Algebra, NAP_20333
U2FsdGVkX1+N4WIlP8MrD0D1mxCFkZpcqMG/YwTqsx0g7/DwdB5ZAVH6FJiileVa75siT0cYtJTgt8jxaIOYbJCi3pNPEgnkVQeE/6otv1n+PWs130OckioA/j254mO22cDMfIThwPB86kgxK9jdWTT3UhuEDVqXx6r75y/e5xEk5gft/ifPWuPhgu+ykSjOAyOMJAejk6rgZacMMXOuGFP9itKwUOJVDs7E1scZAOKSb2DY4k2tYLaykA2P8Vxu1lB2rLINtJ5LQmPkL+HjvJjFJn3pT6JTrb4AzTH1yhZl4FzOvGfrsiwM8tqspkSWPMjkjBf2q4D1QkLo6x50iHqJZAMZ0KGSZ5GS/G8A6kXRtxMCLkaxjsvqkszt5ygeqBlyryIcFN9ABa2PeHI6Kkgtlb1hdBJ5lA3s8PIraHifKYsUMTYU6HYdO39j7O/AmnO1ZPmDZTxjkwkJrZikNZ9vgHTJAM2OgevKjJejzaz0+uIGbC3/fg7kbRN4ZU8/6eBG0aBoZxChKiT5bHPVKWQQIdYQBM3vhjR3a+ggHylo7w393FY7PkJxI74G0JzUiG+dXHo8oJYHYHuiP0zAAUszWZIqAyO9e6FdBQ/eA5oCBJ71RYTBRh4RY7cIiJyhI3EJM9QotZNgzWD1EjY3v48ePWvUsgCkaMt7cjC0E7BUpcu+O7Hy9pqJJxnSP7/2KNw42gOYQMksQYhE87EnB/6t0RiFmoLv3yArQe6gbKgtBMKYF1GAp/o6Xe8DEDZ0HtmC3oHSScKBsTKnHfR4JjFIawy/ljHhs3Ro1ZGobne24E/96AkSbC21nq+zKRLhFNiOVS5S7licdK1qMt4nAwM3DJPNeV63/f+DImoMSvVgQI0oeTdhHxVFhcOH3sqwjQGBUzK139r/pLQclFAgbJ9IaenSuQFALna7VNA74U6HAFb3rKUE2Zk/50P77iqnPdEPmQtZ97jVfykOx1vG5MlPNNBSllJfKsosqOW8EwF3CmC+Qa3E0JJchYfqEQrpgOy7vUdsZsLwpGQbDfk9mhSEB2kFhr/N48I/hDiA+Wv2rcVunMI4ruIAnzHWoKzf/ANZL5ZeqX0MW8+FPGZjkY1Pdynh04Z9S3GKT6OLiFq8cwr81uCqPZtVTE1sckZsmxqEdT4LRt1875YBzrnvYWpoaTYp5iB9EQ1uY47NjJfo8pJqK5tuKY4LOHyp0nEbjWnEC7+NjVA9bqZcAGrnUvqJp1DpUVD9dbKoIEu1bxHfzmPf3rGfcRMrJyZlzTG6wmnHURS4+v4NmvYuOHOqpuM6NeIq09rz4Fky/MbUAJtz/hgZB95G6FrLWJEWMCswVMIKaSqldEbIKCqjSFHHPnn+JHyI5iSWoMQjow73iGxkmJBWj/BGpj7d3fH8iWrF/U5PsqfZbyXHxr5b0VwjIUlDGC6rpyyD/5aWZyCYd2NurHOTL5pdqrJWXumdPgahJIt+cuVYPlQxw0ARMf8qNqVywY2rNN+uRRuq+uVc1SI3w91s6qe1brgBtEkgokrHbJza1h6N0xdiLRkvN8nBCuje1XJ6nNrXnYQiT/2zYWO2wR4nqF053Js292sTiaeyYmyzH0g7fn1oeSjL5NZeZj4QSSyijPOIUHdEMUHN2E1CkWrMJZNpFuIYXKpvKUm22ItrV8rafjF1zkaEeVlyLeStIeArurXYQMJtJsds8zO4FkNExvn/7GTUuTuoLF6pYDV9mcMCNe0HD2SOwTlwg3WWHtib1KbCcQBd4khYEkXhB5XD5xNNfKfeZunApdVY5dzsnI4ZtIx4fCrto8C4OOw8gY5eVJY+e7TKnkKYSNFWyTJUOztkwtTqvzJM7hydTDBC4Q2LLdv0xXlfzYY9Wc5g+X2MsF3FluSX6csx+3eZjoMchTRJ9ycVmkYgTd6asFwCDP37DXu93hvJtyLurwZ7bLNCFLsICP8cPbrp6CT4BDJdfB0L9uCoWcd+NmgYKzkin/vFPRBfV5wcoWtN60slMLx9KszP8lhSo49gQSxGM9KpvmzCaKNA+Fwt5Tn0EKIxsukZW+fT0yVBOkxDxBRp2Kt8N/1wWrGBUd3gBF/4P5/zpvl3rPtrfR+bpDIUYSKhQUkyQJlUUA0dn9fabxGayNId4Jyhe9dj5vvlo0Ehhl2zGUGeSwclL9ld4wCJKXZ56QXXh1kfIBtShkBjgzXNWuRrL6wosYqDSIZtxJ1V4JssLHVvf9xdkjNVo1FpOxqa3NfGlc1pIXYnFpdJF6tLlYJS6YmipjdNQL7OaYWS0ZRRjj0VlH72bRaqgHaaoSxUKYrhyQ/FSeO8OqIB7H2hOwKZuTSKKgI+Dx6yrzcm2dHcgBa1eOYB814nT8TuYoDt+T9/tNqgJLQOT6KZR5cnkqXCN2vbRpGi4mb1l8kdLqnRuDzF8chZqrnpv9m8boNiytQQS42MKQrooBqBw/deO39LN74AhOPvUu7BVScMFMTLqcRWJ0j2+idGO+PfjdLrIZk3BOA7N8yl9ia41P/3BZcgJA0CopXl+lo982KS1Rzvv0KA7d0POpWtX/ljGWZNWadn7iLyGl7k8n2qaEI/pfbqkWA1+gcHwe4KeDldmSb8pSlCrbcI8djTnzzS8Zrf8cVETXMkyKCIcU+7sTme7Z3UZQB8gp/WGbcj7HIulJu/REq47nwtchXvTI0edr2USE6bjumeU9roZ71dis1TxnM/FBVQir9TAXhxKFEkHb8hhDq8vOWlHjnevWnOxVOZVMHwAZKJQSxyT7wh3MDakq/WhLL0EFkFME3qFr+dA/Y5B2OCQTl6NFEjsId9WFh//tz/mKv0u+1BvYF0MZna7FINrMYAy2RXJzvfFi2LFPKmNoigj16YfbIkxjRPh36mVHNLOpBsIYifNCjfDa/iSbO+uSdaqwD2/ZyoJHr1NrALEPls+oZzWZxth6BNLjhwYeuVPLv8UJyto3tlhkGNYZl24AqbD369UrAQO+rB+Vmo/mtWndS4nL6wg/QxzE+hMBROvmvZKghgeNLR3NB80ChASXMXYM17r2q+QPzOxZdC3aBO06agtWjBcbpySUNfM+fGV51dfK1FFjsNpIF7iZ0D6JuiiaIJZbt6aA55ytucZr9eyHNs+zx5c1T/X1SsquWp/ios+H6iI34YTY38NBUXo2kjaHHP0Ex1iMa7BtwDSeRv8amIWTyr+R84XxIPxqJLxcrR43R+tP7mdzjjeaea4AZKIZEDC68GIpX5UNRTJK4SGg6y/UcBXNjegdcauPdn5/nx7M4k+A9dAvYz3bQHF3BWAQEK3Hrm4pwUblUEhFm8lfzfDEpWH5idfDwsvffqQyLdfSQwmeBsl6pE7dhYBpNGbfEdYro617kg2nGuCTwsKYMVEbl4Ci1R2C/EyYLVNGcbG2+jkcZBcH+/Er0FdJngWizfdiC9/bgtyNSYgKzcOpp/QEeWdNiII3taJ8NvM3nLUtjjiJF/OgnNHBvmLowqYtIEhvr7t9b1/7cbmWQ1iEGsKfVQauaH2epyilPAT+pPspR4EthJhTjKdcdTtK0gc8E+IHBhu+Ks2/MC12Ve7PRyH1pZw6wW4vQf9pEfD3/yRYKB0vabWB8rw+jm0o4MPwNrDmnE86gL/BbJk6MQXBkj13cgtrmywm1yZG2rMr/c5WQNmsQdRXoOhPqBoHuZ1tPTSp4p+erB+cadZMDfCmf6zezTFyuN1h2a6CwD2dhQmQCPUhxUntLpIbeeN37sQPKxh1gXHsSAXnWEEeM/7MlmR7JryPjaEgA6nfVV99agwHReUnpe/8d5FAKYAlPfd6YUo0v/qqNHu30P5SJMGVhhw53ufKpnq9o/NRDMy5Adn0xiIKKoUbjQfBDLMqzNb7GUCCCRihq9eeGM59biecCHECvOJOrUGdv/hh9YH661h+qe1EH3eDivPUmttI7JiJabLwpVOns968s3r6NvMuTcatutNO7TGrx6Zb4RA/aIkCecsVadzeNNQWFhHsXJdmlbop09GQUk+8BzfmBnWYIbtbWtWa67U8ZwmTbdj2dtS/tCCy3CWM81VDx4djcNaXLicVbMwattQNgK9L3H0q6RnZZK36ZBIkj+5POpnCQe399AVFkDDG1kDy9imBrC2BKT4X5aE1yHlfFdn6Qu6Kpw0bh+JDjD7cqhP9U4Fm/NwmJebvK9BE4KEf2qknYR5x45VxV/A7wfUNwyaypX7LMr6DpHmpMTsGcxBcIiH1rnF3KjA/JCpnyJ/NHRjX3iwv+J+PK9AqL1ZRqQ9MGaWci0cb5SkEwlB2SeZ4KCxgebuEjkHK6HsV4QCfvEAdH8rPtXGN/o6xnFVK6z9YI3D1uUcuZl6ge+kbIBCdBHUqiLZfFFwnrCWXROa4tyguXoiDxzk1LJwoNtV8FSw00DvByC9iqXcs9yXQKYVqysVulHVg+l4yqdilbUTUsH4wNMCVvoL440x/CdnUI74g2y7/7O1SvgDVJCa0V0A8DsFSk5zB0yfmnLlip+fZYv/xtESja/bDQ2lDc3qGQRCCvwj5kfUl4uMiCzPAa0kuXBhlOnL5VzMVOv4+7Gvo5V3W7ETRzvNEAtmyqLvvwhWbMt5l4PN6KXIlIiHyeNtkWxhsRXUVABVkka3zQnuNvHmA6KahiJdKJFER3xvDrbZ05w0VWhYJ9M4/EDVGyY6ftqYdNKVdcYaEJKP0DEi8o+kB+eJ978dbjMWp4fiqckpIEUkv4PHkZFqbI1YcSA+ST3q8LdwAlJY9EFcT7DabtM9W28UWyP+uNkPJTV/QZa9Fb7m9O5Su/i/RgX+WzM6DNRNDRCEweWB/BKsKQxhdZgmYv67001k2ilKDmcLd9UN87n/2MEs6kOQzhf0pmEDYsnnyTTwea8vdrDR6NhFs05E+EplNzJNFt/Z3JFkNEKbheNVyJVlf1wUr5KwrlE1HMO5TXJPBmuwIEI49tk4OSFniamWs7Nu5jaAk3N+s0wu0sxWrKeWkRrHRvi6RkTJ8ix6hhMj4vcxAcjXUPTGAMdxMXmFVAgawive/dF4qkr8psDVucS4MM3n6+RFT85bng+N2UHWrB3Keqn783U/21sfnJiAzyVpbilfLlCTQK1kt7NYq/T63Kfvfkav3aqaQibr0xJ+PuxISeH69GAuz4jETmiykCHmdAwSaLqmO5wbu/TSJh/rDZYnu9YFiLH0fpbqbAorrSVo+KDcVYg7teLgOsv+DM/TmGGXjRRLcnlo8FBMeuAXsUNE/FunEdgUfL9gALY4YhD0WwhCNJ0FFc827Qx651vmui328Cuc+KeA2ePghfRuZ1clVE8aJ2nGzAt6V3+GKfM0EwT5RnEn/sejJTX8q045oGjMpBxsiGHjZbLvnS4PHkKFwoyZsfrApmpVsHYpIvVap6CtEsZAIMBvV7RwAEYhMNFegqbq166uqiMDFAQwRZBojqk4+JVRkhgFxIj8pyr2VT2tDpOYyhV+PLZwOwA4W8mJCN4s7T4E8Xc9+Siul1/k37PRzqcLpT/00vpeepM93hS/cGU79DUQxzDS94gJJ5ZRTyRcjEboAxlU9Ch+rRp/2q0TOc1MK2TucSucBgTQmeV6RkuwPHmIecGftSo4sgHSs7KxSy964RU/FRf6UhbTeDDQaqmZWiveAAkpksn1Pk+mFdVwMjUuHKEkEMaxSQB+yNSa4IumowiYjB00iqL3fu4AqOWOdd4hQBlYTazqP7IzOtoUAwZd58ccwx3qOErmiwLGz9XSiDkJmSvGW1R+3kkzOBrBvcZbzySjJuM2fD7MtTgoGyBj8Drl07ROhPiGPBhvkpiv6MhPKjWhudxafVhzdHjs3krhNEK1WiVKiwgUGntEpL1K+gjQNeVXq9K9SepK5hpDR1bUH6hS4rL90MYY5QcMZLjTf9KoSIBuolElWUGtJziRSfuG0y4NxirN7qija9fC69Lom0Kke+C0EZEG6g2mJfA492z0SgRKukD/LmlKB00isM6LyFf1QoiwQI+F30iUPCsR6Rs8N3Qe3iQVb+Pqcg6Wg9leo8hD348EXUvqNZxJj/wDkbjSKOe7sBfnlTvsWN/eonjfToE2k5qPXUqZ5BJWm4xdc2yPyJDqgZENrlpg9RhzAvCoXH+6UA=
Variant 0
DifficultyLevel
505
Question
Point Q is translated down 3 units.
What are the new coordinates of Q?
Worked Solution
Q has coordinates ( 4 , 2 )
When translated 3 down, the x-value stays the same and the
y-value decreases by 3.
∴ New coordinates are (4 , 2 − 3 ) = ( 4 , − 1 ).
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Point $Q$ is translated down 3 units.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2017/01/NAP-2016-Y7-NC07.png 290 indent3 vpad
What are the new coordinates of $Q$?
|
workedSolution | $Q$ has coordinates ( 4 , 2 )
When translated 3 down, the $\large x$-value stays the same and the
$\large y$-value decreases by 3.
$\therefore$ New coordinates are (4 , 2 $-$ 3 ) = {{{correctAnswer}}}. |
correctAnswer | |
Answers
U2FsdGVkX1/4ER8CYZjvpviurL9biRotsG8e/tWY5JHZlXdRn+OPQjeMXe9EaXU3LKP/daOC30r3Lm5yhvkCaz9wFTNPN7CpBG066Ss/e36Sr1EetYm+XxX8M8ylSEXqkHnNPZPCMVWStw/grcWSGFQa8mhqVpSISVeXlMZDpdX4YwIjsUUcQul/OCDQjgEYFfe8YvxlcO7mb9oLoRSH1q5Zyxm+MQoQ2BgS6sk5Uo816xySHC1X6L9Dz21b+7ay69NWcTcreQExKPojQK0nJsQtOIW2iZ3UKHhA0J38FrQngCm0Gty0Yhrn1V3EovbLWRbYhspcbgPZU2GomDmhdBL5BmMDXX8/gluVxnJZlbu48U/7tkaTC3yYoga3Q7czgBaKTvZOFc8u85gH/6QMy2I2pemAWIIbJu7e/PEuy7vS1JEWE6Jc/4oUKNtzes6CpBFmjpxRT4Y84T+7L/mZVGcUuArGpR4b24j0hHq0Iloe2n3l+AvDjdliy8pnLJJbOTe0Hz5ApUQzO1MyUWd6MsDU2Qv2P0QgNevLg9kgqyrZK9TI8GZ2u+pukp1ShOtNQdVG+pOjeI+cTxuHKIauqI17Y1JjjcW+ohy86TATOXMP/FUVu90GyaP05PinclsITQUN+UvY+ntd2NG5DYu5v+JlKP4Qwh9n2GVIbhjPnbayFEBYetLaKSd+/nK8AtU2o04Llw4qEz90qleQjhG9OnF9VfbyR+EYYbZjHA396lVSQJCpgxM53uLyScfnc480sRwIyKp+NJwKFd/1Lcmq0+QFsRLtrt3XlvAZJF5+ntTGhHPjlY5mI1ACGNG92mDKSzFnxdvJwjO4Cifwd46h+cQPLuEJf7Zu2H5aTq1Gfq6XbcaeIMbyNeXAEMs3bN25oNkicymSiRNrE//bVrWrEJp3jYI9YevC3Uezt3uvDL8xZ4sqoC1dNcQGz75o/YND/z7fWIdMQA6kv/lgEFxSs1/YMGXkeLM31JyvK2o9Ry9yQfZSnjBleQBgzyt1KK7r0BnRptA7cNxFO11nOLEsNRskmVWj33IstuFwajJ1UeNxyTwjA4Yi/DGNljTUuFOF9BdNubsfzKKY7b1Z1UXkiTKLwA4wT2ndr+Njs+bxjxX6Gp2jcryK5Iegsx3xR6m2sPqmNoJFlI0JsQAq4XJDXA9Z/YK7vN1ulMSCVuwLS2dNeQ7LnmvjYLmjnYBQxSXWW7b8hYqqOkU5/KILMXEYLd9Qsl3DHyF5E0l7AieFlWQbzmlXTOYf/wZZfANKmCVDm3bTWGpO1ozOm9lVJjC7P4Jr2IgsDInHGW0PJbwIUDF/ziuRCDmK+dUG8VkG7UM7Ot5I6xk+xhT/o5q68cdYLh3mXP63Jj2h51TFrukRkJtXlFISYjSgLoiZwtwuqGadvJBpEzJxTHgVsFFaXrr8vEo24AyptEPI3D3Mwl6BbTXauPd9lPMh1fafcQ84kDuqe0Snd/WbZVFm+/5nBEHdp3/Ak4MAi+w1XaN0H9AbM6svk5Vrny4whsoStOi47Kpowx/5kUlmy0jTit23dnV4SHbWt/J9nfG09GPIS5+HMBXRqt8kmUIiWwK+xeNvMbzZ+pzQ94K7a973mbLokX7KVGj73RZaFIXbsDFaFT3t5Ctfo0WNrwyvgdd3hdUJoBqwcVSn9d+RD3q1+xczuaSdYNP/G3Ztp94DDt3R+RhCZhR6GD/VEKL5dPcBHj4CI5lSXGQ6516hlCmg2o/mXNBg+VswFySIr/dOG7Y4dSMamJuwCQZ8p//Vu/4abbK1DR+zy+UbBt1vsJUWJLRYbQ09fWDJp2ivlOp8SALBr4ycAnrLi8haU9hGBDv4qL64fiT2SfUn+vfVvlNW/ML3oo32jRe4zNn3g8KLy7kKtL6oNtWWdfHU8ra9J1TxLgDxxQBlnFZTLOnx+m2NAd2BLqpyqeRlCL2AA1bEO1GawBgLiJ8Bf6/mQdAEdQZlxub9frIOjbcwI5MQZPpIipLx6SgVkiSJCvCRLYKUmWs6RTxU762UAyXuxJSKuoOshlhVaAXpuKXTSSz5YrOx4xFbiYjiYDTwAdedlzuPglN3TU9ihIYk5Y7hMBSPJMOLYM0CRfpEO3sLWGbaS78q18BGwC699KVPzSsJxRjgTWpmyXiIdz3n4KDYJT9AIO3dE0z2AyMlFLFfR66rPeSO5llHUbeHm0g6ca4neW8R27wHoewj4gkXBwrsrBXDgr4Lw0RwHeoGX6BUUerwJHZDYfagOMF5voRgg7mOLoi3CMnsvdRIOky7YTCXuow6Ajxa2yQatt6EWlYn2QHB4Odef/kVbEck52LmlIePkRCmSk23Hr1t0LL5029SuAjXNnhSHXrsnt59cQWPUFc3Ew5cJ5OVr99wGgT920bHNj0iaEUNUI86989Xf9//GGT6e4S0VIlxxhFOXCaUHPRkOYl8WFAPgKadhcboqJxGn5fJvhTsBSZw5DaGcPyIqi+KMQUrYuptJplA14OR75Bk1xnPu7DIrXPQ58/YLzhBX3+nFPODKKvZVobfnG/yuMC9+3UdzPWE9n9CSmQPUOrDMPjYg5Ea8zUHvBLitifxlKrBL9DHZwVYSmMIxmriVW/GKo9WVWmXBAAuFCymTWZ1e/4kubLvb44QN953CTmFnNKzm0kKSzJsqGzNFXZ5DjorWbZNa/NhfWNmdcWEs/gnMTsgnANQZkM7uIDGaTiKLmziiuJGRddbGJLfx/kKDMBxC6lzZxDJqacqhCZ7lhSJksLRuXS8qxwHEQa1uMtjLozz8jIJ7tI5yA96wasbAdyO+LUevHunIAlyrGBMXLVtdIrt8RVKV5ppmvwdZ87/JYuX1TZhBnSAz0ImA2/2Wqgf/eD1kMEb1/astaYHqbVR5VyUmc1wHVrVk0BBi6fjnrHP9F2RiN5NwrEqGWDuF9Dg1Y45wt1Um2peCHqMIuIKl2ZjZf8KZ+ae5k2joAe0iV9Qyxf9yhCdeF+VilDgdjvJ463ftDEhjnBc44iIN5jpB1fn9Nzg6Cy7jWz1CdFYXy3cPgkX69t5Qs1qFvbb80BoPt6M4RuQwGeZJiKkKGRVMylb/uJ51VBJyi4w+v8n+eUTGYkW+t57mcffG086tY5gylV9xGOCNkBtjIryV0Tzdd3FSi6V8Ncec1miuf/B8JgJ9Ahn2Mt8gYrjmVQOQa8vkU8iqdAL0jBcsIICQQYCZq3pJRA6DQmowt2BUI4gebFlyfvyrxX8/h2DyzmmC/l05To8DRxMZQuf0Eu5gqwrvXKinfdTA8RyrNNwXytzbptoHVnCR9E9H68xR5a6bwcVuKIXnVI4PVtcWu1aq2BGfIhaJfDqvgRiUnjORSg5JFbLBKxTtG1lsotbvPGgeBGkfO4vXfVOmkEqSsF/4hcDBHPmtxxaEOkd8HC0gDyes6JLLN6C8VK8r2evvW6HNXTx3pRjXnKZ8Pjj2CZ/2lyN7D3SmCXD+LKfZHV/SUOcfEgVa9mjLlq2xA6knEd/EHVHRb9UjqIQ2FkLXJYt9d2PAxfcNAVv9yJMKGRUrki3ACYUHwzb+TwKGHE3D3eTk590tK1qFfH6ZXHeiws3eN02o6saxBcPya0LxGGIvSYUfo1+pdBmdZ5I+n4MxRfINa2Ssh46/FEgoyTYQnrrfvDSmtXyFfbGZGuF5TYscNKzp6l6vgKEjkBFbhIvMTqmenBfq+ybNeMB19hJpLBVKxoczcyTUYyLKiItWI1DYhymXD8T6J/VfcAoUM+0P/XASHR4AhAw1er/WKDJ9N6AteC5t9IyDJyGDrd1EFpL2AhNuJFRMMfLS4iAZb5OUVFjgEQeINEGPIuKvUOhYY3b+OtI/gCiGniCPySkveA78+s0x3zjVL1xx/DrNJziiE4RXLeYy02LLvUK1GffZUSK+7HzgWH2DJQBo9r+3P3fsg8PpGZZBEEFRmbat5g3gg4Jzp4zpAmtUEynZ/wcYKrHWQ4C8S69KfW3S/vvQlPo9gSavYWr4VSCo/qtcF065oIMaTrVfeWV8+gg5tBUFmRS67c6wPwBic2ci59679DainHzv9bWCs6711pkG7No/lP1XV6JJMh19iOl6wuiDiw8pkA4vEAsHcYi8vn1CYjaE/764buBvzjG9Rb/RlwHGK72Az772kKFh+7I/p/Sc8VhhvEZRwvWg9YohCz/M6oZwEjIwx9auF8/EqDIcK1QNokHFAHTCF3OcfHsEcjp9Nq+jnp4gbG4osWmHTu6wBcGm26GoNxzgm5PoHJE70Uxixiqhda20M6S7jUJqGEVnbYM5FfONTEor2yFv/DkAHW4f6wkvtSNE6RH4OW16WJjH19ZFW13I79vp4vqSsC1KiadT6C9INIAJMIoMWJygTY5h6uB/GReNGjDpTSHejhFTjUr38iZT57prFBX4S7O3qJkeBaGVvZEnpAVwixJhAQTtYIWIADwH+qvZeA+ZIgvaHJBeTJpgugWy/NTLn0tmwVwLxXmJFU9IPp8zVoDnHFtggRB49SiOPiQXP844mcAS1bdq7ZTXiwwPWFfKtXKdgqCSj9ayLa4zLhahvqs7wn7JP4ZUtDQ8AiiL7jYe+0Cl5loivZwVohCHV8ycdqYjYyYksxgPSQ8xSAG+N7+JFPCNzJ4gFdd0/Em71QAGHuZmxZ+3ay7bJu8emnpYP0h73jYSAfVOhsKpi8q4ObGGP6vy5IlC2rrpqgiiMEEI5x9UqA63x3lPIUpJ4oTgwgBb7UNjSfGQ9BMIfeBgl1hjM4DpBQBYZrJBgmG96qybUaswMM80hxCE/WlIOHj24LCLdBnEJ3viQ6iaKE38Za55VBBwt9nD5KwmIKI7REJ1LgHO6ZjDGuYtyJEk3QbAL2i7N/DyRREPwQA18f6OfqTOGWWgll3g1XfLgTXJAbUP98ngbA6PBKrDQvoF8bQ7GSLV7PguzbbBe13HxgIAoRTiaeQtbsQMycOL8uudzSDPFloR1W9UzBliNJiYMtxA2NQ5JWe1c3Vu7U6N2ZUNJ0MPAh3eTUpZEiZmRBd1YHYEj2Pi7V7dpD0Dt/ackAxUoUbutvqb2A+bndb4TPQhg1HOSwsHdUI86RVv6I5Fl1e2JRtkkYeuM/2+BS0cFq8KJThb3lKbAw6UgWmZb9ZPMgp9og3zw0t+YmijoMWeOuH/4gqopq/6BEpCKg3eNWVI2y2WQgZqzU8KHt+HoXfhmf4Gi/OKbuK3spuRynYiu858RWsicIZNgVwC54DkcKPusmidsLc6LOz/FG8ghX6b50y9MK601z4qPsT95fnRM5hw85sFEqNrZX/FF0V1NsU2o1kAIXvJ/u4X2jlvTRnlPPTPXI+7os/Ieqk8JnOOBa62tpc6H7rN5Njhd0d6XVrw3wrLNIqYxehJ/HRfEWcW8cHVBRVHyAxpw45Gc2ryDOZT0OiPfi0IxNo+St02ia/b2soUiEvig8R1HzIg6OhiVZVd2Q79CxYvTwLfEv1hrsNTADRhsFtvRSo3eHsP4X3oDT/7ehm4AxHX1g9X/dmiwIFKGaCa0Idfo4UsOSDjEpxFBFhrWhQq4D+C8bniex7IUdpJ9wUHqaWOzH6lXf8bYs5qWQReLnRzj/t9VGyeuzZSmtGWK5LWC4iXiHV0OX+6nyU2PBdlCfXSYH+G012Ui6//3Pf9ECrxVYoh3QUmSUQ0N8+24VJIp2JA0a3oqYLZoCdgOW5Dg/TCyTyexXy9XlaMhwTgzY8Ey4NtOmoDT9pZIhBfhZlpeiXi4mSYOF3H1u1b/4H/aSSuujeB+r+1sstQ0St8Ds+4PAYj5fjVVHM2+zko1RS4OnY837MOegUwhVCp1nHE2QphskxmjD/K6yJ4X/O+2F65IkrGHWs18YKsY51Xv2HBC6FLcBFrv/DhI1dQNl6DfTK3pW5Uk9CA0UgzgTN8pAxB1efCJEf2pYgwm6H0cPflgmmx4S7NW0vXal8v2luEwnLQykmqCLaGYdAGrsCrrx13J6m5KXpHpXVioZzERK51ORzd81g5Hh2EsPxR/MqwNSKW0qaQ7hKGGKExGoA+dhuuiB+Pd2VM4eySNgf1c8u66k+A+99n5ONpHDa9UGvle1DmHJyK9uZ+LcMtqA+sHyU9zmY/RzyebSqHE4FvuhXC1YzJePd3wsoORC5EVOAQ5ODt4Mw47xO/rP5hfZbV9d8odncdW56kCUtychv8U4abpaTy6cJcKI2hvM4LTTPlmrcnls9+FbBN8juQLds9+BFXK1XvWUHC+zveU2ZB35fEelZk9TeuJ84PoCakvU2yS5UuLYSGZXEDHtzjoe4x47P7Julrz7OP98Kn4MDAOVOwZ19GPrhakwE6uCY8UEB2sJzlE9oNWYm6g98qj9xsP5cHkJZKBOxPxwxgSz5g435ocrQCK21qR+Pq/rCRgA92SOTgx2efyqCekgLhIZmIzQrpIOnCmodJkKdwjEfc6/W6KwcjfwWfVEUDn6631rPS2WT4Ouxlx6jrilsESL5m3SG+6nPBhRC1FW9HTnW+BsYhD9fFD8VEmkDR5MGTJOp4XRUdwXMXvp4fVLtRF0UchnR3267Ed+XYvWqgU+gCuJPPmjQgTuUkJVb2fMuxxYdRMlLIO3QGwo2GTm76CrTYxvzz8e0AjKlyEASCpenUqUZ2QP8qy97tLEAiN3O1w3GwrvouU5IW1yilD4LXJqVSwjW3QDjA2b+qFXA5XoAPjjMSUXJCW2o0GBtlM2lf/aOAyxSC8oMDJVu8/D+4R50QeRsDquiHo3RHdh0MjyVr7E7QGSS4DoatVJw2XGopVhUHiAJmYo7OICdd/rjQSa/mRyuEfEMZWIO3yI/6jPWkCFygqigpRPL5MWCrRFzOr8JNKO+o7hJ46EKgLwZm5B/kXjW1ZKyqfSl5DHyZ6Ib08U6NB6y/C18Dz8tqSck385/RAB6AohTK4EZBtf13N2H4cyN6c3rwLawE64iMv2nnvGPzP4JXJWeV8iVQp75VJOAcRkuGBvG+711YmkSnvvjfBYYCbs6ioOxbKogcgVRW+Kjwx7ud0ix5s9VJyC6H9JdqBleMUDHlDptij9GVykrbdLpWCJt0OMWGBojWwFeoW08Qb3MIEqbRvIj8S39ck5ywv8ylAaufIPgw4hsEfss3PC/ysjSR5f+nSM5iKxbEjNiQxR2KtaZUb8ZOHFWW9VByFtMtdu5u5RdAnh8fNyhSHYMUX7h06uP6nhJJmKEw9JiDZ7phuS+m5wO4l8lkJM5loJih3KR0bR7ZQhne6FsfjrTZ1BGi+Gez0mHGDT93Aq01nVX5BnY4dN6KtQeH9638/MhywAft3pwOO1O7zji5tmLZoc3nUkv9eNODY/Oiog8yIJeV0gPXyZZ4GCmFq48rn1s9yxJybOBeFT4eyG98v23tPzb1EcMrZGnaNsVKILe7RuXT5ha+Q8A83QD
Variant 1
DifficultyLevel
507
Question
Point M is translated to the right 5 units.
What are the new coordinates of M?
Worked Solution
M has coordinates ( − 1 , 2 )
When translated 5 right, the x-value increases by 5 and the
y-value stays the same.
∴ New coordinates are ( − 1 + 5 , 2 ) = ( 4 , 2 ).
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Point $M$ is translated to the right 5 units.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2023/08/Algebra-NAP_20333v1.svg 300 indent2 vpad
What are the new coordinates of $M$?
|
workedSolution | $M$ has coordinates ( $-$ 1 , 2 )
When translated 5 right, the $\large x$-value increases by 5 and the
$\large y$-value stays the same.
$\therefore$ New coordinates are ( $-$ 1 + 5 , 2 ) = {{{correctAnswer}}}. |
correctAnswer | |
Answers
U2FsdGVkX1/hqvIaBT9deZ51ERPjAI3Gh1PLNpq2KgeealiUd7YJ6uohsAYlV09u86nz6YYuHoyV6QDr1x/WMRdy0BbExwlMW5HaJ3GDwqM+vjMnqxkda+QLLCsrgNTxKunzdF20Z91NkMLtkHxQkpLkHMGkZ/JPDEoChOcM+RAzif9sLWVSRxPsvC4yhptF8qb6AALcWaBQVu8wwJRqdiRR3M8kivFHKJKWKSalAp4VakNZrDo76PW04HTeo/3SRDOUMcd1c5rS3TVpDOF7k6HzxO2wTss+RoNHElozuyheCPIHtpqzCW+VmH6Ezv5uAACNb+cppzUIVAxilxYPVKtnjXYyfVx3BykeJuOGhBRM61HABJjYfSSI3sIE31oLtaKSQxAdJ3x9p6UwAJWj7wV38eVfe8YWTHVoTPgw2Uf+5ha7Jqi1x2A8aArZt+HSnqd3Ia15m07HJh7Y85uCFjNHifQziggHfAa9a8iKqUdQf9LeuDngEs1E7lSIF0l4RsvQvEzYh8pev9fMiQ0j8/c9LJQE1Lh/Zg4dFo08JkcuoahYk4mbnrRV9s0BxQQZw5UuFZjhMRH+PLTfyOnwF/FG5TqJ2UX5gygTqeGDSAfaEpSH0Nj99dtBgEAB/NkEa9l0vPtOuHq3licaRxXE8R0TqvTLWH2mtwndBGslU/NQmTeuvPThlo7y9yLsvkMig4rsavSbjsTCCUHfHYk6IWLaRYP4j68bIiwz8H10fOkVbAIoijQHEXhdVAOOB1hpwL64s2N4/Zf7FrRjK/JXfEYxGfbB0xwHAEQOhURlulKkulKpqWDPdyAKaiPg97Z214WvL7nEV12ID8xLX4PrA468FwQx8PT1wsyRDmm2trkAp3Tk2tFDY6h5y918jVYHGAS1fnrUf+DX6bUHeNAJzpFP14USdVpK5p5PRs8h4xo73/hTHvejLih8CQTipBlG1ApxxEUGF5+J8hGRqvfF4CvYTKFckPXdBfuZhHuO6DRVjab4vzqh7BHAW+OV/O0JwYHRnEa2lIcsOC1DJmOPLl4Z+AFOELcVCscHXGX6f/nG7+09dIUykKa9811WMDlU0OeWO0aV9Eedpf/LA6c2RFBjRssCS7vE1abFOAfz3jyJfJ1+YwKxYUV8xRKm7V9gImO+WkXjCSWVFpiFEGiS0vVnXu36AtpYS+Euns+LciNQ8IFwTO8zLWPAci5nnkrL4hj0jxj7+9ZAnUv9zpzY1QhZenA4UPB2b23HQ/ZCnhdxEHmb11tOa+vBp6pXUJACcEDw+zI7nFwKWhG73ovP114cdp0LDE3u25oB8usR3rjvDp7NClBoUIyZ8VJP3UuhTAWBm49xEX4zLG+ktXIQuF2Wu8qYWICu8TbyYiBmxpmCxYjwnvYd1O/vDAvpPTyUIU2GLQ4Lq0jvL0iWeqefX7NJbO7hAkG1XLxM5MnFOf+Mc64XVZ2d7kKSkbT4UFPaE/IhIoMwxiwab/EtIwv1e1GudH1Y2NyvJuWimu5iEAUW2cZlxcMD9EwsJ8NyVoA4ZcKLQ6FO/5sv3UoXJ2Nz7TY98Ghrx9aaEZoy0qXBzdO7Fgd6oVJC8/xSe89q1YfbW8zFEVZElWZg0k3y8uiQ9a58jQ1GaW9J7LsI/R0kNiQLBhiY4ZMj1nJnKqBi6akOC64Gd57nsmOPN8WJpeMlvWbxocvW6dp+jtMcvEF1Tgu7LtVugRSYbtlGM/2mnW6RxD5JCMgOpXXHvmmZtxI7ing/tZz5ct79WcaZXsEIsCwyR/Ino/TYzVFb3hr2V1DbBqahByFwwF7Le5i3hp9KqUIEIDuVj92x091TSyxw6ziIxGST6Bd34IB4DMejFEwNUCXJJEPwuYppdwAMnhVdAaZ3sXO71iPo9PG7CWExePje7jlqLUQiWLqiAPJVdKeMEqOdrd26hj9OgeZ6+3BaZ/Gi/n4PWgv2HlD/p7s2YQRhViNsnAnqWA3+94xNfkoo4XmH5AzuIEVs/EhIvft59ymEZ2UG6QXCrb6u3QLcGU2zuWvPOofqvNQ3nyUVjcvJaQfSYBwPTJfDhkZU7Zk5VFp6qHQ2Cb/bRnb1g+OejLYy2VQh445FEH1Qsvw+rk15XrDSU/reNDs8MsGIr9WuKOLuIWXJkVbRmpybFlPqw+iE0f/XXwEwINSZEK+hKsU6IfFliSpqOVk0xE5QwPoRU+OaUOcsCE9A5Vgn2ee6DRML9FwQOfUqY9JEdP7aR5WBQoEC4Zl12i83/cdJ6Eiyc23Mn0ZYcguN8A2IlHFiLi46A55unAzjCXdNct9XU4E9UI4Sj8Fk9TyT6I8GB6Rbep2lNqGRYXzc7q1A+D9hqcJrQNRwFMe+XyM28jq6n3DMcjtVrL27JosfWNDdCnbsTI2d0QZNXPXjyUUUvIiwzNdOwBqUpjJLPxdkWuo+lIc3nRTuLSdcNbsY4kqTZ9dDfQljnAjRP25baN4PMjLXwSUgPaLHSKg68MZ9Ef3nZRzlboZgevQL3wVbU3zg26f18YFrMAtie0qXI4gh2+GY7zrvDhlU67kKEvIQfvTieOHuYh+9xIJEcHTSEMgCofO2aYqiTk1NLXf7rWIzRAyyZw7Rd/UY2ZNo6J74w2erIHUoFmUByhFVtHC+TWzFFgzTVN64bocbDJYowdabbG9q5lfjpUam2uvKJ1wdmJFJAttesS1puMa/9m40SpxTAiEFwrPc9P5mmOPGahurUssOYFjTZJkU9qZeXA+CxXvm1F6mbrmPILzUJ5HJZc0Fq80QY/DAQ9CDzPCfaPgXyyfTc3qBT/+qZ6hHnuFx3BTvhGGsad/ven5hzK2yc+tZoW8VkkqCac7nuX0bn+Up+YwXLaUqiwTKK2cncFlHtWRK7mkuOydReTj4MI7CsavMB5O+uYB5IPkEp2BYn0trwJ6P4nb0wa0KtyXkixBdMPPQYuGXmLa5DZqH7HL60MFINzP9O/6QCh5jHTp70lT1CXzcNgwduCTafato45DIFZlUmoUmCafGdf5dZIbDCmHFfIBdr9OQY9Rh45Q1gO6dabxyfOyeKIqiqurjhiXlqFWDT3GbBAal6HyDvi/hjmFSNZnhkMlkqQcktcQUzf4f6T0N8kQdkKz5cqBQ4zlsFF7Kk2f7L/IwRqhFmpDkDlRHeUfXhD5YXQ+iaqb6/NFDiO6UUxCoE/XYgzenaQI+V41vRYdxJ/uUsI2K2NKVn2IWZ4GaGBYtcp6FND6s3yUBT1/rUZd4DoL8iiSC7CNsWf5QNj6qKs93urqypXbnDT2nLgCFvImKabI5PiBvXC/GMgYPJcMHZ6rVOOG9KOW80B2atCxlUu8inKxtR+3yktGVx7s7u+jelqfWtQse1dbbAOk6CHOCY9tZSNNqU2z9njME9KWAoTwzEbTmq8n7D5v7L1NV8sRBSeF50jPtcp7mUds57IIsawaeOC7t9mlylI2kYHCy7pQiK+RCEGgDJKvq7+GMgv6tgz4S9YLX8niGvaHC6ZKU+0ozhUWa419IPBxKT8fmA1+F3nMOvuctgTMqL+tfj7olIMDISwwYZgSPxFh5XzUuVodrXfpakwh7MvYQi7Nq6IRETVP11JchKbYo+NMo3qk+zZBLji5/U5Xu7Sch+5BVxfzJmNmW9F1vH1WpR2D3QGQ+urPdGmRjKY/IWYhDRa10/n5Extd3XFCoRbH25R6qic0czqpCUcceUMEqZbCVL7/wgQabVkb9f17TO4EiZTLi8B+o5Swtj1iLBLoZ0EEqIlCI+n53XG6eAgVa121OVWaIKJqofwqKk6Y+QsFcIMgKqzPA21cfcov4g4ft+Ulq0vM/q5DCSBsoi1I+vSNaPjWVLi3EgKs/yg5X4oN3DAZSWhXy6f8pjWJVZ7eCVHddpHgEoaxwCSZ6QC7GvDoNoLs455kec8PiGUcyZxuFjQ3MO7nZ8FKWaODPjCZ3cJlWTDIzA38z7qGUdg9iag0f+V3tGK+RJqkKAMXjy3Tmy+q4y0pjcPs7NlAX4QwwovOO1RqrEg6/MlINZzRZ9tbhGuI4xfX9ZewqJNxOyILWFCKMHo72wZSI0hSsNHHwFd1Yds6d/Az8uChe+V2VeZw8qDc94oFgbxpmmscIIlaLG8SXKgBL+RmWKroze5n/joQZdYRaL52E/n1Ziw7zxTA3CLP83uBjmP5jsRo5B+jtcHdIMNAHdd5yR5/vJ6OR0ZbcUcdoMOVElOIF9rCyyd6aQQOEqsWrfT4T8ZmOj9xIWdEXdUp5Oo6W40zP00J4ZChUcmD61ZANZQQ8OPVfs5Xwa7U0nD4nWTC9MRKul69fLskqABcEcOIW0g0wZt2VYCGDSyW1r264ssyUYn1nNu51DIL9BHp/T2496gHRFDAds79AR4yjTIEYY87NJy2+JsU0uNgTOYNqhiOXsCFvZ7BH8awsn9MoVT0iwLoFtM0IrlygXhO8SXAz6DUoWie+OQPTxqCc84bGqX4EE5N/i02LL45Ug26D86DdCSHpGEHPEmehH1qgCiczS3iUE00h/OcJIIS06scZTBwTDykJrNBdzSyxY23jDCF3JWN89WYMEDwDLTlPdbfOcUaofLIeBXVOIi/FMWtO0N/atwGlFKC9lNGN6BlFtCm5QYynyUoKfN70qzLIpBZSnuNnHHJh+nVuYvv3cRr5z3pFh+UGGpxhQrYUmohDmokSj/OJFj9TGInKR9hWascFfgBfqL7qULikVmy2xR2riEKV6C8ixB1i4ppoNhSXeJm9E9beshuEtizAfP755Gb9qzH/WhQp60vHxs9qn7rxXsvAX5yacHFG78FSt0F8dQEW02MCBddRwA0Ew+e0PnAUkYEzaQgiEdxlvFRFK0cKy94OndErVl5OC/NK1ch3RJlxxnLYEZxarwRsSj7bwuxpT+85pjbyWE7o0+KlA0oppwEF7Z29XakNh2U2Osp0tTsh13z4nPfKYXs8OnRGf1Cf0W9sUbY/+5pV+VUNWkPd9Dxj+rUduSr6P5h3DcbOhuKLErpfvBcWpJktP50PRSFZQo9eyR5vZVhIOuHA0OQ1gz9rkvevTc8AUWd5FNF9/X3VyoO37qczwdvnc2PUcbExXboWE3B0OvUUAP28KLp0dErauM4UwdV0mgqxvXMxDjb2TSJ6D9tA8xHV4yk/ilfVGJFAiGZFDgasJW5Gm+IIhZyOVNGSngwoXJWV+S9eEzi4Oo6S79YmXa87FAt/+xxu7/xl987l5WymCSuiBlK8FggcYuKjMI67jVoEzAsHqXynLSxg0ckYvxZgcrKRfbgIN/cRbMbJeezLTCMhAZFxo7rG2cFCU1B9+1POB1Y9twCYHKYDd5Pbx5PNR3q40MsDgagXl6JVKANN6XgMklH/CJoBhITLu7E7Q/YYwVUbEVmUb8WJgP0lc/l/7CmdJ3kh+s2+Yt5PZKsuGu3/cijttpphkH4EQV4MFVbIKIcJKnJWdW1fLZdHx5pVhv/3VOtGWAOGmY+8amOK3WR8gwT4d9oIMdITOU61pbp6FjqjQeptpQg4w9i2A0XDhdy9EmCZwsDBe/C0tqzYV/Kd4B8w1aEAX0BTg2O8IdEngJ5ocwc9ahhpdR5ducrUDkJ6I/FCDPxqQ5yWnflW4pRlCA4xHcxeAfqXEIg1HXKAyPlM/mS6dh0+HWkwFg5vhyy/rzBC9r9+47RWyRneOGDhobBMdRxz4iDViAwj8+cf+xWaF6o0CbB3l0towRtNcvFfnM28pZNTll2D8/wa3DLJNV5+2IWyBrKlcYvKOwrZsIMZsuJxjQl2RHKsy2VCkMZ9q4fvVL9dhUkPRpi9SoPACOFh7TFHERc3LiRuSR1P36lz+sWcE7vOsKDJrSd+d9Rd1UWezxbRsqec5rhe8dqhuFkyra01Lm0DjNj0olSsp4Rp0GPBNjD3Kfi+yI+vJUOpu6O8m0KgX5H6NsF4PsLWT7Kva1LyCYS9nuKOQUlcwP0AJiwxqjrCY+eEM5Kr6f7SZVVovJMThIFzQuzoL8UaEsNNUByY+qRIV6mgKyy7vReECKGnAxSFkqsmfm6sCHuIaxHeLsV1Rh5+kqEkKXUKtmabsNV/I+z7vt3ICVYjTT/ZBwyv+kWklQ0CV4EHORO3Vol1CuuiFl6EKrwxn4hg+G1gyQ7In5UEWFtiKTmdPCCqlxFtjCMX1kY6qFz5eSTd/60La8BoMAwCc/7Wq4mkXR5ZHAVb3kMQ4B90d/27M7lG/TmMsdlAFrDLhxg5p2qZbSPFRGNBT23SH1OZfSmLT4iSDfftW/0+IEWQPiAvTBt8Wpnn2gP7yX9yXU2mRhepiLWaSSDWeGrgvGu8HDxOWPTFDHDgpTMc08664OlUx2v5E5SNhPK0J25r91J3b/gFxvZ2CpIPqBwLWidCMvIESFT/66EFuiNNx2MfVqbHQXxwh2/oMEe1HzyNkcsE4Nhzxods3UUO0ml86tZaQfPb7IiweDZufufdok4rYWbj88It3dX1cByqaKnK6moBwNVHA/CHWJcMkIBV/yfZhQYXXVNcxNrDlGpNVy1Sbyv/ATPuvbDaME9F0URD0fWg2FP7+qoy3+XnGdhvGfaqqZhjpz/BcTq4FwHhrLYk1dOeOfsxtS9XBnzGDq7w7KNwhtghIMie5972BwxMmvtGasbjYb5jVRP/bLfk8ojYbKV5J0qVG7vzkUyFu5lw2Kx4JcbyreXZYcfh2vtnPXJThHjPag083nWNLUSoLGxQyzFQGcBbSoay994GQyRfqeyK6z0qYpy/zkeW8C6LmEPWvRl+Klpvp+7J9f9v5gJkwmvMNJ7rn0MnFLWwR4Taobf92XGzNoizEO3fK4IfBWyiEgxB3/JRE/e1CIdhm+KA1vkecM4QJXi159jxauD0gm4VEMlGo592AWEOkB2waJqvY9THwsVvxSxFg/ftt9IcA4ZPu1NXfPcJw3F2QQcnxVIFOTvJGjrtIh9TkycLNf30AE1ymqAuhxe4zIXtypzjdQCtFN8srT6dfTJwmrjtieilJ6Fls8Ui9AeGyjWMS4dDGznLtBO7Vh1RWJzPBQUf4iADVFkF/ejT4Aryt7i3LpDMm5BjEjA+bX912EVy2P/xAZVBU0H8DV3Fvt4K97ls5Kd400ycTZd4ZCJDrF47rl5ZwBMuJCH0W4UehCxVRvznp+E4QFyOzWhPPWQ/KFzxm6DoxzI9GnrRF3bJVfMIFVHymUStqMbdDyXumijMTEE+4Ms6xtFaU9olhZhJmlpwChmvQGR8aQHLlDP7imHeJtVryDhkTBlhk6L8HAOBBCukv2TRiCNC3oA944yUZ+h1GSYhhYhNuIWkIsngLdSmDyQXX11B63FRtslN/WkT6nK6vg5LcpEhn9yQsYM5mbusv9CtLtWiabHtQOVvXhWFGbpvLMVrsxRj6E50zOlz+tyzj1y8jlFxpOuiWr/j9gpwJHa08hMVd67PLXZC36PBUH4rEz3Pzc73TUPrAwnPBNKLoWkOw5b9NRZNkGVJJu7QlUiRwghuRdeuUA3NYtUByiYhZDaDNZZjboSxgXPrj6KU0a6skAc5tPKUegkKhJDo7lnjOvVVCmQWdzLVwCocXNr7ML9hRivxZBXNHsiNfiplyIMWLLqz968D+uoXPTTJbW3H4BlFs/HHof+BIXlzRM5qnlBYSv5NwqCEwApthxraLIYryXAXM1XcYr+KfAuaqwnlt1AE+X2NIB2HcFA4yjnZdqiuUuwA7rcnyy9YQ++bL3aXykixGWho2By9HsXbUBF2TCg+jxnUm7ULSyCOZFo1ZqDCb3IsqaItx3SdXFW/RdBr70zHsHibTTVYKQlB8m7TJmnIKLSnzibqYT1DpvPZve6oJ097SE5GoiiKexxwBjhV3Wk2haGowJN36zEgWKTJXF0+zTBSnpcI7bEHledbva/sGMALquavKE/Ato1P8lSecdlxOIlts5VGSdf33IayEtn8hwxXrxICV8D4W3bOTqp6eSrguRlN2wHAMkZ5at63H6myShf5VA/wkPVHppkCSzNglJOdfi/mDyfda3RnnlL8swtFGNA2VBQ8aXvglrw4ZRTSmUkHzScNYPNQ7MgYriLdKgFsCSFsLtqCkJlrTrjBAaeErFnyjHy4qT6LgNOfy8ZQgmdl3NIy75vW3YLs+ajh5a1YzAn0vmSL4vJFuKMrjgdOYd3IwKhB30m1yhChzUrVyCiLPlQipmQIo23KrprFtno16BLindIacS17lGZajSp+n7CPfZJPHI3nhci16zIzMuoS/JooSyDy9ZurdoOI17GRebi1tl01PmqTMvglJAIA0Oa1Vl56/XYBQDULegRKAB/it60yIIX9cMO20IZxmf/bJfXA50/LOO152Y923BbqToNoVWJnYaOREFmetVtbKcPTILVvznPwbBEWGOvQGoc2LxHGGQcRTYBoq0ianIaTS3lWsmtOZGliQ7pFho8f6Yl4/AbaRRejqm+VeD3x5zyL9yVQuZiSG0NlN9HOZ1EeWwcDjmJHJbdySlmPU2SSu8E8TlyzLoPtwWtVs/rNp1+wXKhHp/yfYMupXT760u0VgDHZ3PPd+rM3EQTXvktERUlhl55s1VX3IDNy7NlvwiGi29JN9Z9Rtvd6mkmMhvp2KJoSW15Nh21VQl4hlhN0LBN/g5sCq/gEio1VFNIi19/XweegBq9qNkBNaRhjBrZlqgysBq81b4RAWt6AQddh/vK0TEKSeSJxLcig+Y7iS71hZAlw+UqzxK3AVjf2A520SBBs5nM7mMKehI2tpUzRJn0VwRjS4XS5EBfhkOLI80z6gBsVTifOKlkbMi87fakJ2xi/LSjZgLl0SldlhLI+cU4huPtchtcWJjEDmjMpJ2FykOoJf+pbL+MeW9AR7RfyOF5eub+k9zvgZvCqxSaF4sU48cRzx7tSiDZ7LSVpc4rQTIEqWP5Zdkyr+7pVPhrWrYioB6/l3Y3+dFyNiapc4bMzoyP/HftCSqdFYMrWxdf2O9M8lxylglPLIe7FNmgx6NXo1KJ37n8EF8yH++9cIbjF1GKeYAg0KS1sOXXlqV1inMyQFrNojfA8fWrgP6BqrfJ2P8azu2USv1yHEuP1OcI0Ja7y8FZBx13J6TgWBrRgnSb5CGDSxcavl2PNq/BFseW7xIetig6NpUL/k6gP9vhCeAU6k+LKKXd2aw/Zf9WTI3zBiUJJ7zpedcTaDEJpR46Mw7tPFwchHz9zJo4vC0Qdn/jv/z4Q/hPMA+GEr1U9PAv1EYsY3dfO5VQNp7txCVMRKyhXvk9OhRkjaUXbWsjjj/od1o0mTi03HEr0YM0OtYb1nqzTVnD4+xolhXH8sqo46kifHqMjXi9VpexG+NXsBwKswP/qBtYR88kDcTYyZN8XjCZCsSJKcLbl2r1bzl51Lh4itgFr2QgpNWdPTIe+rhEOf3jA41H8cl/sq7OJCFGx81TE76WmINaNtXLHO8X72o9Ey8FohKot8FU9RojVCJwBo7N5CPf703ZYmRP5b6jGIkvHGJeYjE5HBx9L81+DJeI4nqVSqOd+6eS+/0QUKbTvk4a5sJpCNEIVYcOFspc883nvlzcIm5tNCazZXp4MOidD4xQaYySlvsBTxG7p1Diwse28APMKWdKzsUhBMlUSY1O/uKkd9HeGCo9Ux42suYixuvX5TnFdeExLlMNlffl9mquXuxXH8PAVUrHKijIDNuT/fUHow4sjBkYrd8EK98/ba7yHnjma2ZLZrC4vb7cbIooVWwTzfKpHlm4QC4J8M3rJgtO1LFeJh4PW/7vRdRR55MoFw5M46LZAsi2yLXOPPR+30VsKFY58Z3Gj+fmujuAmJhNQ/MaPeerE/DLRR91Mmgb+lziVvgPIHQjgQttRVrQaK6RWI2BaQ1EKrNBhs2U+GjLtrCCWRCbc03+vNn+EJEFuSYvYwPVYX01ThoJ/Ypjs/+ZX0YNnXRVj9By0uQ/u7W9lFMnyY4hXxHYevEl41QhlGgPP+5n3f2o3XcQedwLQ3LkMRa3PrhRMPIu9T4s/EMCdgNpCr5mma8Wp5TNpfSMUtGqrbmKSMLHeY/PwaBQqkdLaHmeUGTEO9bzWPhdtkEN0XJ/zUcg2wOB0O8omfrv0QLwhlDOBiEDKEHURn7JdNXJFnPkCUPpurBiZAPTkJEVdKZfc9BrhLJhlWEYfkIF7h0nPbydnm5Xj9nhPoFYxVgRNtSmJpBiBAUkTjAm747QoTa3RIJHME7A/K5Ygcm03txqAz1X7q2v9Okj1WjUi13VPoZbBftiTsF0ORBt9JiTKPDHU/muUPVj1kaLyBv67tAqSKfKsnuzoVXeLxp3ZiaCMPrJNEXvr1hBjtjWIpVV2466/FJcO2uwKl95pqDSpr4ex1226yQ3tx7pBz5W/2ZWso9UTuxLLIu3fFUBwa2pUIJ05UM7q1gvPJBBlctLAmzUS8OG5J8brzeAjH+WOgApCF+uxYHiJ7NRIJBz27HR7bFI31iTwULOpFLan4i7e2rmEfWYEl+6fJpqD1NjEnJrehlcfOtUfbxxAO8lBB4FlQBbI3hem59VaugRWg4QE6iB0rrELWH3SCt3nd1bigZrVQxfbaux+Vs+94hxuRowINscQOYZ4/1aFeLnPe+BviV1kp7JXJsdBGivrBatATnnLv7KCgXBUpztOv6KISv1Z3MzpqRrn/g0Hows50oIORqR5BN/HbnN0TinIpGcAaLfiQaZe6L+kjMl8CD3vNoZ5kTNDMQ6ia0WDADawmFL2V+c/SnXRFkbw9loyOKj32RakaOOfNoyT7ZX4hkSJOlUJLuwDpfbsFNX3E/vL0m8JeYmugSREuXJLuTetgd5VB2HKDGZzr+hEQt3X4k69ydiFIqKgyPh5K00cA0WlH7x/U6l1BgcoUXmm6n5B69eQ/hX66bBzMYqMl5UfSm6YOwEg2g3dc8exLFG/rc3AEYwEs90he0v276hkNKxcZ0WoJQQKkq8gZytEQayGKaBcXRtoHdbmcGaSS31E17G+vz13WV0zCiZY0IVZI5c/5BUnNCpOh68XfnLRmfE2WgZHVcOxL+4Ks8O0yDYCfV9QyP1NL2q302j1JaqGTMsrtqbR3cWgyZTUozxpsokipYlerQnV1iOAMou4isJ5ICjL6ZkCxB2keCFmWWfX+YII4BRU73zE4QxmfXser7jEc5/f0g1llRY14UgnVqnNf5AD+KHQ2JDrbJ3a9MOiQzmxk2Yv4LQTtF3tP5uGJg1ojNewqHwGXfIVIR9HDVCwNWom+qPnTb8VMXz+U1G2CW7+SBZZvi2jxZpAkw+chymU0wOq1JGMGYrFGo242u9e9ECxmlvKURATVWYnHh/hfRLHdnP2wO1wI51D4WM/dhjlgZONeDzWRvncW39kdvDkcNeQtLNn/7f8gyEs388WFNYbHexAFsM9ZF52Mbr348rV4R8R1xaUYelfQZB2kiEm0dY3Xm5A3cZ3f5fNrDmFlloAHKZ8Yw5WLW+zROHQ+ts4I5/On+1T8HsrrtLJEYO3CUFWaIGbBxK7pQDdRZoPOXQ/cvCdgOpzuNfJU4a2WYAuKQNR1NCtJBmt9430x4KfMpYhfG5mSM5sfKodv0Md0IeK4h44D47qqaqecwwpsg2rvAwcI7tcYL0ITWkuGau+3pw6pMj6gEWAgTkxtQlIgzZGmfBpNBoBTZAkCJsDH9d8RfwQN8vugvahEYx3xFrUkcShmp2oAao1gqWL0T86x6E+LgEq7cUtg7RhrFOfBdN4JVNeEeoEjSb4lFwscsTNhvAHLIKA8jd5nhfmWyFhv0YaPD+Dp6ptdMyTYLL56NP99ItCm7zJnUuE8slfmVfJv72bO4IA16dPnka3JjJjcXamtst/lOBhz9lkljx+1FUE1UITybRRjvazdxYu2DDLO0ioghTldyX0oYQzQBEzDSWDwxVytCBl6jyjxUyc+MeHZXK4LBzFj5VxQpQo71RJtZDj31Ggq8Dl2ciMwoMjlNVY+VKzufJ7RFJMVtDgykFAnuk5tx3tsljvJN1GFQUYUBDsHD4W6sSLdvaks1/qnX4PEUZSYhqgAA4dDC3D5p1UDvM5fPI9VVs96KEGiAXaKqfr4aadgfV4IRbDPgs/TW/bHrF1aifwFtzepjWIz8BVh0xREKvfHk/6Nie9zFjLolgwpKXyEJgageMOKoga941akAjNH3lja2UV3REVVU3TK1NFUbKpkEibn9bgwOD/WgSAvpdNWXOvUL4TIsUu5pSh0ylY28sk6J42qvNZZ4iBm+Bz49k+3IMGJeOQvxLeIJMLd0RomPOx64CSRbgCW6KzBBamDgF5+avenpETMOB/1evBnpG77jcWImcvhuYOAyF8HdP0MvyN3fhsx2B0/M/n7AKgT21zxaQW3/HjZGBqodjhsA==
Variant 2
DifficultyLevel
509
Question
Point B is translated left 4 units.
What are the new coordinates of B?
Worked Solution
Q has coordinates ( 3 , − 2 )
When translated 4 left, the x-value decreases by 4 and the
y-value stays the same.
∴ New coordinates are ( 3 − 4 , − 2) = ( − 1 , − 2 ).
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Point $B$ is translated left 4 units.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2023/08/Algebra-NAP_20333v2.svg 300 indent2 vpad
What are the new coordinates of $B$?
|
workedSolution | $Q$ has coordinates ( 3 , $-$ 2 )
When translated 4 left, the $\large x$-value decreases by 4 and the
$\large y$-value stays the same.
$\therefore$ New coordinates are ( 3 $-$ 4 , $-$ 2) = {{{correctAnswer}}}. |
correctAnswer | |
Answers
U2FsdGVkX1+btf/9v+/nV1v2LsrvlwecOTas9MtHy6qNT/4oYYHjW+Nhc4+EAryCCDYHjbZybv3+jPtxG3LKSPYYj/MJcThzuenlMtWOJ+1tnDGgMQ8TYuJbemO4pgaB9HHjEBGOdCRv3N0lDESUCF0525NKYb/k7tyX/68JISXQhqqE8HuQnt+BIVtClZ4TQNKag6k8YOJWZK04q/DL6k2t71viGoGn8WALl0IxIoswpLSYaRsXJt8L46bwx5YcvfCkZ2i9Pzi74ov9cLiHAu6wmc1sCYBTXdrosyuO3z5s2SQZOtM7+4nk/NzX1jOH1C62Kny4OeNquYJHghxyAJw361Riqb06XwI3E1m9Rc+iKgpQ7qJaKg+afyEymiZhH4M/LfY8yLMKDBQ34/DG1tyoEuGyD0LjVZu+Q4yEgsfa4TTACtfdGoV5M/VJOv790otkM1LRU1x/QLi0TqFGcSxRT7gf5Qo93s07eFDncY7X480p7b4FtmHojXlaJ41IKSWRZfZat7Fk6R/sR+HOgiKQxUN73hjA/K/ELcEw3iN8jEJCdJ4K1k7uJyoUPo3Z+IjL42QOS6BcrDE2lQNLv8p3PsWuKCbxb9aJIf2EB4pQS07lYLPwIv0eoYgA+oZA1ZQcb2jMGpKEky97TVXIfNAJ3XN9K8k17a0q8GpzQk2RwFy/S1AusZaa4kuwQnfhbJwCa6X+176h9Mn2FDP151Plm32KUPU0zfawRYzrAvNdh6cWHUrFoGReoF1FfeOEroEXdZEGmL4zNTwwF6RD4Ba5J7voDaDbfHob/Jq/0JOBQLNzDzv1wMulnFy4p5/gykNMOr9QGO0vaVqd52QGWjSDpgGrt2EJUHdDrJR61ptRG+Ld9KO41LjGtIbInHpVtdF5NyrWTxTMCGDYYxhB8uWEIbxfakgSTB5+DbwPpFUGnOJwXV9clxmkuUbIbg1ZSQ7b4OeEUDRYm/wMXgu/Ngrnz6IkqfaCmlNzznThym+UXb1bMNzspCrqIHq3JrzowyQwfP9AADtLfJYh2jHDhyirtS0wYP4BLYKsdRUmFO6+3E5yhvMYd8BvUOwa1zhZ4c8EYMR5JMaRCZV35E1YtkKajYXYVJCGvIp+2n7snh944R4WwGvDGPM1TcJZA9DtZFhiouSYJ/1VANjsRBm8EVO8huuNoJh/Z4hIBD01ExR3SRcDaWijjDWI4341jXh6PZqAtHFFCk8sk9nYdKuL0j400hEqiq7XSwkdWJ4vA/2OAtKpbSD7nQptD/MXGZ25AHxuE/fpZBxf2yAOG4Jj+Ts0hsV6mANP4KnolWRq+oPBbo0V318HUTb8D1HDv/bYVkgZR/oXlP+yxJmGhGv/ltc8C3cFBdLJFdZFEUUXYkGZr9HyIAxOgvkG0Ql/OzUxUdQCGKp/tEqmiohvB0VDAnQJhBO4+MI2itp47A5D6EKYKJmEAUG9rbAJJNaHqQSK1oYPuB04Wt6HRVy7eim/5bxV5cwOGhqiI6Ej0ivTaBB2a9rA7cdwT2dVTUgANbLfif6BfxRXCYE7Hn4vA3yi+E0T9XnEzkWB6H9tdZbZ3xq8hCTopuwMXlugXOCWVgaHPHp8q4iDNB1eD44M8XEzKXqukL41tQaDmJ9oTfkoZcKU6kXv5C8QFTJlBa3pda5wxYYp6dgQ4Jdkqhke0tkm9fGB1cIPaOA2z8jEEnw4/LAm7kIN5tmujAkqdMa8Bw64QYh61jTGOXnhYnmgRgZ1L6/JebYkVGeT08L0fPYu4tiKxgRNoOKp0C5mCsZo5nU8kt2kKfdJXMwDrgmP+fpZESLhZFatGFzRzdH8KG0ezZTgt/2hGzvA3JJEolwZSlvOxlI1Oz50IHmhW9aoNAwIa5aIWFx5Ay0NqdRk7dryX//44tYlTuhb5DBH/+tMZh+XY3S9V0TZ83D2mJB7ONyoUDHPk5L/lD2/Yf9VlypnsmffB1VQpmHjYgc83vf3vQ9NUmGMN4eAcpNb4T/cNFMHt8aZ3b6z+8dUTapDtz1kXobsOZpHP40i6orDZn9AoaadwlnEiI0jIbuR68X5conp+IyKsXSS8cswlABvj28zc9UbtyyemMgR5mHVP5FiBxwtHDMw3inPi/Coh89mGTgx3zSX77GHinwXHu1tVmrqpcvibjCiqUHPIb6uDmuj4RsNGtwe+44ilnRvXjppnEdggvJyenHtW2QActUKoeKgzq0UvUTYrSZGQa9b0otoG1gJQ7s5O3K7p6foSpW3kH7nOf6c8ddAJdaDHKpoYH3w/flixOJ2mef2+iDN86QJA3g2f+sTFPXJ/H3CdZux5aL0lHwnKrTMIu7mA7trcP6eX64Ry8Ksob3NGYL2kiDeRcU0F05RBfD8BWhLKTk5XmKO6HElT1ASzo3dwI2B+dvW3ocVVbLCLLwWrD4T/WQTn3jPqCAQBquJnxFEc2i+LGKxHYR1krMlFI6l5v+8XJMnuII/BFKKgrmy4EQvJU5ckDoXQSU0Bx/jf8xUeV6eZUc8IcdcdAkUDZN+8dsBX8YqdXyoK8uTZzbMCxuuDpKbATXvM0iBF5NkHAvgBNvM21GRcU5EEf74dXYBRANDEkrlkshJfFMTjmHAcEG0Fmi73v7YpkEDxE+FB5CelsPMcYWN+PDKtnxnOTeg3/eEvWRdnh9Mxsabq9Bz2LuLg5OnidCBpYtw85YOeqf9/jz2b/6qw7oy38TS7PXTHCI5KB4Lap0PhYuYj8Nthk0+5+iSoWVAN5lS5iX59pXi6ECe8r/b+2QJxwi5yuVgJyHLYPIosHVmN6hHbPX0AueEp308a7kyrSzR3m/xekv7sOxXJDnSnXz7XBHPUyhiOp39Wy39cxNc/XWoMkOlA07RmOCTugBwZntOeukbedFTxlTuHIfWCPr6nD5HrFKUo+KN2wYfnZY+5w3CTtM3ap6wnmYOB5JfsyAxOmUNtDPX+Surpou6wPRKxH3M0u2su5XQ/7YE7QFQSNjF0xa+zB32F1q+sbRUcLYHNTWWJFjF2hdHHgVKWtIdXFuLd9fnxeGoiOR7u3VbX2DwS6qKW4oz8QVnSbhJ8DmEU4Lq8+oKMflWz3D411b0TWZ6wa9AElawh1PwzqZRrNwFzXpNMS5oyQ9BwCOVwp7/MOzM16dkd/uQYg98ccmINMHBTawvla5fRUCE0/FTjQM34OP2nKHff5KnNYXtmXC4d71YGPbCmP03RkZBuv0I86PnGgDgLVIZP3u1NMWO4J8MjEU8O+f9g6S4Ifjq6zT4S6pK0xuntMgulQ/cXQ5lXFiB39JesSlyaXHtIvbZXBKZY27Ua5cv9MAoUvXVka5cQHht5MIUMAgupsvrrS+Sccc3oAcb5+KGWVud+oUV7QdeUehR3T8PlEL8UkSLxrKP/NKrE80VxAUpHB6z8kg9hhuUKcR/12aHzwjQ4o/CmSwvQp5SoPCVGD3flZTgrECtmh44WXfEVb3wlpcfx/dkEorAdNNEzmCLy8UolZGeuwZMjMfNP/UkOS2f8Rg7/u4nQ7I/0havVWAZJrEf2ytb1uC8/yeZ/YSDjUbSYsA0opj3OyZqx/CmywY1D6b8j1+tzeFXvf9/elIEb+EWFzlgOQt0qz5UMVokqWZ5JjjiDvTFeeCNgJBz74r2kB3OPs2K+oxRPb+YiX+MAAOUZWd5DJWIS7kOovk3lxd+F/xv1m5OjXNO5csGStb9z0LxbaKT97WkHt3tZe/uvLwZ5+rHMnCaUcoYbmH/WBMOiQ45s6heIE22gCiD9UHPuIp3WyyaPl95wEuqlBSmMZQZwQ4Ke+H4+5TymI6Wyoyg99LSrz9WrXRDhv0FOEJ4jDKPnv/ggwgJivxZvwGb+n0xoa4AZZMi4yfBzeFTU3tQUxD+k7P9YK3NFUa70pUQ6CoEwyxRmOjpyh8R5aY5HeMHpmc7NxzFp68rmJ9PY9zwffcdrShU9dfD6fCU9Qxlw8AQjErKkJkAz1WJt9ZjhLtPkKUbT+oYnvENkeGoa8x3+z1XXB3vZX1CvhJI6I2TO+QwG7SKNk+9uYU6AUJfXFkzYNDF4WrgBepgRx73vhuGoFgLnFLYd5+Rm68Glz7L5CkytoXxKPEidLZv/j6YJO2oIx4vNtOubIQM0Vc/LRpbDGB1aHZWwAlwCSagyEGLiuu5uhzur7s1VuesPqn0EsMWtXAJI7P71OJ01qsKOy95iPOjcIcbJYRgJiJaeP4ofCkLvjFZeBSNw2mZamOOrzi1FbrcbWVvbQrYVHIC5md5kgaECyB207wOIcFSAZB0Rw9lpOtEFsiiI8sQ9IFgTJ8IiQdM5mb5AsyXI6ogsFlOsyctV2knYajcZr8+o6WFIgzg59gzuawLcLx/spiIpIrZVa8MGS0YBWv0SgLxcZxt5W7HTGZGu0NOuapdkjvHHpMMABfLWVWdmTRHD5PfjdO/vynvonLwwCwDnK7JNRn1pOAecWwZc7kFvZLV5cZdIq0xV0fp9+gmy0sp496RYqlQFHqsz0TMaAK28hXCU7UPhPTvJOyKWsH5JQHAdEDFOqRmOJBsndW0Ta7Tlm7MLXzwAHaivIVtPVyjB6zlqo9XPnPtrGKpbXem92v63e4zWg5psbau3wgfxa02M/PHGO/fIaXO7R4vziAGewBoXKyRK57Mma86O1PgR2JLu+suKCoCLFhDXSIgC1YjBbUeT737H33hJ5eanqLgv/1EUlr5RXlILtGN6qqxsEI5w0kTy+IXWAJcjcmLxn9BBb42/5hvp1o9KRap5D9TMIyOJAgP/GCj4bjbwypy+WABDpRjuH39G5sr3TDhA3OADp3zRDs51VXuf8KSkqPG4yDSv3y+cmF1H4XcRWL2Al0704WOJ2CoqpglhYPQCffhnLxLzlE9hBSKq1lZ9xPFz988emgPXm+FMm5nvDEs3MMYz2J4LNCUDdkY6643EHUrBwQgkhKt+/iBCENElnwiMoayeJ7OPhIi7sPPp01JY/AMuZg4e2hdcrh/CbfszUVwYWHM2hV+JsWoqjB0JlQ3KEq3dRHX1nXPYrnnOYZXpXbUJoNartXvIcUSOjSW/E0ZFQzZmcbJiu36OvFJRlonkCCFzsu0i5eoWYmpuxRu3zuZ53GbA+ROABAIvMqWHuJ5rS0o+JX82n25NYOOyaEEtHyxTGN2SpLuR3ukNFt1Yhh2gjCJnW77GexoEhMbckh3hAbEBx7SNpwU2BY5yQ9LMBUtCXYJ3Lc8ExC3XCRCASZ+tB0+Jio/DT+iM3kjSI0CDawc1UvSw6AQlLv7zm1+JlfoZ1zwg2zTTEDTzFRfLDpKjxpsebWWDDHOG3Hl5VxgMsKIJHE1nU+hXCaH73NUA/qHPL3SeSPJtzOeRT8VUVa3heUAkuSuJ5Y/I0maypI8Y494yH1VfeUjXgZeehkR0W8uFaP4wX37Yg/Sc/rPV+0XrM/JHGi2kz//OvS1BcVyxBX3ZBABTFORat4QYiHb9r5DU294BJPFDEs1uXMcHrXF3SvzXg1lbLsfQyWkDWQLvMUy9bAWP2q3mgNcTDRsja0T3pjaQ8epcgvNGn7HOFBZFPVq4YpEZrdtfM0a5diW2eiW6OHTWnEez91QMSD88TeiUrT2WB/JQSqX2B4gr+0jFzrxa1sn1ebGMMtyj+JzUe2UucVNC9im5UzdVyrhyaMVGoZKuk7zVV/SFUh9Q0XODx6uu6bnS9B61l7T503Da28o+MIwkBDWNtfotDokO9879C6X5vlaE65aTBAIuoMa5/MD37FqvptZD0dMHdriEe/so/1pwihGY1syliuqDnzpJgwyu54vb/O0/odx5Xqqr+jecB6nXrHjwGud8Le7QrwrQgf8l7lwWvyo/3UzXYXTzPHYPdrRES/tZ2j5J1Y8elqf7vrgxie2ad9cHGOvWBaxyXSqEKwa3veEURa8Lkbt9SagH07gx+daag3G2NS1O8jVHCmXpQu7amBuNldavTHOxAbLkav8f2ADx2FyIK5utBzPd/hTjZb++wlbNmBtVQVMyoVnD150CiVeEVzURrkHbnXtSey68xJ5ho5rnG4Jz8LOdx+6qH0AGGK08jQUAC9+/YyHzVL9r3ow5/rSdWC26oEb5aORugKxzXLlU8c8XbUo+zoIWla4RXQMADXMIDV9R7WUCHjUsKSymfrb8YyUSMewnIk2ZtVG53Xx1FYpijgPu8PMWHIUOdixmOeWNPFOap4TCjGbYxg8vTgdcOJGuQJxriIZJkIhE+hHR/SzYuwU+dD+raKwI9m0SwF08Iav7K5cZpka7LmI+YS/t8s7E8xWFRkvRidcuU16dabTHU1UOcFhBNvB/LDsa9WVawcom1hMIBRh4dfM42VJ0Zcv73+vtBrYt/PKWld8Kp6SRtIZPP7RnV443dmRlvhQJ+41O5N1jsM+5qEyxUz8i6Xvu9e95O27g25bX+R18S1G7Xmqd9Pcyu56I64WszFJeugbLYexlv789rIWxvi1JkGQd18uFcSl3xyD7m+gGNXofTQaBUsAhRA3Oy2dW5EOaHCVzt3hmQn10YOahr/4JyQNeM9qf/+218XOuZEpbgTnguSoazF3ZmK6hNL6epP+N3Wuy355nXukK07L6VlbUc4N+t2hoLtKqxsX0Sfvk9eAheMO4ftzNI9LPptxVrOF7zVvqVsbeW1GeRZid069ZYqgZc9fNQ9Wi1Un4SYbM/4WTizREIPwXKQK7ds6h7G6bCGYCL7dFBm0FFQJolbuQc51GlJUa7ybISH5sW6KXp+4PIiD1Orh3TMoJyhZ6IW6C5ey+bYBF/eOb5Ki72MJ2IdQX/0rUKS/UaLI9J0lnSZpuNiboc+CahHTaVmus3W7se3T+9J2pNBmiSLciDUm6TYRP3nzcH3lo29H6wJHpvp/s78ya+m7Um8v4yXWU0LgRr8k8uYwKs4lKee9oc8Auhfx14F8B8sBvHTiNlp0rBThys9UnCchKyIZ1xJ78iEjsnGKJedMj9AgtRF3TAVvPkpSnoDKVF7mqrCLU9QqFg9UDG1dZr6HDnfElpAgX32dsBB3JeHWvlEQIrJ/mgbZdvbvqUI5Rmj4Ffm1UmU4G3O64oxH7eZAjYw9Gt30TKNVV6PghYwT3TKlcfu4D+r5O7hfhBuGTvbhL+yN7xLqsecem0H/m2IjuRo/RTVB39SYs05+MtwPlsahsMBf3MYrDU2hcWdJUki0hpiqbJdjjnlBveZwNRPwaJ5knpMqMa+BTTr47YSswGRoAIIQhqLQLAPamANrwWn8dSRao4Z35aIJI43h7Qv8/jfMe+gqN7ndslCVyMNs69JyUq7bIJwKquFYejhS5O2fzKPNP8jk2eq5HjUAfPvOMXDPE7aEFlQnBgfVhom4gcu71vG8Z4dXURIOWSDNXJOwhwuWtQv5tM0q5Aievq3zgwitUNPJx3wzXImPbCWmEYQV5ej2rF4pGUruafQS/Bjus6D1PTodYshwL+hdpzWv16LgDo8atUXlvrOSwRUULaSPyU7ZENMpsP7rYLze/WPQF3n0TMcjEo4x8XVhqsqZpLqbmqK5WB3tTCXlm+fcWij9qN0Hj1jXEiZo6h2IVCbd/Rr/+HFe+TR5zGS7XLL0aaC/KHfo93Ae9wR4I7IxrO8IYS1FMFR3JtVi7WEbl8c6gZh4OkvVEQGVBWHZE6lzXInRmBtn0znXqAal87Fea4LENraS73d/DX9Sx6F7jV7GQkWRfpqrZabLGFjUDbkAtecKyWyJ/mLFC5km+p16QTI0baGsfDWtfISfCYozearatcs21ORi/x/Bw3aE4aj/wdrt84uLL0TV7tDZZaMi/UyboIcihbXM8+SrSfACIaGvgBPIjrTxZSMQYo+ozoaEbHUe4YGRUp2xl1m1MxrQRDH2DOmSSDGxYQ/SaBtEKvnxb9q0dBNrRjGU9iTMrKqu01uCexJF9O3Au5GIlHVfJx3IdUj/zzjj+D5pTeqk3ae6tRVUNAQXSXUimUBdam9H3TsMyWVkJAfYB0jo2MK9jdH1t63reIV+mwjQk1lyKZAeF72H5C0x3V8ykOQMhYtPO9iA4i3rH8zYhiYfKpF0HEaS+FCpl46eetxZrDI/MSFTVizfwsHfdztQOzeQ2rSBwII666wAm029PmjDC2nxJXlVG+0lzRF+INx22EQHbfC9s1kb0nNpT3JaHLy1DZDgagd5SggvFAE9X8dI3sEdEu4Z1Dt2nLZZ7vR3BZkwdtlMZ2I4N3Y1YNN4NTg7Vsm34CQqwCW6fr8E7k4H7qjCkOBKOcigvk4h+2hZs7qBEWrgrLaFKMHMDhgOKuazpSB/5PdwtPDNdhIeQVXQd4VLb8/rK11cww6t2X4hZhUPqhiRRLCRsChQsHdvhB2lgJNSdDuDET7RKodTgDjk13zSOEME5R2P/20bPHi+vqyMC8oun8319MP3FRCjdY9GzUwdbe7/zJhhjyadPDIjz7q4L9y3DGH0wriFazlElVRJKjHhXiddKW+KbSud1WdAqZiZbB8AJhMFjNe6y3NI7mGy2QPM00ODZQVkBpf6veXrofCK6DQn1snpLbq9DCoK5v8NGE0Eo+nMO+aYJlZAP+rf5sTPlpXRlG9ILJGZdkONdcTNCMeJxY6oz3TMPs14uO3Y4F+QD87JGvWk5lGsWM5W1rVUUbVly2Mc1xTC0vBM43G51/gBt+fVJ0X2t/x0nBMdXN+8ZqYfxdGroRyuKyzwz3MUoEnokBXqhk/jSAyehPc0O9CadDHmT/79OrgrThjfMNkdK4K4CqQCSTS3+TLruKzGdNV9xAV7QKrYH1Vl9nw1Xn3Eajy9oM8DGBknwCqrq69bpNI67CNfLVAXvOpEDNzqYkAQEgIC1bNnxF7+Iz2q3cuORFmX/xyxzc1T92PY4qpz7RG5moQcD5c8h9kFi0x3BSKTCvXR8y1k72GL+2I+6L01ueNxm96ImsS08kufcKcc955gLHdY8nvw4wlfqg30HCLM23BcgvObzIOYlHjm8q63q7Yg1LXLAoUiMVtsUott5pjf2vitoQjTKwGb/cEiaiD+ByvrwCHEBLAACQMFNecBOz2ee4BNvBZn+Jt/jD7YvGpGtwCAlgkCnx7wfkQjoglh1oKd838K9wV7dBGurHvAVVl7yAwvAJY7j1DCPcES04DphNaKz4Ay+DnmXGFogMwUvSUC9drGcqKdnup/ve/CneBBjiqeK36EfTHPA4/yfox9dbGuYEVSpLSiA0rgLcb+z/TTAuiYHXvATCJkDRC4BkjrK4E18TDhfcYoI55wdtpF4Jk8fvC+SPtbtifL3PpfEitj0AG7uMILnmu7XsRU8SPjl4+EzXoHV7qN/0jxh5L0ajCRQqcczqE1/+W/Eh5/Lk2hz/ekgmb9CuUYcbGv84eqVwh/kmt4lnxMnsQyWi9xH1CwE3dCJjBo68dcGBgRqMpO1dgENN00n5vMFP/AMBSpQngpGV3ChXhh9q3rPq3RjyaUX+0opVcXBL9XJ9K8cftk1wg2GxDYmGCPLAGDjv8oneChvo3YohLxCrIvTm1gSV4SGuSy201TYKJVkwWV8Cl/CfvDcOhjl0zm3AMHIMwwJOGujQBhdn+YAvWk4U0hXmqti761sZlm2/WZEIojQfkHeNRpUBbp9Arz3DDMbaSR7RaZkjPQKHU6NTTVvmtvhTmkALakKBEn9+rYByargYqDPTKu8oKP+NUwqzAUmhYfBi4Rh2rG/cV/7HW6yxvSoolBNTbokyTsnpVAEkSC08Kt1vfT/CfbpZjj+DB3sq7rPsOXvXZ2JipxNG3tj/dve7AxQjd8TzRq3JaeEh6qAJzWrvmESmhp8Ltu+kJZf9CN9xpo+DnrMWAn8jPmnYi9t2GM8TT8Q1ACQyBCZPZ8jYDC8YBneVdF1x78Hb6e3JsMuYg5QLWdLMsbD90KTz2zxP78pZTh65+1QXAv2p+u70gXVkL2dRCvrjHLDvTTL5agDoylEolKkB3Yw07Scvuw0Ea+RrepgHEhXbawJwMRtfhafCnjrR1/F3vMiXDRX2oLcN1518WCvZz1YPhXWspbJKyQ/WYczCrWpYdJ7AtIEYjp8gRIFHFSUcNleFfKaMCy3PR1xQbZ/rrzDENFt8rX65P6/wbPJAMF5jd3zpmzlP04VH2otDJ41hryRb8SDdm2L2X8SBfjb7eks+eeyJXZwz+r0dL+M+FSGcxRT9XT+93Hj9sRAmYA0nzNA6s9n2aNTs53B3deQVT3fr/5quetVcSeBTSIgShyTdKUCpVe/eyWckZCjfLH95o1yf4cjERKYSKtZPb8xci4OD2ss5PSc5ZNl4tAbxgwIYDU+v8HS238iJMU+8+1Q9lHSyisPSb2LBkV6x+ZRwCr7nP/t+JxoGcEr1y55KUfj8xGm3ljPCI0Y/MGNzUlWc4+R7z4ciwIXJePp59Xis9EahcNQS/ZlrGciN/TJbTKq4p26Qv6PUYMktA6aznGK835+nQX7EV5v9CWm2XSUIVIqXGJu657Jp8X1Lp/QTwUr01rs4s8ra/Lx2gPJzkc7rDsMnNO28Hcoab7Eo5kYD766dNqecsoWSzY0cLz/l6i663RTBP9Ju/fFx/cuiUj/S8Z/MYan00pcytGoGtr3aZUVS6lPBesk2KOuJj7ffwijRZhidqJUzpnKv4G2xjgyrU0yOgchgamA0u60bKNj/buCMU3ZrXdx/ArhOAi/0DsOwg55vP04bQnXy1yDjxrCB6G1zX7OnATiawRhZEsrHqcRU5Plqifzb31oBil9dY5kP1DbcN5slioY3NKIuA0cYjLKnamxisVO2VKVdyEabAs4oJpVVURZojGCEQNgwxqtuVLESdMmgr7Zwv0gOStrI1Gv0XpO+m962ZX0t5k6zb/fiOo/mn8t3DrSXgU9w2hhjoGLdQ8UUu3sd5fN8utK0KDD0xbpsoRsXvAaga/7IbcjLbJPb1NsJfW7SaDZ4P2IChrTSQwYtHGZt7QSHVyandBEXCNHxvUcB0a5LXoLwn5S6csyrz0DKOrJUq/601wf1lQLrOoBHo20KheCFCO6ez2JY4LLSXB90CwSrlaFw6XhEgP+zKxoBXYEK/5y7k4CTYp+nfzF1skdYJzlCxaw6Q9J2KGnOp34KVCDobyOZRJA0wiCzmrXF1tBfgWmfO2GOo7gX+vEFWzyR+Y2QvGMGs6g8bCHGEVlu+NHrmpcCtB6NDoZBfYa/zHGHt5aM7aX+4pbZk/Vx0b6q/gpJXG4zQ1D43pGh6LwOaxnP8VdRaSGv21OR6i/IDJliF03U1pjSsFeR9zq2RpqWDTdCp1ul/7TFyO2xUcs/4q8C2C52nlW9uD53MLHMT+sAutQFN/g9GR0g6Q/7LOZ0TzHzGLgbeMdM1x9UWbml+Y5/djMUZhgLrDXeEzIWzUqwygoVv+P/6W/w7cy+5wI6FeKZhIUToVTTdelDtqdRcHBWHiczAV+nO1pbMjDDwMTLirL9fihpSul61AbYUcdqVd/scaMU5E4ilrrZUfbVPOZWAwI9iwG0432X6OvX47/W4RCl9c7VHxKuPHkm4QISR6WOOKgiZiiThOJjyrVyf2cUlz1xfSkHly/g9K3WsV8CiyZMsoLU2Rw8teqt+XZRHsjO2Kb9xHna3pvWbmcm87NzmvoFs=
Variant 3
DifficultyLevel
511
Question
Point A is translated up 5 units.
What are the new coordinates of A?
Worked Solution
A has coordinates (− 2, − 3 )
When translated 5 up, the x-value stays the same and the
y-value increases by 5.
∴ New coordinates are (− 2, − 3 + 5 ) = ( − 2 , 2 ).
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Point $A$ is translated up 5 units.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2023/08/Algebra-NAP_20333v3.svg 300 indent2 vpad
What are the new coordinates of $A$?
|
workedSolution | $A$ has coordinates ($-$ 2, $-$ 3 )
When translated 5 up, the $\large x$-value stays the same and the
$\large y$-value increases by 5.
$\therefore$ New coordinates are ($-$ 2, $-$ 3 + 5 ) = {{{correctAnswer}}}. |
correctAnswer | |
Answers
U2FsdGVkX18r6tT8D32aN7/3oB3lMEMhF2VQL+j4j8RUHMYC/9t5z+/LwxNUdpq3NYSJvDReYc7FHTGW6XtfkYgVDjIPnax9ZRWORIEcmMkf2Fl1fm+HZDcZ8zr5GK/wmYcifS29owwioSwHhUKf/lapTd2vZS3QrgehvclLE5tTldXSAgJRnaGz8Kfb7PrlPPk8joigVgXoeTtYmOhrDkinwmJC7fgAwki4KznH1Ydsibjq1bpl3i96qTDy0Ji8QlCjygzltaaChz0LTu75WznjMk3rCXbWTk2kM0vKIyd+/WkB0AgqxWA/KDIwZbZQ0weJx98XzyE2CawZH1YFookITT4VgV2KGWFWfm+nY+uMrUdRIhGx2+jQ7MLxP+zovGj8NCTP+14IFtDEcLgLiwNIrYyWNVR3x33Gw/Awcs2FPrRuxArvyg7LRxQ4BIYzLbcEjKngeesVzX3RV+0ssjYxB8bc7zeBJLCcReoROYumhcl5RUgkboWF8B//8uetcjtq7URMeWreQEH1bqaNbJsG/Q4gtJL7lNTMgi/5e3KqeClLifvCrqR4/ZdtTv3Y6Axk8AuogB7UtPF0AUaEm9u6AGNtnO71ymQD/L0AXfS4z7SHh/D+5HdLuZhSeGyC7reM0l2Ufsx5CalNei1bjmj4yX4DDvCZF7LUOX6piW/jv34duty3qSOmwgURRl/c6975qxFQ6Iq+LrFO8ZHnFM2J8dAITKyKpw+OabT5mAPCDla7Z+nSuYzrmueJWX/LwpN2T1l9rENFRq93O4GhNTeJj1n4LZtUX77OGHbU5EPTFCL0FNKsH/bnWacuwh0Y/CnqJQSf76POBxGDM1YbfHXBbga/hk4p9+j7yYJyHDGrFUa9o5fEqYCmEaXlxmq+4sai+y4BQsLGYj9y2LmaqUw8InNWXXh+VJusQB1RqrV8S41wvX/gqnd+hMbY+4hb/Xtcf9bcSKZn7lECRHJJqfv02Tn/k4o8K7lzONIE/jhaP2+dTY8QwSkpnQ4bt+Z800NpX6M8BDN4/2APDmDmoKOUUOK3gUICcIlVY7Xuk/BCNiZZvALKtW371KX3PemJvOXiZkgUF9Y4wXtFyUjmG859Nk+M5VMU5vDFZWmkm5Absm1Uk+sEt60N3Y3Ke6eb3oP5A1CeYA0D79MxRKtHMzmh7oJNjry9wxvr74iZV0Q0khUgxTiIsd/rFLxZE/g432FzKVqZxx8kS6biJOpY5u02Vf3WnLf2Agw8UpBMyQqOrqOXjL1H2EebxO8ZNpmtnZUtCoFdqSJEpw4gB5l4sy2XinOO72zHYCu/yiosGn+nq0E1ON3mNuRAmqh/OXWCNDLFFLyQis8mithPuVPfk1kpm9uWhPrrD6zAeDCuo8AdVqP3KBa6Dd1UNa68YKSP3f3Zk7L6R/zLyayf6JYQIfj03HPpJkh5vlEmwqQSeRlc/Dfoqqjn0BMFsYZhBBgT6bsDeWlhjc7x5HZz5TBc/CWlgpiYYXINrfAvT4jwNBFTtk+ffz9FYW1CgYUQrev7ebzrrvJGHpZtaeFt0le8DIkJlFcEAJxBrlOS/WwFfBC29fa/iBb05DcBmSfIg5OoRmrpZf7kE410P+xqoFnrn3YDOqoFEt8OIxIq+nD9e0ZpOMNtamhOTp2mkNITzd2OPvX8jEggNczraSCNWci77rMCtMnVme1iVvMoyqPPMlynRbspFH5Pp7gSgghePegH0Sv2FsA89oW1xfT9ZFuKxyRL0ZPLwYP+QDKD5gaAr6q9YRUQK1PzQpDPSHXbYsnLLySCbWb4dKtiNIM+Msqz1x8uJ1zqCm5qJzLlsxaPILw+yWRRupGwKYbCEbMtZ9jIYLM/jjD/VPgDGoLJrNBWnLOAYvltTI7Wou/xF9XzVxKe78OIVyhDPI4EM55nxlU5U34twN8hgG/H+NcajJj7ks88P2/wn7Eb3gl8sKLO+9Pf7X/NyUrHkAWfLEf2nrGjXaHgBr3qk0IW9fzrMovHJZUe/faVdLy1UcVr0Nhtw4WgDuvFVOVes4bea3YQHX17EVNxTdfV2HTMxD6nTiLuQEeEt55CaaEEUfwTERtJNTtu5GBvhoHcS2YrYcudSel7G/F3onkMur4Vwv+A9ZINLrRESbwp7Qd3yYf3FzCcO9/e3VdN1Yj9y0OgRozte4w7Y5xILUJUme85ObH/1LxS9UtQPh43lpwaGbN2dLJIlHsT/0qecGrPjC12RMkWbUcIdANyK0en7aPR3avhB0788WhiA5lyBgv7P4dU6tYUFVFV3GD4612da/F5hCcTeDZ8mpwuElx1IZa35lKxz5MtLmASOjR54QPK9DHle/ZHdC2rDxuVt1bcYyK8VBI5Dk7x7FmY6Mxw/+Pycwq20cT0RCAoHLwGzy+OgNqIT29ELH4zwJVWMHfcb0okgJR7Yw45R6i73C3MBzqiXNH9ORJwjKni6MRxsMCmiKGuyNsUALmmg6EQR12hmL53A4ZDzVdd2NFDqc7vC2Jz87OKX/qDLKKSo2JUuHKqnhafDWQ/WqYFyn/mdSJYSob4tD5uHKzTBoGiCgk7FrpvkMdUqWn6KLaJMKRRHp6QN9kBg8Xkg0FoIDCerP8mv/FH7PWxl/9rbgjcbtJi0sMShwG6KQWbrBOzKc9hB/FCPeXmAmoi8aSHJPkBor5Z11ozSv4hMCkswh5o6Uo25BBc382rNNNz0Un7/wpb3WWiN+K41AFce2rhsGZk/2XZZte13shMArzMKvKb39wVTxwMbIKD6TQkcsJV/zYG+1KUBByS88y7clYz1CJPwfZ3M9vTDkmPlzG9gu3U0Cys4jI4dBNo6mMaADh2Jmg4Z686+Hs3Mau7EGEbOQGXMjqU5HyQ9Dvg/9CgwwueVvUZ+N8q+ZG7Z/u0eYCLcLeMUZffTJRONSEmXzTk/IzjZQojigJGDN5l4mOcngH4hQSUcx5iMySkgNxLbuAOY0Xy2VcB9zRyJ1h5pkhE1KmwyILL1Gxo/phU18+u0lmXF0LTYgpeRxaM70Xhf968Gu2ydlT65hNEaz5odglbFXFS5jbYWSJULnqjGiflFhn64n9DQbJIy+d5JXqzFk6MmYNj/9helqB2sIVzhSy+WKhE3wK1//bP0hiqJOUvDg+ZZv5wWaca6GEf6Cf937vbHPijqLsoPY/NpC8Q5qjmFJ7sxrvOzBjvbsSOhzXp/m22jBBeDflpsGWM14K8n5CE2i9h4AFEhYmlbvcagaSsVCK9gCw1NsZiscWzxmTS6pxDLHrDI/SlXphtdwiIpPj87mrq1PCT69b0CyelJ4/vqhqQP0fKLLwDYSNKfbK06696b3Cz+gIiNb2CGC5nITMuHMKapz/SVDpyuUorJ3KlpBbi76D5HStBqPKh+4HcdHOdZ5m3iTYjZIYgsw75x5ugCT+VDAmCdbigxiXWaqoQkcQuTplrHO4W3He0sEQvc7kLlWT+n2iFVMPUr9MPArdv2Plntj7hfRg/LMW1lCJsL9ZlmF1HquyptAzFPKkflQIdHsAdE/aXu7mHVLxfMWJLpiUUOz/9HCG4H1NCv2D/4qTCqZvqGCC63ORvgriG+kipJSA5bVTTl046SnbeJ8ky0P3lYMCDWE9kJWx9l2LHHFwUQl5HFkQE3RvSyEvFCje6aLHHdo5k6/f35zLhtTCnnlNmpHMq5wGetpON4SbU3JKUwF4emlLJFeZpCu9bdpeq8Q11Ld8R7M6aKy/E2zTBH+Jpzn/8B4dIbnpNlbp0AP6lJ2OVCKl3RyMJpgD2O2eNbm0Q7qYhAPJn/ZLfe8iU8wsd+taqDEnSZRAjzLUA6K9+05p0wPW7p9sow+PzVuRg0dYlo9EAPC7OAc7LUgUCgN/5wQI+DjM+8aZ9SZdLOCtsGYc6OGNsrjD4/Q4lsgUksGV5LfLNXaEQ0vCXEC857YMNxQLi46Ghqq8EINR3/oPqsv2Mb0oo/jV3J9jcR6uc0OGQKZPLuplsfIvo8z0iRrmlKS0fdI2+hu2fzB2fQVV2CQ5RI8Gr92jkHtUIFz/Lv2Q0MUNzbZIKhf0aagYpssNbJ6C4iw7UuDqt8zfzo0F0gODH5Wn/jW6MA0wsDWTNBafQ1VvybA5V6ogRKKmCH7LZHb2bOpjkRo5oc+X4raqsTISHpjutDDhm3KjKT01p9vIe0Z1yE6hPIgMR2PDB7LKYY3jxYiL55/hibveVOOTwxOBdtMhNenSAm06zXbGNsEiYZFS5pGT4givJg0+bLLlNCpfqbUr+WJQ46ZYzt7E4RbPcYdyCZP2pkqnz7vVBW6ttbryseGqFQPO+Ghwem0WWubZZyMOA0en6qGsz5t0CTEKovb7zr+49edBVBrOwzM3Elek0pBMTpLiFDdm+n/vwaeNYrQ25AF7wF61YmA1W9+B4fEcTW/+L9DVC8WkJeV5TdCpOGg1bkDpq5A7ZmhgsaqVCKk1mlDIxPOW30QS+bRZgQ8CSRSL9wUpv1MzwEEIA6zIEF3ZJJ9fZ+pVGnsSBgpnubojo7/99hbydD9NbewF35vKD/jmfmDGJnJeXu56GbPwNRd6HBAnhXfSCNhKMI9KoHww3vS8FAhFB5jrXkSkGE9xvZbSS3Sq6tT0dhRCuEycj07295knXB3Fg9K0qjXjWIpPRp7QubYkcn6pvW+Cua/AQ9uB6/iT87Udo7iy0KPfOl0LYBybLLxEeRLanSbtn9eKmn6TJtIJqWNq1BVX28l40OkoOZ7AjT2C1i76yULHfSKZ55WuyXkSco/uUEVmjHVA2Zz9U/NwG+29YZPcOMKCVYv2JHHrhatsLFQn++qGk+bmXHEL8sZskjUTaOHNrBp2EYebhNYrGbWfU+4oe9Q0EZGOylo/9caBQgQpYnDzkUT/31enkloBXiBLYErzYFHeWKAcJ8L5rT8RGIQvp8uFyaJ+dYnQ5XB4Mg2E9H1Dbx2chkvFU2QHTN91UZCMxq3ORESyDcIy4+u3S2hUzlC2ElrT2PqyxKzFuap2HhOufVnVNnjBo9ha431ubPmsh0KHprPGbxmIOrMsJHgJSTLODYjsL9B7i6Ypn3YWgErPwctQKzfDzsiQqkeSB0LOYUcYLcbFY8nd4F6cGYRMp2dSrXckyU2Jn1J6fYHW28M6/9eqjjdPqxfRPzUgTZEaG41nEgAEmL6hDopF7J7RkMRBWK32outVFUNspJHQs2+BcfS/HKUqT0q1ZfRAlRQpQWTQ1Vn3VLUp/luN6nk50e1+PJI46rX4XFUA1TwsorUYBzLcRanThRc63uyONooPAamrY53b+pbMO6UT4SBE2TvsGYJ0spP1DyDpFcKxgLJl8JjPRT26DjrmFLGr61WfQlZh12lbccsTB1FjW4/oHih8ETYzlfR55Klo5c3CW32Po0/iBe/PbKJDg2d+JeDXJ2LsTVxo1HPydMxll/xNt6yhJ6dgscIF4QfLMHbC9nk7tgA4O21/dErMjASM8HzWf0Yq4t8hl9CVhKCAVVJGEiEflNgQqsl5/oNwKObi4KyHa3nn/dKNMzVljwdYMLWzDxIq9xqfhu+h5bq1AbY9owqT2ien2K4iHVgAHk2Mo/l0YfeFcXNJK8TN389e7stiRDBsIYPJqcvWZn1siHQ+eaVui3LAjNplMWNyGs+7iNJWCHBrYYB/qxWR7+zJe4gyNrnXWuCaLvOb/Olgp5HGZE+cbCEmm6mX49LLCTMr6WXIGLorSQkrfTlY9PRb/7TXFw4QF6zLDbgKKxjUA72k7OxKM8Mus2W5j3UO2pt0ykz0t03oGzuD+vG2DKuIP1Ao8y52nQ5+nl6tSO8TmzHi0nVQc16tie/y8WQ3gB+ftF3ToqrqgjMueDONTkXClG2H9faDsQxjFRqJDjPApOc4eAC1l6bD83wzsB7mObHBrPOmajK2FmrSklGczKI78fICNf65avzqV46cQcXGMs2a1PTMy+x7eUcagPzyCKgL3TloKfc1JyeOHfCLKEm6aV7JK8hb6B++j05TjGwFsZft6Cd0K36MV8Zl/3RY7kaGSjqSWcCuxcD6lDAK9J4WT0Cqo46ZwKxHTU044yoQluPifs3v4TW0PkDRoMsMERX93rOzoDTnt9a50uoFfo7HHUHyehyVRkSpMtLIMgI0gRRMDPpgPil8gtnM7TtMFFe3EoiebyXSicNB1ksy6uaircR23Y1LrSTCid0UntFDZADBUUbdhc1Z77fWUHebZ+RXnOIqVv+qYT6tYGFDFdQ/WLBtQdybGCtfhYdZyfmdiSB0hOr/p/zMXnJ470NsRVNM7h7VA9KOk2M/wszn2DSrhMqh0BeC4ZG60jsh+pufb+CrUPrI6mDSAu07qyIgCxvr0HqNdtMNANfdWvcGxPhyax5g0RvfLB9e+TI3SIUqW0pzqys6mqL0kmK+FMyVfyAWeR3VX5BPhhEN0vGdCEJjgaPgank4w257Yp3VWb9uuA1uVWbcFxq2nY2QfvUMYEDiuX3p3wq4u5yaNxPdmwXsjZfmZtor+M1WR0FPbJjxeNkvPGQRhIJmiz7M6GmZM1AsWkw+jKXn+6/Rx8bYN1zvMJT5jX63o+S7BUStKZapO5yNgpQwFPZgqjoQgKeA9b8qoMEuidZpLj6EH9tatMar5eaeJX5cEA/uEl+eWdxJxluJSW4JNySjpff6qF6hjzOAsZAFjPk6SS2l3JHuF5e8/ZaBCLO4/dR8Y72u7vFMwfKFAb77N+3fgvNtUo1cYU2bqpPAxTESzitFgZFUFbeG194IVyLu1EAlpaxxXuh0gOKgnt1FtrfdkVMVUSielng7eUmQhC6V645b0FvIv7zv/aWbe0vrDAt9OK53wKf1zkyNViAAubiAtEcRkhbFgV/1+Vry91AkPG9iL+QzPgfigjedUfFlP/DVFwzJ1IJaKhfJyMmwFq+T51QP1OoedGQPjyyAz0bz0TFFwRlWJuIBLYqEEJWEy47ZSTEMq7QJcqtKz0vphZRGcknMhZrOgnXpMvO07dKEK5lUuTMkIafehwVwLUf8rrfViHAkqiMjBAcWT+rxr8NzEvzSwY5FbiGuUZ1GAQEvvMT3ldgrljIWv9efbYhvJNDtLSspVcPPLcf1UTX+N1N6yiuj0ecKnzUaJ7moTVBGnL9d2tqlAY5taQAd+BirlYcKXfXbredS7oo8Jodske6fXBFEmjLNKpKHaxUkqjyEV7qWo1UJiNwyZL49pY7OBsSikrgJ05M88Nv0vxW/tb3fIVsl7d4n5iZs6FKJAzkDnW69r3bkSAaZqaGX1/hGckvjPXAidMsyy3F1N5fPggMrWqtCko48ZYdH+BHYlpzXKBHWiMHSuS2NqqacPf7cjnPN9FalLmhqZFTwnRabvyVgBouOjSjlmUD9DL6mHTbIvqv3EmESh6hmcCxRJ52S8NS4FpvoqPuV8Yz8A1TgWpydgmxonU3ouhFgsyfwz+Uj6SUkJHzCGOdsamGa4OJ+4v7UQ7XCDtpvVfwTzLfIWdExhbBAI3uQA5Ewn/kgIO8Q99T6IHeKstwY6w8hn8TakZhyeDOAn4i1K/9P0D/rmwKY/xq/63fBWDzQJv5lDahoUnl3M0BH0n9JP+sGPU4E7FMEcr1mhmBJUh81vnARXyKomZjvnbeEMSpVhucvhBnWnhXny5vRRtwP+dyfVcBCDgTFeJmusafX9CdWjFPmfRBxEMJygnflzluE4uu118LPk78NCMXz5hZwm00mcuBhwcaGhJtYjd5SIGCWuHNix/l6leLTlDbkcB09jr1WeSm+SgMxdsBagooV7G4ZAy4YmAfT7qKFxDdu1mqHvdv3EndXgKdiiNkg6u1+jY01PN+mmOQ7bf3TbDRlxmaSA36/nUkrb6sejGRzmhdPOFAil7qpGduEa7u7oSId6Bhdh080bl7Kiun2Vgj0z3xmppi0Qtf3dGBYkDsJqsqmHHHze0oANlAF/2wwFCJBkGbfOOhzbSglxDfveyGm+ZB3hA8ilBUvfc+O9IugM7kIxL3yoKVtfKDl5dz7nhSqyJ1iucHVKaSEy+/qAkUJvf1bR45cGGowZgXgevmwvgdyKM0p9Ua09ocb2dEJAZrFDXI3vNUyPL2MUOyUSWzjKfpTZikiAm7OBuSKRjf3VUs9PR9K0J8fZOuOAWjvVHxDh5kipajnOn91qpJ+4wK7PpzUo12R2jOO2bsqrITXn5leRuNNGpQdzzsOdhmwWSpSr8uwwpQVoITxGlt0T9XoSjBASGmWucb0hBX5+RS/G9jfiUyC3I4Njco9FmME61vZ0rbrtb+x3HtZhJF0Dfhvl+7KFyiY5BJqv+sj88FfkTDd9cWFpvfowCpK5ULIeXzoSOCbHbGENO9dB+k59OJFz62AKo6dsJBLea7j6sb2GNEVsvrrT5DNR5fA6u3gGLzr4wSrRfEYlsHZPv1ek0dm1Qy/nZNjtIj/d8OeAuntfgiWIuBi3wjrZ0uKh4wGMwB2S6LP13a/lS/Julpfr9xcA/kpDJKpYuC6W8zoOFDSvCZQCAjHuId85qJJHRvvGHaM7a27rnzk6Oz9XzpNjwauPpBI39wGcqsu70YUMbdjk2h20i+tmb5GgEOg686ZCyiFbD7D7WASGs2wSsR9UV9j1R6tO0j7wcms8p88Yik4xr4yZXk3pIXuJ5Znyss1m1NPnA3c0XmgnnqSX1tM2upKA6Rvn/9IL/UPbYYEVcPbllsal2XfBHRyGUToc30p4FT1/EzwL/rVHoFjqQD6A5+HfdPPU6rq1VaUseHmKSwD3zixh/nb1jfNQt2Si45AU+NrAXamiDvGWy5Qa+AOaO6NM9FSG6Xs7Re8prPbNU6eattjFWqBPYXJ3xJ24iq82YF8eKUMwsHNZ45CwhKO0V6TEHXtByiYzi51TjJrEDchoFDTwOY9Da3lEPnvEbUGVOU/m36QO6Gvn/S61pTwe368OpFMKc1uFxkL2c0J48M/LYl1sltCJC11CEdLt6q/AkLEVQ3+7MB8l2dkmHRki5fb/qHHF3JBL9y+iguygsBtrnsFTQTogE5XysIE51jijPxY971tnEfL8L+xt/CQHelWLUFlOLQDdAhnxgoh/xcilke7gl5nH5iyI+q3zBcWKobHeMRi/7LTmOeNg72ccRfWZY2Gsa/Vp4iizgJRNG52fMQobeME8nI7YBMt4lxh6O4UwcteMMn3WP7Xzgf4ZuAO+3+bbxuY7+ZQBrYG+1NH7QTMthOLTdNre0kNszhjuTPK/vTnoRqIkOuZPDl1Bw6gqCUL8qaq1mkN4zsh6IAH/NIXUltiUfbRWwBd/Yb+iHGW8I2fcIwykbof1XQcw3DGDnmDuVXXNmcyeEFDc7UUJ0qHf5RLOGfcKiQh7sXvcFsOFME6DX3LQs1R4at3fH8kNIAHIAqrScGrmMooTvwiDQ6StlR0PHO3D3YvZmTpTM8rZo0dekR56qW0itc6xRO4hImGpBOFZtoYj9wnMDYV6W9Yb20Aoo2Bw1pTOvp+W/x4qWLCelciUt8WidefbDJ30i96PMOhUFvsInGy4MF1JovY0rLRJooXDdNTP
Variant 4
DifficultyLevel
513
Question
Point C is translated down 3 units and left 2 units.
What are the new coordinates of C?
Worked Solution
C has coordinates ( 4 , 2 )
When translated 3 down and 2 left the x-value decreases by 2 and the y-value decreases by 3.
∴ New coordinates are ( 4 − 2 , 2 − 3 ) = ( 2 , − 1 ).
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Point $C$ is translated down 3 units and left 2 units.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2023/08/Algebra-NAP_20333v4.svg 320 indent2 vpad
What are the new coordinates of $C$?
|
workedSolution | $C$ has coordinates ( 4 , 2 )
When translated 3 down and 2 left the $\large x$-value decreases by 2 and the $\large y$-value decreases by 3.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2023/08/Algebra-NAP_20333v4ws-min.svg 320 indent2 vpad
$\therefore$ New coordinates are ( 4 $-$ 2 , 2 $-$ 3 ) = {{{correctAnswer}}}. |
correctAnswer | |
Answers
U2FsdGVkX1+9DF9dceQMINhpOOARhN81pEfy6UXTcL6mal1IGJCVXUVbn1hMAVI1Pq8I7455OJ3by9smLO2aiy8KyJy7hh8IQnp8NzVYjRdw+Q2GXRMI1to0e/wk5mR43G1tzO+Koaabnj8OGkEwpLzV8hO870yeAgeOJzLxIPYS4MIHfaGsobB+TJ98YjZgQK3YMg1iz8/IBW9tLiCevRmpeORsoBRzN/mq9kyYjt7v3PyrJ9l/bjdt91th7eTy5gwK7G2DPxQE1QC+iMsPLQtv2olSCHazIIl/x6RmDqKbMDaE1gDm32pLpPMd02jru71/0Zy+dW+sBlKyHa6T797li9gl78YGZjmG3gXLmkWTSovBBkmN5R9bwhlv0w/3iPqI3F1dKkamabP17n8aVir2ntjbg9HNj7HzlyK0BAum+urlvE6GVxECvM8fjL7SI0OjxGGVSEEDtGs3Gn4ZvCWyRCe6v7aZgNMDK/9Rm6JNFe0LsiE2KCBr+c8AGyOJksT/VauAVf3Ol2K8t5Bne4QNaljYwNGjittejNtI4BKJHXBPjfAvnMGbakoZ6a5CxA7bJgfsff1NdAGaARiiIE87W+/xqaaQatW/nvDL9nqXXrIDXOy0mcOZgQ1rfAPYGOFMzgxjlR+YWZPD/ZYMegBJPAwre/GQlDHR0DAvqdkKfz9FVA/gtvNFQy4zUzvNjO6qBrHu6CVbun3PfxTNfg1dXF9U+Sz/im6KMjzNzldDE8twYvZV7smJym8HxeVBhU7PcZkb8F+GSoHVrwiqrZoFaLcdyaii7C+r8VzgGjVbICRG1Q3ST//1rT82Bn1EtsPZTt1vRMSnUVTyb3xqWzC5FMPbmurmU58Bdu68wt8v7V7RlP1CoKCQrV1C2DegdD3elEAEXXiN49TCi+Ej2h8Ubz/+y9x2JZfpsTftY9H+l6hByuXX31iM07aBglkxdu2P9aIIlNDhHQ91dLRTjLQQsv+bXwUUIzH/47we1iwPWAzZKq4bDwzqcNEheQnwYL1Rg8yUfeQUp9o/UE8/pu3VfQA4OWEzHCKMoVtEsxHYMZx+uvzroFsLuuhenSg3PUx45HQm5w3vEqO7NTDH60s60tqLbZQiC5tnB0YQbgxmj9ecbOgBtDA2QQ5mlaDU41A2IrGyoX+gdu6Hm5OsJDpwZsagQZAb4ocXSabcflZ4eXCPIuiK/Okx0lx7weagwZ0xnp0CfQBKepOWdIxuR8jjB2OHXpqXsIOk8oJn+kjVKWliDm1dpEPVRgMZ3M07KF2TMHG0BEclDRW1R+x2lfQk4k5Z6A2/as/I4RV+jlBiZZcTKwD3AGmud8Dt9eyouGwq7Y8cTyMwuwEKeAUJKDlM3Mbakx/lS/kTdgy8/vDx0K4eE5lVLzKS2aofOJtEM9bE5KtaIMLHvZdLM9KeVZNLhzfg/5XiXOb5fAUexUY7MIxkkvnMyC+uNruBqqnjFh8IH+FdgX8MgADv2pGzsOZz4/9zM1umVstsJECBIJDQ8MZ6IKAEZp77YdQfR0Wdl4F8UW6/lDTFP6G89eFbQE8NZRq5T1p86cz+6wY38/+piKdRYvfu9JGanGJ+hKQaxqLNF9neC18QqO2nJrOawzaylmrRTqydfH8Z3rcMX5bmZlOHy8uBd90YlpM8yiMmkGj4RVJz1/gF67AgfAd5Mrh8yqAuAO2En7Qycamg8NGMSiDYX/jEt8JJsNr2AKWifHR2eyIY9TCWIbZUbYdVr19FbAJl7GrEJMchyVb4BIJyRDJfTDW7f3FVMiMkiBrLjsuiPRrxpzD0GBaqhymUNMf19SeIxZan1tJAJmhIAV8EM07CEorz0zg0W6VR6vBC9pSbJSgoOcX1gXntqeDvLnQHwto4rRAWAmuNNc6tZwZ9VS/RtbZjEvGmfq2XGYbniWK7uKPXjfVvDPUm/XA/ipNYxT4ZfdNVMeY91412YorL8Qa0HKBZlYSKHcHt10FZswwUhFEkJzeJleiQGMljar2U0wJft6HEJqUKUpOsJtX+ai8aMtAKNLwoskknPW8ND3v5ru2Dko3X/kpEZ2rvK59pLeErOaFTM6ojyj0EG08cQ0vlXjn1iUd+IcDkxnMTDtLgFZp0JXBzrSz6I++5XlLwKE0Y3kMq/C9Eq65BXewHVd6s1G0gn3HLV5JUB6iZJXwZvfHryR0+K22tauTiUKzy3G65RZBOMzlgQE/e22v+IrRUrwPBAoP6D5bVdu++hPNnikglkgK7IytYhAluY+2tCiimwnJIWR5rWFZe1AHDkyVJFy2Q8VocZCh82u+xDStMvc3BdNay4/cxRTPzomalnFLwHjlTCdD3rI9x/ahzKlqsfBIhEHsdt3ySPQbtUGTH8tvrrS5BntS1XZ41It3cSTI0WZoWx5tsLmdVK2E4r29jpVDVSWQnwyFnSGhRDGwY31XOLh3dE25+Y3ON9wy4FNMtXhm5kFDRLTBZ3Ow9A7+JcN/LozlrCmnDQUD7rxtKLJHlTQJGTjyCu+To00niR4PN+ZQY/3nP5/XqWidIgLTqgo1Gl0BlWgrGV9gQSuz+3/fGKX5xbcGZW37Xk/AaVDXDM/ntGIsaZoVjwpPTyVBg3d0eIjJWdk/Hr5qflYLLjnH3eX3Brdu6mav9pHkQxtrmp2MWzb83nPDIUPBDCZCvz9L9SV4eThmTzmZcIEBFZIKMK86dToN54s6xpauobVupoc0JNkb9TH2xw44Zt4leL+M4urdGSaeoandi/ny+ti+hTlqlexGsVZmAIaJPy1nvUtFRPkDvFm48kPAKC2TGOXU6H/KvnXlQrLOP65VnaWQxwTe4CBCuxlUt87FlFlNHFOttT0041JlVY8O3O7jFrp9Z6XfePOR8tiB4KSDAjxe/xiB0je0CsUZhvMtyCooix94SRWZKDBtHb9a589RCVemj0ITxXOAFQ0ljCB5Hg8abcDl5Ess3jKerusxi+f5XgIYnKKtDcniwAJ2Y1LZhGtHND0umzgpIDeSosrBFHjuaw6uuTvZP7qcCVxKONOcOKOYFb8iWTrYqp4/Uqq6wmQB6Wc5Vz71f3OwDjZp1yZbfkbJImCPg8qV/YhUdqVjWYbj2CgTLCziNYv6LwkIai4XbbGjlpRT8ScfNyY8Nc/JS+M2LkBfCjsHj0zUnjBQrClwWXfr7aJkqyGn34GpgCurI8TWaHcsFbBtodOU832GPYoCmYe2qREbuF14YX2wmUYc/U5gDEds4uYawmV28ACWXKv33H2o5gII2LI6rCWn7BJE20cf9zdqqTRBupVQAw8o43znGpKWdRPbLnHCFyXaWYthRNk471bY0kv8SRwBitTidqjke9jcmYJrl8odWZ3XI3JALXMfpXEupLzBsByhnSw/9i+TCvWCgELv4+w0eARDzDADUGSn7e14EFVOHB86kqxDetZR7n99yHWsh0SR29t4l7YWf2w1KW0vWzgZHlRSWDl++wFSauNKtZdUBGPKoeuWwMpPNMaH9PO0bvKOGBgUerHA+7DmrlVD9Wr0XBvLzowNjsLVJdtoMNCLG8kktQEG9sF5w4Y8GZG39sXyAFlb7QI//30X417P743QgDiXKjzgJ4b4pir7eZTe+CpTZZAPbRlkHSFigcXxNmGqW2B1kVUM7C5F4ZZg6hGJsx3M3HSgpVIr4ytda+HSZ8uQ66tg1Pu6HjRQ8r9MdQ1XJG/Qou3bhKaZACMKl19xid0jEvZhGeI5jXlzq3/GczzSi/XYxFQVokMO13/zcfXCR1M6rvJEHMnGS9q0zopI9wbG+yhEX9gbzaOajI8U3Uw7nYYLtQFSs5/PeueYI8gvhv2N7QkVBWo/KcqZnMAwHSPb9Gs1FuUKwnuKgaw7mRk0pDq2wyZYcWEt9bwgMtOL3g3Hxs7r4uFrkj1wcbG56tYK5wpVfQssXZsKttR2I4Uzj6YrrR7neV/1JeoDJYK0PvMI2clPIJ6QaFCcZU1JFtXY1DvGBK1vDhsKpD3bM+/3rATNtFcIE7yK9lHoNp9J+7Ov8Zj22+v+NNW6nPpgc/Hn0loSqVpf1cQq4rM75voDG21v73p7SZ5ct+kUeLGewVoeMV/Vn4jQRnvAHcL3ywmElz0t+cPMu8osYiok9yMQX1pBiJnnng/BuJO5rpgR4gFVt+q8bvjBvdcC7B/hO+Z0w9LI7NRtvFvufH6ZZtkT8S0GUNSrzMkAbjMVeSVx7PwFHnDok29jE1YH16WJzmFz/Dao4n1kupvihzfFOPug/L99b2xdcBcVtrzmGVwTMGUpkfNzWl7AoTjAzTwZb+2QyfCQbwp1vXvR/maeaUG3lV4jkZ/xM6WJP48Azf/CrL9+Fjv21lD91gkGWJLHwolYn4efYhKZQn1T+lT6smjCyRN/NVoallwqIaQPitINZpvvlv90k4OHT6kY2wwMwEuUTWoG7/+vkrI5TpMgIM4OdVHTq9g91PmZBaBC7dRsgfeaOXGLRVRpd9uRoDMRQ7vkQ2zmItVDy9t+IbSob7PvD3A6rG4wsZvsVbRLkZ5l8dStxmlLuKy2IcaJFMQ/wZnmECVq3Ofp0BGDxyvBsAy4iCyzPzGOjOWwhyqxvyDy5KnItiTwUr8oN/MPF9rA7GhZHu0l1HYQBH29Un0VonHJ0kegtV+jiJK4vXdRFMI0BUi3pVDuns34A3wqcAOWosqBmexcA4L3K6azFkGg9Sdwq8U7JcYfh/UItfYHCie9dtREHmvShbo0XNcIUersLtQSiWZKg1BiosNtBMjMVgaULuC369sYn8aeYtChLWnzDNTmLlYOifbuKVt3rhPlh81ei//ye/q/oK86wcfbQn+WnOF7f3FQ+PADAE/dcTABHTNN43CUdd7AFAaZKCF/UTpVg7j9dk79wGqfa5+8e0YGY+V+Wp7U1O2Wc4eQ2ZTZQUdSvUg2j3F1JsZ60NwviDEOnluChyynGd1kvPR6LSk3aoKvjfpBo8/2ft//ybwqkGRixmhsAvfyFjbEehXAq7ea84pSAkzpRUIVLnou7cM3BEA4zVZTMwVhTG9rGkMw1Sa2LBSle6B+8PNhIH1hv5/12V2/1KpHPlbfHhwlTZmg+P3eSdWCdXaZYVJR7kbkOra0cjz+TEyHtSbx47z/viqir3YHX4Z9njktxzE0zpg3quXFcLIecwik//4uOmFEdyOLUE8SPX9JWuV7vVxvMmF27DlyONqKPE+km0WzIBL2KtiPnuQnYVTL+welJDAP2zVuSdF2s+HWB/XT17+e97Cmkit3TszAieGhxYbMYX37BAoEf+cI82yJ4NroReheo9t4IGZ8P3QHhH9D8GNADnXHD4mJOBmqq6h1H+E/cCBuCMV8um7a7XM1tsthewxpQRTc9g1aDtYU9JoXzomEUar5Twtomsq+ur9J88LmohUOVySCdPtbigQd9gha6rjX0ktkiQ0kbuItvWI1+x458dlK9DeXO201uGdRxc4PIqJaElnrwus5fcVsRdB+O3FrsJz6LwiEUhtZaZoRxTtwZC9aHQv7AhT6JGifbB1nbzYar7rkSbQZa4+h0yaU747WOUq+lboIrBvUd67y7m/ryG8+rfBDDM+sHqGMcNVXUfynchh/JV9Fzk3wivqEqknSOzHiXv0lM+PsKgrZeU27kG78s3gu5oZQXLu4dkrO8PAlwpmvyHuL6IGx9z9xpabgG3JF0whpfuiUh+ryV2eKOAcYCjXEBwfAtHKd05tmvOY14h2ld/ZQz9FkzDyOk08tpeJz8lYNKxz32WRdYxnTcWl25gkbk1Hu63m8cBxLsWnXd8J3TRFr4xgRUrU7EtSynAhCd/YfrSYvrEjLe8fYviZNWIgpIS6TgcUJS8bjWB16eXRUOkjWHtWxE++govJAP+Web2BJwU0Kimpm9k6soDfOuunqwCjdSwk1QrSLKE4Kd6cxPXlxQWZPWuwcku8Cnct2l9Ox0xRNOn0l/h+eQmGrBUuj9/Jl/3gGsRcWqWT8R30Pwr+A+soX+3Jb9dVuC5/Qynl3dBFwCkeBTtbSp0O7JbdrIpCb6olVy4Ww9Nx//4z0PIT9tthVw3VHGT8SlQj7GKGHdEdJwLALBp7WygoWp0kX8AYQ9hqGZjWtkAc6uG7tM9oCpwO37HIGkhW9zWZgVdB23AaJZ0bKwL0AKZUrSuwp1VQ5WSggRTHoP6LFpE26zshqcTFzYdho/ZQoBodo1N3FYKcseNEzXGRuASky4ZCPm4vDdt79yqhwADDqrQusEyx1lGhphu8RLLCyckhd39IlmFTseAr295aWezyQeyTpHiEGynUw+xCPbpZjVM+8MFeU9BPQMig32YAQ/3eJw7/JwNTCJzRFOtJ8y88oPwDcWEtwrQXYk+rM2a14LZSv5HxEJsaZCryw4L3SyUUhRZib8mKFKMMT3+W/e5k1Syq4dpRvRBilvnG2ANUwL8AXuwvnlNdMksHxLfS1MGY4eJ0GFCnz3liPMGSCGgCFvKdCxpeU4YIriLQiB0x3aaaYpk826Fv0ImnysRvxgsnlnIt/FFj8tTxQvPYI3XbxB2YPi5O3/TJ5oykGTvnL9Q9mpJWkmRUVU1poy75+SXKde6hKmoknQlC8xU+MmYhoPXxjfVyWp/DWm24IuMOuuhJne7ewKWzCPiOq/3Jlf7E+Kfga25eYGUDMY74+3+vcKqadJyFeg629+xAQC6tmugfr4Xx37XBaLx8nNHczMyykO9TKg/wF33ZHF5kmzImZgqMhZRAUFaLCFasx/oZDNYDU4kE3RGxiBH4Y0T6Mimk+GgwtKzxFIuGbZ1ZdGbzLVAyhxCnFQXcoUmllP9t4VWsYkke31uJd+qQDvpLx/AUGQoC8oCdTWvS3UwbjLTDabF9fo+CRgjGfj1M3TA7NDfnTZL1j4LSqBEbuL2uohXZZmnIZhu1fRMASaxViKm8cwN9Ecc7dglYYdgkDgrpF3DFLwO6GzGgn+T9puRMRY/n8RWWRZoWRNzuuNTuhdib++P9diEp0ixzjIeCYKx66flInO94clwNacJevFUcNy9rKZQl9ZJAOyTgaeZYq9MMrUql2XH8F/96VtgYNCt/ES6Xoqs3zm4RMudZ4sGU86PYYZ/31OgTkzy/c4rONJpjA4r1tf1y5LBCSIIbQqbpszpgnP/qpcksZeRH0Gu7GzrPjWhmMBNqstBXXvyxKCzvBmACwnU+tjywmfeuJVWCgQNdqr9wNRlWcfQ2GnglQHizpzU9WpBVtrEPj2ILwCE+2lDOG9LrNM9C9xldGbDa/w9M8Xq2qvvoyvsXQzQz+EqN6H8aoHz+RpLkBG7q7eIXHso1UFzKh9OtNtFppPS2yCwO/q5NApoeXXABpFdSLrAdY7PwzX5ltOaGyULQBP5YpqOSrSCLrfGfqKA1mk94LqDsmEHFcHgritiGzpojJKUJmZ0plYJkTCphbHjqpAJ07NwQxIsPcSRrlNAhlLciQP4E8piF8LdaI/mZqXGgyIXxUHp4obrr+mI8EcFISZkPVFgQEkB7XcFZbHd8ip1KqzneLWcB0QeKQ43+Mmzvb9J0eBfwdsB68gKS3k4iJ6qcCNXu8QsyQj5Rfbc82WLXvlMHH7/NlHlg9oUivsJ9xlEZ996l/o+UD4+Wz33dc9TLomSotk2vTEgSONstvxod2aDbRyr9O7w1FhAiiP8KQYpFaiSug2/K+TnuK1tC1j8jw3YRp8+hxg7PTsXzuCYAV5ki7YOAtdkClsfb4y9b7vgo5buuFRLIjF9L45u21OKa1kRJAm9Fs/5O9kscaJRPi/XINpD99oRQQ+y1w6yTDPHKlPn0AAjf9fOBS4V9ED/tEclGkhUubDgCG6SbMIgRiULb/B1TRjWu8yqDTQlNqIb/PJeQs0DY4pQ8QlFcsQkM7YjFkgRtUlGH2/m/WAE+SITObhM6DmMch/FbxG3eErJGaj+CRjdw9WiRILYzA4d3pgPsTi73mCdMm4HyxLtb5yhUOgdeY/zrd3Req5dwUNaef6LfcqnCLX7Z1dxKEQBLNzNTVQ4N+zjLNsTGQvr5y3QxdhxYAs0XIFgIl8wkgqD5Y7IqvpjSgBchaBaz1qVbHH3J+kbEc/ZIaUeLj0sPsTmLIvtQkUWmnFguZPLZm47WUAPZ7zcUCOB5D3jU8of8Jy6rXYo7WIpynD/AzflT5jNEk5PuU2P81xXHt0VeEY6gN83pX5rSZ6v/pZFCqyEVBA2E5Ss2xi1sbrubc2ApqAUGTBdEnhwPxvqclkJGb2370t3WF69omPqWhAzy094c+Qwcl4LAqY2Ke9gNwpCd1SK+bi+YJFg+6U+wtnWCU/OfILgEGHQwGd1DmnVZjbpDT46R572lt2fnBrwyUn/OmmJxKX7HhX+LJa4LCtEk83aDsPaze+rramcta41CelGPTTpUZM1gcRYA5GJFSConUOEEP8/nLcTzag/0rHbffHup1jCLGPPsuHmKwuiW+tU5q5xXcidnDXYYOjbVi51Vsnoi4TicvSdwiD5+rnCQxoE4pxjH9E1Ob25g2/BRpoIdQko21uUuviT4mUfwIoV9Ulyah+GzP/nGQvtI5UvYxLRNaO4QjoPTq4VPFX/x3eng5AG8MhRxZGROZup46fC4Wpah7Emt5DEI7IOt+hlPVO90ESS1rFhSuWaPDnzkGQ3usiAhlmiLDdrrPTKlhojhGoWzOcu3vSLM0L1dN0gC+qZSGzdLQf8FtoyQqPFER5V9BmBITQZuNct0RDYGZJGde0Y8ImSARdD2YZLPTzzeXEBTPjR99wTlRAXwTzFrFwYOL3uNnP0ih6Ew9JFPdeSI4FpTQKETitn3k+PaXJHt67yae+SOuGAljqN/xadRqW+T3Zj8tDHVgodyPjZ+dJ4Rog1Q1Quf5o8Jx6edtBjCuCYP13s1pLl/xfXjcWw5t4cppWkgWuxbzqbVyZ2eB/xF7K9HPKzmeujkYLbEKiV5OFxx5/If9d+ifMXK0CZX6PdkBaVvVLpU3KHfo585WvtVi5ypNuK/5qUtrHMV6apuCcH/O6e2NJuKZscyE7TCsvh/8SS6J5oLdDKBqlxM9uxyuJU0wmPWKcgYqgZdW5WvgIbb0U1kt8g2ktJ/CApF4jRZmEwP9D9wsQgbJUQqXf5oPOZCGkm3I7mU91lfv8ejLExI+5xfXz1Tfcn7oYB4RWqWCPx3CGivGoNOB/TBHkrg3yL74MwDbXEsvlm1VDwj5G8p5fVaiGU7guWfERnyNEYSp+qhDU80Xbzi1VcTjQnXEeNwicggN2cCu6C3WMtJxrn44gT6BLwCu+EwV7u0TotsyNGImI/h3jKqE4UoiAoy44hIyxxXttymTgsQd095EFGyhvi8dWVVPSM7cFekQPJay/GA9gP4Fewy9mRVtRYk2V6LVYV7aKC+/eTZ8xiQs1mwk5fLipvGugxoV/BzH0yaYRc+WbEElvxPn9oQfF4xJxz8XLH5uta4EG5d06bAy10D7WSiGRbA5BoGaBshPp088wfEhCvcR5Zr7vfXWGYQev9uhWO+O1M4OHERpgJbl2LMALP6YGupJfpwiognL0uTpI3bfNWus/SXEf2zp+Iaehd/TUYGT6kP3ozUM2N2QTm3OPw53c7Y7yvfLQDvt3TLP0vVk3e1qV+F0GhxqAtubYQB83jWkihdlHr1yMKuLZuvH6SspUlURqhVekLuhzDa33xEQ1eWkWvM6ikovwk//N6Q7eXAMwuiClKYj2VkzQgWP5qxBL9Jw3Aea78KLvCH+Sc10OEb50dpOBqKL4Ql5lxAGucAj2Vp6+Esixw8FsPOVg+U/PMyrJ/3jN3ST47HQfvW4A05W9KA4iM//WcBtAjyFEPe6NWdk26bTYGDt/UwJHKm/bOfkOlx2gVpFup7xaJLz4F5MSWZfR3F1mF+nI475QAZAOIyNUzJ7Y1KVJVeEQNrusHZqbF3Vib/no/Zzmqo+shq1QVPS+mPXCGW9c36XjGJLSs8s534soSVKU5k/xcyKRvJkyCQHrkcGX/tycdqqUqOa79Wst1DP2Yb6JPP33QR8wXcgqVfwKXn9qDWkVdLrRhfzNMe/Vy1tsn1SblJtMbJs9LrVM3+8CGX0TusXWx7kLKc3rhv0IdUhikkCayVM0BUUfbKXDhidAXkcQ3scghCuCxwFmvibhAbO6KZovzTu11yOx1ieajvy3PSjvjApV6wEzyNtp1pfrxqjZvb89wjTEM69p1MZ9ChM1nudlAiLKPJsUDgg6qFg5nKKz1/8VoXGZkMXBKFBdIk/VBn+SdgHkUxcYBy/uJ3cHTOZtXEmXx5g/ghpHo1s08G68zN5pfoGw7ckDT7VoWe+6coJdWTNYt2eGlV1Lc3RJ9wBHKZ8KwTK+Ec5WTVNRa2aCoa7soRTYVLX8gJsBxazOXoALzRoDnOfUILFaXZGUsENDVpwZRJzcNr5pTqA6a1jCblaoeLBxNikEH+9QyE4Dmzzk9VZd5B47esB45JS52n/fX6SnKABQtJtSqGiJ75yaSJbzWOuL7nuK93Cmc967XOCMCRESRnn/n51LKf/7xtfC2OVVa+4lVq1/r2D1p8oWINuDr7BU7KK9RzpSAX4lz6wypGZv06sdkq2J1yX/a3LvnvopV07McjQddg8AvO3IvczcFNa2YPGyk+LYqlsvHLGtvN5fWcDpFcX8jqX9wNjL7DdA+MOcSvpJ6MxpHjLBwRxW7+rl9FVzZrcVxaV++V5q4rJ4fSVOzfQRGm761rQg1KLDJhDTVOtLNKFlgaxyTSersBtvp8Mmt+qjnCzolm2QXtxL+Ri9P8IVZxQUew39m5SUb+HJwRurZoZ8Vmpf65x+9WgvFC7KC7pIXoNtQjYbhM72yrmJInqE1kYEZ+sIxHshGoYOr85Gm8B2M6yOqfPNoWMcsfaArpXOi9ZGFzaxWRvcklTSj2xedbQOO+VzolHBNt3Q5owwsw25BbYAzgp145sDyihyRmUD/JYmuDj/dfctUL9pN1LLX/e9nhyvh27iR8oOEyrpi/K+MwveUqmAqsCggVVKQ/Sz8+aGUtG8jrJscS1/MXjwNAWA/CprQfxwbpyHTPgBlHSP/Q0ukE6VNzvoPhsWM6qg0V8cJZARlREnXLHi7ZTEJGaj0iMPMP4JyvXsiBs84A+N23T3b3KK+os+QtCTwOPpX/4of7E9hma8lqpsBjUqsqYQJEROBHotB9EV6nSZ0CnRvdphayicWKrOqcXua3G/HlUzzRN18M1OgygNhAbQLXuU5kjuruYmWdGszr1uPjQZUeCw8E8JHzMdOV8IKlWc2BeVSNIl14gA1wCL9Zj5pmdeTadIASyrCU1EFmLacZyl/wBH5vScLyJtStJvsI0IP92wND7y+9octOEiuqa7yorPcA4XwELIyY/Vtq2zF+vkFyt2xMcoRBhLBtFVy/9PqCQ+eXAkiEMBoQ==
Variant 5
DifficultyLevel
515
Question
Point D is translated right 6 units and down 5 units.
What are the new coordinates of D?
Worked Solution
D has coordinates ( − 2 , 3 )
When translated right 6 and 3 down, the x-value increases by 6 and the y-value decreases by 5.
∴ New coordinates are ( − 2 + 6 , 3 − 5 ) = ( 4 , − 2 ).
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Point $D$ is translated right 6 units and down 5 units.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2023/08/Algebra-NAP_20333v5.svg 300 indent2 vpad
What are the new coordinates of $D$?
|
workedSolution | $D$ has coordinates ( $-$ 2 , 3 )
When translated right 6 and 3 down, the $\large x$-value increases by 6 and the $\large y$-value decreases by 5.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2023/08/Algebra-NAP_20333v5ws-min.svg 300 indent2 vpad
$\therefore$ New coordinates are ( $-$ 2 + 6 , 3 $-$ 5 ) = {{{correctAnswer}}}. |
correctAnswer | |
Answers
U2FsdGVkX19H6+r/FZerf1uGTudeJkl1ozoZDC7sFXNFMeX6JH6yqP+kk9+JqLCUNrBoLe3mPNUDshrjgm8+jXANteAxXBrXqc0Sa3dzsmhnS4olz6v2inNwc9oMkars21Q9rB9aQYX8EpqgJTf11k+eqsbuj5ebPuKZRiVedofoc7mL0WUavkDdibo7PW4GHSsrWslwI1L2HTF5Jpt3Ha4C0MSf13TpZv3XklwLnuBMtoyrbK/AvJ3lw/mL5S4Rv47EzZiA9FEZp42aNFbjQJzyhtV8npuKEfjZeAsD6XU4XWEHzGZHb06cf0I7fqLr9+qdh1RQIUniJOyjo4pJ09Ur4Cgp3sOmpS5BOQJHiPFT1pYPoOUgt+71WbzmTTtfH/e1ysZi3mSxLXO2K7DuIsZsJ61DkDc+5euY/UKPYS8p6iGm+CROkizKjKawvlJm8RL5ot1eTszX/CSTOlhHsVBro8KkCvpTXAO0IeCEFXiTEuyQSFHB3t84hhQ7rc0sM36XKvw5SxjBhd0uJhN9kpylu8CbMfkWgwn+eCiV+f/Om+SdT0yUzyfLGWCV5Z9DW9ajCslkHLRelGFH+IGHuEtYaEHQRJfrMENT9k9HbZy3szPejql3qOoLChOXBeNe48ipT8thCGGfpjUSXzVK7114twAHjI9yleCiHygxZGIB2PnQzMu2XUyBzM8HoNzO6LSWJmM3dijn9k74tpl8YSTUqCDC2t6v77jULOKpy/j718SoiURL3b/lfSWhsfOo7rceto9B8nqCIWM5lxOer4Ey8WenZGbOuln2Ihc6Le94+qyKzau4s6eO67TAv1RjwaFIf165FiNa2ZIQt5RvOfZU7smra6lPt8ea4sSb4un8JDkVUD8rh0yb3KokMHyurdzdkTlUNWFp8HwIeIwe4D+1qQulLbYatG459IL9kKVMaFqhBPbE6+rCseKpDM9O4rMv4N9mhvNJvDE+SJ3dcVuNH6IV4pMZThLMUk/I/dB31W9Eq3Wtxsxcb9HB3jJ9J3j8PeNOrj9/6IA2efdElZcz4uu1Rp6wIomWNyMd5JloRiYXlOtZrOlhD7SDoysAgPdOiFVG7EZcDtgQJZo9EoVDJufzDC0MXTDbQpkp+IGKh2TGUyhRI2MMZ+YhVLAUV/SrTP9iceEcnUlyS7bZXsB2BznbprO6BnQDPAsKceCsd6HTfmtT0DoRWtPqmU+cAiu/ZbbXnmUimRP78xdYms0JGWXz70Jn+XOVWQecX7+QBMGBUibk9DVDrtzwoC+9MKudAWFiw/IDaTBhrSSdNiRX77hm0tBcq6GIF9DTB0Z7CW+C28m0ws/Sfjv/tIHxBUyHCHE/stg49iwgqNwlaNlZ7mPhVjcioXFMmHQabfLhWRTnTDC4mKBSW3sAjzp1xlY0lQh9Yrrx1lZ87dpd3SA5vJxWeKMhnb8yMINUyZ78fSrl/s5a1HCATcQkvNbRclxcKCLHVQiU9Y5cSb42vr6bfclA/JW93Uukxwa6QXeJnNX9PUBwKUXH+nEaUbHdUYUmlfzPYlbCbbVYrAxOOcRAXWCPtjl8KEXWm6vWb48zqYxLcwk5a574gdmjUx5Fz86DVTMEJ3l8zhZtHXvgawauBMqv2xfGUP9VXW1ZUKFp2RXGZXRnGxt6EqQjKMzIeKEfFiSru2xqCx07oa3j5X8lmSmHh822tETY293Ic8Oq+ScYKft1ZGdLA10YRM/h6sVWNBJUNhao6QdDuTZIoCKfwB6DW0/9jJim9Kmyijm0eKpa4lSRkdbAP2NgAExb1dfs4WRCz6mVjYaQFIHBC6DWMzAc1d4LM+DDUXkXj6RX+JjaSecrSIqcIsdBGkwh4BfLokVaSEYrq2+tTV82qDHqxB84wmMNdFvnYTMBafudQaxAbZeSv6fUcfOxY+dpPwKctdBjJypyxCQ2WleeI5EjeTpQTmS1k0chdXg4MHzkIf7wNySchmMPmF+3s8IW1uKef/gbyKcbSLjyyD0vKk9xNg6qbxSbhZb5uU3+4855LzPlkmGpks90xXXnNWA+fHG7rOc/4q44A2HNpxpYx8w0A78e71ZaamglUbT547LHGJCcoxjs2bSUmqvbu/HK5UFz/6I/aqa6+JQk7Yt3jJoh4cJbKqi0XzeM4ysreXjlTDF0UDY8oulZTG+E3X69X2BH0HII2rriMmDrXSb2+3TRmixlnjfEmpd4heb1WA8UU8IUuWa429C6rK2Fa1COwhfnApchjVyezJU9nOG2Zk/ZKDK0ieK9g639dllVR3T67e8oDge3+WSM//y/7RSHI2Z13WCj0/PUR3V+Z1BiXQ/nW4RsTG1vbqQNUbQTN1/YsVmsKpA4Bp8BD1UiNUhiiII/rpab9OXjirTPAihUUrPm4+lkNMs3Vlwkt0Nq5S2LPILOqmn4k0IG1pNWqdfk4YGJGn6bR2Nz9vG8o+rKVJEFET61BUHniQrKGsPeEmL/N1Fgl2PpDoYr63U8ArgXXPP+Mx2GAGfrbTsp4YLYvi0mSZvhpxpUaDwNOEAcko7hBHOgu2Uu26hklitvmCx/j/SmN3PN3IFfuN1R8z9pBiFusKjAGGwCaY4pR6kJYK9iM9aYV+mlrQMsXQdMhnwU4zBktWI5dBgBycmewCnJ74YmVI/7TkBFCHhKoTNexjVps+C7Ekl1sRvZwhBoSO62JwFIMOyEQDY/35nn35T0MTlNeY6lGj0c3Iyg49t8kFmUFdde3Xns6+fHZS3q8QjhId/0p1YgebGUH8c90Yv1dH0fvjg/vEDDRlzfmL4SB/LSVM/BDRb0bnDvOXFwpFeYVD5ay/J6lcxYjt6Q5eJ0ZrHG0tX67bjWiUbKP0edZkUhfRoVhmxj60wdVRkuw0jl8FhWJNJS+/vnDTHGx7mG/MwzsguOGmk+G6BP3LY978llINOjx1apv9CsGPOeKdXLrMaLYeMXQAGJfjGX068vObdzUNgGAwg7zOSffTX2tZkszdeXT9XwlqVsGWKU/0KHDw4tbBTFJXxN5DcA6r6H5fpmkJkH1BsKAfhwxbtGJt7WKa3uDEfTPW+6UzggTfeVPPP2vqAbG/ZZCkaY09lTbyAFXso5CjuFT9vhL2XBXEQaGxTJIBkcLh1JqtJBgQvH+UZpT7onp3yPg2SYZOogdUU/+NMdInqkai19VFZA4tOqpvsvfvejcw+xUFGMfo3U+Z4Lg+DI8MsZZ7/Y81FG9JGLrBrzDHoRyaDky6F3tYBE1QvDeJH/uq/tFruhXD/X7vvxjLny6JTglZoLHkevU5sMCQC60f9kZZd/7WeYrII/3gLFt3JBmV3aemr4bUXVJtXzE6h876+RjCzEjjAJCzNRD8VbtVdgzpeCRkmlZ9V+kmi+jaRggoD/8qaFUe3kNCmC85c69mgOwUiCNrrkl4aE+HaotG4Dib8rnC2ybPr9tJ2mBnYNQcGkK2GmS7ozdUHBW2us7C4RWOUTpiao77sL7UkfdrfWqQIlsayiGCnhPgaKuss46vAVPmfKncPbZSO6YKX4bjk8oemWXhpuWqyrDY0vM8aB/0o+FlLU80nEJ/nxxaDZ5VNyUHJdOM3iteKNYXFv3FvhF0ChFtAIYphznEPoanVn3+BiKnHlVkv8qy5Ynz5GBFfSRJNHRVKYfYNquqC1w7aHGc4CQHFhBynzIdCD2bXpLSaelvc0irKAvEj7K1TPATcQwcaqprpnYvO30yw7B8la8AAklq/vvWZgk88UnWai85dOqPu3IK87K/aqURIueqmeI37+Ikqfqs3S8/ilgBjHFOCLoMX5RCveWLh4lz6NGkiyNEl/knjTZzWDtpY8Xr90C97QgxHQmxl3eUypFdNg/s+X5oJalCtJKBYBgtY08Cgn/MPrUhIwgz11NCLEDlS7W2jncgE4PmfLVSxvzha2f0iw4WcjufXd3J7ZAFrPHXlmi9mW+P6CTk6Vti1GBuX1hVl5xldxVxwWb63PrMlMxB8MCrNvxUH11Kf9RRboqHCKIVW7XiTs8TINpg98ydlRh8gQHmMVV2iAfWAMPnuvFoTGsLnM/BkcMD2+Ht2zQJO8HJ4jaSbazUsIGao0b4yCLvpump/rR64iD7+HFF2K6aPRFkk5WgFPsi+PHyI2MISoSD123zh50yIeQW5Wd272QZ26XIe+/AWKIzQQLomKaPMGaxN6yw3sGcaD0R+P7pg7bzBhDN3WCGv90QJei4pkvLyMUKlY10nE4lHzBYG+efwI6bC0sZGcttYWE3scUM+vfJUkYHuZVLe8itdwwjwmdrs70KMnwB12GpTt+pO1g+vMasU80kN9Z/Dtc1j7xKlSJjupc5i5lVggAwf59qQf+J2tAYAQaodZz0oFHkMFgWjOLgiB3XLYSd6Y7kc3merNtTAQV2ryLIVhdoMdXz8nKAL11b8gpqOTavcBHc3M/7+OIRoseU9RwdRTFlBpcMr009AWFSCPkk+fqcgs2eFgDgRQxI9krm5ceuxZD39UAxnE+g+XX1q7wyhIrd5eoW0WS+b+wubcOzKg8X9bHcWroSRm5TdResOpkTr0sqSZrlKLNJOXy7EwqUyPRY7/Ab77Oo2uIMzwXtLer5wwkpiVHNcvDeNh2CNqkgnrd2ZnNxvO7fNsEIpEt1XLg8hPzgN0MM39PJwDca/OEcwAxVIWViDWeHcDuuMQsh8gWIlF1OF/KhJh48Ha3dgFQbt/hT1GpQiZd7g4OItlsmOSBOI03LvXNfAkLkyAEVjB0Eu4UsNuzRXUNIakikxW8+gYo2TI6YpjCT3ze9Ek/AXZ1IDAWhEmZYNe8z9kqBo6qC/mWuqHNIUqEGVbgKyXT7z0+1M7IcIfguZ4CJwsJafhdwb4JOAww0wzdY8WrC2CIjg9m3NdhEcqQa8sZDlcukI6QujnEAhmx1dimN4kTbMf5vvWxLa4XWvHPB2cotD3RaeyneZRj6EQ5LMEnRh5xGEt6wyqzLUMSlVkJT0GVNNoiMWxmrQkOuJ/Gt06TdUHj07XaCe1OCcgtv8VLoAKafEvEGjPrsXqvw5S3GyXH5zxyJZWX2K6H6pOJ+AucAa6kzWI5XkDYWV1YwsvwYdIQmxx2VFdF/sbU+Dfr9/6dzkg4s2kaKBdUj4Wub/nk7ZGPQt5Qo5TTMMBAh0JqGqLpOBhb1eq6JVWgnHeXHPU2LFOtyX9Iee1Q+pyn+8WaBdLe0IydNonK8vVORKrwz/OJwescNFgpHekNHIn+d95XWPnspH0lJ5MSCV43BjScQBEYsZz/3cvMuTO8Pq8qGXzf8upbLaKuqmS8RODce4uhVEiOJilNSm4WTV13a4O51DanQUkVQIFFynvRTnmdM4fa+swsDjDLPASsHHTasbx/8vnTHA1uHNqklsPX/JaVFeDS61yk4GOYVV6odmhzvINyokDFBAx+GrQ1lFdhD7EWhEnCR+Euyn08bpHd0akz8RwJa/sY4z/lMQ1mpkwinydhFQWw4vqOuY/2yUUM6kVAgQ0Se5EnhxZP16feqylR0NUf+qqzrzvi4CbpQgF0UADuV5ofdUzw2L2D9sa2aGrUTg+tEYvJ3aLclPuj0HSpbV+tDO/HzaE6wDCvoBPf9kBenjJaZAn24/CBgLu6TKcBCU24WfCs1Zk3XyT5+oEeWCIoPdSFkC6M+7+Kl5alp8hCbeYRP9Kazm4T9d4LcgyILDXUETNa2T2/DniArshG1D8j+O5dvuAummOj5rZfEHaqQRaS7qaJ8cGc6k/f+DqbILYnEz8f0AE8k7XOGrS22S9u8OF83hD3xFGB2PpTJDsGLHaUYGM3dxYlVUBuBwTp9LHb9mYRdH7mpQZX7D3XbEwd9jO61HZzBE4dsj/B93VIN4NJy+NDBDfoAgoMVgACc09YJku6FlIydzB6V3jXIfylpzTHaZ2HM7JWxwLoifL2tXPMlpyAZz756SuZIazrNVV01DpkGdS+Sjn/mqz9JftZeiILVUzbbTJ22+n6HmZXgQRpto1o3TWP2ZlrAXQrCq1mjmHC9qc2OGw2mopCqByoe6wk5Bc3A/Uzo8a5sbvpn4OR1UxzDjigRgD9QnfK9l0EYvKESotqoWzdJETZs2U1t7NOwgTDfh3SXNUoa5OrNOlr+8RCsJ2X4IgWEB96oMWorC8mRDaIOihIPK85TR4bMrdFL6GTInj0YSiWOujZZ3mFRurOA0Vj3Hokt/YFGHD5GGHdQxWQvtfBYT81BEQosolvrLwTGmhG0qzUfyUv8RhbfBVMtVbJOW8UPDuTDEJkISp1ad002IKmqQ4ticfw25UnY9oL2Q2gjcKUvT2jJgY9qJjtE6bZ+wKZChq/HNpsQB4r5hZcFnvI/mpGjgAJpKcuQGPc0GZh+PWl97fmf4b5OBumYnVXh0Esg7wLG2lJI/wPLOIgLYTMErjkNHV8uz9HdTKFn0ukLOT+w7ATXF6sHA08W+CKdt33PlfUhKUeWr0b363CbgX+3nHgtzrSmJw/cyQ6lZrKcDbyDoi6wSCa2hXm9eD/3Fp/fR+D/6XmsNO2dZk4YzD1jxggEtDOszq2466BjHRlIHadJW2pusybWWUxs1ZrXEQe+7isi2xnppHO9RpzKvCF+Emt8d4hQAVhpJQeF6InXohQ106sOvefrgqHe3jxn0q3ZVhnMcqXI62Wl7e3sm774HEF/o6q4kfHJkJ8OM4udSNj9GXrU4mrx3k/et2CH8zbuuMrZsLsYbYQJXTlXAuHN9OrFMR4qMUVBMDbtnuieteaBwBXmQZZjxQ7qEed2QjsGd0WjDXc2Vq95qD/1T17k1kKobp76THgbGyRQ72xmBT9ueJxzYSsr+JmQBhaPMxq5Se5HiCnBiyKvcrD6+YsFsVQIGIevDqtgWjFHHsdCnKTJ3qCL68tyW/mSoItMi+co7Khib1fV4KSyiWEnl9DC68K0TyXU8+QxZMWbDiT0p1wHRT9CNI08xSfgNjo1TAwcZqODsZtzajb9rZ1lwlD/TLW/R+D1HsRZuBaLaEKC9sVhGAk9BEiwLGhTp070Z1LrCzvWne0QghxYlZyfqH5Ru6uaBf6LRIe0Ztd3qQNqxJxLfWLqH9GX9LAYnT214phI3oZKZpDyF07RYKgQTNnRos+a4lYBz97Vz5JglVrZ2XwPQJvP859Pmy8RDCFeA8edhEWi1X0MzptJ/WUOhCGhHKN1EhP3SWXe7S+Q4wIS6S/ytD6EEoVKug6exxn1YP3EWCNMI1fm86ulESP+Chjwq1E03N77R3BFjf/ngUsC/ghwM8nzFKvTdRHS10ADgI/kplcRGDpg8ZKCmcMkUgytNmC9V+5Dv8gYkpW8fIovw7EueeiHZffnvuIBmRHZIj7kwHgiUjhUa3KbO4PClO92bBl0GTxQDGmGb7dOQjmHs5Vo2yxGZNkHHJdzT7yMmhAZRjcqvxUzq9wfQdzQD6Gt7oyLr4B2C7augi2ybG2Qc0x9iuQIWxgvm5cBqWiBDwEYTgpYEhnwIB4BLGnC2+fSiZDGsL2+0LKdCKQS3+XYY8e8/B5OGvlWoo2sNMslBlhi4zfH9/UXOwFkIzyUXE7D9SumcMY1YbZhr1dDpfxNntiSpr1S+L9a3WiaxI+owGh4HUODPY+Y1dPjAsCCL3ELNR5RPuYIuZBiEBXM5nk//l+NjQJxmKE1PS38S1ADE6nT/pIAWvAEbPI5JbE8GTh3TW2tPzkDekZ7eMX//UCQDfyCvMgtlpVfivXm6LpHhbvfy1UlYw2hd80mW4EdISwvGLo+n9tfYF0cYCHYekrkeqbdY58nRZki9rDKyq1XtGadZH2vQC+3vu2fGyCve+58Gi/qD4tJiEEQwjxIEB+7HXB5DbLCSnVyVs1V86aXW1ft9KhnxHzgmlaSDXrLeqxUzDrbwA8cpoEXsEmlLRoS8e7V4UWcuIaurvLEUbiGfGY5MUjV/M4qQ327tP339q0zmAbLhLU2jRhuGbdqh3XuzWywzBTnOhBgE4NMOKjNb55QLCDxoV21sCCVNL7AmgYJNDpFQKCUmpJaAQm1HAbRwWeqdrGOUJ6xukmdbIuwEK1Di1puLFqpxpfcv3Jj6ECdusxvn0tlS+SYRkGspBeYnua2Kl5Hu0kqdoS6NGqphgC9pX/4Du479+M3nxMD0e4/8hgoMyW6cYY3OY53WlJ/Xe9JGW8GEmTftwM4Lhoy8xVLF3F+nRxTRDQh24Z518jFiQ5oLpEA54fnymU5yNvTHBqUxg5Ko+Es80nhF9od+UIEJedJM89psezglQhlSmsTEp4ULr0qCzM2nDKFAtQoIj9xQpeGQG5aOHXUeHhC78NdnyTjW45zIdus0PW3Ie9JQrTPogsEXYbpvon5qcch9dK/9Y/ylgVFBq7EpDkW3829a1IayRocUdtCD1pNnepDBiSyV+c6HTXYyNZ5dZHwsIj4cYYqLVOmy3+U5bfz331cJtgaLJrlX2rI/lvROX6gPqTi5TAQx+c9gq9X1HebATKPUZIEDCVATGl6BqZIghBIITsIzSs0EiVDweCEWf4H03913frqnWF+sBRh2sOAvYwtlhqqtm7t1J7mdK7SKXldEweC7cTpN7JqOpMd1X3qZLvax/etLsV/QsBsOsHLxO+sEQuLB5o/GCHzZ/Qn8sNBE2IeBb0+/HnjLN/KjlDD5Z3kx42w8k4hKsi6m8z8ha7tOeTuT0RN4x7QbYt0P/HQSrYfeOPpAGLBXKhUN2EhLKoqdGmCxXrAG7ioIqXGBfJVEBonxO7MgCluEYiKVWU8XjXN8KdasVqSDmMen9422t2UHN62/mlsC+LO1zLOkl2NTCR37GrGo0NEudsgQUkZgHOVjgkOEmsw1UazvWDnTE5e0W9EbrP2EgnUHam79vLXFU6kFVTIcV8rEu8VJzGvD1yuxYpDvlLSZgnCoEmmTSd9lw7oU7RjZdLQFn/9DCl7yQDQRIQK6PDSbDjfovM+YEIbHbLEZNbSeB9znq7CDDHlYAVCC3Af/87R/af3fA1rhtJHUx/GCQMDCtCIqIOTz8u+xUlJCqYfbI7JhBycWMUVx0z7uceJVtIAvmf5GfZePVR3c5UjYNSxVD6iG7RM0ZCa1gFROu4h1cjIpzQze2+Goyg+/P/kkSxsKcZY8gZdjLluuVS0EE42VBKGCzBJYoxM2X4j9PyWzwOkE6d3uSDQaXkxDQfQNztuFjlfjBzfMLaAIcxmr+R0VMN9NXxgX+Y4LP/D/29LgLlX4OoeykKIKT9nEwPrXvm3d9qBLJg5p5vNYWmSB6YganZCSjR2qDNoSeyoFmrG6t8fndICAfGZ7/qAOXpFhmLpWlNsQabemqv0c3L/WcJEWVe9DdW44hRaU82O4elYAc9vkJTu6gtOTNw+TE66MvwxelNsNKmEqEDcfydzn5kojKZzRIudGNW7MzpN7EKyMtJo2rFY97z7C8UmWHhLyx9aEX+USq3d4WGrdNdHPdmiJCn3k/w+zLUbdPJ7gdIYNVcVsyuKZ3jtQahfPDIz5iatJV5qJYq90BAHsvLZFqUBPHljfx246yYxnw+3wfN2L/JNtX21LmQZM3FuaOJkat5DZCaMg5+H0wVHMCEJj+DPrT5yTRYo39lPMNUE4JIRqAs6KSa8zaOijmDJUws/jDT6qXsiu7jFLiBQfZFQN8mjRZjwNJ+ecDs0mGlcyrEnqEb1KqAqO2b0cvMAyPwrE/iphzKKUTI18H2Npx7Cmbcd/k+gQseYABFMgEOyi5AEbtsIr0sa+++ajA/f271DNJRhhUwQpm713f2i4USnbujfe1qCyJQdoOdecBlsft1giAy8s1isEitY3L55tUHQw0ezq4YOBJ0tiMW/o5TBMjcdSutr3275oURAJN4Hy+yhCQ9qwC0d7cqXMQDw8KaPmNWP9XoWCNVgHf/7pslykSH6eS0atnbZkVafWHFbhSfgy+plefs4L6Hd2Gu1auYPb6uhcCLN/fyXP7kofSd1QkhZpQrpyLUCYiaasy44ISRgxWQMPDuZNclw4b8u0jG3xDsbBqdIwRnmQWdpXV8jVIqdho2JSeI0EpAwJ1sDu1Z8Ab2A8nkbYa2nM1LeVI9qX2KpBQj954IMgHR83UuQmEf80sg/6+39eeLxtWjjkqy9aqTcstG4kKIBmGhd+tRauV02tv1pfUOJk2WT86bu4GUqUxjFk=
Variant 6
DifficultyLevel
519
Question
Point W is translated left 7 units and down 4 units.
What are the new coordinates of W?
Worked Solution
W has coordinates ( 4 , 5 )
When translated left 7 and 4 down, the x-value decreases by 7 and the y-value decreases by 4.
∴ New coordinates are ( 4 − 7 , 5 − 4 ) = ( − 3 , 1 ).
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Point $W$ is translated left 7 units and down 4 units.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2023/08/Algebra-NAP_20333v6.svg 300 indent2 vpad
What are the new coordinates of $W$? |
workedSolution | $W$ has coordinates ( 4 , 5 )
When translated left 7 and 4 down, the $\large x$-value decreases by 7 and the $\large y$-value decreases by 4.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2023/08/Algebra-NAP_20333v6ws-min.svg 300 indent2 vpad
$\therefore$ New coordinates are ( 4 $-$ 7 , 5 $-$ 4 ) = {{{correctAnswer}}}. |
correctAnswer | |
Answers