Statistics, NAP_30081
U2FsdGVkX18XH/+TASeMGmg/YRtkwdY/9byJJIm1E5XPCot7eQaG6iy5n2V3PF1cVKndKwPuBx8gIfP3r994CvVMgC935HvOzhC6XN0WsKgktB+05iVuc+vWd4ZwZxiBK/aywL3v/+KN/WgXIdJCOCCsTogyWhsHGF1hE1DCI12fnmeHBJlUZWaWRrMZaXDAIY8xu6EoNY1Aa5GvChrSIz9NL8dsd2ccEgsp2me84qaw7WfpsY9HvZQvi+HGqS675QEwusmzvRHTsC3buvNdb91H48yZGgA/uvWdFdxa/ehi1jMXVKvbXsok/j5iAzv6jRNgWkj2/W3oRGIm+pNC2Fh9KLr8gLtKYGMXAd4uRK6pC7BF1+NYj+I6w6QULd+Kq0s/ZymbedwMS8vuVZsS8kfxH6l00AnC/dofwWBhCis//f1TDbOoiQcvjrkB4J5JI2zHHfLUq/TvuwVg1FYFLTM4eeSNzE2LgjBGb2luDvaUURZSaHBBsvzhVo72Q4L9GfRzNiGYgfdwkmtQ25U5k43Phbjvkv3eMLMWFj0HUaeEWw0jhPZry6V7fmEwGQuDVhyWH9xLRwYmYGJvX3z/DGrAWTWxYyRQokUoO7TMKZeajZwvDFdSEVLXH+Z2OAB3EHB29nuIpoGil6u74GYpt/9gJu6UlDYqDH8sIBOXdn4c0wZonLH7+SiAMTsm97ntwgpZ0uiOadG1QVOkQpUb4p3HzAFXwbCI3YEA4imR54bNPWWigdLwIg1T9jVCp0b/AFyRN4H3rAGzXt+mxC5yUUcSJX6prJIVtRY8r27qIZeOMHwMfo82sLNwVlOuG6PadgxHK2P9AV+wsfzobktzAEemT1ciBgwllRbOsqfHyBWZj8P8J1YsfI3u8ZJEtbetSGIC86AsFVQnW/pG4CtKfG8x3tMOhocCcnxUKlnfR0UbEOl222ihLba6d8dRGI0k0LjoQT0NsdHYntgrgLP7xiSyLMTvnUZ5hsfDkokNO6Ea2yCRhNPBDKKNokexFpz5X3BiZhbZFCOm1e11fQtmtvkhTMeD/PBpXkRGD0vqJHXYgqGX6OQ+AU+jVmBiqasupIAGOqOADM3yS9wSFIM3WCeiyyOG1zOt3/3s0cHmcJcRBA70KtKzUiuf8t5wzhfUVyUmpSxfDQGHhnXmeNCig3OvxpuUqhPXuzAPfedZl5/6FdJeM6UOMNfsheKP2chVyXGepaZprWdN5ZMrW8wegbBZ52jzPblpbDGEXx5ae26zOBuvC7znD3casmb8q9SeH6Komg+6RTMblYvPdvwt23Agh9UrkNtnRH1035Q35RFHmhGlekTyRs/uBZfWpmVI8Iii65VXBveyFTIwcsRJmrELsC5jzOUp6kBPOJAIVymUSX6+hCFJ83shEKqdtmr8T0f5U9SSjaoD3kHCUTcXoWsnwk6GlvkmYfYHYgIZwIdGiWiYNiNFzYT8PgsSR2KqKuYiV76b2rAw1ruyWYgc/19UgcWlDhqcjDVL0plU/Q3uqrrYvoTAB1DktD2UBoAb1/pG1G8wHPldmYm2XqthR2TY52btCfAVgaqQTyrKVuUgcUfp7tG0s1XFzFFMR4Mwlc5Q90S3yxMj8lOa1GkiFVD+cFYeJGuv3wbsx5CaQg3WKyDO0LlcYY3Epjk/lJWe+FinBWPbZo9KIZJp1KBtMh8jKDXpYcOWoNKrFfxwzkPR3l+1PaHbCg4ogIhwEx1wjcMD+ATFZJVxfnne+e64g5ZbPJ/YKLwcHpHQ72lhV/d+Akh+u1FHkyrMaEfnmQD2aaIeWWTtrGJWR7E2norHSIbhxiw60O97EVmlFUthqt4psLM/1G+dxaREz0KUDtQD6QgFOmgJjJW+sUxR3BvOJQNqOhQiu6ZWM1mH3k5F4LyVPxIOXHj9E2Vg0nJ/Gx87tokd1hbs77hrfokYbmOWMskrgx6FDt+/eODSq7/JjRgSHYk+5UgKAFPcheD/ggb3zkPp9ANZy965I8FPEqKusud6CKBgs5Em0kVTIqC09DrQKz2PdP2gUVBYPAcrgd1yXQRbrC8s5j77NrDAcFYqnl7eF82xx7U5J/w+yJPbae8f/2LyA6tdAE1IkGKIjx25P8l7+VTZ8E3pAvJiFaSZufnyQSONy3Ar/3l8XaUzRNduP8kNrGcX6KBuPxXrn/KV5pwSa+rGQjaOLXibhCjk4NzoZE5uMVN8ofO887PRjs1kIY4IUIaXd7Anbv6Yr7z/3t0bKAWbwzcJ/Vlv+zvBkoZuv+tZIi8U5QQWsoRgh3LrP7KjGEpWjPY5C/w8+n59gEIrO/0Gb/NTnlkq5XNhRq+3HpSBWiDB4Poa+VywLxFsUxIreTvKVmk3kbWsUz7VFhaubu0FcvYkkn9y74A90GVBjHQzuY+HRgXvVvtIzkbab8GHlEPDT6uMT5Xy+jR0Kvg7ZnFSfRzB+KafnxYYuphX8IpxUeRNpfuBXpHgLxxkWNVnwH/PNWnV9YiHQpYzmwA2u345jQWf6mIet8ZDqocwGBz+/0/sZgXsCaHeRHNpmFJvwECxNrUrqB2yh29lUiL9gRMjZhMABlNLI3zQh9vlPKtOdE1JkOheML46SO5X6lPsOHeXD8TAOxPEZsrKPDAm+f3yedqkQXLudDOBzRE8xXeCQI9/jCVW1KlF6WgDC6hE4jrRQEnyNVjRuzzDnP1VY/OBP+RLTwu4Ct0uKQpomq4pTkPKsJSXcGFCpC4jkVbAIkqJlMDApz2uqAuh3+J68u0etgjHcr7Oti40CQnYFzCxh/1BdqijkhmsntmGw0mENeQDMMt834bnoA4oMFuRGXHPrQHIKk+Y6f3eYmWfD38tmNLphGsN9kGKyUkZ1ags+diiZXsFcBnVLuOkyF4Hh275MzWVeBuyCbWkPxBd3k4Sg08AMUJ4eWJqCScDMRV1UMjAueUJgiAzZeN3C/f++8U/vRzYKPcD8VeEDNQitBzbg98vz4pDeS523LpBB70+HsdihuUzNgJcA+dfldxp/7ULXBfrVGpsOC1f7Fae2RLRPhKxq6uazFiMEycOJZkC7v/2zxidQs+2k66Xg9OfDYjt/pFHuIBQI+rvM/3/KWNwU3JVMKdySfe+wUynxlR4vnVTV04yfV/aJGSh/cJdkXYyEXkmje5jOL7QUbVMT9P7VDh2lfmwo/woEuy/aQQwhjcqAi73OKhNjsaCJSkEA8GHpV4onMzPmCVmNtnpNGFxguacWroPyArYrRJFA/+1VoOxZkpM9r5nC7UlWaG+zwtWiPKKH0BYcP0SGIlYLgKok1DKloLwj9Gffx49UTl9/XazqbWOSCIvTMGfCesLLZ8idjSP2VaKh8nDFxXBNxbdg1ee9JIwqLFjalZkEBp8cmHY9wHZOMNleMcIneTpDR6iAb2dYsmLFRZpc5w3yWEsgCYy8EEUB9RKjlzoWM2ccUQlfrQzpkP4DU/FxY1Ixc0u+4nbgDzU1LY7LHJbc3jh7f7n3Fbt1gnY3bKU58VWI+7IGNvi8pSI/1LZElRjbVvp2tzwsjAZgMkAAhzhlAoeLs0+lTfJ7jXSr1VfMy6YcmesQNTJ1O6PoCdBz4z9nqUoVPPwA1yEKRbkIkNc1vdhu9wWqlFQSNf70P9GIjnzM0MgSTbaWb3g6WAyuzyRhnEXISPjknramBuqb6bNHp8bJbOafkBXYFn7ONHGxzgRcEsV45Wf5uckunV8oGsR0MCZtJKowXxIUBt3sWsCOGg2NzR8ckwU2whTTg3IzRZaAyNYQ1aJNertw20dS56qFuI3k8sWY9PfUmuh8s+5faKo3OxsV4/9mo85NsiJgcXqAGuU+EJXWYqlVYT+zWPu7EnwDF9JS3tZ6EA4j2dDeinsNFdueB1T1Hcv3GLX/cHtweXU2Aydehut793YFdGUJJ4D0P/R7SJnjbxmUeHqxFsBVpHKdEIqBwI8enRuCuUwzJ+RsL0tI+eVwB/8vYAXUbZ+Re/ANfte+RjfFPVdcSogSyVgWc+5rO06iPOLlkDxnVx2Fimn+eUKIqfNT8o6WC3bDAtAI8oa/stc4I+jV6AenMWbi6R+qVCDI7jPr4vjHN6ekFbxMGCc+Pr9fRGi6hkOl+KunilY/5tiX8zO2laKRvrAjf1B++LIKTQgUQ8YrLCwDFkzJV9Edv0ABw+xTyrMcDol0KIEOK8WYKy8qcZTVVzsam30LA3WWKfGNCwkXV3vbR1+MlAV+C3oqEl5iiuxQttVid+CUcy1sHb5sJaFXyXbTWp1tecuB9f4wyOL5lwlRqejrJ926htJpnkN+4b+W/6s67qRGRHCLrA68Haqgup6kDIA1E+PGfqytp0IJ7VdnWPvcahw8gycoHTMKGyS+2wTdpd4xZwE1Nn3FfMO98Wsata9AuAxmG7H3Iw58Q8wyoFcsxJWvYNZfwaTdpSFDlXxXrIJ0x8r7iWJvZ1BOImeaNPdO5O4HdSevCEt8ZI1o2xNmzjty0xhjwZwe9xqwLDPjVPOaWTV9aNj2w/uUvmF3JKOMWsT2o1qFgpyJzmazwlwyGdFJKPhUVqQYmqrOnh4OCh1tPQFqsA2ecM4IrQ6NGMNAg61wDI9nmfZFjdFI7NNjwp4Ei6Nwg7g31An3+6cvONIDMiZgjbqbsAR2Mhimjl2tV0h7KIZ1jU5qKZSEhj0jFRf/bd1ZheninIKESoaK+/j5EzA9DjiUDXD3l4ZMt+Llo+QIa4bJkzvM2iAiPKmXJkA7QzoIDk4wHNQxYQRCSQzhZ8HGRT/39zMOJK3PtZXzChmD6+fvCuCJj40LEDzTBVv1GQUeBxyPfnGg4weKJ4YWUkI7v7TUokyyUagDeCFNbZ1aIdzMh1IDyC5FypGN+Qg8HGezc3Syo1+vYFTU88ly6YDvnKQcKd2ikkTPuteFipqdEkN2v+n3vULhDZp4tz5Oh3MWnlVsxcBI5qOEUwHmIQOMHN2ewfRN3VTk8b56ch3w8wFV3jiHymEFEBatY1gVGbvbG3Nvw4wkgAFRuT5LzbMqTlPr3H5qQolzuM1+82ejiKoSiEyKqo+Eh7pRmRJ3EUN7oqx0dPPKrNxwHyuaJM702XUN9xrtEO8azXmzVqu+b1ve8EckJGf5Xvbov282/gYqJerCc/8bpOZOkBeLBP64KqFXm2y+hN5dTjQp/nbK0qHo7Ui2v6rzBXj9swra94ynLxIecs16RnMb6r4kGFLuZetghSkKaUvJEZNCIUr7NndRR20see8UjxTnhnctnAB4E1KdDwTyehK/5F7uI3exPKpGWn3FCMxJ+pQp94Ip3QgA1ogtpf+jfJbKdx/O8K9Rb+5iJqcXy0JP8mEtTyi3D2I9BcGyKOCuLA1z+cHfWKL9FMkv97cqW65c/zxUMSOu5h/WyISHMy1dqZ50eVvywnOWfoAg40h/gbSI8wbwTd0mIvqghA3RO+XJ6jiYNHyb5dy4sy0s41JniD8pmkFDv8HQpb/sXYMWZ3o/97B/bS9Fzj6wA3gZXzSp5Dk+xwLXoqGU5mmgwEOIPEwY0Cw739vd9FyDFcgozKHIoIuNa9adSNoMpftwexQHFa3T3QjR6hJcImmI5q7Ac+GNAEhDV4jbVKiz114lGjLcOmR/EIU194O7WAYmkbLsPbRaZInTjHvZMN+WXAqUQXHedeCefbq0BPLQb/ydTA8gQ3nw1jJhMdi1qaVNlCcq4faovk+Qo6iWIgYcBEw4XaB9eFr7FHuTaUNgwQHjMa0xQaH7JI7cR7D1LY1T8IsN4dWw8JVAh5En+owO2gvteEM6JqC7deU0aN3pTG9vM284scmnNGQ1C2x7tEFnvi7PC3R9xMu5UTaO3Wn1p/6xlx+Afn5EAzvU7qewXsCXsLLTlx1vdvFlkJLE8wfl8SkI/rkoGkLK6OGTc1WvrC29JooSxCWKyAPET0ctXbK5lyD5qnoGN10KjBi+VB5C+KuHNjw7GDjOjDAnpF+5ebvv9/mbRrfq0QSx22TuN4FekgyvpcsWytr5WZ8R2nA9rTQUnaieOKlccDr3BUTpwdBOP9v4rMiVYU9fB7hVpMKRmgcs+HlGlcXLYNkFmzcR2u7tgfSNtj5+Na9JHUumA66AijLt/JCurehHY95uQWDk6eou/3vHykVHr/6UdZMApfIHpFQTd6snRIaN12SGKSYzpUeOkQxgstLpa8VWoLmLueUOU+aYlfURAruAXdl9vUKCVnUeUR+Qw2y80NWuv82bR879o0ZnTz/dn6C3ZEREcaqMwOE5xaAMtuQW+hHMSYnjRdZBoYmHqQIheox7E2pq5mrN6JYI8GXdpL30Mrh3Vi2oSk9f/OH3EMfczd8M4vGM9A7YW8ZnrOhb4PeM5jmiv2P8a9c59Lwu77zcdJ++C+fVk0qspOPWt2CoTjI0caT8fnyIT5V6W5kzaHGNgyCRBFoYtrNEGgc1yl4Aqnd+3yFcKcmbF9Tpygu4kLs7194ikKTaEYxTLmyHY4P4RgX/cNLOvftZbiPXk4bF2IopWUaIVV+Cjlbwmfe6ra8HHtoB5R+kkqoWkVfurgWlflZGf7rSc/BJFBk5IUmNxIvVuUmjDbld0zGZJ2dVOwm22c+7tglf9QEZcd0M4K7Z47J+RIrLZQW/EaTQEFh4+MMATWhD+Wv5u/Qdln7h03GpFwVFSl0srYKVbrn/GDMRYZOpTBKK+URT9SncuwSyzK47MLX7MlOX/iPSmM+zRwHOqSXRUKFS2P9/xTrZquC71uE7MRvdhHcRtBcCoJLgwd2B9r/1xxJjTyL0KGDJB5+zJTQIRddIS5oIt+9fMBxUcUrre8S1kLqdjyr2MpIP55KU3mAMVc1OKcj0YLc3O0krhoRZLl1M3V3/uSYfklakydMfbEHmXCGYnxDOlcTX/q1/RVcYrxpPua0Oi/az5xIxx8h0rkvDtgYQAmokyGNOhF6xIFPE/EphyoR783FvyGjq0zh13ss9uRDePkixngvlgsahyaiJWFOIlQymWr2xrU4B+5R5JYE8jiiT1mzYPfW8txFCnCV+f5e4cOPsSu7h0xdj0+DrQapOaunlwuK4cL4xiAyJ3PchiP2Yi1X0NQVLm5P4z9+FCJdplCoROE/fAncuzLuOKTWFh6Wax6nk2INMOBgbR5MJld/mfd5/C9DN3dQmMM0Iz3vABFZw2+BosayOUH8ZTc8ylrGwHihLKKkzwF2xMeYp4Tk2hlctj3fO6x/l/nbzdf9PvnYZiKwVwLQT7oRFjMWGNvIGwKqaHYLnvpEe7EDgyFr5zXTE+pGDW0C6ul9TIWVDMGgkhxwkBABz8aylEdHHoC1wWXVyqPAX29/aAjngQ2duMhP/gg+bTLXq42ts9+kXLGGGh5+GtKY3xhStphCLRbADmEHIb1c1NZCya/C4HlEKwuJmI9fYwRlNa+5LfsbuPU9IhUKDC+D9Ksu449jfVVMGHWEeYadcwjWBVW9z+2TFqdCjD1Pf5SHElS5/CZmO+BthdGJcvq6fVUbVIcZnCy+K1V3iX+eR6j7hrRHbytPZucF8ntjgUT7nPb0CGoHk8QmT52T00Fail8ix6g+JiEL+VQCnzz5NmIEmTjNcWmGr836fNFyEPR4OoNQ6l1pADm0f7R64yTDvGBTmwVSeQcsOkRAPXL4fVpWe/7P1hGB/d0Odf1ePxnNTBpKH4CpEtrjyL85bSRT2uUjMFPxvDD9Sw2lJmwSqxijYXPjfdLWIABDtYVtZiyvZ0D7bYiAhJbDovJDkVH7SCkRn7Khm6dMEA5UByG3duWGIl6BnNDDw0s6YZ7D5Q72YwVUBnggP6Pxr1dqcLVrtZmV6v0pMD83qMcOiPQczlx3e8gdYT2b/rVi6Y4o1HG7t2PD320iDO/uAZANOWi2ENqvQs98dllW4uk3lXXUgKNPagIFcPQo9R2d7HEBy8VQFZkETLnWEaGiCxpJRq3Udw1kY6+eoWfThGAXXzvIwkL5i7XZtjagm56o0tnGZ/HVi6nmRhUuuhn68oRpS9J7ZsyQ3kikQvBBhelg61WQa/LpWRglY9XmthBY5y8zHel9/ckj8IKuGB8Ain+fbyfz07RoVP4TXsKZJHnY2Fm/CBa8LMsgPUG/Fcv7wv3MCMYulsH0zhuRh6vWX7Lm78X2jQ7a3KVklebfK5upokFuPUtrUqP+ofRVTWAofC0R0pqQ1jHJMrzys/QeHw4HXWnFq2mt7/b6tvwew/P8ymAYEhutb7bY175t0GmkefqVjMKqVuQX9wWw/vhIFEFtp9GFFsRHU+55OohlNr2SG2phKWmU2z4b7wQuAIlq/r/3l9hyQR2dLhAcLoge6QUUQcLidCENHUbXrscT0VE1XkdJjzcF89eYenLKy7K+n/rnbxk5MJd9VgqbJj7Q4OWjLoiUzQdNHd5k+DDK+kso1OadqDZHZ2lQHaiDIi0zcEyepW9UG55TN/l2utx5ExDCNRyX86oXXdYNdrPkMZm8WXToeAQ+XmoFWl5VunzhBNgb0hiezBTYcOZl82Uh32kCgz4a4yz2+IZMoYmoHAcyXYrQm0nDgk0AlMUo6dCm2iTZxEVtnyGa7vWW0nIkKVJDOYV4+C5hbhTZuI+0rOAN62bn8yXTb43GVosn97ZhM09gCjl5/S2eXCvaSrTrdoN8Q20U5o3mG2CLa6QGvSsZtn4H9C5bOreQtd+MnZ/+9a08tdPqPdi3tWmUkdI+olBV7LnAoEqHhRq7CQpIKRpp4PyC0y3Z73DlkXRG1Kt0WQ9P8TSC+Z+dmh/gkO5XiPCi3A9UEWhPMi3xUramOlNqa7t3L9USd+slPuU/btLqeRbH4UJbzbF1EiRIVkWCv53XfOf5egsN5F9Yb2g6E9NziPL9er3GUqv8RfZwWKHRdRix5v8fRMpITZZY6ufdNaSIV7YnY6vhlt4eMsBBDKBBCukjqlPLeaxoSoarK5JfAHupZFFJ6XdBeUgX3a4E7wcuKq4+VMl9kKXNly7ScExGm+g1sk1nPrs1aOnadA7E75/vYTRA2PbFRuV8hGWiLPjungGyE2VVsJNBo1ua0b1oYnSASgETIM5ZoSpKp/l8M6RDUoZtQxkDN+aSh55QxgmnmwPtI38WyFY8Y7YWhZzeKlXbwiMo0leHSJJu8sec0rC9U440tTpwmsUV+iFZfZMA6s+gxEF5ecEBrEKkeUXCemfiUtMaymoXOGOAGs8gYzC7etkJR9hHbDJaoc9WWp6efLInPA87+RL2vnvumKQ3qMOtav1nDx09Vm3/r/5E5sn1jgPOv5c8zYnJV0AY9iRZyhjdCb0uyDHs4j9xOWs7UarRYWTwVC/l5U8J1lGN+9Dl3yw+C0L3oy0elMZ5ujgxG5MsR56nePdSjk4u/VrcRrsrNBofvv7AnBNVVrgpSQ8DLSeYcTkZ+fe38LGS78TbCNPjU+oFI1am4V+ziLsZUH+vwpPCOZGimDCse2TXAi4m6d1tdaVJiagMneuUZqEANFgJ8rMaCq67tc6SUq5+e0pfCWsiqQDskJ+2xyagREuNj46YT83vqvuRqDSviE+keQMLOFfq7wmVInGW15fC0vd7WuVR8VSES7xacrHBCJK2MdD+zkmz57bKjKFNd1AYwiPMUo855XIM9zquGK+UjRZvg2PA6rqUIACm+KtdnStU+QsxgwihEH/K6TQpVVP3vTWHAeav/IOzLdCqqXP3FazoT5dbWdwfrln9fzV/0xQs8hhP9arJP3IYrGKusvy3JaMUP7FsOAOv9FJwsUzOhiaSja2NAWiv7qi+e7owcokroUFrhGe/faL+wJp0ljbLeb1i0Sp4yWkEGEwizjsyus+sPRa/GJ2zroJ9AH9DwPW4GFMkAGJd3pQebesgy9h9UftZ569vQQ2UEcUXTrIt6QDeKgMNlAW8KaaJrRbf+71VRqvb0k/a8fyYETRNvVIqBDuJdQ+vuoS0LvQKC6bWgJu5kAEc9v0+1/RP3KWCRmbq0RxflyXyq5yKSeZBWuHTDjySAlT4Wh9Zmj3JtMPn4QaORJRWbFXYxan8aHesDMMfTQHq+iNp9bUXUeqVabR7LcGKgAxN4fVWZNvNG/axJLP8NJI45Y8cdpth6FjzhJmUIC2oCgB8/EAuSFtedmPctPI/wm0UjQzdst9b+y4j2i/gbYPVnH1SaYQa7oWdZEFSetsXDgceibYRTIN020+l8txTN2p93pwYnyDwOqcm7l7yr8C2z/m3Gw==
Variant 0
DifficultyLevel
385
Question
This graph shows the number of cars cleaned at Shining Car Wash last week.
How many more cars were cleaned on Wednesday than on Tuesday?
Worked Solution
|
Cars cleaned on Wednesday = 6 × 6 = 36 |
Cars cleaned on Tuesday = 6 × 3 + 6 × 21 = 21 |
Difference = 36 − 21 = 15 |
Therefore, there were 15 more cars cleaned on Wednesday.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | This graph shows the number of cars cleaned at Shining Car Wash last week.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2023/08/Statistics-NAP_30081v0-min.svg 500 indent vpad
How many more cars were cleaned on Wednesday than on Tuesday?
|
workedSolution |
>| |
|--------|
| Cars cleaned on Wednesday = 6 $\times$ 6 = 36|
| Cars cleaned on Tuesday = 6 $\times$ 3 + 6 $\times$ $\frac{1}{2}$ = 21|
| Difference = 36 $-$ 21 = {{{correctAnswer}}}|
Therefore, there were {{{correctAnswer}}} more cars cleaned on Wednesday.
|
correctAnswer | |
Answers
U2FsdGVkX1+mr/wREvLIZ0PDKb5FpTxXJRNE8gnPwtq4E0iR/zvH/sJgLCvXVh6pLaKyQ0ejqIIM6GvT5+GUNWXW6UxTSNH9cydQBQ3tSwgRyF1VybbjnqvqLriNo0XkZU0O6SYLAJyDghBzsVaBCbouhWN1SKfj2oOusp5mFxwcDvGEOIu5unFWiSDivRaGzOVnJcbGwoKdeKI2O5Vk6zDhN7G+oUTOjuD1Wm0sOa4EcgQg+SQ/hRXz8QUCqDpyDYesKGX6x9g6CpzigrCxa5BVlrn8tNJXU+4PE6OE3KtXeehPpwS7hq642mB6DSlaU2INePSUvpJ3XgA86J+zEeOjEieIWUKW+0VtDa6bfgVBAvZVDDb1JbKnEsQlGSVKCg+23lr5aJvYyctQRVh9pYhQYceP2CIgglBd6B1Ta02LEnK+Hs0qqUMAJKYH7fttEI+uGpaTEodFkOX9z/dH6OB+vx2I6KrPf5NGA+257Fc1Z99B3uSMISAm/I2Ycch6PKQhXtaL5bSu9enKOE3z8QpnHznDo9zPc5ulN9RVwUPj3LxwIZMOeqbAuGE0IY+Q/T73hM7S8FYpq+KOKaTKkQZlUyE4kMWVu9drb7r9WG5lKs51s1/YXy65/MLjErvDeQMhvt0983Tf1di08HSDcKa8+P3GlFI6xo7Fd4vNoIRjBNmArHugIPPrXJ0JM8CeumZ5wsnpuQ1xTbrw4+TQ0FD89bpecqUXkISOsoyzijMPB+eKOOWNlydUbLFwwF7Xh6Ts3O7XBdr6YW9xj6SnNdczd9qaQ+1yDQ6RRyAff/4AXrc3rpiKJ3vXo+L/OMnFMEV/XcWJKSzFkDt6KdP1spgiwCfCm/RgJDi5axNEt1zuPgbLFMl+mAdfz8zLa45Zg4QKalhF8vpAOhKCl37dW1X49ouH3A7tXo/SGQGFR+SW87u8SehEQCRFJRPjdRB+stI688Zcgt6XOSg7PcXbE5cDBnXg5PJmqezAW65fMIHdyNaMsd3O15H89H/4HRt7n1Blm/na0X+CPsIqJJZq3HcF603fDLLtQ6SNoiC+JOkZkm3ZKXjeEdMysxDHNSKJTw8q0RNrRvujmuOSfdypOdKZFT/dddJlGm7E7rtxLzKou+V7BQ5iUGyeXzuOeNuat3yf3CNe1nmwGjlSRFN93Ck97xH/m/PCvtQLuZI8l97nhMGJllwzGhr/kV8uSEinT8dnEW/GTr0oBL158c/Mea1aUZav4E1Ko6c1v9ct57S6roe3I7cWXBk39NL+gLhWXyf3JLJehck1f23De+A/XJbQLkixSksZYwvSPGvpfSiqTjKqKKszTqsY8KvBBqeusVoBFJiTawut8HcgZAWuk6e9r2YAB4RjjXH7lIztU0xf1NAlMhCqqq7HgiMmq3a0ZOsjnX9lnKtlKTFAwIQTzMEDY1Pyqkhu7+3YVzZQTHOsgF5/k8QoEmsQq+tWkWz+5DWxtRcfrR+XOiEiVZrQchWh21vhw/SzpMCa2m36vm0ZLXG3DXNeAtxf0OgsyUPOHPOItrniY0LXJprNX4wQb2Vt6kUB+kVbDeklJzDxWAbpE14CIU68nORfPrYfKxY/zGFkcP+j5Hdkrea4Y6EIEPyhkh31/6W34URAvqQ1ClWaBK8PzQfLMsO3H8Yq+eGLJ//o5EzWUVIt0JNXGEdWn47A6XdX/LOelMfUAgTBtcWJ+9Dij0XkzGNEyCMjUfZou6YYNGbXUP2HCDA+leCMaRq6fw/toVMZA25bP50Qd+3shgxF22KEVibhoALDE3lv7tpa2QB35D6oTqHQ1M3Q1mhOpkzQVv7t3PZ9dpzF/qcaIYoiml6TnCqP7176y/JsWYtdGvLyBcv1xSZjfNyaa09a5rg1br5eoG5OC10vkyiksELJbWgFdDiYns7In8h+1/v6681OcLQO1B5IRBRofVEf2dmFyqRUgau1ko2n6kdYofMiu3oAweUi7iw7br8kLPeQEBXV4ct791cufdBynASTpsBJlt5un5Au1geXxorXBzt+MiSfpxkugFWyHRATuu3TdkwBL39N8fRpaBR4dU5Dq8xZLvtJtYtcU+eF+r4iISerjRXW0OoQQdF7pNmDIjn/yIgXWilnLGAC98m3nb/GV6DDm6TC9Uthwuek+SRHE7zaAvBF34Isbl16nlBXvFHPtbTZl4WTkAEnlh208wZN2fVNTHzBNXo9Rbo6svBp5rkEJAR9Tzx/f8hedbY+8DdvNum+SzwpAsmNFS/tmlX3rkk6U/WhjGnfszZnJmEjy2m6Koplv2I/o6kZ85yzbn/uZSuDExhY3sTUuB3mN36VMMsmYf18dq04PwdursvjE5VroNSBFSL7WE45ypgYzxhyiEDzvnyDnCq/TX6J8WcMEEm6zS35KiCB4kTnO16922kIEGIYIm0p8Ol4mNRQf9DvZ9qZEZIUS+gZCzBLSwvN1ejqQnzZEvxZjL8VBy/tz9Pod63ssHf9/FFKz0pGg7h+gAo4cofVMVN87BEH/473AcFutD7z+ZWO9VZEGAphWMeyD20cPaV9kwgtDTvyaA1pujZFvWtPwQf66iC+fBUwwtnbRmfAV2D2JE9pFvqVWXu2qB0k7Ga/LthN49wBnUegOcjq6bpy6legBhAuWiIYlt9xeZk3LfssFD5x6VFf8rZNejUWbFnr9vhRUOvXWfBcA5/LTFpazIalNgHnAD0JDTirawNJcniYkThhBOkBtQndprR4gB9RSa8pxqwR6sue/VZHTbXohKedGKUqDlkT986zxs1jtnodeg5OSJ13s6RCCKYA+x+UFT4EHilBbxDDaJAJgDF/rnKmk1BdsBagOJbYJuAY9HLcvJnOVhWWaf/Yh5PPggazTKPpEv7jbAJBKBVzFCWQVhcWa6q5N9cVUiVazFY1LRPxyuvlacABQhJUAeGepROnSVguud5YAERNLEPTQKnSJ57gYGbsX2qGU49cUtgpNhDPNgZksHnBuCyYidiIO/cJYTiJ6pCPsqAbFzAUNp39zmKIkV/g1cY2tMT3sNP9HONd4FldGYzNS0JPWZCmLFnzRTjOsAGrek0IodSYIDiSjyCzHbRyUumifyaEvL7YwdEHRSI5mYGWnylkDDeePxxJI0D2gWiy
Variant 1
DifficultyLevel
387
Question
This graph shows the number of cars cleaned at Shining Car Wash last week.
How many cars were cleaned altogether last week?
Worked Solution
|
|
Total cars cleaned |
= 6 × (4.5 + 3.5 + 6 + 4 + 5.5) |
|
= 6 × 23.5 |
|
= 141 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | This graph shows the number of cars cleaned at Shining Car Wash last week.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2023/08/Statistics-NAP_30081v0-min.svg 500 indent vpad
How many cars were cleaned altogether last week? |
workedSolution |
>| | |
|-:|:|
| Total cars cleaned| = 6 $\times$ (4.5 + 3.5 + 6 + 4 + 5.5)|
| |= 6 $\times$ 23.5 |
| |= {{{correctAnswer}}}|
|
correctAnswer | |
Answers
U2FsdGVkX1+p/jSJQ+KBzqlxT5rWOkLfp/45fv2MnVDeabFAAYBuNO2AGDGaAh/czldHV+bx8adfWXCYIbzQecspWw3D9lP2n/RSDEbt3OPNhWI6UJdz/O7tgmzEGSO+fEup3MVAc+uBLonZjp5+yI4XmP5w+d98LJ+0x/qdzv1k/3pYgGByx4dVyIx+RmG9dIrc/3kME0asItiI6geNE1LugizUcvbFNtvEdUVn2+Z5zDhGs3kd0CstyLEpdO7k87n88L9ml+ghYSDGYdaD7O9nCmtv/KyTeXoX68EOYjLWV730IvGE+1efau2ZEYSB/Mn2fwWoTf8i0pmU9du2iw4WzbChxFNgPRjc1j9VbZE7WygZlVFY3PmFiiPwn3Mnph1WGoS8juOxUsAw/Q4AnXniFMHPGSvauwO7d5Yh0C311Mf4Gtzs/CYcxAGdBuGDsUp+KxIAVylKFtlfpG9HDsI3E6z3Hxej4sctgsduDFt4ZMwh3ijK14eR2FY+QO+2Xcj4AYMPfZ0nFA2N8qG2McbggAzWpt03w/zSZR5BqRt1vPdsPhAIh4jklYUMDZ4O8NOpNN90DEhJiKLT985YTiwD6QO/mECdOrAs2dvGla1GDQ1wJDeOdZQNS6YlbW4B8Ttd/80jh4vSGm3JdCEcoW+7lB4Ps+7mAyzaKDgRhUmtyQBytse/FfDtmJxh6Q+JbsgJVMzOWbD8wxHIsBelp+5CmHzJl750jkOPO1SthFffTrL77R+ypIzdTh5zcmyZhAKz05v3pmxInL2RgpBnvVR3cKnZY+wErQXNrKzGaQj8RmL+bJXtx4rr+fODFSjK2AbnWLkonoW1M4mbuFhENnGs9XTrxQmkIuVgdmcZG+ma+wCW2p0SboAyN7bqzXbRhl4sYMichjOopjBAMnkuYVwsP6bzjtLm/G4MGhPP2xOjfDZbKPwOr/kRMtvHzMKvCeyDR4jTGkdhosv+AozGXkKqap0Gj/FHtuI0xFBryBogDmVn7LA/YMVWLFbZVmUvyg7pOtPQLRP82Tk12XM11t+9kK2bNQQsmffo+V82Mk6lvCXV4sHFQ0do77qGWwRJkxO/x9/Tpg5BhcDS1xwdfjd3BdcGnQH8gJP0HcoM2DY3RrJ0tWw8ZPXxg2vwmY4oasN/DejMk6o1qavx3kX/Z1jUkJNyl0v6v+J+YOELhpz9AYQ1ldFk5GyKjk696tsvUAvky/cH7/slK/uCBwyCuRpdgU16t+Dgq/jnaRJdscUoyeIMCVSiCfK+bHOs6xVPPMPmgbR8bOZZJphDg5IZ/kS2ImB5c4kM2+nGjjd+AR36gomEGfhpH9+htj11wJRG4OT4NwjFL4CCKReqzlL01Q55ySzm1dxJFJbjL0pAdkriCA+ZFeuN5pNmsaoBb26GfST3HLCqS+apKuNpOjyaGJcUt6lKUUVvIKF7WlV0TXvVptYfEBl9/QjR5o0okQ6YWNCF0YQSMDxw7PgeP4zdO0CDhQKcA3SbYvpAv6e5STufHDHTchdAhRtK7wmAS5dcshtMftFtoFelxDrmNz14EDRypAEkHPPrkddnts9rKHyxIRJ+wnnk05lyU0sTDyb9n6u9DNzt5FsP321/iDQyxkVVLG/CK/OEOPqpgOdM1RveLmzYbVj8DaEubXb9I2p3O6VCHgvv64b93+tDNk480yPISIL0XMd6baLiqsWCihqJmSjgIFHi9Fyna5HbCnWmuZF9r0pCdDAoxUDYjQ+KxAev8sieQUrbr58ezllWh4DiAJA8zx+VumTCJ2Ano9SSKc7UwDdpr+yAGNrw/B/LIheYZSp18AVlyEe3X+dzioER01oISynUdXXMDIN1Fa7E4y6X1ytgdwsjyleN6hVdg3VMShvHB0ks1I6eOruN+zfzagxEyp/efD/PwjB+xfqZHA29Bo1MjDDh8NILk3d22ZREMVQTIbYuce4xJMlJlsabPgViSFkNCE4jfwynV7X5H+tOExVUulYIP3f4tieXNZwU+Z9ZX3f9oR7f0EvbuFteGEuEeBovVEzWDHgBHEC9H0ji7cBk9mOrbIc2bKLlPho3iF+LIQ5ES7rUEO2MI6IhsgQKoMljaudES9Z0SBkzsTAzzWndEHqK5DKnf3Gsft8KAAuoq/bDbmAbRJ0Aw7tACKSOfZ+qdxG6FSLDyT+o5mM6MEkVSdEv9/wEmm+SoaqbjpGKC6ZeVC9i1+5PSDpJAQPNYQPtXjJwSM/G/JWz7IGs5Jc73pnvNW5yILmUXKV8NeOavlSEaoV1o1bFBGVRlGLvXSR8YLmmgOolGE8vogYsaRHVFUPKxzJAebXkCsaUduLGPQFx9gDG3I2fFUM9imYYx3fxAsG4ONykx9w/MQy9lAh5tlUp7wMai5nigoDDViSP3U6Lvjyh/lmZwPPAYe5H8hMDFAajMlSVvtMjKPxE1TF7l1nP8/4ua4tWS09+L2NLsgpzi6xlWuGECjOH+pZbrVJT29oId2+sXlakM4PxqHRmK6+/VTzGBeHjWFocb01AhAz0Yb37o+IfzLG0IhwXq9eJA94fEyEetmRa9nNZyc9k4jasUIz8jJWY60BJvgIe6Ky95x3riSKHsN3Q/UNZ0NxvX3cI8sFFzdHclJtmk9uOB+I6LBi5o9+jYn+/ksGhQtl3aEaEfNgus6Q936Fafb6D2cKecZnrYh5fY0dYQwycceKYQjl5BTMKgHR4PLWuf6G/+8YaJErFQXYisX/KDSX2OajDljsrWGR/REZMMhLQo7KA84y7Tu2WWdzL6G9hy/PsGQAP+/j9KLgoH2hk7X2hHNtf0KnkNcp2v4k7S6P9kLNcfLnFgiPatKmomfXU5IU9iFDne8mW4KCbov56O6Rr6UmDRNK+jZVYUxCnX7vSRivy/mTwKXTZtBtme7Go83CuFDt5PFWVfv5e8z9Q/xcHaOwWC7X1/MpRN6Xolbjhf1irZpXe+G51XDgBQTexprnwUV9Pb4DE6ZmA3LCpFXRDqWa/mgYpb23DCP3FS69zELCSFj9tg7Rq0XS9QjnA1M8LbAIIrhOQgZEuAEcYySrMMh5YZROn93yhSPS+QJqXO/r3MsKvWE8NltjZiURKFqhPb+sc3kRHImaS0jbw4jS0w7nkfnHbc1CvAhGSL2ntNY1DeWZqvyJJw9ql72KmXqVxL5nOWoTlOtwLlXG1bJS8qW+CwGMYZ8LRNl4TviIete/wfPzopUTOKNPpg8S3sqtlhgnqpJ0JQT5A6GTXg4iWxT5NoqR3U132vivBsNejqnpqVSFgqueoU/Vl9Zh0kob4IXHMaX39FABx86g8b61iNI6QrirrmckpfigQ79x/oDk94gZrG+nJqGaa9oAssQp03tfFz4US8A8j3shFbOnMpvSmoXJy+3uAgMlgRtsOQE3Tb8E+90xAZh/tPkb35ZmwxI0YNAWGAG4cAc/BWXx1TOmi36dE9ZOUyxTKlI6SPrxj1gORt/XXiVROdJyrWLeQsaFOpmLYrirowfy+7z66iw95468Cj06PmcUe/gvtrKHsG1mzcqCrIXeIq235RVxLYYXP0FxImVuhwjjJCDbZ/5hFtL1vk3oug8QPWFcgn9xbMerUSdUQifv+9Qnimyee9eWizYqzm1ipgmuy2SpAYV1OiyXkqUV80hkh6j27hmbt0F0k43kawA==
Variant 2
DifficultyLevel
389
Question
This graph shows the number of babies who attended Funtimes Daycare last week.
How many more babies attended on Friday than on Wednesday?
Worked Solution
|
Babies who attended on Friday = 4 × 6 = 24 |
Babies who attended on Wednesday = 4 × 3 = 12 |
Difference = 24 − 12 = 12 |
Therefore, 12 more babies attended on Friday.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | This graph shows the number of babies who attended Funtimes Daycare last week.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2023/08/Statistics-NAP_30081v1b-min.svg 400 indent vpad
How many more babies attended on Friday than on Wednesday? |
workedSolution |
>| |
|--------|
| Babies who attended on Friday = 4 $\times$ 6 = 24|
| Babies who attended on Wednesday = 4 $\times$ 3 = 12|
| Difference = 24 $-$ 12 = {{{correctAnswer}}}|
Therefore, {{{correctAnswer}}} more babies attended on Friday. |
correctAnswer | |
Answers
U2FsdGVkX1+1z78hDj/7j8vZMC5kPF+wKchHT30frFzziz13rGJORBTQr2Y5hOHCNVO70zAv+8oXihpPmhW6ODY/E8eoopUNOw7ITC4fQLI4TDwWQckOraJsjd3dXaBhPHmNMNW4PdMtOscLJwyE8l/kGB5jqymbpz78HDGMaQ/pcOunESbmhpAhFkpicoc/PwU1MwrZ9BqllUb9b41YbHq2Efhs2JuUK4Xw11jn4MqOF8ZU25zSK3mRX+fYXz0p/8KWVvlfPVQtbkI8ZgUcJPvzq7O8SIoFIHNDHIgg6Wjz3gEy2f8tLOLtYqHgZeFM7omvPXdV/F8/OFntmiz/32X5Evkx+/0ppKjH3qNC2tloIuRqo2LNJF7fI+yzmEDQ7KSRycq6WXr/3e58b+rJNWcOc4kuRzqh5hIZ00cZr1iFOLTKCJWf+2CjQj46TIJKEwrJerv0b/Q5+LO+36cfeHm6NtBU0vvW/3sXg4vEcciA8xRglqpTPyKkyAGL4WX42+ewZqk+xTKjcW73f3KzEOer1mAAAqRaqoYhCTd7U5zSLKzg15x6GWSOxBK24LvI+HAg8+s8HROeDHL5g4hOP5E/Cqz4WkjZ+WFpSbM0EMPvK21rKVJjrBoordjC2wLZ0pAPX+/dlYxEF46hHAJrzs8v989kLCh3N/ayC16iZn7OnE61nkxjFj0Razsh2PWIQM67t1lPmwwg4g53gSimF2MWy1mWhJ3F6g7R9BZmornw8fUAGlpqIb+ekoqgoXO4XAlFQKugJa0XEgcoMx/ZuWSZTPwnyzDPhebcdjrw5kYBOjyQkwTUC9h+aIKP1uEy6MWXsm867D9HfJsKq0gCyERPTrSCxaCJQP9JPDW6cbJa2aRlFOfSiYnxStU7VDUGKo3WMQehXBdPzoOjgYrtqywESOD5I2ivPFj2Zqg+zNcWIXRA7QAYnhvio1SBrYy2MMt0cI/V7zKjeZKemJp3xA+suaboK1FGguU1Ks5RRmT3Jwhk7XTJ1qzfxNGP6O2OOzZWK0uXSOt+PfK9LVuDkCfX+L3/pJG2EWi22tINgY9gM3pv4O+/JOo2TOjP/QdpXUjEmKkQPU3MnPm3yWu/QkifF7AOU7ZwAJ3Hj+fE6CTiZWzTi432D2O3mR5BHXuywiwLwBK75BlcOu5nXrRv2cY255mFCLp/F7dP7t8E//1cNK9mIibVjLwcZaiPp4fKpj/8L13YXJ60+GYF+aGqUkNaSkcM42CV2t1s8+HDmxNmqqgKl4804lv+QeBDQcKM3k1I8hyuwQU0enlJXht+s3r3JEc9kn0UYc0oDHLfVQGd1kf+utI/HUn76tiZCkawFskx0M8pR4/hPHR2GqOsx1J3B5RleVO2eMFOFb+nndgXac8gi94cGzhU3V3OAyhc6m0Rab1BRDOeMBYyO2U6gXOGKKpCY01jLM6hJkbLJsmovG4Ap2N7w35Emw3Gg7jWzWkEMUFSwR3qgkSQUS9h8gaN5TX05Er6TrqalpfJHnMYXcHBtmFBohZ/z6qQh4vRqp35D0V5ZYSDK7kroiY5D9canj280GvYv/5SIscQxQYrTq9OckfaS5Rh1Vj4R4Zm+IUmJxPrrx+ycNIdgsX9FH9qZNL9mjbrjpbyNrU9EHXSmd2qG4CPnMuyUkJ2sYQKcI6xHhQU8xJOIUiAUhGaTDN2Pg4VgbvZnQz6cZ7wnpZCta0CHLWXF20ssptsp8ZTAm5c/3KC1THEkUGzL4KDWLte/PDeXPGH682TT/gvvJP1hqz9kSjwjne1QihdaDM129CkU2BcExiZ6grMxSsqmpA5asGRTI3IpojYrTjEP+/gQWIMoe1AuKW6DCIx3iOTBjn8hARYRikR1ur7gvB3C8yADGshZmgoFckQ/9JRzfdAznaWCaGrb/4BA2QxqXhctC+GoycQNzipjFMlERyiZY09UEx2G2xQg02G+Oneu8ZhxN3gyGHUcPwXAOL4YEMU8UHmj9+kDtItmBHfVhssNg8OwqhVzbNDenQiFH7kzBuqVo6MChfXBg6kbedbocmDoZIHCV2fasksKtEd9j7Z1Vtp7uZ4GW9R+yVmsW2cmWN4z1/mMN+FXfQ+N79aGIw031CbzFTv8uD8DNIHvdQ7+ULyMjManc+AQZtk4jN3zaqI0weWakSK6GIyy3gYJa+W/P5lLHLbGIId9pBGf7vcHkvLS9Rb/RGccYPxNjDbHMjsAGRUq8MrqdmE8PVBTYsIOnmT26Po0ZD65tsRVt/r8hGHeuFtpFNvhJEBAC5Dbc47CoxIInFaoT9UcH6txwEtf0DS2iuXl3Dg23ExJ7UFVrGCCwVi5qf2FZ6I0Rrs6h+eqKuCtsduNFrMCJv3pM221FA63OWJbQPTA7cYjS3lKAmMSMWrgC8zXbNV+tYc0GJDrf6CxMChlGaNQqwxjkdaE6of6GFxudeweR7iBl2paiCpCkAsFOAgDDDtRFjboDvF+4UkHwZElTWdLAwV9M2HM/TT27gfs45V/JEDCvU6bhYLWkyf8fuixQGqJrWjcQW6IrDkfc6dK8loLphjRVcTbOa63632wXIqU1JcJIxSMW480zh6N/uSQWsNn8vud+JRJ7mrIIv0SB731S1xzwJLeYhOrU5p5a82ePeGRVDvDxQYhONrM+e+TgSC/H3hCedOROs9/eMXA/UJbxrYk1KDZ4QgUMyK3w57I1DN6WS9y+VCDSjqsOb8ALr0r9cR8yp0OurJ4sRCJ2sHZLNPOdr+3BMJWJ1OxvcHcyoPFOgnSco5dFVuCE+nMU3mbKQyJ7uFR2Sz7dHLjM5RyLDr0/r1/pYL9Y21AESOFMBwXyhrbQQD5DPTXcADZfgjI8ZyRUoKRaB62jV/bxlzKxu+JdwcX0M3YUP+FT+gnerStSWGZ7Sz4c8bevKqBAcx5v95moWSFeGhJAIy+7oFde+9UyibY/KXg8DAYlzJp5+XcKLffadGUAZPbLTZ0a1qVoFKauoPX97MECnJdmv3q/CANPAXsApb7lQE5E3ByqEtyTjWeXBzJlenFYc4KUgCE99UzHU/U0LP7bc7GaRGCVzLlDCGkY/sfZvQSQug6DLdtYyrLqPTecA3malgugTlmjVw7aw=
Variant 3
DifficultyLevel
391
Question
This graph shows the number of babies who attended Funtimes Daycare last week.
How many babies attended in total last week?
Worked Solution
|
|
Total babies |
= 4 × (4 + 5 + 3 + 5 + 6) |
|
= 4 × 23 |
|
= 92 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | This graph shows the number of babies who attended Funtimes Daycare last week.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2023/08/Statistics-NAP_30081v1b-min.svg 400 indent vpad
How many babies attended in total last week? |
workedSolution |
>| | |
|-:|:|
| Total babies| = 4 $\times$ (4 + 5 + 3 + 5 + 6)|
| |= 4 $\times$ 23 |
| |= {{{correctAnswer}}}|
|
correctAnswer | |
Answers
U2FsdGVkX1/iEsZGZFPIUbHW0GUWgGOTF2DrUULcqrQpZqFQNATaMMtcivDhEX8Xod96DtYBitX5zl3xw7XmkW5ErQzytWRs4lqpYOGnz4udpNAhwMBV3PecRq58Oyrl8rKB/kabkXfqLbELlf7HUbYtLI/a5eQ8/OXIGuGXBvVd1sR5KgV5Y+Hvaj+/Gs7sI4PItssrbUSYCF0u0AkOe4/B9V8IVxsGrxEo9ow5dblN1qlyUt3xDddPwgyVISid2JY8OxKj/HP+GOjNZ1mkcdibQ7PDzAVFywGoql/wPKPe/OroWf/QCcnDvWqyx5J9Za9+G5N1LhdvEwSeRDWA+/HEvSwwdhLsABsWfOG8L5+D+x1m4h58n0X0Z7snbVGHFysUmCVCAVhFcNH3ZJ1V5iX4Ql+MJGITYcULO3g1rrfewCEuf214/4dzwkWrlXi6Wfew6fjCniSePrnHBxkuYjShMvXqcqP0pZbNidJLL7YIS9stsw02uy2zeDhUCe6ofJcm9VVPER2UucUd/1UI34ulzExnEKNMCmNbzzva68Zk2Ps9dJMWPoK6Grg7Yn8FQhciDm+k1JO4xk1HBqW5lhXd/o0vEKQJHE4W/rJSkriNsohW0Sx8fKPJtxnI9RSIi93/sixMr2VWJTfvmqM7F/tMUMGPavKmgyXjFOQusRj1w+xMfAkPR+Kpu7R1psMAowsqZ3Lq43UNfO5wKzKtfHkZFb5rffxnNTuw6G/ddIm1zy7hY3Xog+mH2Y6wpPHW36HNexHHZmALuJT6GlV58PO5JJ9Cubxw+xsdtQHa3wGZebcNMdY+U2nz7aNK1lTD4RSuZ5nMat0kxJt5XhINo9ep+r5NEFs3DMu55LhE5+OfdwZJmDg06xe7hQ42cfRbdBtmpkeDySARixerCtSnMPgdMYFGKfQjelhyLuTVO+zh0gFPHHEGz/eTyJ1jDaT9kbsF072e0Tjr7jXCa93Y6fSvzkBzdhLgPmaInqXbBKm5/BISeNkYdH8vJ2PkRMYW3EoKDfFdUf7yElummK9TCNscPSDKEyPMnAP1TxMY+f4LAS/NpPQ+cBt7TJ3ffHPSddFZ8q08fUpJmaZ2JN6hxKPWakU81BLrMDla82QyEeWgoUR/+xfa0D6O34yM++6JAMQbTvPvn6niATiBKhJaRrqQ1gUGEoDEuTfAbFV/8P/wrhqbjdhrttYNqtGA3cs2foH2ArlWT+0tk0Mmo+Xx8aMcd3fMDhtANRLEEqntIPAO81KHpfJdWfQ9LwxwSPYUsd24Rbmt3ukvH37vUolZ53JN33/6hEaO5jwb/C/mGSsIUs64mx6BA9xsRx5MatVJGUvqQi/nRFXvuwjAm+vmLlbWLgdUvMyncJr1oP0yDy0DPrc9RsnXSF4wj5psl9hvn7BFxzELLkrJzNTIrHcmRDVtWq6YfkOTl1kqFQGRsaIdn8Go1iEEGWONZ4D/Jx3Ehtha2Bc1kMtGc76uL8z+J/SH11LUULrvO5yVTp1WoF8WUlNb0CjnTNPTibvR1KFYaJ8KHV3W3vUgYsrJxmzAph2nfv9hfBlAvVo4dSCRd/1GlxN3hzFzo+hj0ij1JjUTQC9idLERqhJdxhC4oxJ3/zM9569c6EbyTZhfNimd8uFt6zb+3mIEF1oSujgpIgfSA/USmFltecdgyHKwgAB0cSgKb94JFo3dQVTW5zvMQudQhCThnC7cCixei2D0sSZuPLI3hKMDYkirGOcLQ9iX8k4gE3pQYv+Q7i2QV5zyoSbOsRgkmEFxQAzy/QwyU0Ri2+2BfA7tEcHFHtuoeet5RtUt3naFXzeQK7h7IAB3LW40wMW0ytFM1E0sOCMGc7BwmHqesqhdQN7I5/Cjq8rnleipSmhkr7qHFdvcw0w263C3jBbrj1bHah4LLnXAZ6/AFWFXinNhhoDetxXPu8OdKOOQILCvLSgZbk1wFKI20c7a75Spqi+RfKLX9IkWek4aOoPxH6n+ifRQn/b86YK1U/w+IvYrMQrM27MRioL31F8Sv8vxExislLN3XGX58d8TwUbiXtcxewQaAQTHUhjV9WODMq35+ajO0yU8l5SNcTaIeAyhppBKav+uiBnqakGRhKwm2EzkNmVqbPHxTKVfSmpDZi7y6W+pU4ki02Rm1jaOoGhVtKViIsvVZPxdX/GK0SJXcGOqfpLDBrj7o0M6GRwxXA/pnkj6bdhPbvZU4cw3ktnEFhtsDqrRm5TqJvPLNFKrlSbCFPTOCbAVr38rr9rTWt3HUb8cqoY/e9wQtCE/yQYsS6wRqm5iYw1LxXgYZtIONzu0vg866buuFPEkZUStqEwfvsj6FhsOV4hL1e6h/+h5yRK3H+Ks2fbSYHCHEOmtCPeg5itQPgGmnaRmp3tjD2VKhdElr8vRMLuytCZCIQTgIvAY+3iM349nkw3jHI0J4T/+7/aPwdktY7kWlnX6Z2mRCZNyCStMGLsDNQ3nUF4rmGEVUpol6QhCPPc+Xpy8t3DIriXYA51w+mdya4eB7R/Mk1P5rdLN+VA3d5UbdDRhOPyfmoN5uJxqMFiVyACzj2pSYNy3drP8BBxnpOoA7CIKKJ+cCHjPyZoWN1lNyeOHJTGbTIcE33sMGGg0y3VaRH41PTjmUMCKkkFK1ANSiH2Czj0MCubwn3fv4YRfG4CnEpUHEqFW4yNeVHzzzni3aRLr3o1i4GakfhU0Qrcq98LZcCAJysalZpnDmAYAD4icFUUEXLOfD+9IZ70CvG/PAro10rsA7f5Z0SqY6LoL7gGJrLDivFP1QH+XNpSwVOFqFYcH3ChdF+vsCLGqDNEy2YpMwk/JBdiqpdl7Ge5imz/1HyuuqEQNw4oGANVworrZfcmq63ZpmXs94lC9e3+8NWFWo5fqI3bloTDWapFZxYYbGxwgkFU295tUBWH7QnB7Lzts2spX3b4YodSeSU/yea06+S/CJRq33eDdvSLEPwxZNtIkf9vBeutAghjcT9nsYdLYlWoKSq7UAcRgrhJoQLlNMUgCHkTD2D14x37ft7cSdeeZ37B2ZKGg863WjiYCFSn6txhoUzTxd9DLO9VcJ0wn22/wlLiijslWwvxi2GbAFsPpANn3729LlgVYJY/NNWSYgEN9U0ts6bgqrmHvKUyQZgJt9/4I0r2a2/DLmYP4qzBUGQWoCZ51QxKquQfRy50Lb7zmQXR2nvWBJJsEXsWjbCGtuU8NWrVBAqQO3S/D463Sf5/t+iQuBNLXCnPFGYBuQUGgrxUr6RGh4KHcT96M6/lfW8LXSoHVetYT0KXmKMCxZpcQgZxKZFoqH6hNTkNfbItdodDJP9Qny5BHa3lm7TNgvIXzxcxiVXrmcfQbTrC6WPsmGl0ek/0JwTVP2x5W83nOYzQAvnXd3X5eFMXke5E+geOWOP+E2BxSNqSEJgryAJ6dLhhyUnrXkohD1cmegdghH9tYVlT5pIa2oQAosQr7LHmaZ+gKcHAI1U4QBW/vLMRHaB80UId88KjRxPM2Kv+YRE8qhMsXIq5QW3xDU5fWkk/axXhJJ+l9uKoZ3nfCCYI6M73u6L64yeeWciAp4Ym5EzPwqDjApaojE+XNkLfUFrk5GlNMUsWmTL56RXvzF0aAW7Bjo9s=
Variant 4
DifficultyLevel
393
Question
This graph shows the number of dogs groomed at K-Nine's grooming last week.
How many more dogs were groomed on Thursday than on Monday?
Worked Solution
|
Dogs groomed on Thursday = 8 × 6 = 48 |
Dogs groomed on Monday = 8 × 2 = 16 |
Difference = 48 − 16 = 32 |
Therefore, there were 32 more dogs groomed on Thursday.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | This graph shows the number of dogs groomed at K-Nine's grooming last week.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2023/08/Statistics-NAP_30081v5-min.svg 500 indent vpad
How many more dogs were groomed on Thursday than on Monday? |
workedSolution |
| |
|--------|
| Dogs groomed on Thursday = 8 $\times$ 6 = 48|
| Dogs groomed on Monday = 8 $\times$ 2 = 16|
| Difference = 48 $-$ 16 = {{{correctAnswer}}}|
Therefore, there were {{{correctAnswer}}} more dogs groomed on Thursday. |
correctAnswer | |
Answers
U2FsdGVkX1/FwInc60691uPiqYZyIxvbmbybBEtVpZOlBBT/P2iJJZwKQMIwdXHHVRz6tvDIJZumVDNH0xQI+H3POPMjneIXnW2FxELCxX0ZiMujE+gdSXZuxjBDx26M5+D4bKHlRdQTmiplGv4KakTHcgACgnjAJa3CMtiahWJ/I4xoPTPTjWGTJZZNKGUw/SRkDSjv0WAkPCnn8RHemkuq8h1mQP6Gq22SCk5dppFX5bVVWGlTPLXcwccAO0Ho42kIcCTwqTzcmTsLP9MUhhY9NhoQ7h3NEJqI7rgBW0ac9NHGGquY0RhPjNZIZCXQYm9hHNl5yKgXjM2sUobaRZfC3LuH2fqv1i1mCDHFUarFFI/ULewNllDK+Jyjh+IHHmq4aZQMRG5dfyRZFhGM959d2SZSJxOdeMQCVHDkM15H595rJVXdTQJZRE2hD4IHN3lCiyg/8tKJjQib0kWvlRJTDuyM0a22z4Q1Q5cpqzsMun4EWRGYqq0STWRAXfeJl5RswNbOgFp4cL7TlaCpay4u+vw3TrTbYrGV7/Q6mfezChmDeC5wzW4rYz1Yst1aOlwt49SAAN0p9Z4btA7LG9MHrR+cM4EkExY4HbnQCSRTfw8caX5HTqYUmZUANAW1aPnzB2eLsQfLxUmDMiEbQdNe8rzXGyzUQmliNZnhmo9m7NuWkAUfR3jizIeX1Y2S9Ac6IJXlqUVPY0Hegpx/W3naOFOf4XPxFoZjZtBoX5eCQdrgf925ytgyTI+TqMgs6vXhvAmHk2TPprSd2JxRv5QDGLRq+C+1ySPoJiC9gD3sVbgyONj9MXUup/3PwYTgZLBlk2eY3TTLkADuGmekkVgDfTnyMIKYNpx3PJ5sQl5Eeq0qpc16fOjGyAv67N51QUbeUC6sDhLUM+aJRdX/ClPnkrMbiGP0spg4xO3zk9GGUAvnq3qXA7Xo0XGlsozz3ZBiDZVjnUVLd5jsDBZijCJYWBqqipCIs0/CamMLDdU14eOnVOMVgIwI+TR7TsK9/uBILJCupNIa/RlPbl8kphChW8OteEYzZ3ac+2otv+/z9k28EG5UjVOCpql+eiz2AFQJGgcKfDOsMzyfhZxHrEeIyso9hk2Bk9Fc3IStt5xQsPmqBUmV+VhK7I9ZnSb0dadVI9IEyrmX59mEzwMQm4cFAJneQg8aprqK8v9zIFq9J3kGWL2TpvSB9krvZ7EicYeGj8QTLmnjxn6aVOYwIgMECHUfbLCcOJ2p43+MaMKMD3Ne8DrEJWNUjmXbop+x08sr+JKt/HScRfdvlP7PhnmGmg5BMdVSUZ0duSLHkEV1BUS0YUL4J8RJR4DaTEATaFcjYMPbCfOrmPx0JjISaN5Q3n4pEFCTgAnAvqnGiRzLnPXXaRBbYqeoz5cspZ2yzD0Jn7EIh/GBQ2lw7xuKWEtz2dwAU2W+Bz7F7g8hDJBvbdkLdp0EIYotFR96Hp/5MUkTN0j0enXz+7pzOjqesD45lDJFgFjX064SQEXxWmbYVhebtHaP/vjEMOmpQqBhoPIH61e4hIImS9cJrnmp9QsgDgK8uwz+lqYl8abDLkh8Gx/3mLP/43opzujg2VEkuLWGUy76mw78HhzQ3biy1l2MJERcyxeG4/GbyclnF0VP6AxuVtRTVVAAgYzBmniAvOwWuD/0ebRfruvy1xDM2lJDHiIgH05nMIIDkRp9WrxFF9pukl0wicjrEqGhGtdxBkGaFi0hWmiUtRq2lwArSgIQOugfDIEnQS1TSbDyUgl4eJQg2Jm4CWe4DMPSj90RBP7z82plQyCEidFZG+ul/9bcP1ENjup83X5NLman3/UObwnpgBwWJcPFQOa8tZ4oT/azMwRpiDdDMGSTq697XDiTcvl66z+W8zZUk3rlphs64EyaicKuC25/opxlygaaScUntJ1x7F3IFveJNVA0uNoJxSHc3i3g51Hmb47z/6Lis6RUXYKt0XVemnFAtxt/mWlt78vPkRgY3CoWKTBCcSuyC1ZB9leG2aWmwJaX82Azk9LhCsNiy5NxtGEtLeB/U2Cmu+CS/B9jZxOGsyQTTmrk4IsapwFROjMGiYgnn6EjAN4DB5OGNLvNYUbn6TmzEbQ5CzyBDNrk3QQgU8R1nBkNMPJQ30j58bwWlS9v9AsQNqWS/AjPzB6al/perubVFc5wzuMyt22jyS1ZY7+Ul91pMN46cALkbEy3THUwfpk56rU7/dX1rcQQ8UOPGqtMX/Cd6NPRxNebFJ1vPxdLRVF8NbL3LxpsP72sJ1Q5QLHc3P12PDGzZkbg8H0cWjBnaHOfOXHXLkWnvA8su33ciYkbn3livHTKBR52TsisPiLYiylGyyBq2xw5YrUUwPbI4XYgYClkGe8xOktj9fvlPmtd6fnna7zRDAK0LYuU5eqmrTvtG7KANmSzqWAP94Qf3NeL2UtYUfqfwxsqfmG9foe/+z/2FsrfGs0Vw/JNfdag7bL1gnQnqv8iF78La8W0Hbe8jlawfVxc8PEOzirWQnYQEaIQwQb1S5ccOq53YO0BL6iTM6uEgrGnKAc1W+GKnDq7TwHAiK5O64lGFa6uH8f8KK7BkECA96y7gOnFKUGjIJNopSxC8778wlBM/XPZOGM2UVWJrvJeHW6ukIqM/x+73wevjpTyVg2LZw52pWlY3zNKekvMAsiUsAR50HgnFQZ2YGxuGFa0T86sz3wNk45qEXdWtd++TEPX9xsNaUwatIje21O0m0ccbUb/uEsNEqzD1muzYqL8RgzufYmS+xLjuJKuIIpD5rpft+rnWTBJIQh00oMCpgOUSoryZpz364f3SmsGEG3/ABWNGh9o/70TSKrMuykjfJpe077pak/Gv80E3pzPONNsMEJR62T+GWdxOYMXbKhMu/AKQTSUMLsguJuFW5rJZz/HyiI++t1q+B/NjwVpOuRm7XSd4ZcN6ZZ4S2slN9L1mldSCkhpRuN1nQpOvx08R1lSvZOWwdFSmWPCT/s6iH1CVZqcFAbeDi5Ly0NAy/69xi7larcaRAIHKkJGfhRbycZcCwUumL7w2mwU6hrYmoqTBRUBDsqYJR7qBEDJA1Rbcm0nprg+lUK8at0GF1tuppjv5Tiha+g=
Variant 5
DifficultyLevel
395
Question
This graph shows the number of dogs groomed at K-Nine's grooming last week.
How many dogs were groomed in total last week?
Worked Solution
|
|
Total dogs groomed |
= 8 × (2 + 5 + 3 + 6 + 4) |
|
= 8 × 20 |
|
= 160 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | This graph shows the number of dogs groomed at K-Nine's grooming last week.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2023/08/Statistics-NAP_30081v5-min.svg 500 indent vpad
How many dogs were groomed in total last week? |
workedSolution |
>| | |
|-:|:|
| Total dogs groomed| = 8 $\times$ (2 + 5 + 3 + 6 + 4)|
| |= 8 $\times$ 20 |
| |= {{{correctAnswer}}}|
|
correctAnswer | |
Answers