30209
U2FsdGVkX1/9w5meaIsuSdPAioxjk6OLGLFS81I7oU4p0t7RJczPCDz07m3NvMHy7jyxIcYae5eAI0wS2YOsUAaHO7+IXaljmqM5sHzUMG21GtvFGRJA82r4HPEqkVMW5wHW1oyclY3XHRF4+0N05SSCkRfMP6OQZRatNwCXu9MN+O4fp+pUqV4+h2FbEj1jp6MxnPsL8j7LJ/iffls6REZdeNdyOusFtGiPiJFsdvgRQgkacPVH3axBycdtwTjmDWNQB6Tj0gslRK8rd7fPJpFSxTwkyYnYcNPuKaT7p9r0Vqyy39lR2r+SttM+JUfsgoNgVTYeMZEcPgDpfY3jRVsBqT2dEeqjigivGPm25LW63XUntfnMYL8QWwloHQHwvwhbZQiOPLNzxcKZANkfmnnPXPh4IPaM7p72I1usxlVs9a33zl6X11LFzBWAlPs8R5mF4BNI2/M+c6bzX8TSeS26nIFLKnfcbxmyj896XR/ADOpIMjT6YncDrLocE5vB1hfS7JRm8xQi+iZicSec/vLy/PLehfuJl7fs2rY+XYmi5TcV05ri8Ro+JOAqdxzzSN+q+SUqy1pfTOasVCc+vFM1gLJA439119wAxJndxmz7ZU/qpztV4cDSQxFrXH+mqCtOm7+jFlujPzy59f7+63e8Hgf/6vRFPpHmVXDagMCU2XnEa6VVJrRMnS2uQ1d3mlOkfspQREhIvYaQxkN6nMrsQ/dZF4APLoN0w+zEpcL5bHKRffxtx/NG5oN8YijPaahvc9Lcwa/LrW6w32ArOUoBNAYsq4nYZXBy+At8W0asKrkS6kL+WJ6UT9i8j+/G/etZBy5I0Aszif1flsh+ds7H28oQiAsImfrtip0ogWDG/a2U00pTAFnEnWzjpaVRagd/UUg9ZpsupMmJD6hMowQbfaNR9I6uivIGeuj84y86fcFcjklbFT5xT8aHPNchUoNki2TnkTCOkfLQcfRy2taCP8EN/NebGkrOZl7fXv9IwHpl4yKQVf4sC1KNA20WOXrEF1YGHT2OcgOwUs741sceOK5wHI+dJ/nEtp9LjqKtH+Mi/TB1WhCXhohLP3tWSCbb3p/k9nUR9caB5sIk2eoIlHjW/iiKVosDSEcM2w7vlI1qPhNiSK9EPwt/Q8DCz90f5BCQecs8/YSid5Hmqo1f5uFkiTiYpjGSH6vTKX3UtqbbWPIhokznjHGmqmf4KEIeHaXAnvS5FyAWe3Fcb+s/cu6yxW7iQHpdVT9ve/Nigm3XyBSPrIjo51DsgjefNiOW1oIITGXifJpdpCosadt2R/E3YGk5DxsxwxrU2jd/K/ZCfGfEc5LxwHAZKtws3odjjFFdRieE7HfEEGpn0Y9pWFWFn0aoK4UQpbwktDvcGIrDHpWmK0z2aM8CjUunQqRDlCnlFGWTLrhs8PvIIfMd6I4Q40Tb0qF4MvCQbA0DmnbzDrDVLNQeSuG+tJUnyucNde4l2clqK6WtZWm7+KrPb5jqAPTiJt/bqgo2XnUR31QEWBO+4OXdkFs/m7Aye7DLVXEFymkJrbMt0nr8NC3ZLPq5nCC0LSe/dHUsf9LJRkTsWeWQ1asjzN99qYPVhukv9v9TIyjIf0XADr0RSnjVi0Ks2GfYZ7kW2OdOXB52mdLMXDCtu8G8Qn415bb7KBQQC/P2jz0mOqe+25FxyCzXiWBwN1jJ/xD6UZ5xuCaKcTvCIhmU7fnMIPoOCJnu8K3Sbz8qP7KxAmZjXJTDrpdhGEyHeQbI6YpbHJFXmR7HAL7/ySog9oubdB4ycuyVzDrroFIi/Gwi8uKgF5R9OtylGmU6FjSOn2DyW996a5qN2GfRa75YHY+XpcpTxgbp6CDyrvFNSWp+DE7E9gVYHb4Xt29w0IVsu9C6IURbTsgVX7ciAx8xtW3b/X/l1nUhVs7uVpfTVJqba2Ut9f1ZDy+46/nBdnH0V8gPrvxO6i0Ozd/lHbZ2gy1R/Va9xOx7G/0r4P/riMr5ZpoDVF8QZ/8LbYAIDyVQqu8wBfXslvQlpPDwmvDVkImJnVAXaef2seiNkPfYFF1vTDoOmRji1SRKapN8eQam2U9bXIgH9zS/KJCCqC0XlAVaCXhOyPY4YekQ6OKkHNyZYccHVyy2BHF9jqa5v7Xm2mOngfKe8ahaWoDvBobw+QuLsL8i4/Cq7HskXLoulr+w8PIbC+T2aAI0Mk5DXjWp6js/HJv4GB9BuPOiKZv7V4jH4uhutFasBeu/CLXLpVA7fglxHotvvvRctO3s1LATlClmOrnoER3WcZyilnKglfExidozLNWli91ghFsVGIihTjndbM0DRONMMV9bXr7eeptqP6gW652RP7+N/WeYlLvpvazDqw00/nKlahkh+8pd1axGq+T2mHbygjzDECquk0H0CuFYkAdGurgsj19M9wMChLTHNpNHwDttazqgfj/AouyzR/sEOqMuzwY1zKORXRX4UvxdqdO9zYfj6cmrbkEtfZWrSFfT/HCV5f9YVMJpkkaBTtyFpjm+JnSReahuEORhLF3NU9G4yc1We8lb8K5PWtGZ87+UKswvNabj3v7Hy0G+IhYymNXTR6glF3G4ihlXObMcDT9PAit+f9H17ohhLNaicOPyR9zQkR0nUDxeUg+cdPwXT8AGydzBZrf+xByVPucZxgKhpsFO5kRY/w8zK3A9rx5dyDUXD13R5cXTg4gbdmryS983aIbVhyWLM2e3CoIrJTe/V033tmPIIFDwYquhVhwlgT09aIc5MAuaJ04qa4T4f7oRDaybbEOJ6Gjq4V0rvHYcTq5F1vPVYocI7iQ5wVdc2T2NAZl1FPNx+j43Bm7DtDf1OJ8zzH66kydpcvvpJG08ePRRy+9920xW8+ATt2zK+HNmX9WbbGIEWMvkWL1NBOyQ+5YXgdTekk9ww0kVly8AUPMeonrYokCJWdKRXJA/dKVBUsFbXwQahw3/+U9X1leD9TkUpo2XA7algNVhPOYqtV9UjS2a2QGmuzP2ON5Eb1QxZzABLuVqT+6XC4xqp7Mn89WA2sFCNHRLoJ/O90CTIRiryOBQREk02xfUBtFgDQuNZBTU7QzLV1Uw/xrLccc7h0TiCdXDVSmWsSWbXIp2Ia8qbptlFeBZBWCwu0CGVthFE0JB44ZqHt5l9+II9ZL+kNd34zRiTau3EMDaVcp7TA+yUbbMgiYXV/5lcKak0TSgGwdQHBBTA+O6h3ybVmN8poIgLngUETxIhoiMaSuyOHz9vYqOwOnDbi6kP0CTXWJFu08ZN/MGfPABJ0EbYFkBIjQbEthNHi61+fYjMkswQL11ca2wyDvtlWEXMqz9Txuyh+pift0u4u46Y79EEM7uHyuB4QNlDDoo/BeQYimz5PfRJQ8xN8RmmBElJsBPI6eRZBjHzJd5K6DzQBOcTkWZu3ShWdQCqvFfmMykA/AZL0FYsff4gPeNlM+F2tfmNj/tNPN45ydzr04kT1jvD3q8hTmmOcuAaJ1Ku7/bwap+kmyy6D2Y5jmn5T3CnmzLkG4YDtvfo65tz+aCkj4IvRTZE1IXQINQWyWEe3P99SJDy15ZuCC0SItj+qSVeGDiQOmKEyFQ4Ryg2cjkPSbTinHayMsuY4LVlGGReno7SqR+MF1oaJl5AqsZKNx0xoygXnpu+5FrW2yh2CoxDAqEuJ8lPxa9H5vD0ZyVinHGbC8Qq8Ku9Pp9IVMAsEfISXZpYFWZVJmhNLcE/3KQyvaO7S1mrigxNWINulpCSNikicCWE89AAwqiySK4iGgcr9TTGAmrMH3U+8AkuTy7di9JzlH0bfrcrUbJB9t1irMyjuWn+daFtukq9LTNJn/CUDxu5a4GOvkshmnIZpf8jth28Uc+jKGnfHwSGAqmjlIe9PCsRBYjB3COsMmDxjJIUGpnqZD2mb3NDl7r0PsEDf2CQ4R9F/TwafdPisL7gBk4Ho8ZGp+cCK/YHZmQ/hdi6sukJZfoDMtn/yDBsmxlcNExkrel6QifCCCapJL66FdFjDc+yOOSAt7JQaPBwvgp5YHNmEm9/y8T2EYDCpb5kA1HkjHZ7N1dcyjzrdIAajXCF2UG6nJIKkO+/klHLtXEvXhZtFiFRmvx5CUiYVF7qmY3DTMLggR3syXQWMdNdgwaykbWgVXT8py1ZrAh9voIyetdHdhCzARSF9rcaUT5aMF09k3g1FtYhxKl56mOI8MavwnyfgJp4oNslkESwJ3+RazJ35eR3fERBtuOJNUs2JQcueu2t5VSisZXTS5AfY3Ha+Qe3/rrZ6gMxuSabnz//sBCTANbgefC2wY1LNNd3B948xep0aUh5Qi2mJxuLuWNR5YA/4pZov0QxSD4eDglCwfkZeuoLPdvcXFkwY7j4zWrUupDmDyT7T/jklc0rDgN0EbRx+efQ2vb4oeIVZvKgdCZDTum/pGhLF0nbepurWeKixTUJW+S2h/Hbu9HHK0HQlHenIJdyOOpmnD2GP5HzeulnR10rZ+MoeVSNfvwwKgnFLhZ3SMhHxt+mJ8sIfR3YgqcI6dMZ3SFEUkA9pD/5R9IhRv7XxQHX2RUNtf46OkMiU/xKd/UIaMWD2M/+h0THuB6weSql4j1RtFoWY6caKv8Pts5vU/9HvSqwlVFnd3VGjWw2w6Kpy4vVByoXJacSheGy1FyHJe7mvgEtVt6B4UKdgO6IfhfYXMkq5+wSazwgJ5T2jKZqnV6E2VYFxa136+8VecszNeD5NeivbfHG1/Xk47oU7PUpPRQC2QIdfJyl9gg36jeD2EXjwcJT23gXG3AfGPdsMia93tzm1pySaSs9TUemaymxqYbFVH18kaZVQjxBKL0BAsxH51MyY39TxFqFTGbaLUbQBstQP/l1zx64T+uURLUWpz/d7seSwI1/OFGlGgR+76CTqFtjmp11We1+faj04XRu3CD4fVgXtY0W9OCV7pFesQl0o289ijJJhtWeF51MEOkZTNxM9MdtJ2Ancj5uE3pu/GyNfG23mPBrW4rIRPDI91Q/xznj3a/RQti/PJ5Z3rZZqAoFAbMyI5kM2nrsOQ8px/jYdJynfav
Variant 0
DifficultyLevel
533
Question
Mick is selling egg and bacon rolls at a school fete.
He makes $54 from selling 9 egg and bacon rolls.
All egg and bacon rolls cost the same.
How much will Mick make if he sells 11 egg and bacon rolls?
Worked Solution
Price of 1 egg and bacon roll = 954 = $6
|
|
∴ Price of 11 rolls |
= 11 × $6 |
|
= $66 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Mick is selling egg and bacon rolls at a school fete.
He makes $54 from selling 9 egg and bacon rolls.
All egg and bacon rolls cost the same.
How much will Mick make if he sells 11 egg and bacon rolls? |
workedSolution | Price of 1 egg and bacon roll = $\dfrac{54}{9}$ = $6
| | |
| --------------------: | -------------- |
| $\therefore$ Price of 11 rolls | = 11 $\times$ $6 |
| | = {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX18WOjDNGDf0w8SLr6FOYh6A/AIlxCH+whSxFBOBrw8V1g2/1ET3/dtHvtLL4FO90BB9G/jG5526Vm+pflhscmDtCd5FEjhtRbaEik/d5r4zgjLK8SpYvRgoadGek+jomkBEZvhML2v8FXW2UV9hM3NkaJJZwhsLQwXevafzcCtpGjk8hp3Zi5FAV6AZy1KkiUNoVuVY19XRCleAaguH8OkQj4uPbjXEqEf5IBVHMsN89QuL0ievMnvbtnWeN6cm3at3rE5R9LE7OLU1f9IhcOcFMpQnC4z93d9933j8+tI8Heoqg49m2ZHUVRtnWrNtDW99cR4UkZKTx450mXae9BZDDMIWsBWJY8//Cbmp7+zrNdVgEGe0onnIyYpWKNcdosvMPOifaEL27DSMohu9odtLJbhRX43F+ymOthtTXYUBsBcEwivOM3UzH3V5PB1ECSjtU9St8OzZNRH6/bSuot0sXoURq/PnPgCuw5g9fitBp9bswl4jQxDRPFYym+giicadNLLfg4FAVNdwkfVj7VY0sbHT1LE0A/Im8cF8ZW0z7jwztDb8o5UKzfZX+DPQmP7jreg7zybbUi+hff9TGcwZlCltBCfUJ7eyJAZfBSX5Nk1ZxrA5PT3Ndtsw+lYfv6jidIzb1w0kz2hwAcjLG0A8p7WMwvRQ/167GYqYArEyg+P6vK4YvYy88PgXXnxx6laNiKKTfug2c7ZqQNX62qo7D3EYOVMHPv4eZzMQCDv5H2ArKOpZj8CJy5DaFvVOjiX8TbJSZRtcms0UFLfDYYwS3gmWNlQB78hqq651eB3L/JGl3dsrex97yy27p7S+dCyv+6GYzfHtQSEg4afUGQEedsEBgwD6RokNw0ebcluB3QWK9zGoDZk9K0Qmu7z4e4pNQMsEqydyKdnrIwlV/y+Pdh8e+A5SP7y/uuN53QF7bebegL78dIQq23RxjDqN/CtJHcOwvclpdCQ74uokAitbjGf4y53G184FMrEbGIM552aR0KKAfyr5gKOKTyvUT4P4DpRJpyWO3pSQtkRoX4b3pWScow9zx8lnOF+JR4l//eN/BwiDYhpWsaTDMigqAwN8J9KMotR19nyOts14hpDABVkJoiSSwS10dd7VKq0jI1Wn4LtWksDFZZKIzrOILCQjMB5BQwsQXss/jd2zy26LFf59B75VQbHoLrQBO3tsozUHgyvIt1se2u0yAxYBOly1c5Lepy/F16mIt4lB3QhYuZ+tAlKVsp7Lw1aoMaSU5ij+Ot6R95f4y4js1wPn0+QPavdsV8ll89NKMijmPqW6s02r9B3W6eYEXPHj4FIESOIIc/kYVV8dE1qc4jPlAP48PGHrMi+5SDOuUORq8xadWM/KIfxEu4/jVbK+qZgVzR1Jg9y5i6/OM9fFETLdRZHYDH7O9kRXtJqWr1X9YF8R+zp/ecMILyny1TXWpjbQUyXgac9ehXBxIDmm1Y+pXMO8fkQH/7XhOcMz7yjZeLWeG9AH0YEkdMpbqRn2RWrBRgaOgapwmYUtqKIsvIbuSQe4zmlGd6dnqTr9VPFaIcUKPRL971lyYYfyRF0fCGLLYS+drcXJbbQHpiwD0A3o5UfKpIgW5fLh0lBJUNwltue81vBNOMmT9EfVMUn8W+p189MWSj63SsqXqW8H/WGmk1YP2nby2Uir2B3NWMAtpv1mELP8IhKcTS6XJzAP68nwgeVVDuQc5mlyI7YPM7G2KnVcT6W+ZHz5qclAR2bZiaPfJjHz1fhMcQJrVtELDP0lyy5/v9JcPO8tBSccBxRft4eL7inHGKAAHU8nGzdF1ZYr3c1eUj+aLevEHnrjCjkZ32UBzfvGe++032ifmLbrn8vJSjb3vOl4ojzLzPFZB9kzD+RRpY4zuPIqCAXyY2guOdyapWIcN24HTRxeH99B/x6VzspWIWgDdmFNrKsd5Zs1/mfBjMHJIERS/rUSHVa1/VAQheO5BfvYR6L/XUwUP5jEBrdfhPdVgpICh8r79r28DlQVeidlmKmHMNjYOEMzNYbSi6taGCwg1oQSYlkPHOpHbX264a0u1HXzMgc2lOS1KwHMTJ9QROxcrgZwnSOGupAaarRW0b8HXe9LBJAlFS09xJ/rQq4uIkcDh2WCnlYN6IpdETRZ/gR4N08Xrx+zDCXPw9J0WmiksROcq/RIiHPu1+ksQWnkgxO2AtiEh/p0Nh4cW0Mm+VHao3KGniMymDdrw94T/M6BreBOCYE507NUprtCBj9WYYChMPm7LAohHIwwOe5PWMwE0SAj5GP3Cm3PKm24E2iuRhumolmeyDWk7flUNphqV2Nj8hkGYcFYG9mgUd5ZHDXdmhuspl/knAVHo4yZjEzDIFUobjgR/G/IVqwxMLmRvW73ddrg75mElB0pYClWw+sUgxGPG6rwSnO+OeaaMQ/0+GEP9D7mOB9peVeeBbCXG5mv1b39jMqE5qczLSA4TzwqvCkS9CzAkabv8XVjETI3NeppS/m4dT3dby6Uqct7OLZ+VO2keP0JLl1uDgRSxIAaOpWYcP6mmPLTTJJYLsqmkzlDGIPI8vx1oWpM7jRnnDU+tOf+hnXgsOvyODIMXGhSRIMCk1+N4IcihB2C3MFj9ZKv5iBceBJrB9VCzOZRQVE3kXcuIPnuiaEocBdhHF26NaEFyK6ByA+K5qSfx9D3/PfLedJ5Ddv1JVmYivHlAMFo5g//7rSHQzjkng0OnNFAREefPQnE7wI2z64vAHdHPrEsTNqX9DMceFIwtqNZZMrgXjtkTrpLc/h59Q2D/8OLsDCgAYeSd+ijPiCDKq8snmzrZu7hWw7CChAQpkWSNa3mgvDbOnlyijt43SHKMUaG14M+DgpcYsOvPfl7C+1fUahSmsKTXi0TP6dK3Fv8uLLoa1IIftZrCWned7sifr0uK0iJe1HZtNTxbG2KU6twL+gDxn9g5YFJY/B9xXopbsLlZ89tEMOT55Lxh+6oVCN2aaFwSDAh2RVMQnmEHjOjxbRO+1VN9Te96qczn/MMCFSQvsAVBQ4CiUQm06o7Z4HhjidCNQEDrQH2reokeuoF2KHiaz1Pucx6l3tKpyQ98kXsAdnI2EGWNkItD735L0de2n3yWQpFPWieiDDbfjbCG5iZc8hZE2TqyNJzL9l6T07FA/x7g6k+OdC4oOjh7i2YY6kVU0pQaNWTbtXdYJswtFIpm/X/T2D7pgYrx8WeAf4Jo5SfW8TeyAmPvOHcB9UwZZgTeM/DF+5pbbJkttUKsmZMgW2FGGVoUua0vxn2sICDpRlB6Pj/VM79mjwvp97DAIaevgu0YOdMKyS/RDPAaUQyn4q325Hi3LzUkmmny7M7rSq7Fnn7mAE9odiIhXoLuHNssbjffmBerTJibxafl35cn9TZR+hY/VA0y3Dux3ZdqEm35e6p+9nUmeb0kL2xmCwH5G2TtKCbe/elaKisEbDGGIhHveRpqpDnvh/RKTAmLIcG+HM/4xsOzyVv1/fy4sPw3AEwiLUVGtdc8HoqtpWRKVjP6M3zW5tjd0zA0Euz7tc881evEYhhiT5lsQlLUjV7qVDw8cw/xs/RSGcwcfDR+u3wkKUbCQmm/xHVanp2w2gF9D2Bkh6VSxsunalh+e+8IMB8ZkTqjSJ4S56dqAnAoMMkKnEowu6jaRv2rEb60UCPPji+khM5XZa4fm9JxI7UdE23FlNleoc3lcVOWQV2CiqcUDuoh1/J1VdY7IL7bh06w2HVQGIaR2wEsGl+ljAv+uY6tLQIXu2Kh9WGLP5Fc8YzugHaoL396pGzd8mcEoIBQ44aKXNrmgn21jpVuMlsViKKVw1ufbjbzUw0XFir4WubdtbmaRGy12aktqTdUncRJAaiHOoCp4WNkspVmbNO3hevSNs2ZBJXqFTxIW4iL1JzSTfgn9K9pD9nuuzB9CVySuYZ2ivgW14VWArDLqUE3bgkU7AEOtBzIisDIa2OBjcAxzWEQQuZlStPXfEy5wWjh1wlCf2ZFny5IaqvPt7vcA6WinRssdYinhnXuH7r8uhc5sAYaynzL4bHa8eVLwWAb4zRZdS8oZ+7wGY2QB5vjU2pZjfoirRaR9H/+czSp6TtHyv1b/DvBCDwadm/KmaTSLu+XGBahPE0ZyAAwtfFGstk4JxavVK20IXnnw3hDi59UyysyWegl1Yiwc1+ciniRBiorC8TPjOzH8GuQOYhWBPGwdHcsA1dlynQsVQ/eRfRfTSk74W2m6E5BaOsIBV9L3bxPXv0PJw4BQuo3peFDau3Mvp5vgjRPhpy0vaNcr3SQIACPLdSBJYc+3Vv3xhrJzl6kTGj/o4gWekkePfhvz3FgE8ltUHpp7X2odNNdGYv/AbMWcrfReKmFqpJ78c+gpYgkqswO/y+HBzQl/iCaa0M1NdlcxDYhqee38iS9HILYYYIBu8ylpyCfaRbQB+xsLJfHZpoLmd/vf4l6y206tykh7ohDPpe9VGO1PMeWNSzYUQl26to2+HsJFxlmJU1MeA2IIBU3KsHMBwa6tdco4BfnSkrrwjBPTiex/6DtXmoxrf4ElbUkRwNL08nN5c322wP2QRkhzZaCRv9rFNN66oGboHH00D9cHtSKDjZFu3CbgonsSEDbMnJ/LlzB/Mlhl7XBHdCh3TdhKpz8iIh5JQTxbdQR3IJye35+OchQuYwTL+9qt/KZt2aQmagxf6EYK0EltmCyHwpau57LNdLPt+0DfQfZumLPzE6Ys8iHpEerSHtTUe9mbxG6JveVSh911FsYh3IbicFaR6xGSv4XvQ7q6+ugXvhP2JA4SwdQb2dA0e111Op1k79jZtLZeLg8BiuXj0QsTK+paI3OX/QDnFZO8kuaswqIDEN3LrJ5n/48uTpQAoUWnoqHd6R18emAd74AoSm5Rl/Z110hsu9cUb8oapG4SxnG19SDE2AqAyXCzb6+TWhIykQZtyzU9QIfI6VSTrJrlsX8lrQ99385cwAMyBRZiz7jQjD99x7Kaa0lth1O01vlFq52Jw97tkozexx0vmSkTTVK1EfUyKuBIQaDZBaqI5M9toA
Variant 1
DifficultyLevel
532
Question
Josie is selling olive oil at a farmer's market.
She makes $42 from selling 6 bottles of olive oil.
All bottles of olive oil cost the same.
How much will Josie make if she sells 8 bottles of olive oil?
Worked Solution
Price of 1 bottle of olive oil = 642 = $7
|
|
∴ Price of 8 bottles |
= 8 × $7 |
|
= $56 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Josie is selling olive oil at a farmer's market.
She makes $42 from selling 6 bottles of olive oil.
All bottles of olive oil cost the same.
How much will Josie make if she sells 8 bottles of olive oil? |
workedSolution | Price of 1 bottle of olive oil = $\dfrac{42}{6}$ = $7
| | |
| --------------------: | -------------- |
| $\therefore$ Price of 8 bottles | = 8 $\times$ $7 |
| | = {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX1+AlimE/Sv6s81S9CsNeBRgiHCN2lXWtGXBODckkFWYSoI/UXX4aPzF/9nNh5Ps0P8oYxFLoJHeNJiIGpla1u2W1Lvv3dOkjdn77eGBFk6gdllGB1l4tnJxpqz1ChXV0A7hdWODHZwwdbm+XzH1ACX7g1ac4V6MOJn4D5TI8PUzLqu8IUpNKd1ZUjvqcaYvSWud2STgXiACZ/BMAsM7wCkuqKaMutzuLhXnBjKrhvsuPgUZdUgNi1KHqsiPKWziywsRmTQ5gnYLxehydVEVFJYs3Tk0MMlkGMtJw2hmNUF1oFCGFCyiCe9WFSyBvSGJMzthW3OeJ8GEdHUIhTaKhjNO0Y6w7L6SEkrjIYRHuetZkiIMtYhqUCR/M3MQRsO+gsgiGa8cZ1qrmZsPK+54b58C7ZmZsfJulp9Lu3hUm060bznSSHfTJSI+BmasXTXr5DOguGu8qxYQ6tfSARjnyls0NdI2CxxHbius3hAXEx85UC2JwabBHTJnOBtqYt902Fto6u0FOZv9WhtjpVKrYcSGM3+CuChcidJuISDsqPCzovGQO4dWPTsLIpET3IdCHa6S+vLaLz4GAK7qU6J9VVn+q/XrUqkANGBHPbvzF08M4VEtZ7W9IEzFJmdKo7cj3dhr2/2SEBaf2p93RsQ3osWlKNg9lpp7TQLSH4ycIw0ocxuk5b9vLJc4UhMHuSgTxuD+z8AQDxNWnezPotP61/DBldUmlV7rRHXw5WUTjJf5sC3qoBjgY2lNCTbtQ4T94GHGuYg8KYW//ivvURqKDX/TdaKsQOfqzyeHLSvG8J/LRnBvcs01BVGT5Cx3K9oNKK+yk3rA3Y9XJMS9xG89zR9h8+yGVsjs3bvliwg2W+lRpvVOjVG6QGXY4h3JxjXpSMMC8MeaHHpRyF1y2YQCxlfvqMraB5BvhuYBmmg4OvbINHBJC3vPfPmqZCNV3JDqtTMSzsL0KeZ+sfBh1wnehwSUqMSU3BL3Dhi/P0q1PtmIcvHugSLw1M9vOT2ZGKhktPb8dCVinzk83/ScvvAPLKw0n04sKWbXy9ahAYiPotxX9UU9f/M2rolhU5+vFOPtgKsKRnK+IV2pqhE+EQJtQy0CM6H0t4I3p/NW1farpZvvp4XCfXa8e+6oYhS2FnrI8jetykFl9B04I8Hb4trjkn/JhYGSu4BGlhmODkp9u+ryE7JZKGmlgbeWXP15aFGKvkktOlQwHWqwIxpawqUbATPFDPvLmwpoqogwuNsi/jkDJl/C06OHEhhLwg7H3jgZo1RsL1NljtXFRVXB4ZZq0FIokuO11aZ6gC4Rk7I8LZkGfpEf3Hj3CIvAZMy8mucp3J5Er3c6UqXge+8jC9AyKYWgwKL8aJ60N4p3Mbt2IwIeCjCyakxz95mAVK+HKG/K9fDBBgfybnQAc0N2zc1vDpr+aEx0OxhlViHOKdnX7oJ6Vx+vLzKDlN2dzGPspOpGMqN0Q8MtT2CwhwthK7fg9T2fy9E8TrhlwsMuONhaQ3BA65eDFZxyl6C0LDy96hhhlZ5NQIigvwG3d67qGIR2WlBm5HkCAPk4rf7oZo7v+TtC94nawFhtLJidHYL44OYpGdLJiOmYGKUNz+JLFj7qOUQsE8MKU7T+Bsf+Hm2pSTgGEO20mlNzBNJOGOZs3nbJR+P7fOLxDZS8RXMA6/sBxhs7m6hgb0zQ1ZMuD6Qi6U/09gXsL44PiUwIAyu6yMRVt5mY37zW3bsKFrW4toyEUMD5tkT0SiiQq00nYRmdBkUS7E5V9M80JsrPfWvgpu1XnupsqSnVaXToBAvUhwBq6Kr+OdYBddTrBtZKcrS41DtS2QYYhklQZ79LRQd8sksz5LBrY/tMomK0vy8dKh7QyMsCE8i7vccXbeS8sFgf7+8/rdBZM9eultqMjvL5IfDANeDnC70t2RPsgk143EWaUoo2oSLngt+Y854elxJxAHAi7ki3gCJ6UGMAIC/oWPnCqHJYxXfFvh8+9PXOoS41/UrEgtGcsiadHEOkX4edO+V/7IuRpBk2lesf+8Y6O5d/FY1LcLuBbTeWhip0vw0zqCEeVNFlx7kV7KMf2sfWIZOjZhjDBDps8XEjwC2kTXog2YJpjqB+hudT2iJe9hrkHxY2MbKkzbS73GCN3BfRWoYQoMpwWcFUdgfz0f2xB/gdjSIMMjNgAx2b+k9sRHwoz+zc3m8ujeH3D3rBkU1AwfjsfvBPHpDiGQSETOqMzDHkCys7DKVD2c2TY7M2U+wJVXrD5bSTpmmF8jagIhmIyf/F1d6mgtxDxm7SNBXC63ofRZTWUiY93A/+r4TsDVzkMjZn9lBybP3xax0i9zPU05muiDxjNksXK7by6DjFc5ioVUbTj64bu5zx85TIald8/WKJDPu8bnLsfwR2qPNXqHvd9qEYVdbsVjQWAPv542xKN2TdApu2gIRi4NzJ2fubIFY3VH66GtvS3pfzdAusihP/mXsGpmfN8INeDtUkuymKshHa6NFOXuALswkYowJbRfWEALcnUkskLaRL4+Vam+kv+VoQYv7cDM/3bHqvWVLEW3mTLJLPYTCucc4ihRrwlYnM/ai/IOhkxIe83PBi00po6G+4BWTI1mqCsvKmvFlGvvF0t9t/bjHswtzpG/ToWM/7DSGJpiDAnP/lImyKPT2+DceRdkD21lAdyCIfK9kmzTf8oesf8aCoZgsafRdKBSkazrV1EgW5iiU5rNsUmTSJ+ZuUtonHQ4Dyl+aiQm5wCV4djbUH7yIstQXO0BJVSyN1OLRTEAqrWECtD7eVtqoTB47UwAbozHqvF2/cpfNu5G/4JORYfK/+3LBqD5dniZAxRPdmVkflA3lgYbKaOpkdj1pEB/O+e9f91H8+6hACQsSIsMNCLsG8wUndorr9P2Rdx8cGMi9gNON1iRFv92mGVuf3EBSbP/eH10gJKozxjG9JUrhoR/FlunF0tEdQsFRy8JWvroDXi3MOZh6CdgXehHOXLtSWJKop2eEGK+E+eI7YhdE7zrthkY/F1+U9I+hdeNUnhXim1mGNM1UIqX3WIXVkUw9eCBHGYpmoWIp1/YGnXdtIRp23Pk9uYdli/mwwI6oXAd2IBUCSoAW3N40MLbNybXKX+PMCavrpnDClswLRXSlCFFbttwpASm4K+wlIlrkSYyknFTo/p7JN8wOfWUXn2ujXQ7EHU9nA2YIwPLgZHIBun/rSSiUzqmUUBX/pN7WKhYOHU07RT2ZlmwmV0a75jcCvX3d2kMkzNdDKvxF9TyfhHOVwqsAHUe01MKjo/X8ccZSUhmS+/xatpeD/sOkJ0b6qYpU2o19JqNblg5gxQjF++DEBc9hpaUubAnpvY0OAvnkT/aKfAqQgszSlTbqZOgygyX1S0pFxEGl28p+U6w7rKpgbUCGb2bxNHGplX7hV+OoBKnEadwRd8CbiC2xKDZxhsN9VR0HPwj4jP4uMmgLtqkk0c3gsUc4Q4ZqSVPD5rK2IzE9XRxQyrThyppufW+bUI2rIjJSHyXjcQbSJAwx386ouTYh9tS+PFD0dhUDQBKCQ6ax8ksvE4u+pAvLxcAe8uREabeR7YqjpbMiAOjfs/aYVYuNA4pzuV+xXOegdu6Q5AmczYZIkHhUQ9Ab5usCiU0iVD7r3ixFu5JUk4Bg8HAi2wjZMIUYKDrdV2bVwy2KWugiQDD0UK9VY7nOjDmTs31JNq2CBmEvRe4Uon1+3ien93QHIGZKvRHW4MCZABNUU+XVTLHKTD0JWE3iWXqdBepT9vsUJf3cnKfXqMiceBzZ/bBjGvgIGrepN5li2b2qzsBWSlB83vE9wTnq6/nSe++84vMD3msuQIEPP1LsRXCPyCwDJJB9RDc6Hzj3dKt3DBoIBd5nd2hjzVeLxMLJo+M8MzByBzjIV+MhqT5SsDtaRJK8C4wLqt9n9NY7aeKPV2tgck0B2UmLSbdQArfQ6MZxRsbEHH2qYox16o33T48hs0HzSsdxfYsT/nMPnw7BiR7FZnISLyVdSUXCQSKlVdrxhaAzkyXlFf5phjCh2Gow5Uxl7giP+DomTKIWNNcni/0OlIC8boKwJKDRZk7lQjKTEYKQoBG46I51ai86QdVEElsCRR9llbr8NkNKoFLce5rhCJFWkNUHmPP4iQKwTiU87mxh+34mNal3B6mWIGc1L+kzKe/vi7pXubrkYGsEhD5HNOZ+k75iu0UfFRnAAlVGHhxHFrkHsm4+oKcRhVHprJ3ljQ7hpl0qzyrm3EphKHAz71nmtb/Q1q0TNX+8DyBuwJTdC/fDuYFedMms06MoVJ8dM8E9LWu6vP5bM/MIlCB1BfxwpUIorzpZpfnooI/S6JsM7nW6gnk4i7B4TjF8V96GrRsxyaQogKCySCtgYa7gEin7MQ4+j9mEBo7YZCwSymKVHxjPB8eL9m8mHaOfUSgsOEsYWgMwgHVWSU2exdrrpbKOGj6Nj8rDFSBKowGrNEdzZ42TGAsCA4CkmTUY+DXhEHonuQgBsZ7vaTB7LeTpesK83gFxPtFdlPOkIIp7rOzJ5slqthzRwBczB2B87yZditB2J4rqcy389H4y4EOJ7ws2iNh4dCwAM2DAXBJcwsdp771EbvwqAuThswGByfq2lE9OtiR+QtUCh3kPvML6+ZbCNG0J+LSkc2xww7EM01ptN4YNggAC08gz06/xidK7XhdMb6ALIfNXgvKIkcU2HoB3TfkrFjLaANa0ljo0OVKilS5A9qWhAvMWaJracGZlsHwmumCTDaFpDUO5vOJeBTGraIfGNGiwdbIiAGvSrtrbC6rACzGwi+oVE/xIB2PXznDaCL9jDnG7Honj9tBz+2RIXPuV/72zm/xYnM1p5oko2eaKdrSiAt7+9CCQmrdgE+lTpwtpZgH9E6823u7lwMOjLqhrBEk/n92M8lUSFRKkO5oQsADWM7SPMzDIy5XwkRqi8zYFUzFfkVkhwcig5/rSOTCgrrv5qh8m9nuVeIV+3K6X7VuDjiCD4p+wm3GpvrwZGQcsH/Nn8cGC6on6JoA5y7rseki7hHYbs0447XZrLGvSpJpbL7g+ED3vZoHJIJsV+ZgaqlEZvMzBXoavgHhjAlLeUDJvihuh+VZJbJRLa3fCMeyRoCW+8dk96Iw==
Variant 2
DifficultyLevel
531
Question
Brian is selling toy lawn mowers on Marketplace.
He makes $220 from selling 11 toy lawn mowers.
All toy lawn mowers cost the same.
How much will Brian make if he sells 7 toy lawn mowers?
Worked Solution
Price of 1 toy lawn mower = 11220 = $20
|
|
∴ Price of 7 toy lawn mowers |
= 7 × $20 |
|
= $140 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Brian is selling toy lawn mowers on Marketplace.
He makes $220 from selling 11 toy lawn mowers.
All toy lawn mowers cost the same.
How much will Brian make if he sells 7 toy lawn mowers? |
workedSolution | Price of 1 toy lawn mower = $\dfrac{220}{11}$ = $20
| | |
| --------------------: | -------------- |
| $\therefore$ Price of 7 toy lawn mowers | = 7 $\times$ $20 |
| | = {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX19IxPJK7BJRW2rEiy4TD2DVh83/1Lwlo45OedZLjdrhlncERBCwlV+6+rvbEG7dmYalUsMkbc1n4awHrS58Ji5X9m1WWYBytBEtKoIuuLPbQTMCLOKzjCEDU9f3RXe4ZULySZx58YqU70PObR79IM/E535U63hO6wwG39TVbQF+kWTkhttNkok87jr1Q+Y/FkmKSjkU98ijUULlg1O1K62GBQg3Mjqm0oFFVu9UnO4Iz+2kBY0yuqFX08kXsS+wDiXM8g4eVfTnYok7raeKejbJz2ArODAACKL1/2JKihr+CqvItO+kvx20qtU6Eqse30YY6fqAGPyoRU/VcJgscXe9Qvjg66Lgbk0TgEEbK5rScUcl6Fu27k3yMKe3s47F9bkv0g7w4BmLB3Z+09Tf9ALso+K/EhsILMVbTUCJ8HH3iUyXzyCQBvddL7ynKpVJvVcMpsBRL986LNiKmSHo6DgqySXEGPN6oEHvZCTlq3qXu+RG/LiN/2FOW101fJHmezT9vtfuhCMiQU0L3u1Zf7v7ahFJoUc35aQ93lciALeujymw4Rz4VZtXYHtovzBMV5Bz96QzAwAMl0ZPRnAg7GgYQEnyHMTAKyzpqAqdfYAe+JQusxGqz88O10cV+5TMYpqKmp+PXQ0Q9kInucYNUm0lxevSgyJfnOzw7/DL7RjWC2xPm2l7NxBkpNbekBggfl3jEOPPbBUCJ+J+yGwzd0lHrrBqTpuVpsZD8ChhW50vb0HzlxfxVlyug1adHnvl29u8BSjeM7Z+WGySwNHJMn6daEe7Db1K2p4PVrY2oPUc3MJfiJoYyya1ckk1EP9KgpZmtAxms2yvnaxc3ARJztRlYCVWF73FxIql/jN6TmcZmu8DKA2lAZuXNi7Ovd3DbqwIkNbxTKPnG9zmGQrc4f8jSSfy/BxNMXLGWVD9TxEi6Qn8Sm8sBjvWDUPs1SJV+zT7vGnag09qy5tBDguBlBRDFWedq9GNfb9eVc7XDat3tyHzFQ4YmJptXI5I9CH4hqHarWMj1Jy3Lw9uZHye7adCF0Kkviy0PQWIq3WK4OjEw1ZBuvcifWZbOm9IxDymGiUYalIm742mkrYyTpzXvs3A5/nfb2Maf9Fc3nV38NpdLIDrS75LhsNtYSn0+vB1jGbMB9r/BmIO/3NtappkN19J+GpfQn+Wr0eu9Ez88X3JB5fwxCq9ZLbonpNRSPohJAXU2qOT+epiJ/Zr4+nAU4c0/0VCYfv6VyB5mpNNch/SC2wqW9wxP1JdcRVOnovGi2mHpWKgfVlxUKXiFmS2Zj3VX1LyAuGYUpLGZ8bYiRIKmRkNVG79xR8J5Ntt07LodNG5lOqvjXISyMW9CZd2l2mrUZjAK/jrIlHuHIlbZjT0VI799VtKuQfcku33Lco200ft6vnYf/uufvHT9ZKVhBkXLBOWUzI923wyY3a/YH0BEFvZvc9273H0V24XPHXe4AsS1/MkFkXeKwogivfXU5m/MiR9SU476WS+R4MxDWxGgbNgBPMGm+XwFoNWE/pCXBnKIDjWZBy2CUV/fn8B7/i4E9cVATayGtWBpLXgeVx4uW0RfUqJxIcanID3jIgK6NPddWb/kN+CDwfzCzmjfP++3ro37XZaXwm1OPwQXHnHKa1MQoDBIlEfxufMW9qv1cL7RvQh1K52/VxTSr4c5InFksSbddqOwavgY4largO2le0aAXaPWhNgB++2ClJJdfFGLr6uJ2+a6+qQPtYN/iAMTr9OzSV1pNWx3OSoqFbkuKtLKgDdvXDxdvaXoIO+cJmiKTtOrw/V9XNCSNtuLC12i7aYy1IT0W9EnKWaGfTZwv+LnuiT69P6U3t6pRIPS5tNU/INeyM6p4ACo/z91tbFnXO8Lu73NW9trSVGXWvH3rfbuKuhOdLjwahn7hGZ0UECbLTmFvkOOBl+VPaMMexp5gBO1iGUyr8JbleiiUhXMt/uQAc+aljEaiq+SwmstTOnGePXQUyOIGyCaduP/kFxSyP0Uj/cbcw2lZspG/P9Qwi77FMBP9FJAJgQArUdax/YI4H4DOOyADQk0PPpXXWOQw+9GQLvFzb0SGcMEzZMLGDs6gZJ84LjFoevuyR+tRf8eUaH6bTFIGKw6f3gyNJZvrbdslH9/3KuqanfWFNBbKiW3k2w37Z6I89ZaKmCjTc4oAkKKjRhVZ6MFx6mn/yixOJdRT1FpFwz/aeqzIOrs6UJCwTnJfl27g2kGCWH0OJV5LsTjrgQ2KHuslcy7Mae2gJqhaJElZMcOvpKo2qq9FgtpZdRd3Z/IGRG1219Qo3MYRuNZBr5i4jvT48se0xYS9T2F/mQHf38xGdPbG2dUaIK2sDkWDyy9kiUotuklBPgv8e8Pvf9VBzkfj+dsF558Apwgrlc5CmIOtxBanlfqaD8M+rsBS7EMNMePBFXe/RWTpa89BCq8TwPVPa+dnXtPllyPgNwh/EHuurjc/PAmnx/ju3BwiHSobRztFYAm7yztN8MUqcEGjqscyytUbwnFdIN87kwCbviXN2OrkdpnqHdhnsQr4dx4nDO7pKsq+/d6uhktMD3IU8F+EmsyDbH7vgK5UU3tE1UfXSpJ/NnLN7a+Jf/+MKR4PQ58PgXqWMW13OfI1dSf174a5p1HQiYbO8P4b04xH7ZOlxxXUs4BuIhJ2WKf2eSHCi2lIuZRF9k9uQqlz3ZxzMrxyD2cInZuTdG2WsH76VTBCfJxuXy3cw5IeY8as3HW/kPFh2FvXuOKBh4tGaF5fBJeJ4WArP60IqAxVa4RCG7lnj3noMIF+vlOerc3BfRF4byYHZMQQsVIDWeZ4cPpx8u37VB9b/H9AtDgnZyYrY+8ACUPuSk1xIz6u2cr7VvL3WRVCteReKYZZ/fyrLYsl3VaN9mPe1Zw2VtPEelFUzpb/vJPO0i3lXBKt4HesYZ3bOM/569JuDUEnAWrepTYDBsE9+cPtO5Eh5UZ9iGF8s2UOlC652rZIwxrIOMU8kFv9nFDhyucOU78R6pt9pnzVqkLQ7+hLZ7VwQtQltrsWgVLDBA3oasTvtezbzhIqVScqaf+3wWuWsWbmzV04bKiJ/wmlLqPMb+LRi4o9UD51iYMq2nougEnzD4mTFg0b5zHXXHxlBUPOnscXD/rJrNYOO3bYn1d0Yp9JpFCrUdCc+P9j2wpFugWqlDmBc4TajENIemiKBZF9DR4K3TdWeW9D4DdNtY5mYvA2pKlcdJE1V5mjOLHVzJBsrU8HAtASqCBy81RpKelgPWmjj8dk+PsRjjAArhNZAp6DphUjofFigCK94p3JKNlbqi4SdDPR9AMduSatvRnH0RpPoGj0rTi+da3jcaN6MUs12LOkdrRLht0uG2XDP0SvQd4zAVAi7qsz3+BV7JifwjyC6hx3EbtqonkG9UGbO8mD6FLQwVaSXNXbYE7nmlr3P7hQoFaQEvmVkOrXGpH4Ip/su1waQcGqntRGt/SBPxOEXjgSa+o5evZ+5139BgGy6hmLclt0xMb7+SIM9ZSH8jhqgtJHnwfO2hq18QFS7GrjhhBZl3yGDG+AzYxyCqk6LyWIBiYELt5mWDd/Wbn77vKSdE3R2m5iDcgU+LJ72xcGom/jahuNwcXrDdBQ1e40hhCrXRobq+TWm8ZQS82KoEUIxeDXp7rhloF9w5CAln3vS/LOpvjfnhQKgQLJTRRhfafKBnlveLSa2PDUt3+BIGsCP9sNAsLgfc2GrYByuAmEokodNGAlW5JXw3IK3vBRlzR3br2yGpDS6tp5gDff1EEXgVkwzvr3t28ZfU2qGxzuCkdf01LUZq2R6eyubjUHNq6QqaGnumqhZUPjs+0hanZxo9/o7icTIsPBNzWK9+41ry//wGVHPiiiiXAmkRIxkvO5D2fueh6IXVdJJ6ifLbzop43cpjG5+t+O5BHwumtI8olVNyY6tSOk4HGzDAPufqt87QcGjDVm4jZAGBEWqI+UkvcPZzRVzdvSh0fmfxxCKJo/KSTDijpS3IaLW8kLgtoqaoLMWvypWRDeaYtA3KaZicIgMk2s9UjIuNtRZWHWgcI19za6IKyITJ4ZyEG4+xcTQ+hohOPGBPveCIqzeO/y6Eyu4tg+iTCKof1Rqhl4pJTSZDG402MNrC+jTju/BWR6qnbmC0Dmg1xJaG/PheO8LnVV7wavX/z4R5MOSukRu34ekfRdGMFaVxjQocmUzVc2jkD2SawXipE5N5laqRuxKKOHoW2Ti7ZzOtRz5dmmbvaDLIbuyVUQj4KCZ3eGT24hykbntux7Ilmbml+L8pE0txYegerY9s7iidweQXdmIun/9WW5zgMp2JKQRSsD+ppowE0pThEjZxyaZKC2Iej2jwcdrYOfIUpSIrwjLU+f/5RXYBewscE3ODbcLnYdoKhUglhGtgZzCjB0oM4iL0livsBPEEzpsaW8R4b9p60hGDhFN8I98qecE2v/W1YsWvFvl80ALf48agVjGpq6jTeZprAKWGy0Aqdq8kzZyC47Xcj3fDZynChNiD7TxwDa1ujPOq4odw6W1jrSLQrm+a2091EljcY6CJDNfe0g3fswBAyaRzkXAGi2TxBpWctCT6+o8FC/moc8zhkzbGrXzCq32XO3BaF/1zc0SwlMcgCWU75KldSt66liieSK+72WGR5RZvLPUyAdMt6aqGDSQsmNaRkljwELHEMPVB4cd3h9uRTD3I+g5jFpTo7bA/w7TP3yfZ5Cnw2t4wj/4RnG8Ry1/cvCGcGf+Rjol6vtO4Vb+Q6WdzKdorfBA07/7tvg4qBScRtN4zOIF87rIFL9m1ruFkKeB/92qOScqgAa3Oh1qKwixsAth5uqI2CFELmim9XblbyzExzQb8jXNgnuU1SZAsMGta/hLrdiX2FlokhXorckHjHdldBl4RUj/BJ47ujCJJqCajIZfFkOJzq8qp7GPRD1pWbtFB50FFE065vdZ0ZDVPr5cCxJMUrcjp/fKnjCb4SCCm9KihxcmHSHmTCoQDeyCUMDlyuIgbYOQvaakPS07Ds0q4AcYGEnnQIBFakcN47pgxxnMEmYC1eDu8Gy0BKs4lTA==
Variant 3
DifficultyLevel
530
Question
Jack is selling drones on eBay.
He makes $6000 from selling 4 drones.
All drones cost the same.
How much will Jack make if he sells 9 drones?
Worked Solution
Price of 1 drone = 46000 = $1500
|
|
∴ Price of 9 drones |
= 9 × $1500 |
|
= $13 500 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Jack is selling drones on eBay.
He makes $6000 from selling 4 drones.
All drones cost the same.
How much will Jack make if he sells 9 drones? |
workedSolution | Price of 1 drone = $\dfrac{6000}{4}$ = $1500
| | |
| --------------------: | -------------- |
| $\therefore$ Price of 9 drones | = 9 $\times$ $1500 |
| | = {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX1/OxuGMMOYFCo5MY/pqm8rAyiI/0pd2lbhkTelIx370eVhQ/kZzRY/qMwRUuWdu1kgkNpI8H6IsMdQGrX7AcDeQPgB3B+AWaDoIssMYmmA4ipKTSwHGzqu5DT3tnHp5b5+olU+ymqCn4JN2hVOHvzCX2kjs8x7bZY6TGPiWhxAjz28KsP0iTTzMNDR2yDU5xTd8sYbt3bPoWvxwzERUFqZ/6puUCXzPIFHzk5zL4kZBIFR1u2jC2GQejdjnuFs4+cTJo9cnYgI/3xxvovcpMB29hvwXAb5XzvO3BoP/xqZMDFsUCOTDMFNbialSgGSe/IMB9opeo0+q22F1miYoTWYYYkayOddbKrBRTpggIg3pQ7R3BihY1LVwex6O/IxP+u1z5pbEncDwl2o6M5X7otAUnJOTC2Av8XZd8XpjY4M00pPEvK8PQJODN9DKiTeh7fPSm+6b8ho5cGSDaX6GSBLSayV0cQGwu6+mSVpMvSFDDnGjrTuyYzFHtnE/isn4PfgOeIbabJLTGbsx3lXcPT7TgGqK9k9ghz/3AJGf5lThpHTD0uqBs7YQ5/HLcw69QxpDmqo4qIinespOpdTjSbC+ftVTCXTF5dNDfl3UEMn6YrN1ARfbcxHpDXnuE6C4sWnVa9hhdm2fctesoof4QX6azwwt0zfQTs5cnKr3ZCHbumNPbdaCldtB9JYhBrqe34RUARWPFZQZDjIyVnTSwsAwibtdAzjYTmq4htYo8oexfH3yDflmMVSaf1Q6lAflbd+j2ak2Z7Dh8k47b9qzu7R7Qpo1yiV24fdKnNv4qmm91+xV30584hJxruFR8uIipTVi2VWwDVMcKJXVcPGim5MD0e4vEZdCwLvQU+Hy74U1x8/T5PBajeRlAk09mrKcFbGfkJ03sRGaYZKmnd1CVlCB8nXJHwr8dk4c+/bTiHHf3ui6NfiyQfGWx9OMJm8f7A6MzlGCHO8PDgnCBJmFIXxKjIdaXGNoHNyCZGkoIOHTZDMfxLpYX5Ps4Z1T1TDjSVCmWmtyJB9vshswK/35izsii934S3qv8SSrac6EXqLB4Joivp1pwAHB/c9kjirC+rPFgMi3+z1G3s1Q2mWZQ/VrA6McMQiz5I56eW8X+CUb6Bw/tP2i+VjdU0Ve/bHPC9XABo6XKYVJHnEKOaqJNQijSwuWWqK7hkb2RMmfTezOxRd/nQqjdg9YWSAJgVJYtJyvfj6nkHWiOkTrG3AhUgWMjEE88NAJmNTtMD+NmeKynutlAgXLAtAM7h+l4Mxo99GXB2QSFRo/xrx1dwteoxVb27zWoI5xlz4uhBcVm2CzAsEq6xa/P4K6xvI/v6l2FsH6RacQTgJcCPFUom98eXNZoqVZc//inFQvJqP/ojf0G6/UN5t6JLMVxWFUA9Mz9sTfris3TQJsxyYWvif8tGdwL9gAiuFRrQGfFNNha+UjBu9S+rppkMW+ZRIzUfViJ5iXG3efsfqyeHBJbp7YFHVG+ppqXP35c5y2dG9OcHe/DLg0bbtGU4wlvlo9rh93P67Ky65VNmJDCCxS72vI6Ilc9QqBtKIf3j1CH3oC8o7KqCjtGpNAWAb68/iG89tfy1PgNizL0ShrDTUV0s1xDA+GLE+2Kfmo0uRcY6asNlrLfPBtqXzVQJ7/ocdA9EonUynjRf/iZdENFeGrAeW6Xx8xMmZf1ZlwNzvpSQyPGQQJfvGHvHuZlLtj1fQexOjqxk/GK1vjOuG7GHLNb8zUvBa3AL+ZYuje8Lv6f+NL4Z4fCrve5xjXV82xXS/9tlt5rNTL8rCPjw4aX9kafW6wgEycDpj9/0BonMHgeR83Qqhw1C4ep6eXLdjtlj9Sipknjy5aOC47MP/ZiqgYhojnYk8o4huejZrHWVKhR/wOgnl69IMD7zZRfXedta9I8oMHTzuKldCQo7gfIa0+UDHOw4x47A9XMPsLi69nOg2Nu+lAVdLTfgS8FTIsUbianLIEFhx4Wr9bQ198IarvA7qt760eSiv8D0W8IZs0xNSCPFcFwjIxZR4f4BbzbUseB1oY/CVHZRr4TxR93gonbg9js672o+pNrX1mUmVaaAD5HeMntUt65ATydZlbHW6HKoM3+r4DX/z2ECD+toLw+i7HkwrpO3lBf8WOSIl6EX8R44Gg0hYu7Uw5rrIOc/AujkInVFu5UUloInBdVEVXF0PpLRiB/YagxSkV/PzSWcU+Uu5a9yWzKEw67qJrmKCXwSsNrRoE/tL+JtwCerl065IDJith7qTtbaIFwPmWCdOoKiKffJQwhzfPHFw7X1EBmJyJCOHbsm7QeLEAivpxN4SBwZuNL6ZxoErFwKyNinQom5mp+SSxwg/o4CFA25eUvl8Hfch+M1cgKAz5DobTq9dYdzqDlzeymk9IKUM3KbF0/cktLfG7PAVkwWtq8NP3/nME9E9z/1+9EmPRoGLc80fkDi4/WEnKg5DsE5WsqGrmz/E0djJT8iOzfA/oaWu8WCQ16et0ZeRw//FLTSdmCsIGFnryBdSkcsU74tqqM9KzLVAL67PFDY8rJqN7KqXmyxrAadV+/PMcaddENkjgA0oMiBNwR7Q8QfWnAqGv2GAlqh7EH30k/164L+FNd5YSpvHZOSk8zfnQ1hCTb2sJq8XMhLghDV5x8WcD6rPrdMB4OepWvpHO89mGCbmIQAzbibiV0etYkcesHh12AmhDkB2A6vU2n5dHmgffuihCDkD8fx26x7eYFP669egrcRaKdxeKkDCQjOrdygrDEkGBVu8xNyFFvpZ8n4D4Ir5KkmwdRXVfsBRiU5YjuOV2hv8/SnIax7L4241VCx9VoPg5R/FHKbFvq0eg1BaT+IpYRZV1p3Ys+Kst5LI+cMrf3y2fNkNV2/bBIDDSZCS1MqCXE/msnPwU7lzuPFxtft1G2bSFAH4axiIEHUWA/7FLiYMAbvqei+3eOLNzXVtN8+JsBDpH9Mr3qadoRhLGyeySOU8wXLZOsdVsXLfWI324opX1h+CXdD+0Mu/d8pFBpHfe1oVwLu3LHkLZIQfmv0uNIYyYHCWEgBpAH+KiemLvjOGBbg0iGcKsaURGR4S0lw0qVr0LdfMm72ey3rx/5mw+YlP4609qdtKGgtVsNBsNqSxTvGK70wljbl3tq7aO+m/iB4oSJQhFZFY0sPZCe1t4K8lfsQd3v22/lhjOU1fGDHiTyVLbd3ST5vBbzZ/JSmwvi6D5vsOz7m2fKV0YiGgdGXx/yak8Tsf/9rmUHExB2nYqbmm4mZ8puTexA3QybwWlPeaezXcXT6Oe6HTspGqqogCe29ZSMPUk2XtIjRbs0s4Efce5Xp4vvMx9YrbrOD9dtMxMyqqwf3DtzvjFvw7twrezAic2IfW/iw8gb+EfkAu4R0cUpoAQN5vNQzFwH5iCGvNrj+AyqHsjDTUrUNLDqupJZlhDWCvJYQmonAFQaqz9cpbGulQKeyBDuBQIiK9PCgF4sBBHOZEqrAI2Bfn44wMMMx6Wo3zR02c3bHxmtjBacUKE3LQ+gwEx8deyPqXSeUEHJ6k3fuci4MhVY8bXwZ1NulddUEQqyZZpvdyQ8BgWbV/9JqPTgK2NGXbUZrFPGX2vOevZ5aUd20HqP15PJChNNvx3HQ3NWS09vLG/3o9ntOL0FBZko9DL+k1ioq0L88CgrzSs8QiFcNXIqGnKINVm5vJZuoSmX1YpBWYqL3EazLY9PqwJdCxG43/OvsyKGQGwO+A+Q/BF1xExdRT4bTbau2kPbf06ExpXRVsT247l3DLX4F6fGuPDE+Z9PBnXSWKwUcJY9lQTCAzCgFZ6UExg8Y9q1iHtHn9E6kBqvspuo2hL4hbgXGl/97BBanGOwgpCyzFeqS60hQMnBWGwMGRXY+4R3fmZCeIOdV/ZrrSz/lKtLYWXcu2Qz/hAt/pHP1axjokxwkF4jfysDHla1K4HvnO5kYZ7I9TQk75nW+2eR85+JBmwTyKltUuGImDdCGrdRixOUqkdxwjST+19trRpKX4IOgsHcMMEGjEaq1LnRYXDB0DelxsUGxYP+6su3eTX9bDYaB4jFuNsQlpvPjXrQT4Z8RLHE75mOMtcPEZ201UTELivbJmv2Gg5pG1zYYTB6KZfTyvsz5VwkOii7oBGLi1wVp74mcs+kA/FLQUNDjWK+djRISF4LnRRGUj8OKBO7CWCBhMQ7dOFgfVXjEb6rKd5m34EvAcKk9cKJRIXG+QtAQ77USZUt+G6++sAOpWwDt7iQUIy5ShJsuclfyaoKgMDGK4myi//kafBK/C7xNI8zVnbdcBQE1q7+RH+KBi/5mb3znHtwCXJbqe9Fq/ofP7X10mmSF75TmxuytsWpSzLUTkAyFrEVe7TdVW/trAIP0XnDO28zY176cFCy1EHksWLb7WIHWSMw2kfNme4YaUGVC1iIdHJjWmM28fn4H2sU9SETOhVAfeAARbgok/h1iJluGBXhwKuXGzlcEMwWr6TyJDMstLKBAHvftgnoecyZkYYj6KSi88tnzH7MCuYo+Yak/lzuBwnOyHT/brfmkbnr00Dp1ZNKWIokZCQxYJ6mqzRSupDJcK2+yREUgWcLe43o1mIrdINm741lhBwwrHAwY5gAN0HB9Kgh7mgRxxl37PwsLPWp0PXVbRrFJYua8TerlIpPdruuF5RQxtyXXcQy+EiS2wi180N++BVIUvmv//vo+0BPJV45v7NUdJQsECICPC1ibGdCB2LdysxqBZKAj/4sSkOfQ1QqSHEpZxQ1CmaqNpr/cMigYC+Kg5TLpIDKeVB3wnFKjcM4xDswMa2P+osFs4dKC2CCZQwCYdGky+QXxVkr79hkfqSKZjmbsxphNnOEe4C6m338XRFq6e//HVeO/GSTRuX5abBcmsM+YYnwcMICv/yGHSBmdgiajnQFgxEQVH6uL/Hif8CKUWP2V1/AYkuJLxzBgaBnuUVMOh7PL64P89GnR3v0Khtw4WMWs8hlb5YntX/oGUUzKCcsaiskdIpPR2UHNtPqTtLT9LCSRyvwihNJlwT/Xfz09FMqwQ1EN4lv+/BmTrHhLmUrOgCi8AFIFS+R1aT8LqoRW43Pvg0I0fqYH+eAFJfO2lNW8Wa4ohZkWCd
Variant 4
DifficultyLevel
529
Question
The hardware store is having a sale on ladders.
They make $1800 from selling 3 ladders.
All ladders on sale cost the same.
How much will the hardware store make if they sell 8 ladders?
Worked Solution
Price of 1 ladder = 31800 = $600
|
|
∴ Price of 8 ladders |
= 8 × $600 |
|
= $4800 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | The hardware store is having a sale on ladders.
They make $1800 from selling 3 ladders.
All ladders on sale cost the same.
How much will the hardware store make if they sell 8 ladders? |
workedSolution | Price of 1 ladder = $\dfrac{1800}{3}$ = $600
| | |
| --------------------: | -------------- |
| $\therefore$ Price of 8 ladders | = 8 $\times$ $600 |
| | = {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX18wRGbmi55L4Rvs7JCkSycsOzBX+veh7z6mZTyksKP3BoRGwfTy7yH2uWBfUZSfRXIudHF9h3xluHI7IU828missF5fdAigRq0rMxTeFIF0UtePZdgQ4C+wWzifks0KDWL9tdophfTmORu1vavsbD8+crssW2m1asrXz8QDpJHrBfo+cX3NSOEWVPJhDtbNmBjbqt9NxPJicUR+Z5xVrR6drCGUuuZ5rBC+WB78F1AcnZZAbfGMMhgpUWH0DXIgvj1m7NG3l1GAkYbZXkRXUVagxuslZeRalFfOAYySVl/z28uCxb7KwLJd1nMBybrZQUKXwyJSD9tubbz9IBqbWu1SBdnL7h+OtbSDJAApdZ2aGzUXD39Au9Fz6AQUIVSyRooHDpqC3kDKeJcpXtzlXT7Ru5Hu598Sm2CUtHauCw+zks23gVkVtpXUMnC6UPrmPc8+NTdw2iZG8Wt/Z4swG4OnxX87caRurYFFsC1d5M4cu+Pn5dMnfxtyRcGbUpdBq6Ki6jztF03Fu9mCL5y0fJ0uruF1iuqcKRSGqv4FNsYJKwLWZUaWzKzGsHZiH8OdiKHEP6jxgamxgI35wv1OVsslGXwbzqmzr2R0LhV3zl2q1xtW0czP8AmsEuQ9vVbhbPgMCDe8pRWI7wWZnRWXWyTdcOpsekqM4vz4OQc4VkDNCi1Fx623tChku9Vz5cw+PlF6P885uGRzN9/QoVQVwqpfJ5UsN9Ol73uSN7BvqZlO/P8PGPOYIngs7PKhfz+iqoiX6xktFGZcIZLI5oo+RkmMuw0iQux7UbnW0+Z1V2lCFPnkM9JIUyhBluuKOtFqHQPM6+pPhGOSOiyZ+Tq0jvEC3OYHDLAlABBkHJMlR5/CDa12Jvt+VMiqA0PKaPccfmwjJCyV/t5/GBYDULwpvsN5gI0FSJQXd+nT8rNx+UxrtZnzBV1Dyw/5LlFug/uEz6+reGPBXyxERJER/wuD+Z2CRT6yBliTRtF/bc+GT47tz7WjetrDzld0vr7H5FrAevk90Jvvy7P7o+3PXBQKhU3F0+tdg7WnE7aJcnGhTT5Y6qkDO42+BFjGeXj2auQC6hhhmOSV3Iby2jWSAtOiB+9bzVRD2/dIohnvi1rSaPBU2pw6m/WcaaTYs15WpnhQTnA44OIZEPP0hGCZkWdII7r+fJwTBu/PbMIiGfa2DOfxnxBq3H2U5fmI0zgyB5VAs5OmDokDUY02+fIQ7LnkkEI9hf84VaJ3Faz8L8N5M/OQ2AnKuKMdOcFPdyRVA80aU7JiLr+C/5Gaa5xOSy88nZlu5t+t9uNnTXoNICuBSrc44BDZvQjFhZGvLK5uL4noAyOGNscG6KczeVBCWhX8CcLDs4W5NmrJ4ZVh/cKywHwfZko9plbiYgSpPUd1QTqY8ZPQqdv69gqAnFtbeFl7VzqHrThI6fbN2NP1Nuf4lD9Fu5kL7CQpWJmsWgV6dG5yhUwj4OOTliKeCDhtFBwGixiqhCEeB7FaFnVl4EeqfYtHy5JfYSkkkTK9n0lMhChnAuzdWahF47mszXYBCndzmIXJ8JUW5mz1XOM+dH6iy6EitOGylnDZ8W60tcHfXWsItsZt7ET1JIDEiXBZoAvf3y+/zdghtIMH1doGLXpm0bGxGReJssdzXFmZiM29HtuFFBsZN0oIBU4COy/q3vdbSfkKEOqC0Qq8yMujMi2vlt60STLWJKzg/o3Ghc3oVUoKHlyYMgSZur3/DLTcZuZMs0yQJ6dtnU5kmphqG7OkzVdXvwcbMyBhxoKF00IzhuLlGzDPvmZwcklRm8xxVJFpSlNhUMm1anTOUhGjG/GDazgi6Hd6IdrbZO62TVWCOgpmHkDH0JuQVruaKO0qMDE2Zw8j1bjGYYc6Y+eGGfU5ax9zIwJauVn9wsyu0AWqL4TFGqglqrqN7mCNAIjKwWpPNkLmsEdaKoIEsseUtVLN1sW20eNBKuVUo4EVvEWqIfMCHsw7gEcR4d5z27ZUF0KoE9Z2KF/rKlRHmDP00DclvOH0w9INRhcEZGyjdO/SjwRZvfwxVy4UhgebcUKWBPRGti+PYNN98WmXDqDuy5cqZjWbHMGvzdfEF12jATAv8u2s+SLUSc8OAjja29POxRcjMT+hUdzyM7ZpV8l9TRAgwPiMJSW+8UWZwnekFCZ1z8dFWTXTrE/zD7gCtdULkLZZk7Y9Up92zmIlBpK7ZQwqcXC/O3ZZoRYKK6ApLYsGYnEPLtxtz9Q3e1Wk99OW6YusWed/CCS9nwmxXmNWFnPsSY43DTBziB+zkNUAAwxQNZZb0n4dY4Hxxt1oEnNZUZzVuZGC6/s0DqC56UGfITgk41UBrPAH8yYe51W3rnuLr+MzCLAwGwW9baZtQbckb5/kRBK9pxVn06gWgr0R+wKa8e4tmU8i2iSX4DKBjJO2vPwpe4HUYjlGazKXyk4FYkb5bHjnwYNJ7ZNIohPxNfRJxUMHaSGVeQwWgViDCnYqnJBeegeETg9X39j07aNAfSRUnAsj2A2GRUFKCH/GWab9F/H1tEWs7DT2b0uuu//XXDxIA3J9uWohd+mT18F5sxc+VuQu7evDeypcQs5qxrYewLQdN+q6Lue4sZQBROElu8hBlKujOiuyOjczCZpxh9ZHa1Dt5mbuNGjmIgieY7qIKK0GK+1FxQJfvGNjQyr0J+reQp2fe7aCl+tNIcazsL9W9aH5o6qotERH4d3U8zfreAC8fRx5hbZUMHxdtbKGtprwvUpnc1frMnqeYE6x7oz8K/TH7J1YkswMfdhvAw9II0KjRdOckflwyiiExvZU4oJh39prGVC6+9YzSsj8n4oaZnZTpxaRGjZVa3uMaHnmMU8vV3RhVnEQ4KoHQCyBP7ghZ1qpzD6RYdN7lUvsztV9Lod6IHHFBw7Rr6ufIcXgizpHc6EPu88hEXSQvd5hCGcdXwOxjf03qDznpzDW9TCRD1fIcLBs+qRa1W7HrCgAI3z46uDjLjKxD+r0hAkChzRfaYYgRA7GlQcfLQQzOsFFRr2tcODw4CERxMsRkIc058bK4mkUiHecmixQcN8sXtBtCkFxPoficNg9Tj1+Fo54qXUsAhw8IIzKTWkcEbtGy75GXC9ClypFXCYSWkP023pQplGZ53ga1vPpkQVitAhCm/VpyZJD7rfSkoU9myFUQ+A6qMkvjihE2+pl2khXWlKF/XRBXmz3N3PnjrU6x5gRyEXNM7pnnHslFf/NuTOnYemByfNUskAr9omrA/D8ik8E4CbVZzcl4FibHYJvW2ZWkv5BrZVL+67NHu2C4zGqPi60DEGJwwjz2/U7iWE3QLDnZuWJcEJEcSUuNOz7YCqy6RXjI/Uf10scLhdzABMonfZPLPgCeOwRnheQk5pxrZ0/oX+PUdypd0qTKPETGnz/uv9mB9O45+3o/loxmUoJyfxrbWIhiaQ91EXtiYpj+8WpA1/IcW6dUtggaod4VBUOPOhN7lPnuBEtWizCEjFBhCdyvdKC9kkoc2wBZBA1KhruKaEy83LYXD8q9I25fA521au95OaFwvRkH2qrmRftg3g2WKqYYMe0MmzU64fL40vYeESB28OCCeqCgaYuAfnLhyFE0E+heuAfYxd19IJLOELe4JTBRHTuqYFeAqe3fDqHjhT5VE4SIQCoQz2cHBLJZ1Uijb74q6YXEkuP267isGMOVtCA+sqmi+AFxtZqosmOTj2c4Du81mG1q2zXa8rbBQO3T0NwkKZCeCsQj8iWUkaIVKGvt/avati5XvlGgNtN9fVsNsydzIW4+IN4UqVaZx1al17nUvYfa8nw5urMOpFJn+SVAzatnxW9dXwWcDrzRApYunYk/1QjKq+jwOkZQFPfDPZHDrn0Ar9ad+Fm0avjBroN3FOdxcFXL3QYeU14Ua3VaUfOA3sNtlqIjOSdNuJHfFcCPwCWTFgOE3nXkEkSMb+oy1nPqFHgR6fLhH3QoNIbCR5ZRFmMp9Q6eLKhV/plKqy9Gpds33yKU10bcQ8L7ylUus2AGi0Qx58AX0j9qo0elFYK5ipSlXwdvJ3XHX1tt+3ZgtZjZjZfs7LcWfPS8qwrRny6EsdXaqpdqaN7fuO1WF5grtY+4EkBlET0MwVJHoUpY1cv7qA2v/V1fi7UY2QNq0JG3AH3lMsW2uXF9n2qi8nYb61b+D0X/YAAosfMzvXENlLThNSqEoXFmzq1XVPIjOAPuCgWf4v8Y0Nr4dlCnNVB8w3HP4GU+xMOHni7KPk3Y2iSP9nV3vwirNZ7Eee9DAFUznjYKRokh07AFep0Q/eaZH7edbJomSJVH8+g6r6L+ThDUAJ3R3yh8h43YR1uMgJRhqJqiwi4AVtE+bbYajKQJV2DoALNl83ynnzC3Zsk+EiVbfHmH38fWfx3jWnlC75xgZjsC8jNrObHU7IgF9SFpHyiluKOVjeF4jIEJXpmlW7G1WxZMsSN8b0JKjfJibcZEEUQWlhCY3jvvZ8mHaBkBn6kkBzdFP1VcKAq2PyzO98bQ/yXdZPAGU1A2qqgBfIXz53rEypCexkBozkAyIpyYf21mCv7Q5dc/JU9RuMtXMhzLXDqU6fZYOzTf+dkK0/OHlwVtN0mP2ud6bZwuRywq5E70vKEf2oqZNtvFDGHmCP5lFw6+Gst7j8zxfG31wAs1Rk0Lnthkv8DnDsLNcWA1khMxIbsylHcuvrIsn8go2WJkw/kurKTS0CU6zOXGsLReHDTmJ7tnAijQqGENR+jKJMGu4l02t3wj1k9LcE41kGtZXncjUJ6mP81qDTrJZB+P8RI3UeJSmD1lcevUyJkqi6DxTx1FWAei3aCZ2NTPEW4AibIsyf23u5pftXNZKAknSyVXVV4l2T/pX9nw4b2JX+U6QU+5ZFI3mvzM19ITacw+udKIRmibfVgvJZY6bRzBXB7IB3WjPaZpA5oAELoZ6/FEMe85EJAk0gsywd5yo5VRZEjkZZR455CHFbG3Xs2qwEvSuG7SSILx66n0EjqfFAWsuk9tCg1w/GB1tkxLkzLrBaryaHXW2+EWisOiKgfdfAqLewl35L1sZr2CQV/5kiUtzBDjnx1McQtwm2Kh3CNB0+eo0HjJYIG+b3YK84nS0kObV3Pujw1A1h01iHQUPKxhw==
Variant 5
DifficultyLevel
538
Question
Mega Office Supplies is selling Casio calculators.
They make $138 from selling 6 toy Casio calculators.
All Casio calculators cost the same.
How much will Mega Office Supplies make if they sell 10 Casio calculators?
Worked Solution
Price of 1 Casio calculator = 6138 = $23
|
|
∴ Price of 10 Casio calculators |
= 10 × $23 |
|
= $230 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Mega Office Supplies is selling Casio calculators.
They make $138 from selling 6 toy Casio calculators.
All Casio calculators cost the same.
How much will Mega Office Supplies make if they sell 10 Casio calculators? |
workedSolution | Price of 1 Casio calculator = $\dfrac{138}{6}$ = $23
| | |
| --------------------: | -------------- |
| $\therefore$ Price of 10 Casio calculators | = 10 $\times$ $23|
| | = {{{correctAnswer}}} |
|
correctAnswer | |
Answers