Measurement, NAPX-G4-CA27 SA, NAPX-G3-CA30 SA
U2FsdGVkX1+k3EWchlAamtt1TnE4+2SkjrjwEqRGUyiQDmy98/6lhsrwKl1Zh4lQkJhYEVrJU/zDl8NWmY8mxjpLGM0UJnOOx7cnJxIh7y8qof0vb/LhBXtqPGFmIvMKDDhwZpHMDn42L2AVAVHCalmMPopo/6QeJDJF1TWhRaJCJ2DecaDcm2L9YLlIySbEwungpC1Da1WahQelF+YqlzJj479y1ZFnAqqTUfNIRmPkWN3VSdUsptoCKf8fJx2p98Zu/lXkt9SDRahEowraS8mUtTRf7lmyZE1xhqWiTzQPgT/WYVV5bfIrrW6bjXVSD5EDeUPbdtqEAwBcPN2YjMVtu7Gtd1f7INj5QMMujnPLqcoASnfQg4Gg/CxiUITDxA0CG/ZXQHoUc2u4y0bg6UwSKKywX4tjdH/7dsX2CNpq8MYWEuyFsyY0zT2WoKJ38asDTvCd9ErW5O19BBGc1PDQXRqLMKLeiN+Oa3TLcK74SFs/c7e6j2laBK6Il3z9eXT47O+gxnurSTU54csHJ6znfmqqmkhj2XpMQPkS0nBnRkSN3HPLjtyqGamN1TX10JO+6jLpaGOOcA/AF87FaO+t5pmnV2eDzcnB1sgGCmuuZT66bmeEParAFB+FfJTUOp1fK3yqQNqkVWdw8IS78I+hK5ZIYpI0uzGvyaXOF/7J0Lx3pexGNBbfxLfgGRdhuvJx+jVdb4LeRmTpMSwTxcGcdVR3+mNLngSKZrvTadtFmp0VXykRVtyE62kDBK1dY84ARwcZ1D3dqMiDsheN9rGLUo2Aq/GC/KvDO/NYx37+Mr1NSXkBaDYdemDb0ul484swh1QonlHsmn9iyLm8jcslXBkacV9YIdGz7XXhgiQVPx6HLJEy22UOLyJG9/M6iOGo1GVwyFcCtKloOtk8vs2XNCr3ziooHOx3vDSkqQppafcD8OwdXgaMZdN6wMxAa308nJFcuSAomrDi8ieYpENbULuexdvLU25V/EqGk/S5TynLUoToJ5l0y+JUZ9W0UuH2B8b35d/lUmWsLdi13in/EzrcxWJ5rq6cWMpDMd9iYvGj+WX3AqkpkcQlX9vUeoz3TiwcAbm/9waItLgLLNVoA7F00CBqaVpXVPapTJ+X2D43IvXl+09R1zz01AMc27IUzA6kckgTCzSm3bctjJSY0Cxpk5wgjBgwJnzclk2HpuL1NQzZhuM2ehqeY2rQuwnK8466iVhaAfSxGkkmuhbjynb4Ln2kuVy6y+fTWiqaAZJidF+ZwGs3XiHIJuC2PR8PBF1XPj/MLwKN3f5cK4MBpPw/FY7NjBOOX0GD+riMAv8wN4gQ3i11rUyxvdCSHY9HpDPPVuCWwh0sDVpODPkMqkwm6ygvIr7sicyRftR+tUgXG8zs33g2oVQL4Nuo/IY8CjxkoPkARumAKMhmwV/OizNYvvMEk0vK08MUs24TSCE74v3p7L18pus9hBKiIdlYSCrfSphsUhEOiKrDsOA3i2gxt7M7TnNRJ4Tj5vf5FDlSOkyefoOjecDsXtdBblUr+JMe33sccuthD4qB+16HpWHV+28nEn71bg1rYxQCZzcd5CSXWy3XHgvxVHeuQhO2hMzE0ojuhqa2fCo8HyLs/GrN41ZC0RSMeu171HXgMOJ85ByccBBNA2vHmBKyuXbjDyDKK0fXTqoJB6WzbHz6SId5aI29NpJBG3I/hjau0IoTO2rQLrDaRB8wOL8DQzzvpavj4mEk+ri4rfkCg36KPLTIaPbk3ykKCnkxwNTmjZdqrmdSSUzKYJ2UnUgaCfdXu+PBV1QwzmFjMfZDQm7dgoqcoc5CZPra8vp+S0X3fYJHkBIdJ+ZssIQv40VIh1mXayiQZbFtY8Ptwqh+aeqgCk7S//ikMI+snC4LdTVVEA6PAVK0ZsJRdLLykb+CN2IlOqMCltVyiAbEWu45Ku/oKRMuPHhmewfSQFWTNz4VO5oLHCSAe3rNmPL+C39OPJlCHxB1pvgYUhKTB/nqSNpay4Lkuuj6LQxuB6gq48AFpAgja2DWPMENhocz/QZytxGEovu6EJLFh8S9FWDrAtSzyiuhZ3VNZYwiMjHZO+EaGtK+pPvSANiaBxqXOqdd+z0M2GpkdmFB6Xe8BnamF2OovYB1DfiZHt0DLZlrVwtbSFOSnNsmsNJAT2UAMzsKaPgEuqW8bRzCDkyMRIgQuGsbvEHrNNil7BaGdB5FcELkF+JJKzJpcYopOQ6ok8LZHPlw9HfGJlLERFfjGmc1k3JtZQ8XP7d9yxua+vVdBgGaP8A9UYEDz5JRTS2ktTdiTgWQvB5JN67uWkqV2NC35B7nwKbk+/nHpjL0XBQimu4R2t7K3Z2KE117Rau5+IBqcttpqU4QmSIyZB9k1+TCKe3TaVEeJD3hZYVLAJUtNCqjfgcF0UcNAJT+Cp3xKerF7z4h9NVPp7Xe/kX+ur2OK/ds+SDVF/fPp/ZaABVexKzoEN4qs53qonh+R9r3ShQV8W5OS1lXZmJBMejGJUQw6Bk9QosPcwyuVxH+mrQwEEiv7Lq2/iOwiE9CUH6DcutKkom9gVzX0Gfp9JzE/fBAo0VPqWHYDIZzVxYoQReEfS/4B0hz/XoYwF5vdNOKcoFsFCijUAU8oor1rIN8NqNlHYi5iqlpg8hxu0YyQIF3joz32ArYbLVuD03EHWNBZJ5rgXrthq5yoQn353g8pjonkhTmJW3nQ2ioxD9d/uLjWYrms4gif8UBTY0OB6vuciiHVuoOdHftjMR5D0sn9L3qUd9aU11DvBgY7m3ex+wQgXA9c2S1as6qvpUgXCl3PcZaL+wXpYPybcNXelvlzIrRF0Km++taI12HdbdvW8Qqfgz0QPGmE/2Qc7z/1bKcqh14eau4dty8I9X7+4nnwgSEjmOEXQSlpbzUSC0jcyLVNd2VRBY1AR+OU8Qj7QC22UmRfTd3Jzq7l5/r+THGfzmWl5OGJSqdxLSRE3GmIhjBGr7yEPbm4aQB+1BBcN6AszBSwP2QolQMgYS9oLqr7eDGRwSed6gCrsNKPw+zPvIEh6W0fqt/l2uFpHDv+ii2SvuB2ijsg3PkN8vqmgPWVN6wPxvOUOQbTQbOfGjEQu6rVVySIgcLLL1/c9iHydqe9g49VgqRq5oyXDo1bsVUviNZ1qY1ISeDSNqDwoehmpTugz02sw4idyon00lkZpImrNF7zpulQ50PJzpfAiUffkmbhm9P4eyw526o9no7Kbz8YZk24SkgQ83lJcatCFwxLRLqliDvJx7I1hXTZ3/hbm5jmY59NkMmP5FhU/tnTdHHoWYQgyxHrRjBCAfRPHR9iaf8rhF7zL9vdEbmbyvBMggnkwcSwsCJlL10nLgGA5BgUCovwgPm+dSNClT0tmDr405vRYJi/4dyVxHCtUYj4fO53elo0XWrpb904KMLsfD17BkiLPGNMoMXeUXKC0kzbTNSX7acEzV3KGDXlam9eMsW25I6wXtcS4jrrkHTeT/7ajRD38wXQzb7tuo7SKbSHQXpsGlMgvyI8/idJCTg6FjoqGKErGsCO4yc4dgBU+YDRjN71S0rcSPVD1muDzJQsf9n2jmeBrVNrW/AL4RiFRfoh/akedo1VKt8qi+FG1RcSrSSVFAzH87QdbW5Fp3AjfgrZPnQyZBH9GF6xwn2I5J9Ya+xLCXTq3zu6XFxIEI5d4fVetA0QCQxs89NmBQq69Wq0DGWC8nH0DS+rwKEVuXoR01ufnz2Tw2orWaBPqRpsKz8ZhWAys49UBIm+V8VkGzdfF87PJWUWWKH5+gymXczIbQfmT5ioMyZ6hzAR/4REZZBFKL+LOPIo/dWu04LRxp5iTONoQfsOX0AYP6QWXGpMeBkN3IDRljP5/G6QFwHTfyfPIjHKHrRXliT1tp9iBoTUUpKOJsq2etL4jzj7a8z60hncDm30onz0guTn1OoIQtQao9D+sh3mHuelnTTdxiZV6iKAXdjTY3TmRHxBDDo0djnEXXT49FLvjjnAF2RTlv+UisgbCeGzMZ+lSRTSxyqdcuVuAnB/jvHeHXdLzZpLY1gokHHNRxsP5ULmXPW/+kMm1tyMHOyM/TPN3SFx01ZZcpwmagfJhPmmM67tg3Uk+BqefC+tYOFXYY7eHPXp1ryAZk1zNBbJcsP/oMuirCYJXRzJMvcO9tK0kwSDeodbBDG9EPQ9vIchXtDjw1imCY2eDDvWDvvhEUWeenss6n2jMSRnBgsa1bpXyOMLjewNjvXi7CzM9XmkvGfRFjdxpsZZ/vgeZfwKQ8wMMGSgN5o27f2D0tUmiSMFMjW68pnPIW2DeVC18i/3pUvlscOSlWdtm2Psp4wW9Zlh0soXzsN2Yk8h+GWA5l1lfVQ/a+AVVv7FdBSZpSPwD4oyux02QQUqeewTbhcKrVuM3sbwM8AH54+963JiOcretfRzFSyULD5/Spz+1Awz90NWHS9urw5+BLzLxA9v6TjjTfFSFGYyL0Dtx+nKUAQ6d2KXH2b2ktvtslI/YVPQYAFbfXKHdUZsnVctjjWQLBnoySDX7vo9sVyCVc+rELBet8W2Tx4Onpnh0hAON+TYE1bq+W0v+p68ftGlXGTew43DK/2Iy4XpFedu3aRFAEfo/t4xltf2/fs5FYUKariArNoaYlT2IeLVdx/X3Ijx9h1sJsaj/LbAzWL9X+84SBgwHR1xqyZPo6IlHtqjdtoKEpKqsZWpJMqbwQwJ6GcbxqtHyNSdosQOC5N9mEuWw8OpPM/Qn45Z0fvAjnsYQqtuwST/7tI2sQbVNMyqYSC2Zceb9mzuTEZeiyndSyLbX0QNVeTBpDzTCIyf/4KADQJ1hUJbTDCSIQw6KeHQ9vXCrExItt/yN1gV2LZ+HGVCHSmIn238UpQYhCUa47BLmARHEbTGyiOdsOihySfkWxqertLZ/kKXUicyb0zwvtOYfpQodWdt7s7Xf2ATEykhGTqE2xDbKzxuxd/KRzdbx3TFNHn75rlaqdWrALF95JgSAfujOIBTnBenA03uvPYC1WVGjm1chOeFiMP439wE4CC5rFfYUWj+ptgfLeOo0GnVW2KxSM/T/ypcuVtdSzSkLpraRXI8wpPrVKegTC/TpVsyg8oZmAvj34AcZfvrggTz/AJnbGlVBjNM60ulGRIoU76wb4UQZsRpqvFuKbmOf1+l4R5r2TLW0j+S2c6MBbXtkZY1vPVJGoSbEfjkgp83rzZmjqEriQrcJGqlrAKPvZIH7jorDCFBkoVIZvIot/n0H7cdqKGKb+EFRxByRi/9wrICYj3Vs57uku+OubBOqP5thSg/ZoF7ByMcUB9cqiDA47Vx2SyyIHKyNSNZbtUAc4kvS6TBfXCJqSQUg+pFechL5mxlbtPBbNWm0S7brsENt8/9Oec/VZG59Or73nsWovESrR+nj3dZ8bcE7nJJlrDx8jsu/EaWVKU+g0qGjMdktZYLtrr+SBveEdCL6S26nK0cKaTnfPslzLsmdeOuWwi3fZUtgTvrdrCoIWg8iXB0SnyEsEkj9Vw9dvatd6OBRGeE83/WsECMB+9TkzGbu8OYIbwsrOEVw2e5UitYra8W+D7EEAuaRK9KiOAri+1YipOx/d4TewykRP1n1c6VsWUwGeted9Y/sgxsdbfb7UV8n3XR7NBH9EXy3KGPcxwE2LrRaEZetXjed5W9TWE+htzl0/+7xnbNMXk9Qd3F98kG+2yLh609lkt00qAQVXgxYwJzg9mYmbjuuqmkoCWymp31iQwtZCTOaJsTMfHUT1zitqwaCKfBJdKjlZMGHyz6ngOX2CK8EdHicqe0ArqEGYvX0VCziF72m0AgVtEgSeSph9YOza7hz4JgLZupRzQXkDc+18gSEwUK7qsaBfkXpzog8ez2BAGQP7OXrMFq/Hd8A0yO0nmkMI7SHcByBo5ybLsGTXjCTKPejUGU1vJf8x/vwxL4AfCKvZYUlqGNxjKPIpgqSwW0W5afSrcWRcjvQv5ycf0PuDN/xbkxYOrq1nmUGpwoYh+lJk0EyITjVeGrGmLw9Fp+GM8QpfAWeyFIS4NTxlbxA4tungDg9kBa30K7HvrniuGKMLpYzRZ3805n/AkoColz4XRi562cAs0jOZUuWRPlZOL7P6Hq970UWMFC9mu9sxhSXz/X2xEDfk2/2UV2e/ypNU+sB4CwG/abwkvdpmT3S/YNiwm80px7VlH+ZxO1mAcJsBPPoSWXlaw9KU7q/LFGzjN5ex8GREvKw5aP+CAnzG/BjDVMMwSPA4eAiWf/fkynrVAoQ/1RNHh+1ni5CoM8Dmc1SgxFrNzytDdzsZmEukMtnsQpnbu/nBUlBhxDukZEBgNvc54yYKOrhOBfPXWGLQNYo1qM36Bvxjd0UnWbgzsos/xMjgE6ELOLpN8EX+QWcI0hnBwnK5N6/8NcmZiBc3ogOwWCgtFqkoI8kPmKfUHqTXdbSNRqJOsAgO0xn9vvkcNUxUd9m3ugYx9q1e9Sw63WI3x6HxvHbfXSHWDfEHWfJz4WSAeKH7ipso57mNERDNbOzdHnpnOAdh0cd/BuAsdqgTJM74tqbjBaW8GLlaouxg/YOVBn/9EzugRKUh0G5y/m8Y8E7dIt0+QlPQdWg5NL2fl6L6AJKP0bUlGTlFRuMltcOoMEHmNPDsxDqIGeQgpzMjOUBXvF9bms7nbowPfvoUBeSgCDNlGWlorXKp7voi7SXP5ctgNrqC4oyWOJzt9G1lpClkzHrrqYqadhDhyBdT1FU7RYGFQESoCgKXhcakJKWLiryFfBG5IctKeGr5SZ1wb7mqscpd/5VX23Gq7PvjMb2CeY1woLiuHlsAbxd2olCRTuwsUpLXFXu6Z0ouMp0ftx6CzsKsWQ7V6c/8FASGL/Vm1EX80+FxGdiNtTXeLt+yroVxmMXcneyhEieUbyW/c7KH/UGJs0fvA1darDX++5Cm0iX2+Q+Pia/8KLnDEDojtWZlaspz4IiIy1S26dhVuv8VCC3BoqRQ2eky/nvzZwaSrvAV7ZoGr4YZL45LApBBMKdJ9VHJKUS6r2SISVeOCTA6Txt6Eh0lXHmzKcuuM8MnzH4JtkBoXCKP88XxocGbzv1C7zd/m/+szlRvODZWt3WwGUulc7+t5/bBDEF5FNoVesIkxZHprpIhrNfFc3ARCm6Us7zFz7y7R2GOYj+bKLfTzbMlJ45L0DvSDoVimaS8lTAJFLfqdtgQqZymy4Ho2mmdnL0x5JZsHCt8EnhCYtVuGbnk38qolLE+mqit5qpsiol7DsNx/uaRk7INr7xzl+YJJy3bEMgqeTPrCf/p8AZWlbfvr3h2i08jROyoLWptOji1haCN91VDTiq6ZDrB4pDdA1kIBrJU8TiCIzkTtpKesYkdjEPp+0jGXuaXhNKaQl9uT5A8kb2lba/n4aL2gC1MwJXeXwLRUmcf2ivEHVrurmiFb48aaq6HFltZVk0rTyx7OKE9PQX2TuvjU/rxfNd/UQKr0mQBykmNPvoaaSdf9vV4N+VPvjE6FjAfdgCpeaBlmcFkqoUZkIWwfZF5ebCwZI0ngqTuQMNCSPrx/Q1ONHuoTr6g3hBGR3BzO3FGKsb1jnZAjUxV0E8DCwItRhz55YS6C+ReV4yqLqF5zTa7+VEBZ4NjqI11kWSnHPYRXy2V4kvNRsJHxy0ETxuUncuV0VfDD11jCpVBb4KaKbfqkzRiCd6RmKKvkwhdJITrpP5v+FcwQenwBPBCWxjknwDEyBzdspfOkTaELoJgXEUV7i3eMYe0Bi0lwtuvr0ZofKCokALFSVmEjbM2lBPY3BLnO5s8N2cdEkqGUllXZpnf9mGUyew9Dh+xhHkkAplrx36Qd4t92YAJ9b7UwYcbsdJEl38cOOxFuF4hHLHlkd7DWzRpjXExhTpoEwy8xptgA/ZVo8DGPGiCt3CsiomATz9Ybd56rQ7eEe2kGLEmxG5qHBQkOkgDX6I2Nox6XugttGp+JZ1FR2PjeXTBrcxW53RmM1CV+H3FLjK+A/cIgzKgeCz7yfk2LScv031wj5C/hIZEADf/4lGNrAdbKbB7jZnOV1MKev4lc7vLCSNB314dlkJ5zlaxHhiEYBYTjY6vcJnw3UBzkFCy7XXH0NPQbd8VtTnfqof4Hk+NXMuQm9FfFvoQcpusuL0rsqNH8lp1WPoMc8KgvJCl0SZsTptBWd4uR0eTOsTz4V3fb/9ijouxt8/xBsnBqx5XL41HleYLUeb0sz0aiocfY59k1+vdS+VL0vyByV3wkwTIzcqmRPtAKBg+FbP+fhpGnxNkxN9s468W/XA2jAdWpgyLbXO8RK/n8FXbFJAxS5hbi15oKsHbuWh90N6Kw/iveCVK8jazkVfxLjAo1eaNVuLVuQGeXyy0Sp3WBWSk2BgT9IUvOUPfaZ5/xuPgHOFES76bwrxulx0RYqTHhCpNeNqNbXVfysPM3o7Zpw1ayulAos0EvjmMVl59ZvNmV73/BNHPob3C2FzAB/nsCF8/PRh20gV6jPahmr/S7TeiTNIucPrHyhx4BmPzwjhBz63iKUSW7cu156IPNlHS4r1C+kyvIhE2/04DNsIJClX+CQbaEXnBe9Nzisu5vCp17/PI2R/8uoQpA9Xnm6sc4h9hrp2k6kNk6BlsQyyNpzv1TA+A6jS0X6HXTH1O4ZjH7WpCnUXhLguPOub2iPVgEetJlCBqQaCiYS9tR7YQJK++gLzlNZfP1+hqI6TCg/fOiE0Wp9e2JeZ8EhuFDnWOl4SfwAJrRCtZorfowiH2wlPgnq+tHujk3E9gBtYaHTffWyGV9izyBuEKiyhxwwx8QWgp2B5il33XRQik2Myfb14EjT52wQW/dK5CyQSyN8BcJksGCz65YAkG7g2B/kdMJqoijme1NsaxDr8uBrhno5S7bPfCC2v5PrOXvt3IM3SPJ6GxTJ7SqTbP+ipfgb2E6XZ/bPKleLeR+Q/yH5NP29Ty9Aai0DYfLcDAn3lG2iZstKsCuDK9AQgtKN8n/vbaxB7sRq6ZbnYM7rnd1bWjTJijzYh77LsdCK6cgmLFHZJIiCym1FezeEVyZFNmuAkR37aLAPpnJJanT1G3yTXhRvBl08luJ9D8xtQRQBFcB7jT2yYtZxZfQAOija7NfKppNhWoW8aeFQeZPWMdX+YwRy6YPn4xM9jo6uNV8r6hFPS6FkSgBkXMHSmtWbbNOFa7lYuVjcUEt+pvXlannkAQ8G6/q4tHU1xtUIH/zDMOdcSWNQA++b9leCjMCGFzP3uEVNDTJItmS9DIY4+ulB1AeCumidB+0hKm2kgOavAzRGzJv/vRlQXP795VUCm7kNk8MBnmCwAlCB/YLNA4mVHz1vJcXlkdVGEHzu8sKLUaCMA3LfHnJb0RB5gPdFyMA8V3jfhPvuNGOCR5mdwcK7LkQyM2cf+A0A2lmJGHBIQVh1Gr0wBwdYA==
Variant 0
DifficultyLevel
712
Question
Minerva is tiling her back deck which is rectangular and measures 3.6 m × 4.2 m.
She decides to use the square tiles shown below.
How many boxes of these square tiles does Minerva need to order?
Worked Solution
Area of back deck in the number of tiles
|
= 0.33.6×0.34.2 |
= 12 tiles × 14 tiles |
= 168 tiles |
∴ Number of boxes to order
|
= 8168 |
= 21 boxes |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | Minerva is tiling her back deck which is rectangular and measures 3.6 m × 4.2 m.
She decides to use the square tiles shown below.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2018/05/NAPX-G4-CA27-SA.svg 290 indent3 vpad
How many boxes of these square tiles does Minerva need to order?
|
workedSolution | sm_nogap Area of back deck in the number of tiles
>>||
|-|
|= $\dfrac{3.6}{0.3} \times \dfrac{4.2}{0.3}$|
|= 12 tiles $\times$ 14 tiles|
|= 168 tiles|
sm_nogap $\therefore$ Number of boxes to order
>>||
|-|
|= $\dfrac{168}{8}$|
|= {{{correctAnswer0}}} {{{suffix0}}}|
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 21 | |
U2FsdGVkX19zsVYMhXXZ5KjazQJb7Vx2yshBIBnVC0Huxfe/oibv+luB5ENC8BJAZXmZ8fxLK/mhSVUbr2gFSyr9dmlF94uOPmvMiZYsfHS3fCuErzbCGLfZ46Lhm3A1QHkZguNacfuy9GCJQuK6xSjPBNe2EFIDX6FLf5MxChdbwHXdELbSIlx0uDqU5dCTNkiI2vU+bchJyQPGIhv5aYlM941LZzylU1q61lIz7kOmQfLlgGTy286TwLArslJ47jJ1akKHHqDtm24A1F1ISTbpt1CfSp/gru76VzcLwTNX5RbmI2acycUEtSn3ZnrPp+U1v/Ti64sOeha+GUI2PlOZEMd+ZLdSPaqiWaEs1JTiz3BU24opt/x+XRBKKVItQBglxba1vGK/Og8LCx2GwiIutorKQRGMK0zffX9hnUSpSfWiISrw3jFZvdXFMEzDvUTYe9KexQKskw7Uz4KdkOibYxJLYLN8GaEYvuJqQElJFYEA+Y/3gIcXft0ugFbYkiikErpMRDBDvmjNZ+Ginhq3z7kYe582CKINMBZiadd+ok3Hi6WgokwuhbbjXwK5eiPfsMXMrg8uOW6rZf4bpDXdQUZX/WgZi7h3ehU6rObEIsmKN0dt7tjdYzNoXoKQ/hZKCbsS/jKX7dvjeEk5Ez0xgPEWVZfAwTmisHQ6dsWZ7rGQ30PLW5creUakhindHBQJ61pN6qBmjp3sHCQiBWr34ur4pPuU3URZW3G7liyG/Mwbv1ezd20hLNY0NvkU5blVIRdZJWg4mtjSiUeBTuDQYg2lJQz1Zf9k6Za7stG6YKZGFLn9f+FqShjb24vQB1x97Kra1/cB/NcMeSYzFqw/9iOGW+cJcX6XF02agIn8J1F86ED3Lg7uYqK0dIBsEfScZ93k0HzXnozJOO0Nk3F5q6JxFpDyPrR668U0MOclHkIiYcWfwNyhJoPmwZ7knqBcP0pmk85pyjM1rYF+Pz+g0Ej1Oh2zev2V55AIKEMV4lNDT0H60SYCzFjLifRQWTiHGSdLZLlrQX9Ygai3bGPHJq0XZ37LYly+P/iT98l60gPfPeP9tL0lvvAykij6BoYeVtaOd6o9WhSLZr4yG2Xjyzvp7q5WFAmw5gSpRhlGSyC4MtjLRtip0iPqJbDKe/YhPiKb8W41ii6y+ZsPSjk7ut1ZjjK5JDq6ezTvFeLsOeinSbGmxBb+Keobd/gRyM04YNbotRW4JVRztMCMTcHX5pPdtBIjfdwVpraQItYid5DRoQ5lsblYBYqhKBZkrrT3zWXzRdbiMppPzQoVXdPfxIWVZZSne7kwznGXaluVoH9TcEMKpqECPfclbCK/v6nP1ZCbpFFVXhU0B6iD13ivjdGMchPjUL1xT98XoBu8cX3X9EVE22CVilExl58i1YjdxAn8GoYLafzAVXoy23iV9mMaitFJYJqMtzFuwMyh4EFEfuyoNDhmxDsvaWF5qOCD0wgQHc14h14hTsm1Iv74A6mSXHRphcFdBEdZE5Kw9xGgtdo1cfWMw+zQNZj789ow6rAgn4Gx+1DsaELObuA+wgdoD46SFYsCr3C3s5HB3Fy0etJN6QfOhds9DANnVrTHcKlpwUcIWq4ZSQmAbD1O4LftypMG3sOkK5UpU694txR2ee+aldgqvoZmqQTp5bwe7l0mmtPQzUa2gMgQPlAcziUv3HNhN0w+J0uEUwLXAJZq/sbLTyf5jT3s1n+TfbVsRU880hHsLGBALxs+e6ikGWJ2jeq+fcBKsICjimxT9MT+GyMdhQL+HgVrzWzp1NzrbUHHP9KacXz5YVYWtah5lZPr/2ZT5rSZz0YthjGr4nKS5YQGgcF42KaJ5BDJI7MfzDzAStrsiJopWZhzNyqKnQGhcE9z4trmFHFrmdhsJql7Z3CL6moyzYyAfrna4p1MfBPQX64aOUI5hW/Lz6M3v3QT06xCU+vNyVyxX9yq0j3CqSTP05T+6/VYXxveFlHfZSSlIauixSA0YAZf4A2R4eJEegJCtVGpPETiW/eqLTJP7KDvUYdvtNNNhbxV6vgrtTA02ssMGn/vBZamR/b7TUwWlvaihaeDiYrjOgLPXlIUAy/+uSKJ/Ss+0iADhvDpgPQQA6jdiWyh8wCFfFOEhtRo2MzXklmSbSclS2V87YWNJ4edVT+YgurSjVnqvifaxZ64DqO7a/vS+iozYtyA54HFxRNbj435F3ulmCUFa9mcYXlrARcu6FtY2VnHrwOSsp54n8lbqn64ICDOjeV1z0yAHK1lCwl29vAeK3RMcXQPa113EhswUwLGXV+EptlnwdPPmy6cVUnpTbtdxJ38FSWd2BSdDbphX8hQofsPbRNvP+2S2X9MzOQLoWi7FKmdJxOmHqHQ6+0n0y+vkeQl0Zt+7RFr8lNK9eTa2XWjwA1XqtFYm38rGclJEgLY5yb9X8y2NeYcWFZ1yN7wGagQQu/ZxEQpc2mEx+k+/xM2guBKTAec/7Z5UYNCXyIMv0LGF/A/1boSebiUfH0Y18UQsYyPCykfxfBTaOO0Z+EF3ead+ulYnmBFE/ifSMw4sjLjdT8fYOqjN6wdlbEon7u3/jo9IKWj6mpVLf4qTuEgFMykhV6zn6KeFK6rLOSAbqFtjhKjBzoHfIa7rLBOLW9QJQFFF3zF7bUQZYSOEB1/E0iI/hbcDHKbxPSyYtJa2bFE7BBUcf/ALTKJHpOwWW6LiMkIffLr/TkMqQl7Fp2yDj9cSIqtFdYgi0RE4nNLUM7GK7SsQdmgh+WoYy0LWkytqlXjJz1a9Y19N1NobC7LAyk2aFJxLIpm6y/jmHoMtDo8Gg7RW+Dx0Bd6/amIagTcpfRPG3E50GqlKPaIlHzEBi3cwgjn8Y71PFpj+y1dZtRVLPX5QnUg3UBx+aibrQqPm0oiifdcXka20dfBvUKZ/GSa5iKTyo4e+UTX4rYRl/vRHBBmTBrMWFa5UjCCgZhtZk3V8Yp/K4mIcrMeimUybQoNiRGszsuUm5F5X7dRIIm45NRhPmlWjjuQZSRulXZPDS1vmk3gtF75e/78+if7EXoUEQZ6bVkHAtEp+nksO5N+B12UdQC2P7MQjS6sZXepEebEYaVz5QTnaiEiwmmKFuqbIp4XYBT7IAqTjuE0/KIGWtsDenqlNN/tE2QV0TRHvKERUeweb3GB8fyQEwk7CwgETd/uf0ks/CjKOha8HfmMzRgLkVtD0DrNhmA7NVGRyq68hVgqpgTSdZ+y+wzMj41IvyQfO3sVnLk62W3vIfQvDqu6NT6U4S+NPVwaX8x8omKP5+hrB6sEl6eFB0wKlO5y80uEI93y0jW8ZPurAuVfcVHigk3b4n1h0jd8L/jkPE48a0ag+5jRdc4D4jTa19ys4gdH7GT5p3S+/x6NHIPlHroyxgOGPOGj4nlmu7PHRp93M6xTMoCS2hqn5LG2Oe5Njv/fYud0kyMXsjjzPcIbyjsta6hG+eaADI2oKFpsz5OJdtMD8eC4B4DKP6pjpVHyh16XyOtydIw98SiPFF0qKSzygFujpB8w6+NdNxQoY3V4/TSSPCbKSLvPE+3tNNnAVU9+yuIPmCQY/4aMZEgEYGDtxuy0PsLeIwe27xOyTETiGl0A5nueoy7o/ww9VKVPoC0a4FdaxM+VxmPpBpwk4XcYrpJpCL9PH+teTp1j3LUkb5GV7pUCZNyOppkgAQqYs1j2UPWZaMEXsM+sOz1nuoHSljbSozNL3K441CPn4axBsKl2+T4NsfhxNIEe4J5fkILtg2EV8mHxdc79fLgZnAw9xAs1gECiDiRV8wWEJ0PECKGVKLZY117+t/rP7kPJbeGbKv8wBwFfgd03e+voqHQzvv2Qzv0P0e8eeB0oX5iAZ3QiFnfWg3uG64cvK+GTlvv0y/ThdulvSiwb7RMFwv36OJkJNCkawlPiCjMCn3KMcK1GQmgK749+Vegw/6IDKherFZWfc5DOK3+FPduY8ZCJ0RzHRydXFBBEIm8kEFKC0HHy81t7RBwM01nuk0ULOXB4sc1tB+QR5R75MsuH59Sx6jyKCOKw+ScOaEsO0RV46WEi5qdW4AHQZj++v72cIChbR+zyURsBJAXDOUpNSYozQkcsn/yacXwQjANfVx643ZKvEtbD/C4F9sZl8oh5JbvMdW7EchiQwhxs+Ouj0kX06FC9v7/v4ujbN6YpoW/2C4AIWOcSdmFeeCwbGFL9Ge8wCblR4pp5xybZNsRQUhbGV6nUmzppUr+njG/hpSHaBqvZHu+PJIVo6WCQFxxGjXW+fxKL9hkRYoHfWzGVM89Mkp3DMqkzdliKq5VYXgyhUyMf6U/TxQJgWMjBsNrd3Fw77eCDe0Q+EMz+BeVk2rHqhb4qp+1Opg5Fg/33erJSTZtd1T4MvP53V4LP3VzvKQbtE21GwMUgf+WASttPu9yL2E+pRSeTyrkXIbhg8hhcSlKkWNd3QNSniBR6t+YPrA72WrEg/7bHO9XFR/L6UMOXr26YSmAhtQtE4Cbuz+bDXRYprz3e/sI85HQCzQV8yiu/9kK1ShMOu1Uc8dMqSWfLCHGr2FAIr3DcEcWZtGrrLvHEgQI8SWbtks0tDLkkn/cN9ZJCHWsEWYRtrn4qiBQQ+5rVbmgKHEQlHwW/F2pzzfeyJpzuV3szORQTS1rFYfP4RRnnCq4ShOsb+t/OTOw7Uljjo+3vDc3PiKYzd0ghzgIR5ej4wIBz3yFTM8OyHQbZtZCX8zma6fB+Z3PIAu1qnjiM5On2HWTJF7RBd8E56nXjcsNQSuFjyw+epaIjuWpGUNKhKZKJnN52nUTdcj8Lnn1Jo/lVokoiR3lwz/Lu/M9SldJfocirc2PX4E1G4oULH6a43GuU80tiHUqG0HhoOmRj7/dmgTabr6J90ZHgCMOqIjKSTyGB0GZfC1wCcUi7VrzPOAea/A24IjAQfd4WbYHUfmbMk5yTcW8XWRzgZ1xumjbsSfqPjxtVyJztV2I1+aLrmtb+NtjR7jYFpfFf0W+jIFAOyhU/5yGPwAFjDi6d+nBDmkmhRra6b/t50w4olNQf1kqUQEK6izkBnrv4vMOnfmBIUt0c5zMfvFgnjWzZS6W/gPLUPmAwd4Q4rrMIUVAAzcmFWtgwUEF0SpjNawBPxNFmmCMimyqdAThzKa1BCjGAb7ZcCooCt7o5ogynvGHCGec3sceBiQWFvaJepv5YcRo+2kOa/EG13munETRsi6ADnmG4g4YqCedAkDJN80ya+oPb3oOOAPNE5PktWECi0pC2KGecGasbbyaIXWBx/gtYjpnRxLGPxPWLc6DFr5VZkafR0Nrm/0f/lqIz7wReIibVhxstTSOXIfvk4fXUQvHN4P1YhPbnzZzsFEdWLzOGkOo3RqhRR3XBetdFTOK0kLhBHZ7d+Mcyd4n/Kj9MNA75gbAOLGjxXSbcQJVg/HOz0eMHM3tZvpn28kv7AYuuTbYCHEv0bhG4j6qINh3Ee3IC7Tv4op0ZBuJ7ImjX6+tqa802JnlHDrH/ean44cBlgSe4n9HA33Eu9W5AK1+YMxEPV0KEMh1IbkSK7Xz+1KqkdfOGNo4a84srCfeBjIW0/Q+u/vzezUd0YvwMlewMLvKWSgq6xnrG370TybNdhkQ+vSnlcmIPOIszNZfEv9c0yxfDbUBfnRRfpJA3Vg1Vic28iit0y7Lu+wDSfoFJyppmO+vJs2vpbuy7HWdI8uCDx4cEEnXJ71RS/lJ27cpZ4rTwPPpOevyprfYrwtKm69YUjiaTn1g2ywxIS6CZ/R6b4SeN5Lfo9ovHmd8k0LSCO9MRt3Is9YrgZ0tllcF5XeMN84uqS6pM9To3ZYiLBbyZadFYx6CE7WriobUsb6pcWzU5GzV3NMSV5eXHUOO1py6IgOqAhQ5c3AuM8Q07nqzheOpQm3y4YG1m0QI0cSFpYVmE8NInJywgYaNPz4dN+TGqUWqyV4PpYqAGSlKkiLWYNTBR+4Hogr/4pGoW59nwoJkBWCxGcD2dnt91X44TJDLedgdfRADcmnXLzt9W/07TLLMzW2sOacYTdhrgSB0dfHmwyEZzBdgojDKjGhE1nFJ7aWs7NIzr2bJ9wNwLVvVSVMs472FDvj5KkHX8a7bNgVjbJLvObcWdYNj5aGJK0DSYzIjhu1OfM+q0ae7GrHshsFYeprZoPWYp4ntTeCURXNlyYaRid+FVrl9dLGFABggWHnw2yx74Eaj6qiPzhyCihdug9Xle+2S4UbmeLBELE7LZLptCpmvMlAmR+MlW2nkR9oL1d+uPhZY8wRgfFWqqCdMyZwUw55qk41FIzMQDAyFu+V4SUOcUH14D7Czv8DhVMMgQe6qsN9rQSRYgO1e3PTi7ahfUdMCL1ieWjtcn0nY6A4Txnm1Mh9V+STx2h5opHH2EEXuC7QUIYDsqdQawzqNaV0YwvJ0h9+uu/NzeI6Wjr54fe+VuaI+OrW/h/rRrHBomJTVOVhH2MeMn3x782KWgsciZAMceKPoZ4hnNbU44Ki95lV1SztV6jdRgu83D/8ORFRw9dzBfUJ8713EyShuRP3WTErZOlH9sDvnbDyU2O3LabjeGELVhqTGC5KFU0gBsemCTQAQR5UEojEc0PWwKzi7Fm0Wi/Lo7Vm/Yi4xoJdhU28UooVSrmZ+BljZFu+iUdPvYvpABXXM0Nhsiuc3FZWc+gxoigBNRkmVuCZeEq+NFmBGRJ2CofhsOsNFGkR390EPJTZrCnUN2CosBXT7Pm3IhrLA0CGUs95nSPG2bNqVpu82j+MBmslIvHXSUbRHBkvn8ujIvLmS6Se2q9tc6ay0erRjFATTyAI6y1/qYt4uqbUPquHvZV/GJ+5E1XIgO8OQchw8mt6Llqp3O0F8WkcfsTJYPFMI6SfxtMU9FZbv9xuYJVvKgGv1OR6Do07dp4qCDt/h4aI7+2qjnP+MDe5/utsoGiTxRCMJfY5IJVoYGWd+bRN7C/e8D4LaPJjZ8rq4hOVnGZhoMD+Vci6hCUpnryf3RF4rPQF5QizyolXXxWoKNVbO++TKdgToQHhOGAW4SQ1qkufEfAFpjJBAHbOhwf2GalA2Qg0EvG0jkppqisqPBZGG02PlBRZx85eBVJyOIL2SGPuiE9owJ1ZdYlZZbizquqJXacc7N/cXAuOFwTwZU/vq/SWN+/9ZmZI1kR9nkMO2lfD7TZf4KioSO9ibDmShiaVvHWGOkwkOzJXAyvLxyZ8+MhVYHE38fVjBIxuMFp+VaTth3ToUT0KalH7CmqFnpvqjaYU1XnFnzJ+dAcegy8R9QB2U4P9HxjlCDEHRoChlhfwqJbLNWceZZsihQgJ/MNQObZyE4xwKZvxzqIJMqjTpQjxJv71a3DvToUd+wxQ9zcx7eXtBkCP7BwcBqCabaJ+SH8kFsKL6HMdK615jivwO7I8YmbkmqJCMlCXjdJs0km0uOBHJMg4bLIwZRVjiCo8yWd1cuUWXdSH/M55j/kRbYudVNtoSgbGWA8vCuexW87YQiymCJIfBc21fwk15u047olz3iYe5jWEN29OEjzfAfmWKoSrziNyIhS8JwXqV6HJW1v8ZEqSCtc/7Q6TJi+Wz5pxeyZR3t6T7iWASfALVgWKoHthe4UX2GWKDkyOHPoQZthoRILRny+NgmCDSbb/rxm+fIKzUEQOmmVDw1pR2VgM953R4eu2VDuS628KPRzKBM6c3wYPPvdnKWErDGvytFIngEgLxsDFncNSTjcHtUzzK/z58SnqaRSey+IAdZeRPIQu173PjUyKaUdhon9ZMf24lN18S6MT8KnepcVu/w9Wvp0GuAaNvyJEzmP1YlhfGWwaNnp9iE10jPfhumSyjPJLsojxBk2eEX3Xlf4awOyTTvZloS/eH7dzx2DSK5jxtTasubdY073HJ+w5YCtEFIt4tH/jrft+5FAHx0qIR/pdVSPUi27EcIPPqXHV5MomrSBUaxUClyJnxgOXEOna3GwICrZnzkjHjQr6EfE6P58G/SS84RkWS+6RdVzb1dJtjT0dSAhDJOxAxZPc8nxlq0XmPSK0eRDc9HXpY1tDfpyOsvNJuZlFonBipjb60FWDzmOQx5xerZhcoERGL39SIhiRrnDC1UZbZ6vL1IAl++rtJvsn/F1QC1LRyFTd6Wt7CqrlLRMmsiUCtUa1DQ5LVlDjRUbyPmoRR3Xi7qh7cs0weqBInKf/St0Krwk10FcB6Tc+UrwJL1ZyC2sc81QUQIMdKklZffgepX/EmDnlfAsnOKR2bCDKjBRDEeRRMtrJ95K3AfxueU0Kp+Vg5OKFdkkumZFGJ4Ue8fOPOtGo9JX56wTQL8k9d7XMbaNcwRl54RneLi2tAXowU9Nl9w3EpodDwSlte0pGPMozyWVtXosyTezCbH2lvzGx8UJ3nFApyDLtd5oKidpJHX9GCSHAcEvZLsVDfXfx6tPbDAjDk7BjF8oATxgYK7Tl8tAC1fyUpsY+QJH1TXRquCX8obTPBET5rZwmjNHGQQ0QFXMdKJLEA/rnwIt2aLrxJABPN4ZHlSsRDKNuzdVbuEoPP2SvnTLq46i/uxR8ufxU7yFsJK/v8tL4Kn2uJDlPQ0BzJMjroScaSsPwAR7hfXFJ0TIzYcIwRcyMd+8TA70EdqdflPf0hKO2tokOd2q1VY9cbwJsFG177VMbJbFGD9yCgqVXL8fC5uZR81tT5ZGZA/NNIExtxlAoJxfRvnqnvtG5YEgTJdX1y1XQk04Jz75yF9XmGKp4Vn2pyKT4E89XgMmqZBwWwS7ZAkt+qFwTC309GbTkLcw/4267En0rDbXSuFM7w6XOPh8qYFJLO15bZhqwSuUEnCdckbNNXIuy82EagibpwSCQOGJx08n4Tb9pE7uXzTH0Hdh/aV8ZNVhygSphKet+E8ZJX80IzeTMm6Go6uXAA7T8mb/Fez4wpCselp2PCLohyS4C8hdPzB51DIKiS4cNEl1d/cGy9PDU2UhOnSpEwxFW9rx36Em8kBErB01Kd3FA66IT9i71Uxpx9uSnoKHI1rFxq7MK043ubuV4l1vYvJUjPmZbD3qOsGuTBcP0OsYLERb26qIAh07vBLRZMx4k5nk7xeMu2W6C3gQYdGI/paGbMp/jr9k05Dv1H3RLb0Xk66KHD/DCQoqDofAePUAQNsSzBLB0cXv87eqr66JAaR/UY5uZNgoP2A+1YP9/LKnDc4tGmgdT0r7pocMak5x0vRum18oPu5S5vlTsw5aSYRp2sTd3rZvlT7BnxAEfldMt3hQEfnd2Cx6omIyzoo+N+M/OGD8PG5HKn7+tndU9/1Ru4g2jGGXjavnyPbFNROQv+YOTS8e32Ui71vFghJQM4BRE/MWthXY4SKrYnjpih+gq29cfyJzSMmLjWCoYrgDmEE2wX95XCu9ZAkXTisBcL5Rf/u9yLW4awW021oWykgtHTto03GuiyxuRYR2dbJDNFxjSeeXFE5yitGlzjTplwsdZLN/nSmAoySjM28cYbTKUB513J/WJcMvA==
Variant 1
DifficultyLevel
711
Question
Jake is tiling his bbq area which is rectangular and measures 4.0 m × 6.4 m.
He decides to use the square tiles shown below.
How many boxes of these square tiles does Jake need to order?
Worked Solution
Area of bbq area in the number of tiles
|
= 0.44.0×0.46.4 |
= 10 tiles × 16 tiles |
= 160 tiles |
∴ Number of boxes to order
|
= 10160 |
= 16 boxes |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | Jake is tiling his bbq area which is rectangular and measures 4.0 m × 6.4 m.
He decides to use the square tiles shown below.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/08/Measurement_NAPX-G4-CA27-SA_NAPX-G3-CA30-SA_1b.svg 330 indent3 vpad
How many boxes of these square tiles does Jake need to order?
|
workedSolution | sm_nogap Area of bbq area in the number of tiles
>>||
|-|
|= $\dfrac{4.0}{0.4} \times \dfrac{6.4}{0.4}$|
|= 10 tiles $\times$ 16 tiles|
|= 160 tiles|
sm_nogap $\therefore$ Number of boxes to order
>>||
|-|
|= $\dfrac{160}{10}$|
|= {{{correctAnswer0}}} {{{suffix0}}}|
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 16 | |
U2FsdGVkX19ShK4NJ3s3GtVt5WwI9RHfsAYXthL8U5xVsGDYit+41YmijF3zE+e+iId3N/vvff8PtFnGThK29Us0z9gpoV8UHZYm/pjIWFl9VW+TmBNQEsDfBaQ6QdH1T7dHWNEifNE9onAeLvZuzAEsImsrmyowBdB+d0uGh1uhGlG6vudPt2U6c/NFrZhayNZN9ibAhQuHghIrxgS1b6XtYDEF8KMGx9EEzfYRG55Zth7+E6KkNer1ak9dg22sWeiLhKROlVP9WGO4wI73WkFNaNoLfuND07t3WNquUYvuNRoYOXzt0KKaY/q2FQak9jbthvdGGhlrDTPdIxSIXEXe5w34NVtd0a6ofAR4ih40hBlr3O36a08ipJMk8vmVcGDKjX0k4N0ck7RG/mhfCfmELrWXkqeSwIgfTFJqo2EzJh202XgiXClgJhLT3HgPYr/RYVXRq+KVDMgEoEqq+w6efIbjt+8JKslYD6cHsUoUppvZVktxggOMv69iCJi1SXhl1IrrOnOhxgvWJywQ9XuOCYKM8BvxDs4SFV5zCtPb1DamsFzZdcEWoRLYdfFb6HkfQA2kBLZyWIqn45fSqt3k7vgfTy0z/5PsflxmjQdClX9jFTzdqs0q0GXRjLYDJ7/vgp/x4oeE+PqL4vpnzoZ6pI5QvdRJglXBOKQLZWtwPCz9bfXpGjBmpQNE1G4fI8Spc6STNfliKoz7hxRwoE4cvAPub3aWHgJTjTlfzxz5d26ulHiQLXAf/urGCjrhjqsUAJfjR7p+FwfDGJnsw8P1kysY0QghDVGYoqNI9RwmY5vuYpVStxITFC6hCD1raOIZUtfAojEgT7MDIhTN1g4vQl96WByramJFZSP5po7KGPLjP1v9RHreg+cuJBKENejpnR2q2aUPC1KsWtF5SzVpcwKTLjfwzZkzG3hrn0zYulD5Ut4XFkHszLlMD8UzsVaJzZqCqnuUnZ7nCmVxQPyOzJwGC1aVZKTf8XUAjPo1O1ZFMqw0xUGEtk7LGyElCLlYRcYkSvfXNrHpPGapK9eBgDTQWdUtTLJmX44b9yIpmOqaGVt2fgq2KI4vfIh79THBORLLTTeI9WE9mDEgqWUFdkHG6nhN5xUeGOcSR+xSRePQMu06d5dZmD+GcLy7rLUYmXWnzhU/DsfiWg6Qh2BataGA6GvKsq6/53CnqyiA3nAeO+/GzjtnrSJzwXhbmq9N3VUOrV6dTqxLJmvm0mgmKuU4Q3T4nSO+uvxqb9mWyDXezzIMQbPMSrNkmyloKcHm4wtgObWBbIpL0d85/HT1UlJmKFR3WRX3AEnUNi+K7jT18peRqwVaRLlNoMW5hsjOGkUMRovRmmRNJZcJRTz1e4dmrtTRaxlHpiz39VPXQSVF5P2vFkl8tPKeAbUVm65RLKx0CIz4VwkokckyWJvecA3cF4CYBXHumA4lLlhata7S/BLvCmvO94oZae2pF7f6YbtvgxBTNZAPrllQtG6XPJkLxQQRhAm8M+0BRqel8MLpgzaP8mQAHr02vDaUUO8GBllBfJ82+MDTG1V77brvzvolalCmjNK20e9SPXlLBubLwVroaj3qj3HA9cBNB9KoEO2ZRDvmwS5wmucCzoO0TrSpZtCDVsvCT5sbmUilH7s9w7gr+o7V+SrSDUOpiMIvMeLI/SDe3GD2AIZNddXwmbUO5jLgv+DeVElY4rQHF3+Fq1WSt5gTLM4TumeZjdlrws6ouZfhp/nYf6dmo6sROj754EPPJc5BH4kvxHlUGYcLOQCrKJ2wdaDvlTM4O+60dCv05pToamXwv5+Dlbqb4Um9oUuove5fmRaHB0cCkiOgZ4h6EQZTKspgy+8WV08foBeKJ33IBCWnLZSfWENTmHRuFEhVVW6Su63gkb8YFuxquZSr/ILNlTXHXqBvpJcgyE2t4eUBAxn2UYtxvhd0QtT6wC0LM/1RpQwrjjExi4Y2/2ubbSj5KOs1P+In2iQXgBxQhsf1/r2QQcIfdOJASVBcmcO07YaDwfwlxBDrpMsqgY1mwwScFwX1PWoeUK4V1sSNJA9Sk2LWfUXADY5m0r0Pqse8TMyXcOnjX11MxjLOSPBc1VCKjVSPZj9Y4BsJ4q3ydjLpQFLDRsYRCj/nt6LeGL91u4OCswLJQx87rtskKYGjpFL/MvS0JgwyKCjPzdZyoJi/AlIIcUgRtPtFCkgFlI/nVz38HaBTg6qVW3Nzgvuq9cj4+0lWHAWnqRJQpihmWJU4/ZyQr9zNvRlYzHunIsTsJF53zGC8dfg227Q0Q/kn5qQWQVddUOyEF/G1jw5ZXXn04sgW7sAD072NmZJR/CVUkDQwuHYJqgrqlOC+L/dx/NkQtgfGpDavXCDIFhEoAMtHCfWgEcmqa7xgsZMewwds3jl6INi+V6sGGO2sZCw0V/mVYGdP8aHdCz+Dhksg3NsTutns2jnTsE47EgHeyUs9xayfwb6OwSKSFJ0yQ5F1uNAsLsbXSTcRjrCzURHA5uSFXHXJbZjfnjYF+lozowTw0hXAShuMz4qH1NNI5QW4zceJpYBWA5snsP118fr110ZP2faJdOraa8d5WFHAAevizBvIo3kAlQXpVPNPirGQ+vWdwLk0Uyjh4zjaYZbbi856hE60RDsbkGPM2/UZs/qvv9T2n17MP4z5PzABTjCxnEVej4sBn2EjRr+BU4y7w2QebkRPd7DucMz8/lqBg0NektByaN6+6SHVI+/yc6SikGHIBxZj5iRyqrEczeZWl/j5k+2tUDv4NF2QbN08z5zkh2f3OkoBb0PDHQqDgIGATniG0tJrEJk6MW3arzw9rDe0KQCQlpH6v9ELrO2pYAfT0cr2Ehp6qKvurn/5UUzJioxEuLecIFTNyIhThZsXqLxaSorCtYSif3CpIuI/L0BwuUH49JmfU59p9qdcdt6KYDSqZyW27IOImjV4+s9smHyIpC0daDUWVLCBTQBt8f91WdKK+ezapbpZuhjxhvJ1T3TcdLOleCSvkJE3Dmvn7l3AGZQvSsSC2wXg/PK/4/p5Eq60w5P2JfPCipRMwEvbpj56HtypflsX5/PIzaALzXeTzOUJe2zgW6fI6PWt14AV221hb7GNT3WIJTOXSwnWlKE7fEYrQrPBrBgMuV8RAsxfjW6669CmBoLKmcJ9gVi8UftRuW9yz4qYZ5Qht78fDamJFdmYw26x3KUalO2rWOsKFQMnpfdHgHOePb3B08rkW92yQUomo2LrqqSWyXme99OwrmADArhT3ik5s8DmYrCM7rMOwnK5IVIAMvhwqF1HuVmJhTr5Yka8qeTeuf6RLfFUn1tktzCjGcCSMsTM3jD0mJJcyqrW1CG89DyG06bWR4MWQ0cMW8E7qNBtpHzfQPbXJfI0/YHc0Fbek6Opa6nMOHEJZ/QfA0pYb+GYt050kwoONmj/qhsuc1uQLJzUr+EBtTcuBbX9rljYZDNbRDK56K6Rn7QmQ0puKhPAUKg46yc1m/8spYshJTRgfnts7X6uTynwMv6k61tzkJSz5sv6Vv+H7ZrsUWyjupgzhBrhnG9zSDfuLvXHn0BljIAxshN6ULpA5VgsW+vGTWc6yx/M8vHYvr5YYWk21vHBbMl1sZNpT9nnMyHWAXHHwJI7OM/nX/N3AoXDJm7ulcdfObPCypCsUuYM6/uhZg3wiyLY9Fn+HmxLA1DMsNPgkjoxvteTZKpnvhNgo53wCndyb7cQvd9ygskFV/UyNwXtnPdty10OTcNowDXcEIBtLiPqjwXmRw8TPdHCKEtVijFxXR71gro+q/4rxb5HSV8FuPBT3uJOTAROLPhvNU1xPvINFcgVZGPzSit2Hnti1jIUeW7YrqiZ0lZZyFAT0NCSEfWf8dDNpOrIGrJaU+bq8zD9ejhuDaZAY54lUvB3dMOesoGoKMnYLgm+weA3NAu9QI49cWMyBdGI3qKLSHGEiT23OJ39/22ee32LJg3fsHI256ZcwULJNNVxnkXXcfFatyEy7YcfaXe2NrIOTOFMFDc4E59dajf1C6+MePsL13jU6bq3jDC8YNwz/Yz5meKzmfGwUH6/iiIDO4IvMaFzERkGZfpJnjR8SLmTxs+kfkNWuUfywgJOnwYKp8xz22/ZTNDVGSlYlqo6S6EOLlcuWejBEjHu7YMGqagoyi2ChIUeAW3o57xyLNTYseaLOR9wWsGIk0vpn05H3EQvfym76iWFtk+i4/ugYIuCoUr2uKMtg4jCQHyaJYtHFkoRozCfKixHijizfUqb5JBxl7FXTea+7U3sr1VlXJ3k8/ovZ5Mcw9jVLGPG9btcc7BseXvrNWgbhbiPRRhioKo5Yy2ZMNM3dmwWrpYzOlZnff6H9TQzWBYqwfVLS0h0vUaznsmUvlcGJA99wIROHx0qDG6nivJVmpl0CUMfgCRV5teA7FYEiK4j3VMQiVIcqUbZ5pLD8img2pxn+9QeqBd6bYHzvpkdx1/uMGmKILHIaX4eprPdSQb5C3lILHL54T/OrMNs2QtHdeiDeOLwndvXAxzjmnZahuE3OYEmlKeCXKdl2FqYntPMihgQ1y9wCJQhldkicSczkzblyWij9RC2fu/VgoSs4QJVVVTBri1aT4fU+MUnNvqc/QwQQJGGdPs7txX6gvLuVHcRu8H+v7QBubc/dD30tkWKCTJuql57A/5VycRJfh5K/WnkrhWSjgeJPtSMSlgFSmiI++/wGf5hFkG8zoNQdyQ/1xZPuUhJVXW1Ey3Zgtit2GF6vQqxAN8nMD8u4xXbfhzAh3zsA37m8oRoKDkAWyPZkl+IYFFFWQhBJhqokeWE6QJB2ED9w4i33Q1QZQ+CJl7SEdesLPQOScgfaTXrd3+w7GJvy9GdxBE8zBW+70zUY/De+uUIfkzv3aFj2p+m4pb7pgp7kptOjFc6d43uQ9BEkAKueqiwuE+oFx0wIVPNkFth0NqDURK4Z8UFcLzH4h7FqAXYzXSS6VsJoPBzyLAyXcvg4jJkAMjZU4SENdyjA4/CZwiC9m8vlElOQsfDk4BgZpPnjc0bymT3rjycNc/l02b62jRM6DJosTvT8daYmgVDvqDDohT+pBEZwTTCsvMhuP8tL8U3tGRpaMGa49yR3a1ezQfxrm9cGu9J0BUDJ52S1dBLpHeJ9prPACylxkyiPsSBrXnx7W3BOrRI6iFmGRdy60GjmRNRY6gtMZxdJXfBZUI1WgwVwrxrPK0rfITQoLzFVT82/ynJ8PKFGcbuGqnrp0f6pKg8z9FoeWtobtRo/NzWN15BuUb9pX4OpB2rkJ+v+XS+ambcvxErnlyuY4oH1/PyyUsmqSWsvm4RIt1jnE0REFnL1Zsk7BD57PQThBUeqU0VJjNdUBfvmoYDl19vn1baDzACqBhLRqlwE/wczvBik1f/tYiuq429O9Zcth0wwuIF9HgPESG+BatMiS8FG2VhH8s+BaPlSK0hPmk68CPxY3g4bmES1QpQyaWir99bg+iT6fW84L7Cu0iwciPruir0Pk9GYXM2guk2vD6Ld4kh5fs9Xx9c20qQTllpm85WMwD3ECbuazppOCh5dG0UQE99kbt4Dj0zGap5K0dPOm+JluRCzNeoPU24KpxMfRd+QZV9oea2lzwemTPta/dv3CZL/qVssqlCnjiRF/zmPQxXRFPJGeQftRAX48W+I0H5GY7MXuTA97ci8us6j+R1HXylxxPkJRGBpxkgurkVyb/1YftQgRFtmAwvusHivEfwi0GwZFRG8tMuePEzR0z4nHQTBpFliZo67bC8/k6tYPBaF25mL+2dhvP3kAkKMWEAo2YXSOOqqMn8JwHcsR9wZNEEnd9/AyZ67ZFekZn+q8MRSgawvSyJ9n1+Go7+bTSFeFS+DntfI2gxV+2eMnhUcqbycuR7FKj3eRzcjuk+bXdYSagqodl9XNkpjfVQFIroiC968l30vQTcLKIGyhfsC2z6p7KyLZWat8EkuIvdtshXDPCS5oVw9QTA1NghrmTEQVn6uu4XnmcDqtUdsscsYy06gJEdJROFoegYMfEeWXJY1B+3rnUYdaU9xxJV9V8WaDyf0brhsGat8HTkJjXuE+1xrMwq3PpHinoYFAEeDw7hgR1e1oA+GBgZ76uyRSAtxvf5+rNds7N+toTj6L6OwFMEl2/mD4JmSB/SD+DsahtkC+yn4eHs9Yghv2LAhmcsEQN5mjVS4HmFfv5PO768wyyj/I/0S8oqsVj1Sybw3oeYF0TfWqrO11wiOU265IedhwMQgG/ShxuuimIwO6zySX27+LonrHsoXa/X6chJ4p3fw9KKVAy+803qljRHBh+Ubb65bpPAoBbfclDnWimUwcl7LYcVpQb2NwehPGtF3oHyZn1XWfNHam7C4/tTs0HSHNoJesS7aNyt8hBaAnSTwiK67BOd3kjjmkwCL9ANrrvVyC6PtK+Tq1VSMCm7Ypa76i7LMaWzYQeTdD9q5rDyFOBkvvrYlhT8xzMibaSzV4nFBA6OCJ6/FSRqg2CzIyUNmILcBNZIFq1lr7A3Jjpo4z31fa4N5RAzxaRhUI7Q2niMzr+RyJHfSbVu2ThrdUUddP0rfXyQwY/INvbUyV4W2VHL5dmI4B8hbt3wId4Wwxqb0URvYwAQ6DSF+ogW2Cax0trW3Ebhld1dq8aw82CNhuvb5uMY9bmfz71prIWoTqCg4sfJZk2g/uH7fbxLHszV3/vZpS97w+8rPb+2rK03tX4w1uNHj+ArNajf9zd4YTNKk9VikZ2tJx0BrE2B9HvRKNHZWpxUNwpXl88AP5iEq6Ujo4PRn8g/yiCaW/wAvaSMT5j2es9F6viKzz3pbFV3qcqT7tnD1qtLqMO2xjvxm3ZC4t7NNZGyp6UtzxBUOIMfcyVeY8i1ST8ADB7HL7eJkZqoAU1rC6YiRflW4Jb2ELPC7VEunsAZxjWnaGvbImdrMddv775ya6z3EPR4u/yRvNGcz5K4czr/agw328Ji1OqJ0bxXDuVvYhvrUHznqqhPMUxL63IORployWgovFdlbSxh31isU8dS4wIypkgFqLxUL/z0vPIIa5e/LZjHR2mCoonD8zGPo6h+aHxZQcqTV5xCunkuUM3c2bQFZC2c37rVF+Kxu1J0UGaiKtbdlfSPlMTtJK2cA8wSlASL+ix7sfA8OX50lNF9tlrAiueQzf8ruCSIWGjyWcj34m4b7B8WTUZ1FTfDw3bTEjUpGiCXe+ZmAPrwAhl7lEayVaU5c2XKB/6uimG536rkWSF7Y+1+GCTKX3KGh7/kMJnWqH5K6dsOmHVtB51jGVXAGnJeUhzemYo926IfHMmZaG73fQ4Y24SjLJuecDwUy/YiXMR3qN7OgK11GO/s7BjzcQPbfjEp2D9Aj2QTnjDZ1YESjRwLnAF51n8B3d8l8BOpRQt6t4NfjL6XriFA7AOltRoUuIB2cz1u6UGcPreaNpUCm25robmXO7k/kEG/tAC6vY885ndBKR9guzAqtE1M/wnz4ZM8N78dDCp2Q2Qbvh/5YrCl1LMKVlzmA1X+80g9xwxppCkFFAneXp8SDC9ZnXlNTaXyspoIXOcHGBf0h+vdyofL9dM0F+u/USCkR17R+aMWAuTY4tP9LOBJiK3chcRy2vDuhznB7P0J9sWBH+SJ6EfCkzzBuEka/FjdU+GAxq2JU9y5qI1P5I3MhOUwDaoUo/0foO6s4k4nq4+eqsFh7srKl9rjRPDu6owi9kxp8J2n/w72yqeDnKPletOYsFT5kAxTLc/gQvDGxcN9HiRSMFxlYJ3m33cGMdIrFvuWAlnDN/z71vdDpt2OiFMAhAspzNpuSgTdm/0HpQ9kDDZzRnYnFDb2ruppuLEWCO5OegOJ8QmJ4Tq3N7CGZ/OTVzcEmQ2NsrbF3DK2H2BL92huQ5qbouih437guMaQbNSKP1aOiovM761JKyqOuHyHdr0zlpp1+EFHlhqwDCV3OJGLfgWR+4AoiEa6E+D73zjAr7bmJtgtEr2qAgFjsXXhLUzTXHWyVyC2iWn7FtF8ywh3+jqUTBxo+veAE6kwcW3CbARma7yjNqkPR5YISXHJv/p06Dwfcgzi1MSVwl2DIlyRCaXJYXiCy6SuDZek/mE3lREtnOS5IxnRdM288zCKV3ae1c8HrWacykHcnc/pqefUBeFXQRQ+/RPx0Ygi/IVEmf/MGGQXJS4qhpR5zne71X3cF6IZicYSSkiRSPvfFayhrT4OE6HkY3SUyT1tkzEh3gDac4dA8rgoIXc5IuHiUCPGepSzicSlRfmC0mAc2rjyu1foUjyMmb4ZAr4p05IGoOPGv9V0svjnsrEHCQxeKuqEoBaw7c8ZRVrZx42oH+clmzUmq4D9pkCz5pTXMeG45d31NOU50iHOLoWfikxrYFqd2skBlXD5z00uCEUrnuGjDlTkyCH5xcwR0ILd101s+53Q0jBZKiGedEALAD1BDv3byl+BkD+BieHV6WwhOJ6E8a+y/NtwotJ4Bog+Hnbwvoy5BdKZS07aMpzhlt34b+GbaYjW1TxH8tQThYH6fzRygiEzJGLzgPB2ZhFVrcEOEUag4dYdUBF2139xQXeHKR4aEhEk3XK8p2Hj5MQmPWks4J6CFWfs3topWvclXVifnhQMFZ9LI3Twa/4KKw3BigMWTuXCftvlJFB5h1aR6CVz3fMMPfNx/ER8s8Kjz1uNlMvdJd3o581tizTcuoL1u4AI+UNiokg2F2UZAgewIrTjUBzcHmjWA4A5i90xVQ3d5yAtJ5Tl9NwNsvAdTUoiYdqO6i0HG4BpjmQ6rO34GH8bl60rmwr6zSpoHu7ebCdEeuXfNrZ4534KJKFz800hHzKHQ7BRSxR7DeT2BvwEioy/qmauGq2Sn7lMSqATWzz/aa0s+S9BG4St2c2hMZ9rVY2Lhr4qNUjBa9sEu6prPxTP+9L0pyJVoR3VLLJM7Fedddo0RGz0UeN3MzVXjGpOW5lqOoTo/MdHhaAWxEQPCKUu9Wbhk6Tb1igadQO5pTUCySDVL+dtiqGK/u/E7L4HjJGQcRz+qbXiTb02QO696PGjg3/kMMgi/+GAioDSk9YaUn39M5Ivf9t3ZrLLKv9CVHK6PDPdRuDST+QM5qCAbSqaGAFK1CSorqJtkPCOD6SnakYNmFHLblctCdQmFvgOO/T/qgznMVFCqxOJEvEg1IWzsGhGOhcVU2bABPX58lZFvNmOAhv/xOq1u+QXlP+8TeLlfNsGcJ4Xh7EzZ7Y4EWd85jIczOgbn7OHyu/qGbSzwhA+uDw3tjVE02kzXnm98nlrVADgUK+pkUxQzxxXEnnJQVCoBSt7urSkyy+qA5vm7m3UNBJ/kV7vKf7fF+R/ymvRz93hq17YgPZuJ0YdF5mhxFEqCt0q67CkGBBxLJL9OV9YlKdRk6c9sJ/W6uEIJnEJp37qmjim5+i+3PTYOr5i7xzXZX0ZioIO6joITyrCJNlrrBDNAlh/SfHKi406bDeHX7uDPyuJfr110p65XkhJpM9kVUmNzoKGj0MgJOw04KxmHsl/G8ZDdffdzP87nTA6Li3z
Variant 2
DifficultyLevel
710
Question
Sienna is tiling the splashback in her new kitchen which is rectangular and measures 0.6 m × 2.4 m.
She decides to use the square tiles shown below.
How many boxes of these square tiles does Sienna need to order?
Worked Solution
Area of splashback in the number of tiles
|
= 0.10.6×0.12.4 |
= 6 tiles × 24 tiles |
= 144 tiles |
∴ Number of boxes to order
|
= 36144 |
= 4 boxes |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | Sienna is tiling the splashback in her new kitchen which is rectangular and measures 0.6 m × 2.4 m.
She decides to use the square tiles shown below.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/08/Measurement_NAPX-G4-CA27-SA_NAPX-G3-CA30-SA_2_1.svg 360 indent3 vpad
How many boxes of these square tiles does Sienna need to order? |
workedSolution | sm_nogap Area of splashback in the number of tiles
>>||
|-|
|= $\dfrac{0.6}{0.1} \times \dfrac{2.4}{0.1}$|
|= 6 tiles $\times$ 24 tiles|
|= 144 tiles|
sm_nogap $\therefore$ Number of boxes to order
>>||
|-|
|= $\dfrac{144}{36}$|
|= {{{correctAnswer0}}} {{{suffix0}}}|
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 4 | |
U2FsdGVkX18w9dAKCehEBd8QJ+oa3axC7m58ApRaIJeVdMTPytmMOTvqSWUYoqmbqB+iKPcLaazUSTSnfvjq3HuhHrC7CZlkRRxZ1PyEJh0oOlNOuV/e2mgx+3AxzqPcrUYnlrM1KETP34Af+c+Av4GrFr4Hrnzsz5UVruDURhIMtLdk9ymecQSirMmtpJ1bzQjDw9j2dEMAs9JeDHMjOXnMySTqxnMc90TtAz1fx/SEIt5coVjv4EtWHS/wP4V62f1RBHSVxUyRcCcM0AECPQP+HaSCXAsqVO/sqEOjqJ9aXJ0AMJ2JvKeWkHE0gogV2ENCgDWIqIyd0fcvBTIq8FMQnh3IhmT8laeNicKxg1sT1N1al6ZoeLyTczzPhNmII6wC8t98x5/C0nxuNP5spW6loLWo0gR2R+vDVK6UPA4a0QNGrs0vVntyR6YvnJXLZi/hvkwaT7TpOP8UPviO2+1in/9sa6PQL/knLr7Ua0Bi25+2yYJ+s32FpEXAA3GJnApnNOcxBtVT0EBhamdrKo/eU0x+NKrbj0NLBiTLB7+vMBh8dTfd/nZIMu6GgRyCfUHsX/l+TKzj7cM2QsNbMgK589iQslbQc12vhlCH4TZTAbP/ysbLkx+jeezLH1ty0breT7+EJLboFtzvaA2lb2fYZdL7exqJ8LE4x4lf5XEIMnAK+d2Lcum9TRGMbmK/Jfo9NwPlXJRWnhIe+SjbyPE8IMsPD/U6V2KollxRCfMLA/7adrcsYuc3qV5hKafFlSZtttincZLnI65vJD5QgqbUtlfr049jewatBrk7KETOzy4I0Taya56vJ19JZxgmU7H2AgRohPYq0n6sFi4c6qKkAcZByEUPQeWjvvRbSu0awLlhPV+y5xEomoxeAkpdbKiz/3x6qWZwt1oal9OQMYrZ33LPOsRLdLv8rPWsQWlGtLe+nlJAx0aIWju122nQswgPmofIoy0nxB78NeLsc3+R9d6e46hqBjkuAdnSHD2idCsxY7HfKiNcKGdYOu+yl6XhwvboI8oIutVSZEuszLX/EspzTVnMe1EqRQqVpX8Oc3HD2YngX6OOsVkJcFDT68zCX46Txi9CBUBstd4WFMr4F2t2T35D2UISllx3dgvm3UZm7EOWF8jSHKlpT+mXFwXd6RB9XUH1FyKxFrjBguFWeSifqFdYxJKkLbEpiP30bkq4ZEXBYD8f/Ny2W7kcfYcy7/KgkUULD9wrkxGKl6J7zMaglvC9IlNqBt1DbdpYkeRKv+dcPtcMHFryhCmoT2INY61qwr76V0QbxQsQfM7UDWuNmIQo1OE8wTqABEWBUBsv+maH/C4Wn/8WTQGGVYdMw7qkCtSEDysssdI18KKJKnndxkI+8RFnidZb5UroYU8a72yqEJM23eruk+wySZGXp14eQCATyaTjCPZtVvov/KDm2SwOXD/LC1BGRdFcUBljySyHUVWLsx5G5wzGiLQGp2bwK8Z9NmdaqXPrxQLbMo0Gi4UiR3YVH8fcl85ZJZYuCbz7xLjmNHEKyPhsi/Ec3KvEarocp8KGmNyXl9HnM13XfdqjFdeg6g93OH8dniPfYuc5B/aiDvmhCzJa1hZgzzhPPaipxHXyUgGZGAkAaYgdxC6RBnj0OVAmI/lbZ+/rOUxUaGbzQTJsweM0NdBRYLLpiD2R/DjW1+RWajjRWK9t/O76F6p2uPBAldC5h7KffMthKSksPhFD8kajVOZykXOfalgWL375bwuzpSHpMaQI7cMWbcynMC3qZVRW5IHBMn4S3kcj/iLszW8wcACwH5ZWWXAAa5us8HUBSi+TO2rQpHoxwaSm7giB1vlGyo8RikwLZZIvrPi4aQ3nvdDFmZNb8xpWOVXnM2uIBbmeyBILzP5XuNFljDlF/oXdpBkC0PXx0MrPkd/Y8zAMpZdzzGpuXBJ6lXeTV5AFgtkGib0/YZ/Da7BYINJNHsucG7K8149Frzf2FKb32YHBTd3LyJONq6Ok8+gT41nI9OHwpuFVqwX7lwHOMCAxwlWnD/rFSdaBrmymc4piHsA6Pagc/ft7z8ftkS/00NYKEXtdWUpclJVSPnMRWyAFkkP0nHEr595m4ThGPmoYGPrYRow6MKI5fFxdl25W+cTcA2WboRrDoaLeHwIyI+Tl6nimxeIpI4YzcvMfZM03pxmp4VjQYBkwQeNt38EANNxU/u7G0yB5J+5cX0PnY6jUkqYlweSXG5W4V+/haHJ2VtPMcDLGbe9DZCBuGfG6kAbMwyoFG0r4xmbOY7xjHX0Ogq5sVGWTgRnQ2md3u/RYtjT8OdRx0RJ4OriB8h2NWJw/3bnJTKTf8VgtucgumlewsM2zoyQ4gnG/esQ3d6ufXiFOs6TMdTO5LPtQfniwkiYFDLA4ICw9YXL2IU6TVzmr1566rg31sHyDl/8JUO6LbdquJrjT5cZWDu0BPsMUjjpHL+2z0e3WzJadsdjNiHUodqOg3kB/bZSATAy9q3+Y108j46L3xdLOrlBljNRJfylinBkQhBbamOxWTqLiUq/yRi9NWM/BA5UomX2rfoSI4+uix51q7ABQcWzx9U+qxz3y/0dVCpFl1OPRGVhbglPfSO3j5T5aD6Eg4TVHuYdnHGEC/GoC6gLrsby+wo9eC37UR9fVHA5ZKWJ9bSKoE5U5DyU9/pawsU7ZEZHnh+j/dMbHQTrCO2B91z28rKMP15FCJ65IPe+aPQhK+Kohl9L8Muq67UQK7x9I79jpZ8yA/5i6TemDXdjYS/43DCXiG7bMCVumWg0ujKvaNvU5DnOAp2d4/da7VUKdQcdNgAraDFve0Xw8JAPoXydqcvEspYWhTkx4Ydk9TlLtMn4X9IRvkgLDtivzW9puuJ19ZV0RqiUrC62KUg7f4xFSp3CPVDkHJYfVEQAsWY9s3rs9Efun7+bQU77AydcY69+LBjIUaXHihNfQ6Abd68PePyPvRPXycxy31GSfa0AQMCgGxX75/wJCmOV2myNxx/Zh/1N05yrlBs3JT0p59JPurD5LmL8bXPXcgi/NdN2bihK+CYFet49Mn57jFcW0PCGbW+zH0G2/aPb7HdavAB+DzK9z2Q37Cg7p6vu810PHjOok0A2wK3TuwqVNCGU/hDikNaJ8h0SWWBP56gx8ZjJLqeUsKJpWdSw6ChdQiarveGnBJJzff8qKHVQ4xfBSC25QN4qY2wDUJhmCCf979b9NPqkdL4xlfitlIaZFNcdyw4yr/eh06B4mpMYPpSlUvTfgENqO7hcTDDGebhAqooGz/hFlhT8Z56RLAWrKo84On6cALBjJkC7oRrgMgHXeCNGCvMi1L0iGPFqjCzMgNh3Kyf5oQwvRcXjHmlMn6gxbVlyNeAVIATvTzYzOSu4Q6aqMAmwQhxBmSR448sfGWxTmnYfAgU7pMlD5JON7fy5rGJ088zfbhPZrJnKLNYqZhIt3u557l3kOz98eRO1CUyhCwCF40bUrqcy1yc3v7de4pxHewOgzGt5nUPucPcl5rF3ET/FmoNtL81qrolQ7mMBicIqxvu0qzvjd7HCPzA+Qk+eq/qRo9Rx3qerYruxl5aXDfjTrhVs3MQjwTvf9u06JpODDb4ligAhXATbYkvGYkXRbjABluwgzXHKWkACDwjJ1JDLy9Gy46AwLHAdp5oc+dK1xOmiTPE2LfbblxyWUptGWK2pRaiIXRyj20dadv7bfHj1m1d8NG+5WRv68sOKyYBb3aqV3KKNCZIqTOJawxWdM0N9F/Iushk6TghYIeyQpj8e0rN7t7JdPHQEcjmBhEUzp5GncoEJg1w5kLum8AVQ4RYnlgSR3PJZLoD1aOpjA3ifOjBqTz2ms1IclGT46pJsgSVClQL39wcBQMBzMYMTVHaweiIO9QxIBSXUw0W40gICcaMwLTlLarizr+4kPjInRGeIh/3cjLtNFJc/0QiDWfN5Xlfhb1mIE6qjufPheWjUAiJQaZ7RybfaNp6YenhRcr0D3k9/wLStd1Bq6TpFSKfn6aio1q9nXINtOFmCuyS+71AcLk4nwzM8nitWTqXUMKYl5s3dUMoAbDJp3kLJzX2zYNBzjDLwZb1Dg7LIwyuR/ohjPTr00c/r1dDAfYFuPCvnPMs+1mXHirJ1A1vSpS9zWYzsgI3SmMrIhmrgHfxqWdx5jAR3U8NfRcm9WPV6kyzF5WqF8Avu+AYUWDi4Eoyc8C3xgIfvEduuonAy1pfcBWHErYgK3jbjRbmfaykhOmZN+5oqIy8D6aPYWdcpkiPQ+8sO1JI1t5g5ifSPhP1TLvnEnQBybCcfasryTF/RS3QFwU5bRsF9SzWfNQRh5hSveFPhGne4ugA4iM4m4Ov6E8jm5USDAwqko6jN0zq3md36gnCyoRdiQdWDFa7GFh2W/PeFHmNN70H8s3SuxYJQm/Tj1zKWrvneQx7hJwqoT4IhN2BXSt8rXIy1LQNN2e4YIQ1Vu5yo/WVPcEpsXc9L9t7umbOdMz34yHaL7wy2x1La3Z6XSRpyd03qMFN1S1mnsPHjdLhIT/g4oLWo/H3tot6FbUcax4Br195D2cDNMPoujNsSBOfbpkjCIKqco660edTSnOWelfflioWQ+Rq4OYUFALff9KL8fayn0jbvYjRpib6Gu/+HwWz3jGu0PUDh6VyJNnaY1lVPLe+u9IKf5sXqnXb+2mija0kvcm7kDgSoGT3sGbn/xru8dnBm3GtxYG9dRpp14oWcLHy7zAu5fPmHqg6UDInA1F3Lb2t42AqfTN45renZNuPZ43n8h+gy0FylMAwncbop1ysBMS8gQo6Oe0dUAUBUgX4Ni49XSeLILCO8y6YcWeip8URTTpqTM4/XQvjAQfimWFa7uPL2gnTL+c8dflrCvl5AK7a8ScA5M+scGE8CApcf1hV1Nhg3EDeMpOrH0yVrwHF6vXSG9x9wMwSET/Xdjz92lrPNpBjW5KTpCzhYd5G4X8vI2Ch3J7UwgWVuAVr6NYPhoe7a96Ip+fVnh4M7E36GP9866/NpAjmS9FH7iRq8j8hXaakALzYtavlLPGiWC1AX3vo1IsxQ6ydTOZ2W7hBtd2bA7DY8JUYPJhdfFQ3N7tB5fMwqmeZzsZfcp+lDLqn8bmNsXU1ZNjS4HyHw67Lwi3y+aviAQgmIrU6de+qyTzUTaOSV69GCdonf9U5uSTCTP8Cq6qJ4BNquIeI+5ITOYFDOMKB+/41zyEZQdqOF/7dCz9RranKHbMkXF/fxAhuk2ez93gR13Hnfh1C+INmLtAnN0D2Uny/gWDYfRTkbYKdxQ1wZPNP7Pn2Ot9qNB4sgx8++m65Tq5UP24v42m88RoLWQ979YbD2xyGldUMa2wfEVRVTOL4YzltgKiGAXwrhzuXsd1umyqiyDdRAMQtI8Fmyjr7Hrki1uxGdFDSGP7hePJOvJ3CkBezMLCBR9DeWvoTnt3HlBgk7eNKzF+Nq4wY9GXIEcIM8Fkyoz8GlSOAwuiQsibImj834DePgYixGSMoeSjXFjS333tY+EHuywW+N2nOwI3Hy4GA070hvEccZSDyvxXlaiJxB70wAQlBynhnsdtJconpaftDndhf0JiRkmxeNBW+TmMQHcQs0USOycGhWLqJcxLhzjOux1bIlmRvmG4GUOx3nrvRlRSi5w9x2O+jceGXqppRmDzxJfRoNG5sKtPnbH+ubix1nDxHJShB8QIEHBC9hguCpkTuML3REIiZYN3ScVA37/47iK43rkMyfIf70zV8KZwdAXgYN24DusMXhLes2zJjbyVhYRd+Tk17ycP8XUo8FIrGLb6jVpUS49zU2hnmO0TZBMbvA/aPMRtUmNqa2EuiGOz2ZN3pwcySigyg3qmIwWM+NeeBHC0jruBaF3tDBtx5ZhDa0ePRq2p70PvxpZOKZ9sPdiP/TWZdzSFwu6UkO2lp3vo360bWbEV2X3InJ9Sunx2W7cx93jYqc+5qD+xNSqUPW2nzOYY7KDfSPyMD4kEj+YWmjhlEFQxtbWvV5fz/0G05qPNqG4/S0zviRwuBWzXCTMLgCP/26fz0ABZ0yFUGGcdhyK1VdskpcX+BIMUDa85rY9bCMRXOXwbB78dRBHyyZ0H1fXmbI18+cjpZZrkyFUoiOyaEf92WZQjIcck39fRMRyjt69S8EMZtAyHdufVBsGnnM1c++ubXEMLSa+qluf2dtZ4H5i5DE2AqVTPw3yLgrH6Cg43yNcyXdvj5AhdSyH5fk4BS8a0zgkO16Q41VAvrgtUElvOgTVrDg/Lc8NG9D0M5YEvHw6Gwz+9IF8FCGMHcxFJKBa/SihbNM69TFqhrbqEV3qhpHIvcO67T55qZwJ2CPKAaXwCGQMVZrdGeqxJhOexr4U5wCmpN9gtFTP59cx+vz9ubDqpZeZE5i3uYl14Fw/u89tS33jo8pdB+0h98DuQZmHCyrFnCjIQG34YLX0IwaC8Ai2IZP9Hds5uvDkW/TkQYIJ/kRLu9DCX6XjnUtD0QTCvG989IhLWTE1rIm85U2nNOuBHHg40JqqHoaVBdITuOaQosyvvnx2Zdrv5hOz6fxRaYrYeUS2jaTq3QornqznJLFPDdSgKYXaQQNrapnH6JOMuaN9wfShsod9FwEL/ADVx0BEGMn60dC8Mej38gs/0v2aqh+EYxLlIgfQGWl8LAmmC8N1DJxEHoYmt0VrBcFqFJPdAoV4V00QXkiggyZvQGbGgw9h8Cen8n/ts+mOelnUUFrj62BqsfmetD4ZVNcBb2M0m8WnzDbjBuPMFxUFQmAtQ+4/QAGi7epNqRflmN3zJf5BzOrFcA/0bnRlyyDnKt+TEgbtWbflOYZBRYnduh+ZusAPrKsWhP+MfYdJ8k0+q3SJDdOQNIOFc4UAfGSj4MfEL+iNY5J7Yac2UGJMS/cOk5Q8zBTB9eoH2U188ee7+Hf+QB90gvebApRwi8cYmsurAAXecHHPEAp0lMxM+qUqSUsYpGIw6qypa3AABVuQmDe8MyCv4OLmTNjJL7fV/ela1U17HV3qz0ULaLa98Z4RQAIzllaNAEswQb3RqnwvT0Mpd1OZl+FMOft4B4Wg+cw4gz5/tT4ztxpJzXxmvx9csUDJb9skNCcRy/3YunrFuQoUPKVa9yfQyTsNjAR2StGN4zvREUWMXCuSl2Y7n3Z6TEEslMxoqaSNh+Cv0tg0hja+Qk5jT3b4clUUyPwjwAsakdMAockP4B+Jh7yOkEnxzdra9yWMrCIqjn7tgV0rtIm+/YnxejsD6MjcOWONibgRmZD0as1ILNsybN2uoqhhvjVXBnbI46FrNduHxuz+CXDvwEVv67noBmVN6AfYFEeOvgMd0ao8Rkew0fwLYa8WpjHm3OI62B8xa/mvGxgRvC9/dTl69+28W8PmIlOLdJx2orJDaTf0sjv9L79girxAqMnuS4KBWk9Kal3fr79qJ0YcB5OBndHH6W0u6KLLx4Z/pj0XYRdFH1GqNAUblI645Mkwnj3/bFePmpnaAad3QeBRqDKIZM4+pVSEPdry0iArEsWqe6xuntI1QfqWiAl6trgZi3LqMRVHvjT8T2zuu31USFyzD4mTX9gCG4KnqqxO5Oyq9Q3qXTMFEGlzaOIJoeM9PgAORgNE9oMLdygLaYCotR0LkVR6hMmas0DKAQXMj2hZ/erZgEha8gsEleOO0wmfXzGYRlzNNaugZWx037LCEMXwU+Zw/2Td4VETprF1iR0n2bMX9d9Nl88YdbsvBCc+P8ZAFIoYa1oi8W9LWQEZz0/8eSzEvLxFEFr86g11zJ9thkdd20HGtTVBFLXmTN1f73CE4P7jXC1P6nXGoU8qBUeRQDxueJQhY1U2S/QoLNWJI6GCj/bIpvBs+s6L+2IyT1M0mszaufisIljfQ8EaHKZCVzUGaRDhiZMtEv1fSbYY+SFLMc9LlYnTJQ8yoM5zpYk8HoFuvWTHxbFtXbzBb6q/CbLhBuwBW+ohNWKRRGzYibwHxw7+bvMfRsfSTxjGGImbW5HDbjWSKV/Q2IXcfX5UnW4onY59R3kMA47P0p9YT5I5BGnlwXaGFu9o4rhgG1wgqVNol5cnwaqQUxCw85upJ3xT7OaPESdJqK5ED78Acw2jfDh066nI+pcWXEBB17TyrGc0uV+CKHh4WXSEhw4RRyC4xdG+ZSenlgfpwIHoD2AIgOc7/3BefAk0YtTtOBQ9/WRXyLmmvlzz4zVUO9+bvywSeAxavw/e/f/QpYK5InB5N8TX8dpT9P1mD48sD/QmDdeNv2CsbUyEn6LrP6Lth0H2dASAIQrGLYfF9M2jO5YjpkktFTA9w9dd49ztxpp+Xlk3/5IkYP4rrH/KJoxMivqxojYDhRjYyAAiILznUlRsMoMlMbLmoK9cke/ADHLgBU78bnjzh/tbTJgiN727bviEiMocDgPZ/OvqPCCLikKjuRfrzX4GHCb1ghIMfrslxOc9wQtdtNlcVO9CapbOedaQT8x9bKayS776y+92Dk6qPfCSnZJyp0W+pzisdC74Rrlz7tlE4YfJ4wAESz8+tfYPcKzFFcxCz/YAkXEL4VxZOkV1CQOL5Oh9enT3L2r9bekaRM0dm2n/vdTK4ngK3vAw9rwszXXNlwzq23Hp4kMRJ2jbt6NpCinHAy+oJnZBIDowC3GBfGm/xrbjdaUepQEFM7X873v4RIlPUzbMUn4urbQvCzO7sqUmXZsAUUL/iPwKizmPH/2tgnOtiMY9R11xUHZSdZ+BV0I0qHcVLoz/uM2C8KXsWyAahhUdJ1KzYD4z01F+TiFFlHqLunjpmZ2z+ZN/zNc3ac7q4RgDMVOdkcmIrHtcS/XkXVZXlQMxvrAHcyrr0OrYEEE/yeapmw/jhBXn696obu3zVG5WuvScLFxDhi5JhB7SCb3JG1oaVdh8UEZDx0w32vHs99RYmYIR0jia86nfW1dKBMuRxkCy3dishH1MckXClOntFaM4Qi4eLbdzRAKYhJP7aNTlAxj0JDtOyLESdLU1vK8MlSmDumOQjwMvkUT+uNTj1U41u5ESz7QGYKT4y8XnzSstOg9KEhCKV7BLzG6LcOJFdCPwUGLgDdrw94sR3TCnvkXrWidU+L1g9+zgI4G3iiXNW8F7ivCMZ9ajhyPhiq7iTwYOT+VpHB1PruWYFhO8nQ3T1zlkh0kCexlr5GJSwqFSmkrn7RJr24yYNaJLIChTm36+vFUQKwWnYVbjnhl9ZnF5MARs57vKPnnObI0+EZ98Qdaf3r5Jg3egMyicahcUMVmtIp9WHl8iJq5pOY5NxtD8ek8WHVd+TpLHAEFa/Rkys7gyGCaHcueE/NrxXZj06Fk1+SBjSofbYjIG/Y2Wj8Ms8i9dC8YLgxMC63HabpT6PeqR99CmEm0dSb7buB/nppVLGPV+XzmdIXTaTFE6NLZYpgm4N9FMWMdDWL/XVTI9rgNqaAzslDVQ7uH3RGeq1S3VcCnP8J+0K6tTX5Mk0S1V7haffloJ4MSQJQcIKlUSA8G82dLVWuHpk/QwVABbq38BTSvqt/+0K1so6Cc5Iwrssjwyzswqe3k6pdAS8e3zzUpLp+8iRpmCMb9XWtSRMCIIS+3mHzzR7uA=
Variant 3
DifficultyLevel
714
Question
Bryson is tiling his patio which is rectangular and measures 6.3 m × 3.0 m.
He decides to use the square tiles shown below.
How many boxes of these square tiles does Bryson need to order?
Worked Solution
Area of patio in the number of tiles
|
= 0.156.0×0.153.0 |
= 42 tiles × 20 tiles |
= 840 tiles |
∴ Number of boxes to order
|
= 20840 |
= 42 boxes |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | Bryson is tiling his patio which is rectangular and measures 6.3 m × 3.0 m.
He decides to use the square tiles shown below.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/08/Measurement_NAPX-G4-CA27-SA_NAPX-G3-CA30-SA_3_a.svg 360 indent3 vpad
How many boxes of these square tiles does Bryson need to order? |
workedSolution | sm_nogap Area of patio in the number of tiles
>>||
|-|
|= $\dfrac{6.0}{0.15} \times \dfrac{3.0}{0.15}$|
|= 42 tiles $\times$ 20 tiles|
|= 840 tiles|
sm_nogap $\therefore$ Number of boxes to order
>>||
|-|
|= $\dfrac{840}{20}$|
|= {{{correctAnswer0}}} {{{suffix0}}}|
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 42 | |
U2FsdGVkX1/lsZ7PqqisFjxcjNCc8UI6zJkXAFQGJOnrIaUBkX5Fr4uB2ZvkWiMFp2LKthXg8cviu2EuyWtY5nHbvB68YVE00UNiIK8cx8keUWdWOflmuH9YAX7HEhyLBfOLwrC2a0K8XhVz0l5fZy4gxoBD5ObsbB+Gr3kukhla5n+3EqUfC3ycIEPU1zBH11KxI4Ov0YSs4GADaqHXWY72evOUAb6o5C6o2bVwFABBf+/oyFy/dC+lw5VvboQjnb/U6DPohHpI/A1s0HTwLKS6Jtm7S3PWu8WrUQ/BYtH2cS37h7TzyxMso1kW+rcBEXdiiRTiBTZxUChnY6HKLwIaodcmRnQrXVgG2rE9UiOmMwu/2FTJQBH9kb0Wq9Bs1EHj5NxsVE+cmvrKf3LrmdZ/1YjmY/lSxHxj3d9or2f6v/CEGpIIhWrxpZkc//90HwbsElOm6MhRnWKunrdDe0yVTY5VcNM2afhyThy4dNyHZN+RSgKFCYB21XCQCzSusxw8jOjeFgvf5X3oA3LhmyyL4Vw/JpiQZV+q3eXTpoGNmiKOZGyknQl9+y/ZVuWOeOT4Y6sohlMQnzWVga291xzqWrY23EHw8YiszMVwV3tckLy2RRYuWlMlxT6OQjYvnGO78PCEsDO9anzH7+5/Z6jUOALWlqkPyU9nVdgjQqlAtI2KgBs5xj52X2U1S1qU47zkSqfWjuAdNWY87reFrLCOQPHCjgpR/xVKJwhV2fGZkAUtEZZgKhxHSUKFHejT8MwTa8gMdrQwQWL979IaniyEwUzUYFTWu8Ai3f46LjT8fP0GNWHey86JfCG1Iq/IzdJlok+3Ln7UAmK8mVqnNXiEla5O6LAc9r0LWn/LOgn0toJw0+jrSCaM0xDAKGQKDxmjSar/uvNwSb5HQX5jgFk3Hphud95K2TFpFwXtQuY88Ur5c0fZ0FCxu5LOagfc1wI/nJDkxw67IfQpuC7AAjP9gZptP7x52zwoq4w5LX9WbOSQWCXMkoA4Q8iciEddL3336+YDg0BU55lbl9jbxkQlWmLviPMX2gyxJ6162s+4qErwTuObtT8Evnbq0pRbKJF/zx3Q+xVX9LsAkBtd+tEO3CLixdNSqbWbENjZLSTPp3CW8pQigD6fqPb0/rs+uknNYFnd4HcKwVLWevgg+maiOYODstcMfCLNtV3DVRzlRpjZJocRBSufqhVC70l8lN0jBho9dugWnWZqkPgmxM/p94ospxA1xXLC7bfYN5sFXEtzn7FQZBLdcqbz5dbBByjQH4NMzfHfomCkvx2s2n25dpHUGj9gQtPftRmZuzYWlmI/3YW4QRtwfFKMVQHXcGCG3g+5oiB//oa9gXS+d/RzdNvwQR+ZRW/chTJoWiWS7/tQZU4sKtJHFRo8Tu1KZqa3Rj5A07depSNQLXSWHizj7yVVlyiMGs4DKGT0p2WzWH0/aKAfoSE5w8gJvg0FHabSUlbCAjOe/wGOz1jCBirbLhrVf7x5QNFQtNrCrhQ8t0hqIpg0P6BSl9+Xw1/pgA6wL5tnrXtQz3ogCXTUKVP4Xr9XBcUeQZb6CZZEybq4cde5PNjK2Via8WueZtDrebW4OdNQKKtH1nDngKCPIbNBS64hTzfKA8qj3eaGnjF+I/B06VJejDwI39lHegqHN9JVJUQUroZIrPPRE+JOzgylbwVOe8yqe8WCCyXeoQMlKJ+7n3XJ4OHxCT+t35PFkq/Rq0bA8HI28607tz3XkdBwzxuptyayCIlYfe2vAkqOltZC/Wa3exT5eZrVSacp8F6LOYz0mdYQ9uKwV//ccoDTQW3T87gks8DqnEs9Oubr+IhoGJpTiCIp1FGUl/Pi7YfjqpoOLPlEj6+TTl29nbo/f4qIER/qhQgGec8P6xi/JTRq4J3ZnjHPguQcUZJK/tmwuehLAvuXWnY7Hsi9CSjjT1lb9CBdLQeRGJi5jFI4oJG3nUODgMEONaoXXnQFx1FZ5e4zYxW0IUueBXGdzO7ZPt4/GkrSLf+7789Rqet2mlr4vXdnoRp4/xOiQ1rXLO6BucdNHoMGgzu8FchxmAa9/gwHGNHHNP/e/NjlT8yt1K/7h2rkh7+wSb++j6DKsqawQN0X+UZqX/VzYrUXYl79oNf1G0P4JNIKzlGpAt8oM0TtC/j53qc3s/6FGpigG2yWgqk1BjSd8i3HVB/7jWywo1hSQJ+4bFrpRPMlGIJKa0IB9Mxi/NyhgjWMN3etUNMihfbocyviwAgtH/6dgZR7AVIxd1Csnmxzd0+NZhV1JCpyWjy0u8oa7U6quzBbw/tT2xfkwQQSxwMNLed2lBs3jCxxo8V4P0ga5LPYg1HyXZdFNpSs2NIDewk0eSggAzB0HtmrYUsZ+hau2KhirClTeQEq+5Cijdx6FjtmlVBdidrFG1brJuss8Q4e+rv78Gc4fxUOxMo8MU2Fgr2+CyRx+gP5HcjANOYHIq+xr0m0afxbmWGZaXqZ1X81hxCaD0oG7BnAXqg0d19fDJDWssGspqaKqTFIAhC3JgaFWJ8JOonfmh3+Vz8exJ79GTZX/FgKg9EUNcr4DOT1NAR4BEcT+233W0Caf4gM0oz+XakYygmjzSbcS5ZioteFl7flpLKjcRKR1gB1r7puO+CTf021z5chJNFNh0SSsgRUIw4brr56m4bkuijvXJ2WBIXJpYWnhrZ5o/fo+TYbzlxz5cE4EtmR9WSRWRhDv/ohCPEkVPjjtZVazw6vMKUy9SfgHv5HaoNJRB0GbX7DjH+jMLPBKuhBkATv9sz9cxle5e5eL119HhMgbGXv51zC+2UZHofNV0zIAo9XicIajNvZvg2moYyuP6GiAAz7TqnPivUqTpe9x3NyXKGB2Z95uumFpuLvYSH8ZMzmDvGjiBGTsAUwlcziauCTR1FeKY/X9V7CeB3BhuMwT7ax/kp5Ash2YSjmNvdMOI85cHn9uQGSYUr6rR3lEOIEnHhrSkCdtB0IRACUuVk0YNCG42Y6JnhXfSJ5eM+IxCU9ef297dj+mDMMzEbNmd0uapkghfKjHrMiJjud4jQwwCVQJQEtTISVzK9Zo1Y617IK0ZjNy44hjzIO/sJG5jMth5xVRXshAUKRhndd9pWMLSxpNnXwheABVgA84nL0o94naRGJ6PtCLt0ksUI/76b7FjRRc8VVJwqDACl7uX0niFqqsge2znv/mwtTeKTsGdBFugXcRKR7BmgFToc7McZXyJ1JaLQj7opW+UcPV17thJMDe3x8lDee/pMhWN2QyR5aM9VihzLPWwRV4HYJ9CYoIpgk67MSi7vFDpJzwqVxZyFG/AFiiOiBFsSWN1YN/SRq2qB+LAlHPvKqsvfHQxg1V8exHMRKm5QjFkFtZkXhlkuOzP+EGxWcjFDF1hfWfHM1bk3mTA14+WSQCcuwVUrjRwrGcZOKki0nUS1IX3VNf/z9g3fYtVrb3bkIzHsXzyObKtkc6I4P1dIxhWxM5M3IBUWeYlCcwGfHck9BbaxMUmR+gTb5m4dfKynLGy+wGyebg7D5NE+cuj2KTAzMVrGIP9kDltthwDd1edvm+oDGH2W+Wk2LwzTd1k1aWJoJ67MUig49XJXXhk0DGPfsFHXdtJAFtjDcmmsI4/7y/O4twU73cxyKZXoe09bs9a0CbBy3iDKzWjFwmPE5smvvK0gKnA3aatmULXhGdA/2gypAEV33kpOhGJ14JctzGt3ef7bEPXublMKE876rNkgUiO24vjWlKZsKuhtzHNu8lu7Rpm+aMMdqNTrOvnXeYT8PXYbmiBw/C9y9lyeaHgefKdRv/E7RdP4UyoJsNkaz95h0PxGgmTMbtDPXMRjbhm0MzXrPg2+J6zzFMPwKqLsK9JC4NF5hA2qufnmJRGSkcTMwAABemYuh1/FTqbbnAun0UGVxPZ0FC89qRFC35O8ctdtKA+7NFG5bA1cBe14RLi3HxBOY46KlFR3d6K7WRMyoJjr5gxoYdqtpP16a9n96cnoJUS+7kmp/vP1M1SNroDIacC4afzNJ9In3zkO2X0BT3ZN4lV9zSLXkS4bgi0Gb249p97dV7jxK6mSKgT+i+9h+vIp7S9JmgISBl29qA4bLOLUzYhVOInWyrahXHrWsJLXu9amuvRGRrUTNeTOS4iGe8adujKpqjNnqSy6W37IjjThGIzYkVUB1oy/zs/qGBbXGnDpOBReH+hRQEWjEGtfEWl86XzLtRHwBPBUQWl+9e8VQmaSjnzCAZk26KyfIpWlfgj7/tEGphXS1DwVOO89HWchjKIkOKXpXVKZnYlSjSl4Im5I5w+jGdQKr8kBKXXJZksCKag0iFOy1gZBorfRaq1TOpteJGFZ7fZVyMn1HNdJDb+TbOjIYbb9IFlfjE2DQJcSzDAq35kmQLHXF67s482hSFT15t/C78bVaYKUR8MT6y1yyyS5h1DoMx5nEkZhtzCHrNNN2MJbcWYXNfHrZiobHHAHVNUa9TuuI8gKv2rGtXRbvhsZfHGpU6HPmpYpyEF6fCgDdiGYZBp+lFsg6koWtYpndMt1Mnc3yaW+zKpWC8vK24hkJxUdOMY5giNu9GLkP79ydKurzKuyuY9g7fYCMp4a3oTCHjvdT6hfj49FXlS82x+MFweVtZFaPfh66Gw9ljxekUapF3SHM4ivH2aMoAPgmcn1Dw1DqScWNJbrYwraKsSbBj83uACwjjQbragVPJOEVrGLEa/bkF1vohI3S0L4X6+aoue50RUTpaaJ7rBvxpS8ZdY4IkXImnB3tWmXg0OVj2hM/m/9gsb/GIGeDHIiat//3hnsGMcG5RAdkeKwUeyX4A4427W1HV+tWvGT3zIijGIPIEaHTbxJg27c9KYT6HWAp2BG8WAAfGl82hxbvrMQmgRecTGtBpVGINFmEs/LqcqNN+2rchfpBUldD9+V5hgdVKLBUabLtOd+rzQfrC/pyq5XohKGufUQJ8sl5vjA3+88TfY172XaxHskqCA0N2K8eDzYwQQdZ1MBUYGeqBCSKMqrOaF1qPsNyIy8wT69zU8LGTvtIPTcLYngoBjpLlu+9XMW3lum7f7Pn37Vs/nTWb1uwS4n+QC5cc7UvYMibiQW8p8AyitzWUvTTCO2AnGYBx1UZwvx0HbjlNjB1Vvxhj7RVozCBuBmEmzBUSCuyM4tw/LrOF47ah58HcUisZ2BISHIC6vVEgupes5A9xTrA1qq11NpqmugT5UqCJ4tGTueuROru6boZcTOJn7P2nDqqPaLl3TQAU4zY+n2GfizjUA2eNSNrNIOfEzK5AHHvYE7bvdkjb4DyDtL2kK17GORIokNVBB9TKycI5PsYrtUyZJN0rLeg2qxNUWGns1m/RTbG9jxgJBiqFk+SNyIf9QHhsXTN4kVRgagvx20KtfHz4xyIaHoBjDT0zxfTnHs5pB4TPXXa0icfXviXtpZy2fJ9rXPQb0L2UEGqsgiqp3DTRA1Co0dYj6Sr/RaKTOt3wIFIbAn1OXOAe2on8dEXEoyHkKVf4uWT8ZNfc7G7kehjZMivVPtXuGRV/ia+QHXsQKS7LWE+l/nToNBqQ/RNp8auAroXqpmjWei9khY5DXxBoOXd2gwUUb2LKrjrcq5pbVkzP+BlZYFvnmu21vfyZic6k86qchDX9RSQlHZJV9Uzx18U4iASOwHwHqQYFq1hGuVmpXTL1Rg83XumxSzpV2Ebq6eyD3JuRG9b+8bnCq2R/2Gqi+IpyZ5FxfKwQBYn55Iya9TVaQ8Jk9GN+o3sfV1WZ16pB1a6hb5zLvokjkBK+5Ud9gYS69lF9l19ym+BvRIbpAfT/IDvwYUyBFUx1Ckt0wJNWABFrEB6FTcsYy5um5cVSOFkU/3jD0fmjVQhNBUsz1tC5YQ7gBS8fvvCFtsP3mxi9vXRtDrdHdN1RPLDjj/jkht9Z7AEc0dD8CvQdWKdYpJ6h5SKptwEujr8bA7HoN/O/Db/+To9WTGhGfBATusUqjx+FCUwBA5L/++CrpVDdZfWMP74AuPMHErtmhrflcqV+T+suJYhJLt+p2dXogJFn6rzFBaAq47XhNGDhw973EyiA7H7zN/MzBGmhP5tkNOWWvJabJjQ1Q0Sb/uoL6bV0krgkxU4Szqoi1cc7RiTuFxZsSAD2kQbQK/uASzo47uPt9dxvS66DWg7yIWAgUwnzSB8K78b0CUigIqRdx5Jzard6j7JVt5g0jS0iMAYdUichkp+H9xD0r1LzqzSghJSOwpF/HaJVbixsS+1APmDWx5yzKFicXNzDRJ/983XGckho+Jl6/lVToQkPCm1zyGdDCYGYtuNUdN+dKM3visGsoRFdxf5JUNjy0SzbCuJsW9RIgF8wxYkTRfnB8vwBsR/ZLFSk0R0KYyuoTeYC4vwSZt30ASepodSpkH+sBHzgIHeGVcwEHkGKWFHJAXjZu7rFB2xZqKELSH/l9uhH/Or6Mv2nUYwQGCDWm28xL/29BXAkUDWr7dzTP5C0h/L9CatpDjc6bq8JNa53kaKg4KNJMVqFlVhGPUoVo+I2gZZRIemr/L7L6Di9FyLV6GN5/9cgEe1JU5pvA4GVuKcQl3/EWVFz8+yKF4+ekajHpwmUqMufj4KiUP2Z6+yPgZWy8ERlbrkTTFfdhGJwofmJu4FUxJokUUmhwSmKxmfJzwoSOf/CMhOaM+inAZRJzXrAarjKOR5TR2f6sBDUb1gFVpPIIc3SfHWzRJo9SVJDrtOs6RFTo4p7miMLbFVsuBh3xE1jr8YMReozX6Z07QrUF2cqe7B+ocNjD01dy/+RE17tJ54v4qYNq3esm+HA4I8LGrjzxWQSu1t1JKVffyiV1onyBELTvnCnnRBjfUVtvRuyJLyHUanxjTwH3xSboL6ACpW9hqjKxx5rE5AabJMX8qB+2gN1PCN7+JPtfxQxPnJTNt/mqFkleE3M289GAXaJr4Z9rhovQO3W3yTf+MOqxo9z5558i2gYz60ipb882TPvqOWo0mv/+1QQY0CfJIIYt0urnga4kG1SFSR3Z/g9CYZcKnSCLVJ40HGmgNt63yTL8maww14h6ynI4F8YBmnbMgAJTD80s3JaUQCJOwe+dMtZ5gCZbyLkF9XbUgYqDjqkttkomng/HsEkgz/Pf7BcRwlXOJBw39m3mV13QdE9Os1UVmfrgkiJAZm0ZBv39oKpiXyVG3ds5aRSR9hiTlW0k1prCnWc+5I77dYtUupZvSonE3qkmQZ3z3ZppJKj3W8pOu1LAV55qfs8gWDxhFThlzkrddjc4YSbb+2F1DBKANbYw1L1qS9n4UosXWSviRmOLT72kr3UcKQH4sZ72r3/CcPsaj6DXNtPESl8VDbptz34q2GPliLVWvuBXHvCYki7FxgvHfGtJcdB8qywXLXm+42uIOj5hetDH9BcXREXX6egzjWE/FX1FUrm3R5nTvV4pfJ0GPLogQSEZgv3gXBC0ZXjwYO/HvYeMh2a27NH2J/6J2iAUf1CKe01psbBFOPum57Cs8E1stdZ7ofmG/CIGpbLCGvJ66D2k2YJSMZt0b6OZ1wZjcDAGN1at3g1N+3y6ewhMX/ck+CXhZNVUSPWKUbx1xlcy9I1IrvmPitCf4dt40Id39EGQSL+uv8hp5mwX4cmvl75ssD5IA8MkskK7T+CjMBzOCJ2c92PWC2pcCW0tJ9pqtDjy+7zbiYYynmpPXNBlt/LAdQJ86GJGj5+3QK2zmc0mX60LwgObWYaOUjNwhV+ZSINSSFr3ZbVS7bqINuplEuwuFaIWGENnKlOrfMSmY0XBzN8E5ESJlEosOYmqdkgR8QyxTDZSboidDz1KB6J4LOHIBg1FQc3cX72JWhftSTSUPM+omCur2vgiNwIW7T4SHqb2jSd/tndfsqOGQUIImWx86zViCPwTd/MWoYezMBCpWOG28UoUqMk/PLC2CHRQ0ACnvonb+UpRbocXIbSfjfA8Cr94vCrnFVQqow4gQ/ZPOClUSnapQfk1YMq3f4lBxmAh4AUdIsdVx5ck2CYboumvYSzGsndGGIx4BElgiqpWCemV+43tMHlpOSFpctooCealpUCenv81CvLT80qtdD677awlEmKkZHU+KrwmVo5733tK+dhsQT8nWFffT8H3zv6CKxaqlbFZuBXJVE/rddLvc23Cyql9D4kPB5lMojPinU/MjaqheiYEv9Hl8pNugo7AYyjAjTL5XYy1TkHT1mn5AsngxQreBabuilx06X57uMgG+GVPWFot238r1xsNVBuQ/p7gdEgleAA9pQmxMOMLRXmgD6VoZvr5xaMNXk8O5SZjIqKB4Yi34+YnC5HexC+AJz0zhhCSW2VMxeoeBNgINdPEWnA5pilXxS4sWCI3o9bOoOM+LQrkXcxnoYOxYdV7YK4upQmYDHeO6sYFLiOXG7dO0qfEThiZAKBnGx04ROo3FwwTHzvoTt2Rx1MNwWRh9qTBXEvb+PwoeOeBGi1yVUrKXpzcedeBzloblK7mOxlDYRDGVPc1ki5sWgAgcTjl/FfUP7PBdCI4aRc6H5HxFvFGdcUPjiBXLKAD1LhJYRJL2yVfctGPrHKVc/KhGPS7RJR4sMgZmsmr0P7oK41pnek9KjKRkHMljHj9P0LM8JHI3bcu32ORX+c5i1RNfTc8QzhNPwp2GqVPtZ0DBewCPb1LdBOyC1NkldEvTVMZ3bsb/74v+h68Y2LfoLLMtARzSSF/Dj+ge+xLLMFTPVOGxGAV5/LBlLXoy/JDA9qlrxLn3TKU5aFWtoBLJTdW/Fg57Cxf7shbMx8lW+jIA5CmfNbKXShLCiqdejIWqVGO8+Qe+AxPWaHmnx70HVCkBMiNed5uHJ7ERILYFiQnE0UuBXQ7JQn1j7x+6DhBLkl6Mz/1iSiW7s+hwenjkEP20gyP11dwMCLeBeqY01lg3mJwxhGLGPCwN8XuNg6BMYIFpJkwneJx45k67pIC/71c0KKnolhFCTUZH2+t6tzTyLvM38ycQN7PhSjsaGzVjxE5rm3BX+PWuYafU4FFExWB5jCd+l1nW4t4hepE9Pg/TwoGL1dLh6hg3olTrH2egk0XoQEkdTG5TF0unciTp0irtK29fktydg4UxS5K2Qu+0xLwOM6QifuTFuVIeryXnI81xMjc9Pc16ao7upoAWb/ZcEoDTxPbNBPrvTFnT9h5x0xRPP0Jh5hkGL2mud8Bq9hZnA55fdskBwlKR/mORUjwg2SOhJH2iy7Oy6n7qhfmPVqwsp26eJup5OuyZ/y6X+3RZ0vDs3xpFMcR5R4vwqCftnZm8PyXjPg1Z7xHCGIXFLcO+euf+wHz4JEkre+LxelsZA9YAwP+xICwGULzE/SGBdSPhfBsiSGywhTsms1q21AtjmT42RS/klYIBNWPAS7Gi3RV50N7sNrJOpJBsJxvFTLjz9k2QDcf6/giM2BFO6vQjREL9TYnoKZYowQp4x7KMa9xtOFxmkbr4p+frLrcFm+P+tPQjskd50GOpeYzKxjrHkylxp/5Sxm79u4y8yl/VOzuLZzAl5vCAHWTLZjDE4OvJICCSPlDzTeRHwCIPVEq5lvtjXeZHxhJENfZyx3Up7TbUM2GKL2B/uYsT1q6o8RJszq2MCocou
Variant 4
DifficultyLevel
708
Question
Donna is tiling one wall in her butler's pantry which is rectangular and measu 4.5 m × 1.2 m.
She decides to use the square tiles shown below.
How many boxes of these square tiles does Donna need to order?
Worked Solution
Area of walls in the number of tiles
|
= 0.104.5×0.101.2 |
= 45 tiles × 12 tiles |
= 540 tiles |
∴ Number of boxes to order
|
= 90540 |
= 6 boxes |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | Donna is tiling one wall in her butler's pantry which is rectangular and measu 4.5 m × 1.2 m.
She decides to use the square tiles shown below.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/08/Measurement_NAPX-G4-CA27-SA_NAPX-G3-CA30-SA_2_a.svg 360 indent3 vpad
How many boxes of these square tiles does Donna need to order? |
workedSolution | sm_nogap Area of walls in the number of tiles
>>||
|-|
|= $\dfrac{4.5}{0.10} \times \dfrac{1.2}{0.10}$|
|= 45 tiles $\times$ 12 tiles|
|= 540 tiles|
sm_nogap $\therefore$ Number of boxes to order
>>||
|-|
|= $\dfrac{540}{90}$|
|= {{{correctAnswer0}}} {{{suffix0}}}|
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 6 | |
U2FsdGVkX19aCZxFePCbtAkD7UFcJ41WQudHvSJG3K91CB+I3QBKhqx1rVqly7+yWtIjURujKTvTIFjz5RccYQWW+th+kSGMN8maJXOPBiAHFdApQECrFZxihlT5BwIXAfvSrf3aILzsyXLyElGG4u96c+sNpojgfE1qSllgBiGiHxYs1zhom/gwWdh4CeURhdB54CHBe9HkbJPz5dvclURqRsbYPZ6LtwDT4DygF2KjFMPvwzgoh2ntNuFnIEXHFwNktybk3icZy1EfrDFGfxREs5yrvMhSbnwSHEDEhQmQKQBNuLYWkgZGKmnGTb/WbQuonoqOXktal3A4YumKjfwcttsPZ+3RnzTQurj2JHE+Kcg1mrMCTvd9obcJeGQPloo4k874k/N1NxP+cwzIlndptou4kM+mMODXjUf0G6aG7/VPPWhIZHDTmfh4hKin9K6up0rkvJhl5b/WS1+jBkZ/opL9+N9qyACd7rkSVHXe4PfTJO8Bl/TF92+rBMv2VaUedNALAArBgMD80nZAhh5VdUy4e/GYs75HATKP0FUU1Xv6EDH+J/eT42IzSp1an9qbTvpAintPKCNpOZL5eel53zUK09Nsbix/4Vt466+Yxn3XV5vI7l32tkNyL62dkl32hfSFNbcgltZpIWjqks0Zr+k0v01xCMca5LtGdgq50NrzpAGbIZE988O12u81T+ciANo6uTx8/2CcqOuOOzy3lt0c7nzOwmJWUsuxrI0e7RVBF5PAW0eiMJm6N785yrlPOBpORP358Atp0A+dnyXwMvtVfhHCXe6S3iXSgM+ub3CfkIWoN8HxVSWZe1fZFxUmPpOKN06mJMdv5iTfril01EpN6VcwKPCoum4DnFuI1qFUaFPBQ8zEqO4ncmIe/3XQ6T8e1nUVTNhwoIjRpK5Yf4Ml0JvW38hLWI0moRYmp1/s1ddsJP66ksBiEzdqqOSgVwI7Nl5zP9hsicGtm8wVyYY5EnRchk1TjvkQDMLNWPxCiuKX0gb+Vg3o9ushGiRrF5LTtNlQkfVWA3+l/qMYQ4nqE2JyhmrthySSAm30rB4p/We8RqLdFyxgmiNGdUg/Pd4LkyUMbPCmNNly7qPG4qqqFKxaJFsukMJnOlVrV4m3qQ1VHAtK4p/MuJxjntoWm5M0gbQMb+kbghR+buqg93VLuILlaCfUeIKSOdKuBFXBW/cqznzRzmEijc7Usx9aGfbdvWUaphCYy8hYAVAGSpfLx2b8bSaxh5FjJxn0bnOTTgK3LC0/jIDwBFFs0goOctrUvwAm3Mj1Gtwili1NBDUaQBJPI25dtT7Qbb1z6gYVFqibOZI6UbA9NVw2L6Cq6+YSMpakPYIrUUBK+qh0bJMaD9RqFSenwWGo+GGhabdSBCO8a41bv04QBOWR5fG7ap+9ipOjhN0KSvpuUIMCkRc/hov8tWL6H21kg/whf/EnQ5IXmZxjyzdpGuR2O7GHOPwKy3vE92Q9KN5EDt3v/aQdtIuDh442hz4ncUExneC3NITo2i9PulCOxxAoVqqbZSWcv+7ji9OgH7uVLnr/w+FXd8kCSBeWBtp0bB5/L65rKANacDomvbQlgXLZRc+dpMQlS0bcDqxwdedAX/5BW/3dfOsMXaz8NYiJ0GT8XyjTSjEYfE2d0vYK4HuBz3dS01553JyqrKg98ZygtQODXO96wPK9TH1CJXyz1vnLtnbhW/T4q5wEEy6/ngbGXxuvDwZowwP9GViLlAC3G7wzZN2h/qy2hUwgrt50QqUmElGoAOKBvLBbQoyelwrphC4j0NTMxCVz+Spn/x3ZhEaiSDVUDSGe9b2NRfEs7Jcn3O5GXg/gM+3dvtfUqkGLThztyCuXhRjBDH3qVR9xZYib0upDNtCs9HVR8oemFdpg9n1hxkrXuShdV6XXWWc5hKuDGVvXRLPUnmE2koC5c83PCCTzSiLqgOVhH9qnlPsL7IQ0YRGGTS93sAoXG28ppkr8h3hGzDY/ZwBFzXcwtDVC+vDlaD4RgBvMw9YqlEtXqe54yFuS2+CZE4Ei/FpQYGrTilH+hMgznCtfMzVRKscylXp65k2/tHlu8+ncRYjowlacr74fhSDEr8qt20wf8++aLYZ4IEujbI7CEsGP/f5OUv15UnJYKV8YLahonzOpSOcbHckDoEMa/zytyCnqdoRlRMCtrANawN1QeANdeGUCcBkrrdtSyU1df/QCmDA1lFUJmPVbk8utjlw1KasF6UTa02hbNZF9j4H6FHBD0aw6LIRBcRSMlVUEo5ExZNP6UjTb2MJTb7EPRVzFkyZbY2PIILOYs04orcqFZfWLa15s69bF2eowLxSBl36eSmT9xw5VqK/f3D55aouUzcC6Pbh+yfT4JXANN2eY8ThlDcr3oGYmjwI+GUrikt2IERvy02Pq4t//tdGc++OAKkZULXi2yVtTn4iaVuAzSOERRQ5OxmhL36h3qotRanIJlUDGc7FUOdvvoMDrX5br5/8IXD7KjZHE1dVuyeDFOzyMy5zXPqw1UF2yUylXAg35KtmDnk82CehLLI7riOb96JTraAuR8DGwgHcS+X9b+ouzpUOHjmuG1w9AMID8K0G4F1HSNoxqua1zu6QfJYbYkdrcY6CvoDRMlbwbbLvozc9gV+YiV5yT7pxPhpuU7qP/fSmkfSrnJBhsJJHQKvQAPDgJcc4JcI52oy/uteW9jg6FTkjsG8XvdDARD33yLTtKs14Jz4luetjYcy+CW9J3aTlouWdS5vBJ1aTPFnNFdxP8HFldBgv2TPSyxgixqeiq4JDiNgwFT+5tb4ddk2032LAKKJ/AfC3f4dNor988lAGcJyG39f2XEymllw7W0eQcXx1A9dnCgTCSut2VUGHIVVkafUjOrN3Pe5Nr5cofZOBxDNfjwFIAojPw1P6+ZiarwZUwdISfehs1BRW4q/9sCetQ8OJYAsEyXpOMCQxjkopBmmOpOBOUgbumaMeuUEeJgPX08BIRXJ5T7oDOso7Gmq5j6Hyxk3EY+yfqtnGYfcbXP670hKvlvNOvfh3OhdDZcB0rQGAHhZ6vCbugSB/Bb9Ac4Zrs75V8ONUTaN/C2mnnrvbZCPAF1Bh8rIJGgbCJUo8BfOlOQmcZwpRvy2i5CUhmOGvHtM8QcMlXvQpsRD1wlbjMkEKpBUu5CCZCF02MNoD3dfmPGUPpBBw+AxJElLFs1GnY64uUanbSXrX+EMOtXHbXTA71LgR0sP8N0ZKoCA8AOH3AIwMx7kejS8WTArrdg5JEQfXElX/v3kU/CGlZiE589rK7fMDJ6R+A9JrPihDeCy1H81bcx3Z5uJ7CKA54gdw2I8yCBvD2XpU/nSyJoVCoohmnLJne+kGEh3K5AT6UnLr0XROC3fI/wMcJj62kmqhyvrcd5qZGEH3dqTqyWlnUoB+aoy2SYeRQPAtbKEAhZJ4GJxkYZgBWXhMR9rIFoZI7uq7Ph6h1FhhZw0ajf+cdF3YE7IfeoXzhaslMWZz+crL69bytNLRiQLkeXCBpok5jfwkZ1xJBvOeLlTcGf5vSgxIS9j/ImoXjYTmYPg6lien9quVrlAtle1k6V9McWKXaHTOW91FH2jNleUOBEjLXeBZFHekaBF5KhzpLVEsl1s4FdEvC2MBsO4E60hDpn4YPlCnuceJwgbbJbyLZPtxz4hbKHUXS7XNPMwvOh2XAxnKDRWskeJ6Y3JbuAnrXwOgFM1O90z68s14Uvt+kujdF1FDvwePDkJcaIkKd9Byp6Kv48oVrqQM17HjfuzNkejzPdZaYQtI7EN/yPcEeGuEb8GnWod9nAinZ1N3W+Tola2ezZ71wWe5NnWsUy12DCjBq0/Pxmd16iFa6Uj91kRn8h3z/7KEg2kVtjECbCjrTDyLJ0tlSxT764p2A75E4VML16THbM7aUSRA43StCmam9ZZ+T912RcWD6LYz+b67LIrWd1mRgPxI2YiG/Y4Mr+7U3yBz79LXCaeW++Yq6agtHE03SHeXFDNf8hS5LaUGe3gFjGfSKbjXV93/AW4OZcgrqKrnjHHIKnUcFBZeCTPf6XNCbif3GtN7npnZpTmoyT1M29byGtMQyiLTwzUu0O7Anz4yUj7xIdezKDsyLC17qxel7/zeRA3Gdfgo7lE9s+vBQJvy3gp6slYoKxb2USfG2Fp920QGFaQTSxh7wSzmbercWrSMm0i+Ys2TKzTaeqgX4xoc5TVknLE8GJRRbW5uIPhTAlr7qszhPSWDvY5v83L9TC5A/XQRXb6x722fvneow/dPo8dgBBXi2V6b5YeDAMAZOiyYjlkkV0rWAtV+PEeysaph1o13BPeP9ETBxf0V+gY8dOikbKN2BMKk2AcB1MXcXwmv3RSnXH+wYK9yQgFLGwv1eCIRW75RyQt/dmACP/WjkPr24xxsN6Eos+ABX9/MRWnebvun5MJ8xZ7f6f2aI5GWtHGhkA1QJLM2TdY5aWrAUYTiTleKQU/W5p/Zusucdg07kU8o149fcOonEpLQZ9uYp4cKBzl1XeMP+bzlqhiKi7Ju/FLSqVdHC/+/aKEgNGv2n7kC4iawKWve12yZJGCg3Pg1SYbMMj2IJLTi3SBDbd3Kp3vpUgCG4YQhycGLec0+hGfOqTkjBZX6aBNtmTcDV605ApHexzEzK65q0ZpddOsrMeUsTGvXznO5WyKvZUrtaiLd1XNmC0+baCwrVv8Ikql5MV2G4op6Jahe+OLXMs93wkEKO+4Q1ycTNV8KnXAYF1H4f0Qh1SE05ENfICr2dX3H4m65eSULzCuI0GricggtNqgAFMl2zp7vnGO04E/8ztgDri53iJfJGgOkQUu0A8wBkLh9abGGoJ8O9ryoqjEgtRkt4mS1RZGXVFp2W2/3980IOJy49LP8TkKZ4FKcXCQDK5teXndiNxbbE6fDv9EFbwT68LAQEUoN+yj4sBD00Y9gvdxUozstoykoiTV/jbuhIx61eiTH9xcZwVlb9+ov3SzdFkmqkNqExiCGU7EhPSq1xvwG5loyGTX3tDQsfLRe8cYldyrL3MZFnS980KzlMiD9zYm7p3AR/6QCc+ytPfdU7MgWSOePVPytjGe/3Sp7bI5Vxj1W1Ib0aLcsH4okG3Vm4PpeZaCBrBe0OVVV3D0cY+CV+NTo7GidW1F7OkQ4+fQINRHUZ5xtL/7EqkShXn6sqgKzZrNP5d0IYrRb5/pJ5FHMUdBgQpg0oyLAEqq0x1cLtbQF1T2bP0v27s/6vt34OTJlVwWkQ3ja8r5CYSMPM1xiqwp6JeR20gGBU1nBdZ8CxHTzKywzZVamUnKNUOy0xZfGPCZAQCG0TMA0BdjlPT1v3yorZOLza1BN0LHYNmjKeWeNqKYZhzaoFJKXj0zV7BBq99HrxKm0AIpB8Pc7UUyPqtjX3/fj8Cuktx3pP/19CMK3Py5c1IO8mb1wIPJlcFtuzTxidPWTHjGxDcxVmu/+L+76hG2/aAtCL4lmFm97ffI71jEPZrYHl5jPkK+2NdnI4nLzWH+GLBbRCZhUw/KE+8OtPKmxUIS1WziiRGEtmPIDrXoxLDS/SoPr5i3n6bU2sDlA6NOyTqYG2JaKotVm0YAotADIIE8CW0Zi+NulfqldlrOpuhAF3qPqFytj8+evZCuCw1gPkjhIIfmQKpFVcqD1a7SzTNsWhEoS0VrQFADnPbjLn+Wq7Mt2g7ti9fi1Rr0R8nkfUFQFit6FHVa2AFy42blLZb7SyUq28m9SC6oAW9ACqs+dy6zrvvy1/nrW8pNvPp6y484FWfMkU8KQXB2geL2cDAtnV2o38Yh0SmIoCKjaGXFCa5I8aMiAWk4NaalTOSvEsHX6lKLY6bP+zBtZ8YyH48SOOJe/NwMHRAQdJ0fIM1tbyRuXgr+Bev7+a34ImXk00VkOZIHf59AEFWjFfsedjKqTO4RlMpDl7dGNyDOmnV0snhA5YktkOInIJbGh612M2DAWuB7IyHR8ir3ANFIrh/TTqbp+BIbZh3Mxf6Nq4I+TI8uM0PwjGwf0Gdd4gHhK8GWZHAFTtlh1m6Ju0LvE9uiZw1Jb3lIbvruBe4d79eDEyBMz/jsZzEoa34ihr09LwwoBLEZVkrGO+lg6kkU5CXjYutZ45CjRSJtC74VEhaeBcQJ+bUJtgjoZvyGZm0QGdRVds/ddqbeo8mUNID1VLPxNMJLToe0ZC/JdHo7cPWtf4tR8KgJiIluSgaYWZmbzbF/oG+5FiGIzJIAlSoBuePib5AKvi/+a/DFH47prdshK7bDrS/1kM6foUC+Hm6G5zr4v3RDt6E9yzjTmCYc59uU06yCpntDM0ihfeaG44K8xYOGyRxDxLE2SOCzyMyj+XznV94G2PtznQcYiUfts/367WGvh21nJ9qpWNzlvJotVISJZvthviqsOv4U3giOmCEF0oaL3TNpyTjtod/TAi5XHG57YCr54AR6JK6BIa/HQIgHN/RfFjrr24zwiVe2GP1oCt0NO1G3nQAuxDgnJmrkNnbYX3PSxIpbXjXMXS9gyHDT57A3HAJejcFiWsbtyC/R6JYQUYqZ59+pavuNunToDvQ6V/Br/X26c04UPQE/kDbAxKjy4Tx4PWXykv2+DAxUv0Nm4RBvPm6hHyFOAOobIHnM2MJf2ywaiWn9y1gUQ3DuYb2mZz4Z4XYUZsPGKa+n3FCvPrP8jVzG9LECdiGum4y1qS0QPM4OXuNEVyUINvOH/j01+Dytv/1xsZ5kFe1vEKzq9CpS2QGRB3xJaNs9zKz7wJi7PQ2HYM5VJZ/qqkazOWKdv5CUs6De6iFE6pQDlkXze5eG2J9L7TiP6sn9ipWHb1OFzG4z/BFwqVS/FhcVPhP5M0FfuiadFqjR4EjaNCVhTQ0gl2gaZEvkKNWy0eaf6vR1tk2ujM+Oe0jQjnwyWsXKc5Bjt5UXzOjlvo9FhmtoSXGG2lGnxkg1GFUzFcZ2ELLq6pUY9eN884ru6TBKXUXabCgJSpklR3fRDxE6/l+KjxDl8fTC3IJd2N8O2yZHBTCoIpCQJfj+kfYXtkgHbZ6LwAp4QlyrBvtrr77TGBqOETJVIPZQvaBhoJXwRQQrzBOkIhmM1ukGlk9I2EluE1lQIt9soqjLQmr2nq6ntcNvTLbKAb7BRdKGfGWBqJBpawl7a0JQ3UmyikJ6Z3+c+/v6R8ppsC0X48azaw02eQVvz608DQ1JM4MmRhEj25vE9D7lr6HDsJ9FJ6LpCucdrh7Dnq/eaM+xhyGS1lIiDWu2n50TkzqJKtuoDkJK5s8zVOnv0ujEZ3NUlVN4gPyFAWTP4GWOh97IBi6QnhtmzxDsTvlSAJwbWZz9GTUtCSXowjrqr08mr5vFq+zz0hsEOafkC/872f/MriigvbQcIEvtdb4MmU8AQy88WT2F9uVuihFwJZxHFjgdY+Bg2iPScAFm8kbfL50ia1ptKVApn3SPwRd6uX/t34Hpe6pdsMeM21GSdyy7Jt//Lv4EEfS2r1RG2/7Znmn1q4SnMusTuMvEn7P2tkoLyQnsMWHTwTgas1V836xzaOTObt0vOIPH92mqE2sE/fbXqGGu7OHt1jp9QgCweG6X512S1mPO9R2LmImi80hqzJvS3DRhUe7e/jzvt/uktHtxcCCvafWnnzFtFGfwp4Om0Gy1bzqr0lbHtLzSsrjEh9hj1pdUNrgWoaqYWMAZcCwC/9NjkO8rSGoarydhah/Ui5Wcv3teZb8G8STgDFeMJDZYmlXytIJBe8+uKIWgQoe7LCO6oD6UqTUXowyCCQJri8UdjX2Ilr0ThwPpIkgg6If3UFFQFuM+OR/scJCz8ObFfon0+I+FshpdFLncec46bEY70IFeNeOGKoeAA+mnztbAWBIabscEBQdCTSfa+vS9wkLnb78+L1f9JU5wlcN3S8U2H1MjAkHG/pcnZTcoFtSSA9TVJcYspGkYSWZL27wRe6lINlmYyrMK5+av5IxqIOTIIcDE2uXkAu8L49XRUgesGeRET/pL6VYjH0ojAYR7hbepjDF53VpKkhji9T0iF9bF5kCdh5B3/na4K/ehs4FHHdN01VirFN99hITD/cROb1mQlS2iZMxIcnqE/vjvVP6WyjO2hgT8YtKlhppfSqtijpJxXo4mTImbHPGaL84IL7NzzWe8LsZLMOnfHNicfv8kFiej9JYeLAVS687odhEWs959/d9DcJIqI58risqj3aOR4ncKOfcmK+KfLA/PiL/HHenBwuRqpEpj/qPkaFUL5o+vmKDl/95geSakK1qYRWT0XoN+9VR14S3qGFSpXOy4DGhUfPu5N0GOS0eLZW2BKdYfXFSP6o6H2H3+Yh6vsoXzXopBlk31oCYZGr5WeyVqkSAaYHy4yO4QH37CWs1rHWQxJFO8/Hv1YkwnB3Siw15RkcRCBV9zG7SWl345VBDOveHUKKrdYPABbeiKGe1YrGqt5Yekl2Grb2i7HVQ6HSQarXsmKmXmnLAkZJjDjyoEInC/YWRfNjTU8pXmOcbKzaYYHCbLae9m/1BpGvmbYCGmJAyp1UqtZLi0Gw3sJstuMdp/EJSn8VIlIHVD4WlqJ8+hIAIIbxU6nhkRefagYzYRMH5sQSKoQmdBRKaJjyKe1Za0tkoKHeBW3lwEfkABjnKMvHq9GyszQ8XOlHHYPDJIX6wZK+jXuat9ZF5lU2A5VqObJO3GCHy61DZA8YLADRv3jTzouIrD4A1sJWp8O9mXdBNgZTO6PdpHMJVlY72f/ag7hfaFS8MQazJ4XUNWXWVCMrYjb45omBqJ9aKdE0/YLFxVHoUyRJDfd7oubYDMOM0V2SWkayK/By0uML480LUCryG8nGOYm2gyWxMgLCVh1xoT4BSxtUjxAnnQcMIqyHc84yxNmRcydRmzDZZ/A3RGnrGIav6MtaMi0Ni0LSvHKzjIfam/F+drEOratsaeQ5lBqr9GwbWSLzCa1T0DuWyEjXp3Hef1lgDhtMVv0JKTbvDzSiUX93G/KWwJlm7QdIy7nHbF5CYj75G0cw4M8EvymwoUJvlNQgavNg8L2hdjD64FKbJqXd1/GuMzNIfllQ0HUl67/XesuBT/rt6gg4ab6lAbj7FE6LIxh5hvBu2CB15L21+5Fwqhzwv/ePYcEfCTwPBrCYWLmOyRsTwa9pe5HAkDnWxogOrp5iuK2Qyq/xXr8BK4Te0czTXRC2evW75vYIPY+c9BpXo1c+LKTA+ag7aN6FTrKXoed8IfqQh5jFtNg/m1FeO7PKjsSy2Bquta0UIRqJlcmxnc0ZN+bCaC9tDi0ZEnwi5faGRJiv6/UGY10OVuQWabSd3wN40/upm3DBzwttaBwaVsMI5Fs8ikykeQ2JwboLp0X8wTjdHWCT7+5uPGmex69/p4pJACeeHPsBo3qgVC0h4+A/dHNDQHYXTCmqw9ABEh+RkgA8TL9yCUXMGwxOqNSSrR8VxxSPNAYvtzr+c3pHJhy1JolX3BdbH4AEXkljphBS4GaVp+GA4b3Xd1c4XdqfREjZwO9/oRPKyKe6EV0nAgV/OgLnhNhtOZIAV/IlD5TvLoFK3PpztzhsZ4sDKQOAbl0UkKPfvt1Fa0c8rfznXAFOUPW/2QbRYxz9/oCCDf1rwYXD9CwyoPhqF7QwyyKjUTRldUh2+iSC+sSagaN+RWcG1PR9JI5+dmBa3xGc7R/0
Variant 5
DifficultyLevel
707
Question
Matt is using rubber tiles to tile a playground floor which is rectangular and measures 13.2 m × 9.0 m.
He decides to use the square tiles shown below.
How many boxes of these square tiles does Matt need to order?
Worked Solution
Area of playground floor in the number of tiles
|
= 0.6013.2×0.609.0 |
= 22 tiles × 15 tiles |
= 330 tiles |
∴ Number of boxes to order
|
= 10330 |
= 33 boxes |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | Matt is using rubber tiles to tile a playground floor which is rectangular and measures 13.2 m × 9.0 m.
He decides to use the square tiles shown below.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/08/Measurement_NAPX-G4-CA27-SA_NAPX-G3-CA30-SA_4_a.svg 360 indent3 vpad
How many boxes of these square tiles does Matt need to order? |
workedSolution | sm_nogap Area of playground floor in the number of tiles
>>||
|-|
|= $\dfrac{13.2}{0.60} \times \dfrac{9.0}{0.60}$|
|= 22 tiles $\times$ 15 tiles|
|= 330 tiles|
sm_nogap $\therefore$ Number of boxes to order
>>||
|-|
|= $\dfrac{330}{10}$|
|= {{{correctAnswer0}}} {{{suffix0}}}|
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 33 | |