6mxC4pj9csBaHzSjFAC+dniqUpDMfGgVUEhf3wDeGT2AnLbKogVf68Rkw5zVQnebkQ0oAElS4+KIs/NF528fF2fLbn+v0yVkuMGglzTPENjRROhXtMG6hWQVz5Zbbp990O4sSVOFGxOjRH31liGeYWrvtLz+/H8vsSkI89bhBvJXn266dblOHOO766P5vtcPmbs922NDnoRbP/ZqcLO0+UcLpI3yuPfepFHpuSv8+M25Nycbbu7aSrrcbYTd/V2u2tCa5k6Pi829JSMmV0pYUcEtbyYzG7S6kPSUhH5Yl4h9t7mdoJJB6pdQ4xfUlBS3OkJTOPHYuUKi3hDMaXnQ6EO8QWRBqm3N16VmCDKpE91+a9u7FLEmxA8JZ8IDNi8i2Nr3rP8q4EldB0iUttmmmsvpG6aq1+u8MZntbZIk53CU9hrH7D4HbtDxYsWP7G2WFJMPu+1dbNPIKynwGybT+dmMnmJik6B2cIhjr2meFPjcyat2kO7YYVRFvfZoO7u/+4KgMk+hFE7CFbAO4FTWz2JucL6MmHlWnCN9XRt+nTt/c16dnEDVNyXAb05PF/+27Hoke5tvTR22u1Ja2WyI7+sfKySL3suGKvqsXsXwdeSTekIxLStQJ/GwSJDod4qt/KjY23H59CWIOmDpDpVSNeuv4yDQ/1OG1T3UUmGRczMMu2SWIVH3xNIo/3KDjfud+5jbbYEfJ9/I6w+S1fPTaLGy3CgommK9dRpo+o4Gj9Gg0agiE7ZRNw4hxaFkAKOQq8M6/VY/GzxhazhYtltzzJqqlrUa/OV1+7gEQqY5UN/EpA96nWy4F6KG3mz73RG4/UkNmWoNsXU1JDFQFiTOvIZd1c+bGcZLcXopbzMxpkEj45Cd6nlj2Xe9IMK+3Lkj0zNHmy13oVyRZ0SRnYAhhp/RwtrYBjzlXhkyKgftbL5w0purlS1838P0na7FAU26cMrYzfGgXRcOlKmoLymYV2IQL+MZQ5rv/2neMKVmAzi+jbqp35eooQNty0hFmmnQsDqj1Fv/nsIjvXlyWQpJhbXp2f4QgwTttYFOZXARf4+zxBnxMIyGdzz602L/oNNwAb+d7qqoPCIR14caXpwh5cQ4ceyf6Ksehz1l5WNIrbAD/bczwLKtS1TU0x9SN22GvT4J347v9Oq/pN5qpNakVt6OPiiGIHd9YPjcFQicRc5NJFlPjyD70UADq7Ke9t01QEelMJbz35GBU5xkNrhkn2DS983LEnVtdzerKbQSJtI61f9E83+39ReDA1QgzbqaejrUIH4Oojapzpgn79+5KsqGLJ9KqyvSPYMNWyoPIYxz3ruwY3Jy775GZCLjIU+2eEeNaZV4NGgf4nj5yuaOjzEEn7BAgtIn7ikrRNzoUpoK3STMxKrfN0y8ISY+JJWfgJr/3GOhePSdqrU7+usjIEhDU7NEJ1dg4Sw06R9Vq5HnoMrcQ38ghvcxq66OB/baUnN3hMlRmPG8Wq8m5GxwFWRkGt10AS3zpJh1AS2lsvDK+UieeiObeA1umFEUpzAXsefPlpP51maCyQlWD2UIK6eUL/JObjd3QNPN5phKcRneKkol28zMFfOu9/QYCb2IKYLG8Fvde0HKEOr6AG0jFij9vXi9Z/BA1Mn840otQdXGROMY0Cv6PmBC4cZ3NRkCVLzdBoheRv1Bt0SfVp7WE6XTi1CydOHFWJ8sZqrfDxrfZf1Y2+xAJqhj5/ftiPSAV1AKnStZUo9L+OdX9wSQBFHDDx95yrXnDreo3V3UTbBr8QWK+ibUBj7ysNN4PpduPlgsvNZzLVSvQVqyzEzK4eZjNawkHoxgsRjWOSK3MMaJ5pR/mMawjsqIUScNxPREJd67SAYQpNScG2vpC4GtsDU+TXvynT24r5TerCtTCv6BXrP+bK9I8VQ9tuJtdMnQlEZfH+8sWC0RMFDbRQ0cbFtW1eMTSClD8t+zHkVS/3sBYI2iNL1plhP/1Z14AckKyhONOvibywKY/NAL++oV3ZBGJGaWrgPItJi0bVz8Yoar/RDnprLLRkpImEOacOs5bxSMkYKRs5Egn+N869mS3Hs/wffisJX8DKaFuQwuuBRcweJz9pw/xjOZlqPnjwmeth6AQ2+niTq38qcBob8Ci0eHtL6XuaAkIRrIz9dxpDFvXNYja6kuB2rORzVoIA+dBEXRWcdzX9PyK3txgi5/I21Tr0GCS6UZ0q5zO6S1MJFydh1qwaCFTisnuUezDjFzfGjDaHx6U/cMeGzrk1xRukCBFg/d64ni+YkADL6St/AZK8b3bwhNUUyre/33/4vLi6Ep5lPf6+XAt4KB3qnvxlO2pFd7AB3fxaWvqtES8YW1x7AxBEI2m5yXDk/bugfSpwfw/3xb7ud8BA6qpH9ZpLiVRGb+ajhLL53rWYoNYcOEfuSWmXFlkqVBnKjh5rYNggJr+YWA==
Variant 0
DifficultyLevel
721
Question
Joe is 43 the age of Nick.
Kevin is 32 the age of Nick.
Joe is 3 years older than Kevin.
How old is Nick in years?
Worked Solution
|
|
J |
= 43N ... (1) |
K |
= 32N ... (2) |
Since Joe is 3 years older than Kevin:
|
|
J − K |
= 3 |
43N − 32N |
= 3 |
N(129 − 128) |
= 3 |
N×121 |
= 3 |
N |
= 36 |
∴ Nick is 36 years old
Question Type
Answer Box
Variables
Variable name | Variable value |
question | Joe is $\dfrac{3}{4}$ the age of Nick.
Kevin is $\dfrac{2}{3}$ the age of Nick.
Joe is 3 years older than Kevin.
How old is Nick in years? |
workedSolution |
| | |
| ------------- | ---------- |
| $J$ | \= $\dfrac{3}{4} N \ ... \ (1)$ |
| $K$ | \= $\dfrac{2}{3} N \ ... \ (2)$ |
Since Joe is 3 years older than Kevin:
| | |
| ------------: | ---------- |
| $J \ - \ K$ | \= 3 |
| $\dfrac{3}{4} N \ - \ \dfrac{2}{3} N$ | \= 3 |
| $N \bigg( \dfrac{9}{12} \ - \ \dfrac{8}{12} \bigg)$ | \= 3 |
| $N \times \dfrac{1}{12}$ | \= 3 |
| $N$ | \= {{{correctAnswer0}}} |
$\therefore$ Nick is {{{correctAnswer0}}} years old |
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 36 | |
U2FsdGVkX1+uXca6akgl05ck/+nG31R/KC2pkwYc8PvRDvnu10NT3Xpacxkb7y5faT8SqKOniY0qoDATDfa9HqraTJI/Vll2F5bq2d2uaoiwUOytkn13fvuKoERHc2O1sgyje3BMl6xdw5FXjirlcB/cLLe/+l8xCVbZ0sWroFJcpIlNH3YyRYGOUCSVkazKZUxTmILAqQMpDLlFbow652cvSs/jc+BXQVp9QSeHqA66AWYB/G6FiQidUvd0Mc2N/71Uj6tLNn8LAegfpvnc99G94EawGO+TYTAho2LVLFmfxd6QCi24ictPP4Qhzo9ftpYFWgrmr6B1ZsDbe1CK5b84ZgijbP43nOIqRiPozFHh29NUVqgKEzka91G6WxI1hGbh04QF34yLuXwsNXvEdjc/ecDkPgytv65bFIRiSN2zMVi9hRUei1ZHKK1CcMoSFzMolownixKyebq4PAuzXnzvCha3Pu5IivLVwURwAdij3d5pSZxp5xWHLHK+pFncSTJeiV+MDgaQsCjm+P4aETZHp1dkJqR2qqdRLGRaHFIeFrxY/S9fnT+9Iit4fKhlue0LaYTuZuEZ1FeZB2lxPCbbPNTbMYOr4w67Ue9S1ojcLlnJ4cnMZ/3+iFB7C9WS2XU8O+kjnSL1UH8qRFPEX/Ql6GUlB+MLDNdnC5Ctf5BvZCMLysduhFqtS29B64rRluQTWJJ82CGDuZv2I/kxDVOf24JF/X/PwLkXmQXbW9iFCao4wVgZjbDMaIR4/DJ8YZFJmCJnOzDAVhOxdwrAx9UXg3/V/BPQTFuHINCnJ2THfsNCTJZq2BooWgTyJ36Qi2eVGXor2J4G5GmUIvhoTSwidPm+vR+oU48LQkWVxZezWj0/OLlhUEkcOrmaivyDjJPFP6xBbyrh8qoVZD93Gsk3J3WTMLcP3pnVcwEHp1wxYACX7IkXb/rA4/iwrUTHl1ZlJm4vixUFeaqcnaricgukX36Ljogtv1hrIUGP0u8X39aA5SnR8M5q5+7KPfT+ewP1N2GJ3ic/iuqTvWbX8OuDEyAs1sq1GmfAY8504jt1xogwJg+/jsNVLTBcNQxsgIuJcQfB0M8paQj0klxKdj+RwTxZLGLT/0qbW7uLj2SXq4AIMljHfZ5kPZNX6AETH1SZPmqz1WVSpxHlvAXwmrIzXf9Txp2hcD6VtL1I7tNahrFcbyyatsZbeYHThoAIIm4Djr0HMyE5KB4yvPGAv3M5lOYWPraNcK4eiwq8y2znqpzoQpSQxydC7XAsXpD9Lcr1Sw2jdgOnzvgkcSo05vNZb8oD2V+tHA28AEKePr5WhmvTw4CIwSiULzSFkEgTWHhLH4eaqVBBR4Oq2w7jmJYaqB7lHHj/FGvvynnqs5TmAf8d5oMQFENGqZ9sOfz5rDpFAog5RB1VXh4jgI1nuqbzwFRpTVSR6tXaYiUINkpcZALkSmCW1ESryYZ2v8Pqrb90p7x5pgJSZEyaieVS1V405wW2eGl3PJRL+UE8F/3wCzbroaAA6ND+q8bdZXJNUrPy01ORDP2j1RvmieGlXoTv6X87mrsC7a7bhKz4AcBbb8vrRWh8fu8NfB1mCGGODHBfa3rIwASSSqZEKZA5or8d0pGNTOmyFcjEarusRDNytXBRby/YVA7lK6O/OhoEeos7KLRl8dBzHTMux1dtg4gdXC+vHb/vQVw6kQNwgNmOHUgxmxodIww1F9iN0Ny53kTGhF7Ag+yd9goGzXJYuRu/CylmtXTKVze8rjJhlLmFeaC4I+wZ1q1a4PBkaa+jKeJ75Hf+o6V5cSdQTkpZCbvNY7FnCk7HSTEOauh8dMtKie0HPUw2Emb8v5mbRUi1mTA9dA/M0AbzL8B4Sj8t5zKfjdhOC8c7hK7rR+aj39GTENxSW+3b11GTN5lLil8Fh/j+NMZMBe26Myb4l+JAx4TQd/bwyLgtnYNDosvz1tDgITIuNlyBlsVolZ/Jxfil6hsQMuzFT+7ZwezoRW4DSlq3CsobBwJ9dQjw/O9VKLLaH5xGHwXszh8WarQX9hYftCU2pF18zdFOA4qlz04ap/lTNKGJfKl71IeckrdgY3GMRyjsii1O60I2JNfnhAU5aVkdQvLVwnL1Q/vYwtwa72zElfgo+xscC9ro0f35UHg4c+FDzdDT+WuCDiEnVC4zrHsT1YJksQxrG4AS/OHT7c/F7f1qYFZBMRNiOttFQiUGgtO17wNncVXCa2OE6Nrvd3jHsF++PgEzRZkWnSfagK5prPHsLkBw67oZpji2N43NsZ7CYRK9hve7dShvPimblCCBtBmZDDGYdw69IUdbdTVeas3gBYlNebbPPbxys26UqOQchDTZ6h3B11jTtfvnXFikZCfWPT2LEmvkqa9vJCB0PAnOhTABbRvpwWWPJ0S7UxOS9ltJX9cgewv99NvtbWnByg4dR2+ntAYnCkoxm/AeLCsc0HUQWg7B7MhzrjzI2gkvoccejsVVhm5yurBRnucO2WePgGAkwESLuhVcNOTW3W8bj4kM3vI/BR8sNjO1fPVAa+Uv/dVPn0Q5ReDVya1gtp44E5x2/J2dyooXYsULFJ7+oUh0T+DuZg7ZcY+stQxilxLHRcO5OiqamJpqWKT0DGmgra8XB6Dmz2Lqw5zbiDnLgSbobc1oPbj8ZVvjQnUNfZ//rryiBPuXEtLN2xDY6zRZsx5L+wBivaipZ6srlXoEzV377NwFLbIm8N9/6QhkE3p5R0KRMrT4I5H2OX02n/FVRaLZ8gBYswSSgs+osMOPrZc2Wldl9k2dtHIDtS58XPoZYsAp4Ep0IoPkxA3rtMEHh3upZrMwN2p4aOR0oMgznVEyBCqAfjvYZ1JsK0CT+Kx1e00G0VDmrGawnDegt2bCi8UzhB0GL9frJd7oox5L4eJnUFH+pl1GTi/eN4yqtZpKT6MrlB/w83uNu7/m/w/piBMOOjOj8vlnbWIJ6VqcJoQdPWqGZUqKat9FZCcflcEA97wIcO0NxR0zO8XRaaVBfBkIHmdDWzlkubr5a5kFV+R7vYqjf4N5AI/5Y+Zdj4uKPSQ56i4FlkTTruFMzaeq7DFNmNZt4DrPVsUAOzbAqxmBYZKMGwKcM01UaDPaLpJWFKXWgHBcW+EUa7i+1dfiDLrWvSAFlzLehFkNUgS4uR6jZGY/fky2VX6QQDzRIXEDCFlee0tOssimW6E9QFLnCpBKqmiALw6bEnxRrgbJYjEdDLM4h8Czu7xDFSmxMJ9wCzshiTzCci3+QkgTvzEAKphzt3ewpu/YVVVZigSryKo2gEpwq2vOHxaEQoC5P6XkFqjfy+X8+ptNWWaFGqpCqq4ebW9FWbExHbZRyK7C9j9NDE4p5oWWJArqVwXrRw0dL/Jt04SMEEjQYr7jLRpC1IilnHWYZs49UnkzVsTKslr2nGTpuBqXdm7mwn+DdzUtjFPpcKDvcb7fyPdC0hPoRg2GFdEWdtAoMUckWkuHo+do/efkDH31J/p3Y8Ry/2gi+h3tD7HzzOf80cABTPWnSF3y29tMkMYvOlowExKItWiMqmiFdHrC4NIraqomZN0OFwgKcA0eZGXjdjr3cDtvoCveOrkW/gF+It9n9lk1SgCk+DOViOhEETKKlB41+vVP7wt9elH2OyF35o70trXniqCZ/dIkhY7+kIu/g9EI98i/6klQrUZigCdUWOSc9d2wk/3bFAFk3QTYMdhkj/W+UM+WZrF8/j9Hr103RH+TsmHRkxnUdRgxUvQORkWH6lm3bcRCWtasLt+3V+p2TRvZ2kQ8PPVF5kZLYNy7AatGfFgNlZ6U5FO8bpdTa90lg6ty/+l6g10yaQQprLK0SoobA87jkiONNoGb9rJXccOa/VHs6/Zsb3IRYg5tW17hCxUbKsZ6tsZpvmL2l+iw+ASWAv5Sb60sFn66EEZTgIvKNEE7B9zn9zDJSMNrKYv+t6e9PbwuU/nSiaASCh+mLf+NlHMEOGAJo0r/pkB2wZD49uT93ybZF3EvVm9Y3uEN0BU3Fuaa0v26kOqbWJaLz3H7ZRAlvKldgE2AU8I8ysDnxI1bIYVhEBnoCh0DN58dokXSYxaLjoE3xKNpLn0BWFrHw3luyUhOFKYEHLNmF5xnJStMFGxAEhYuIl29hFmYvYc9JLscLWCg8PjrNgc4paxPtngMo0+43Ow2t+MCL6eOTcFDFyp+/CgfgbxFtS5hkH+OiZDAbteB/jCbHPiTiIPYGAh+FwH/m85RrHQTo7V+PXDAjOmuHOupePK3rBCd2GfAXqamzUYysHD5vDqdzVNtVZymr9izyxEC3ugza4Mc1cOslcBd1Uc36ZXxJrf3H80TDTWA/Dtw9V03exHF+DCBgrGLJGwdK/r3J6xJsT538iqguQtm/qtK66V7R//TmUIfJydgn+3FmDtz/mgtVa1YvZSpeSu0tWEk/b1+lhZ2gVBkWfMcLSBypL2lr13Gw/9lcBNqD7n+uPtqTefCS2gkUeasqbk47EsJNa0f41oVOF7SNcYjVq1aZQ63A/21rmT+49lo3NPG6cr4hcJDl87YavJi1439fmtxQ22/Uyc4dF2H6fBvWGtk0DVsbo1yGHvewaMeNfCD9/mwGkJn62VII+4l3CnNmXxnE/rRl6PdJWsRSdvj8m3IFnojyTc+8WHLv/fpIRSGtyasaR6sTHWH1Kz9shOyTs33hi1gX1TXPiBiN7qvwlbOO6yRm8BKVubyrcPNuI2e7E1iY05sdxaZnom8JNbTxNq+GazVopEdZZ2oJPt4/1JU+1lzHCY6vdebY6fTSq+ga/Ot1xrJqS1KSJa9SqGpVvVA9wO4Uc5KYEPgmPUs/hAWs5BxdR6xmi+PqKCh87e3/78+ieFNPZvJuw13ecnvcSynQLOH2VAlJa04rtqiZQKcwM8aaT/A4iNcXAQ/RO27t12SDwxYfKU3DIoWYvYt4z0Ehu0iWKm7KkTOy5SpFbpPcYAnEvkrc2LCc21A4Ks/ZvOANrvtHgdwaNtXlBkO19tOlc6g6Szl/kUHaLS23gLhEMhzLIJW9+kXDKBMXY4MAQ9Wzc4f9Cf2be0ge13u8KMJ3d60Z9OVk+u5F1qF6z9y7Jaw6GvxZg2tT7Fpv52A5XJhHW69nFEJE1OZKlyi0X9FzY/Zqy5ghYshuU448AKtqb5bxftbbUPYAInIAJuZBgWCbAe20TEvSekURFRdBJ9JZL1aCmJDcwTEcWJJpo7V8doC9VOI2RQ+JtdGwRBcQiCxMcJlYucNNfOUCTn5emetoziV5pwIYCP/4rs4odoElehYXxQxkK3cfxi4cQmjmbNpXsJtFcy7oVBQDV5ikFakYQYkhvYcJHjtEJ8DlGFloGtWY3vTvQ3BXF2rJ6hWs5wGHt3PcQVUdymhBGR6bFIMRP2X6wxzz7huko1j9j+WXAfFRtRYA5uv19MDIEXeVCzB6HO+fY8cijTUIaOEYHoNfOqkJJSs2xBrSmrDYTDwlA7CsjWhDOzLIwkafnt2KuBJbSMGR2AtO2s/olD3RuCpAzyPzHWGhqhRWuLGk+Md5ia4lrHBtP9XhqXciK+qvOnyJElnQQLRYqcb7ELUjy/5f9EUKguoIZ+h1acDdHw5r3tn9xeXfgYLHvukvc+y1Bj3aaa2iX5hCb2VgSJE47tMtXtXbYPJjVsokcCHJfo7N01nGzNvuvESm+/PfMwFtKpJer3i+bVjHgyBahkesHvTs8IQsvKVSxBd+MljHBDug+N8fn/rzw39mONyYKZI8q2wneysUC/u7faPrVSVnDf6UBu3hqVQhr3wkgW5jSbGqC2RErYs2gCMCzPB3QrjEXWbCPUKd5sOI8IVSYka3D59UEVS5nOw8IGjrXhqhFLXYB+IseJWEN4UdeIpNJJrB4uphJq/YzizU08/10e8mYdQDVrc/Ia8oCn5/zFbp4K4gN0sFmu9gUK3pa4DQu3ZbHvGgAzDkKqeDneudutxJ+vrku9KontjGNXfpecokPt4qtwUnVgt1QOqxSqMnudlhcHfCULMYKiWRlSGw4jjiNvBVq1icNWImABZa7gul2SxeaTDWuWDQiGeozJIYp5liKEVG2tBS0LerL0IpbCQb+/A6Q0qr+KFSw6gwn9di+x98O4GAaUIzU2MYMm3SkdPTXtb0lod0xyoOiQBUiyGKGr78ok1z6krIH+j+zvkMXzSrbCs9ronSlLX172ivlIMFXeU0qmD4Py8jU1IAa1WxHxZFFzKjqx2PZBjuSUhptGiS1OxkvyJYr2Ornx1OhOvWvg8kdyrbQUy+cxlBMR2mbIjzmaZmukY+ysKu7JA8mU44bfjCRXbeCPo0OHcga42c/IWFXT+YsIh22ILQJMfcldvyun7soaAiib1NRM/UXb1Vo+/E5dCj92OViRwlaMTXiqRzIzYBd6EDBDcbDnsaf1csv+XxwZMG8q7jdFbCVoDMWmpGGDDkTQSXz9oIEpYK5br9Ky8jkSGYUlw3F0KVfZRexOj1rwPpvuuivmVFGU7lac8spYk4K4p6kJzI/Ff9RVSVrDZUdkTeuq9KobnN+H6D4yYuoENzp22Q5jfbFOGU+7sI6ogWjE0lOyFU32GQvkUr/gu4f9T43wKNwuKHeBsa4hO2AYFvIYjHJJTFT0gDQ0F4uTKTB4WCG2xUoaxwLf+SWKqLC5xr0bdarjekkxxLVqHcvZx9X3OclzrwX8lrD/dY7OTwHPSHoZKqcfCZulbkXTjVrjkLTPvxBhog2MaVJ6byLuXe5BEfyl5B2/uR3QZVWLwncV3rJM9tmwpTCZY5QMADz1mUMBER4p/s58zQ/P5SXCGV4KvNKXSDqng3/x9oO0iIU9u5y0/WGCn6jONmIFiQ5v+WvCkUy7EbiA+RWq2yYXkUNbGsN6TSHcdvz5FHhB20zCZWanCtMEyMG+w3O5626b3BgEL90s0ZRGF5PHBFiJXKK0VDagbg76g8MUSoUHCRRAdt3i/os3sLRa+FcpdJWuBAUwFqxNvE0BJ5JFPF2kFPm2D94F3xcsTe/E/Z5Pq4sVNWb5Fk0iQDXFO+fsZ1mM96kMJzBrrcJ/kFOYBTAHtl0qfaXzJydEfi7GQC7S34dD+krHR/vkCcPV2hZ4SSwcen9P+YQHcz4vkvxXtTeCBGDOFMBMqm88gQzn18oUGuj1TK6vILXs+L/aNeZ1AvB/O0Hh7YyQGxQJ/sqaxVC6UHkiJy5ymdpRehNtv0tVMXNZst/saOhffaJDVU9DkwvVyVO+2RCRhqdmc6HV7ProhAxrwlTt+QABnBPsnH2nAbjdfcDtRFu59npKIGn4pwfm1DEPJR4bDxVJfBQiLO1Av5y68GjVeEjkKUUrpUKY4mSzcYVRsmj3pO2bSmalrH/RmrTbT/9XsiVLc1Jr7+f6XJCxz2TXAOb3GLqZGlF9Yf9C5SqQfBCJTee3WAZ524qlbINcPw3ab89btMOqvBILUfDu5zOs22FRZ7WpjOZXkeFOWpoQ/74SOQkoVSjQK8MyfvSskJYtpjA3J04yq2hMVPJ+VLKeU/75UA0IQtZzacQNKL5Oq4R8wVTSGFeyZLeMiX1UUOmCYjsz+RAaixGXH0aaBVLT08MinOGisLmryEIvKfCfyjTOPb9onxeEdMviZfaH3idW+znQlDXUZMcABFBsIVfJ5woWfXLZOayLmlHqDMF41s96BwQbaiCH3aZvOLsPaDaci3ulNvSUym1VkmmeaCbgbYwZ2CQebIbkQu1nPLkPJzs5m8izrnCMk08tz+j8ogj8J3O3dx1uB3hv2UQyhqieDxs1GqXx9BqvNq7YC2Bd5llNdYB1u11iXbrNJ4PP15tZRGbfick0HkjrvQAJSb+CBZTfAoTj4jvAwUwaOrGl3HxX4k/ZzDjtIPQtgKsRstQWtxy3Ay1o9sKheU0Yn6endvG7EN9DC+CZtN7wqbN8cJo7Y3Au1H2JMJaHzajV4CnbRKQdgcjrYS0jmwNWIU0Z/0TDhF1Bpn+rqU82rsY8h2m5Sq6L9y3eo//0fsy6g4wsebwMxTOBL7tUkqagOTzXu6FmG87K/RIxVfCalTkDSSIzlefFsf9i1sL9DqZWSAf44YR6dxpeaGouo4WuCqJN3EYsIFtrLKo10Tgcib9VfE1H0/nhEVvfM4BLpHyIjsKmd3yMbmNQfJ5Sj0uVe01LgR4sDYfJuxGVac459vubsFUvG+NVb+36aCzjij7yidXemF0VHJmcG+8CeBq1WMJYO2cOg/egWvaYCUhILEoAvcJ9hrbiBhuvDyGKWxNpVMCAphQyN21hlk1DgMWE8acJ+qg7SF5f7jZfEneksWdN6HZqjmEJLGja4NvEyKt8nnLP7dsO11obaKnroBTMsUwnsTfUGEnt+dLz+1ClGAS3TV/nooQ6hx07ewAx8Rilnzp1uHTay+ZgozbVz3GYYqKA7MX1AOV7VWFjx6SwoVAnRMl97rhrUujjuI33b1FbLO0TkcU9BtKsKS1VfLdUUYkCnX5qtLnAQ1kGdIK9qvzsX4A0+/NRD4pH0/xWAHulyIBRuYGDL+WlzcdofuPzIul4KxOtvw49eZKeKj0ePPJJhYFQtVaAMMWOnDbmoFgOSra4lwgeh7OIxda8T3bfcvd1GX0rDuwIhF6IlF9mwZzAbFUNV1SY53nW+VvLePEqLHhLgmOeOYBtffJ8Mw6Bdwngc4K0sPB6wfOmr4z/upOp6fPh++y5fo2evAaJ+gT0R4ZMazDqbIngqut9g2g630BZFiwVgb81nQs6z3PDQOYaPLFZBGvgG6Z/LYqdJXQ0lOy3dD6BemT0OFh7H3g5SSHy/MzyWpxps3uAfchGhDVs44cZV6WRhutMM1N3jsO0lu95j/jIeGHv9pisgHdgDxj9S5ihpMslZAQFFRpWkjoMLumBrONSXB5LjHdrbeyg8zZXGFn5RmUc46CIPHjL4/BA8t3y7ekBV3xcSXXOxO4RsShtd97MRSBowuta9o2+vz/uVKgG9VnDra1Z+6AGWZFC+Aj7v0Ppyvef0hNxT+Lep9unhmFxcLEjNXT17/ZZ/XlBQZjBttUEL3f0ICqILRq6Wjee0TJVfLc3Kb6QzIlF6qG1G7O6wZT9ct08OEEiFB6anFcugrsvbrMrZS+5CYHtH+lGWs+iA2GtO8F4eKRWX9hgm28OU8J5xzAnu/umXMOL734Q6yVoeUyxzkBQacMIGukR6K+l8LK5hjJE5aHYa3vZ4uWxE/Gu+4+mFfwBnhyrXXWLoirUR3bppzfwKPmAdOjI/ZpUrweAG6/HT4fitwuqVTAq7nU0ZLfpkJmfW4StGi+dI0TxP982azsozUaaQL4JCOTW9L0TED03k0JR3a5y/RHwvr+FSAV9UrRzBVgnOJSBz0rFzJzfkN6Zhpy0qW1Lo6A4Hk7K1T7zZDa9a208UqVERtbcRan0CzG9OFtZQ8lpu0Cfm0QTxSDaAxdAfRO0lPF2t0eBvtI1gaM8GJEcLmtIqe4tYrMQhgA5wDj5ygf0tjlVqBszxgtXJjW8fauVn8A9/NF9O31e2rMRxbujAk46fi5e/VqKUEfWhMlnvPGhyz4BEhkQQvY+6+iZzWQwWWo3F2hqc7cqxpC1d1LJdWSNW6R0CNbRZgmyaZCxm+3F/eFmUrahsBO7qgMJhK+Znno2tQ1LPZRg0ItFHYcj0LShc8NFPMwYOTe7UGWupbvPY2Iz8WTgn2OjBkZV+XmYTaNTAslhN9NF7NztXlwHe5DQWlv00PIyL6lhX22mPIQZBY6dGNpop5MolHKeMna6Xn6mwPhy7gdVFem/u6tl5xfb3k28YtIC0/V1PetRvQH3wmdNS2xQ/vsW1Fya5fldDv9iclP2fYp8ulJDcZYi+wbC3gshv3YjXw03NwhFvOUvO6SxqK9E/w5NRRUQ8WLRjCezZhfekqFzOvPrEWtG+zQ+Q5nRU3k0bOuqE27joiVElcp7y7SGQBJvg0NNxVJS3XoUboM6WyGRO0xac1uUNfBrz0pJ3NV6gMrnWoAvusBh5uYG8s9ZBfVvVH/VWRC85eR0bOL5RUMEXMgN9npai5DErWKeIQaO9csWgzEGdPEPfwB2GXih9zdsecf9o8YfpJL7ob4sGRVm9izso+7QxcZcjKFWRuH2eG1EKsRApT7i/7J5ncHlRJ1Nib64MJzxJoHUYQyyPB2Q30bDnVxZ47xwaCOv1RRsfOm6d+DmhocGUQ9FGI+CkXlv7bqdxDU1fMHWL/C35aM8CPcNDIy3V9H1L9QM8p6uryIetQfvnz0GJ19fZiJ0U9macvhnnhOGJTguBxOF8qzgtJrjfFHUu+KNyty8S47W3HnHl8B8VXQy7ihPBhnp7ZA85QKN0833y200HYylVmGMRNpcoxMO8QB1yGn5jNb2OFwmiEmHQlwWMcEFO+TztfNxwAlCPtQxuO9jjvfzYarQQFCMx9CwdiFRc4q0NtCXYc17FykUbyNymV2Zu7/csIH7L31nXvIQQ5xbDoZ/ZxpjqcVxGyruCmd4+a5Jy0i/BCrpgEdCWxk2uONvnY8qevV5CRUkr15WmUqSJaww5nuoA5UTtFb37cz3YGss40JY1zD+JrlXna7+O4/Fqh4F0PsWLFjy99mXZlkahC1ewdktgjdjRuyUOUZloz/VvEtu2lk5ZIXtfHNS/gz0KXoPsGg72TOr+zj4B9lqlsn04XeocWPg3vYD1mIhPmeIkyE0gz7a9YnoVkcD1pjJTSAZa2gtYDMiwA8ouQCcfmavZoBbX+I+9YaqlNEVl7LPjTLPK2uYqxJkV/zuBLjDj/Yv/27He32TjIJP9drHFQPV3kSH8SBD9EuvSJJV9YqP421P5Gu/t5TtKXKNLmydFjjh6mqISICIUUBwJVNORqs/Y4Fx2Nk0ZYmnhKDyHMuF4R8f41xh8uIcS5NfrlOzgx4VSiJkWjadUCclVRgj1kNtEmE1Bm1VcrB1gzqJ4oew+F79J8SO3I/A96Wz4uFwHW2MytqQFQqXWxrxnazxzzcKUumjQrlDuXZDos/LVN4TgslyqSc+fXXUuUlWLK2CF8//DQP3QDXmwXloHIJMtnY9unIJcPeQj4vwii7EC2ri+cwFnaAG3+QisEZrNfroszEfk8/WXfap/POJfeEEmtrQor32ze2IAtC7guPs0Vhpjl8aJrz3AzFt1PzYa1fBDjO5YWqfytEJUYfHa2Qld8UMVOrrP7cgVCMG+X/BoOP/Y+dn4uL4G6v320/B2VX8wMiE9mZZwhCTtwbRt60fBJzkuSIm8TDr3TMhlQyI/MeZCscfd9egWTzylbJYftvjuF3TVzLfdCF9PDqBmOg6A7Fg+UEdNmZxtvAALd6+Zweg0Be7Vn5es1XHVjMP4/gvsc1nSLMShpWFhv2UwBEz3jupv2D/Ag4nVUYGSQQa1lucQhTR5HdybaSodZQLC93hK76dEjeyuJ07/pWQw3/Ew5SD4tjv6wsZR3OAlPuXibwSOHz++Z9OsoC7w8blho1QGpwjsin6+qX7KzjOVy0VhUEnZaIM0YUU1asuzOqF2jsrJF6zREmeq9dZMOqPlcN9NWxMcnHkRT62WWXSNm32jAUT6OVC1tmjRbccoYXl0/8U57/qMYDZRP9Il6jRUvR0XM/ROhLG0Qy3Nz9j5puji0SBPRhv6BGZftEPVpLQ2YOyNdcFda7I8j7ew2WWxi0QNv5swY9wcZhUhPcGK+s4g3WG1xkeS2i43XMI7V7WPowwuLxzm/4j7CLGJKw3oUBa0l5tbHuRI0JiFhr7rWkbp2z9VMNMwC6I3nCjdb4BvpXwYs17Fijd7EQ7DNj3vlw4qgwBmeXKeSsPJjW66D5kKP2BAEu4WQG9ZJnwbcshCG8rnAH91aoLYRwl0BTxMh+QDK6dePqCEVBI9suR7Y7aTO8aHksJRdd0xQRFjKFufDSiO1+quBzOfnioGh0ZAglnjRsMzNBFqM7L/68zjsSqsJ988ldFmH9sfNaSreh8yVjFzmo3iYADs+lgBAv56g8gjWsSlpp0crEcWoAKsLzBwMmxiosF+iLOzVnSvRCXZMkbPwrVOoOt20ZYUnXX0WPy2u0SlWYaqWE6VQyDcxNHlvVmGwSW2SxDvq1Br7owAbPYb3MZWivgzrZ7mctCVXGglSw8X4nQjqJYnVz0EBggHfZ9N7lPMwnzTyjmmKNcNsW0YrXusWL7NqSQxg+VD2909IT6fH7FEFXKznU6281RcSjlauKazUT96JOaBg8WxbbwURLMr4ENyGwWcpmOR0kQTz0HmLNQ6qRVILCQkVk0XZrab89T+6/w4xR5TkuzYplqmqkgNu7kbgl/Hr7Ml+MrabJBAp3+8VAh1T3CvA5A/uxEOB2kUT4Yhgtnc4qkxQAQvnud+08tKtQN0optN4KggF2wPwTvTM6JFx6Lfac8ciceLa4QTMp0hrax3ZDqIw1QieaXLhJTS7UUGcsUlk7NXV/+kQasC0Hy3wLYsb47hlDwEkJxNl0AaFTG10WC9/ytqRfnkMxOGRj7JnKao8TFMuBVpf/u+y2+6VcADZ5pv751z8Y9yPg1iRkBlFhUUakA3TZfLqaiGwfJJzfb89zczNoriHEzayMSQivSjANQixcsky2pMVESwBjXp5u+4pqYR3nRF+hwL3UJWwSk0uRgy6FOkevKDMmOQiGZhSRPGABiMvRP0WyZCdr/xhDVihSGIHEqlnN0nr/VmBgClxLtQRyz1No/s4ByDSGVOP9UqlS1Cp2XHwOlsrdeapSVRGXG6KNqLI7B35mm8Kgdd65dje4oUexdsJZKdn1YduShjDV48QfuzgCU74go42FMhcD3DF6p/wYfB+jCD9sbLLobyKjfBIa3c/IIFh9vRvEWr/j48KnORDwuk8jsCBHy29mCOX/mHHBBCei2jqWeiV1w2d7px+NbeCPqFD3kreNXLpofobE7mGKMa0DzhHD+qfhXc5XIHbZge/OgrsVnh0bttPypSjWSCjVX9GP0VIHFNeV3PrAwi8WrRx2ZZu8lt7/xRdmOPLRmkiJqCyhxpODUSNxdm+vDs/o2kC6F7W5CHHNLxC4hsgdmbPeHgcSMIOgmMsG1iL3fW80PdzVqWnyINGZ+CH8/DoEWwTltJ1S3TCfhRUXsXBNwG+rmSVwO/hLkRjzMfsvdA4XGcK52XP6vMjxlnj7TrgeyDQJlRqD6AIUP1NhM/E2N35SYQ6LYY7w26OA04copCuoMMEDAqaaEVI6ENCx6s71i7JSL6xd/ZPU4Uz9CNPaW2odBQ7iXq8FefUf4TBh2ajxg4U97A5yOUF/3WYSDWcHs5SgCeSwXozJ0RjmM+1o8N/IRlGh+S82sQ1ZFe17scowe0k/w+AnpDzTKXPaG971rmQCS6c7iinlFkZ2lpzU097n7H4lswozQ9qSKUHSbCBYJhw+ZgkUMOOrrmWgZ69MvSt5DdG3HoCya6HGOt/hH69kF1eJWPqZrnwNdb0xinJlb7TLVBkxSUzUGCc+L5qQAkOyGSOck+CKnQ1wZ7AJFEyzgkOG7DhIearN+p5N5DUViTtryAdKd+HKNP1HxLzj4nuU4fnN7sR5ff1VR3b1C73RNCDuLPsvG8B97wfwAY1EHFSWqNTFFhgr3vKT3H7y9Jfm2KFXkncpMv9M31usLTZqptmCwCAC5cT5QzqhOc73sgN4P0acwjBIcYfmO4Ebj93T7yQYu2M9X+lG4SSaF7+NRSVicD3uGRUcNFFwKFRJ0e/SIE73adX4zxc2JiUiL7Lwaww1RsniYi+KA/wtxkoHi8wt2GcGr7x1rTBky+yLHJCC7u6tp4dAeL1A1Lauqx+dLopkMMrlHtZNXimzL/gIgyMQFUHFfuMTj/Hi21UWBFD6kmEwLdioRKuArtkERkYFjYIdaiAP54Ik2GrCB/NokPYNkydhYaw9gjqZYWqhrXSpOpyKBlOnOG5mVr7VoaW975w8YCyaajUclRKrY7Tb48SvP91du/siUcWQVll3hN1HO4y6hRLnWfoscsldx5/oHTn5bpJoGXqTqWzwclp63qRTLeTXbnZbJOS9tGNW3MR9UldaYhtOyigxctM3yyY5EpI/e3/l1UkO0E+pdZXOr3BccJqvkPnhv6meHRgo41SUlSUiyGR2oSNtop2VgxKBitwwRAdgWxgudfkfFrwYHV2P7cfVhPjbT1XAd4821Abzkue+3xZ4BWRm6m6OWNc28dC04mGnYT3m9X1pVbZO4UCrL3RiXJL2g5Ps5PkoJhcmHWhKk+yXCEkOcxl9yv4Rz8vhzx/qOVOYyLbkZRs/rI+ryamqGWe5u6qpeqWJh+6RAPmTqbpVNCpKp2DJEox4QvlQ+jQhSH6+afLs349PZmcEPuZYmbJpNxSBkYIV8bk60BClcgsXaSB+xYl43zJ/dIx/J36QkWt2sRStci1gymec1LWnjZ5DF28wnbDtF/kdcSibupDHP89gtegiJb9L5CZ/Yu8HF8z/h5zxwYd8ciT2sv/ZXPsopfU/aZVYj9oxm5MLC4agYrNEwb3uMshKM4vQSFzsUz2j4Q4lF3YYb4uftlMTDztH1JWm0kNv40g0jeCUe14BjHITDj+d73zStu5UGnBPt2Z2ewmy1euaGbDUWm54iwytLqUXAXNLu/HhP62+GdXSYT5prrXmbkc88yJsjjs2bswh1dGnCfqJkd0ey2URZs5DsBWWLrmrBB5X37ImmHOIC/OxW6cAjJUTJumE7TZ8A1Fszz2lg2iTMFGNOKYD0uFuO2U6iCZ9HJYKKNx8g917u+xyWldMUp6m0wQjskEg5zbArnZ/70d1IbTzbATNK3lKOQKSqrbwyaG3SonUhLqRFeUU6+k1RA9H3QFemLu9gd7sd+M5f4n2KJOU499LmacOOP+3AwCMk4e0CktBsSCG1jQWnT+a2vDWI+3okMelMyalVqStnbpN71f32EE6BiBGeN+Ywwt7HQcDflZFVvJiy2yIy5iVOogiomFxybT0J0zdhrLsDdIjNVAmeg5dDjP0N/IVWacnQ3C8saYZQD2Bhr0RrUtm7W2mDOYgTC+XDgJb8AGxK2KGkhjVrIGbfoJfRMPrAdfrXMqCYwTFHuGzgKJF+93K38yM3sti3OgD45RHtMto4R8klnpIDQTxI3qFkPOUkPYPu27y91+82CuQngFf3TvQau2BafL9EDUTfbgo+LPw0W9/IdVys8N+Atc2Ntdhlb7dwYtyNn9m0/O56tsiUp6fNJbcDv2T6dRM/02ECwZ1cXWJ73hupppChKqtmHmb69SnPu+d2FThLLFRSJgL+OkjVB2/1YMwvuNIQubgHjt1cDcfkx5zXTY/E34GYm2UZFncGoj4FX7DBrE7dw5eHkFTe/Vq54n5zbTDVE22ernBmeSFYJDKgDftHEoREHxe8u9g0n4eRYkw9KrPbC/MEIh95ZLdvUbUcQJRjAoBsxRVUp/Oh9zAmXiFZx27C82MC7fdiciFzgEKh0/RXPldmB7sNevmphi9Stf5FOeRSFDSRcf/czQLA8Fjmq2xpFBcXRem2cOVm9EM6qTiBHUGnq0rV+wn40/LgNDwihAqf1yUsFKqfcqE6ccRYaKDc8Pw/Et+xt/3nO+AYtunI65GXMwxP6gHML2omUqNCQ4SFEBdrhsny4CJC5fkUwvXl5P6WmJYxgWKnQ/ycJCWNIRz4OfgO7CLnE1U95epPqyjK4XS9wgAW8Okvs9QumOEgAhpvR6djq7VmqudFuTKDU4Z8BHi/52h4b4dug5hs8jX3a4ZuQ5Dj8jta2NRL9jGlzuSUyJdvs6ccm8JQ11UbvvpQmYLt7Y963qIFkAomYiDPHZYgofObWipn+1H5o8iZDTwhVVPuuEzJw3dzwT6xucH1H0ideDjCa/mdOABfQjrbSKURSHK5+pHS1Iqux9OnvHlYa3LmN0mcDqL5yyHtHX3huViIr4Nf7ag9rt6+PmQfteaL1YkZHcS4ZfQN4tAUxFAvJ+Q0mhNPY2LtVOjtPqwIc4l561jcpmq+raPRwBTxt714MtdpwzIO6NFKXm7bz6hED99IZEA2VImVzm46Xzwn2skrKjdYN6zQ46wyT8ADEHZgX6BBlVa7HKZGVZlkD54N4DsGHiA1qTrG8N1iUr9kSEHdQGyFMvX/CvEXUJsobVg0DgykPNyM+gUZRCcgR6yd7yXSWM6cDjq+WKb8cUxZtCtZk5iCxwPeJMqu6Jmupnw76G9YrujtcVh0poV9HELxqLSqMCq+T0idneY/DsMureStuqQ1VLsfQQteJWNfGjp5yeolR6bb+drMBjcbkz9lDfVDAEIB1Iyr1hbDmcLWhxSPYaZ/mCPzGkeGFkHDot8oBnZVVMfWNR7d6B0MM69g0DDt2tB4sfDUrJt3XKtDO0lRh7IsUUZSWFnHAJrpsMIo99Cmov23Ln7ptFuIhqtMs2TkOzXST350YnLG8fFAfkV6Y6Uw8BDAQw5qmqmi4d79pig8ue+CeyEWbFngeOyU638yjJ2mmLMIK/U/r8i1PXWmwMZGt7M6gcWMDiIC9+PV/dj0OmwB8yGWGetUy6jlPSwxTv1/izpscNECDcPR7GDfQKOyu3S1KFjuv8l17F4fsNEr4B2o8ivWUonPVjZE4MlBuiL1rjUs5bD+BItbd6/VNKubYU/0ywgoksrYvlNqTNOwRo486zVMZaQekAWoLUDpRWq9eaOSQnmtdhWZtuEt7BSgMfSgeg5/JOMXQ4Ss8JXHziWNF46OZbN77vzboarhyERVXRjCSMI3a6gd1HtW4dpilHlzvfaVp2kp1wicBZBmNzdKQcihKJ+MK+lHgZGgQXTb6Hy+9Dj8m2Qv/D6wh6nudJ2ZfYYAAljMYE5V1Fmzx2ff9cvmPuFmN+XRiwQg1Iiy46I92toepG6Pyz9s9RvQiLV6ebbropKVpOXOQNz6TvjWh78AnYDTY8qC7XZuF8eM3iC99iCltRyMcHQTWtgYfjN48dWKprsA+gkIDhkf+W5Gf7cslEkGl385IEjayhSW6nQvYsiRvMt31RSCb2A7Y2aQbCJ5zeYVtFEi4n+fN23GcCq1w1MReFVt1IbM9YZXygeRTq87E5Ro8x3fLrPemZzR7/ttGx8ZNnnqrMtweY+4QOGVHEeN+wHyJmkJNe+faJ14Pez21yYwBIIVtG5Dqszjp8HxrYWRuWbRjnKVYpmo5q7l17BNqUwjRfEuoZqDlvl3RtqQd8sIYXVAOqDeThahOMtQqulxG72uVad2N4ULr2ENxcEB8pduIy89TjidqDqHZXEQgLU0euKuBQtAFYGTwZdWf+zcqqeT5X9b/rJGPo4U7bYHIRWPKI6jktRxZkb6m5R0Zi+5eeEeABQfXXBxpr4yCHVtFM0Ai7K/4w+X5TupCi2ieF6fE0P7EvTSjylQnq+J0pOidOQ1OV5azzwfflfotRH9Zu1Tswg6zX7A3QsCVHNnnXaMKd200UKEXzgz0jHwOuFOlBSgEIXMIIva5fWG22+kUIG2e2TN7AQ6CE2hWKC5C5qBW/oiSBsY6mOOlJUQfnRg5LCrxYacht+GrqBaIZ3xBMYwoKsjhDWXSrCDXBqf1wCrzepQbTX4t4m9gjYdXRT80WtTc59Z/0QfGCYNxZEwfTHaY81Fi/MJuo3QvU8GvXuGN5/DE72JEBB3WKHl+ZuVKnSfK16l+Axwyyh/U4DANXdQMaOAuVi6o1UWXF14ynnXehnwi7DYOu8x0b90w0Cxw2N17iV+CrXm5SkYtrMzulJiqgOioB+HzAJNcF5pUYKiPQ8TaZd+bsdIe1AV1U20V7CGvMFOQqeujcYjH9zZFOtTfMJFxv0mOTbm/tbrY3A4xRBeF1OZ8l5UsVVFwqpXbs6/iRRZ7SgAgfL7cf47s6zDLlc+Bitwn1R4vSeMbtImuEZMHfWbyfC1LVKn+xKf8iQLD3mTIj60kHgB2yLXdlWqLOTva12a3FGNNbmRnl7VHqFwLW+vyVfa2Ot+PUAqnRWuOBbOfx5zlA8ad5fVAdwd2+mdrtlF5jIdC6dD0xMxRQ9f6KkK3ot4vi3TWnleKF6tdaVZrhx0eMxsvBUcnjx+AHuGJrWu0ZtXOutnnBEpK+7847bidlC1N3boNxuXzlBCaI0qLky0pQzUTefeo/R4uTk1fhh0LDXso64WemK+RaAHgCvN92CtBgvD0xFT7VAKusAa/HOY1WZ7HbIJ7l8xN7EjVtXoMymrxzSCPgfcpMjqOm6e0q84IcYLj3VQW7RcpudfHJnzskAovSZZD1r/sbZmA+1r61y5mgLUhkA76YlNNenks1YH8g6G0C6S8zkoPsXw+PaB+tZdSRf58uTNwNZKiqasmnU6kVbywVBrwI34oYPl/DwqII8W5UNAZzarEg+4KK7itGIKFMcZADykhj1Pcj+JxVBlK/kVl8kGnwwrADuzy9ViwSan+mDZb3Z5oBDSZjOXxCB/AZt6NVrn4c6/AT0JoPYM0McyaZRQ8+10rK3GhG6a72NCfiZxOnJILIRtfoiAju2aSe22JPeHLsGvu7o8ykYuPE05NMGnHfXir0ifL6mO+Qxgpi1rzDFNxFVLWCP7MS8gjQ4cjzZWcKj5NdmSsgYZHU1TEsCS4Vi1Y012Vz7lKAkBosA3h/tk4YHAIckW6gKwo9Jfvqjb9V1n8Yx7iJsyCGn0wqmZs/YSwpPZ7vdlow+PJKpEJkULEqAyiuRShucdNjAM1MPX0Me+U8asoq6UUJyF+mNqLxgp4cVGebEoLuGV6ZlGyUY5YZAodyLjXIhIP2OgkwRXykROggcC8Kn0Z+M8h2hPPK9Eo92uzddpKOkpEd+1sbuCJ6SuFYCJ2zJNSNXGUJP5QYSNJUndGkM531l/BGOxK4y9tytS73Qe8QVpSd15xMmK8YGdVimMDx6fAbjAQl2bWfzjdBB2rcBk9bO1Xqn/U2ICKZuE6qGYf72jmVe0VzSMWgrWh9QlYgS9L56np6zhaQnk0hzECD7bPfTI8T09zyuIf7/2wc7/SsepNMo6PoUoEKWVGEtAVV6rfSL0rPGhedQg+qHuTrnXHkv+vav+f41JzjOpoGUSpocYbwurfBClisOrmS0JiITfOVuyVZFxR4rxCWOLRJDHNEs8diS1lSst1BNXT9bFdtP0jyN12XcUGXrbAmqyJdgIieXmlt79uCiHrf/1xK6EjGa/mszWIO7VWOCXz3O+5fbllIX2KE2Wf/5wsOIjYkwSBsd5mlJ2CGsDCoyPmcWz3aHSssm3fzYIBIgzA7oMAD4VpcktP1cHihAffKpvV5uGHHgnE+FFXtYOy5MKkucb9m+FME3/Y8xg8AeRSkRAO790g+FoP9eg4Ezz+ZJ8d4jOAeasS8NGnthbk/qAuKj383a7TRC8g0Jcm7uV49Y0DY2EeKbqkVOPe0unbYZI9GJN8SFpcrjvQEM/7pd8EgyS6Ox8WIlkiFDxP62iFd/uo0IQjQ7f3+FLmTwifF1UDUSOAm3Qxlpr3uGWohLTju6m0viDgd3fuHbewfKkZ7Qg01lok7MLosk2/rXY11ZHwCt9x0nH1DfAUlIwxHjT3wMnqLtfJj5NCNOcl5I1MhMW4IEtOiwG5mnsxYk0Cw4cBaKKDPZA8O6Sr00/qd7eCSDr1F6xD/yYoBu0XmbMJodMbijl4xFx+ufH7onJh1onQHBpbm3l3MHs2BqDwocJ1RJfvueKvFRX+NXDg7UnMnhMbP1bIZFT8+4YFMGroOzlwr9X6XjJ0LGiBsTMxgwvJ36+B8XBk9W+9WYQmY6FNX+r4Ads5vQ+Okxro9LgusWpi4f0fbvwJ71LnsH90FCqqyBTcf7VMhGeG61mMMeBEJe7gmrt9NAsk1D5asLg87QgZRrZOdJoLSzauq5+GB+SrIpbBZ0P5Q5GjUvBVJ7zeMK0ptVN8cF0KTlwhGsUNZgB/iCBosG7uypzzjhFLixHhqFDKhWCucgwgMwZshPzXa7Qf2ba0GafOSLmrtykmmCFH9ovBppjcsxDp/TSHDZxaKYnQTHsFNlxfsdqzZda0J8FZEbI41sjrPIDILbunlhsDrkataajsP//Yawk0G7TLSPRfbcEmiGfk8/tOFHKN+N2iA8Q+ohA/Mh3S3/ejEkqjKb03M5pg0J4wn9OkGjctiy5OREuGMZjF1vG6RzHtFJbsx+KRsnZB2Ir3bXnY6BZflMluQz3a6yO5LdEMEbeO0GZ/KXwm5LJNLx7mS4DdQJGMf589cesR+A3vaPkyOXyo/rM3UuQXrnOf8eG/XGHQeBOgCnE66Obq/xLccggi8ljkUQ8xYXZK+MBfGlaHqPzC1iv2jvSqlhm5HjURUXfq20NLfylaYR3iHheqFykZ5Gfj3/GOD96YVoJXZKZYL1sYJWCKwnqyk9gszxoF20UrKhdEnWG8PUSSAqgh0dDW8c5116A9cEz9dGguv6fY+QZS13YY0IszUflvkt+Q3j68jRAY8MLtLixrLiLsceWZrD2U1CgDzIN+fNyu7IyQYFXHhGtLS53L15Dr7S6gjTFyhjs45eNdYLAzps5qwGhz3G5sLjWuJqJjmN08Wwmjw0MmqmTm6EMDrC5yDqayvRsin91OCKDRsCgF7GS6ApY9ehUK7JwNfC2Ywfj01vljk8uKWuYt/M78LsHbzOp9ImI22Ayk5KwLPNyGcZLPsYNXshb00DjRXXYPdveh1Yk/s59WE4/V00rEgMIg0o27kGGYbFmBbM11CkPUt1G5IrltBOYsCybRGjerN4FCUd9eW+DX6JLMvmPytDXVFx1l+uL3xXyBLV2bE2lV2/kIW8QgmgF/J1HNQEFKAKCG/EVAE51y0XMv9w2EpoaOhE7kEqF+5ZB9AJf12WVhVnVhronWAcrZpz/ypypzhzRwc78rTBzBo0t6Bpk0WsLlTmPfL3TF7tfK19B8JAVakk2WrpE66UtPkxg6i7nCuzG4ba4hnxa9hsw7b5DQ1j+mSFp02f6wCow6utostdlW8kamKnGhMZofD5aNlaoDaghXH3jxoLwJXH6M7pobixnM1AoCsN2nzN1z0UxOUjQ2fOlwjxHsZ50RcS5TQ4zYX+W54kUhedwzKZOdzctXAVd8uVquBK64pldE57RjpoRq8hV9riS9+EUcBzhaFtV3k25fDI3dqkDZD9cxekaX/1usDaeFbwt7mLS48l3fnJLByRCG8jp0/hiatdWM8j9KYedwnEb0S7VoWvoCrwKeztz5eB1NsKfQsrs184Ob4qPucbXSNAVoFV/RUFC1nWC1osbrtAXa8k1GY7677w+hrzD6q1l6X34AKH10+giZxwui6j8xGtj6ZjBPKUrnBCz7acOrPsLlkTjsYzMV4bOQpYtL/OU/C4/EgUbd2tWBBYEKadB+yeHpNiBIq/7uOJoOMlwAMEjTJ+5DwkrPTMCR1sQ3LGYnp2C3u6C9EPR9E2ZyarPKCY3lT8Y5MXbRbIFP4UH1Es4juA7cCfVJkSj44V5z4qEbANjHu+4HqDUkfj9VGiiMdpDhDfvL9p3awS0K3WF2zqfJQMBWo6RM2LuzvY27KBvqHj4xFozztoLryf9txIQgk2+Pa8IoeuGcaNtRfgREZss8w9B7w6M3DYSnXlv74GAqMdpUryjyU+KcrVyGTRaUb2jRwbKaVhYunAMsgL4LU6oOB9sH4F5a/RmSPSem0xdJ2Aq+YZK4xiFKfbVtcnbl3kb36pQT60a7ngLDtgODT1Dzf5ZX2d5kke6ShvQszqaHyH6caM8V8G9c26oLR2cpX5ewyVneXyk3QkKA8ZemNIDI8TAM5wuRiwnZi8NPh3FSbK7ZoyMwY/XA3VCYUPUEUHsHT1oJZkdNljqg7ciedQPRsrbwPH2keHKoKkzbiEiagQidfdILkiVf6r872gs/5z3nlJ76bePRyCFy2PoIXiqSqEYER6tf5AZR/8oW6te2KLRKljoXJvRXapVrC51ZNwaPCCXL9pS/v1wUUiUzx+YG9VdObINqpvY12ju5mTNiJ8rR7annHWpSdfMiLQ1EKCeEDyEPh6fxeFUIJJ0t1h+9KDNteHxWh6qy8NMcRGH3tE0pYNzMZzrOLU2YbcJw4I705RYkHY2Bw7j8kp33dpbORLKCVrQPhZpf/KWP4VygEmVyvj8cxMQgVZOxzvJeiwXlFj3YKuv8sI3ybXEVG6GPAYKXoUZYnv5HGEvRIiL2twg2N73+rG1+4cUrCJiZ+BLOSM1f1uIYwNgXqAnp2f8KgAtBNBX/hKxCpkojX4Tpz3jrfk/8Yz+bqd+g8EHAcAK8C3WQu3wcRAubq+T/XEUwGI8nMfoZV94MzOPGkWP3wj7ntw9eotJ/mbQENQgjqBSreQiglw27fALMUOnoSMv+nFTfiL3O2TH+4Iz/vfTbuwKpq1MkxuT7MOhepqPm+ZAKelTj9+sjcquz8Kw7kW/IAN25TFNgyV2jixXCGK80HVAnQC69C1CRscSW7hAEYVNH9TzySKeNx56ydIBNEVWTgs5lWf9hIdsnwL4eEh2YmhkLLjJpqmJpd+N9rHnbKMNoIZz84BVbH7y43Gqc4U6QrMUVlgd0cdU+EJ8xInoSQLkleQq+JtYqGGXuxQtVqECzo2zydT5ulwZtdJiHeGaNSI+a57uYa7/lHQVyMvlLuK2LMOwbvGZ5WTmyKUg1obgAhm1UOIaOwi5fTAXxVMQlQ2ptIafVUhVTHfH5c5B2xMlX30j8NSAYEgnkKL3c9XcTlBi9qpxpmtx5lxfpqBtZagMdCdS+p+Fd2T4ZUMXHA/wEguuHsR7/5UDNZUOu7OdkaKI8c1vbd1iEtxJd4OTT8mj0ODfirha2bDwAPN0fvSNtgGBOEdFwJFXyrUPzruVHJfpqSqUqyotpT5oib9WOWA79GVQNNw31dNkJ0j8Ba9szIS6zerUlcZvIvX5GlRDav9NadiX53Fm2KSgesBmkAhmDHJbs1BUY9i8CiKhljicWiE5rXQxVieVzifBfwc5OW0/UK2k6bR9zCPUK5sXp6X0yPw8EMPRcUpZI+iIyyLmZA3VgiJyZHZSzDKgJbOq6gLe3Iy1hw7Z39ZVhYzyRjoUNDUiSjnwCa4H4K+Lg3zkrg34N0vGpkLEiN7A+e/nvqCo76aQSRizTRP43na5W0U2wGjSPjv7Mdx+v7YpM8EMYaglyRFevsg/4+upUBu/YvHHFBYmcaBSRu5jN6VWNX4X1EnHeEewNvIf7+2mlJxmfzaGi3Evrz7it83l4N8+LU89wsUzwuKxCEXatY6JrPDq6Q/sFkktjjePe4OUzsu7cyxZJpffnNRRTu+X/XAoQBQfk5c4XXOuY5COIvFygszHU0apITOGYgwlkFON8YZTktlxCHGBAa+CQJNB1c9D50s+Pvjwb9pIkCEV6L9WEYwF8Pqxe/Wm6QxEZ81Jlri7ASA+sCsWmxZKIwO+MDtHNvG+mReB5nstXfQWbcNguAZz0h5Vdm9rYDwt67IgzUxkRSYRsoXVBv1FCmQJVK6jKVPUOM5JAXd2yL7XVjPG/kwcIuNwMeinqzRR71raHScs+/xZ648bqOVbRNoQeezCG8oB97GqlwR1Dg5wHg+C/RJ+FODcgvQfh3YGyBULJ7/ewi8HSNclI7pLPCJHTu9XhNmG/lK+3tyQnhP2eVy1NzOQJ0c8KSXbyPeMW2ulE6KF5T19bhi6kwFRkpUZWyZNUv9QJK1T5R0nGh2Dow0JyUJwZ9G075z4uhTGnhj85ZI+fXBrAzEGSekEuIGy3XXy1EakuoGy/KHjJuQjFL7JM7M/dBEa75B6wikxkko+wtAORODRmiBDwo0Ji2DkI6tv74yU2/zyPbO2ALjomv1ZLBz6Hx5IY7kn42Okh3An8uW8bAsoyGGsqVXMevQ2jKFUHFVnTRsJycv0LsKvQIEyKMajHqAYaP7+f02rmxqs7K5ytivMTy/LzA4qb0/zT1M0TcMED0/5eWeEKLWr1OG06trm0hNuxS8ATJ8ykQ7tHAZO4pf+qPVmP7UEt5hbqZiuNDcVjL38yki8PVkiJF+Td+s32Ix3gCeeKcImC3UO2VaILRvESXBcj0G5tN9wdfrcaN9gGpKs9SHZcl7YG4znI4smw1dsVFcsgff37z3d8R0Nk3g6ftivIgfvTSbe1QoEkPBX0SnOzkGmtyM3NBnbzbn3G6rl7wAxSSDuJyFZUKBEX3TqAD38kk/hxxyhT7z7j1pHOspOXHvDd/n4NoWyNdQp0feNiaDy2Zk5rM3dgYBjgLJK0+d1+pYJ+zYmHXNbkzZclNm0xj3SwAgCecZfwzNrKIjHFD3SU74LkR/K4opIzWhr60eyGsg9IC+wjyiY2b2hWfreBzj9iCMII1IS5oity4jOMHC5amjASzUKUmRbupqVmlSPl/lPiAc9GJtyXL6oL6TOcXBkMcVbyI6jwOEZWCoRofLYnDqgAud/teLBvO2nqPTCMuk7ZBe7KSflkQuZNQeSs/eXc55/Z621Wo26zHDrBbNTPlpdAUI1uUSLGqNr5/9+7EFMTjJKjgeNfNI7ukLbixUjy6k3KsfOMiobsijIhlvWi4dJibPsRI3Rgu/YaOL6zx+ThPvv5LF31Tfi8nGEH+i4uds9qkHm7FkpXllBq+Yp0YQNANwLyCfPE5S3TyF+zOfXPy3PAsA+mu3DHijIQxuFJa2o0Th0bZM9Bf/F8bC0WTPFpe6zeipsD12WMeTwCPd8mh9Gk1WMHbi2C1NtXJHUEYoJIfP5nChxNHeBDwqIynEmPaGBBNJajq+jctqpk+JKlVQJWrj8GEvZtqngb8WPNZedGo9Yb+PRVU/4jLfMy3IVAhXdohTNWnZ9KvTZ/9ZwD/w8XwyShRZiD7HtERXTbv1zIfXSwXybMQNFsmcoP7ASBUGb8ieex7biPZtBEZnB0SQnwXcTc+0Skq0c22SoNvYx37H6sSSaMaAzS1w+t+yWbA6aJXVBZQWNw7eaUCmepnrCL5Fs03PMDRtcPhuk25Y1+xgnSGPwmHX5lobMi75fSFPu/LDHD+zu/RN4S1v1VW4AkHu9JRQ==
Variant 1
DifficultyLevel
724
Question
Mork is 52 the age of Conrad.
Orson is 31 the age of Conrad.
Mork is 5 years older than Orson.
How old is Conrad in years?
Worked Solution
|
|
M |
= 52C ... (1) |
O |
= 31C ... (2) |
Since Mork is 5 years older than Orson:
|
|
M − O |
= 5 |
52C − 31C |
= 5 |
C(156 − 155) |
= 5 |
C×151 |
= 5 |
N |
= 75 |
∴ Conrad is 75 years old
Question Type
Answer Box
Variables
Variable name | Variable value |
question | Mork is $\dfrac{2}{5}$ the age of Conrad.
Orson is $\dfrac{1}{3}$ the age of Conrad.
Mork is 5 years older than Orson.
How old is Conrad in years? |
workedSolution |
| | |
| ------------- | ---------- |
| $M$ | \= $\dfrac{2}{5} C \ ... \ (1)$ |
| $O$ | \= $\dfrac{1}{3} C \ ... \ (2)$ |
Since Mork is 5 years older than Orson:
| | |
| ------------: | ---------- |
| $M \ - \ O$ | \= 5 |
| $\dfrac{2}{5} C \ - \ \dfrac{1}{3} C$ | \= 5 |
| $C \bigg( \dfrac{6}{15} \ - \ \dfrac{5}{15} \bigg)$ | \= 5 |
| $C \times \dfrac{1}{15}$ | \= 5 |
| $N$ | \= {{{correctAnswer0}}} |
$\therefore$ Conrad is {{{correctAnswer0}}} years old |
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 75 | |
U2FsdGVkX1+7hp5euu23nGwf3Sc5Y6xBawVAmp5KdCy9AKpwjFoIVokS256L+WTjASWuGzXP0vjcyMVAJry3k7gTCIK3UM3+6BwTxMJqI7SO6ww6S761cFG45FyOd2jZwyrrQlUI2JWvGG0nRbBEDxo8ovtAjgoSFAdQYLE6o66E7Od/rNdaSQjIApqcG0iXtAMlKEX4azz5sK+rsikrNxviElRybhH+h/jhRlJelNzR1+mPQJzHSVh3uGtHLdzXsx0zBwq3cIzaDx6eMoavNa6D+Wn3k3BaAC8eMJZeNziNYT6g6BH5QUjgXnwwmCmhqHQbSHFRhH0Se/7oNm/Y8OwsppjmSB/R5pN6IQils1eapRuHsAVx1X45Dwir/iFhl/9vU1swyCz5lA0dc+K/9U4P3nDhQOp9iGO+XUSjt5t3eGSF7duclaeWejv8E2KeIAwqudJ3rD8cMQmEyWt54n3/bac5kPQAZiDpo6flbM6mWSZOxZAEf7j1nWvgsLh9hwO6H7NLkTOmUtxpqhX+LpGvUID0vZDLs0+yYpAoX59Tp3yvLuEtIj7b4MUHqhsiM3fikWX9ZUX4qJw0Bbv83XYQd4a5DmDtuf5shJADQTvC3oM6xWm9IpVt+zVHzm0+lCJBcLES9jXFWR4bWlX9IcedDL3zEpIx6m39LZ+W/srZwl5ZgJzTLwguLjJpYtn0tD6rIHRQ4+IHZPtQYYd9/1S+r8RAtcLPkIviz1zYuYSyS505HrqG0mAB7YfH5jUoB+hSI51LggxuUmpN1ozfW7raSz30hUgUPY/mG30FEalQr8eGVOLay8U3sV93BQpyul/IEruTvHVN/ynDGtnXAf5LWEFeB37kAxMct/6LNE6/jYLsc2NNYTY1s65WJ65/XFlxrYZrhpUUftX7g1cqmfNVOK6cXme07y9Eue3T7raEd0yAhzEP7qxdyzO2M2N1oqvtQq4n+1Tlg+VpmB4IyXgAXaM1cSdT6U0dVc4QJs7k5//GAkywppCF5aRqb7EMJa+6toG5OXd+omKBLg/ehm8mTe2bmyxZjLp817D/24Qq+8XC1yeofaBdV5y0pGzWVEwCOrthwkdpikh7/AKaHKKJfe/oxBuObbgcikpLT6qUlCNZ7Ciym6LnATN303E4XzEOOEvSV+NnjSIN5o1XUT+QSgPlkBNlGHyy9sCKze2PnNvrTqCwjGfanGFD8c+3nzGXG+JP60RCVdGeccm/kOGYqkyyFEDT5FgFafC4lacdweaGsZkfmv0PNWS2XPNTWETCaB6VbiCKDjViWTOmFj7/rv/2ojbosMuEEaCVbkI8UWOatNQQDgEtTP0Ux0IGo5AVwsHoKBZr1zv920odrHWj/UeoK8Gy8kMwtMFvjkIIcpR/8BOYGCqzIDB+ZyEGUnbFTqiKi/7+0FShc1OTTJga+daR8rm05iiQtX9PxKoO0GURNHVC9FsfKa8lbWmrnn3F9rLGMfAGoU2hVgmDD55ADND7a/CdRXJW9fqlEMZmaaFHYYPAEJEUm3TyrOFkMXk/17UIr9YWb+KzSdCRJEaLb6KgVPDEkIjLD74bfFRH7TTnMm0VWkNiWCruE4bb2e7brqwYuTEOkpKgrG3WqAGZRZAi1StyGPqQTd/Di+sRkZep60w3NitLio6Sq++LjdgokkO//e1htkSzaMS+kwjhLG+wv51F6zJBCts3ETf60pF2Q7yNndt2eVVLL7gL9ar04QVtCU5BlDHzVz2AMHjaK2GzFc1wXjstJP7HBBdSupP65MAL2A/hItvyzBFQMEHj83zlwsD6hWeWt7VnKAPcoxWVGuvHpyZbroxt6QlKCiwIKl5uZoWLTleFHksySYoGowUyssL/bS+QoDnNoBwnE0qWuhRLCWC3eax3PhMqD1vh0MTPdyX6/rWmiPihAdLTOxDrjBjA+txZTW+bzS8SeIWFaUJZbFGipX1Zd3Ke6AWGfHwmr4ocj8Uj0Z/8iRdUxHSfRW3SBYD1YbGf6H/qt3XRbJX0NtFc84u/Carxilq6HzyzHK9Iq8eGdljVOcBlCNeT3lEJ3/EbJ4u1hLAKz1ypW5x/XYECfYgUZWLjKS4jkHztA4BrAeJSwOvzBj5uICLmZZ48/AdVf0L68WC55fZUOIUN1jWIn+qTfmxnD/j69krqDeu32qXci06qK2qzaT0gR2AXJLKC7wXPSUJSJSrRilx/asminX8uwf27LxEMB4Qwfu7ikbznSgeoKhr2pqj0+W3peTGHllwxY8KHVuIE2qeIzOMAuR1GlbLAtLxsIB2DL81/Nhuo79yTPk16fI9BTg3cUE0WqS7rl6JTor4W31s0kQFSVfKHkLX0vFpb2Pd1tIo96E0VXuPHdK/PSS2MX5Snhx5lWoBkmbto7ZcFH1eiYrEDEdR4i9TkEyyv+X7/sEGmD6J11HRQUOyjnXm2nr2f1VWT9Xl4QpyHHvebAfji9Tqvj/8B3In42dIV0nyFm+HbLtmlzBWHIq9KyXKdtiiGdsfDEf++z5Jg0/r6ShQF09Iyo+vmuYEevXmeQpCbjF84pBVJakxOb4YbCbC6Y04swggjTNRNIV/kCMdq5YHUY+0S/KH+HPFMuJrREx6QVL8D3hpvCsjlvliMS5X6jC7GRr7OmA5BiW8ptbtpbHNAuMA9D0RvnHqByMcb5uFv1/isUm62mjoNyyjdZFFUVFWXCEXnZ0LhKZCwRfCS5bNN4+GaGmwUyo7a8MurlD+SIJGwETDXnh7vQBm6lMBDOhTi26SbvDYpIxq5bAKIgyW9nYF9+54BilboAJxoib2NlaekPEzeoPcQ9JvwHCFe/OjlkXI9sv/wx5qVtSmwqNNnbyb6GcJLuVft1LECkdPbB3ZU9ANiSVqGB675CRAMf0DtxT3/s1xn9jjDsW4LnAe8Hknn7f3dMjpPKkZWF1nXYj8Cr+tv+afTm8mWg6X71LPu+hlmsTevVs/6y5xYyyVBrz33dB4FIwPHkQnTEH9JcxDgsURES86BIyZuCy7i/33l/vIQ+I7guAgzt1X1hKx/3FuQeiEKwm3H7+qWO2yYe8lYZQb/iPPCDD7Iil0VcKZYZLX2gQBrhkgC4qvAneSR5LLIpwg4E6PVEef3hJrQJk5qQev/HnGmJTfCqFi+Auu/7lasvV/3VWyTBJ1ez1v+kVmVX5gvpFXCQIkBrlprsLFRTOOiXgfXDcYFpWuVTVbICPurP32CoJ0ycFUT7uvrC2Nw3idccyOBUV7aoFr0K3kFkBvrVfrWKeXFGEBp3/MeS1t8OQ624QQiVp6aFIeLAroiJjVf6cDCxXQKpOtbzrOM0dnrjXLR/6FuzpKh7lwL7FKG7VfLheg4ahVbm36sff5sr9DwOkJPFrHdyKVWYXQbIJs2hdlN3d4x56fn/wYzjs22c60/c9uMqT6AKY5KltIgCXxcX7DC4G+f3rSfT2lMxbfr5iZTY8h6c+2xwKuLb+3Vn7Yna7bkSfEBgSpINeiSPU1TLQ27vRB+PAmF4VmYnTaXWIYRP4WLUfwpWm4zrLLJUIXLAoFQkOYUwVzBLQTfS5hH4SpiDB5c5K/BdUEWBps9Ce1TfeWLXRKbuUJNrgcYGHpOLqmVzBO+ggyE3b3QpmEWfN26LA7eL98sDUirj5icp3GTCJjaZ3U2ciqcZfg2owErykUKkD+k8PjmMthbHnBvLt3ijSwyUIALaZxlwNNMdlGnLyJVk8yPrU3/M4jwXeeNsHzJAU7Y2ywjJXLCTuZwkD0QXH0/iLYyZk/3vX+YdXA7CzNKzqC2fU86G2W9MsDz23ZghOG8BrNYhKdF5Sqsx831F+qP8EDoa+Ir9NJEuuzT2NZzLmDZmbV8EaGq2uImrlDE7ADcqgJyFw3J3JAWFic7v418OXzZko7yoIh+M4jV1xhFgJWLqFVHP8H8G0ZWESR0/vhZYxmzFcjItKgAKMq5nyVPsQTxq3fnsRKL3DGk0mS9suj7xorF0oE1bNoeHgI2XbRMhUvjfuI15mYYoYxTVj65anzRDD28K1A6A4Cf9jCeEW8rpd5N7WMjpNcv7HiDlozMg+9zbyZHNMeMbFJVLDTpt5NLatl8I7DU+6kSUroDvjMKCp0eS8LGrdhWxMJ/kfNhZipwvGRH0hE+g5D1uwTvIzGLs4YiDVgya6Gv+e8zE0gKWPo0wAfEJGnDmqRxFyx7niGLarqSS7IMJCGd1rr6Nz3XY8OUPp6ljPxJ7n01QKkmQpNczkUNH0zPBZtX6mdYAC0woMngaO4UOQejIp4TbY7IV/ccauaSLCYRsxc/Ju+8h0U6WOiyC5GPqVw0ME27EkCtJuJtCKin4qkbWQknWGVYiD8FwyT0070JWU6YcCnOyRcpW2qaeiXMPSLhskRj9UtzpXWfsB8NAF5aJ8Qy1u2ldrEMqquS7w9DHpgBzJAuAIBkLu5wvRp0pFNua/IyER7Bm0ZibhEb4LS4pgi9FyH+a0Vfc4brBe2LB2+Z8UUMTSPQTq0XINAnR4+1DWhIOUAJM403u7kvN8EMpg7QY0NRBaiJQb08nuBqAIQckolIA5eDjoUnx1CgE1XjoKcQ3OcfgMbBpiIZb4a8hBnlzWWCzmXxeBzD/F766bz7EWpTtIruvWxl0fn0pT3R5gqoFUwugreyhpzgPNaEYz/4QwM44RYzWBdGnNagGmXFEjZTnrcqcXTJLecVTZqJRoePrh5mPRDB4Nl3s4hZKEl9ZmcIVuaql2ZnRQCt6OBl7Ko4CZh/Hysz6S+LchuUxoXhpZs/RV+iT6KUED5PDrHYouiZyMjrn2fWapxZCHjTQTE7jh4py0DcuJP1tURfl7H/DGFkG5nunaloKC9OdjLoVZy03TeGW1G35Mt+gYcB5pEz0m4yQotj7+fziAv8pe1sWtC0U3BGL9TnuHq5kzGwfpVFCKlPgDluRbgERwCjtdCjvVT9N1wf0Y7L30KfPaIIJn3GzXo+M3zpExaD3xlOokRnvac2GW7t26uDoG0jqvqdGcR/2XhZmZoTcEvtQZeUAJw37Bltkdv47zsPX+OR4sGOoTi8WXriu8axnwTxxp08d5yVm93xa4ja2XmIl2yiqsR8epcEOxRS+dI5kKl/Sd9/cwl10ebN2iummCl/XFwlyfGUGf3DVqeFLil+33w30BSxaZK/t3tNhSPOaBnDFGKWCYRhSYKIF1SZDFuZ5HQcxHa/QQaWx9DBuCEpFPSQfOPURCyX78kLAa6nBM1T9qxBe8BMWSohlhud7uwkXP8/X5xJWo9p0mMJS6MBOWpIQyYRie4OzwXURqlQ+/qUi9L9jySP7COs7s+Qlhuc4letf9ahmPY+RYjE2MApmRV+URyDlMxuEkjhu1G03yRc66NLPRaKdKegCn3Qcb8AO1AJk/iMEWSxqREe38o6SDN9/0k1hcn+Q5kPeThYBCbkn9iH7d5pYo36ZrR4qRSIoGvqKuc+VaHYyzcfIpqhXS0DxxmSpT3KvVKkcxVjRsbfgS52vDSETmS0DigkJNijrhLlXwk+FjyvmnU1Dsbbk599cHTCdDBs9goraEzasFMpC0wc+K06ZrDPMQQcmxGMhYsGgCnjX1CqkbJgem5svwbpi9wDrkfwDfxcsfsfsWrPKkpMi1fkD5UPZ4Y0u76BiSAmT2adLbuVX+eZqZ2G8zY5Luptbr6wxqJQmfau/4dLxlES/RM8X1acF/Q2MEWM+tc+kiyeL7tuZFlXMAgwaXPd4l0w7zD5HrD0ttki185tdqJNEccfuVHCX1e1POOQ9YVfDwyCE8H9+tTFCgSXkRMrYkVyOOzxgwgy77wbaXNSEtr7jHZsKY21x32EBOT72rpyYui2tRnd03xFIKFTaZ9f9LF1RXuHTr+BbVTx2bjJoTRs8sRBzHj8uhYhMF8qyvC4XBCo+HcC4xRO/uZE8jd2Z/Ipx9GgWMcwjnYahJaP4MS6t5N9nSEOarmMiDudeMsGE2w9nW+gbzdI+Q7WQ/y0ztBaOy8s5xt783DPbl7hJElk/lieqaqFzI+rWkfthf0/gd6uS3MjGhQP3YDbqlpb2J3PYkG6kOLLwksfsVfXLa0lk4djnHa62YXVXLigpNRv96d4iH+VoYDBj3TJY6i8p2uewkF4Iq4C+yCSDw0EhhAX/7lqIlKnOmTR2HsGk11gr8Y1OktDSy5OOq1BW2yZ1wSWIbwK9QM8MduRAj1Zv+PeA3LTgJXvyeC/QLrcVTjMRGj2sKkvBq/8FNufFWwZCq5N4ZimqyhlKdQ0OxmvninAy1BU7qLu4Ta+qRojEkP2wdqDkfzi4ic0j5roexEUl1c36v15ArMwwyhUbhz/3nsAJadqxnr1EEKOSZaEHh6tFvrMMR+ubkRJMam0m/kpgFer/CfaGeYA3qVuiL5rZgZZGaEMi+Z1jO5uPOQkpViefm/OSFyUFC+e0QWvJtxld4PuOqBt9FOLYNxVwWWGAMOzEZtI+79z+Pjg5B7zaMESsSNM0fiqd4l8b1eK+l6rZdbb6v28HGDYBKWQUlr9pQRg96DgCZM3hFERMrdHFbbxb7amYQGb52ZV5Qxy7B/KOYFrjC85SRc4pb/ANaRXlBoAPk4zn+sIieW3NZWq+AdudJ7gpI6JtR+/GRSWKvMbom5UrzkJf1msYO1VQePn7+3F8O4w1fRiyX7N8AiS1Mk/SGgUBnJ3x7eIEgX9TYZQY76oUED5ue4Pi6mVu8S6Tac8qDjWtMKff3KDPam2cIJXeYURbaHqwrEZU0eDe5KmOqUDZ7FpRxuUgoni9k2HXcIysZs4+5LVNu6SLsiGpfNz9cBgBqV2PrgAsvtWZu60YgZGpMNNrcr/XlCF1MwnOBu/+Rx1MeNMBD79D3+V/lgtLiJ4bLVAWymbHc6089UOY8byUvcecblpVYpbSGXX9aBj3DeG5fn8dy0dVZqawHQJgDxlXawcZ8K/mxENfQMkth6WBc3KHoOA9j+piVjO2Sf/eJDPxbsWKw81Wj4JtIe/veVl/6U2wqyBnvLPGUFHJ2vx12pcxzkT9JtLv5KCUUSwafNWT+VPDzrw1tQbbFrOHvIGDEj8DEm9NryVXlhxz4tYg7DrNmP6zpsfqAJReAl1RCpFAAh0VYQjlNy10SR7mEtt7u5UzMHKnPSSZD3m0HU/3nnGpCfBGJ9sap0bpKCsrbqyztt9lCfPf/1La2qUVQNvPWRFju5nqeXiX8eJgsAY8AbAfFZ80UjQ91JnxeZG6kMW91G/UJCnLGBjnAW1l1TXxOrpczzYSPyVyULmZSMkYKRO9FSKvJTGW5i60fuVWXJKGPj2mTUjIlAQyIp2+bUzOG/Kt/1jUKgzwDhpvtqXdDQZtG+DKc4KpAn1fGjw3ujSrlXfLUXFvgH+qzHdddYJJ7mPzoCAuNix3eZNh+QrCdYeN0dEPTZYXCS8cBck8+/aLQCDOZlocz24GIjzyOaMMKOHzNWDfAWvvIW4hkdNqnhd2Yo7TnGp2zw9oLwoU3y76qZpnC4Kop297371E/EUxczS+43zSbjJPWrLhEswIVvuftjRRP3PgMkEMFWuHN7RX+74Lglazy8WIZV2c78PLB8yN5poKjQzSJUicptkqEl+XElktdpvjDehXBc4BXaKAMvenb2Bbe9cjmDkgf1s6KTLXAQ0AIQIlfeoRtvDyq6jAZAxOT80/6MPbFxr+kzsVMgggd7Zm9JUsdW3yeznCtvoIBGyEfFYLlN8zJ9CByjTL5FUzRkUzLqcYjfbrVUNDaYjN1vfo6OKoiZhoH3aVE9JfpsPdBxp/pIT0cq/okyi6IdqBAP9f1oZE/rqj0A0uJxgvPc/cJa7fToY2lTm4JPVvXBjsIyIYfxRJ48+Ptqbz3OyJ3nYqSCqAaeTiMlOxgwCtUEiaezsNYEZl1+WYEzjMnrQaVGrAHcClXxvyaEL7UEXBzhmpksPr7miO6ZsHPI3o9LqKm0nBrBxddmqHaX9+LPjLcrfz9CZuZlTnrwXnGs2mIK91KiizT9L/1CReAyRDGcjPkEEmz4tMRaWViv5hwvsAeHPNNLcx2jT3KUwkxAYate2aozZnK/lvr2xkTnFy9PCUXzSEcSowIMbZQs5NBQCi98W3Xj/BwZw7iiyPD9ja/I9qzwd3YEDPhrltuQbvFUKUnGDZ/3uZAy/41LnU1UssdQLgwWXKZzrCN2HSI7TqeZBtMB/2h0VNiZ9mFOIvhbAWY6HdQpynj6HrML8GHRG2FAt/xecf0tim/Dbjavc5FKaQFjmUWu+QNakJHkGkwrkC6cZ445LUF94POovkO6QwXPJGqkcTBgoUxxOKGBAakKll8ymFoyklZu/5WHaIt+K+9+TewUq4WUfno1V6/uymh+AyEzXlwiQ7XxNlLpvQlj1SDjwcfOgdhDRxyUCxrz9g0rlNGGjXIyGasWO9m7iq9YQpfTSUHrgjFAGicWwmFvYZ5QtlKtd+QqdPbe5lYdOm+Qv3vTCpH/BpBFtclmV3+40YHtc8++ny0Wuw4zQzkQ9KAUA/kcEL3er2ugLqOnq7iE95ut8Qt9O2tiOZl4UFMYwC5i3Nyfk/nf37Wsl8A3eaxzrChN4P+IPxbGnh3I8d88DwJusWzr2r/P0sik+y/2mJ5ZRlVAT8bQLeV8RNwOvYlhFl9oa5RDp+52ea4PORjLVtnaZRQwWao+dJjF8K6mcDMj9WY0OU0L3D1ytD3Wu7tpse3A5k7CY7ix/yBfkIWIF89xVgMTJ7R/uAYmZ+fccK13eB7fe7DCG8RyM2OtZ/BmNgIye7yHJy3Phk0lI6XCDSuFwF0+/CzsCyMC6LA5CxQymIHDVeql9y/EOGvkZZrgr1TtF4uZJOxfK4o3TxULBaRnJ1UJSw2rbREaqn9nhhlQgEHLo1Vc3SbZvBoGdRXZ6dP+hARO4JFe1/LIsYVo/LHSGtYEqGCLOqYN3789M7/d+Mw+Ogdk8lJoUBeW14vyGeFvn3aO2n3J5G1cyCkwJU9wlLKMeK8mBssEkWWlnZCCJvmez3dm709PNQklZEmIKLZcm+fLcG5KFZw4vEv0z+MdpNuWUTSZMNpn4hvXzgK96z1J9HMNyHtjw6EZrCxp6Map+wGb2ZtCUdgiubGgvdAMc51wuZ5+RulEwJyQpLfUaQi7fh8qCj00ZquTZjMNzQDbdm+u7+ly9y2F21v7HVWxh0mndMKW05+1nWZQJhP3mb0Hkyn6H2XGDQPR0uf73/OiJeYKKCGJekp9bytOoj+XY7kgYjSUh5y/aKgIlC1q+RxEyvpAsMANtrXohukSh+E1zq7ezTtwzwpV9eadzJ7IpiLlunjPpJwaAvtDGMtP4aziAi5ZNWUQuyeBDD8gDVFjIh5MQBpMZakhQMWE2MUoYRxARZ8UZB1SOT35xgc+pCGNeTpJj4Q9jI0x5tFU3hNijvbOv1CeDS6YJ7hkLUqfih+fS134aUDg+jwUBx92WAO5UiznrlkkzIeYtAEVknZs0GPMgP2T34a9jqVUegwi/8L3RJjnjcrqw/m60qUzqhtBZKmsePpOE/y+bi14oDe0nCe3tigdvdqPBpiSbznXBvEGKbrri/aK9zkzKfJOnt8VJ31h+oyALmMKpRUE1+S9WnBvUzCOZJ5Z0CG9l0bBJEucdJyLQZAGnsNh6uIAjbIrXWxnbKxkFI11uD/RO+sb7sLacqp6vd5QHB2AVKU3ZTvkItuJphwcEiml7I/KjT9/xf+LTK6lbHfoNgFJPKOFGFQlBVua2w674X7ZZpgb12MuN8Pt8egtxX8ufebxl3+Swk275eBDgwsDxog2Ig9jF7foVv24xzBLH1lsTmc6YOdg18HPhyYyGMV62mcu5PEQn0scXHxaQaP9vE7Gf9GihJrXs82bbQGrHAu5P0S4BCVrEOm4dhtpeiPanEXShY2fqnz+k+U7T33OsrKzoMgoSVgjx89nZg/WQ8gEqQTe12pZiMrzrbnPs1/T/gMd1v8T7bdxJDpHaRX7y66md7tj9sNnh1fMExrcR+NGuBPUIhMPFdOtoGtJjhIUfLahcv770B7kCVPt4mTIZ1uCeR67waMecXflVSAfSkOZtH5nT5HC/reD3EdvNbxES46GVrg6F/JiHh40UAnw39B6/RE0GJcGs3/tB2iA86+smeVjMCudXICgPl0cEn99T01nwllP1TFxlDH6WaiuQ6USIwMsra2QdsIAdQd4MSEgjEtbsAur/KCyFS2n4skGrXwucQa9t4YuCFGnavANoV7vlO7jjVy7GJmcchGii7nm9bOSULBmsM9oZOUkS/k14LkscsS6uvkb0m92MUhR7K+XHGihyKImzs7dV5JuSFg03mEofTe59nqgMQegYL6vsm0Wchin9LfDs9Mo7Zsp4cAs2x8MpkHihDpe/gf30BFDB7Ne/JqgQxHBXkKp41BoTCPeyi20oB1yq+VwQNRr+q+56FlUZC5NLLhiuW3FlOGjfKkkP78/grojQkDvV9dcCL1OVME/vu/J5l2gCvROD6bzUmgt+txuWtbDvVcSlcP2QR6CMi2XlhYlkliSbQtWdAeNoOA/KwXc4YVYRUmsK00M2Z5+XW/tIzx34r+iMEtFLDgxTF6mHI5/dFdElexOewdocaBMQ9jYKqeFqdzhLlxqpeXoJlgM4fgNjcyGGiU1sE7K5gE2vS4lNjAzgS8GSRjETpjNp3vP4PZcv1n19Z1gu6Ao3r1Dk8pRYk+fH1B2vm6qx7/ZWiwInvjRP7afHZfy2khwJ5mkuVFzlyyXfFs51jyHr1GLMFG3fdioRsP6v9G4Zj3CMO2zayPAtLAtaofOidz62BEHcSLUg1PFvM8SAyKYt9VnzIVy3z2qYUFo6by7cZqYjjZ95eLXFSQsQ7lT0ltLuFfbYzUUUV8PR+TD/Ny7Tmtk9dGv6IMT0l2nHdGoFOw5EHCmvbJn1Vx9+PXdeSQMOcl3oCbaiFuVjUsHTJaf+zSF11d0fJnIMyT9gG96sIKoHPaxjY2OkjAKCMLqdtBFimbmyTb0+Qu2teQsVJMv98tBZHyelruKTg8FcjExxjs978OouYKP8TV1+CqtVyjwgl+Sn9YgVOLowCgxVrOB0GHb/tD8a0o54V9Yu8m5ppHpS6Cc5oe6wXT2HM/2MsQoEUurlKBQg8NS+r+cHJt32gju8BozOr6RHrUEvzGOIb24Zv6D4GXaLBC8f2Dv93k1Z4A1B+lIFdUBme5GTw+7r3BOVbeb0pdgCNM8wwdCUG17m+olQTdVd8LIfMO5PjPKnPeP4ovEqeyGPeIuXrHvNURMuhcM57anr7NtbxApNAUgVHUa7vW+f8WOCH5ABQrelJe9BUZ5VY0VCrRmtTLUf3KagU97hvni6Q06LAW6SsxaBh1EGu+bIgAvxAQG/SrhsmCmgNMNPnyJkNOaKfcGcp7S7UYRsqid4VtIuvuLyMjsmO94iNHLQOPQh8yjulZ5xS61FmhvLiyy4FcqO5zB++MRY3rezaTkY3+VqKDPOegBgPBauqZ6hSD/xlXfN5XhroxViDnZqY8C6d5L1B6eGdq9cgeHYR40Nm6MhQJbhxe7tcHu0CuD7WxvEvSUnsHuMIYJarQ/0cAW0z/88mfaiRWcZfT4SQy1kV5UFDXVhD0pCYy+339cFxyR9sgwUe4e4aPtp9JcKe+S9UjNDeDImxQ9mLikOWTa225Yn2sk4TOpwuL1wvKaaEIEtSXuCIqrp5zGPyE1n6ykIbEICmbIgxIh5P9zqp1kmutNXC89N97kDTI+JRW6srOgq23Co4NZQW7JoQYH8QSC+fFOg2PoalYS7xnuMvwplNTsW0L70gnbh+yIqjEZYifLWLqVcCROEdPvRdY1hubAySOY+7HIoKM4/mVfCFgssKB16fDdkhIAaQzhLZHi+ZFyqsK2/nsH2g0WpMhfJY7KgiNlTyZ9mT0dTlgvV9C5VP9UCexqyJafkb4pr8MjnflQyWc1H18T4ouYjE92EVtLNQDM+J38H3rze5uLsg5HNxS6pPoho9heYkhyNkT1RdMHGVxsLojCYV3bstAlLK36eYFZA+gIamY7Qu19KNMLejcle26XqsqdXPhTN3eTFL2C2ed3waPphHPD1yn04ASZF8rxuq9fnt56vUDWLZb4Fj+2wlvpg+ngG08LiG6CazPWjn8iOl9VQs3Lll42+eAM+E/y/PZ/tPeLfauuBBWw9ali9Wed7JyVlbtaQAIL0S+fQKh21h8RCm75fYuSqcM5LOuVa1r43+8quKbkrrs3+bBdpvoWCaGnhpk/60VfdCxakHPXHH5W3lKgUpu5GG+EcWtz6E240U3jljR2LlkFPwX9/It3NfKsOKTr1rHms+gYWq/eQA5+Uz0vCHwTU10puYK4YuXY8sNZydOwfctaAJUPjfyUbS5WzQ4/cmf7F590nnmDyMHDH4nNE8soGUsvA9lovAZ12/Cx6zBaViLWK1PTBZ2LiYfmboaA7QzOD/WyN9HjZyvB9goQ9NMKDSL5/JOecueji7462T3kS6t5vQj54hRiwsZLFhkI/CTnq0jK+g4ZjOm8rYq1OWW8YJKv3GiFyisspK0NA435nIeje2jSs9DSk0XqrPPP7W5ZW0VkmM9FeoyznhGIdp8DLBNSnpivkPTsRqv/U9GWbBG5zkbhvByjGo5nrxJXB1bRVqdP2twbEyejmYVmM0xEztGBBZ46WBuiWIJJy3pBsAD70oaXA9NTqz2HwRUHIMTRX8GqtK386WUKY00DfgugPY9jK9P9p9kl0Xlqv3iYmu9JwfU3Ny2mHAcxJ/qze9hgzk/4VOV9fCR9FXc2V+K8H6vX6l1O6mDV4JAVWA0ZaRhtuIUrWhnoju7YFxkjZINJwFqT0c1pXNJeFTg/z+dOWMOvU0cWHRjMBG2Yp+lLhB6yWjRfleCuL4dB6oQPhwCK17wGoDC+ONOQYhoWRvWMMmmTZrsbmA9T32UEJymr25A4YhApOYoMbDYhD88QxfwbJIJTp9fPs0jhbKL16Zrk3zDjnKLJuVoFcQ7jZ+z++63P61jQkK5ONed9X0IC9dPyPoraODtMglLnHTZiQuECZI/EO1IonnunhLIh3d9rXcdvujUZeAl+l8weazaLqD7y49m0axhpm26AY4zLqyW5PnU+Iwm2IIFtH3ee6utS8pBfz42l+q+uL1iZoM8/oIn99h53TXstSxDFmQ/T9/w0cj8H3JtatU6IZr1yaDUTAShzHpqxlDGwgIx12PNn8y7mrm/AGMaRUf719IQqAd2YZXpDs8cqDNyr0VVTRk1tR2/1rSBuiEwPXcaz9ZfKdHLd++zHfALy//vMmWHN9sx0TjV5GbIsq8UIoH2S60H0rWsRpwD3JxSs2iMzlxyGN+XiSjYbxdnctuCiTQLYzpnZknXcD6L9h3KehkJD6cACpFzK2/NBP6NQ0P5HYsaiKang4oiKfKTaqyge29Caak6wiWC/4+CdDpds/hBTt5NUfAYgyeyNtgDNt2LJW5q/MsIjUEZ9dd3I/E4sUBUBud9sZcxLySdedzFZnaWdqsAUqMToKFLvbFrm/Tw3JCJHb7QtRYq8uYpFe1uXR/0DDj5gUsHv1nCTna7W0o1gNpn3bxYnd6zAgJx+m7nvwK+cd1MswXy2fr65+pTbCGemZSRdZQV3z+rzWVdMBOavkrYDl6G12clWZZkWgAWsa64RR2ONqfl2kWxKAwQo8Vu3m7eMnj/AAKVHgcj6wSqzj8nrVpnzRdD8ujgGtWlf/K7SUfUoIGsBamb/NsSMUHBrqgYXZrLQUxeELmIMsfjhqkzmkdCHwokSMXavnaWqq9ss9qVw7uh9w9A3MJE+913TIySPC5LtiYQSHK+c8Bru9SsPTvYNyEHiDrZkxFHz7f//HdbaHBN6DOfqkkHubabZUzuQXAR2BL1MSScWVCeaORqh/2K28kti/JX4Bhhzw7uldDs7Yt2vM/aMTEyRmFIu5H51VH9vTb/2DZfkYOKEWg/omyKti0jYa5cyFhjlpeg1V44Cd6D/CyH9EjsKwVD4poUhiJnCEEB1bZdMz/gm5G+i0P6iv7mLWOOnRWm3LNOul3HAqpN6sezK760oj86po1fy4tk9sYnyclVNZQ7S/pAkrYgF/+/SXVzLikzDQxHt4r7A8bJCPIJHO35fKGa0o3KJI+cuIGCAMyQqlfpn23kLr+4SHcRCdodRFwFcw0Rwbmq+SVFmnuURV5jpEgj/sSA5F3oiujDnb0sQ2/joZJcIZlef1sSVD+jcO4useBTGc62NhJejXreHPL9UE+YNJoQZqv9KRsB6F9RRXrVt4ka1pRJMXq5ETAX0TVZXU7IWf570DiPiJe1wr/PyevvpcybXs66Akolj86BrfadoFqlJqnhmNwoyGZtbfeDitPpjxy1C81KP3FEAhf1+GqmzqsGWBbaWWX/evGXJGOzbWX8iQS0DszoP4r0v1HkstXQd4g/eGHkMcMzqcq2rlikCsCnpobxpdNWQau0aWaZRa0pNxnjO70m3hFVWWwSTywoAzL4VmeBevXPRC/K2abyJISPNTMHA9QB1Q69m5Hzfac5hJ/0Bn8TvYMypsjPm7emQq6woH+HBs/ofc02XaW3xI84gfF+CrW8rJbgtU5Y4IksWAw6QiNpU2fahaH3qWihZ1ABI2RUvagfW6K6BLuGWpakuwSN3+MzurKIYiz4nwDoFerTCZAM8k499pmoO8eXuKjYXT4/K9EQ6uwk0SiyluKdREk/0uM1Ab+jx3fvAUeAyF+XH8YiOeREh+r2/NjuDc7eE2UEEg+yS4UlNDGdjp8Z2Tuh/5SSWU1Wfh5cno27NSPKDNYhWpEJpFUWLegdU6Pp6I4jZL3j3gWqKtg44JI/W2fPvrLXrr4j9wPOdMUnfh+t8VReOp6Y4yIF8IFLBSgljKa//81Ld4heqlFwH9ecXZxYxvZiicGxFmx8Ig0DtynMAXpSFP9mGuQ2MkaP7o5mfCI//jnUaKvVBrR0tO9JPijxShVWbBK+8rKx8T85hH9lKecpZaKYE0JrHatrQNcWNODBlHiaZVCBGATR6smWCbUWaoax32h3etHlHK4ATQ13wbEwi2oBfLIQGtWqqihJyEicmlT0UhURulTeg7LilYPtkTtm7RyQjzh82SFRPW6P36fX6A+PCyoa34nDLz24RvK/fZScab2qHA69yTnRM+iIGj+1mMdELpz+NEsxCuylrQpVnBZvRV94TAZOD5SIcvrLeqMgAQ4W1nrJ2NLiGXPArTjmyPe7IwioCzYsqgDO2iwrKUHPmBl+/oPqtaBC6EfvbBLNgi+EjkX1Ntj1nFrRZnEM9hA3HfJ/yhbJ7WDaZgNX2IgNRHphVZMYeOAt4qC1Tgv33eEz2wL17SKycw1S+ceqISZsVJBAU8C44pIX9yesaEOcwBWm3XX/ONP3S17+hDU2OdISoE+rgvO1s2MFvqlTiic9PuUCwL0c2IJWCT6RH1yw4mDFWxDDfnBFq8jsImLws0f7TkOCotlz9QUtpdChinBxKi/dZahNmFTFfbDdgWxsdO9dqE0bnBhs1syvW3RMKo7iJudkCVAi1ObOW6jMryld6yFei5a+T+AcLBdm8iC1nGHoaFgWBDi0UnIGeiB9UGCK5QLkS5kp9IHJZmNBrhcFEtzO5entrAce6gtS9wbSfGhyWgFDtlP3VxHYF/XHPFNT4ccvRdOX8OwJuFZK6xrquhj/QS3ItA9o1ItFeLk5r6yVouuY3hbQoc3oAi8mGS+qcl13PLmUEHM8kW8Z/OVmlu3E6ydqzjar55crL5ZjfjwS9IkeMwA4ZUx8aXOiTVCM1FrJmoainmEW5YL2HY622/49txXAJ15mm4lDjV0EymW06C6M5t2hx3sktVT87QPSjU+k6tcCgCnJ08+RrAMg+3dZht50eBpiEX6Lbmr9Z33f7++yhzh1EYN7ajNUYLxTCZ725GEQKogUgkAY5vJyz+MqBsOyTscZofsZCphC/+a1sHF4lg1JNK6xrMmN0bMk+TiwzUjKb4f+ElgZSlytSZ5XskyM733i4QT6qKcpm+gmj0rvGiG7yO0mjhzIfoe3Io+4ct4PaONSVpwmKwTI974OpTBdl3Xnr8vkvx5xsBVreNpqCZjEFXrXNi18MJixi6+GHwKUQo0GlrWQMvaj7uHXnrGdyrPX8HPr7Do7y6QMz9Cio84JEhbFdW/66QmuD69NDzifzuVSH1R28BEF6JXgeES/jT8lq5E+Cw8wk6XEG6x5KbBW0BGurFpbIOrvOjFj4uAiBOO8qzSlOtcZ29ckNaIQhbe81Bs/2sLvUPrAgRqh+qBM6uCIT60PJJeN+EemM3UhvoWr9P8dWCGJQv2qm9ejCg15aM+fUr4EVzBVnagE2+sytnQCnaiZqXJLSgZC9AQyUzjJzmH13ML0iUC+dA4tdfNxaULjmYAUWXVtTharEyEshmNpk7CkbweBlt2ebwU8K0RZ5PzwW+eJ4TkDvQlXKM8KhRqgQvCqaeH10cScLTHFX0eSlF/o2Lv5g/LKPfbuiMI+s7cYZwwClQyK3EgN3Qa3NoF8x1NzT/ZwbJpgEBwP2EXR5XzmQhogFM6W/iJs9L3Bl2JOI7Rw9kyYq6ooCb68ZS6jZkJWX91wj5Ej6jdAbMbCWzhrcJmE3j6v6H6cA5TqZHxBFYHIYylV46kvijAwqkUYG86PFKazpirNU6zCW9jMyNOZK1xCs5Q9qkUfMiBSslnzMgJGzlJYQLcaoOSU278PdiM/KMYXHHNHuKmnU3LPdgKzdwoE8xcfynLP3J2/zCWEz2Y3qu3xvTKjWXDx/RKhCFaWIFMKxPKJn4IZXJO5lRAd3b/qIYp7UIASd4/IrAO4IobMqps70Ztwp+ceZJhmmPCO/6YIiSL0nNtr4O++Be9aWPKonkfvbcM+W2MGraNQ30l7h5BaGFXiI2Bb+y7DQ61YGTiqVIv3AFASVkNeQIlXiIdz6BFTwEBcFvGzpXcHgKw7gjn/mcyZGvSoNfl9a15Lijll9+GV7UwxH+f8duO0JpD1F5ukWlcmUK5EwwnNL1tGqnZ6kGW4Lgvzw3U7hETsO2BFKdhLElV8VGfUa2MlvohzFojk7WKheNVO+yLqR6udMkgRDKK2IXbhuTRopFolKGLG4DCIwU91f+qlmfL/GdcqKbCohWx1zApmhsgnP0g9441MpxY/PjyXnMPHrYJIsbxKeHlERUSbeomA1TqTDTC4lEtPWqcjr9bzVQXHZvv45tNurqKqNTHvZTz0O/Us2X+Jm+2YmbrO0mYwGRdkJylRg0hvbLTqDJrkWnE5o+pvvrJ8+suKO+IRjFC+XmtnSKve1XHdn+kC+w7bSCUsDRiB21ZAIE8vO6u36wEPe7/znJVRO2Iv04rbJHr7TwG8gCrqFU4d5OjFcLO71FW1gwVc1qHD+9ccaXfmLxbxfFohGjrwtHdLTRgCWgy3lvhfEuFXFjDJpsnEKVO3GPw0tKXFXCZIh0MlSZVTeb8xlS84X+vkdsIyKUwk27obEcvWPD4TLDXZZ/a6XOKFnYFBCz+3Vtiirq+gy5R/6jNYHsAhNABNoYHCdDRQIgGOa91h+AUK25N9V110sIGIzw4BahOkxIQdLoxUXz3QIs6k3I9usumI1q9ixrh09eQGTUr0S2lvXBo5wPVm7Bqudrlj5wonvKE0dgy7w7e7PcCMaE19s/OupB95hyNrvZinPhBWD+Wd/PWoZdWZ/tn3lUtcfNKT12SVIyksm9s9m85Sa807WcsZTALO6vUEu7AfxY8N0nxlyH3jcufJusKSCTgwa3vvDk71cMECn4CAuRJpaAyR7eHcqiuKdN3Iiqie4z+4+Zw9piDPob+ZfuRaMjYAjdRqCHUu8ozR2NGBJ/zxFLaHyC+VpXWxj3RFK5uMNz7nXFp+2bbyA5tACV+VOIX+Z1eAWc/nJzmuDvKIXO/7T7csOt55YNKJZBN2Syh7WwHBn6w3uZHtRYD0pOGEWdswbRM7KMXyhw2meizzPFvMoORrmL7/x6hpwyzxwhulRa3K8McewNvBywGfZQtkKkR6e0QFrqgzBBhttY+EpTDY+GOyu2OfZrgaxItw1fFywKCJjIDBqZlc9FuhtoA9Bpxz9QQbbwonydOPGyengYXskeMRv/hMNfBPmUBPcTOG9DXw5G0SumQBil3EGP/I6W07DfYTwPtX0EiBJaamhy5W+NoharsS1JrAXfCXDR8BRXHxV7RFgfLCBuRqGrY4Od07lQ3y0HMAoLMx/rgSdXEwOrqdeca6VERyLDgHekBbPUYqpMtQSfO3gN2iyuyieIB67FgovjbYCC2Y+zAs8ApzLQ4H2S+NT4dgPK4SBHBAq2tZF8MFjL5jkQKIdWLSDnfzbyYbSa/m1u2vAl5UwJ0y5/XhjGPLW29sC5/6kb6axiR93uGdhHIBH9PLt+WpHH15IImJdRczsQFAmE0MNr+pN2113v/Rz+6Z799uthkFQH/v1IkhJq25kxYztc982RP6HnjKalUuyVBkUhjYj6qCzlp7cP0d7tgpKHQMGUG1xkPnETd4CyX1Jy4sU8LclMVYN9qoGUnem0fwkDKdg3f9tpYF1gFT2CXOnmg+tdOClyYTPprj/Q61py0ERlh4MBt4EM0UtIwzsk7ee9XgwY+IVm8tlC3M+s1IsouIdSwpWs8HoI/a6RI1TxbTRcXcF5BPPX9fTWdTdnd9vcK8pEpwT+k8gM4CgcLOSINWO4Ikq8LuBrm9WuQqQRUMisgZCjz3xOXv7gHAXwGFyycJPnLwkP7zODKgdXRKqdh1TtuUMdI2m7r1BHFDtRRNbtA9wQxp/n9PDppTD5GOxh7n0pcVLd3HFSQ3qEuGtNib3Fnc3RWq8sYa9FeSRxAJAjFu/JuwdgZGE/DG7T6pi+NMGimXqw4YZ8Ihtn4At5OMGVmNpQDhv9+wtraZY5HlZjerAmsmHMGSWNjTDAmWerhuVneiyTSfa5YxwSYw7ZSB9dW6YpKXIqPmxBC2xpGRywb/8lrJ+bheSMgTRgwm7p3e9jzSlk6hFu99iQl9j/EJn6/5/7gFCUwpnb3FP10IlW4CrheJWmArqQUnDCLc/tH9qQEFekHj1Lxpu5M9UKE2QBHfpl8hd4B4/xfHorqc2GvYAvpVBeLwPuoEJRcmXOZ4Al7WXfUDJfZ7N1W5Np0Rm/SlTkclOCcSBwlaOYMcInd0tddlWqhx4l3aGzjgycal/nssTyQ5/H+20Bq4djKKazeCETwIKzF2978aAsndBue2Ycduae69S+WGHFwsiWa+po+/7Gws4Her5Y1D8s8vU0WOCwyFMwpcQNueB1MpvsrYxGwAFqTVj4MqusUKDuImsHZNcv5XrV5++SVEASAy5bE6eLjY3Q8hq/UD2cmp//svg/LNwOA3FD+gOlZlZEZ0f4P2hN6r3h2RHCcm03B7mxlq07ncjSPrFy1EKJDBx9vJePDgMZw0THG4I758o82Wxe4LA6nmSu1lTYJPVGpTsYHdoDOpqD8VCwuVXc/gyX3YXBl0eyNOvF9oFKC+fFXsXTKAq4ynlJgAOsdCKixGO+m63CsjQ5MlSyfiY4d0UZv7j+1rD2H8aU/xIDSKjTSE7VPlYIhed7I32yUvSFg7sR6pm4YbdHq94yEHwSE6Cs05M3fwFCQhZch+kgOs0nQsoxmhoEajcguxLTtflsfUga+ro/ZgVADcLuV7sv9cG8+J8HBtwzg9Wt0s3cPQ8s3UKu0K5X02gZeczE0YzARKTDhFvpWCx09UQphNFQ29HPU/BZ5uhXyu8pt9twRfZ4osINKQzGQaqfGYK0NVm18cDjtVkGm7ufpu43epd+yVGYyEHEuJ4NYebsZB7aTVuN41heD4jEoIhrmtIRAiYwQbdHlXAxO/z44cvYk7XJAKutILLIOEjdhSbANrP2Qq/aU1NonoUM0bXgQfS4rKlK5p4MYNJEzodCSAQuF4jSREZDzFBpEbJZW7tPYSV8YJzfZNbVWfSkUM6XIcpYCf30OAO5rGyLQ12ySIY3wA/tywf543v+GdjRqmJ1xYXbm6a3/VQI+dKSlLujPfhahw2KkH62Tdz/juye4Ul4I6WB5uUgMJqnQsirW4RjyXjK2seQTU3YscPVzVXmff1dqpEwgPy77ISNFW97YlLsk4ipnBQu2Q6VAq4CbdKLty8sdmOW5JyhBpsSHzLOD2bOKunGdHvBusBlXAGCUBe5IvKHmVxcpsNDv+SY81ULTgH5F8GOfdFJJIUlyVASxz9dJ/G2HaovfEgBw1+CvGi7ASV7D7QxpGsFmuxgGTQegB2pVmQdT1dPPOLCY6OTwrPP/uzn0w5jkom4R96RfhfTnWJiyEFLaecTHY7mPibC4brM+M7eXLHMllYuMErbXggXJ2B7BTlFwhat4O2AsGQkaEEhp4kjMVjqXRhOs7S1L+pl/LTZIiH/v2lC/31AhT9jfSsJjGLN75f5xeVTTEEm87LHMZOq/lS5PFDO/CT5QEsyOdIPizWkbVND/MxAjqxS6zFWOVtIBNB9M0D5OHrPcgXDlOsUEUxfF9/MejtZD5rsPfyN1d0CkMU/l/hdzuNeJzXA2H/8W01XutLJV6hg6wH3lrwhvP7o6JFf83K0i8lDY4HKLIcHLLl6FSXYV4D5EjjY2UyJRnqwjoBcjKmx/KdFAColvQ09HUSw/syEvJyfLr57nN8kn9B/xd942Y7xr28OMAsqD9Wv3aPxLOXE7NrQAYqLxHeQKc+Ay+IKHdkSh8Uu8M7V9sVgoiTTuBT+Vt2OvR1NfhdmJN+dJnZIV35aOV5LgMnlOLH903bcyKy/NCxgWaw0YVkT7/j5f3zU0HDBzIwxSuYBBNKq2MA7HF67eGyklFsyCbyUXpTtxHSog+B6hMuevfeeAreTFBcuUJzIDMmpYi2D1Cx3SdzPyJvPfdzo9mI/JzB0rHZwMpxnpfiUrjYzo+SCBSMMehDYUdYxzR3W4j58jHDMmySc6rsp62GUzOMeFM9I0KJQ20tFJIZdSeA7uzettzoXnbhbJM/ECuMrv5W3hSfr+ewgNqvqB81wMgNDWN8P6TJ70L6bUBO1nOtxSHZE07FTFWWHvofXfkqZhcrMEkIvLhxO0USg+/LyK8DhNsE+Nyb74vxB8XFedvuZuDU8TVwKH81fSlbPL1rooLGDCTKDcpGM5uLO7BjH/h6OiQJikzHQ6a4BXYqWE5pe8dXnnD04G5W6avomN2kacsVPG3i/6372+zJ1ERWyofmQhtQdvZMdhE6N1UGMyVbGWnxAIfby1mqX0MD8ihbEfD5cRwY+AFQjjb8IpkjLcjXs+zLILWSztBBZpms/bCqAIyiey2krx1NucCsz2onzNVprBsl7yhYEHqqIg2rPa2EQzXcELo7slNgIYUuBdW4Ue/iC3GvlY/l1/KMfnEEuT/Q7w4SpGCry1XEC1wxshZBBzoEGMBDki6+Qk3KlOOa0brHiJ7tYarkhoatJpy4b0xqqO0imQTeLyPJm5wzMjJEyzDY6zb9TW1Rg3LuliXPdCiScSH1NSIm1Ni8oO69DuW3+SpoCXcuQF5NgUbenKmwNU3UBaQ2eDqfUIBy6jnLpMjVytyAcYCOBSP5qYcYmJ2j5DErp3CO35QVxpwCADlx+2NBE5FYbQuDIxrSd8UGwumD+fWUqevcwMpfElQ0xM74Ys24jNam4YXSQZ2j9YLWW9DAOhaZ2ARluR2UpsPQ0f2QU504Op21bSJeCm8WmEZ39E6vmWpYI7rr2Y7p9fQhpLWycTZIQSZXCct3IpZExPZsrM1GkaQQDieZ9zi26RFReF0aXOiVCEaSEaPDCoFBw/SiY1I3OLZF/vUC5QQnmW7KJJvbMukJr5EcG3eJ4cZUxEAatf12QuoLeIs7gd21NGig/g++2pxuRRx2EcOvXLyI5zhRgiD02ktKf1+33BufgaShPErQIG7App/wjSzEcg0WmcR8EhMuRWRKj0nnWRn2MW8cPm63SbVeKecV0R4h0QOPbgtdBGGlJnGY7nwkMSRnhVPl3tF1eGW5x6ARvYo5RSMcKNlH8vHfFOuV0FjxSDzeBuN6YtdNOmTmfZYGr9R90mqQfn4nhhRmnwlaVXEHS6Sxv/GcagaQuRHyo7Zp+MMTql+cyP0bXEaX6Tf56KLSmZ6IJ+n98Bv+TxRh8HBOFYtDbJ6ruqM4gq9Eha7NN4c4o7VrzPB6dtKsZNUw413/R74r3w22vaiLhvt5btQUsfTofkLHlW63Z1YXU7anKGifb6sEbu/4c1ArPqJNG655Sqzrs18DMMbcMXxwxfR3AkKzqH44o3Bi372BDq5cz5slu/JCBxe82mpPuI3Fww0OWu6hgSxBsTENtr2NccbyECgINJBJUFq5OpH7xBg/sBvz27N2SrUP9vDc2wcSPV0PkNUkcMx8R7fr985NZ1t42XQNUUN8e4JddReYx+OQvRnxY33rsKo0t2fvtUsrUkpenTvE2qLwjIC6i1ps6C9UoB/YQdrG93PhQCn4kQ1s2nCmdWdtxB8CmYjPvDD5A/2K0FUp/ZBMdhMpOMGVYXUFmIobgPvxj3Xi6EIiROXXBamQjEY6mm8+lYLtp/Wsfp8UMGF0BHpZKm9t/a+eMVMhdAtqMXBGuuNJS3J6PN1lldYQvXBWsnvm+aOzltY/4tFjzVIRZK9vPaVTmd1mWTIGixT2XxxS2xcU+fJjROm15iUQEEnuYr2ZmiM5Vw8yTgBGNel+QOZlaYx/8wkksKH9Sszc0zkU47Aw887yWJGTFI410IOZj7Z6pKLuiSsrOQ13JTF8ArUtVIhdn6/RRFcfLtaGDsAcaFrumuhuOmbPDYt5Hl4PP5mCeh3ZS1eDlAMLmSggseB1PvMp5nfL1Se51gdbNjA20mCYJx1djNXCYY+ZIJSZ7+35y/ZCYZ2ypq5h4nO5eA8Ht/C6Y+fxz0EWAsg4rWVpFDv/M14Le0ozoqVQrABtMzR7oHIuOHQqRtDDHMFsiNb3oGurstFm0JGZ5U1IiccXC9xJo8K+MV3SMO2zfS3EOBU7ZC+H+k13U5vTzohhp7CR7ctgcUEEAT0dYgQH6D+C113Z7LvRYeMkI5Z3fM6SfxipY4g0geB89pIUrTmxB+nqHyNZHU0gZS+2xIAErmVEOF2L5elRv7kum+51q1omXXDZ9kFoIwNfubPSsoZsC7KAhXbj4g+sTeF4d4QHuqcFwyKh3hjvzLMAX+DdyvTCeNR7/41EHR/2F4bx8hSi+pcOPvnAfJ2t501WoaYYYK/XwmQIEC1/G+udbu2mxTuZIBWNuYiXY/V8ffnYeynK0CJDQ0ASy6PaW5oyFSwf+7YZQaLFEbcB5G+0xqqvL//Km4twuxptYl1hl/pICXDPwJnkKqXyXndz64FpJCDHMePLhsuIV1TD4PxDIQtsnuBOYM/J8gG2bpYWEdoFdouDwktGTgnMspRxUG50ycU8lSSY/N1EL26QGuyxi3HqA6RDSbcHpuIH8QDY28C67DltGLJvBzxHWZs9EE5oyJZG0FfYj3BozcEkHY2xt6bLhUCZ/HAO4OKNCrsUcL3R4l84CTjjwqOIjgweE1DzZAZkHjllaE/SusMk6B/NGKLaeWF+90jslMwm1woyHexIs4IDcA1K/dsSacNHRsaiqzouq9ULjZkm5CffC+CMhObDH9Y1fFOlMWD/4+gWIN2jZjRYsMvFVvl8Fm+ToPCxmKLPpS9/GautC/g6q1VMGQ4S/X3I6tc18gtSeHUZH6gyd134B+jFSsojO+ym/JaVtVPzJrdfw4WlwgNQg7oRLsuo3C7Mgv7HpdTsuEOA5c2CEdLQUXRXX/2uRu8eRokJGRCDfF96Pxzv6+iuZ0Oyqa4U3mMLvkF2YerbD/4ujJSOikV1z2tAlxBueIzrQBb157nq0NOIAc/FiJME6Ra+GOoqjFEt1gANfvI2Jg5z6oJBrIYh+MUx1oew9/nVl6Xd43Ix6uqYJ/LC5OFf4VmT2Al7eFkYQcj9TwpWbR9EYdOe1KLT8HzqO75wA7oTD07StUIpw3cw2d0Bnijijjeo146hIGZx1F/4fg81nT8/cy9v2OKyBQuUPPRef16pIz1hNJSidV798txv7Q2bWfOikLRdSNokDmhy93VzzCrQ90fSQ15SQ/4QvoQhbtOmlr45uaySCbrD23A8vm4muQ6Q22Gws2g2oWiSrioZ/y78aWcmFLd6scymy4Rc/4kpIO63czk+umkbc65+VB/UQqnnWJjNMeFgNu27eGR9ZctGG8/1MtkMzaxE2sy6f5Co+22trUGaWxT+IP/hLnfnmIk9QutuijZ99nO+lQUPIJ5uKAQinAZkxqk+qMXHEK8ClPvboKE0mGvwVaRxOwZ8W8KFizI+gxAbVEjnSWdWilc1f5jMLTnIaOw/DcKYj48L4ASJ5Mg+ruCBf4Gmr2rIZfjbc9iEHvXVtWysCs9GzuWaPuKQasb7d27U74/LTvP7cG1ZuKQ7nlh5/iKgrl80k4jlAr3l8rCB3VBwPjZwhdzqinujo4JoIo2O30bJJfETo1+njOuynPivhZlJ8UyDaKKvSsYTYmvDDbVpDVSl5V9jY0TV6V+SRGdeo/SmJ6eLEoOWOtpr68weIiGUv4laT3Zj4OGsp/mav4EM+JJLAj5qfkvh6ryE9qO3bDZdUI/CWUw+ULJLPr7uVban4MUGdHBgh6oMKWr6NkFYkzMsRsSsr+7xV29XbsF21vb8bgnbiHBWZfMgs4xOYkNPdEjDBgVwmFrqa6sOq2qW4HyvclRQPBJUaxgsjFxC0l/m8lAfhQ/UfiiI3tVWduSaaBbwj
Variant 2
DifficultyLevel
720
Question
Han is 21 the age of Darth.
Luke is 31 the age of Darth.
Han is 6 years older than Luke.
How old is Darth in years?
Worked Solution
|
|
H |
= 21D ... (1) |
L |
= 31D ... (2) |
Since Han is 6 years older than Luke:
|
|
H − L |
= 6 |
21D − 31D |
= 6 |
D(63 − 62) |
= 6 |
D×61 |
= 6 |
D |
= 36 |
∴ Darth is 36 years old
Question Type
Answer Box
Variables
Variable name | Variable value |
question | Han is $\dfrac{1}{2}$ the age of Darth.
Luke is $\dfrac{1}{3}$ the age of Darth.
Han is 6 years older than Luke.
How old is Darth in years? |
workedSolution |
| | |
| ------------- | ---------- |
| $H$ | \= $\dfrac{1}{2} D \ ... \ (1)$ |
| $L$ | \= $\dfrac{1}{3} D \ ... \ (2)$ |
Since Han is 6 years older than Luke:
| | |
| ------------: | ---------- |
| $H \ - \ L$ | \= 6 |
| $\dfrac{1}{2} D \ - \ \dfrac{1}{3} D$ | \= 6 |
| $D \bigg( \dfrac{3}{6} \ - \ \dfrac{2}{6} \bigg)$ | \= 6 |
| $D \times \dfrac{1}{6}$ | \= 6 |
| $D$ | \= {{{correctAnswer0}}} |
$\therefore$ Darth is {{{correctAnswer0}}} years old |
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 36 | |
U2FsdGVkX18ilMowsBZqCiNiEOd7G/ZXEPGaD9xz3k0ZsZgsw2PUe1fyssirix7XEk/QlY45BgkDDaZQHkX1uL3j+AAm4x5ix2l0TozJuh/TINUPvdwH+LocheyQjnacgQPCK5lHns6rq5Fy2/nEEi07LNN0hj9V/6UktrOsSCbnscjIq3rjjnBQCAcOjinWVIpK9fzPZNmxrymR4vbOSqUcPkztpDiHAZM8i08pVuUlU98tRNOaObcC7mG7q7Op3tlz25F0JETF7fTVKLadp2oQHG96lPPGqdAF6w2PDtUMsA3pkZJeRzKxFO3kNKF+5kSYOi4PKiF+pU+6ul3P3jvtnkiugB/txN9JdXH+vEcyoiaUafk9liEucEiI1q/IR7RVfsvQ7fBdwpmBehMfoXrvV3nOgxazKxhXoZ+TWbwCxve2L82tEQ7u9XbArs75C0wN5qx0Upc7jIEVH2ix6aCJY8JpGpNxVBQbSQs2ruRnjrDlPJ+ej3V8RIDTdXwIyz9ylI8AlpXB7x0j6cpJKEufGFSveT1ZLx9dk7km2De6fSGmNzJcwgh5lUfvlZoEhaC1mHVribxvtPU8WEt5eCXRPz4qs0MgGV0WdDaJrjJ1DJ145MIjTUCyxu+gQ+mN51TqGXqI2XeZEF9iW2MWL0Wi7h6KMy+ucUh1+SwWhQffeNBkZkNKgV6IJyH8sD1+cXM7cEBFnZzf2qn6JWMBb08HIhiSFRCk3QywHMw9+3l+f+i7HzP5Apx9iqAR624MKmWGNdgXkxr6BBa0mNCXpsiCEzr3kTbipSHzMeRlXS6J5jH9X1r1BR2ci0QtxOOrXgS9mUPKxe3B1zNWiGP2ZTyAGN8wDZiFWe17UUnHw4huXIiz1CKz6SG8uiMwT69ayR5H2jsS0o8YQD2jSQrbhnMk4F5LKtXCLnKjbt6+9I3D8GNhpgY9HsYlHeLvovkMjys42/jJPOZqZLQXH5VVVesi47ajp3VJ84hVgX5/d++ntARKYMxx+gkxAvstjP0V8pvhYNINAzC6VdrD7MlkJlOmiKLN5ts1JgkJNKajeHC6lpROcbPhg5prtUNVV994yby1UsYUOdYkXDBWSAC+igSngPhrIZp0rAqh+xJ0xVHCbkKL4WXuWgBwp5p7I4AExW/DcA9cuUs4yJhY2gI9jYXlCc5e33SAj9Uo8a59zDdeuSCxrEtaXonkw+ETp09GMTCFw8oyfLDEGt3PK/NZ9BZ4gd0j7+hzZChI6IRtqaBV/wij1ysjX/Hf923m2zfDlcwJF62Qg5Yw9HxM4QN5LFDCULNCuCBMW+qshPGgXb4FFrXAEsFozJJGuxRyofjdXJ9vYkXkHXzFAtGxCu/O8n/es3sAu4dO+5zfBOjLF+KZmdRt4vmBEhgx/iVFhLFYnYu3deTI2fA20GRpvyEBj65R+jbNTHq9MT1Ueft+l2mqWL5U5vuo4iMjx4Apr0TRWBJY3S2GMYioKKhKeuGsBXQpidsDMGW+YUS74unqtrHGTeS7BaKGIrdoOLmMMLdKC4eZdo0uUVqUXRIqs7DAn9DbmOZoi1in8YXfjrsmkjE5d+68ritbH2siif0HR8I906SB1g5clLR9KKiok6P0AyKIUWjKkSNLNZ4L5N/CsNDaUYSxV9YWA8pMlauuwzhrz3qOhlfhgHx2Kfa/h0H0saebhoYobBiRudREuto3u73LPXxjY3no2yWMe71oSG+bbqSy8JeuNby24OIcZqT2LPAdpBcHPkE44Tkdza/RFQZRhxfHi58e8mMMdjRbpaXZ9+iNYL4oZu6NRGHhdlyNTp029a6CnKWFiyUhZAwqJFwBIg/ikOmUDt+EvAC10oTaksYE5ytxuP6QamB+mJDbzkRW1GTbwAqu+sxLWJerIbi0hBQlJtJi/JekdKO0ZkeE3yQCd/0DXMWdhhUrZw9/vnAqNugHcPNe8RCiKSUadJj0V7HC5f1nfJy/7+/z+umKQF/PG4sNsAKo4aBq4SCFxCffBeKnbtjLI6qMaG26pGIItwumDs93lg1/KYmnpwug0Q96tFQ9qxlhOmQp9jEjcS/z7VIE6uLl1L7ucllh83HuvfZgghxU56azR3WEUcU7GiUJS3ccLp8iVRvvY79INMyi8LzU1cca1p3x+Mci+e+h3ncZVasXK0wUOHwq1cdM+5CzptFk2PydQOKlPjH14y/6i1OnttHNTczIGCTWAE1kaO1OCVBVKXZhkSHCnhK+gkMikZrS9rUL9a1oOWmMw5Od6N69qGJExrcmN2jSOx18lp0OVUUom3lr9uGpOmrfODJk+URwf0eb+Mw38fWuWebj0iH79KIParRmkk5sNtCl44zC+2LyHPjSaF2LZWp+LdlNt/dOFxjWEXc2vINv507QnTf16k58+Nek4FVGaB3ydCZVEOUq+vap5hHwICkHbwbHt8zrxicKCkkvXqKLR4uKwsIyVXZ40AWWXjCikDrOdQQdtZ7brdD0lXDi7D5eYKW9yT+hYeyIhnYGZ+0YYxoNAJLBKAzvUM30KT70qfv7zaKLS9WgU2KdlWxyBXY2PE792c+CVXoluwroLSAW/AslwGfyDdJo392RQrZtFeu2pfrfYaKYLi46C2O8WOqtrTfHsVg9UPmV+PWPqhnFT1PpBVdDRZYtdJhFPH+PsfIKGQjAoRBSoDDcVbQDhoHwsix3SWbgvZ1Ge3hNXcwcdyFXdP7uMaS2JKwJzdIv1mpGJLJdihuqx4sg9eW1x3W7hTrjq4tvtSIC28E4KCBtyJKb5eBbIUKIiPB0gRam+AXcT6J/S/sV6Mvbw+Sr+GGC5W8f3ywf0FsXt38MeJylhnXq14MlP9w4TusQe8JIJD5GrdncTd5OQkOCbbTYHahtcBD1rllquYAL1xB2qmgcaj0LR1x8EYAQJPZ6B6MKJozweQbU798EyrXioI+LCtmKJfaMa8n+mhBH3go2jkBs200tHLb/y/6r50lFKGvfBlY6XHr3m2tP9QYLSW5w5f7VNtFK0n8D6YHrh6EisMZdEYBpxAwuc6LH+6vc1OQtj+QSrNFXB/LttHqSGVFzR3APyZf7Wfbj2Lu4B32jDrM4q1XwEN/ik0QxBcm+zCIxILOafDYpb06NqwlIVJ44E6RMn2G6/w8x843E2D7axS5I2myKwrO+soV9CRlDwRJL5jm7vTMvrtI5NgbCp6G//d2HN2vLEYfOFUlA+2UqKjDezF39T8FDr9ns8ZUtAvsCvQMvSPnqvPqA/oXgIVHnVkzgS1x/NOKvRRp/sEjl5qDIzqUXRGTplJe+BnXyuRT0U9ipovC9fyy/qVFJjs4cFVBJi0f//IbcDN0s82yT9X6x3C6qUNZFSaHnnnY4yPVYq03xBgLXva6oKPMVx+eNQ21IE/s+flnlw32xQqpkjFpbT0QMAO8DZgkGWffhloz8HPVLQBPtFs0Bz/kDNgNnRSXxailpugXwq9ezvkCP8LgCA1gnPLHau7/G4CLSMr9GQC32VbipW0G6gsd18XqsggwavfY/qqdiLsUtay38mCujCmk1PgJCTwUMUg2CjKRTzdlb4esVxcGBe3UB6/J+IXT47YU1fjOKZ7zoge+wRox55022kcqQwLFp3sldYdFvpSpLn9h7Eo/6d1npsqY279G46AdpGlRCiMkq0ymA2/LzH5Kbx1tf2N76PeRmPlFK4Xt5VGlKpHB457gV2yK5ItdPpcgEN4eehXf+u9XgLKQgX3UhcGv4xdQ/vo/sz03jUkAOujJnSJnk9vGS1p9oB9YILPTBWRXHJkM5BPzJLV1dN2D/oRvymO6adwmHqlsLPYIzB1jd7QAAFmcQQGrbVXvsCoSQxld8mQZKBzeTAvqSUdkNopv0fPUqhfJDh00mbuhFPqCMl+rnfXeF2YybwEH+2MhmXLbn6w7PoOBZUUxUVCmimp95fpYF4Y9jehFXzc6Mu91vraIAW+kX1yvk3A6KU0fOm2clJjC1IlzhW0fWmzjunA7Ir5Gzs3WhIIYt48eC5JjAef1bp18WJ43KaSPg6tkQIyxBBPpdh7Y7mcA3GVOcrlhy4Kohf6UEcoeXDWJjIRz/nEQh4+hQTlAR24XkPL7FiiEmKBs91sGVXjzVNNHtWwg5vXY4eHrXUW3ZyZV/RvwhWHIbACEQ2ZzHg1X9UF+8CHBjjoQGw0H7f7blgjevnVoyEA2semvfrvNJlXqPCOGG8oSJ+OU85lk2LU1SA3N7uNGJEJ61A2AT7ky95BOn+wo7e/AM6bjw/oSFrXoj4mgK6PTFZVQ1l979gERzkqqNPfLAdhkteKQVd+omU5ES2F0A73Cpgd9mNOCgP9kjTpsbatlcahxt8FF9ktqpX0SDjEL5+Iu52Q0aa1viRz67SmqDq8OClsUjwYLabNtSCUXNRiQwIEAWsdC1Q+XoYfSl2J7FdnQhbvoMAeCkN2ul/7evRl1oNC2O+bLupnwLEdVR90BJhK5FIek76NqmWIX9RuzwHELQNvbM+eryIPaEpZEXdlRBMmPnSN+qVUcDzOFW12rOXihZ/1XWFyoDXFNB/rdNhQKH3d5mvkYaM8AFSwD6k4dsmweNgDf3cPcgLzVbV0NtBJWojjexO0AlAQwLDuzcxT/yrYVwBgjoGK4juzPN1yqLWffVN2tZWwf25PqSBBbaeoEBwauB9BmC5fdCGOibmv5DOc5pbxgZzUE5BWwxBhMwVLZIWZhXzbIntvoH1mjME1uLXIlt9KnWPE0tVjf6kwsLXY/WEKLrtgBHAq60oGVjxCUJ/VRs4ykLgWth0Wi/WqoEbHS4CA+cJW0PGz8SjKXo34Jf5NPYOon+12sxdF2RhNz83sTgFkKz+42xChrHAg9vq04eqNqAE/bRQ9yA2RfA84zFXQqhHWFmSpvkMlK2DsurrEqNSNAUDGu6mzaOQQGMSU+l+GNkBdbPJ0YGTpXe/mVoUQA8B1x+0RtHS1cs+Txw4Qd+2PXwR7d34ssEEVP9j0UgXH61X3OnRfcet3779C147xFBw3XMpDv5B6guHKCI/rN1yA2p+IYFmDttMpj1ezp/p6H7fMfrG2J5uw+fUqnwU24LD/uvNHgcWXR4d+B9G7HYGApOmA4lXlCH8xsEpB/4Zf28IsQuUOoy1VOaRnjaUOoVUflU5MdgEg70hsonJjMQqkEof0N2YMScz1Huog762nCNH1KVY3mgNhSvY46gy9B38grNlNckpsnzAhTqKl8i+RjCKjje6Du8Ao6vLYbJYO/pmCYyw6w0DPzrx4daNzzIbizjJTJpeHIqk42Y9mt3ahSWLVSKKOGWJU7WaA92aRmefT7D2ub7lTJN+HnI2qQblnfbBnTCMneZVKju6TM9zz1YNIlyjM2M/xPTefefHX9666b/b10R6E+qxMjyAeZcoBc8N5wNd1mdVr6WpuydGoFP384sF0siKjSOPkxwg4hzH0IgB5bUJzpuK7aoIiSi2470sEHU58gWil9fNIlesQ9RMhMGvvgD4c814VaQHuW8kCdd4HYmKSf8QjxYQow+YaE8bF+OLQuJL/Jbn2XZOjIP0aoLSNzLb7xOKLL8LLUJQZfYEAI1BtL55xfbIMkm2+qPfEzf7g1XawKOXzCM69AZ7eJQ/kcouysbSpJ9jDD/vwdEYf44XwRzRyMvgww/YMg84CFS3TrR3hp+VjrkFKKcYGakce/nQgpRAs3J2anHVBmpnQ71xDR+b/zT5OrcGu/WdHtZjvKv2YFDNJu+tMxe/b/8VrExfkyt47DBgvXv4rBn7V+583Gpgh1gGmIbE0utUbYrKXSS+3LkURxbPw41wc6s2d1IFWiLm0jpQA909z46IRVal1CqEgDpucRDXCk5Ozyr8BoWeiHZiCNUXXYGe3zs+JbpKyUgbYqFfNEP1xxtOqx5JEJyl/HHpwGs0gJkJqhvmFHZy5H8SzWDEAgr9creaqVcbf1ji0ByyhNsXtnzlekTpg/6mvrW/L7pP2q917WWJjdwsR/5xeOjI1RWIYeHV8K2zjY9C/AQzjEypYMUnB6Awv02PkyeBMSu82PS3iIBoL/XEJwFk1GNM4voWSZSeMxaGZRWSp4QHDJjg+a/K7zQqj0el5kr4w4WLIjKAauud2yQpVASnTQ7f0FYMkXrbs93m9WAH4u9dQ4Axg9DK8BQ7OK45upPOOmrOJfKNP4jKnWbrn9UZhVOzm7E9er4AOP8OH+wkuM5mARr6idMe32iwwbmhmbG1LfASLSrYjuARqGWRoYASZqWqr0P1pM9tvHTWuGO9sOC2LgpM1pGBl2up+ob2unt2768WEQa7+ZRRlzjrKdKWHH7oMgbJc+W1RCXRuPOB8xTAc6TCqv0q9wijl8E9nIHp5qREpryxhh5wWCRsACWt1Rxvf6acTgeK9vxzbJLkY4CGrT0CsgJVAJoKS5CbrASB7V6w5DBtcWweYIfYSDXZL8SdRQoomKjJLizjH4dcq+VQjl+7RjBSJow1/6i+KFppdK/4w4Jhi4TPj16Lqvd3rL/wsE5mbBu/nFf7iBWGwnnAU7j7CNa5kmdzyWN2jiVv0faD7EwNnjTW7nHsAh8S87ChuJ7FD4oUyqPDveNPJ54PzC6nAToTzdR6rw5EVDWy3tbh5g5dV5ETmFfEImjEpsEBBTiCdveGjM8pNdPs1vAKnFYF0jN7qbPLVH2eHH5n1dT9cl5UcbP9DGufRHw2y+Cmw47JkaK1AzuD3gV/hYrT4ZCx51PTNabzifCghewCu3IVW0v682Ij1nFdEVNplKfvFHXHy58eIFrlgz9JKHZgk0BNXaJqROQdqCMchepTI+IWrR4412qnjannjAW292oD4r1joRg7xDbAyHB7d755djZeHR+aemedZYn+iiwvdH6AFq07u1ygceXk4smLMEHcianxqcBYlXmjrxCp/zYEgrjgZSlHxZPxuZucwwl85Aoq/2zCxdGYLFHfumES332KcgzP4QtoibHv61VzT3zHwoCxaLnTugWkinIt1vU15mIJ2X9l5XtmTs7C+kuWK1YOziYPspspK6LPxsjwrI8Mp4Q+sjtZGd5gqG2zhM1TSfivaOC5GWiHVLcs7bT0LfgmbVixgtaHd4vnWqk2bLoZFLgmGiPmP9qBzDOP7bun2qGACpBgbejVaH2WJhj0rin56Cj10BljGBVYfEpuIgaAsmQtpMqT4OwTXuvqGm6IkttcGffX5VE5zSDD/AFdgoMepfhjEKSCWdA+5y/jZB0I8a7LXU1J2+y8iHonD8863sxNgvOmaqRJ1WaU8UBvEJAaXxTHMNGb+1su3jczNP90UUONXAP8W/0c0XOCc75lGGjLJFbupvvQZ96MpKy3r9m+9rPHR2VEZeFKHXFOsWE8z2vXKDRZFsFtY+n+N89mqnnbCKksw3ScnX0PsV2bK5ze5Z3z2NHZwLApN4MiJDRZYjG2WLWHTsl7rsJsfbIWXSTuT8PsXfICa/YxMahBIbcrdD5NTbm016sTXd1zw1fx5yy8QdWJ+doBQPg/Fbilpm+VbvDdqupNf0d+vJuOoC804GsUxfT8BLOEOPUxr40SHF4/6OWVacCv8E5rmFHSp6s2TsIQmMmisATMqpHKXu6nkxVdTlscgQ2V4YPwoEIg+ZygEv/F60yIVOkCpR9Dwx+v5HXsZf0xHHteEJ+4rA5aJBqaFEuIL8eWS116Jw0Pd3u0qqW4VHDWFC97RojCUAdVjHx0CVgvTW32j5bSFDoaT+Bh5Tc6NlXIUT0cTbaft5mKu9cZk4ytBuoJRJLBiCg5GNx6jpAwFfzf4EDVKq2VwZiIzotYu+wYd3UJVwC2bHBMFAJ88OqCQqUASFSfkQo8lw71U44Bt0QSYZfArFOTlZqaPju1e7YJq1/UtCVhNrLcAuuAsFlQXjDTeD1FHeaaYFBmcrjH09QGUo11blRh4aKHcO91dg+39hYIAHr5i6Jgy1aCqcwL+hKVNPmo/6HLK0PeIY6VBwOAOS9xagoTo7M9bfT5AyEbgTy5TK7ChO79rQgc91NS/KpxeFPYWCkDiKRCDdZNpLhc8ba4MnqiwUbI39jfetb5sWYpTlBVEQimFKZcyG01rEei4eBgS9gAV+bmE3ARlajAkOiErEKAkEU0xcg12gkO4y4aLEz4PY2QK6ZXCRrPTbINEWJgaMNFL/ny3p5CVN+fn1oTxlVeqDOZcz0S1k21k6kG9lHQJolOYHKfZAmn0YCEq9XG2LIKYBQ2wGC68vaGmoU3z0Kuofm7XlAXa5mlIC/KpGHbD6ontTooeZgvnrffhyIQ6GqLv5Os6yFBTe6guq6KrQLFPtO/XE1ucmBaQwVl0ud0iXCWUc0/uYiieIZHRNNg/HMAIF0ZZIPrOxEacNtBhbL7+hIBmv4WH2pUrhJPR7H36FXG/oG04WP5hCq1nR/dADqZWbK5MOCRd+ZWyNM46k8S1BVmJhxxkJeRb8ylgMrHuvQ+ctzpMjN0AqFslAGoJbft8XybPyIQedGKgvXeyIhriSF4cujkRX47UixT/V81i+hFaVm/I+TCHms39fZUVdpvvToO3rW5dVA0rVVM6ZFzRo8ftYY0yyEChE2EoAUwPBbtqu1LpoL98yjtGLRUmEPjE1b90xTDP0hbVhwot9HYRguCwuL8xL4mMD+Wh2DpaT5kkzyiJ/F7anXnc7hvnK7arecKagiJ4CJE/YGdByvj8gNPqOtaWdu2QhzN0pI8pI+Ql97oFWu3tRPNlYDlS8vKcTUDf7E7tYEmRJXjYK5XbaLRvO/U/J5+oirh3eJjrbD4nVjthDIPWFxY+Ut/GGh8BigUQhzjSToMLqVhsAmKgvh9bm2fvYHdFkTKapXtUk70Z5CVDOloHzWssqU6dHosG2WyvWmEa6+MXuogkXjrOfyGAuVH/PNgSM0vhllUSdleu8R6tKv2va5W1acv//GsFO4ewOQF2t8euUg/sTX/W1XxMfEnPNqTKq1laz4XwwelzjSxvO+vr4Ulkll8S9ueWXabbCGmQEPpAt0wsesUOut8OHMJb68+Qj4GX2cEg4sB0iAQktReWcTY+4gchXachKgre/9XXT4LJi3IuDHzNJLtQRarQpfYtDWTwYrhaNDRF42l20lxJ/xgSfdYTfmQENEWouOjUod6Wo4mLe3Qg86sQX9xrvE1ciMwmZwCBUqT3rxG7YdxRvLud3ui1QAtUKshgVzLlRZnntNdPUmYIM9phFZVcjsQ2jKYgWmk4na0hZsFVNEH464ovKqGgn+C+cWQYsTW+rEDd+4RSPhFI5IQcp9BivRZq+XLxms7SvwoDAgtGwhCwCAUIpY+c38EE5vpXcTM5tm4HDBS0IJemeA2udFaUrddNjsUHbKgFc1kXxag48DzMJZC+BseIT+Aer+z874VhgUr8EfGsZwwFeX/9GnzpNKuynF0/vcQUP5C1+aGHdeMEUIjkj6j1w/0yRtFAgCEQzumVsnVVZq3vYCSUK/pc9NvmdoIEJ2VbiIS15XnRNT7aEU+ZI0cIa77ZUiGGPZm0ICfd2RwT/5ZHc4lu6h5PBkZJcnawLWd79XTlDl0oiOjDdLvlorK1L2iYGi4k+p+lHHTJtbApqGGxEiA6lU0q3mm9W39IFTuQbd3ovIhrXxPwVq4qtglL1m+Mn2heqKl2H8FGnEr85yDbBD5OzYUr25u2qGizxneSIR8iJ7leoD0Oaf2ofMKalGokMEGS8CnodZxDT7ph0MA+/WCHSbkXUny4jZP4zyg88Zt2VWBA3FvlHRkBZpbtDEvGuZ0DsyzWyF4lZd+T9Ndc7FmTmL8XVs4bMX+5feynvJINvkT48RwHBaIOrxYneyqh5VOzsWOdowVPJZfyIpAaEhtnEtje62Bkmkwmp33H7cNpV6XXGj4zNb9wkIVlpouET6BtH2P2AYXgMxPLATcBIdF6xFgR9TjbjW6S5aRxS6Kzmdut5PF3KKEaoHyoLg6erWCQx9j24KyAai+nsQ80ZDznzDgz3Z2l0gm0eltneOGp3Tg6IFL/wz1bvr5SSKd55c/GnqXDpohgLg3qgcFRoJjuZCoBJix/DSFIHMMIAEEgRoE+Lekf9l+GEp8ZNUS88FT7aexh872psnaUkupz3cFjkOLTmFeu5MFsX7o4CwojAFPMkv25GzU89XKalxJ9DdfV4QT1GmOWksPU9ad3sE0BRPChhMBsS78qE4nwcgDgzDzVWfvprQw42IRPmipAfj/sku0icJjxLJ47aLx1Wgcq+ZoUc4oIWcze9cUBTN8tJWBpWre3GfNCTH3X2ICotIBpwj0jMvxEFsHTcLAVb6SD9mAS6p3Mmyt+vYac6D6T+9qElwB9wE2lIL/MBQqYCsCE9/U7dkzFKYWmXaz1Ll+lHANjugNOpLJMRe+KaJhDWqBrKjct6MnU4v3Qx18d6fyNfledK2qIQecpcsueqpWIdufNMg3r+9CPDWNeTwJyBU1yEwiAQnRXRfARm3IwLjAwjFC4awcvk0bsAWwM21c6wimcFJqKGin2H1T0pvnyDL7gKYEcHh+u/o7Ti95FYe+salEdgtVS0M9JXkaAuP4u9y4zK6RQg+50XTsONEfNT3P14J799brJfESut07ArqYTAC4Fm5WsKkMKJDrzIirce8I7/vZ/CaKzHPE8pbwnY3Ur9jYxEP99OrG6FfF1QnMtS6hSrXAyo4UMWN22Q1U41BLJzx45VovRe7G5hf38T5aTKwkDdZeZWGqMq7In1HKWWEs0zYd/DOUDC3m9thTJQ+Cu9xd3v0RQ+XdDel9INwTTqgl+trzMRDyokci/pLwqxMrkhK1YM0Ts1OR1Yjvh9+fFH3ywsXV2kLiUldRLWFJwsYm6/mGtyxEsk9Giw5NHVYIZ76VLDPf6H7Mj6XtvV9qB7eok4Z2xgvylHczLruW4Pc60buQEuFnJcIXbl6kty7VJkSe43dgSmdr3T8cm07gwIGEiOY7al9Eg5CjPn2DHO7xTvxjNFuh2P68eYOkXukQ2WWDOpzuG8ESRtC11CMYxSA4ocnzRr5VpuK6W7/9SnI6xBG/HBDYjDhU1mXG2L2Baqi3KBNGyNhlnfyINOBH8hvQsq+GT2rJxNnX8Zei+y/pDYlZGpgaI6LuOvKyNEMKnBc+yvQYSysplI00Gh5/ggcIY19CITRxpem2SJSSg64QFAVhPdLIBk8IBEtTrBG+TzMy1jyhLx/l16c+MnZ+GqzqZEQJuCgud2fmb+kGraQuUU6gnSDNatAouXwQjWUJ5G2T599mP9hpU5KcnNoqvnO4S1ChEZuQ+pndMyC4aIXB0n8m9E9hYpkgFzn/bBNhzpRMySzL8Ev20/jPq29VZrIrYl4uz5yUEmaOQFlyk4tBXg27zM1eisGcDmN692/kDB1qh0y7PRV3rF2VAYL9UZMSLaoI39Xd31KdFCeA920Kv7zbId67WKZjqkubIzoe6mLKd2YJLLDzKVWody/t0BidaXFK4yGPc5newpBlg67FOMo81e/3+9jAKirNyhYc28XEqu/oH/XTnWgoSy7KoSxRpFrMsEm14l/rW+HW+GYKb1uZmM8zx/6qze1bXNNTQKRDr9xwB0i/Ck5pqcmWwkDTJKAfM5lHE2Nfr97tYObkCLQXDPC6yT8Nh8svVx+dPHxFIEl/cBX7ZoaMaJEFVwI3snJ/qvBFqS7DOhHz9Lqq47L74E8VDVGQC3eEjh3XkDNEOMHz1AQ7GmP6oc5h9/p6UZy7JnbXhbzrpUBrPyHDM7Ius3a6zGaLy6MLpSWL5FhSgKdRgYS03DtdEaqkTZT6DI4bBY7U5XdaqgAHLeZ/L4OphlVIe6mxOGA9Ah6y1++rBp4ClAN+9Putmps2yEJ1un5CdIr9uAF6LAiBHcKQoYe2ufywUfFHTaYUHYQxVDZLBSTpgNoV+76DQ7UqIHEuEH9M2+PiSK4zpPz4smZiHGKGo61c2Kg57KY/o2G3sbvRGHmxrEGUperDtp1fSrJCMLcM+sfQZ6yJ/a3wwW29Z80SrwT93WSLgIfmfF6XUClHk/JIH/Nea4CPNPLqpZpxvPDudYG8ThkfWDZySFRsDn2YlYrHqGUUNYf2S8uXLgSUxdazR4A2dKyZMNBHwPQBgp8zZNUZE3+HPpnbP/oxlM9y2CvPj27ZdsW+cKhTbrx04ofJxMBZzokc6GtZpwWABcKGPQJ1jMy702C5/UN7Qv/gDjionWxL/Kw7xMTJSeU9xbQ6eWlzHZ1PQvri7dSco0L2qLSODvIV0OsWwgJuyfi5dBI2wkOJD4nTv5xS+kFgDn/y/aMBOIrQHgCyRF4mlc9tW+tqUfDEcuZz1irwdxdW6xpcvixZFoa3HQb8rc1AczKDv+1Kx09ELYk9vu6r3fC0FLqqRw2ZtIcld4WbAYsIWo0wj/ZsKZ0D+C1LmHnMx/WisUxLao9kAJc0DuS9ebbCUuF3sup4iaVXPpGwOyIiS1gk8weK/EJT8j0Dfdi36uObI/dO7LTo21/fa7XFeCwzfNGd5ssQnBbcSxQkMYUjKa1yXSpm51/wA8IZk9izxOuV/+KlCX0kInAETGqCfdflOEYiZw+OwgUheTJhT/XyJ/2xRJZS5i3RUJ+Fmls4ElidbTtXCAp9vsabCihkIQ5eMcLbSgbfz558SI2To7KcITa40hz+MzMwk2hLlbEGYZTCH5jxd1ygwY5EozW6lhXkR62B07yMSExiXyR60MO9TwcaA16L4GnxaE1Xm9ODOCowpFgT7RDv/C973a5nCEweeCBrx6qC+A6Zy7xg/GKKQKeJG8h8RzYiPBRm76a+dgWcrPrRwrNdOidEu+qWsMrH+ceijDfX7OorQj5AgarpD81kZ9C6A2EFFigeS8a1efCdfaQHvJr16jveCA4U1T3il8radWrRIdtl1WG0uR4rRibYbhV8WuV3YYPEQZ46v36YxqijMldosXNUmpCnN8EViIG5BwdcH7h6ftV2nbC3T+SccFESjKGtIXKLHIjMKSW9TY6PBMc2stKxTAsuUCCGysXmmx00GN2Zc344uSt21ZKBnFMFKOr+iscO6In3vFsvHn/UtnQoeH2GGNVMylOnL7TxWHcq34sE71xAGMuLmwOYjcKqCJlT0m5rDQFeZlPZKs5ptnhrr70n+WexbOR16dFwP/jtbdl9CWlaIM/dM8xxqTU+6gn6QZ33MqMJCOw7byXMHVXq/s5Ap5A+7bo6T5lQdBPsFMC+6JDAo2EuPYH8ljs8SgtvXqCX+m23iPOwJmB80fdxU/0G57qz9bBDx8kIeBvBjA35559rp1VVkDHRACMQf0kxGpzvq3j9029eiDTcO4AdRgCocv9lQ8kB6qdKobll3OFBw4fxbMU9nLJH6B587Yw575cd+0lmlHkp+Ftt5Rdb1DLTwwRJYSSmdgS8TL99vAQXpLLIQ0ABiJHgerknqPtrsPlHxOjV0Pafva+GSy+xvgsAh9PxpGRp6Wa6LqbCBotVmKSBDz+UzcWWjtbS5rrVdZ9dXWVUGBrLfH2hJvFt7ILk50o6mODnzX2W2MgZl5V2xsmTPhILMgFmagOfb2oyNbnjbGMhTRnisQ7m2Uft7jpp9sRyhvMHAlYOBFYTcohCVrAKUMxZORo8xst3qfAF9q4IOtrWBVE5z+sp/6z1MNs1yiCLL0Jsq7fjDZeh0QYnYd4TMqcYGzPmAEq50/g6PP2HRVqQhNGHcPa9Sgtk/U9GVZLXKszBz+zLtIkF5wL2Q9lfic8xwNsCHvAT5QBW0apz5y6r2vA/XGbx/mDlFfFxq2oJDOIWrJPspzljsf5G5fFs0Fx/60tZtBPnUTbsik6awPRDt2e8wxia55NlYOOU7Phuc6OxR/V1/5bfwPM6nZiXe4Z0LbN/fo55V8s92LVNo3RpuXNQ31qSc38cnETbrZrtAgq3IMNjvhMpoQ+nsJHGoxC8oZDBf+AGXmIgN3Basj1M/RpLoSsmkrZxkGvdMON9aWGkorFDZytblX+7FsiqvM2+VBe1wYzB/L9D8hV/N++cYcfDJdagll9G5KLVwEIxhJuRnkZmA2GyA6CnpEszh/Zsqn9m+GVq9eKFu83Rpwh3qMwUxHgxFYyDSlc778BcdJaQQNP2ZxiCGkLjQlgCJw2q2jI5QM/VKqkXfMx1Vs8JPjNGle96gpF7Z5gzTuvV77Ky/J7uH2Qp8PtcUbMVctxlUvfketCeB4aqGLhnlQrbg32mzcSn+aQGVbtQKv32nSoscsrs2DchJhgbfQMdB3YBQeGwfPQctLwj+1IqV8MDzlFuUx8gVzPFre5NrSmLSePzK1bTBvOiJjwU9nmzuRjxs5QF5EjLMQXnayKs/Cjki5TvSSEp5N50yAdwPMPikBj5LSCrZDqDTn0F8X92orKrh2w4yc3tZyF63JqlfVtVmDYErcmcG0c9APdXk9R5sPo48uMQfpgLZzJFjQ7N5V4vofHJsdIUv83zCXydubSXmgkpPeHy9gndaJPJ7INUTxeOVub4iKZjAUoOrHKb6mKyZ7HWVBqrcToJOE5Ob3xeg6mvKEO7perxvA/DfXrO6GF2sZBGEpvB8cHbAfzo30V2PHT7qWq/NRC05ElLNd2tq2FeESq2F26IvLREn9eLcmKtWUjoqH1ZmDCVq6iadAy8wnv5yX66sQXQ5uH0ZiuvkSUKPT5YQ9GL0uPo4+cY1Bi8u/eg+g3HKmJ2poa0Yo+az0IKywuTMjuci1Y5DcWgz9b4yzmUcWsmX+QibzBgTJ+G47tv97xlSji6KYdxpuaf1fLrLuJvyXc3dxwMAdIOzRBY99RYGFB0Uqr4jkdjgsOd30onXgiqPZfqXA0KvYYc6vxX38b3HFciwSh6IJRq+Ty+M0EJRBDiGGSctQswGECXIDY/okf2fE43guglYmNsXjKq+V+4b9BNMOp5QWsZkxJfFGglQBb4LqKU6akj3UUsvFLL+8Kyu45rqg+Qw5/JaxM3+RJCPD1dBIoIT7aZ5tyBWi9aS0SNIIhNtpBdk6cneQE6Q/0C9S2MRkydDP9a6U4Fx47ugGNs57kvclfr9tUZlDb9owmF+Pdo8XZWqfiAWtJPWu+h2Sy1I7ngGO5FQ2vqb1qQdWBVjP+wSzCLdlBG3bSdxIE7T5UZabGhCAgX8Wedy542k1qazCv55D662UU8O4clhQhgaTSbIvcRxWyWEFHFy7Kws6OdtMA/Y0sXw2XuKhLgR7b5Fswt1gkD+xJ9W9UGZElJjYe9vPNV7PCE9CAYMp2Yu+EwH0SCj61ikk4Gnb4GVi/TltoaUfeFVf7ITfrxochiFZFV9i26/Y/zqQoNht6LEPVJ0f0RFJAGo0nYALQj/C2LIcEvdVh65niqzYWq0mvACSezH3pZ+MfCXzyJiKYry1XFSE4CoQEo88ut9bVWt0wCmBXBWuqcIjP9gUy/U6Yk5TtHhjQwhfLQdhEdUKYFgM2cn4TVuvKYAUHgTJCLJE+f1J99Rbla6VezeAO5SOA+VBKZ5JX/pOBFRJ9YIFGkliaitvRqmofkEDl7jc8lpc2mFXRu83gnRB9Sg9hA+o4vTFqnlQQ29DtP0lKj43FLzk5t206ujQkrE7nFHMDNxW5HK3oFm9LeL+BrKfomOOouLWIvWy60v62ZYmp55rHFj1vwGmgVDhR22zQeyHT69aoAy1xAafU3HpmvFzVn13wEUAP4UTxYXlUqvocV3Eqg8SbYL3UV3BnTPZQ/kpCk5ulQYW2iFBYFUbRNpCdEEaAnRGAIciGZnqBW1iJou8kLMwwrMMBunA7xskriOx7HUGDa73HaYiy1CgXyR4bXPwuYIzwQsPCrvOkbb/L4iiHDWMMdf4rFL6rlqQXe6YntwzzQMWpQ7/tQVdjJKxtt8/F7IIXMr8IJQWR+5Ny3kMrN1ot4IPCNsX+if8b4bkQnZxvD0GEmuEtQ/HESIpZixpe/LljLl2KAmT9TW5ADEASoUD6NpGD4cr4g6JNewnKVgUSJ5khSXxxFsulLBV0h61LayJWrf9vlfVEuMn4EW3lSRxg97NKC8y6JCKtPdpNNF06xfh6UWgqepvXucjegiz3uMId0JWdtlrwf79IHgnijmVhLjXLE27buEbyZ1+pHmgzUIYr0cbbbAtaxOzDHQZgXoU+qELyhSf+UHm+Uqy5mkrsYMtBtOMebpT7d+bRe12vrq5C3KVCgOHp6WopsukUb5LFQgJo9etqER3KxO5QewrPABEMkotwdt+5Kg71oQpK6+lLnjMRabBhyWNGxHLarVHIteRjFYhKDkOj/luHe1SlnpDr5BKreEybaI683cpeol/UeIb80Irl3+zFc9GSwt/ol4/Rx+k8JmheKSrNxzkcF4yyCyt9XF2RIqomdCr0+ofoHuBPoR+uA6/ZqqI0MiFMc/o5DOwculIzYAVRsj3A0+lzdmeDZ0F7q3ekTr4CeERSY6unSSBHHtUtUsQEjkuwE8jsLjv71ciZ1gmmfQUxmM3nC08mq2ojpW/3b1FEgML6592N7lbzenwZdnTj+jK22GxAk8UrFpQkFga27VHk38Mjc4JU7HlqxPnfgZ6uKXH9zQgkhyOAqoX4u8nQiIN6Qmf0e6I052BloXehqHx/hfFRAemwO94aaNOO3y4YOFCNX1/tMWH7U05UTVfr/QPmZQepLjpBm+L2WrBtRMpRICfNwm94Z9YVqdtYYJBb18KHSO8hxAKP5uw2iRHOYgbaqd+6tXBtJI9fzMwOLAPBihh9UzieC1IP50pLnh1H5V3SYRF+dQJdwjAsyVeXiz8ZPNXGRV8MkyamijOhJGMk7LYLskA1xK7DfRfZaL+d38F8SUnthSPlwhyWk482LkABb5+HNK0qlVKcYeuQnmsir3K5NkEbs5V20m4C+t59GU1pWtetbZ6z8qLebfPdbWl82eImO2LgekfB7tcbgpnpx2EbCvYKYpULMIkO0DG7x/itYm8Mx1QH5mMqREoRG+hXx3jKML1BGAMwcCJzWaPVCsVPdESd1jruiLpWOHCrp5VgFxzf8XoxXVFns0RL95K2/YviaAu5cUuQe1dJzGAs5KZ/0W1g7rn6qyZw7VUG9A3iLsHKlSKuS3mUk4ycfdd5Gvf6us1qM0XpKk2QLf8U191d+egMRZQHdYp1DNGguSWkOIL+UiuWtvDOBqnusA1vJqrKSJicWxz8PTVFWwj1ttJYwvlY30yeBIH875bqXy0+Hn/hS4M6Gi6SZhiJfrLoOV/SuVvew8Q/qOddrgvleO3Ensbz0Ab7i1eD8+rXkgN16V/6xoaaNji0ALK6SnBvrswKqzHMW+2Kn/PYXbOFZ5zC/NnbFsdsCFYIiwDmSSqqXMhLDjX38pWD1Si40f1kRqC9GJ0JaZY7lKPRuCZDvTpHroTm7DatWe6wHI7lihURIrWlG5HamorgHchUstsyE9XuK69FQM1DxVineD7TaA+o6XyB+yTtQwtrKdLH6fYgx+Gbyc4nlzFVqdTIzqQiiPfCsb42kWoWlN7q5tgD08DiLP6HEiKA1RZvH/xIrvyU2SBqQAzplUZZM0zc5+xQ4PscyXxHz0hzoBA2ZI8T/T5VpKhBo0OvVh105ujv7xRhXOIAcmrZSy7R81ZHLKHrE/dzA8WWP9tvTlvG4h4aQoy5L5DNUpCItaCfkUVz2iviT3EaWS6EuZ0OC1CBPdBCqYEtW/kuOq85OlmACDYQDzb7SFrxGaonpPT9PrjlaSi4TAtG0asLx+5Zr6k4e8GItxMOuQ20hJRXXHnpDBUcNF7laUJHnZgE5YRZybzcpAKAvNbM+NGcFqjiYAqbyws1cGdzQHV6lxrmLXvZDWIkZ2F98RDFKewI3NFlEnBwagO0a/ffGTwj6VCNSGLcfQu7gQtCyvpZBcn1gfP9/eaNczZ8xWA9fFvCHj+d6Zh6etmWi9tux87eD8eOzZmrqZZj4D5RHs8PzQmg7bdC0sa8DgYUwMwTtx3zVb04+MCPJPzde6xJgV2KHXBMQ0EAyO9PAQXrKVzsWY8E0tm8GNHzjxwMBD55yPxIKbXm0/I3v+6vk3BEhCl9TKvILqYtkAH7BDH5rZ5lsLev05e2ICeuZOAV2hfQ0nGyxgcSC9B7duvflFmuhbRw2m2jRqCYu9kwxwZgw399NpaI0rHplflS+xSfqFuAF659Ypn0ztCF+n0w1myizUNWVzULGzNvFL4yU/SQZo6AnvgGxtR27NtaCo5r5Avjaa10e0Q5Z7KdiWvXqGS2WZdaI4bMxTa+zu0T7emturR0BT0CEkwb6k6idmyXy06KOZv09oC9aXTxLaA9LXWaHTOmG6QdzKYKsPEf7w/cJ9WRnuK8CjFE6VVXUSIh4uAbkIACptRVEmWM24jYTWOxHk/mCY+d5xl8/sIyEL52rmHJxTM2iGsDJ8pE6cahmlLaRuWjZC7Y1K+jE/26NVRYIs08ikmKt9MFr0ltjPQLb9D39Mw6ZA9TyoZ+O/Hk7csW6pEOB++Oyu9B9A/mzjz5Hv5b1E1e2PAzAMsvMEaALJdxxE+3PxZuAWzFK3jfYDduhNh7KpMigbzs4TvDKYCUbP3M/qSf4b372IdwkUVNZ42miCMBl5yZmSOg7VBW7ZkkFWAiFBkygVi4DhcU8gipKcMoqXsD6Gn5hl1nO3G4i3mRLVnxnbqI4E6MmbRnwc5CT4ricOmg19fzH5AL/o0zBzmVfkT7Ylb4OpvWi+Spb9ZmBhm5ISwZyMtPJkJPqQ5mUi6HN8dZATR8i6xydembktDdUZobqksWXDGngE/AppQewcB08axWSrrhf0MxLMBFw9mekX17SUgmXlioLsDKk3uae/7IzlYf49eRPjrKNNY+NQ/v/fXQUG7Rzq5LfjkKmPzm+5i9Hm8dAX2SNuRgu8tVVIoyhaWdabag/OwkFZsfw3sUtYU0wX0cqQwkpCl/V2DK3IHMmaJn40Dv+g5cuXEqf4+Bv8dYao/bAXyKNxSt+uaXSXi7rXg+WOY3gTrmZBFuhG98LN8fRROSzORRtuI5T9KLoWvpkdi4NVK8Tzr35NaTtyHVATXlrrtVu5GGrfZZrmqiLuKUILUomN8aG0MYS0YN1fT5BBApWNxHwEANp8vwPNhLPoECm63nhWw3/K0GPG3px5ADtSYPqejEguipcCfvrdHNBaqYUsa/1AUoTTfE8iI2eL+ob+3YiPSvcAJzqi7px/GQngb7Mu06g7IK3iAjtOawh7Ao/jNTDTo8lbmzjnV4HHnhgjoLmXviRYBpRMFcqqlXkWolxyGh/XuC0LnKMrhh5zvkJeYxPPm/h11LxpIuB1aL5wre3And6K0fD0SFMrmZIBvDmQ1AhaPpkp+1xhOMj/UFfXjL1kz9LBIldj3zSCoLmpOyR8oM8iflg7WPIaqOWKgRfyJ4LAB7T1UZ8/PSRKROOV6Si49+IVZ4x4LUGtiK00pjOn4W1gbOpsGKcJJB+Je0sLFRPJLGrPspCi6A9E4K7+9D92Cw6thgpcA9OcYVyLKO9uqMszBgPtipS09GSFkfobCZCV9VFR5WqBgtSsPw7bpKh9sipals78EjpmEDkm4DCSOb/HOkKWqFtLHSqnhXD9xD8PPdweG/A83BFSTnr4UyLBIRjxW+YxenwUXfklvjHJNmUJDkUUAverQ8PVROPyp9Fdpm/fHxEEtZFDkEUbHantC1mihpT6wIe214UDrvUBaD5xjKOoyt9bd/6t4upsRtJRayLDgGYhRYTfuB9g9Ozvl94kxj4DsylhFm5naWApN1Ci5a0kHrIRoJT86KJkKGL713wVArP7LqEnHZjZtTAFJV+Ze1zgE5AE99uT1Q0zI3Im5DXRL3BAvSBz0WtSOLgMwHE2Tin51QbefxFO7ZobPjfOxtaKavh4mvsMBC8fw/7309VUDwGmz7rfj+iTZ4fXwrAxjxutdhA6JB0j4xucuB4ev9AGWxdWHbgcXtx8qz85IywDfhx6/ERpk5wJJScjizO2+82hU3aUINppP+PvTR/KqOX2It45lEjipn5+TIsA0qf+oavxbA5EZ5aHPIgVYgh4NxAEL2mY779Wj+F2ifHgoVcELDAgHqz8riKd46+6tIkbI61JSpdl9fEh+UzCh6BlxYKW5tQMSpcjHRDotCgaJ8QAHUlHjmbYcqG8oUM8MqR9XV4KuPyaUR1+Yyksp6zWqtYPntK5uSfWcUdvdbZAA9eG3HvjlZ1smj9fcPUs+Mvzq/7g6UHxA+CL/PD0L9xeFQQNesElwWMZmxpSI+1yOlVznQu4j/mLnpg7SICU+E8INv32NqEArDLn2qV/WSabrGQobIv20J8XkARzL/xBxaQLfpM1j6gFeS09S3RHbrJNObl8gebhvpJokvOX88Zh+w3EEIktvhL1yzCzw3SN5VgASnliQzHZSy+O96Exp4hc6R1Qw8pebTx8q7zYvhYFFjgn6cq/G7tNEy8MRbsEKyzPxe1B0mo73IGsjw9Foz8qovOIUEiEUkOAsvNGzMv8I0LGHT0EfKsCR+okcPTAWkRsP3g3Ui1wWVh0MO9b26JK3K+NaruUFwydctU10fdwmeGf9ll+iXaF5rbIyA829ZjA/jF+yoYb9/RiLBw9EFDSKkmqtZSR12v5evyupE8VQxoloQtW6JLHGahc+hKlO9THu2cfPCvRnbNx7uN99cWFQpF7G5L+kXdiBRhDtVdn9DNvKojuOvclKCeLywUSvj3GPDZCPCh141hDeG493Iiv/1UOMjVaPMNb2LKg2JbxMyGf0Vs8ZkdztDjZwwfFzmNc/DagQow+J3HLiP9FglGuU4hiYn+31CfGBHNS6P3KQi5USRSKiPkAN2wconmZHcM35hf+MeguMgo7vtk5P6//uVmjV38CKuh0Sfc3FVs+Vf541q3mor0rxOS6Wj4YxMA5JwAG1NOUgFgZ7nnp53d86NI8vuuxdp5qFXRF13aSgMrjFXdG5ulJVSqIxE382BC40CKeDPRLYxeMpebz5ZGurfuLvs4Ryn4tF8MNJkF420dAFlJwX1gzu6oTUqDuZxtB804PYf7A7HCGY9VURJ6JI5Id75I7BGNjrlVaZMkQkC4dL1lkzkLdO3kyk4T20AHDo6RdQvaZDJYw8xUtuPynlYiRpvJRW4QZ14iKkvdSSgWb5XhXMWsFS4ZKP1XNGjlvTNAltVKzWRnAaiNnlT+Kud7KtLmH+wXcjfb49v3N240g9d05FmXKwD8I7NUoTD7VrbSXIfWQkie7hfBGomC7aqpZ3bm7XTsGn1tcEBgvIbkMMTPaIIJ10aBXKjoZyC2EfVfozVYayHHPdPWT+FlnIeC5ZPM6TKCq1IlLhUm9GeufkepHt1JsxaTpY1H6Qj1Bs/W5Ye7/T5BGtTWZxwo46znUk/Bict73wk5HPFVKWDPda91/zD9ghYglnAieSE+X/J6zhiIP+AbHxNqMr31tRf77Y3jc4jIkMw0jCtV6MbODJuRNosHKVQpf1hhOWTFtaxRh77l1zRcIXtr7iKSawYf4WqKNLKGfHZDMZm0gpco0BSv8hXPhSwoRKn3utD6WZVgXKiZpAFkQfOEJuj/svZyuxsKiypf39a2y1QaqViaj0JsimVeG+YREEXZ/GICGRHcLhtvY5DgOHG4Z6j/XZoEyyzicNusnqDyWjynoiAl6NO68ukCliSQMSShqTORoR1vGFUWNfAQDA+nkFeA0deSgcXcemg4FPh90FQvU9+gYjWcSaJxSfYfXfl3eFsYKhAIsk3dB6WF79YxUwhrid57XFnAoluywkwL1l90u2v4wQ2/88dx/s68FsU5Pow1o3y8dE+pzv8BvKxNmCh51G+xJwUZN5MTa3v5brsFS5iui2NfyLAGG/w261dm4TM9V0Us8ocOxVRE3zTcWU8n0XD+JJCIHEe+/l5RYw26OG/by2T+AJvi9S2eAE2U8M6Q3/tk11bGnox9r1aJM9gcx22klWEKQzsY/4ffujWypPdgTPje5WioPGi5CYvCP9PbA0M7etqX9YIDEi97f554+WazUoUdRva051qadv4xWzugA+OUvsnT25jigwtoSDiTL0RrHxU20PhzmEMt7aa0hHAxise0rHIzONniyCsrfwNVwmiR2oCfNw2N5ajokEfkKfdA75V/jEJcit0MjH1uO231C4nbSgKXRL5SoWM4joDGefF5doY7LlFquNhyofIz2mrJjEA7qEjJCuA6vMWzFWCWc5BjPYktNHME5lgXIFKqzyJBITcZt8vnzqORfviwKFAdgP8gBFdYuhem5yekqZy4FNEPNohQdDWZmKlsZbppVCvKsMayQPDIBv7Qg1AvfWmquWumO02i2Wn3lTwBjULRVPm7H1Qm/svawL7tg2I6Hg/tzNdFwbSZ5sHhsa0ynSJp2mC6x2VJp40K+rDfnaAjIDtfcSFeIfnuxesmMcupva4Felam6ALSLCE37Ca230LnsASP6cuLqyBcvCQJGXNDG5tals62mVUgv3f+SOorQJYf0DXrbsFISss2OxFRRAmb326AjQidKOIx3dzUYvxSNnDVUykqLUsKwP3bLIq0ttUVEu4osBvY5/9QjtAsuBgnC534ce/85AR+l2EivcyJ1QIHdqbn4cwPmcKau19Y4gjBfHHx9Y5LVISTyVSeS+ied/FUyAdWawG4ZWKzmYY5oHfoN2lOn5QAX1LX25qM4SH+BiNja9powYCQGLPXytoz8qhYWD7ihsQs9lmpUDzXAZzOzw54EDqRxA/YEu//SZwQ8ZAiiU1Z2cuECyzZPSap3aXQTzGJZQPpmJzO0V7r2+ysDMBGvTsI9Bq2ki2oqSFjC8bi6IkeUVWde6ZAp90MfkokuaQxaKmQq9uHUtAdebsXpTawKi/zhj7otDsbn/0pzYsaDibwXcqKELLXabB4gW8qr5ApTm1QuIaBoE5ZC80mn41TzrccOyRmQR2LRqYTY3kT6w45prNgmnAX2f1P0X2bXfvwIdVexZI+PPQ7irSAS+brSSH5COkHmKG4ieA4Q8FpFLSofGoa3E714REqVuW2atcUrSClXCEr0ab7LaM4DSV6V4uW4AMka8zz4a9g6Oo96cUBXP5BYJKyIrJCAyNTw9M4wqIlqOFqmt2iYXkEvbRYDoRnXwdbwFMPchNBSsw3+mmJ/p2Uvp+oTW/Qqb/N9PqiQFzMao+I2LVD+5bChpMyPoJ4pbmIhhcmq1puyyFCrgSzx6CKqgdBCZpimlOEjUMhRwJQenhMAZPIEc69AgCaUTHudIGnFsJaFLBRRrqzJiNIy0z5co2u8SOZwFR89DK8HRBnsdLzF1TTwcRb7FBqmF5GHzbTjl/bWAemq1jiFaJKYI8hEyVecpUubVQH4p1KQmzKD1+vjP9Ha+qkldW6qj8P4dIKWLFY/qqmqELj+x8AJLaHzF/kamYHQbkeVm+SvCZ3bTcIy6xTvwgjwYujk9p4r34Q6NCPxs2vw6WhtNaigfuU7IcmTctUcNtrNwMm3I4Xz3sEurIYRkgG6hvzkbIZwgrCzy9LrAc7dEbo6lMXIajwoUfM9KMFm7XsWoItQjDc78fc24pnn/OVL3B496CNtMKjByhT377AjmbcInk9w9ufGcWCQHeqCz2H//jN0dPiitIzaTvx9rdq0tSh1LH8bvJf3XfPahIHt2dl2+ixTT04/KXwOnhQ8SIn/2TPkgBk7bABtr5smy1RneNAisTzjVyWeS2RE3Oit+kzSLIKuZ6n6CAO+rrBnht7jsh58gdACYzkLxdyKYtnIT64j39cyasYwa2lHpEj2KzhmimUV8cb53GW2eFxhJv6/uarmwnoQnCih7wkNJHkzkvFekqz7cNf3ZHcxpKjjHswnYGOKrDOrR5yr8T0MtjW2NCng7N3KyDJ101To4kswPX9kPGTV6sq9D8i0iIFfD924jijv0lUesEN1bQE9aSHzku9bawStWTbRuNSZs+IDEAlS26sseeSo1/m7h6lDXYaFhgLd0yK+tSu0maVSGV2wu9r9q4KV2fiJqhtK43o+yv1x5rSZaCP9gA0aBqoj4CPiPjx5ik4ozj3DJzSVx7Mwzn/tAva3tkD5APRwMdCsJ8fl0t9eov3KqldZF3U/3Bjd+5AKUc14roOnBysZpF1ELDelE8slWYSsK2qnns6BgaRGSbLyzPvTAGilnOamy3mAPHC1DV6FYtScPqONBhrJy/7sztsmTr8h6SJgnoE+8w8RADAmHAW/C4BvjRT6vTTLeQazppJPFwr24rz4n+z2HzI8EBFHxLcWW8j3rl9QW+FHWr4S4r/UxLg5T305r16yGu5Pqg95bDKTjhjv3Y+yzUXspFm3lHoY9yub8Sr3urCio71vK/3y7SDaKkKrpnC+igyxTFwgeum7oa6zaxrIPkb1PUVQ1EABlAsghv9pD+nOYkVarqna6vieaNvhzi6sx8+yEASHaIEFHsFVMmDn9XKJpcCVaSyqz2gdA5vCbYzJxJOPLhtVFbofvDQLwXtjKLS4zLxlRXhDVPsPg9uGyBzvqEaTMF0YmjM3PVoTDLeUU6/1yEQql1u9xNYbahn8V4kdF+70Hv3oK3H/jIKSJ38Sdp3SCF8UZM26C5EG/f77zVI0iGQ2MpxVkuPhJMHvH5NPvYq0OE2/pm3RJXVRxjtDnQzZNV0WpEwUSERWenC4H5Mkmw0UjmHpLndNuxOGMz37Sqa4ykb0gULWnKW3b1C8y+29uG8NjjbnqDs/Ns9Jqxj8XQUcpEZOHNwcGNh7Q0038lQgblJ+IHKWY7Pp8+i+szubfYk+yCjkfHByT2n5VZ0O4M7lAGM+kdfHLYK6a+n46uKZlDjmE7eM2bbUh2E8H6QAGUlkKceVbb4AWst3Ylod11FA8ZgUN9PMDtB7Xe11ZsdFrY9hNZVgrtATdIR7O20db805eGJ+pNY8Vmi6+9n2KCUZHwtq/AGuk3/CNXxnVZJYd7hKnYRPqgkK5px0GNwNmxXcGUmQhPOiKSpJx4DNGPyWRmB/mQhNNEr4aFdIWNBVC0wskPIjUZ+a0DayeBPvM4Uq9565f+BTwfU7tk1YMh5S2/UU+wz4r3V9DUA9jLggCarKotTIzFNb39BxxqMA3DmKbos6adHyVnwDFVekH4vgbrx06pNW2byhq6i/mTEVbRyfRhVE20LPv37LFy4QaMXiYXka2HTYIwfyr/CDfk/rG3n9LZJ2dYyHw78veLfw/B/dXcd8hK5CZCO2ernjtv6SVaHMBhfvTHcwNU783uouAh1q9kXYUFlOhZUK10wXbvs3jamIWm6V+A3oAydQKaQM9H+WXsOzK9mRFNsiv+TDLdCSVEAa2J8j9ZvrtFGJzHOqjoBI5jOfXR64Ce5FB5qqo1OXJvQ4AXJRJaHhEEs2HHC5F7IIU55Is6RrUl7pn3rKKXpUUhtGhr2dnDoAp+yXGhZib3oHIdE0XwqZOQFGWF75TSGgbD7llHIBUYnYOBGjeUm0uzZoxgh5/58lT0Qv7I6nugYPamqsFptdEYOsHucGYkauAMwZCTXtuY1gFU3CFP5VizXZ/8Bv6O9fuDCq7bOIvU2zZQj/qXdQn8yeBOSdTH0an2sYsY10lIaBvIf4ivslQpds9yJLvBr7NTxkzIK9qmwQ68jlcJ/mSZJ73O4dWz5S550ICrGtYqL/syi6p+pL3tWz78dtgOvHm4oDA9RvVkZMz0nDqVzmhM0aBfcCpT/iGoc5FBJQ5Kih5/xjSsVFH3f7aVZ4o8bg2/ypVtaOOMykSgmkOOafdDjzS04HTPK/GqjkRjzf6ifOkHCQoC4GbeondRYL9f11WXz0n3D24ApJrQxpP0EzZoIgFywpBGZ0QeU81vtPB2OA8xcuRT90TcA01otTa5GHiMFCNMAbcn3zL/2RHSRZAszuGzXcIAk3QWWx4aZIa1mDf4m1ryJpT7XO/g5nIz1h46sH8+
Variant 3
DifficultyLevel
728
Question
Max is 74 the age of Chief.
Barbara is 85 the age of Chief.
Barbara is 3 years older than Max.
How old is Chief in years?
Worked Solution
|
|
M |
= 74C ... (1) |
B |
= 85C ... (2) |
Since Barbara is 3 years older than Max:
|
|
B − M |
= 3 |
85C − 74C |
= 3 |
C(5635 − 5632) |
= 3 |
C×563 |
= 3 |
3C |
= 168 |
C |
= 56 |
∴ Chief is 56 years old
Question Type
Answer Box
Variables
Variable name | Variable value |
question | Max is $\dfrac{4}{7}$ the age of Chief.
Barbara is $\dfrac{5}{8}$ the age of Chief.
Barbara is 3 years older than Max.
How old is Chief in years? |
workedSolution |
| | |
| ------------- | ---------- |
| $M$ | \= $\dfrac{4}{7} C \ ... \ (1)$ |
| $B$ | \= $\dfrac{5}{8} C \ ... \ (2)$ |
Since Barbara is 3 years older than Max:
| | |
| ------------: | ---------- |
| $B \ - \ M$ | \= 3|
| $\dfrac{5}{8} C \ - \ \dfrac{4}{7} C$ | \= 3 |
| $C \bigg( \dfrac{35}{56} \ - \ \dfrac{32}{56} \bigg)$ | \= 3 |
| $C \times \dfrac{3}{56}$ | \= 3 |
|$3C$ | \= 168 |
|$C$ | \= {{{correctAnswer0}}} |
$\therefore$ Chief is {{{correctAnswer0}}} years old |
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 56 | |
U2FsdGVkX19bQyOVwE5bhwqBW7NhrZAML5ikfXEyEK9yxQ9tcqsiH2r84ao7Toypd9RwSr5wXMF6PHYDvQWMmgDRDE2DiqeU/v1uBxtzlKY4hVcgzi41Z8R9pBHlAm2PMzzxPAQCFUwzZdlwaJk3MVw3JXSr2B5ecrkuq4AFx+oq3VaaMIOqb7OSggb7eplcrk6Eea3JaKYn1f8HPtT9MuoQP+654UH6IBonPfhtNUatYtMce+H9lmfyRsmDqHe+xLk7PmVLEFoRNcuJbsCsQHWBh/tFS/0StLex0+I2sdqZWKoH4glqWgdtUHEpQt/bOKXRu+RXXJLwpDw5aMmGyT1Rxdasb+Jiv/m42RHFhOR72XMJQsAxR/JvcCjeIYP/z+z0hLSzpOoSzUX22GDf0hCov23u5G8eHh5066qqa2hTK5O1bpMxrxnwt82509EXk4Bw74my9tYTRVXvoy1QmIcBBPVaBhHPGfHF67rB2VbbXq2EPpXs3estqV7LJIAsyf6N/dzIoUXqWnT1KkZJNMm09pg7w6b5gKuGH1dtfngj2XhWwF1l1Ez+M//m1tFkzXOJCWjiF2Wpx48939aV8lMJPvcCBACl8WyQ4sAPIWHzWXwLjkQq/tUi2LISbHjqxFzWR08WAIOE7vvaEu55XC5jeVuwWnYO2zpvN9AKnIVcPw8QB2hOV7j+sAGgZTrGvmZyvCIf5OJ9VeINBUbHuPCqISDaeINQiDmZS0XJc3Jd+VZWYhYCZqzCsuaPKVsOyBzCEHUxBvhRvYr5tH9s3l1KdSjk+sYRM1wrGfGqMeAfAqf++22293kf4abOQxaKl8D6UHjqR7y/FeuXzhZzNu3dchKNzu1CqALa7kKv0Gg1bGyPhov/rC5STMoYktVziekOdracLQEsI4cWxg+YZYueKk4ki7+RJ/PpAWNAe/4KxPmcbyO3dMR+g8SLfSLyhQoQEA5yHi0/VdItLzPhPL/pjwwbrB2le4rVN4uiazCvnw8W7CI1XTySTB78Iej3a3P9I3z1ycwgx9S8t7lUxp1vqNSpwTvOy9C/7SPMTEUmB+I2b3WaFx3QbOvHlFhHTg2xKcPh0GB9gl/fJOQ29h0325SCkK7EeLE+3kcQbvrGVI2c8YQCAWhxf6e85eM4wz8J7Pv/r2IUAb5I0Wv1RJbHVA7jTwlaNZq2dxTkNL6G6nasD6NoyaY+ERSVNZC7l6mlUB/lvvd/RG4AhBv0bybWPwRBw9gKmOFxECLMX/15PeSgxBc9YKesT+c/HNcGGQsz+VIc+Rj3wMHQmYzkeCJH2uDBEl1JFfUxgd+2ysImLgJmAVXbR/D5VqZFBOwaY70sJzBfeTQ8RDJc4SdCvJtEExY2WEv9q/KdsND0qaPjluJsJdF8dc90GCeTWBTFAK4/rbvbF+I+k7n07GqmsaRbBg8gHzoR+yOJjcnsOY03wTzN4SUIUY90I3st4QbxRCSPIlRE7/5LOWl1e6uRG4vaz1I4imEC3t++1N7JW6on6iQ9g9p9raaOusNuH4qp68f9hvgJq56e8MGkps7mC3nStRDhgpNxE4vjwUAI4Au9aGvS+dzG/Egc0ECordeRT9T7SQsYhpBs9mmDUvHzhgJybfIaUsBXkxsc6D6M6qM0ss5mjxgE2mFh/nvaj8+pG7EXeRIc+Szw4kG/8BeIj1RxeX0SYoKCvLWuWdOriUcQOXrRjg2nyR/GPxvcIPYhhfB4OExvOUIOcR1swtpsF0dHBCjqTDymRkCgHRSv8/67HAxOy7lgsG0lz4IethtP3qh5IY/njpiDvGHKvVsgvaBbqq7syDDBKfwCgvjpsatCgMoQH/+JLkRnqk7z9fo1pFe0UEH7AtIahWJQ7YT5qJLjMguBjNu7bYdrYm1u9e91DHwbrcmYsK7P409FBDlR473vSFlza00ptR9OxTIySTXvrdn1TRtDhHjC7NZCp+GXHqaTZv/4oH431qrXfUlJQfz1FNhZDRo4vy8fMuscByRIXo5y5OhQ+yS65xKtcZI29ryb5TIj0e/LWV98PLifAVNheGlc4kVRIfsMmrd9xyxlyKjJi3iOR1S/sFB1Sch/OGVgAx3Hb0XYKfoKSvqeenY7TzOWF4ECQQOCZ7j70NIjah4iXKj6vi+9Qd+n1IMIdQQW7nW9bJiFQSZXiTy0/t//SAIm5uJasOc4BnfR/fptk2mwKkj2zurQ5m6nmZQwG4TozB6bXj2SczHFUes4J6lqTQDMYX4cRmOR14lEI/T3wd0fN2XeNoXZaG7NJf336LMh/7Wl/AkY0rfeoSgHsxtqaGMbVIP3XMh0Vp1Ph/vC8hMz0+Fpk1QBmgKV6tXVrNrijK0tXo/dCrGEhF/A95jctg1+Nyx83JrRVDdJ96t/FXdm9Bi5Shfn39LY7WF8NP86jXH1qvHeCvfjWDxFDNvmmdhCNg6MMx9LD0lkJreaKFjiwc2pEpRlZ02oQQDeW9/cTMkDAYyOE+Ia1hphXXmxAlkcFw/OKpcyoJkypMfOJBJGGzzng1oOnzsJlxbwmNi+rfvQZtX52HR/E1Z6Sg5/Fx2jMuhEK+t4UI6Pcyyv9N6RHmCNrpy6SfHcqNjME3GnmMx+Em2a0WrSWYV/LBPahcVoR55gghmEDSSt6Ocw5Nl05Fl/oWlniXnwRVghdZ6wJ/giY/08atrjmrHNlKx4LHbUli31bcjNWDMNLJTwFIpgAGgRbyg4Q7/GHtxeYsIl1dVgGvldDc6ndMBlHF+JSJ/HGY3bUKLstysmHodAFR880Le41ywLg7McWT9YoPreATbqSDVeJQbK9nT5nMRIdQlTX98Swewf7LnN41qmyi1yJUhzYjQ+vy0DdBX/D15cPd/24Ypw1LkHEzw2S+NNtdKCU4S+Ntfmgp/xkNmPRWzgnkC8nYs9KmRTGE2jZHGUDQzrhk4FN0qwUVTy42lqghJFIF3aCCQKWD6waYrYNZc+6cJSVhvXbCok0cg/P25TbM3J5B3epwf3GpXHcrN/NHs5csEIJ/ywvOJjKmKDKCJBQwR0fRenkom/hNdPzZQ8XjksCgiLi1uJUuk2hY/b1tzeV4N/ZMbvuzhMragCSmyjigFJy27+HdC/pS4yvg6DM7P7Wbw1O6GFharr+VrXSgMKSSmMw5zNimhoCJoim+n1BE5l8oP2gSKsAr0riiLh6/tDYDXMXFjcMCTWPKxsmDBh0N7TuZnPMtqMNiOEF2tzErFtMdCdCyHEOnRgAO370ggF3rSyYwNXwmM+2/lgNOd269R3U0KMS110ImzOpoM6Q2Kb6PDGp1X0U24ouhdcrlk836tRflxWwz1e4G7ShrSE+O19BiCwVF4ljygDcURSnTHGODMdS90eV9jZLNUxIx+SaeGQFzvK9d0A4VS1CxHEwlTWF2N+6MAI0oXXV/qwMzrkPezKwHtH+eyu/o7xfVKyP4ESf+zYOOAwXSy1Q9bRsjAMhNn5MtnzFDu60dJXFTvjssPFcvoiAwzaP2iNlkvjzy8wIFO7A38I11jEIDKN7b0k7gCx2L/7StJtRjUCiCjccrFSuTBGI8KN7dKIAl971qOJG3W/nf3n2QhXYuj+9LoI1X1JwZNvQzVf7iZkB+jsKnRJe4/mnREBg0AZJ5FPxT1A3xWxiYff6kyJSMn6TY+S1diHYNaHy4PJqPlnoLDcIU/zbcNSJZdQ2uI0R9j2cyAEJOiozVlzbKr2GUGFUVSHH4BjQrY+I3HL4r+PEpzgobA9AIdCNaGAcs3U7UKZXwEZ80RVIpZXWbWwmOVon1svGI9A2jIFVsgLKRSxV+iHO5MZaZ6fORRAODQeyyqjgreq5CnnXwO0X24qmFrhJ9MzJaL8hjFSdeGC86oaxwZ8HyxVmkrmuahkv7m9TUzQLSZa+sj1rBSbONMzWNAoXmbYBmOxtiY3KNQw8B4jX9Fpr4fMqi4tuEde0NR/v3bF1FXPPh3rCBRybRQ15FUgCfHoQnyto5U0AucKuKjjhKP4wjc6LZWvP6+cvtTsSj+SWiGa/O16vrG2Eh25x3An5YNXbQ9RHjGZ0y0uWYq/nDoJ1MfBZioPchuO2q/kHtVIT9w0hlGS25/uXa9lhA6/NaK57BIePcqbTOXU1Sj8jChpi47g/hkupeB2YW2BQyBv2uG/TfnPjoEPeK2H7YImTfVXv/MLHtVAXI0jNkRtmqPCOstpMBXg906Dj+/FIWVGI8dhyr2rjCxatrXapGQuWtbB52nnxsH4Zh2F6YTf5raN+r/ooSp6ttKtBFZqqF3mwwECVs9/G5r5JA/+e1NWx9pw3v7VsB+HFeR9gM8GHVSdHtb4yxvjRZyuj6Fvg2Ci0bCrtVvGe7KDdsgg1+9+3+3j+UVah/xXD/TJfcx49KQddLudgCLcs/9SJcI1sThRDzMS43MJvir2dX8U1gtebymbcQwqSyS2+IVpe/5zO+ZRvpxTn5+KDEHfZEh67ihPYY826VfE46QidjxiG43NjOHJq05JCR6aimdsKqOp7Bqz/uyTIf35BGS0zx7mQgvvdgEhyi6zMs+1GVRTmJOoGXxBw75T2elZ0H5cAxPhlPmrkW3TbGL9dBrt95JAGq8EErQTY+4233lO/OKgx+vqrntJrzRBI7dqOa+9hn0M6ip6OyHBLWEuAKegtNCgvRejf/jzW72M5qYOFquuyvmoji1MOgQvoYyC9NtHp0oYIiZl4SldOd02Eqrb1lcTkhfFSTCQd1/gd1s4zh4R3S1IZHhmP1RHCjABeIJmrYXATBVp0ujydEy4J2prxTlOgabKFfvC+UBh7G4bxGhHpOyH/rKn049tsoY+jrpALvx8n9BIiPeJrP020kkut5cmDfUytih44FxHdbdQZMRFJI2hzSy6RtIY3nzo6W//f8yWm8UDRdg/U/kBetn5+0Gbla9sULyHOVHNKiHhNKzJeNjEIrkXA0HC1GdrseToAbscwwWgWm9ggrrgCyiSYfU0VMGtcPfdzocslwS7kEntIC3kBbErUv1Mmxb5/IvOGFHlfR9WC/bqp0jwb4Df+CB4vZEm9gjRMtol1fi2e5VFlmdvmiS82rXcMSprr60V1bxagCwR1bADAYuaB1uxLYZ01MySQUc3buK8dJOZFoovRZuKZxs3B/KSxURZBz/yHV2MgDoOJMAdxFhT14x4AhaOticTMK6L4tT0iZZ6MXTR+WMcNdpH6Ptouk/JwV16miTktoSyobwYTtyQIWeXhmkQbDNoGIchGeSVzH8oxjnmMl9SfmGIHuHUqiIacPiMSJR7Mgd9eL4IQP79crs6tnyvD3IJbDgwCDwifyaQ7jQovUfasINoOH2Vr2pavrm2UArxVOaRazMheUrr6bP7q4M4cHxUlELg8UXAzt7fatKgPke4JH1kheriH2nEPdwkUPJ9b75rIch7ZCAkqbKGIaaLdiT40JPnene53HYr9JWuzqLXfnkBMQZNXbP55CMEL5BFlXBRixYPKfsA8UZMyfD3e7f+KwlAun8owEgwOGr5ZvvutsCbsUzR3UGzLgpqFmUxRYZZWjzipBRl4LDMEHqz4NoobMhyP+HSFfDUH4ulF2GpU5LVIJ3XEpfhvPqnn9YJI3v+l8k5gUWaSKAjF0mzxGW6MVlF4zNKuEQIYkGAeeBv0r2enk1h9eU+4Ljwy45RfmHqz/ITSVUd3tlbiVnZ/j8Tt+XRu2MaXqZ7cZIVDRNi02FzYKFZc68vfseiMXRzlaybywuVkIE1k44yGbP2Os7nzmU1XYu0cz9bl0ecu097zquRapyXwAqN2+70X+YlFy3sso3Q8FpUivK1t3lXUiizvxTrrCGR4GkpY0NBFQq/94ZOKkg7CaSskMo4O5rttaAnXG3keh9z9zKhudDfi9Hqlt1ZVZ8ZeAz6Q62qt8KSqbF+uvOlSgOaKjt15jjvJpvldFuo8o+0gTQ9wtnubUmyaWiB0vlP/LtJen8ymZDZKzR7hb0GOogmK2s+ofnhqm9oCVftK303qJ/4v2QjhLZegBRNA0xgDozfvAChkJhsvRx0HP1kTT1pxs8bDPcXxeuJjsw81f8HqGP2Ls7qRhT8a7bBSBzSjSzwGqm7b2eSdSjzCaYgCeVuyq1krrbXPwmU/njnXZOXHLBXd/kjodOIwZhgeDMrwX8CQBup11wex2Hf0HEoHE8ie/OrjiS8nGyM0GeRIB47bH5+cMZBnCvKBX3gXiEL2shSPmsA6GPmbM56zn15R9/sbpc1lcJFjvxEE7TfMuhVELpRfhK4OuECivaivrsoesrEQLQu7+kLZxS1jnAEHH5hE94VVf/dRVBV+KgATlk3uYzj7ODhdxYhiqKKQI3RgqLMncVXswcv0H5EhNSjb5L3X+kRAXbCZyUADe/8OEDzqIt7X3ZOS7f3/LST+ENTp8gwjwg0NS+GQC8Ek2MMSOJCGi2UDz10qpOjpljAWgjIZm0QPZcnabJUiLWFgF0Ok4CjC12QNcsWu0Dq8a5V/T8Vo6OteJLyLJMZZ+iy3eCvc9GClZFGddoIWU9y/OntywfMc27ZF2f+5afL4XrU4mmd79o+TcgFq0owLGRWw7wAj5RqqYoTwnGju+4UNXEd/R+nTtQ/qC6P8RjlOJ+kIyyWw5J2e74nOPlNredlfAJhNQy+BBS8Oib5x4DTPOlnRV6SMt8l4E4rz6OO/w7L+vRm7/ShcNaP6vhRtxBi+hEHQbwWEbJ0iVA9YcQWwLS1MfyGU3b8xaASNKKs4Tyouz2HgevsglWDdBgjtaV3EcF59EEpxGCv/1ncVcpfHp9pYnrFs/j+65iwW+ufDMz+WlE+THicObkqnWKGHwLhfsw0h2m59ZwHBtW39N6Jm5yV/RqFDE7bRa+IuD0S48WeBYCkCobEanr0qVCv85G58EsY/OZkxN4ffxASEz7gGhsZBSlRFmgFZTsyx4LH2Lo2Jbsr+AguHEp2CzhYR+LeXGUsFcpNHP3FnCsQUSXfTppE6RORxywVo45UVFioY2L6T53Dvgkdl8OrmEhJH8ZZ0kFEdMB2wM7dC0kNvUckFBMhxg3Rhosnoak85m1r24a/E4A+0X79Wo7MN3iWTVVemEXdRh6HhAwxuuaRCAOxKbtxD/97eMkg2PwykvQqg8yl7vf9rPBEiFwN3M2njmJ0//zlZKrTfF3iFAI/0NKem5EpdzDZNz/MecAtDZDTEMhfVqMB3q44EMCxI67DdlWRz/+jBFexipA5MWpWwj2Pv0mKrzv+2fNSV00Vwra+Pzl+XCTnWI60yleH8hml24aXMUQIdJVylLZGx2Ad1+7sNMh4SNIRsdxj2BgcV9DoSkY43rV+tHGlM/0O5wWEkxfLO48WG8TcykxeGDq0jQNdm7YHRRdl0Tsi2wfYTef7gzPDounWR4tQj+EdqfthBqXKO32j+c8qxD0CbGhdyQNWs16QCweZmc70X4FV8IKwWOIy8EPMKtjO7A+xHxnG6fNHtK/B5M7C0nIcf8DCVDNRlMEXPBjbEEPBGQ9JYyHC3t+Z3c7qTVBcTc6wAixCNmE7PSAYTv3sOTurIXOOk7bE5CTk8KsbTtpxNGBwId8W9YmmgUloglLImXbrfibAm0sh1UOstYpH06vwXEiTmTDoJopLLR0TyuoKRKzNhLhs94m3mzArjAXx3O5Z9ZFDPxPxZp2am72EFrG1e/Y4XKHdL22exU7ExHtc/BpRi7LSXP+5bUmwltRc3iN2rYo8EUJAHyhVmf9RbZ6nkg2Y9Xuf1SUugPL64PPCnzD0aTCeV1dcri4nPtl8aRBBOZoKT1bGJD34SBqSnVCl0INh30muiNLm0c4mfN6w9mJDPvI6hmNXGXcyjkDJdBi48DouEizHcOH9RKqAq9czmCszO1sJGmHnrRp6uW/g6NegKcgcztQd3vxYbSfidfEwmBXfL6r7oq6X3jnlJf9Viwjv2R8kNtVMZdguADTYNKQgrPOn9LkLoKZcv/UTX1yQN4AaZsgDMCK2hOXkkBLlXE1PonyUKPM+HnHTCqEgSxBGpJE4v6Ss/IIKoMdtYhRlrNvP+SlVTGxOO7ek6GnS0JalXg1QpbhWcGce+hGJ4IwD5/vCBBctj/I2KQFYHfvxN6LcGpJHK7PH9GKJVFvTM265QnAmJ695946Xy5HyTSwvlEfVSvk90hMCk6i3VOjFpIU7UbDc5vsME5jGK4OwpUbx3+Vw3BnA4OBhilvMub/coqoeUxSyMFq1ybapxonv/04C0c01PglZgh3KROtFVqWhZKd2kGMw7ynxnHozZjiNNIfrXWgtdwY98EuV2CG2/MjdCpH+OywfzWIWm9Va9nWjPl4GKAp5vFseGeaPMQUJwpSgkstcfamGgwcn0DfNYFRu4RxFoiZXIAVeWWh0gjZIIfVsz4c43TeFyJdfrIeveNEonrCr+RPYMUQSEk+Jd6PDK8phk04IhFxKMOrc/aIBBYdgYTc3XuAploiWs8vjKc6CAPRg3JkEIwwshfBQdrgqtqqsHkbNP5O/z6jU8hjqcEETUB/cQrQQ/UrQy253DEkYvPcIBZhGVBCxhykbzFPhbED5ghh15mNIYH0j3YlPL3NXC4AvBjtsBeDeNJiDt/eA85LJG5b4Fdol7SKAr2ohg0yCGPeX4ryPF7WMf5IFI3COFXvuCoCJPuI8QPM9XGpU3MAM7WNeWt5ibxS0U158x1B+ZHCa9NJSIbjclTeyz84RGFZ5t+fpsuxCZAOXfEto+oReE4kx8VEylca7dceDx35OIbXVCZ+6jBbWExFb/SPrXJ14OaPcyj84GjNWHBB+FPGF/0kqLpfhv3df/mW2qUUYgHhTQYp3lp/sj3yXZ9/4GP8YeGq5/1lpxyHHRoJYITFzH/koj1yVrUA4rSDibzh2Ewlc4CwKBNb8poXLRhf2E8WIyPxkaDM01zCp97zkvvHxRcH6ImCrkKigTnK9PEtiud9A10hbvuppDLMd5vWUXtJqIJUEOqcyswpQb5JCTsFJ7M42hQG6cQfn3booFPQf2gPFvee2/1Lik436IV8FyxxivBpWfLKppcXngsWXdmsxBzpIHPBmK80yczSuCDvwL3GV/u10ejJ+rIMSdAR7aoqnvXogd6eg9LK2yXbaSsk7YrY6qKGW/a4LpsDYXTDhd7xkVmGzzQrquxUv4EzY3k5vYPFNFwSh+odbYk2AvTKCEfxLPb+umUGUN8TSUkLPakCjVW52vealljRNBW92ME7uhVpz7GWjjpXEnWACe554LUU/f4BbbRnIMc6VbsaKX7Vp8jMz+w66psDHNxDTBNMyz04Ll8odr/7P+yVhicOoQkI1SYi8CJ5b9reNw4EJWuZ96NCUQTea9TL4BHuE4yvm7bSpaqknaJBUluTrUuKw8vJTZFSHPmmzLixf7Xz/ji90V5Oj7CMwA99gpjelp6toI7iEyZqndw0qERqfeR31xLNpOZxPtjS8tYOHMxuzJ56Y+gsGwkb/w6hRhqcBfZmOQPhPCkQEqwuFsynRs1EDYJ5UwJVxWopPn6XTw7PnB3Hw5iZpl1bjViQwphMs33Z4PGyQLXxAl/O29x2dD2tyHU5FL0u26m7osvikM0NetlqdC8mY5uCfbUGDFiIiF9pcISQLAPeZPIOZYkQbdhrm509gbEx7tD28Fa4/heLqP+3ocWvOH6rLV+4K1U/A7fFiEQHbILKLaNSeh+wQt+yf4aOeS9RSMogI24A/tqTTiUiL9BKMaVjfl4J6+2zOJYx0zAQ1CFZd03udrdXJGw6hk8NqeDFpVm5NsgP1G7JjlKHgvi74avQNPlaEA7uu8KSRiF5fl5eFxxIM3CmCuIt7m1cmZqM8KttpPMXA9B+Qt3Cr8VuF8DKZRVsHSgrKGUf6ZXwvFzZXnX3Drmsq8444kRNsCcCVVhAc9jLtvq522Rd7IKCVuyBTLeSLdMgbb1d1LwzvJDLbu3PS1o1XUFB12Lei3UxTYV+6+UuqhXQlzLFSfkZZb27t/3a2Q0XaiVkFSGIrhw8laxWGbqDEl7fzm0UMTFDhGhdNaKUyPKz+eBvf79RI3rktbUxEq8iF9jYkg1VoAbVp3qm44a2/K7sN+6RmGqmIrTUd7O14yn45Iu8pXaAawajfYMAP+obh33RcHXHWqjGUBgpebtare9Rxh4/XaT8UxQhABa1aZCuGf0yEjXSF5cbjvDRqt0DcBibW8VDMX4wD8EDfywHmLT7QL9QzGbPt8Y5nnUxLIqd7A4bJpJ0ELFAxGKQ8gk/Xzg9NvybSHG0B8ajN0Oih81mRGWooAconhYpWpjkRmYu36GHAWzDJCmABOxVvxe4jHy2eN9oItExFVjQ2QnEyBAMDbsfe7anfNkwOhnEK6SNB6tYgRmbn/ORRZH03lTJB3HJJcZU2P/wOfpSFXiJMZVLSY22ETBf2QjLRB+A5i/70Xbb1geHK1dN2ut7UxI1evVh4rg+hBY8quIa7RhS4hJKDkxlRmxr145BAQXaL4CY0L1U+h7hCiCo11a5sJC2C2WAtR5F+/Lt1Ehp7Tl8X7xAHoUyETWpACYUxDQamIJXAADhriu9g7TqonZWZkcSBs62vhi/URrJ+ezwOSU20FH61nTXxZZuqUkpQ0ri+58XiIv/P+zyC40flwn5oLesp+n66zcD7Uc3wQy7hzF0VcD4WB2LzstJ4fm7/v0BtcGKoPgYz0/1hmehg3KFHYFzyO4bi68Gqf84d3hGNEVqn1eU9SE76HcppDFS759o5gGkUIxPIAEdKEPckAl1OEQcq8oRJU94qaOG5sZmoSGfLJ8CjLKrXa+g8xiN/w7iCjhjmS+/rm3Fc2GxPEvfQypFy6RMgNbf6vumkzWOgRFcPLELjS2xtco+ondk7HLYWe1chUucGLzSliU81HLP88YzjmQPRM+q8dTDD90/ZF/o6d87Sd3rMCPjELSYp2ewZUIlzYYJo4p9nHR7aaBq5pJN6+4Ih/TmjS+Mkph4R3iY8mgKo8jnEGkTYVRQ4rlMk4jEhO71eSirbnkZmaPTDjiBK93q2omNyA5ZbHjy6/kUutKL6I9F0bzt50RiCH8rsypzJF59t6VjwwZSOCxFlYXwVwmXwlibiGq6g4C841CWEgOwVzhRxZtG13vWLiK3RO54Au07Yg4WafGslwWdT2ruqOI6aA+L/RxuQFA24MtlAp0nU+4fuHWNp54Y2QivvadW6nF9Ao5vFDRfOLVs/XqVLU9hnTe2H6zbGxdWCnRtYAfJfIbjaf0lwFk/7cSVcsnuyYNSUzxxNZVQkGcH2YqMO6XnnSaATk75Thc5xMlgHPTDHg3CIV4U4Nrq0i/5LoGivqPIY5ovxfQB2H/y7uPJOUKa+qOotQHx9cYv2Yfy6GMB5fIcpSZUf4/WFRkBQWgnILQgDMjN4b/WslDC/uuW3GXE+6JQwlBr2LHh6nvyeyu3xyOU8tAOQMoCJ0CXL52xm+bQlr1MsReAfhlHDXQv3v/sWnN+n44FdyyQMzXDZ+J1dNzHAb+kb/NL/Mhg5utwXl+ZGPqDiUmlpvf0yiIojQ2YQcHXv/7xmMsYIXJPW+wYYIKuZ3LtX70+kdyJxvl7ilM/lcK4OvHjXlpXxXWkvPs7Nw6rYZq68VH0wS9DEg9jNdNC15lL+0+fn1401ZqCc1hm8gv9cvAnvWRBk1oOWnAV66Pbq3AQsMPXztU4korbhojGqNbz0oP/luMa3Ni0r1BkGx1NPLTD66Ron9jWMxLyEQMmRupTf3X8kN38pJkBGxR4zEi72rogsXgEGjHTfW8+B4JJvkIkrPlyPmNeaxg5n7iD15hu1U3ihIJfX3w6pLo7M3NXInFDMEXZrPJtOydadFFDP2tZqRt5KUSbO9XhrBKj31p3nMDHhBJwCAa6W1OPTBYx0sPjj921F/6+3xRMr2thCY1kImSMtK50dJk2ix26Ke/rtsj0pM4HUuT+znpjKjaUtz8cWDA1YXm37Q0Nqr6D4h1UJhgXTbJ91HrAjM52FIPPV7DT/xGuOrNOJb8HZk/4maPw6n/YTTGe73MKvnrevIwhq3Fk1ffYq281LRo1zV0Ti9gXILmPtcYGhUTGDUPo0dURKWjfZqB9uVne81wWXzgdYBJTi+nfbBrT+Mnq20lAggKLgDq4horOxiYmacYiQvHJhAUwD6U7hC6Z6QTcJhRaAgsuXmyCfcRFPwsTEg/4Tc6g09s9oMlHogt1230raYygXQN3pvXyJJv0CwJk9BMPK7Lk7Zcz0nqwfcmjqnDRWGVEl1iEVk8zzSIgQ3069POCRgA+s77Ur1FFf/FAgbcP+tys6GGW/xuAy98w9Sa08tn1OSUNaBKzctF5sx9bgk/r0QyLwIc8bpw7pfeFxVCukkgzjkW6KAKVTiQvncRnmSI73ge4HWHqbWlS3FTwoD6xixEZ+kHFc1JBL5hnpmmV3p0d04uC91kvUtZV1y5VCL7gFrm+B2vAWGAWB4EXkTrJgdubFSdg+sfy6ZN0jpGRYyu+k/6ZFMo28K4wTXrfM1tllXR+tnDyWfMncStJbrmquCJOEN9uNpw++aS1fXjClE11WEd95SVNchRFuP7ya3CJCpQ7Z5qRmmEQvnX0A9dg3RC8W8STf6XHtQgKkjgeTMuunEGSP1d891Zg0ZIv9jjBdYMrbBOjCAF7HV72M87y0gOhRc+JLK+nRmvGFIpHrACAWg4kkS8qtUYzN5aL0CpkiB6xDFwffVytB35mmng2aH/g6IL6EYUHumJM/HYZrkNeBTipQMn2I/AZ4ai88ThxyBfq5xpPIkw/a3Oo3vL5RbeTYDuOj+FJkdZgESr722grG2vbOtZKPFNyCEs8z8NgxvIr/KTKDmhWyRYDDN8dNijv06NXEHyCkcxWqYBJ0MoU4rg83tvR5nqTuMJDb4LF8EGigmTsjh8+4CIAEzWC0CNQoNdgxsKJYjJ1MfsiGLe55wXch72GzJ6UlGtQ9/S3Z2phpNI+lFOeb/auC8h69N8qzqdgBeKyUQDWrImhmUKmkd1g75vnOViXAWqZfUQocIDrcTAImj6L46ncO8Exp/ussTRuyOvZtHqjRkuJTsMdKAq2jbCkXSbK38uapMd2pzP6FpnoGbz8SSa7Rn2DG6CW1xSx5YYYL0t3IGdXFWp6ymXIMWQzmuNr7ZoceJdlQ82WyeMAyuqdAfZmqOtAqmo8KXey8Xg7zopJgXUhN+8F7zgVHRTAedYaRnTzZHilCcsWaLvJIJmIpcp4hpdWObL0QQiO1AHV0vhkNp2TcGq7Fy56CSC31f3H9FrRsHatd6JuEPnhyjJrMR62jylVx1LLt9Pg4c0L1RVlvWzdjS7ioHer4T6Fq3twCpZtv2ZjA0wvlpXxMPHprwrviqGj+klLrLZLYXCOp7j+tJZc9yFV7LA7FTQMSVoQE+pSBrQHomJcC0kV4lAMAUyuuf5SsTPlDoURBSLcSSt3iMxfocC6UV9eVGv9ZlRh/u7JxDJwnWngGwuUBxL0Ezj6g/nXljlGTvB5hbEcBXDsZTY1AfbTZyAFXHewnzPdhkoEoWAT1iZHZ8vYOhdRhbstHtd5P931rRCA01VsX28TPFQ3kTQfK0IMeTJvLO5S30fPWnsAvOBHDGdP+TOiTPlVuEFT3EzHYoujoZYtiY0e8LHtZSy6+X1UwEzdmoCK+JXU5ljund+E1ZLexs/gHtzpcAxuxJNAM5ABcCMKC0dBV+ZvH7gQLeIF1DzyVSyWDtd9Y4mZoKK+RVHzRR+d7bhINNfXuks5OqnTwO6JvMrJUkNrGxwJwlON5SLt/K9OlFLWJXPj/HyCKDav/sfA77nk5TIPQ+SEyzVULZtXFqMOSrY2T60qOTnqnZz74yh3Ovzq/FMsxkTDssIhUehO+E5+HMkPpdu4JvKJrn4kiu1GfszvjeG/l/dPSX+Urilhu5xlkH66hMInpEnm6iGyzRz/vVMeg77IRhOQtwFJ3kSYvYCtFaMZta0d88YRaA/JC2SFTg+c7AXQ2Ly+klgnRuY/Wp60jV1eI30Hb3SZzBMNxiWumAL6Mfix4poLOnC1DXAAiMKCMG6SxHBTi84VAu4L9jfgB0qjQ5GdpFMNwz//+wd0NkPJ1A8W39r7uNJvQ9NOAWRpJqz6ZfP2RiubKhQQSu+pLFP1Ye54RoTlIMH6lbtoRzofFqoIH6DyE9HdGTSfWD0ugG9NId4YnBkOPFUnAzqy7NTwZFrjZw0b57sbCusz5mbkoRSkf/FIsBuPsICt3HFcWMF7otl4GGSGpyKEIOweXNw57m8U6kWXRnh259ZRYbsUShlccetRo/hDC1cxAm/K3YjaND6mcPKGtc77Xb2/gbdxMWPb7i9hj88NbN9hiYb+rP4XIZbby9q9QaXORAwUcbT0pnuuQtrlCMX1O8Qefwr4sLfVBANqL5s1FSIrPPxIPBfb/fxo7bUFONeSfD58bbIsY1NA6a/RHD01Ghx7vpHittoYFxvh0M2cajn+CMDpxaXOR9cGXJIr4d1kp1pvfH/cyDkMEXunIBNbrj9eSAXL+RYxTsoTI0zu9kEBEj/Rp6Y7lC8sz0NR8eTYyI2FYSFXOZUxM2hXEH0nSkIEzczTLdyHGSBw9EWiZPo3HqOpkjObHFN6ki5XS2lfzwgECmIVCgcpvfiXSHNCbN86lfF/z8LJz+0Wzb7LeUGA7mDfhV4qNKpigSR/ElZv7O2YAt559DogO4cRcqbRDfIkLEN1O/Q5OaX5RBqkgA/foLwDDxxKSa8K/nmWa5FoEJB8WT7aSforYQ3/e4h3PMGceUgFu+DCwNrbcOAsgYxiVew/69KYL1NRughR1JRHMq1VqwrkY2WerhDnY8pb3zY11WbOwLsC2kuapvyjGd77gDoP7WrGVv6/QV8Rc1hGyLSQORx38L9yZKiqdj+GZnEqBeo/1eccAPLRbAXFiE5lmKyqg7JL/yPukgNU7XSxGVaqiDwq6Uc3Ib+jTURX3HsjVRoDhsU5TROKwiUWuA0l9NgVBBhKj4S+vzaEaIOkgUc6mkUUaxyVQJMgsnhZbqYZ6aCt+93CfszZk5KJYsbC9bI+krWXehD9KwwPlpbqCdIWnvwiYtI0iL8Uagn8rE8lllbzZEImsIpP26DWABtqUdRh4vwNSYjkSG8U7d4ns74JnhR/KQwl8NiVT+/OXu6UE2wXKHy3xguNfeAqdSVtFs5Q+ZlZmlET2dlTBMfCq7QOaTXvwIOfO326JgQ6x7yZBQaQRocWQP+tNNDh/sK/mMSaWo0fx4as3aFab7CKV3KPH4eShRQBrIX9zlEZSf07hzavd0QOlaM+0d9JCxbIShQHtDtDQbadpF0M3qQOdp+h1Nmo5t+kLQUcKmc9CSwtmTZCYrAHvUEcjMqFVav1gL/1BbHDkd0+tS/1CVVqKVTkfhUljKxq9iBkXhGlfuvPAiIUI9HjaUzPbLuk1K4lJihUVNhqFiar/2/LcULlk42XalvA9ai40LlwLwtARuVGRK/T40iNIiQN7LYQz7m3wsq4Dz/oFt18yVdD8Jqyl1I1+u0T6KJHrupoGJBbj6ZETyQXq5rpZ+TaaoPbKxn6uc7JLmvgfyHdBbiW/QwGqmG5eX3F7tR2lNSrIlx1fcmwIlXNxeEUknra5G985LDse/HtzzAP0TzZvwCKIx2uwTfsGxWb8Q9vjG1pXTRIg8mxnZs7pONWlaRf7fU4Rs6BN8wRII96Feq74fJm1Pu8lnr7AjtjtZaUHB9z+fp0h+ioRvvfNVjMVdamkdppN98LXrHvHkZJeLsAOapLJ4fAuJiJ1T3869MPRcAS0rDEPUJS+lDRvXvpSmcsvpifAggOA0hodnkj081Hk/xGrjbDTrHh7NudLbxiTEhl+a1ZmK7dyedZE7YTx73hkvr5qZ7YOI9seeNmEv6zODjfF+/F1dOIfVEJu+k4X0SQMdsxaFP4H+D4vtUXa5vufpALqsxc6198qfbGSiatHPObh8QEDDg4M+TwTc+bNiZymaVNI8WzNYk2ZYgWrc1c38kAaeK8NQf2mgpn7HaMnfq3Hy6RrnwBiWy5qtPrrSPu1iBROwhS23V8i+oAoAw2JJU1Pn6J/r2o1/Lp4UqlX58g3b4kcg9d/eYY9kl/4zmaN9gHjfDB5rTJDOTbGoEFVO5+Ev+l7d39OnYVaiVZRBFVL7FLj8JACWsClsPcuLzAl6o1rfsbrsYDRL+39VXpighhFT8wuVll5wi7Bd3Fxqa3mnHxoMoIenDH610h6EjsBNPyjQK+aLFpZ4Gt3TreZG+t92LoAU/upZ+zJzt5VJpRS73KEF1P/yhVl6ClOwamByq9ISdxdoaVxDWm9WmpBT3ggP0DYJQ/eigt51i4bgi6rmRgnXpPD1fWC0UoAm8srROM2aAJIL77civ04febBc0EQBDuaqFojdWisCbi3ph/HaEXYdvvVplB3s/tWVk5cZImZ/he7RmbEOcYjpZhjTJ6Xt4n0+dAgzOozeedo6duHRhjJ4rJXhasCGMYMEXCL68GelYVz4ke6FczKNW8s8OxEAeGU0J1SHnnCvsIK78nJ0Ymfb3ZQMqWxLv2dNpZXHYIZdkCLozaZcRofjHfjtuiqYW1ArZ2G320fW958G6FLUMhatSj/sjI3LNJQBHN7QB2TxvPDw5LvTALE++KBN6zBsClMNeNK/vqTdl6Ak8cdgzGp6dBRKx2sp/74rNBWa5Gh5GPbZWSFmTQh7xgihMftEoAUDv0/laotQKdJmNMv/Lfy1nyQvxk+V6e1OTLjvimFG63whH03QuvE28t2Oq0iCEnYRP226c11iKpgw7Cg8cj82nmsGV7Bln2O3/N3HTr/fvPeOyCoOAF8U5aV9bV5TyD2+eN8Lyzcm5IVbkAFzr5txzgxG9HqYYjbn3paHfKCTR7YIPmJDHKBvQmcwoVSqBvnFkEyQD5fUP8k6wKzW2JTaTF1JcQi9ejR5b3ugyUMilO1pyHHVDAUvDp6IA7owPAxLRbkxta8nqs27/SJY8hUUHTWVRe2F+0IJNmBkvOLrgGa64HdBcf5fBBnXWlTfYbdG3SRs8HlM/oCkEJLYFjGrCTfj61xjRqo1B1nj7UR4apEUZtXNzCjdT7QSxv8UiuiV4qWC2z+PVZs7l4RY0hg2G91dhzkcCaQxD8YjZ7alxVTzNXrVso7U/vYta7OAbqoGckz5HA0/MQrJh1Q3Pxoy80aCrTM7nYNn5aGDdIyUtDF+h/Jb1VkJrblwlqU4nAOZAk3IQibKnyl1TV/e54JvNvefJh4T1DRmcu1reBFg2LDq7p1S3DWng/R4StbE8yF5PuO3X+YiS2V8vAFXmfn+6byRdgxhHDNQVpPmswXLRBwjiS7dYbLzjIeRc1DcF3wGocfKacEv9HEXHpdNCwAZTd4dtKQNFcKAqewvpecpwcZryO8A+ceQhurJHC/14fNLSyzedy7BfJ4PxsGXvLfaOXjlAD129crkccEwhxARCGXiiaAdhDmZ+Cq86Txttmq34tMGLoppPw5uSWOLqyREPyqnQ1GEZ25rfWJismkf1w6t1SMkk60nVqEBCydivPaDm95UY89Bt9y9YNwKgZkNOBlMTnfcxLiKXxvzrDAL3RNptAtfYXgZBfMksE7Mo+kjVusNei9sAC7FsI2eHbGWQRhDMLfc70nZPnXKBS0n7AZZGL3eUBBZKMPhaPd3MBo8aQNLEdLzXT2YquBaEvZ/QauvnrRinC8NiAVtoPYnk+dc3Cixe09pdRiveXdk4Rar+G2GTrlQ+2yGu6TNDoF1vXX1Dshofd4AHVgS1Zzq0WSkl6fXVfFJQi4TpXGOa742P04onkgZ8mn5riiN19IO8O/saQthABXS+B7DXK8AYMHqlf+fm1+Riq7rbEHnhmBDll96/bkpk+wMGhvthoXvO5YtcZ5wp0n14bdjbArfCDt7UAGN1WFY+vuys1t6S/MwAl4UnWVo8TJP7abnQEdu8Z9jeKx9Vs470J7W+XRB5IDi24nKqiK6AGGCEUdpj7dCEN36TAk7mxwpOcvXt8T0R34IsyoM6aIRu0H4p6b8th9cLz9aqk5UxIFsuXG5hh8m1/2YLVInVUEybeS3u8J2H2PBrXMu/eRyBtTw2nCRPXO4KYbY6DNSgcT82cqXhwubJiXit7kR4aKZgtBPSk4VgkV81eesuCByRWh22n3kG7XVTyLzFAcnXK2q7sxr0hRHYBXNzeK92BYqzYlKhmYTmsPPb8Cr29BIMW86rQoUagtAfSpos7hRaYIStzlaR+COMF5G7gKJIqrezHB+BiiswxgetVl+Oyr0eLrSw8QgnCGrrAljvDEk0Vmmrdw6o8pToCuxvGrzVf0OwqutVwCr3Gf5GiN+u83frBXcV2pNAVV0thSfeXhwreBCOKGThtnQFKu+3YHujb8hMb5s9Sb9r68mxzaUqU9f6maWlSRFwqFAT0yY/rba+KhzAeqW9mM6CHeZz6DOkLVs9LODB4y7hxAGkNbmL45ww2lMGIdbagHDj85l5kf2wPOdeaUzv333lEf/CuoBJtwo3n5YtDh4nVWjVxG4vpu3Ur/rtvvxRQ9gzFYl5EElKN+EkBVAPURtG08e7v0+NtSee+v3XmrJ3M6ZXsRBIeFAMSsxdaOVgU92gTzFy7dEKKUXo7TtPJmHLL0OC8pGT/6VOOuJi3h+o75O/Zccrx9nUha62c12PxymOuDRBnsM2nEY3ePmGXmuArX33RzFHXdLERDZxbvSVhfTDtTCFhbtbC3pKQZjI35dAhECwRZLAtpjohwOGWFYFAlx1gAWojDBi6dYZkORr3Fspy02OP3eMOycfcnYTjgfG8e6ZtNlqyMwr8Uky1ij5enThCBmVU6p92lHsbXfgPI7LXHY7iSdjGaKhDm02Q6ClY2spVo8vFioROUKVtC8dRzwm6tGZpxFrM8KgpMxpwCnH0DKZfpf/TTyRoscvb+EziKZEHZS0EQCkyvADp7xxuTyWd1foNzi6xjPs3Zj8iQPVH+bvBKb6AbH/Fptr8EspAtmlB47AEqyrlfS8Q70o9aonGB/0qQwR8zOszOR6cZkoT537DpRNALN9pQDi+uSaauPSDVRhsV4lAkipJ7l6KY7iTsup5bKd6MvORqrDZNeiMPSM7clyGAdTiw7x/4f1SARlJt2O70yUITb57YZQztypK8Sf5TkBEROX1cwKjDEJl6BRlawLJxZO/ln+M7PxFqnd9S3cKuikxJ2qCXIsR/jzNtfkaW9bt8pLy4JsJlR1MYGduM0VUPPDVEHBdLJ8kg3ZIG1QdcGbdL+sLPVtoj1MJVOitXuNn3zBGB5xNc3JU356ogQaDbxCip8+5OZdiVYdv3Dx6A0p+8CHW/8BTdDIRv435VxyCbNFzR6NTeG4XC2Jv3EWkqvASVTgEdWGm6nYRI5zwancVxuZhlokJDqYNQohttxbRWnKedTK460XhuRKGHsBjn/Bg6Wskc7r5dwQ/gaEkqahr1kDdf6TJZIE6BXKpGxZ2OIzGZjWl+dSEJtgHGj9aX4GWYpN/SydQyoToMLe574Z6N76TguBbnxtGVnEYkRcu5a/HPff42BKyWPHMvAzUxRbK1X2ZdgOKtKB7ANmR23YzPqxM3Gt/QiBsN8Ix/CeBwWVRKuWq5GLXqJOCK8NISwli5xgKsc03C2jTJMvQRarzMIjnRyR6Pma/F20h9CKB+nTXqlWT+h1HRHSp7V5wrm2bi0TDAUzAabwW9TKn6dZ8HQZw/TNKddb8UB7rZl5XDaB7D4hIxsFr/Nis9LTv5YG40qBXz1UN4/ywa0p5uncdRxNjAX5zPy56VMRjPGodSX8EadIJMcHp/t2ZAAklfam3HmvCRRgZHmNagvssEmG0Djr0FDgMFs55nt/pheA3vOjyorAXYFlaod4uNkIz6JCSvNnnTxcz+mblwW0HWlZVDyV2/oFH3LZtck0rizIUT3i8xBnyZJhQqUFtY1XbSeuzR4+uEUVpWo0qkjT9w2yn33e4Qkr9qOHUy4Z0UFC4pnWWsKnP65u+aLD3UDM5ocHyBHte2bSyCuW5tB367xQP+z5oNts0k1YD0bI84a8qWqj6N2Fd770vuTr9EPZBzWvFvvbreXK2Ml5eqWPp4bXvcDhaOGg9rVU8o+/QWRqB/XcLBqHDVd3ncqzc3y9r7GYOPVp1FcfelWumRhWwDvPmerOIptK+nYeXQ/+NBHLYtkMxMeYODVYugUSjntpFWpRhAXZ0RKmlvKj3VDqRHilBc2t6V66quLGh+a+irHqPSSvD1XILb0OTZdtOqTlVBiPpX9RAd2+v8LrP0Hs5rpYz6/7P2T5wMd6l2qSAZq/XEnT205mNDUb7utXLkFlYBFlPGrrqTPgfUcYqFd3+ZrWkHv/+wnu3hy1kyfZrsQ8BrvNEcWX5SuhfLK1MNzaFajkRphO+TepBA8+lY1T+rT9aSpxrfSvjp7K95G3lvkBDKCRdZlik3cSPggjIVcdKTQMjUDv3PpbPl6Pi5r+/DQhBBQcvpzN9m/4Bj5RnoEidLfB/35CSBOvIUDL+FbrLGh/Y6vaHO3xzONDq/X+Pi8WDk3OBJbSHCOnVSh2GpIECSjSKrFbY+5180II+PIWWhjcYZ1+57WSChB9zqhZcEn3AJJP8sgGMDG7dBjobFzTEbgtcGgJ3lEGKtAqUGZQL55EwlGGoWM+ZDReH7tO38kAZUUMQp2y8xuXYpB119PlqAMz6zJ9BpTIjnzra5vIsUYCmXwPS4bsGzIG9Uk7+W26fb2GNznKC8R7JPIuh4Q22g8J/u/BVRh8QqsoAlN4FnNbdq4OwTIF2T8Dzmbsyby47TCRYphSsGSLA0EJxUn48+EBqNOg1ryfTxU/7J8nxPPDpMd0G91/j/WClRjeWV1IrndJD2MgYlZd9V4Qt/XwUhSwGZFCb0z2enObyIIfNRGfn3khV0u/lCAZP7Fx0Z2QHZMXBZmFXzaWNUPnCRZUsLbbzi04MDmBKy6/ctSuFOu5V5rZaaKnqfnZWor+Wn8gYjrOynmZ42MdKJRrknlIZMHh6R2JFbKOYcGkiuDVhr4f2fnS7sJCqPIZMPPvFE66U9/eUxtrw++BY7ScFqfXjQ2XE3D5HVJRr59asoHaEb271wHV40Gfa/2D+HmFsVug+Af2eEtHG+TBDIR2raySWD4OXHDx9VVhnH0dl+BcIyWKF+Zehj0cbo1wKRnIxsrQU0lDb1FQHWlHiVdVXHagM1nd/nIMpMYiAQPpOsig4JVQyd49eKSfdnSCwoypQQB4N3B0HAtJlsHjSmawVK/Z7oz8TEbS+nRyaU426cEj5N8FnkxHfxJhHChZUgXGsGG6qfkP4WBL0E235TVZK2F5fFynZNJfT5JRxvWfExuCAQ5Bsf9fW1/KHeqXH0b/8XtlBa5X0sNzC/I3sEBF5EhdO8YyHRj35N0/zFHP8O7Vok0E1udcIFdv1FF7EnUNMY216s3/3yXPUKgJkNr4LZG1Xpf3qjNmsTilYchH8sOxtBOfM4SJjMKAIUVLmG+mhaOFDaXBLytRzy9o9SuEKZCR9+tgHK/qwycUWeCx4CAdqSKQsWniJxVEpc/iyBNkDLdUV/MuqNZam2hZbW2vpuyZaafz8CtHSMQ9+SDh9gsdx8/YhgB/YqCnYm1knxQ6VG2TAPXBOCforDxr6zLRzmM8pWGDX6+x86HtMhhyPsEyHfAJuZKXDjGBV/2TK3UDr/tlubQJ1D1Gvn06f/ZLs1fjjNzypdKccipOrmNu3J6XnTsljzgCTXDdYx3rRWWFkBeFt3r4SW0O/1grgOVHbTnNdlWffHUZ49nUsXhWXE3iF8ojXGs7XCIY6Y4V8QUU8NqoVgXPhmXUUkdCb2wQzLK3e7zQrfQdsV+g7q3IBCjFXhrRLO3MwxD1Yk0C9Xt1MiW/4CwSwrhXmSZujv3XKTOUMyWDIoOwuR4ZnGlYoXwitjhR86ltOXfDThygRGp18b5cN1xZxFepji8RZ8dEkBJ2Rk5Fv5OhTad0t2cqAehksxvjLJCrSL2jSdkxh6hZl59D/HU4O+XAbQxOxDSuLZxrqHX4QW09KJnDdF+cDSPa8bn4oFLV4uZykyiUN5SqG1w48XD3UG0WNAfrHkJbrTXt2FK6zsSAJ78e3z/ybvY4A55o47bzRrsdvrJFFcMIQPbfffzXIaptlvsa4dxDEc4eVMyCVB4Amfp1JwMlUbzUIgaERqNAzy+yGK9q7MS1SKqGa3ImxVJ6Ud/uYmr1wUZA5IgeuUM8UAhc+BihC/K6aArC+t30Ue2yR1pgoTnPbcXkih2WrTPi/ZzY75jcPua2pPlSEvv6wP5QnK3FQbGj6O1m47Ph7UudX9bMJg8UfxNFV1xE9nvoXRoZu9uZNU6kneTLzQ93A21Of695pvvW7r3d5g4HGrWo/oer9hhv5TLCPOTOkBVEnAdUoSplce2fHBCYSthu2m2cATv2hSvCTK9o9vguy0ex0bMza1L4j2l88mBKvhk00yYDziQGt7FKj9/lb6dfZesXQi4AlXix7XV016HaXMcf6zJCcqS5kDaEH5usJzh0QaP05CA2czDvql4hulfrs7GxfgXQTTZtKFcjhEm5BTUeNnh/Rqf1wpLYeTou164XJ+Slwj0L6HUFwPsPp8HblPGrb+E9U3OJGqyZiocMn6MFskBkUpRpqjBhiIo5WlhCDFqX9lRJtLdH/bAtpAfZMQo2+jz78MRW2PMAsiof8Q+fvysp2ENJzFz+1+2eCdXF2OEHpUVacRaWIpJV0w82htLLqALuGc7DtFZ5Pb71b8c2jnK2ZJQ85GXrqD1WdN8qGBLlyO5OC3etfvRRFhMWzLYA9hTlInAkDwfIngrhcsZSqYFBnw1xBTchZd7bhoSS3vW8vqvxc1+FlLFP9aYh2r5E6LtzQDbRb3X3du2Dv2SLOWvUScmXPGfNYFwsfzcM66jzuZzoG87kFmK2Y8l5324/Yo3k70D90AMDb2O0g206ZEsvVSpqPcVlYv8nh0MOpBMlqqg0JQnTfJ8ILIMEr1kgh7/tt/IL03ADVCreTi2D7eXLxLDDrVguyf7BNuBsYbUhpo8XR5tg2cf5B4sjsDTpwD8p92R6ndZ+PBYCRrYWaX0pElb+Ptxoaor/vL8LrG45DJaU6xcOSwksOjLmy3d51bMC/nzpy1UeOxas4kYn8mqcvGTmXOn7AfITxF8MNu12RNoRSg71E7Y8SewQqUq+ie5pPjekjIcDQn0Y+9hz83zfWuthwOanCe/D2Hv+bCXBeIdtz/rBZKbsmCsrMwAsr1blmEGO/9/P+w8yZa9Z+p0M+72efQflKoKijR7zo1eLAb2cZqAfet1+555je6f1t8SkWM/HVj3MZRmDsOOw+HyabLHPVIUSVkfkgkPu4k9qWTaJeEYYNWn8FsiCq4C83RucfkcSBecHc1Js7ddbEUo1SAMv3pQMpMCL+DQEUjypwGhHSwxsCABmQQwCnaYD15lZNvHJLxZCZzgoaX3PyIlaoNzmpgjjZ7RwSmRBl2u0V1u0vEfXde0LfFcll6LI22Or9YpLL104Ela81etfOl6GmFcT4GnhyAd+aB0gHz2SOuDvMvrXq3SKymSuvL20X9HHF0KpyxSRWGBV0noPpT2D1i9C4q4gVJKLy4/LLpwyeS9fTi+21dFBz85KsKNF+Et3J4f5PDU7L+AmounIj+LwXFdiuCczB+SWrpJOKk8Gbpsy+z6u5zL6jsY0liRdIlLFNjjgQ9JoxD3DjFoZEZVCGZ9Yeo1nu07YKBngp3Xf3mTEd0fbTMdQo0ZxjglsllDj4TvJM91TaFwFfp1vroGRcNVGrgWPLj5Q3K8SPP3vHXU9VjY97fBm+uxot3wWZglrdXixfW3JjTqavffcIcm6v5jJ9818i1Z2Wb+Lsf7eH1xeDPEo5ninBNc+I3fvN7N9DH9j9JBiS8rZ5J4JVDsvtAvjgUsoWVyYx+/wNpXbfzUIMPbMlCd8ZfSK8zXQ0DQaTbkA4goFXufX6/sYpS0zUkqWucKseY8VbE8TdG3qF6AbICxFUMk+QKj9VdcD9MX6tF1spFizlFcS10a2qMfsP2POh7aAqgQ6knBuCuKRe3uIay5aaOwrFpUiSDybcIaVJu7ppkjL5+yiKpMrCVvlEIphc9UJgp/5Hs8q4PylAVtqUDK4o/QORGQzSXOqRLPIxqYY/RkoUKA1Me1DH13WKX3uXLNZQ02C8wIhOX0svJy8zMIHM5dOxqAQVQg0QK3KIA0Bc52zXn/TG6mAKCq8IURzcBgP8i2gFwQPn8EuTFv9Fh7Uee2iStXKe8qRCQ+gtHYt8zwKAuGwFeESYJevWnN6+L2ipGJQYT4WXMdas8dulP6jYEWD8orEPQ0muQU7tciRIYE9r2cykJ6fP56n7GO7UhBU/xLRpUsMfvbyn0UXBMZmnRPFVYqPfVwn8WzONvV+AHkXsE0DlX3SfyZS9hfqiFKbbJJZm7COs4plmrG8umqDxoWAbMlxp6Y42cryGehXkqA86qTCDHrk/PbtAquIgsZvkQwLVRPwI2DXl8SxKhrtE87NIs7PxG2nq3epYgOnjqN9KVsAXdf+LkCn1nHts2P5XqsDdEAWiYjZAK4zyEK/ARdoGjiNoDRuWJWI4hhZWWjXC0WLPcSgQm9GaT7fVTuJCWcOTSgTAgRnJJG3vcMD9L2JIs/l6jLRaXmPfu2FL/Cik0fhowfnyrCwb20TxuKF97gFIwFJEXvb6fE9hqDPJB+Zb/u42GcjiLE9MiiBkSRhuGmpGNXd+wH+eOuL0T2NaXASK0PMDgJa6RRigdt3fsAp5h0x0eC4qRhhOjokSDE4AsqyIZsVMsHxMYgIAILpRi4gpU6NzC5sw4xmeC/Izx6TGNeczVRuGMqE947pwbha8I8QG8sNTSna7S93FXgGP+47KremO7T2zQl6u+PolzSH/DmEQjKUzNle2piSoKHmCUhb2cuR3Vim4aiJYPeaTkdyR1g2Doujlo+faps0MyjbUL1xb+mmG1nky7kX9okfT/kpmbpEDUnGwER7h/9may0t6bjCLJIrWDIhjDSnEWs4ohbyjt32rhhZCbpFS4ZJeCAfyRFvGHDLQcFljrb/Z3ulgTPvn1KO9/LOIOV6jD
Variant 4
DifficultyLevel
724
Question
Minn is 94 the age of Jae.
Ari is 125 the age of Jae.
Minn is 2 years older than Ari.
How old is Jae in years?
Worked Solution
|
|
M |
= 94J ... (1) |
A |
= 125J ... (2) |
Since Minn is 2 years older than Ari:
|
|
M − A |
= 2 |
94J − 125J |
= 2 |
J(3616 − 3615) |
= 2 |
J×361 |
= 2 |
J |
= 72 |
∴ Jae is 72 years old
Question Type
Answer Box
Variables
Variable name | Variable value |
question | Minn is $\dfrac{4}{9}$ the age of Jae.
Ari is $\dfrac{5}{12}$ the age of Jae.
Minn is 2 years older than Ari.
How old is Jae in years? |
workedSolution |
| | |
| ------------- | ---------- |
| $M$ | \= $\dfrac{4}{9} J \ ... \ (1)$ |
| $A$ | \= $\dfrac{5}{12} J \ ... \ (2)$ |
Since Minn is 2 years older than Ari:
| | |
| ------------: | ---------- |
| $M \ - \ A$ | \= 2 |
| $\dfrac{4}{9} J \ - \ \dfrac{5}{12} J$ | \= 2 |
| $J \bigg( \dfrac{16}{36} \ - \ \dfrac{15}{36} \bigg)$ | \= 2 |
| $J \times \dfrac{1}{36}$ | \= 2 |
| $J$ | \= {{{correctAnswer0}}} |
$\therefore$ Jae is {{{correctAnswer0}}} years old |
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 72 | |
U2FsdGVkX187vzCQNoMkfdKATy1fExN+z6tJoUOHwwi2zCADmaci2o+IT8iSTE0k94RVKSYVtcoZGKIN6RRUqFqBhbKNyuuXP+c4i5jhATLJCYWw9tFZr998Dl6zUZ1l1jkw/wk75F9+iMDsHaz+M8BajN4uwKuUXFLGuVvZFG6PFMXp0CFtDSw94/lfUdUsDNwTWV1JNyqaobYCLpLIP6x0XzsmtPNYmneWE6ZaEkRFN1u/rQ02zwiTC97bUC8SKDRXgJuDMDpsZlGINjImSxMKUFsrlVUCKOrwZGO9vyLbmj9ftwQfWzFyRRIIvOBrL6UsO9BND8QAcJwGZt6EWQuN70Iksib/AGsQWOn338xvJ8cEP8hDrk5nVaDuwIucZ5mQuAOPuG3SKl+8/HB6qOGS4QfY6YsXH3uIG0E4k+4a45AOj1zn3f6PR1Op8cYLJEpWIf1FI7cdsy1sLaOEaB8iXmN+XBhS5V//z3SY8JRHEAYV3YtRXdZ/AV014D4AWmu+SQi6qrVVtrqV5c/IhCy9E5/28kQftIqVAYLETSxT0z4w6C1PA1b0Qsx2Wn5GYOAWMwFcHEP1D2SF2RA+hcbYiKu/pVG187wrtmCRckv7WvBiH62Aa8l+0hETqjJBC+AK0nxblo6C4tdr7E0k1ABtv0x4pSXiGDmbAu+A5cfHHnSTUdm2+FxtiAW0Np98cCBEOhyypfIOksg7m0vX0uk1Z5kRI6fnGl8D9UqTmx4gCb1pf+CYVRG+ULmcewoe4peULPZYrDrox7jHUpe0BzbqtbtNGR5Fk7puE6cXJRa+Ic/z8ZUItPCBcL+SMda4fnLSfXHo9qrIvY411y7zxy8/0D7nBkM4736lj/2A6guRWwBXPkb4QHY5Xi5kOhNCGRoBujdw06Mh+vZHNTf2/3BtORkGsYEaSZ//fHMm+u2x/V0L4zHbesNaCVhD4KXaBksiiLKNeFeW9RrCLgL6QtlWxb41vb6u4wxwiH7/3b98y17jcF9MMEj03FBx+KpkpkRj5yyU9peA9Lkb6cKroweYPOp++O4c2YuqPGKtqGFuSjsAqvDEFRDs3jK6cUI+nCAJ4I4b6b1Osspl9/EKtjyxVu4m6atNIY80fScO/aYhJtPC0KE9dVAQ4FMrx8Twj+EFBR+qQFETYIkDyQ4dcQ3x51BT1C4j5uoXhTN79BRMxFxBZydfk1KorFxHmyNRtQMPxIh3CDXn09y5G8xaUGFja6l5FA6PQJ/rHF0fASzGA7AB8bta+GOSgJBcVTadUa24MoxLy5Nq7jbwXtDkxKAh/YpR8fBhmpq9pfdniNmsQv8zoCUjQHfA5LTO4XxYq3qkhhgyklgtrbpTblo0wJdzSVcr5meSbu+pYH/q+15M5zSRmVyVBXoJKbIMlUnArOp/igRX0yIZBhTTU7dVafn9AwSKPqcN3eURfShkAUIUmur8CxCCBb6fcOFbL7ohIL5Ji//MoksL9zbHNZFm4AvzJYyfwW63RgX4UAM8pElBkS683pH4duN8IcWghWN+hfAOV4ZLajbwKKHPuovUwxrxC7oF3yHvkfFSkiGEzZZn9/sj1GaDuNe+PDTgmsjpwtlB+4+0aLH18eCg0Z+Yog5E+QmYGl0GfNKg9ArWFNwVN//KVeeZD9FA5k178+2S5uygYB6xPsrlluHbydLixDBBO7yciVmBfkUolqysm60RHAgbz/P5S/+Z660b4X8K53yiOCGeAYgbtbba43r4rM5TYWIJ1LEe2pMOEvbXVPS/wr5ZYmfPvvnyUgxJUn36ksM8cLRhoZ3AYregWqDTX8G1VJN26J1QtNHjVEF6lkMoq8UzeLLhUYwzll/jO7gvDeizXkO430X1VVLsIJ7fDibfp/0GB92ic9GIEkmb3GBeSlUOnK6oSTFml2PnWWU2li+gIbdAH6GXrTXBV86W/RqppQB+Vx0K8fAaq69qewdEflB9DlWTjv01+nicb/wtOZGW/x8XEiWo86p0v4oqwCKCQmuThz15VTcMPR9EMt2urflz1mt8+GN+1VpMY/88z0HcI8z6IU8FKe7p8c9C/v+ZBf3G8ZXxUl7TptI3s66Xkxr4249KP6JLAx2UahavlagyKLb+Fmq1DyWLVhuUcfx5HzJ3l8oMekzGuADljKTfsovD1eFJ8TR+rgEJqIuCjlou9DWbqf1hXcOgonhbeqLTczA2Fd260w0jz6rDNFljBKe69jDbOXWRK1zwnHN/s8xFHGAO9ZOBctFPDeaFF8O6w14uQOJfcDR7nSQoU/08K+pW3Sns1pnaDEy9u1Pmu+38gfgDQ408q1x9r+CGtBXujJclc+jaanR2VPFhZmS1t9TIoN6IWQ6NRyUwfLykBj5RimcEJnAedpkUcGqAr4NMidfiErd31lJanLpMkir8zrbEGwR7XwFfDCmwKDyaLpbP53oTYLIlvUdH+OtXYGwP2OpIMdhm7TDUlZhmh9mbc007+OumoCrphUPt3bihythwntawL2JEDq/IVqNnAmROy2E4cVT5KbJSFRWM1tLHnzdsEveinjxYhYMGXhtFIuPrjNY7kIgUpQ7tBMNz1WkwdtRQDrFRedLEbtZo/SYqidj++UpPq9jWGoXTJJ2FJ1TsBs+k7cjzCoIwrd9CAXvlwtcgFmNG5KmpaXWtk7whU31eESbenzloxB2is4hibCrcoEbQnKusIZbj09yWBeyjY1aTJ3aZZv16zVtrfxLxVuPtzhiJPioD/HVkC4ldPfbeJggpRGiyvvbwes2DMn6GGOnFHNUuPuB+8Qb0yz2819h3cOcDwu85nZ1GWuN0+Rn4wy0TB1wxjrLGKLpdXvmeMDK3HFG1t+LgIMgUdBB4DPi/ZWvMM5ORwckIukbD0VgF+ZsZ72S0iBaA316JS+3nohGCjUJyBGEgD6jU4tti25UxnfPXSI+QC3b8jJJxxlEIEnJtKLtkrE60DXiqVd0IMxc5pdufTrZAIHytTfuRAxuLZAFd0ikcsMMjmlfto1Hb7+a90fAlYfk7GpPVGXl95Kwwb00hZg2TTpezbl6MkpEHpQoW+ZcwkjTiMgL2NSDc87v/q0EZdkQ9cH91PXmj5F9dDfCUd46jWbyVRanxQUEsW6sTQb5/X5o5QHK9NMjpuxjOLmFy4UpixqJDpkUk7W5Ku+J6AIKBbAdM3LInjzAYw74WWWa/1ZTaZEZfjVQLvQg/RBtBUzSFvX3yl6N7xvhMREsCorPl2b2l87+7X+XD4D1NGb80HLjlmPkoS37BS5LDVchGKeYt6afoiHcO6fWDoTWFYHaxS4iGP7v2rBDpWOMkPRgHNRU64SSovRF75nTZ8EWv81/1llhUfkN+vBqh6Cr2Q4POdJud6jvQv9/yR5/EAHFrItEzyKSx0jHtZ3Mlp1eo3oZ4kBKIw/YRC9M8hSHsLdKCAlFPwLoM2NVt+YBwdv7Pj3k84ntDm62gWyQMG3g4nbAOT73pmdq67vbcmDL+Me9tEWOU+HQeUFNedmD3PijddZwkLxGT1CADM2wDCN8bPW2q4lFUl1aCxp3lO/yg3vzZ49qDQxZv9zOHe2FvhenqjYi3R3PZwkCKJ5bFHbM/BH+ILC0dl31zuoG3RfrH81YdEDLSyb4n0qqzuw0WyqUUiTVcwpoYJINwTJyFUbwquYdZoFe7gxiKo5Uu10FJJfyOy54yS7foSm364Sn4o18iWGJrZ8N0vgwr9JJ0d72VGwUnrML3XpABeqdOnv/E+Y2jIaJsB3vWhAdfBfC8buAnxUBKAIEfgAmK9fPHx3PmGwA68K0kYnLLV2hwkO7/vDzjz7yR96H6oAwZjQqzszMDPukfsIl6m1xCotySZ6lYqlAZXIKzkKtl+k+JUGiv+H8KQmvDvy6KvF/U3kedFnsYsX/s+ffOucrc5DS+zMnJQyHXHbGYNjO0yFJr7MxYRwwEmzeSwH6mA9i3IWoM2qOcqdtOAyx65FHDwvew7LnAcJNkUmJWfhi4ICfFoV0wmwJ6ZrKFpTXk14pMi1bAx4eT3f1nUnBEx9IvOXEDG7G7Ttco3szfMXRglRUgcFw5G70eveYRHJSfzDyBshftgJAteFAB/n84wOGvs0dSpnFHgB0QHmIRKxKiryfXp9myxfCBTJ57H5M5vUf/lZzrqfJrGDTyYBBymKJdMB1h+He30MYOSE4JEWx8Bl50EKbaqb4FOtLo6Ad28kqpfFkQZyp0V6HDH1yJt1t//MgAgrKQSgM6eTqSXvCxPbGWz/nWmR0DifXGKKrf1IMr82pFJo0FVH3RF3jQ63EBoJrrqLetYO7pevfjaPWq/P1BvHa3uevG3PJ0Eb4G7Uy5RYXuqdKKJM8iKPQ4jJrX9GE9IchNc/H2Ne+nPqXfHqNy2Rr/B8rrEgjtO3SE9bxQ4B3wsAAC7A6dDuH9rrfXunA40Yn4feCUlbmff6iQw4b1G0cg41QSQ6VfcK4hI3NtK6nie82Oesl002wLOvPcjPJ49mECZO4P7cKLhT3FWRrzeCG7pvzxwzrDYqsXMyGEY3kOADRSmUjJgmnfU+wz5mMnwJwmRYr5j9NiP7rngAXKxGuElCfe886Oy9d2x3j3+n9/4wG41bdj21OpZL+9Wp6mbKTvFkNk5WO5Ykj/i+maXE4si3MsX/3+TExhTok7aSmseAree02HUcN/X1EBUoZRo09qVpmje14TIY5xcPCuBwNWWQ/bScF+yVQ2KdidV2W2cHnH+MerttsQlwi5jdJ2h35IxJEHAo5FCc2eeMN7WSujs81kzrLaHFx/dMyOMVBVeD27gklzD2SLM3x7YWNxyn3v9FxLzArtYmwizMlrb5SJrDeEgofho3r8SBcQBENer4cx7KkoRdTUy5Joegl3WLMpRnDKkMyJWptHIMlI6kzSSAoHZESOpa2j7hkedoBrMEIUTs5i8UC330NR8jN2frd//Ka8TNjaud5GZrgLzCtz4/S5U3vZDuYfjDsCHJ2qMWxcRqR0K4GYTUBdvGwxJehlMenxBLtN5TddPqJUjtpTXiUx8D8ubqKuz+WQdcXBt6oAdkCfJ5bVp8bKUuytYMLSuTZqumNwfUdDKkqZ1qSQGV+gQYvZ1xUJAM6kDmeV6zbLRaPfzC1yELq4zLEmNAgMDuMIGtqL8oSGyBpQRMhLzd+q5gaaYDemAo7qyBkwpg78Y27wQAkxbHvC3h5gJ8QKoj2ykeCOYbJu/h58WioS4BxM3M+n/tbiYgkJsAGSalu1+/Ij3QRf091NE6yEp8SsH2SmGSuUo3MfQ7EMIDm1PRhS8lKomiNc0ASVtzmN1KDgs44AMSOL4SCG/sBD9sD//A0Fu+OgvHOOTmW67KnZFtk2dhopez+HzhPVxzRSV/LptlN+Lmm3U9o8hx2iQdu+OYU9i/pCDgdoM/8dW+DHZ6ZBWXKAtV5vKMd2PBR8/Isg458OzB86N5ihUNZL1L0xTvEsEYMJitiEpO7BPBSj92Y/2RyioJ+XRci4bxtxnQnpelH3CSi58vYGHWuKgeizWgbTcgmllh2QpBZFgDqG8rid6lfjp2QNriIE4gaWMVuXJXU6N0onoAYNWgTXmeBvCMVBV5Mbywllf/bERl5Rgk3wIuK/FOC+0HnfvHj51v11Khj7Bl72Iu5gXaeBx5E8RFnvca7YxqyM2pC21xIZ7vAM0Y58QDRACx5nab2KP9sFVC4ijeWJKRgPFF4eisIlDBNrtjjUFU3Owa46KytA0wXbSmr8TveE//T3pNk4N115KHwICgOvQnWvKe000gMZxecFLGpOFMYH5Ak0qWKYenuv1KcgLeyZGFjFx9CXTEXyrHQ6Ear/SEAfkRYFWR+i08KBL1pq/7TpjcztNz13UJ+oBTeQLhADQk3+s53YfEEJaFf26CpJH2L9ZUpvWqEQvgkwfBmR5Ji3sJo8frBwINdgsgrp/VVCeYSPynB4zbYJvbPzD6/1UMD3e9XzImovWKxheqnzL/r3InOoegZY3cXfEsRpmoIhTxfWyg2EOaPFCFCj2nGzQsVHWUc/jvLtrfYxMN6NA6aHJnYgWun+aEi7UOXLlkHSX2BL3XZD4EmqR3X0cgA2p+4407EKi5ekhD3hoMn1V7iZYwx3pPxZBJSKjrOqWpszW9p4QmJ9328SsTgulW0OZIEhfIXxdO0GAXMI21WFNwISC6WGw9CaeacBd1IMPdl9pFKeA9e0Zug01jqSMuDVCe1xrthPyIoL6XvDfhMFRWNsfoks6fZG47XANth4HfehbpuzQm4MeB9yVIbIBynOVFgzTSMXzA9LV6p7eCdHCNVUxfGwCFQM9LfISoLeo0T0BFVBPbZXmYBuduXFuuJpEPJBbySJHW5+V12dHFqt0Ht/HI3WhQrLwLYcKt1lDsV8TbISu7Nz5tJFYu3tLyMCkF3SrWPTc5lnSouYqZLnI9g7gMAFEIY8getCWuX6EQXu4u8s3ZseKcOjU1SsUUYc7NvaYv3tYF60XbYOa16enVP3gEWoYg9kcg3mQuai6qcChW7HuZrfVjWnVJsTGR3D+rzkDQbdItW4hb1l5dmcx7V3gySTWpuS6qVj4vfvre7zYMzJS4sPftfsFEC7csgtqdtEVF+866krvSGemRjBhtqG52GRQWgOnkBt8QxsLaYG95522BtQWcH6y94Wrwx6nXkTAP36Jkl0KhUX7RaE2YX2QfuJqfwXfQTZNJWeBEtXo+93M5yo3jTQwT+fSHowwg6rkW8cx/15PL70Atb7N5PvUM8A9sSQPjEbyrmbWPgR17E1D/pUoPmozOWP3fQdn5qyAc84mtnqtWPrq7/l9fHo8RzlzSYSZ3xQHW/LNkM1XlIjHQYGhDkUw7qPmc0PxVU1Gw03pAL9pmtzzm52h/fHNjpnU6VxH9eye8ty6Yzz/2b0aBLygMjxhmbmLdtkoqBBNFwP8jbioaYXP/UAAOeE4xINDwOXBPUf4GXhAFGjJq5MgwlawiEW2VlW23Qu28koJWTK3N+VcXeRKGLiT0DCzHAByiURejHFb0kjw3jTIq4FV9YxSR1HFWz8h47YiBJ9Rz8BpHHDuvOCkQta9LrYhBTC0QuOFoMHYuVRQX1g16LCcvPSZNvqhWsHAU1LX/rL5H9kjaGOZhoPmf+pURN6rOsflb7a+V0OXKi7GWWM0MqnPfcW9i2FhZbhd7ICB/4Y1bssOa32Z9W8ZTsKA7N2h2RkJ5+r7/whzmDhncWxZy4iXmcTNY0yZoqaxdGuKXkh4aco2ZlPtbDBIBb1AZ/0YoVg5jeBdL9JxOfIZ2Yn8DlX99o+4Kng2B89zAxsfayfsWH1J4Gmp0NpoBFRwTWCuIYqUcWSp0Rc4fmDOupr7defefuFtfJdBZOSovP/Ju/z+Drwzak1+6NkuYMUVeX2q5EsVGbQsD+X2yCpPMU/M20jB42NHenpqWNRJCxq1Dtkkx0hvcZoZdocu7d3hEDkeiRsNlEuEhlBsVShF6/DwEa5S/+vWhk6yi4b9gZSVaEw8UdPPQcP1EpiHO4DjHs2XsmflLPY7K3I2hOpP0sg8lDjE8h9wbx8Yi7vAVKORMuqWZJGFbDSd/SZiGnY7Yyy08YF7sRVBgqqDSfkjCuffqiyl9z6bsSt4iOq+W+/S8wjyzj44BoNxqs0hRuQbcYtwD0OfF4XJ5lwIWFfIWT8+u/Z4RfuWfrlH+/sjkqQFiu9sAQXOwwh1CypgweQnKrUbWRzlq0nMkGAfG7gprIvvMO9LlpWDfO8A019PdX2fXpGLBqja0/3b6w/XurrZqoE39nwXoOQX0Ct78EP6PzGo2JL3O8XU4nBopBaqGhZnPQkm43RNz5sKy72MxyK74DOgoOBbt7MS9JLSEhFqoBtuOTF8iveekBWfQgbxbwPBrqrV/7m5AJtq9jgZmJ3Y91CK1Je3rEHAgPr44oLc7QOdSKA+Yyv3HHYzdCRdncACVOM6Ta7Kae3tast90X18Ja21EJ9D9fXqR3BRHwoKNeIFbqHvm+PViI22bVwQH1sA7kCVQQBRMMbNzLdk+DewHLgQfsjoGoRk6zL4GERSSuJgiWqV+bs7KhWpWC42Xr8NXbk2ArhjxDjJIqRQggMvJ7bnnuD0nXN9810f+YVh4xbW1bF5Y1HoZznx786LLBPCy7xozMF3X7Nex9t0wEUgbAwwXZO/cUILu2TJcgqV/nU+uSrLWV7lDZnvS04OdYPIuf3/H12IjLcSxfKEO4P1DO1rJn9TBfYD1Rdsgi48TXmB9vxr3iMIP0Ac3uNuDu9lf+N6YbPi1ndhC1hgBy+pXxKxx8ud3Z42ZZD3WSBZh6c0dlUpM7pYUWB6DPsDNVn6TdaRk70Hh42xquK0a4QYlCmsYKnjvqWYPnUEnlXRH75LaHgryyX6XoPUgWHwY3XNn11pcHBqrcTH2X098JbQtAx30IWrQ3+ZUFLUkbTvog0Ow3XfVvuFYSzi/cV8tDUTtTDcyxJ/ELgUyp+dNT1tuWtzrhtiVW8+fZBiP+pxKa0tkHtw+nz445AldMfD0hYiu7Q/2O7h3ViBF//3LdWAhE2PMNH62zcjioFrNdpkIXLAIclCd6+UBUN9us35Ve2DU5irrstiXSnO3+RLCoRbaRVWJQBpWPHytggAOWS4MxW32hjDj2sYdS7OAuO2ZeUHPWlESbU01XjfuZEm+ss5ONa44V3vLhKJkGjv4wVfdi0wj5ZpjAbyrvdN4eBgDPciK1370yp96ft69d0gNXdTRPzbjUKfqisgIpKWX4Bx68VNvd51nDHVi5Ai4o3SOJ8mAkH0YG4VYFHYoQU0MKqRjkediGButSwRi8m9SwfF6161Wtd9YqZFfZV4iWtOnSl3JOLGkE+viAS4kTgENQZfpRmv6CptijWfOsG6wHrbBrYnR2kmrssAeL3G+Hc26c+lCI1u1Q5LsU8OPu4JoYcMa0FKEmnqlo0CY+p0XYM2CDhwIepYMvazj3yPO2hJsodF3LplE5H2Ar3PxZTEPanyu0p8HJ8UCiJfONlivbXJIY2x4+QRPCTEPuy0THzVGYsyFTF270relG6MiWwxcq8SlD8+5J5I6le+1HB4tN8QnKaw+MzspqCRLi5p1APxWFnKcoQBBQlFkdxT8vduXvbdlimosnJ0aWczgGsj+VOcdOM2nBN3YaqeKbrMhEZoKRiWVs3Lru+810w/p0yiEMCXP8UCohHdTVUbRT1r1okZUJSzddLewNMLFDvvVSSqaCKEMA72Rvgr0/VbPmJ9YduelwWANnXdlhtlulW3xbO7ZcVqhpH2Ieed1Ir6dPIw5WuQ+0Y6Lf5LYzu2jzrcRTJtiP7G8eEZ5n8M2G26dm0fz1luX+YP3OENgmsJJoU25D5fHTnNjeKJaYo/pQFpIuQx1YO/R/dyTYPze8xYH1XLW7oUXdwGN8R2GwuSRjoPGLl5b53guinXKWtyVxT31xi2WPcOX9CI1K/zg97DhW+ouRyQQ/kQ8hAUS6IPxCKN1xs4P3EBq6BBtOa7zTNH0pftwjYZZ/y/Qkl71qAuJtfkRvmlMDqRl8CjUTXOjbL+RVszsb0GwhSRl7gPRQlYux2NaUQjk4zS8xB++VdogAFzAw9ztfbySPXQiCzIFdfWDMdDfxD+oOvGoE/kVYGRYjQsUjlRQNdCnNwSHNmymm8eEsIntBBd8PNjeP/99WEQk5Wl1HkkiapDpSuAoPpuqeKEogHMbbaTN9s9u9lwkHibeAO/d0cyOaY1H5hBlZcw79tPyCH/Kb5vEG6iS2E6wR/uRH41mjCD0NRIWXiMRXxgi3NCZR8KHf+OY+x4xtTQ/XEQXf5MV6gclrZUUUQY2xMs3kQzcDg/+bZTm9NYFwCCYo/kBqt5tTT+IjYocqD2CjUA3dEQNxAyYTRPP3YeSW5aZ/LvrJUrzWsGZ2LmQ5YzgtSiB2hFVX8FQbVZ5Seee30eJ3DreKmusEcWDESbKKPJFvAjpv5A5gRYt2tojEiRK2Dkt9OFG4ZqnDoIKL2VPkeLniQGFb/W6tk9l3/E5FECYYVP12fd0QaWAYFXkF7dVoKsZNnV6s9buc8itVLCywI2VBAOg2AHTERbkk+XkXb4Ai8Hm7PadULnCZn9HP16A2XppVBnuiKfvdOsH3C7CcWfMGdHOFYrSVh8+JMPv6vQMvnLQ0p/DxTWAK4UzOTifT8iG3UO1QmrKjnCp2PAhf6ygb3EnwwYZ+MOz79JOWZo6FSsPuZ4maxSLZWQbzfjLdntUjwdgCSlbCXUBmgwnZ7UQpvU37oM493iVn0DZ1UeKQHfqyoWo1onBk4SpeTY40msy9Bbv8feHwrGVi2f9DBd+YWZT3YsUFxGoMZi3/BhcnY+7qwKnYNvAwLEEbPmKQJEWYj1VNk9EUeWop0RWo9wLy4+y1qSEi/Iesgwwh2or57axZaydz0GS3iRUyMV7bsGAvN9oGRFzoM4oW9WddDlcGgJh2w7zLgfAxrXr6uid6oypg0QpxuE6k7/MCHgZUwfUkMjTevQ7ffGtffQN1ReyAdFSTq1Xa+a6Ec5C/dy6KPj4DyZoeulnq0pfh1O+7sNzwCfeBckjz+rorgZnn6ohUrJqUm63fbtKXqQS5byypQ/F/nGDfFHzAg4tzlQzZg6eH7p/mNioUrEDCCV0fldHED0t1Wz4AGupZEbCBGX6qye/r6/P1loc81qTwa+eWSE8WZbSR7OuUnF94oNEjmTG0NjDJdqE068fJmdXW6o0rTTj8kxL7oOHDS7kWSass9JItPH9LBT7i4XkgowF8Q6bpbqoqCEun66qwUZtrtjR5R1rs08vyNfjs3cRnr5p3VPp6ZH6ioZPiGPDdn8snkO8OcCeD31rG9B9Wl2z2LXEmFkuXkj4Ml900AZessqMwc3Xlonao57WuIzsKZXbQ/YS8ZlCXuG7yHxQuSmmI01evVdr4YhywD+O8A5k/5AWSKYzaKv+OPNXwyD4R+vqln3f4lUGMj9Ra/2nPq3k4dEHu1qS/Rr++Mcn3I1RWW7hHNCcNVdCh5lGqrnlYl+dV005RNSuw8xufOGQ8pPy0cwNJ+ljtJHr704RTamDIVfp/BRlEZbXpS4PejUkAWKHQuRJyLpVj34ejbssu4KRk9hZhRBZn3s1dIwoNGJFUhZfi6B71VK5DkJc5kmKqgaIfqNNAnfmiiaL6Qryf1oxhGjM/5mXvJUaayRwQ1fU0JxJF/+b6KcpSEP6/5EySPOpe4W+SPX1lEH9bDBkleMR1k/FyLyH2vYKW3JTCKgjfu6pbRrG2LP0sgFn56Wnf71D9YdVqYyZWrHMME76B0qzOLZhq5T7ZRJ7HdOLXwZ2lRYUnkI5Rk6+kWEBtkfoRxoYeb0J1nHPL3KKtdQHBLfMi+AjYLS+01MmOYGuhK4L+lonNbn0hmC0HzuXRgW3adjwyysx9KpPLWOB5IM+hC0QRQPa8WUVqS4byAEnzQonL9vKCdTaqgjVXtSfSov3+uxzPH4WHZaW9LyPMmC9DgmkZz2alFlQIZBa682NknQeQqEPfpYHfXr5pR9wvAp75RR7BDYmtTbZWN11WtuISp/KHB7zotVsVZxExoZHKaNhM+0OcvEWw3zXG/RIS1q8NtVKgDDxfwRrNGB3utXnsHIrAPu61GDjGQMWRD3d7iraLJgOFQudnok8Aj83pdQR1gHK0AhxorZX69QODf0crRsGCsgahZXx/D8Ae2kPfTF5/DQHzP5T61SwEiXIzsIZsWprj9HH0QQ0gtLcph7QQgIGsZH88U/avWsPpTxhrvNmfxQpCLXVCEtgao2k/GLHLLvsXNlVVwxutAJC9ErgNQeS+BU2jD1vHYb7Wf3E9EWajl1+4m+hPbhC2uOfAzgKX7U6gGonD5Ro3QUbre+ssE/V0bHBM9HyHsjIFPWplQmTZGokI1kPQf8FuoiCl+TAba9mYagd2IAx3sNVmLFN60SDx0yQy1LqgPQvojP7b9pZ+LfKZh+2p1Oj44rVIv9ksH6UpE22ZRIgIcoC5yhcdDwrDsRyidgvkDO07gJebB8wd6HhE1kaTg4us26bsadt0PevSdNHQ3XYRT5P+YlFzLFl8xtaNksxN2yy634NeezD1guiuI0ZTMQEfoJmvKD3SzfpgOR4ltGbgUpOyOYFUBud/yakeC+o8K1vZmDM3Dc9ZtRox26xumSdWlLn/+lmijkxCq2t5CuXVwja26OVUmihaZsCOSxcT0sbeKD46C2k4fmfAgOBlYh92sMl4wzoQ9bUMUPlGDTTB0a8CB4BLtobfp2IM6k7l4FV0k9ufhmIY6MQGhqddmrvT9PkX5zLBpLD5iOfnWVPjGF9pulXSoz/XDN5liiekG72oPDsDtbXL9JJtrhpHXdwcEdT1QkvODmSrfo0T1Au6Rn7CFMHjNBfHNyuHEOU7eezho2In2PQXCmXzrJx1Dx0oFWmpKPcKOzzmX+WmaqT1oGNH8Y0k8ynxEt8pv/9aK+WussGGd9i+1VXeoTpqj9X0Z7poZWNor1eDnitcuGGDTmp6KScaMZthcUCLtcnOumqJG8TeyEcZ8NvxcgpGXThUa6uU5pgpFKT+2II07B52fBHUj4d2ZzN1TbBkA9IM/jkNafkT3fOI0c9DSIetOpKD9EZvS2/ilH/Oq3qojRvsBLRnkcg5tJxEGJTzuw4TMB7FsyWEVWMp0O26wxRUBRivrW0cLahJI0NVTdG3TOfCVhh6BZdcsVk0dLwWpTPhtWIP/8HkBYQoSyXiV49a2DGOVbbYqGFH2nSkvCgrLWxAcXt1n09XHlDr1g1PSPgjlggQf+hX+csaLHswzSPhS/ZjcY7wiC1Hs9G358uTwiqUKtIIHxwZmzLGyHTXrEniqecVB22bAiyx139HYJe47hWGPggvCM7xRpyjys0jZ7WgMljqA1jwvjNzNUJvVabKWmXqXbNTrr1LSarrTEECP8rEVd6pBWhhIw2IqsjnyNiI/ylW5oKxnHoGA9+kMdjk6o8/yDls0ql7SlQY/ksJq4NH4AqMPjSY6j7LLJx2kQV5sOkJrnBIOkk2X+r14AzzCO8asgLp/OPFVxx7hjbJ6QOSHs34HS/GpQSwwB7eTRYRLYOAhLvUMQlL3jFKoxHjgrQoXNJsf4EqIjceyy+WQZeIQTwAXDv1nEVVcthBlHF/ZFJKLStVNhvPya0KM5r0BQYTselSaZ+l0+fkqeJX53u5+Au/qklWHJiFF69oeVU3Oe/QaaVrHJ2KKyk0JEZoCoNWdqexQy4bfb0Wner7yuTrCYqtX+ipAt8zVrys/V0AXNg+6F46NbokSA8e3RYD1czoRavy0hGWyUE/+WHWSL44B12vhvwKfabwdTqREcrVF0qBOpvcK9q9jLQKZsZJMtmgAa1z/euM97Q1ZMh+W0MIr2yatkTIzuycMChnZ3emvTDCrqamUGr+/NDk9uXgnBNCrSESTqD0Ll4BANODkR304D1ATRGlEqJsdJpz7r0JkfOGsXfRsRlLMBRXi96dbEf9r1+nRvgxZj20UbJVZ81thoAGaMMtdecrXr2TUSKYorbhhArbA21jojyZhme0utzX1F3sXvkiMRWQloCu3PBK624maFIu7rPOVr4/RgjKrO4zKI2q9A2lCPzAqOAveoOJefZF/LoPoO+se723dHP60kyheub5tehbyPP1vUDmtGiunbpzhIP9xwM9EapJ2ZwcfITv1ylm8wUXvLenZLebAOLTShE7+AJGNhLyajoAI62SgpYFTkwZ4yqHHpeOj0Iz0RPht6aFvc050lpNlx0+TjFuiFwJL2eR7B5wdaq2OO4br+C5enPfgugs8Fz46B+r1Xw0Uo0H9b0q/+9UuPinBEiBmRRvb0QElpBX7s2fQrGYM7vmKSFWsID3Fg36Z8/uDQWx47X0r+RlO0TdH04glP4CNYiuovynnlyLshxMqrZwQ+vpDm4duhBvcn6XAVKcsB9RElEa1fKanc1LBGcT1PqMZlCtb168e85YezLuocIlkCfX0KsSi9WDenEJJTS+lWPym9Iud+nLccy5M7poM4BKXmnjpbr86CpRQTcdTI8FWZqaJF1xszwm3J/evFbCmcYzHq2BGSyTEhjHNLI/pzevskudd6x9veMvtNJU2oUS626gybc1cvDXnAlfNkxoXPADRJLGvpISJpYa9FyRnWJlBrpCy94JasFTPWIczcKg8r+wIhMNt2CjXpNUaDqnyPPfwoVhe+1jeLfPKpnRcI4er8vUTSCy8txciESghCRTtzQowe4IMVOIL3jHuAbyzAEtPwk056E3QCvJdf5waK825a28zia9Su3Cgl3FATltkipMdxFnESzGUyEUlRiXHnAeEgD2pD/xAOXnensDTHUXvMb1KU8LhZ0nwtZTvk9ACRmpfEVpZd5w0rQY4GB9QSJssbFJcjVXmYg5Gt0JXKZG+xbtF1owH0MSlrndCiv92AVHLV84QHsflVUiMbUxUQ/jJJEYCnuBMZwaPbrt5xYZNSKO4UqnYlCeu9CKe2C7tK9UVFq3c+I8UHiHo5Cq/0aODzOfWaMopLi31HTL/FV8dYJT180XrhbB50ulkf6uJbmc9UJVA34vQupUkV3PlhO9edjtB1b1l4O8JtEvtFZo98KlW4kmiQiwcKcmKcEY10ApieChyhZK9T1jOz6YnFUCykxQJLjMbxhqdZYuNTxXc1uLpvMbUz/t0fO2EyMV3jI0rBjJFT5P1mA0/dwHREwsiClISWJatV0/889enqB4E+GR31ami9RTjPLjrj+zpXbmx/9UE5c7OLUqC/iQsd7YRjRbpl9kQlTiv7kJ9iXfHuCaSDaA4fxhtAH51TGrBB7YXBvDqqQj1truwNh3XKzNOQdjulpF/mK+B4SoQnLnFFBeYkskjEJPjWydDp3hpBCIZY9CB+QpsCRuqo6qe45kgfq2damrLlYIztbyBtRD0lBTbxiNV2nPhW1XdJVMvBZeXb5fyn0D8EouKM/PV+NTwX/Tt5YR0AbL/+Y7vgMmHaffmFcvHBNAU+TAhcCLf8t9kFKRIt7jmBefyBWVyZHYi71rz3Wqs8aSUGScsjspsEjuqFyY2rrDeBg2XrcixW2UYlR5Bsqs6byyljICr8hc3w92fgvqV7CZ+W9kTuk6yF98Sld6AZXdm/rHSmV1caiSmYif07iOvp6GX8Ljdln2qLEFm1RYIehXCZWN3dFXcF+g60FKWMkoRR25qucrimtU95P4QLm6nCNRsOG/bSGQG5BLWht9mInARY6hU2SRg0G1DhLmM3f7cXzVcudYuRNbEPtg25RvPrxEtmcbbZ7/+MSP7bhVVuJUiRD7H4va2G//B9/5w1kn3HCGfMXW4W11LqK53M7TO9lzy9D30vDSwJlFSk0JyFZ2lypmlkV/qiAWw6RhJzLLHIIOJstn9t8VLQzddd6xev7TtZXWtIwn4i7kOp5FowCEdhEEq7ORRGBqErNmjaSVLK8Bqpix7EN+FXeMpELYaqTkJzNckm8YKIDBuKkCibVYDSeUfF0lvyXVDHODf/533mUrdfkwr/ag93VVRXqzkLbDvNsBqhYrtjigMxiIqgB2eZhB+cLJriy+EEub2Bc/MMwDRb5egkgerfkR0UFWnaZ/RaOElNmZE+hnmye5oPDJHBTfJ0gbh1b8M3pdjy6mbe9WzjOYKqzXQhmMvu2orp9nDe6BJQFTo3JgylKiPg32jybTCs4faNb3Hw6D6/Z1AplTpY55TXtC8ISkbcqGnKz8JQbOIv0gmHbHr6jgeh1OCHMzmvNoZC1FW5Hl14VasM7TNBGWevvTHG5FMn3F0A9RCJ2ATXloHl7ABoB2UpOlRmgoQlQESWY18E5UZBYHgA/F8eun/+BdtXoeyEeosMAUZsJ+fotf9a34B9wY/Mcmh4pn7GGgIFqHroyq9wVXQk0wqboelNw5Eyer58erpb/zxBfen3HlxXX7hKoTISPCUck7ZNPdkMVLaG3csrvobxUQUzXR6Op+0sbIia4YuGJvY7eVYHZfffVzfcokfGGmUkdE+JkooLnG7y287Nx7Xu+F8toJcEIT+KBwOgatZcc9cBhVf6v2kGwP4BG8qgnnVr0pP7Uy0edBh7swq0+nZwIpKBkiOpgZlaOWG3ByaWHY5GeBhf5mtyzuOD0hdcxIZzMtO4S1taO9J4HsKMvsPCdMUtXXCGuSZzHUWECbCmI8sCy+CDEPZ5raYUcpYdVAVuI+Q5x14tktEEX5OQ8GdVlZve0Ig/pnQmX2T1vgAvHUbocNc4GdBxpqL1OoIX2Kp2QmTNurrVHMylyBbiR85AUTIpXIjWVo3QsBaTYgjaZg+sJ+WTgER9scNiEGsyjJu6Z+kqLJ5PzXcJX20JZ2OanurhkNN5Nnie2e46zYqk7+EgyqcyDYlywVEwfrWWjlWgpRQ8RooDgJBxdbMEXclHJEtJ69C7guBiEsL5iACkUmV0gYnW09VJMNTwUPjiKDic9bucbpA2r7zUxyk2TgPupZKHDiyyys+4BiisB/wkZWxIy51RoTDgvhxhLHMAOPYUGzepT35gBSuApnJ8EUT85Pudf1GJ/h3lI9YR5+B3gcFZ5Yp+STXE7CDcakHfRWxPDcbMZTG59MUZB1zKlVKMY/Dl85waXIb14nvw4BL/QmTxMvmPYDXYzcUrc6+grCHM+zS5z+Zh207LxayIg/axptkTlhgfq2+5JrZuMdho2WD88U1Vj4tDpYUz4pHpz0zAZOghBTBINsxc3mYsvGxAJS8XOy72utc2neu8GlJBf6HTMZx26m9mQx9/xmslP5fLxR1N6/x1WPemNbmFVxWb8h9qSGtn+zR07ofmlhCAuTUkVAcwyxz3bun0l60EM/qFuNDWiYNAM63im65WTR/Xq8ZUIPFhqn+cTwEpHLlr9ONknyJPgwObH/QmPOnkyEYDq/9mOrQIRnB0R5IpbSM7LofrEtlK2yCLHBVKvzLHXxu1eMNbr9JP+hfSc83qpQ5OCkz1xmEumIPeeg73RCMZAeHF/AhRx8fDDN7xTmzGtjDBejOttrBFwryeUtQ7yWm3dHwy0CrCeLcyGlpi0u9sMQq9nvRlk832CV8Z53r9550y8iSCFf6Su/dyJtv1wOlwuOWBlqerfqdHc971qZWBHPA7B4og6DHt/GhwJ/7hbEkJlEjua5U6TcWBfvTze8id0JO7ljLkrvenxECLCH+QpwJ1HUMW/6M9pl/tv/cvvKIZO8rR9+uroDm47QKPIsLKmSkwtN9ib8jry3hFCzbNtGyuN9mpgFW/mAtP06nmEdXvg5aU5HaO1stsE9CX9Kkep11eG5BVKHGJwNML6ICsSrBVczova5hIoBiB03QgN7vBvY17zDoxrot96B5rlNyVVfwqbA7M5IGpuCX//15FMTD6VjFWLqUEt8pJliGdWYAkXgpEcH8DjfBej+qA/h62RUobcfRDLHG8+BzexSZygCcpelfaPWIWDK9QnWmLuNbkK/PRxsLuHIkLhsHCmfGo7Q0zAFmG4aFYDRQ8NyC7192XQ5Sf5M91AkrQR/S3x7jlMclk6tLu2PRFP7RTrhJT4MjOkiS3SiRN6YRmoRJ+LD1+9MPu75tkunHXMAZsq8yhvB9f1yzEWcHT5j1c97eqmrPzuNOkzHq1Gtn9JdlZIDZDNsnpe+TxGn4pJUgUTp/UILF9S8MAkxy6hHfu7uDRkBQBA42afKz+99Np88DIrZJ6lTbo0wp/oioNJmQbxkxevSB+m07PRA5/r7abHX4LNFLC+XzDj3eeSkmvxukOuDx4moH0YKtbmTCb2S2ykn9zoM2uoEQ2E5ar1hZSTKVzKCQVxQg5CZJq+8B2sMRbmoFJlqbQe1AFO8bKuVYiXlKVyKY8/5wwdmEVNAz5zYT+P3Zzeindey9q8e7rz1jnmuIsd3yEWJNfIPiqHdZp4daOoLKX6x6zbBitJ6y0XaT13ocs5fgAwpyeX2wWMWrQ+27vDK1VdWlgeAWgD4IJ2vW+f91iyzfxr49240dTbbOGry4X9xe/tPbmER6OoU1KqZNyzuJ2q8TSzFBSiI7y05E8/Zt+7FPr2hpTGB1OADeQNcoM3WgLsUszfhSmCvDPqJTlY2WsLpRl6KGMii3JTNO4caiSPbhtlAsVzvT4Ga0ScViaJTkwoLVJrVjSFW8GcAGQIH6PplJs/PDLNWjhXymIsMdbCX5OJj/vnG2kLsMrlNqgDFsZney6Mw3GBKTy3I/p7r3NF+JIE5XBeqCSaXJxvou4RnSumf9vcFaGyEsMzntymzOQrPkFMN4O9SjEpjGUBPTWGdnq8w7qFHo3Pt18C/A2dez2axQRBxs4ctOGmVop1NTrgsZjPjsegQJi2CtlKEi9oF4i8XuqKYfnpM4T0Iylg3oJdFoBVRG795LdvaiASSWe4n38yVVKOCFGmNoEThDpq5/HtYYNRa+DTwbd70ntC48XtFx68ugypfBooOJcey5c+SqcdGvLMeRfFfJynl2iC3yCbZrCeA+bViRNEdKkghMEdtguypx2N+elgfC7PJIXbps3v84OxFkU3ZiGhW5RWivgsM2PQeRsu5rIxGElzxCmWrCWoLLp41wEW45iilLoTZ9dest2FEeZlpadwIuPmkl7DOkG1YG5XiIPvnb1IP9owcWp8nhuY9LlY5+72qOawwViw2qTA5N6+ZmyWpHBbgqVca/NBv7P4S23Y233G2EfuJWOKXQir8QopV73GCc26ujk14NMr02tPnZcjRqHlipVOIVOI2cEeDs/k8wGvvAsd5BbmspvtrJVi44UaFd4eRL3AvKzywYm2aq+XoP841oFcIw6jGrgfQvRUPGgvFIUUOwPwI6qURD/ki6AagdE0m7vpttElt/C1XLgu5T2dYVRudn7rm7SfDi7AeZFQEy9z6TTkqJpoLrj/Eti8g35xaiFpCnP1+WRBlpr+dk1Q3pdYzdP6kIUig8f66I1R/Nc8d8NltdMRkEHObGNSbtNbOG+TgWcJE3u/x8C91OXn4UXFf/idkXPgoS274tFOA2J2TMOwM9boIaVBA10vMGPg3wHS7Wk6VJ7wMmsFZeX68hP7QefF3hqRv5Q2uaIbpgWs0qVuvaFWLdMFab1w33PfOuWVCWTIcWsNGMVdcoUYMOrM7N/JSqn3rQ1+LVvFsTdOPPQYaMWGAs73/rd6IllCs7y32cSlQFERpocfLh9pmR1fIw9Gv0963f9waZ45ux9JG650JadMYq5p1y65cXlgEULSbIPQm2XIIG1QNY2IcnH3hZrjapjgzgFkStWb+j1PW3o5DaCFpodD/xCRGeEyVYyReAk2x1WvOFbsPhLsfmvRaSR69nE0I6LSD7kxE0kdBdFs0XIyO5697XLiVQj+3Uhuei4ucpwHPC/3e+PW/pq1fuPrnhUAE5NlTtDbPlNa3vR2pbhV7US8oaMs4rkvaiPcOjY6tOcyV5c+pY3fjewbIonawSkwUgZa7tQTT4Z1uUbqCWUi4lhXECCvb4X6JVMoz41ilfuv/LjQKL67t3jw+96ADe6/bZl/o2L9v4TzXrZNe5SXDJeQ/78rsAmPLGjQrZHSAFbujHVl2nxAikQl2p398saPFPACcw4CqYw7vfgZNp9/atBzKMYVtFWrtqhyx2x/HGkJ+G6xdiclRRAVxLT3k+hm2fiioLmRm6ftOGgd21Qc+RLiQLU1X5cFfqmwlefjWjZKjAj+We49zEQr+uFnm5EoxkJt3bpp2RsBu3vIaaUZ6TMq5wcGuMedYQgpWR/m2fAWUuO04pn89y8qrgHXdQNvHPgMBOM82AodYgHDd/FH279Bw2ipVJuqj9VcdZvdTUT4Ty+kg+4gsoZEsYXS7KqwS5xi4gQpptrMJXlhocT1VtY8IDwuYqDON+SUwYESxJujGm2yUf69jt0HOB2FZMqDE0DpjhN37YGiyqd0nYqPOCNWcFEaVtWbKsJ9RftHem8szP9nOHCACydtjvRyWJ8MHZZcRDPejZfAzcR2hF20Lyo6q87yA3Dh/ToAQ4Vf0fvYT36bgW6cR+LThojyp/UsVy7OytdvGWJyDVyIxCxJnnIJaEfuZLW1eUO8tPnMqR4jYfOx1aNPK8RuDrgatadwPF/pRuypdUz8MlWo2gaeWQRU9MJBiihtN2CdD0LUCs7jTpnlKkDKOvVe8NgDpQ4YSloLOVWCnF29IBzdBtTFWSgRzmDIhL+VHg8BZQET3cSkxIRpxRORwa3itr6SHJLlIy5P4BMm/+UyGR551d8Wy5ynO5B/4sjEB98o39k/TlUoryTtnoNh3nV7DBRnA5Wp59fENOhHBG3PZ1j7vj32QKSSNpjcSEcPO1B8SA/Rtif0ztoXKNYPGoDayzFn7Zy8oB7V/qfIOTFWdMD6C6TqCB9xecDjDkcOCYu48VSEBW+QXfmqkuLfSr/sn7xXNaoNMwO5pC0uiPuXJ5Jub5yf91njhmEPVwZeV1EhDPO8XKRNA0+CX5/d6FNE8t96B5VE4IT6BXinGQEOVIVypzUI+B9dI+hanuN0vWKjcnN8OLwCmL0UmDB/KtD0r+9p0rupD3RZJvIxAUcPZUkze7Vd6cymlz4dol/cXe3wADCgu34Bu/s2f6NFb4tR/iYFOGjFVWLAl4Rr227rPCw3IlGsCYM5PRFIriJRXYkd6dvhp+DHTThYXBFHVcmqKyvCd2qMNI+bR/2bWKAgCYqDXqgKqiIBJgRqQ/N8AfkvDuuk9Bzd/aHj/W2ZwZ2HZfczinS5G6YbZzvJrQzstR/3dkMkZwN5a4W/ZbAeQFd8A8Mzb2y297ng0TSVXnmidtRCappQnw9KBhiBNYXqj4loBu7Yl5DDMvlhjfQG4bDA72PV+D6BNpk3WpUxKPPmawMBaOYsbNqYuCJiRKRQjDOQjpozIHfIWR/C7vFOlhyMPcW6XGtRNNAN+iMWEauM4VnCgo3oeJhuHQEcv/SSDvIEtjeDn/Dy7xUlYyuDgtFMIpLEw9IZjJ60bc3yFgj55aHG1qWWtbyDc+wdHZoWFG2HH0aGGAzknXdiVyn7x+Y0T/nfPNclfMcRcF8e4f7LlQF//2wlWz0ASYam3tay5ON/TA6AUa2RT9Le1diWwRl4aohB4uPiwhcQU566BOjUJWGkDcGdYFN3NeWVKyn9fvBmV4zkQjBAqd2jv4Cxn50QWaGYNWCp8Hc1WOLyUNCIAHqm6Izpr3LCWDeu/Hd9qWxo3OzrRJ6hjhQlC4e0RSx1j8row25KgX4LEacN4BRoJq8LWqM0Xs4N+gvFLdW5tlid0m5PN2QQj2ePo5jlHUBnp9YhihxA1Qrknpmn2DgsE+GqY7yHiCDf4afVYtiTBDLiNM3xC1onmPnt4+vkobtHJ2aQc1SMxJl3ptIeoVauJrWVVZOY9x/YNpnPPAFiHmOxL7njB8OGcD1CMuDXre3SopfCfCFib6Oxi7yeyqQ1hp7bWEuWrldOqf0czaN1w2lcOzVqa9bC2N9cf8uxdowj1SqEEpLsCOtPfVbcVG1hzAkCU0zYOwELEE3U6mQ2tPm4L/vGHmOEHVFwgUusM7ScTVFD05qm9LaM+iGB2sqsAjnK0+Ld9RGNwYWleTTvgUMEfIoLc17LVddzrsPzwPjk12n+AFmf+H8F7zk6W3MVt0NtICh8bDrWb3pIFInJJlf9cAkQAEufO07sFXqgY2KM5A9qYSAp+e6GO3ZojdsbapChib6CUNIOGqnbwjFp3V9/xsdk5k4H19XfSZpCGVe8wxRTo0zP9ucV88t1tleUo9xuYWM/tTq/QAsDewsRw86buuIrgoE/7BonxJ8eQHnDBxpb9YA3soXp6uEBb5iDUdQb4fGACjIiXKut4k6aMb4YR0/JaRRyYWAnO5Dzek1imW6EijsvzazhxGZEBUSx0yMSNyqkdJoOCiJjc2svbBV6ZINxdXAs0LSHzlsnGbopaA44oGvisOQetGoJznLPz+/eUlnky4GdUBd7WXcruI8GHL76e6fC+RAWpLma0lOIlNoTzWXW/D+lKyI6Kw4PRF7AgLyb3Rs4en+pp0U5BE9ZbqRvsTV4wiJG/jCJBi4Ahak+KEBFpjisnO1x2PPiJMypR5L+NF+vGsflG9vHXiL4KiFUnrST5ZcnxoVfZZpd0cX6Mk6z+a/89HZLXvRCu22khJxyj/ZBd8N3Aq97NC9C0Mk9WKLI0fv7ivA9djjejXMpMRV7AH++9elRP2sVWTmfl899AHBK5jA9kXQgvnNaFAr1zKN55puUKkKS7uKZ2w/lTi7fmsSkiecByRHswEMDYpLH5Zuc2B1KlRk2daAzeCtEJvyh9Rp4gtpkPW+Y/Cw+coOIGgqWoOu/yHJKOGSsUBc3XpHWKLVmmyDKt7Ntl5BuhVcyA0LbZyzS1D5xGzxXvWzlwfKSIC9+O1u6LY74CSX2RLNo6NdKuS3qsZJD0yIgWyzJzUYDR3xjzL9Zu6J9KtS1dEX97KWtoYx8lI4YkESZ1OhgYD3d+y5YeH/Q4+Q0KT23IVCwXHaLZfCvJoRNZDbMchYho5NVGANxFXp6aMi9u6l8ZELZqitskVlL0qMxNjd6WNuDTINa7ydPcttG9YXZ0SUTrdSE2o53gNbfknXsxZQqDScWA/U04WVXMUpUSmu5/4Zcnv6/i1llZhfFNtqp6OCj7AfIYRPif35KtMgs2NeLIcD832iFB74kfzWBqNuCN8ErVjNsRiJG0tf1cwHWCg5lG2UFFUJAskaQxSgxkr7SUSujtNNj8/Wjj0IrvAzljpSpk0IuG7KD6BBEWFfmzgU6cy6RR77IS+xIZEtWHu/ZmfNHtnFNO4W5tOpulo8Q8qSgSBCYyivUzqrmH+XP0NEmRrpr4ZQ2JtXYe14pPwbLfaaaM9WtCAsGkYXNBkmliwO8RR+Hlz1cAXydeDYHBIykgMNigdkFPdet88RfIKaOoNV+GUV3er8Eb6xKijw7MnHlGigiMSbgNcQtuG6CTJ5Va/pPMHPiKunDR+nEnYODcoCfDYMGjGYwFvHjSLeP9QkUSjgT7h1fc0ICl+pAjrNy11fMOEFp5TO2QN575p3mRsDWD5dbFSRA6nqkDYOzYFYJ3qhx1JfxhrDwF012FZArmOgKeRl4rtj+JAxuOfsMWLGkymCW9gts0iNHzE+6+CryF/y9Lux/mUwDeFkmH0jHz9M2+lS5fVb54vrfubr7KjoYORUaC0i/h8EEvtgv+aBSMQ3T8h8EWzsrENc9wJjUNp5M96D+2TNwuwFQUBmW9Ch11hfZsl4DMYdtV2Bn7RH+UJdP1QiDPHPbQcKLzIMo/WfcHWGXTxTH9L415kdXR9x9h8roeNd5bwmhy50D7Com4Xmbc8KRPZb3Eu14VREM7PN0bZdYTfmNx3N9VJPM0RkN4/Cvt6NcC4hWyA37oysbTO3jh/4C8CBPQVZMdYJdsuXYQBpCEwyEdlMyC2wMrxz4LXkwou+OSCrR/mNnkuxQhqixrdiydZqaK0J8DPXeg6htwZaVg6x3i2cLovO7BfjfHqq5tkzbSdPtZKvBG1BRtK/yO4qoJDb0JX3AcLGMXY4GBxLnlo3qtODAvxovDe9cqocZpq/Y0RcnAQpfKL5twZHYW4ftJW/E5i6MGA68dPvumq1HTrSNaf3bFGVtk5MqmrSHaMVow0q62HqgrrTH6MxAPQqGU32kUIJD9N/D9TLsN8ruyGGUvoStnHpv2dLUC+1irB7oUohgJc6K1HVyKBpkpCZC3ByUndmDSizcMHAZYgCnqR+oO7epjZ/p19y6Ug0EjXjfJtf+j8nbNf50ZNIJRb9rUBBHv6hq1UUBOfXQxWObxOWFXi5Ky08qWq7TFKUYwydrp3deUBwr7TyOsq+xP73A3jciQzRY5O6dHLgMqWE+CR/JpxK+iuXtKCmJrYA68BENXr4VRU1wmXupt4JQ8g/Q+m0/XI3MIQ2GGxFidxSDxvK6tDVNL67LnUpdiVZw4WTxC/BFxlzSdAGOHL/PSKVzw5zKYWj2KX9/lfSQo7TIKR7fohWDbItR6kt2XnTTzgCMsbyxSuwOqYd81QnZe4uUqwM8V30AinHRT0JlMfHbMUS3zwTX28FeJmkn3ZY7c7uYKuU/v1qjfrS7GRMPInWfTNsYxemoB2nytMJcPzH+mlQ1kvvQh2SYZMjq4uNon8EHa5aHO41Zv9Ej6XodO6K/UshqCrFalCY+X6AnD+coh0zfnd4SQFf4V87PXKgZzYECEins45BVHyDLGCOigeL9pKUbbC9RLasFEWoh8wMfVzNejpoEYwU4z4FYijquoaZjDDRF9fAuD7xOr70CK8mtKHaould3owHAqgYD12JwIz+r9or9mQhfpUaj7U+Jdgk3Ixv+TAU40PonluZREK6xOWHxTntnAh1MOogq3CaLT6X3JxScdgcJ3iuZCOdkhI0miYlV1t9TzdDafJ2Bh/+a1n94j+1G6UVjpcsuZky0GtVly7w/07qWSYgUzhmFK7N7NqnsDrd5qXFpuap3U1Ow7CxLxhUei2CXWa1FwbD+DXqLgTb7uFytPYydFLvFGIlMSiN+k0HQQ10FkgV2VNjEFLQVXtP6PkbYIGAlTWY7crAhxMRjGYEvx83UmicOuyYnPukuo/VTnocVfVcSXDeOJFuScOkMRKy+zU4a5kJgAc8al+TCrR4E4W8gtOrhGROLCpGC5YTvLH3W78cpxPJ3ZoBbfJ/sU1Rak995QCi4YXGQ==
Variant 5
DifficultyLevel
721
Question
Fatima is 53 the age of Ahmed.
Dina is 21 the age of Ahmed.
Fatima is 5 years older than Dina.
How old is Ahmed in years?
Worked Solution
|
|
F |
= 53A ... (1) |
D |
= 21A ... (2) |
Since Fatima is 5 years older than Dina:
|
|
F − D |
= 5 |
53A − 21A |
= 5 |
A(106 − 105) |
= 5 |
A×101 |
= 5 |
A |
= 50 |
∴ Ahmed is 50 years old
Question Type
Answer Box
Variables
Variable name | Variable value |
question | Fatima is $\dfrac{3}{5}$ the age of Ahmed.
Dina is $\dfrac{1}{2}$ the age of Ahmed.
Fatima is 5 years older than Dina.
How old is Ahmed in years? |
workedSolution |
| | |
| ------------- | ---------- |
| $F$ | \= $\dfrac{3}{5} A \ ... \ (1)$ |
| $D$ | \= $\dfrac{1}{2} A \ ... \ (2)$ |
Since Fatima is 5 years older than Dina:
| | |
| ------------: | ---------- |
| $F \ - \ D$ | \= 5 |
| $\dfrac{3}{5} A \ - \ \dfrac{1}{2} A$ | \= 5 |
| $A \bigg( \dfrac{6}{10} \ - \ \dfrac{5}{10} \bigg)$ | \= 5 |
| $A \times \dfrac{1}{10}$ | \= 5 |
| $A$ | \= {{{correctAnswer0}}} |
$\therefore$ Ahmed is {{{correctAnswer0}}} years old |
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 50 | |