20083
Question
The diagram below shows the front view of a house in the shape of a triangular prism.
{{image}}
What is the size of the angle a°?
Worked Solution
Sum of the internal angles of a Δ=180°
|
|
∴α° |
= 180 − ({{angle}} + {{angle}}) |
|
= {{{correctAnswer}}} |
U2FsdGVkX1/dE500UrUC4I83Hx4YiXmeF7mzIfpkD9Qo+pxtUTFIia74+BY6XPtpDCSKCi1UxYUFmDWO9S0vV9cq6r/rdBHgWOyWFFsEnuG7yOX4CJ0vxQQjdpaltsHBjZ23FhJnHDaCA5utsQucIE6jfGkiFKWbO9ruKgSwLE1UcSAe6k1bUmbSk1nVQVk6NvoWPHAc/Wj2KTFdyeoL4sLZlX5MV8QwWqgGbxAPIM27EhMDtz8Du2Q3guGAUEM6p2KLDN1CM6XUmR7FKJwI7jAEsHWfUYNxfV68cTGJgUL5g1WrhtGpM6pPESwMQIgwt/k2UV5iMigVOwDybczFAVnolBKDJCVUQDqVgkp3HrnqbxELrYCt1L5mGFUtKn6tq9K3H9Op2US7ymAs1Ybgbc15aBpziZ8u4YI4pIRygqC+v9O9TqVb0lOKDz12yk4ndrypmI3Tch7dt357UZ4fOqbMvyXH6TU+flgPRBUeVqvgEKuNREgamPfAEtZtn+kWd7dSdudW0F1i4IpEDLBK+ATXlK5+YXL/aYdLdFKQgtW/SlQIEp67f2zVgnCCko6QQNEUhB4Ba+rcjemhG3sIMWOOpA8ModK6O7eiYEA2eEtnyVhNRs4OyehGdWhPuR+Y0jv1axtG7NrXZJTfY5LUM1BoVTI5ew2Ly79D+cgrVU/QHIKqkOFTtPApGcT2SZ09C25QokJtZEp6Dvo/Uvw99GSnckGIAvR9cLhgfYVisfIi4ullT1x2YGbCFVwnwzCJ5dT+YY/MZSt1nz0/v3EhYqOzJnxtzB3eAGwa80pZ/pHIgPznpL2QMHMht+moK1e3lAyy/GgZDOj3yNb7FgQhv0B2Mp4LnHjbZRZyFpuDMUQFV6d30dX1DJBFW1FQfWOCXGkZ2p90czl8sHAB4RvqJnJX0XdqdUehC8dWVwhab0X+agWjdQnxZ0nyVQeMxDoPtvLMaDfMIVJtisOmjHtOxckX8S+JAT0EqliCIbJ4InruiiPfblIkGSB8PK04Kesntq73deMU622X13gQ89BGxV7FgbNHrKrs0Oniw1tXM71xuC4+IdXU6NA4Xy1iQoXHmti6z+j60y2QJFiZlcK5LDKzTTeZ3qo0dAiUbPSlv5PWgAiQHFwAfN5Rz2Zrodx8j6EWpM5VxsK4SrnkBUiVYG9m+t/m3qKZRls87vSBlBB8QbPnM7bnbDiwlG1PRJAH3zaU+k9FnUVbKS1KEeTrWmCTvHTs7qZcIrnQHiOqulJEtSNPEztDD2zly7t2E2XsQhXM2cO3EXI8lZ4LewR1aW07K67A1cFy0Ii1pDScVUoCZzraUTyEskigkBX8FOEWmieBDpmGDi8/XsbInq+w9d1lK0Kd9DZITqF5pO6kHRwvRw96Jh3Weu0L9bcV0oWz7/CmvvKnYou1u+n5ClX3BYuSTC9hIGSv8HZDA/+vMYU7M2vUR2XSWOdkEGFOMTEiybfP4Mfgy3qw5ZTPCbJK+VW3Fb1yUa7fMMtZTDBx0i4Bd/GPALplDv4lMrOwcsGzngsBldG3rLzuP+lD4RqiiBhbbV+L65pj9i/2Qnnl6vi3g5sZMesXn/doTx5J1dVZRLHPw+uSPvSU/WhoZwAwtKj+ZYTg0364hxTDzz/URVplnN/3N7ykfr8LzcsdFjrA5Roc5VXudhrfIk2wTaNdtcS3BdXP9MeUySS6rn6lKtbopslWCvzAqfj7XTeZNVhu0sJjKaaSeHhoSirFMGV+GDkAM6u6BjCEgW+U/VJd/S2p+Bwp3vI6KFowiHi0rdM4hPGPzKlmNaddKJqJ/LKCVjETJ4w07r8YPZ24bmXjm7yB+zLydtnMTHFP58cA6FVNKkhfd5akNzs/cNhtf8PWPZjNZBQL9uGorv/5WsQ0vPmWeXjtLlyEbKjIZzNVJGHZjiwSyFNisjIRhSe3yYKmmQCewtOoVopC1hWv156pyJG4jHAcWqYzhHJ4IBPJX857oVe6pzABxsvt+nh7IdW9+q/6+FR9+h1tU2h8lTX3lPApo7718qGxAv6QdlvpEfSTePTrONkuCDTBEix3w55VB/y1HE001kDwY05qwh1l7nG3P30pLqJVPLW8FNr7bYPe9fWjsjDuLYutlQGA7ix+flvLcCx5OwS7CH6n+GHRVJa6dBVn3dMwyPhvDugRo8pquBnQ99xK/wSJBxmCCGKlik8GWAnIQ6ZpeXYova866Ct5iQp5NIyCFA1c3CZejApUwyNKPChhxORH/9hSqzum4kPSeHhaXoyh40RkxA9AeOJO0aqb0t2dtlK42XnY4rMfygOnxnVc7tMdG+YZZt9xJYlCMg5w7GFqS4KyUZ3Ol2ghx2zmMaP/UhpUS4sXQ9WfFc8ulRD6m7q75gQNS7o3XwP00Ijc5f780SJGGrSOleOoTO8Yzc3SQpRUwX3kaeDNnTT57XxySIVlqrdw6zmvuAj3GW5w3AL/2BM/A7wtMYlvaAlMe3cE2GMeRUu8EbkllN4n20TTai3REffuiLZixGfkv7d3m8pPkIoP+ILThXL3jQd3Fct6ye8hn3ATtgt1YFMReaY+XZGfyj2BdBmYMIqQIzdVisTkWYDvtBwpdAHWSkXP3GRqIRSMSNBJLnJkove9OhDy7rrigy3yXChBhN5+zgK8d2lDo5wJpwnapllrQlusdvJcjVBGvJd3u34tSXV0l4WNvi9xTS8PcAc3OPqQh+OhKKcWXpv7/z1di7rvpt6TsJMQR47EnSSVwRIRlweaxtvunJkSn95lhQPpI/idEZF3BSn0udCqztXJcUMa6lIBzP0idJjG1hnVxuS42LSAFMZLIMq5Fqbyim1/lXTXwlbCaV0DtGtdrYy/NzjIbuD/lMNekw2R8FR1p6Rh/TGTq82UoFHrQYnRIjGcLIhTOtNwHp+u5wJElhCDhg2X3Q61sUsVJzodJnDRr8jHiPRIMCN96HD9neIOqYkD4glt+oQH/L37s1N4ASYdOWkyLbvj0QEv8X767K0gz0zlEXqm76gXYEXcQaIMIPndw18qSYl0H9YmSA2gexg00iEu4sY6VflOEb/C+qWPk2TEquyIsW/5+YThts5AM0WIb1rTKlIX6d701d2aR30YxvRyaGYkYozPvWU6ms3d3SLJ87tqdrVcCSER26Tba9bxlUOE9Xe+xFrMzNct9yx43enSsxbtBfu+6m7T6+N1kLYooDLzTvcAQchRSAVWekcACl0FS2hVAhdUlio7vXb0hjTLM324rkDHOP0C3MzwpEWeJ2BXrdSD8GPMTnlpMH/BdiXkaWECvHCLYKA/r+HJocoblx/lEkZQVjnEJ6eu1zZ+y0NMSbkpJB9wdWJsofCUfK3cgCHnoAqsUNo5yc9PJ1askWTPLYhyI3s9w7F/YlS59FIkwI26NNZYQn6OTPeEQ/hhEPe+N+whTPorSirJptVMQ+jOOWtRXu5NZI0mcJ+HNMhSRRFkv+Rznlh3IX+hzvNWODNvRwYFZU4ouLrFdXTP1nHUgxn6OLDN/noGG7eSN1ymYe/qKy9G5FMcaHmCJ45OOPnDa8dGAZZqZjVG1y5hHmD6PXTg1nPSvxe33PsSa++J5OM4Shs3KjX3Qu+VrucDa/Vvyk3Wsb4Uv0KR82JsWCOzZeh3k70W/BI3FbAEiwrnWyFnWqZcBRXgSAqsR39OMrAX79NjeWUriOdiOSECZCYn7/BNG/7CIgzFIDpn1e5S00OUNdZMcl5zExHJTT3JNCnOG2OVieQOHDuHGZwj2R3xVZQqULvX8TzZcw2CWy0KQBPfNdBfX0tJbZB8+1/vSwsRe/pKDNcDifF84w/NaBhvtqPgQZ1ULt1u5iNMJ8qurHrH4F41IMLnCclonfD6qlOpEAEf0hAmtx1lWPjaj18Cl/ugUJC7bq2g8OXSNc7qu5ij61K4+t73ATg4j1bRHk5nEP1fZIr374ZJDEdAKZN6ucXEaBqH2JOtMAdy5dns1YCI0SLTXxoAD41Huqg51ia9JospJGSrBmCa4TkM2dMmqVxXLKAe47dzg4s3DusNiqxHGiq1eWDhlc0H8fU6v4BUso2o9+oCMZw5aXoXyPC2bGtYNqodwvGcPOXELnoHvQojfLt+x9st6gyOo39q6loMUjEdEjw1a5aZm3qVi+u5wm3/C67J4YDWstAObTx5n4pnlW7VoUDFM79+LCIMZcVC7M8CFJVnY0O1fGcocrkpMYbgukEGlQvp89tvNw6BT7iCi90Xkboq9tJ8vFI0Yq4C3U996Ao/OqLa4QBmK4GKEp+ErXEMJhQVweKJood6qFjnGAcXERrSa7Sn/38XI5C4yswWYlmoeeDCQlPaLZ3dIP4LPWer4WG29PeyPTD8InhzwLYUrjBeEeRAbxXHagk+23rj/Z4wUbbzusSLhtRXSj3xxhck2vldMMa26j1MYbAPYdRu7sH7zkaPYR7w+CyzKisXrWM2C/CHWobu9bcp65T27WfFQXG2k5xbH9SKFlM5YGmrLBN8JLLziO0DJkFY33Hu+BHHUIRlWYMiyvX8ukRT/pDgOP9HxBbO+mxs4ivJ+DVrCd2CMantqDiAZbp0uAfC7Ha0MS3GhCMSSWPaXyak0PrRymRcHkddUQeDKnRl8ntsfm7E9qhdo5wTbZVscwJahbBshbrgZXTn1zyCl/xUccjq7yVag1D62nJQk3U2BL0n8Kit8qK2cGauZq/ZKnJ8UePX/mTPFuYu8BHuR5WYv3k4uwQqiLCvXV+fLtG/b6wOXX5/CaQwBeS/osusKayR/IxarKN5Ko6C3U+ML78HO7POpalq7O6TcqcvZYd7uiRLTAfjvKXK8y6jwc9a9yHW8VlYbUKlEFnLBmRWCjvivfmoMa+n4YGbKdWrZiz/WUS69Rs+/hb0irVmjVBJvYkmoPlzIpq6ssndi3bvueHI6emn1qwY1PpZYyDJpOKPmdViP1Pct8+aacQRiNR7i60W+Kw1i6fAyylKNyonPNI/l6nHpwCNv3ZkVxexWqJn8XDofj9s6IhdJZNwjqBNofudJ19c4xTah4WVuIWLf9C8HoN3yihfUIdXE0+sxTPs1T6SGrxNd78kjejpHEUzj+q7OkX7yGl3c0/HgW677n082KRG13l3idFoor3FHbCnTpcIDy94vFGjftPNDY8xsC416xm/zYYZrvbJJsgVm+EoU0J4umLvGYpxX/5ZSb9v4SmyjWmVWeXFYnMq6/C2y/KszoLN69Df1/dcS+bwkpzd3cx7FDO7+i9EW+Zu9CnXauDXaYTLwMdCYbgHOydeN9b6l1opJMe+2fci2PnNVQU8EPO3qRzKRVMVMuKpCZSKh56L7icJV9KBNzejhLpK7rMfwv2e9BvPhC12PJ2sukpTcak6yrZm7zNZdjQWSi3OwEs44ecO8NADMNPjpryOQFpKNTJNVupb8RV/eTZl3PgoXcKuZ3ViqFormrq3jN69+rTvDrZneuLXVBaJCZo6nhI6iM12qX03F8lC3bvOucY1d0wPXfd8115eyspTEJomWhNa/wpegRcRZnr5GOItHlaA6osolVf+1tydM/7LgPkq4VGyG4CSvzqlLeFyOpvCF50PBfqcpIlzW18M7yRBX6gCFFrJmgkU3lqccBFK/Yo/fUTn8y9ZT4jT2nCefkCjxiZK8vLRS8kcv1kbuniwDMBjxDiRzPRz4JvvyjlfxWnSDxgYXR62MI7jHeMAHH0OpJ2ABoF2BmXYfbH9rp8xI9kPaTn5ESrLQu0xtZB+bUidTsfcdXyIohKHe4ZhAv/vj0viiDkv48ARSVT3mZk43iJ27cJbIiVADlWeH6scOvxcva3xjrq9gK9CXE82xz5Un27NgcJcjOeSYNV5lejnjz5RbHfsomL3kV9XuY3tI5AY5dO79EUtlihgys4kS57XQ3ROE7SnWZuFGT+6c3PFunUL5vV2tcw/mkptudMDT3hXMLHsmoMdnhF3Bwdlcc54jCHfLMbWL6lWo1UkiSWQ7UoFp01BREkFY8+vsWOUxFF0OXrYOf3ZyJCOJJY6OWEMfKkOdkICfW0MFRSCOSvLcvUd/Y/eg8LHtBBJubB1O84w5eBTLKolb8HmzmscNu43HZSaHqa+YHNQzcUrNqDKVfMlXKadILkqs0yPi4Qjo4abEwixys7lTkOSlgCT4v0KtZPBpTVqOggdwioQUtefyVAtrX8f1Klu5W2zC+x1Zz62VDhrTkOwy3C5vxjzNliVhVZc/RUN5aeRKkoRg9pjHtv3YPhJYxLzLpbZ90qAYuD6Vc01FDvQ/yQn+0UgAYjFUAPC7LpKCsGN40SavafNc79WYCFhaFhNyKVJdgOaUKJL8Kh2SG1fCnGyNM5y7hOv9SyiyjpPD4E2vA3r26swqxSY4OLcxxHlBsrbOIFi2CrjWTwlstwqm9tQB39LOpLC5EBRg98J0Qjeb5DdYFlohP8ZEAogga2nita7hPVNm26F/MdC2QZSRZGoR3qQ7xbiCZys0SHWe3DNDiHevyJZhqWEwqvAbdwY0l4TakgaG4dxWY8iXGZPWJJcU027ITmu8kUbfMx0eMfuvAMRmJ8ELDGE9JyaaoUXto4jWxiOiBz8+ndqFPbSM0chMTYFGgHaSL2qR67rFSwllK1uramV77kj0FaZHeI8LsmNsd1yr0bncB/V2S9Ukq5ENTem4+xpOUVtntm3O7IR4veeXNSNtUjz4/WLfdxCITgGg/7fTlBI05mYRV4iCJ8fdgYpLsQrf1IdEdWDb2EEDW258sKjEalkfDbxEeROBY2IySe1oOAgp4pnnel26voYjTLxC2iXMxh4Cj63aKj9UQ5NPSIRVa0VyHhf4/YS2W10LUK0ky9jx0kP2V0QfOTOF2Zi4Yb9F+tX4RweDpH8Ha8F/Q3zrZ3ld79F7yn8SehvGDB3dVsqgsEb97kzB8QDcxMWT3AqP3i3Np9T+jDAkXheGMIFQJJDd4WXI/VYkMuquu/OtTfvC2aBvAs9zUpuIWkMfTW90FhWowFyC6bgYCCugiv+qry08CGK6ggQhRTDqTEYZ00uqo228aXrmLgxJf7eE2qdJisDIZdq3uCU1Qsa4FElbYIv7JE9pEUluw7M4+Gz4vUyVzQqliqQlJ6s3YN7mBxjaAjIs1L4nT6gI1HpPaJLQRmPw5fMbUUYoHxXU/sMIqd3fJa4lAellMqxN5ww6bLwZNCnEnr0jJ/G02xK4NcSJ9nIFPmVcmGufihQdCcfsR8lAlVNhpSwz/9VxKMz6T0OPHeCoqK6SV75y5rEyg3ti627/B3N9v7WwvsJeIyvs8VTsHjp+z+OsXYvlHsRx+4sbvmL125ebK3C9oFOO5LqGw7bRBRLFZS9na+PrFS14LIGjmWOequg5mS8Q72IcA3ySRcINtZrLWV9xsyv6iQVxbxw1RIGC++QT5BjzmQ1CRQxwpL0Q5usqjiWPGLDdAE+VLXYxJyV9ZlMftu7jbL/aZ4KKInL0bhXwuz0A5e603oJI3S1FZYhtW743Npo8HMaopb739z2oP8DHrMVSV9rVg2hvKMOwedTeUmkp8i5vjmW/rmmcsVsTjHqMlXgtlz/IgS/RqnYmgGU2zVTn9VVnSuhmUuI0LoIlOAXHwN0x5ZRSg5sCzIbA0c0hMlRt7pGadMLtYHGsoNjlOX2HGhSHq1ScoMTTaiUhPR65646tSfqdlGflUicff9sITcDuF+JM2kNksSU9zeEvKbizGbatSkgAyHf42a2cJUv04SlRioVdVtXzGQjuHKnqqIVn5LkA2mySjBgv6/2JdIEEemiHtcRD8K4mTW1Rtkw5twio4YfajqUOBK0Re7YX+n98B9tu7k9GVK8/+MBpRaZf8izh44iRQHcLjryXmPpBsVvtV1kAfM798Vg+E8uQa7noEepQW9XHcPzQ9K5EhZ5WXyxel+qqaK4oaOdK/TL4qEF9HDAQkuzGP4Ek+rUo000lhN45Rz4ww0E1j8H0F+x1R2xNjEG4nGrTVeYzmHRLP+HlYwR80xi383NvA3g/afHDLFFlzXCR43vD1b0oKxSMXMKX8arxzMdCBZDelQ7SDhulfkra8SiTvyIbI2rbb6PYWPfpmSjFdAqBzrt/SwvbfDR0ehRMgk9ooz5qX5hMBNm14Wwi1cc1H2FPbR2/GcWbhsiNj6gaQpM9WbyBSHjn5j5nv3tWlAl6AIHlD/7DOlF9lqpE7WfZCMiWNpsuRGvNUb1OpSFWt52H2QwhTnJi02sV6wadNkCbp0QKHKq4vYCBVyCbkdkFrcYbgvA7tFpMrcXB5SCsx+unDgGYt7VVRaBPVKq++arPRPgUsh1fehVPrPkvsTlxImgOH73oxtEOkHIhG2YMPg8vQTi/ASm8BGRkPS6mfa4qzbZAiiLhBCTcrzj8gFY6/kh6/D0E77NWIelMQMJN9sEihyR9oYdcJxF/IZS1D3TC5QzbvhzKDU58wyNFI1fCTpBmPWPLvEb/osm2Qdeg1OrxQ14+BTJ5I7ff5S4HWUcynSwdhWUe5RPcNW2pp/rJaXTRqeW/DCLgFf7wSYgjOGHuH7OZyE4aoeQunz93vBHOv7YbdBgmA0YgqUfFT2X+VjHAeDcGlwOcNEshVqvo48VWrTl54gQ4Lf042L6QEkDR5EmFtlZk1w6/G2x9fBPBFKaPIK9yk4lQ0waDFTIb5019ohVj1cFyRFKfX43sbLsWgs/uu87b+Bla/XKo/H28CJ72GnO0Z2R48fHfI1CXIfMWpcn80JrgdFqvyHoTDC6U75Chp3lyP6w/V4oeVf6yAqkCzSoq/jeXeqxLHQqtR03EIGfRwk1weYJzKpt8TLkF7fsouBTzs/SmKQ5S6TOygLfpRnOAAxwIabAgAjOUPn4BEClrCHBTO3B4x0q5KvO8xgnQf5C8lmgTPuSZFVDVZr3axQtbGyAtRQw9CVFGl5OTw+/qEduJPkUi1mp7UNVY4M+zXXdtCPIaln0TX/QnSbyv4y53MiJU9D9UIuW9gen5tOXXeGgbgaTe29BmvWdsWu4iHjJTIcCWVc40ytYiDFQvwGAX+i6hWsD4KfWX7Ah3SBNZ6LpN9WIQDyS5tMsOMNtDo2stLQ3ScJS+dN/GEFRnmhMAS0Bw9DyUKW+lQ7IMXBQOTCOBcOLLHu9vveD8Vt5NaZlGzMFoZ9utgf0EPRBJ7ZWdoAUBvg/TII6Z2O7+pPzueF1XsD5CjaTLBJdGpx+2hxHOn0Uy2ktI5zXWOsFvRISQl4KFnuX+LsgmuDZsykMbZ5yhMjxDKOXcRdM+ce3l+L7m/vQIZ1AiM5DC9OzUxDHAvYEuMwKstvgeo5Y5U8XDAPYPwgCh4cYfv1XRJ8LxP8dot/cBalMppI74Kmj5SJXUSheiyW/QdV65fqcQc+fH331hHsFpPRu49CrMmc0Mps=
Variant 0
DifficultyLevel
571
Question
The diagram below shows the front view of a house in the shape of a triangular prism.
What is the size of the angle a°?
Worked Solution
Sum of the internal angles of a Δ=180°
|
|
∴α° |
= 180 − (75 + 75) |
|
= 30° |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
angle | |
image | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2020/07/Q19var1.svg 160 indent3 vpad |
correctAnswer | |
Answers
U2FsdGVkX1+rdrr8n2kOQdcHWunr/cEkAhH/TbjCzSxUuh3z2jftUAYQ5hw2k4+W1h0Ys5C6PxL/Q4Pv7fK6jXBDPjSUruw+78PEKbKF5wlXXMirsLQ+Q9QnnzfBl9GGUbyNrHKTQmL+dUYDZSIlzOOLCiSeZaE0vLJA0FMOeCN4bBTcK4iInVoZHafHm1ABL+evBeB1op58VbxdcBbi+xrKbZDaECsU+DQkWkbSrIqUpxEV3J9P8uLCpcIgKprnXAGtdZXH8MllVPZWs4IUkyDH6N8uoN6nShibvIaj1fQI+kTiavmt5eOEcQ494CQbnyGh49mnaUgs7KgJcqAtPuipJmb9J/4Sbt2bjAKFSSMwZelIpHMH3tuKv1zXTaKQxc1B1dM8aeSrbGNq/nzb4YQaoOjD7zlg86jYqK3MweIqcsayPj/oIifum0zwfYRK0kU4Abb2K/NUpIeKgbMD/61u1V6P0jEQr31iDIb7Vk1GA2cyw0M5BYes19XYK29rnF0zojrLoZzuatMmEXjrpGjVFGUzSRVOFZFaQR9NhnaaDlzt1fUgRf4ZAkiZ+gAC7HdSp0qkZV2xc45yBIym4tn/qzj0778eflNkvNxcdk4NdlEwyQVDwH4WKsFm1gqQbE4QV2fINUCghQKhjpijaOAj8GwMrbCyoflT5FhZbmyVuWLZ6gRXJj2jEdYLXf4JSfIt2uOz09MFiHJJSXRdVsXWrqIOWYUXW0VYJLGLGY1Xxi5zyyryuuAcYewWGFMtTFFIHKYUxF9ruh/K4Xcw9t2u9QAV/9O9URoToa3w+upHnlZvXABlzDcl7ZX+nQL53x6mhaaTDmkOeLOuudZg4Cx+4K4o/60VLwqgxJlLGcEcE0lWdVM/W3I5CRrPs6d+TWV5Of2gxrn79UiA9cLPpJg4vtxqbxfHbN2kZvYRKc7bu8XtzQqrpxvjt6JZMaHM/Kk8AC4K7r6jUtbxB4j+FLP+UxtceZHeZbmqI2avrYW1Uv613gOVHOtcTM/WeSm56aUMcw3OMXwVyYz3LHfddJlysWVEGym+KWNYUQ1laLqVAVkYZhRHGDdtDZL0ZdPpyVaq+10+P0QlmAkNU5gkDPmh/WGnIxr9hbcT+Zll7YQSCRNU0TFN6GAF3x9b2YgzMIhrAoxzcYxMP213QuCF610dHvmTwcgMPeJ95sJIZBVsggBMftEQcXGsCnSKYxKZ1fv8durK94ld84/eahOYGF+4yCptP2Eljxa8eJ5JbmwmTGGa9PlunxPG6DbClu1Z4SbfysyXofP1SbHXxLagrK6AgeFGhh7vSV5UNRJx3TtgYxA229Mf+/5C52wyck5Jh9D0+c/OWUW+E3HhUDQmttZpqAQNDM+5+ZWNB8t7jM0DhkbC/mcb75lQPG6+jaZ5l8nA7F/HJsG2NFqFv15/w01FuZFs+Md441w8oBgdnmxyc0XRlPhng98WdL3FXhkxjpbYhurUQtgu0urVRyzeyEj4aCG4hTITM62EiJmH4ezxVl19+pnGMnH+gAXBYdiAlHhaeGl0tTUTdvrMw0QRJu5tMiKK1Gn4zuC08G/jyly/q4Ue96an6DbxhhqddQ89mWP7DlnSpJqyX9eKyZhE9F+8FuehcltPQurmOwEeS+p5RL3KFORqo8V+f+l4LVv2dZLyR+sxEb8ijJAW0PAE8vfR9KwvZO1IBxCyjUYwnyhqwcFCQT1Tbh2P/1wXO2/yysd+isZbGBDQVmcgaMxSqAY413nnhtYYJNmOJhR70JpRvBvGsm28LPeziSCw+6Ap7Dom6a/uNPhIO8NOviffRpGvGjrme/9kznf0QdmkM5T+CbsmtjhNnvEa82FYZQjwp02+PZlnSFbTSnuaQx7k6nEU9GcY2hOmnSO1RDFuBtW17z/bEfGnEr9F77kvKmGkZpRUSOv5jRhOu/ZT756zA/rbjzzyVIYnpaL0Gs8sH3jKAmLz6FmlP/2Jxee+J7cdvzg/sACt+ScZ9qwmfoGKqpQuNWK3JnBCrIOw5AOx6WZfO03SS4E83DJKdTkzgbYIWxG+WqWzJ/boJKPV9PoKgfY+OFWTU8wUnnFgB7+zd3Qcav7gxXXjpvqc1T9iQFumvffPc4n3VKHKUSOeDPyNPEBqS5BQCI9gH6LginyATlpfimliwezMAeqVxWbyq3leKnjtTDbuOmmNVDK20Mh9keUxODLc4D4tNnIissD6T35L1VwGiMAuqIA2rWHm4Y0G9FytpDN2+VxBtObwqiieWw5DJTxQrMa5JeLpVTblaKqSA8Ijn+iS1M4FQTmygBq8euWmQ5i+fnV3AGWzSXEdU4vWKdFopTSoeGFOY85CXrd43A4rSyjVshtaZ4FTEAMTan8rVIahNaLarwAU3B1tIq4gqLfaqMoTmlQpbM+boZlPDKRVn8b3ALjjGbhbMGuDN7wimE4zF+Dx1Jos2XsugKp4CyYzpcEYTXHF7vk7ZlJ059NLpQjQMCGmyG+vOU6ZmQ0dGswO12HifPsUb3Hfqj8Zz3rAl3m2McA/t+Fgv1YBweSJyX8BpzMqWFbkgh0mPIeDMdyHO5vXMQUaJfd8qTA3iyozM4Nw6W9I5z8wFm6mecbkOv2wXWZyVU+iJM0glfnVYPF+VQBAJFVWMG+wOrLPrDPUzaueK69uWAxR/RWj75f3zxRq9MihtpEJtioIr/Qvu3XaugerjTllkO2xP0Hi46JCSN2tYuuaaf0yfz4ddAvk1tMuBwvrjX9PndqvqGyTJ+1Gk93g8vFcKZ67nAkeaSwX/A2uGztihisUQh/e3D43KdtT/2UfqJPQfDVX0PW6udqqWSUFHQxkNpQQselnzmUlmLdEZZbUUu2TDTkiyTjX7l43r12UP0DMAJX6M7prJKsA8ydUhZpYccdo9t92jGHM+4zpSsSoqGFOPrkgs1o4FNLYwXyb7NAgLXDa68/WhZGkM4vx+cpBR6Cd9lkgFB56GHkafGdrLigjccdcvN1X8Tcphwh2HEPQoJb2sxjQjW8/8wKtPp9BIjG9Sl9+Tgfm8K3zMS1JuoBHr1/JN+fTzUpDqlO4fuSrue+wElKbZaR9mCIZsSuIKblBwZRpMCW388ehLZH0812uFMgcw7QXPmTdfT5G4DBSjfZOpA5gL88UO1BPI5AlrNK6RNiOid/eCqio7QWAqLT4g6iSd+mQ6xLtuWuJzzC3S9Fy2Fci2y3UvqqJ7FyZiruedg10S0we2J8CWdzCAn/DntbHqZjxki56ETMs5RmqA3q6y1qGub4P6XD4bdGfEgVcSJkeKJw2U60EiuYg/kVLn9lidrm46AWcUTeX3e1fc1tU2tdbXvstuj1q+7AF6LrixO5w7JbiPJBaSB87cMDtlVe+R4DOqnUOTYRsJU75j9IjS9tr5ptRdsZnGL3QHUprQ1TqX3iCLDB7m5AB2CgQBReQyjp7Bl7i96uv6Nt1WrSjFf2Lzgjq5rR5vKfd3MokWAEqXIWfX7dRl6VfxyTgmctue79YDm1ZXjoR4sTfyD77GUsJhuv5VG/9NuXvI2cDc8y9q+iANS5TWTRxsnVZRaG/TOZjVWKlMi5I3FftjBjcyeQnqEazyk9zWz2yZ1eTr94rtiCSc/f0OHmOwtvfwerMH+UMipngggjJWssfyl5USs/nn7fereZmz05uC9L4+i/2SC6//QlVzceR6apzRlwYN23eDX8tBiDtEzrsluCdjEXPuNH+bvElXRSolthA0xI8qotIsXVtFAiIF8AGT1JVO4U7PO6RngKSBhHRQzDe23hpR/iC3zsTmz23ArqWeMdujGKdE13QqYlTX/cZ5wLH4Rvdh8bTIGo5EGeQ3IM+MROx5r449Uy9Pwu7xGMctyprAK5C/JTNfg/aYb0luzPH3Di2NR7UDB7GMd9TXoE33ul8EQbGKRwURm3gEr/Zcf+fcPO8J5uwACIt7/MXBp2oXOQTVlEIVX3a7oTpUpBiwcc31q2gtgGoYyobvFjGHgynghIELSCfqaO8Ohsta8mDjtI++h3+YRPVRvJFmW8eqgBhaScfF4+Mxefh9Uxsyn8GhIdk6fK7ux/bavJFVfQ/BfULmLYD9xWQ2ztDa+axLgK9/oD8YmciD0z1lHuLuvRIatRtZ1CWebhuikdtCupEV35NT7UObAfHrGAAi2VjA7lCLvuMYudr90WhhadXpiwfcEeUUg3FTzvpQ3JZ/+TCnFrWDiqTTGi9hB7hV5UtC6NqagQt+pysjV/lq6uUAu5pSLSaFm3rLgDrQHUesY97/ASbkMyCsOlqUdzji6sQ3/k+dhv9OjrE90qmnngByPPlKnWgUrpMbyvTXwd0IiSDaAQC5Dj7kfuIJ3Nu1lepBjOBkMC4hq72Rj+Bq35D6DXEpnQgF960W3twbV40fy+bhTvGtIDQfOFDPPuCcy1gXTOvQnmF0gdeWggSI+zoEjW+IEgNHeELbP/Bm7bIDOUVga9+KE2hmDF/9j1snSapASTVfXjTNNssRvGlQQLuJaDkQs9IgR90j3TAHT9M2vCRHb4UDd4f3Qmmi9/xuqO5k7tGBEHOLEjFbMf36ybvj/ZIYSsLeQBmY109s/ENTuSzJf9OH5JnUY9bhHZTVNSn/g4l09b41PjqD+wNs5usJ15hYTuaALWLi/S0FRwTAiFqpyZF/0jK5VIBVNuuLCqNfFaXlt+421XNvJ0GnsQzohHfs1Hkt9rw07EnQb4E45rFdzAbm4s5YNc4KIhYuxLu17MDIZoB9TLpBwXeiYisp9Ofy0qxhcI7AjGRRKSQHM+UZFennHapYHALED0zBhd6h6oq3BSz7YOdx8LqlHaSuJzmy5ahl5jZGs2B4XnGem6W6Skrj87zGnrC7CnLdQ9a6xvoUEF0/Hc+8clWe8HGBwUi7TSPAb/V7toz9VLRzfeLVOyqCmxfs7baEtCcurYuf6KqughqsdWLjL773pG4vIznGT6CLx5bbOulKsrmkKVFpLmsmLuhXV1xcw7s5q4+SAGhMJKOiZGet+YN1XfH3hJvx8wSZOeBDkwafwE7sG4F+RDtlnaTpPmsG1JtPtR9m/MmzVxrineRijPXc3TkJXji0Vyi8npesRoNgOlQs8cGz4iCzfFrbaXsZfioUQpG9smPW3zXmk6wRt/IqGaWRe7tgQH5G7jI2MK8OR3Rafbj8FXktp14SvzwjgAS4ps11nZukoxsK4CM5r+q+D1x1hybxz5hR/puFNhyPSc2fa0NhXfmhYbw3SZvI/SzMVRLtRWLrvnBv0vIHT+4VlCY3jK3xkMF+eofw7eZkb1l7EDBJaMxs6AQIKsFYzO2iJFGpUhF+jOqpUpxKc2Z5aOjqi/dKQegcOZYFzuZhkhdosvq2ZBgakeVEuPiQAD7neZ8jYT/Yp3eCv6RMYZN37yqno+akx0lBeXFsnV/asXOgIem6wU+xBAaAo3Bfwr74NE6wDyeYJSYUAX4kMPZ7sG0TEJOt4Hl5XfBGEoOtkH0SQ+2LoJW2lN4Xc7gVYRd4Q8QnLpkREyyAicQK1cAxDf0flBJ7Fk3CI78PrOJZq4b2x9FFNS7wPey8fWCRQQ67+Dr/KzQhoUjJJacIkyx/7Bgnv+IYcRyasV6Luyjk9CZnUVVZlHX1Oo/rUfHnvThLNv0RfDolkO5gDxWogYWazJzBQKwkHRCYFewZkR1cdQSCE8Igb8HYj1XzY81eOwCFL38SAO8u3AGDvHx18H8+R8E/JzhYtIwh/tCDda0vmUe40OslZbKs4JxL0ScLXSPNv6/Pykk7pKa7VL2j91KHL3ksTsononJmOV4Crz6ndI/wWdDhkllX0o83Ululj170omgUq8/cR1LjJOgv8s9/dU8/G0sesre1JV1cLIh54WLau6E/3B2v/F4vUOxX9+tK73Eql+iM0yvoHtV9iulehA/cvqy0SCNrLjIinf9or4Xd7FvXAItmp+ZkHrAP3NdBYRrhK6L9DT4fRzHHIP2tZIg1OSxr3TFZcpcL3pSHwOPfV6pqQbjDAp9+XZav060OTA7Lr0TXwXsiJZcGDj+ZsS6+8Pvv8zIvQVyEHd0OpVWB22rC01ki3kP29vFOB/1ggZwMXRWWzuCpbQQX82tYMhPljtFctozAllB/mEpyg4VfTiI97fbXwESeWUzPMkXcSyRvbN63TwB6sh8hL1u3LxRD1yb4k9BSZJ1dXFBzJJv4IkUQ7tQhTyocN5F0sAbtP6nAHs5k2kLHjNniopngqfrWaDryUuJ0/x+Eo4H5oOCAoiSTy5rbo3+G3gFkR56KsZk7dPyrFWk1Y3Asry2bWA2fAk/shhakaBmW/7aNmrMHX8c62CICygwr9v68X1wUEOgyBzcVRECwoA1WhT+wNoacLsR9YbSiPCocmzKLo/g3cSpFnSCG8ACW9n2zr0izAdpkP2Dugbuz6kJOARJJO1eiP7g+CqtDm1dONm2yioEfLdWdt8bZXJBLxVlbd8cDyo0ZJZoti8NQ/4GSR/XANty+oOMbcYoYGIKrx6a2g5s0+fAeQG9St5/siNYXV75wCPFXt9PC/XrxxGxtKpIsV2YPAMIFe6RWMvpoKlxSQBh/H8Ld+6FcR5Uq4QwrRpZX3EH7BvS9sD0Q50Tzl1IVW6RIK2R9//vZ1w6+K8I4g0T9uZmvvXDIxwLr7Fdz7hLz4aqNOH3c07BaOGCIpDCSLRS/qPYFCDCAUKA40SLIDfFPxeGFdO7ePWm38Y+CZHliUpFHOI7Fyr6fFpXAnhJ551XElf9kuVlQ3Ps/qZHHXAPRQXWr+hS8D5Hz3nIryT0GFDylWPayoHPbzux3oshKAYnyN/MVPL/WBAbEDONTb1GudvFw4fFfQ3BYBw/F18MIEsYtMnh51wYuCskvgUp+AE8kAy4fiY+FOCQVM7z/O11CQ3ZsNLjl5vvqo6L2DfiCQ3KHyWIn94XxHlVCDYSAbJYWXq1CbPWINXUscEnekq5bZ6q4WTmCfVVGp1RktxY7sa+j1Ui/nT6xlFZHEmtf7SAsDEOtrbhR+K5r9D8RaHMIWVrMBd5iS4bc89XoW4AtbkZtU72IeFy/mKIfaz5SP7IcUBmTyIjOPCY+D25bv2BFbZWUjR/jvN2qWmSTmurrghx31HATdd9QJjfpY59PTTOkcVRyw1rFcJDPO5lxsBzE04Uo9dVmL0eyVJHG/J6B9q9RXIfk0xt0CIEhArr3aSG7UitHIVR563YjFVST9AOi59FN28CwOCbRYvKNcJ2LgS1KKClJt8pb0NeJQXX/wJSXRoiuUV84bugt1+MrqUgRT8rSAU1qPw0PN6hcfFmTCSvr7QtqGOQlcv77Bex7rZnU0FENbiZUIHxHj1Dx1PTbNXuDr2JPOF3+2SfBaVw0U+ptotuVAz/Djc0rgTcbWJgAcPerToYWclvZf1232qpeH4y1BqAsnAVulL6oe+rVpfu8R6WQv+pDXETeGv3Ej3/tGgHjSaBCifLXrYtdOx8plic5HYtOfeG1pIAieZJuSXH+IB2jMgIrXJGMQFldTl9n8SSOqsoSNPX2phKmFHQ44PhwZkJOXU+L3wuC28XikNbSttW3Q2CILGAQ84es0YZ9t+7K2gc8j+Jtd7+qWmUNR9Be2+9lVIawEplmbJPO4oI/9m0eLGRTU14cCETsL+yttObvzCxWiAb0ubgr1+iq5Ge4vSAU4DZ2/1w4sltll166uLLeH8O96kf7wbGoMWaNjfcwa/a5lIwR0PKZS+7pSu453IgpA3ZcCySXA2KJbYjFeqbFO+NUbICQKDA/vXTJxkOACb7CmDzUjz5U1WNtfCplBGxzL1VcSCFiV1Dvbu9R5zOkdT0s88VbSRsGRcSRlv+/YXJeWfQgN6vr4jts5Aup4WBxW4YxhEQEiugNNBrrC9umLKkrd9WOKLL+g+AuMRhCC/EugU2KaelRUUkDZDmkvX0evkwAWrW3BVN07XFp78zwJJ7YATMOhOc+QL/EdPK9h9lB33WjI4ww3thua2GH3M8yPg2PzNqauHs3MBtdTxTs/HrW9xFCD6p4+Td6k1yFYQ3F5NKnj5auuAgs5PcX47l4axE09j+EBO3VWM8li7jRa+g8xmGapgA28xB6t2N3t03cv+AEGgjuKpejSPBsrtfpXuikOeDo5GxX+zEe9hIQk80u+RZbYoBDl3O6lRUSwB0/lIvnvxVnK3WRx89Sshuf9fOEIKRyJzhx4zVdblBy9i5hFFNSbmhwxBjN6mzrrrmN2aj3hy1HBuIK7+yk3z+oewKHZS81UwGCcMZXfT4XnXE3HLisEERaogN9j90TLGct/r+vQqOcf/Ov0z8D91LAewIszmjQ1LcscqFrh4gWxN48jBFOGwePGFg/fvdfY3VEw3DYzYLKuT0ajgKjd4b/x+dLs5Bf4VYi4s7JYXZNVnXGPtRFiUCUZGwPj89UCLJmDnq1VHHdz2mH0wxrgeANDptUyAJE48S+C8bBfRbPNKUmq6Vnz7+W7OKClbfr6YkvMS7AcwgfocGBPeVWYdEuBDfhEj2H0QK+NkyWfL5mFozsfWPiyOEOeAEtdHsgxiRQ/4Ak/KsAZ/o8e2hvV51SZ/LdaWZJBp5nessTK8C3HGOs6XKVIfrkeBuoTSWrgkXPzZcZczYqalFFxvPU7JYJs/ZeWqa13/2hF03Sll3Rr/YrK4YmJJLWYKnZ9vY+PLVB5FA1EBGePRXsXVSD91wRaTJvS4U+M7+W8kUCgPaDjtE5ZOLR1wgIQr4Bp+DnOCqFeydpn7nZN8GJyN7hPged6QT6lAik860Bd58UhigtS9HCXB+4rWSwfe8yonfHVpaGMSFE+LGCf8ItNkeWCcy5e+wH6rgQM+KHzRgypx5kO3fNk3sALDpLB91EHamOH1fycBD/wsjWmqqjS/A8ok2NPHVrde5HfuDJPgR8YFV1pEPmXN1pBybXshySjk5tm52LHfdF3WlNuo5l87OKIJ8Bj3It6Twd60FIvKs7yqeCHhCbUdzzLFonzZ+SmV30JulI/3rwUjWm1dsGA2DfHbD7uBZBGJOew+Tzyp+dmF0duC14+xN51MkSAac3J3ehZg48LEHI5mUhJfdMtcj8XVGuGZWPa/p3RzwjRC50fcfBFZqliKl8ehzN0XNl6GX24bEIlFdWQRe7bFTiiwZItuKASCa3D8OMJNBtdeDHTKYhwW3bl2BQP8Sd/JTpQCA7Gc7xD3AzJnPRCWmyjtB3uMJwHom/W5DDUEGMGQqKFJDrFZnRMJYHREL5ibpiCAvXVLqwpSoNwT5Nrpv0+6Wg4bMPQMPN5xX5Ml8v4YeJqYxMNFaTTQVoC6YamdxE3HeOeOzZ39DrCyH6MvQGFmXatAzlovVKYjU2i7E6opaF92CPAiCNOk9pOJNYiZjmRTGs8o9QZ9d8E6hQKRu1n8=
Variant 1
DifficultyLevel
571
Question
The diagram below shows the front view of a house in the shape of a triangular prism.
What is the size of the angle a°?
Worked Solution
Sum of the internal angles of a Δ=180°
|
|
∴α° |
= 180 − (65 + 65) |
|
= 50° |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
angle | |
image | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2020/07/Q19var2.svg 240 indent3 vpad |
correctAnswer | |
Answers
U2FsdGVkX1/ef/dyKVizSShWA2eA1HgvYUrEUJwQqsB3rhPxTosDs2O0j6fzsGtx5yiTsgAMlc/mAea757bvJdWXtQllawzhKi0M8yt8QTe5wmWpq4N1G0xqwQk2LBD+CyEgdVGqVMPDc4ZYwbQ/cqp4GyqA16WOaVcuUI85J5OJzSrhs/VmMKslI0qRVhY+crCA6fj3P9D6xr4NpH7b7y5ya3p4VP3zR4RZxBOIgLB5E1Ik85B6eOHDlmGlASCY9Ok1b72ylJ8Gm6rwci13Nk5190EpRbn+OP3rGLKk183kIS7l/CLBfZerHuvWuF0zFX1NT/Yo8VFaMy1wzaUyjTiInv1HetkIPonZKAfLvbMWz408TnTRbanK9qMBLrLRYwtDZqV0KmYPogT0CMysJ8ILk4sLs/MHEzj1U+iF0WQSlgNqG0e9UJLCLYVdtISU91DksKzR7cHJF8xDuUJYk5bJgSxhKCjvr6QfgwLbmdU7tMrgbHWKD0cPEXNzW7frFIsRLgJGt4mmACyZEEeqDqkyJLMzgCCByj2SMKxfHLflaPZR1ocAWyI4eH8fCmoUAFs23YJq4EaMN6jpRb+84VZonUrfhckx6cKuzvsGv36d19Ju9NeIK20D2YxauXRhcRzf4J8vMbPZk5l9jg3Bn6M6hyZosMX+eKbuZRiLzSm4yoYZWwEAt9Pa1N3KYnVqUnQmJcZzm2jc6po2EITES03C6OVFqruuOHOoFEE2DuuAUvNkX5lqPHudd/gEiyu5qS+ZGTkXBw3h7z0mnavogmNTfwrL0vsUlto7eL6PMs05zCrD/eJez4rUvqr0bBFIEvbbE+HaVMFZr9hY5mJUD3NBs+KxiSqPkbtWB5hmT7q6/tUUtrOVn9yM43OU+cZ24+40FX3j0KrCD2JWjBbS4Lb7kB17W2wIB7D6ZusrPSgFBHU0j+dJmpqXkt/eJXZ4N6oQlMzcG3Cb2AeFIPZujgH6CHLfSJtgLgALRWDRexuGtlAbuQ9CsEDV4POEWSrl9VvqyKi3VX5KNv6vM3ANvgrOQfP9jAhbBcTbof1F/u1NHHNPB4NlIRexO3A4IIPrHEYXOEuxDlNQHHvv8gmZ9yCh9MixvbYJwhJkKjPZPIKxxt6LNC5hc7yttIZtIauajflVqzhTDJEVxmQuwbSHUeE0jDzzA/ZQo+DLKv5IrMEUr5C1u4RpVHmY11XT9pje6ozLbWn5moNXK4oFkgJAvg7O9S4ZgRU3TqketHlIXBcqqe6pXRacD/+Y1JltCbrAPxbHRikH+zcDV+wivCCu98q7szlUPfc+BNBWVFGEWsiP0jTdocrZSF+MNGOt6B9I2bZo2BcJ/dGUHMrMy7C7hP7IMCGYVgxMqRJ0yP00BkEWevdDR0cAqzPNVMI5hcmlEjRKIJfvWDXwcuSc3DIChMPuWAlX0heWM0VP7CDf04Y1lFUh5rEWtnnYtQfR6oFZxxcTsUXLyhQXKD3BjAiKJJhjulXPwx8NQSwrEiQreuV3WoGQcAq3GHn0fojxs+F+hjjAQWLTkh08G9znHsyAcIjliu3nLUDxE/LjltsuayYmUPRRL3wVFO7F7efVz3BJfweBBCmX4eN9oDQXxMUjDE+UjZIyyxdsyireF3PQoZMlqRyHKH++juBietMBZgrRGuuTljDhhEHTddUp92EuA6QcMHHQnVOjo/Nv5vq3/WPk00r0rbFnWCPKFPuneJPYV+WxrtDsbwygKilnzVQJLA/IYLkd2I4BeSwiaDWE/VECdhF7pJu1kRZJHPty0kYCUoHaHqs5OGcT4bSAbwuv5fyTzchtgzyTs+asirTHGISW/bFf6V9Oi0ckrGo8ydrAYKn3MI6Oqn9v1i/3zWz/m/SGg5yLEeR9l2MKXXbVFcPv2PQ+tAOAkD4OwtHsjtk4n0cU02vOmK0HDcsufxHGgBXWm8RH73yD5B6tTver3Seb6Kmg5MkYA0Kcp5Z86v02aCSex6Pv2hlOEY7lnZ7dsApWk+yE2UmdpkGHFPEgL/bRz35Sgo4eIH6vNGpKBNweQimLfENCJUx6wSMjGt5MUmYYnpcbfp3rg58biX1KZCNhdF+kv8aiGy6Yb1L7bmQHEFmmsoSVuEX6qROsGRE45lD6lEYBRg8Ux03emh4+f7nNdtYe5I92leB3/GEugZTZGJadX3i4llggX0Ok7Rj4eXrUkDHuq0LiMqX/CFKopU/pMjkI/7TN9Z/+828D4F46qZEuAB8XrGUkrJyxOIIbtEMJEisf84pqgDtDcpTiH7tMW+a8XtIBDiYGkNtOiQ7ONKfY2tI6vGgFuHx8XncOEo0W+hKzI/WElVf/FSTbbA5kNunoUez5+YdKy42kAqKBERXgPp4DZZ1S0uGlo8RAn5+V9JT1p7fXzDWRoEDoIQWwKvRY6p5IRIRi4X+gL8tNsEK/s7+VZBC+5gs01l74maeh3jaG0Yvj7V4KmyvOENOomuMvfwZXXJVBNz4OYiIC4KggdNHLRToSrf3gBmNs6lJvfEWH5gwupxYb/FfRU25+vB89a9BFaqfxLIraGQFZdJfhEKhdoHUsGm133su0gle/j8Wbmhtr55wCKuHOvff+vaW5Spahv1M17eTkKGIUZuFNztV4kB3mmevn6KB98cCpbZ8PRmeETqhNILt1QeHcnmOX1y270SKcLi2QB1kdKwseOGim2F6IFHMNSEz3Dn09AfVJ0f8Q/XBrJWlB5ftT8hdsog/9TN6iekKLG/eLAnVMcqseMHe9rnMcG6GKNESUhy//CYvQ0Xoqs84S57FtsnZhGeiJF9qAEgvV5tyJUpxGh0PxRNsTVWjzo4Urife1Bt9VUtetBnkJndJ5xnIbXOpByPZw3WuVkyOw0HZSX35mmt/b4b319fdYq5p2JSL66CukZSYeHnQGBDGYfDOCyPl02suE5tP6Wk7Og5LTdqFc1HloGjR87XzCG/nvZLpoEizFbwMPm9lhMdeTInIN0BwtJq5pBuub8EGEwgAslGwQylCpHrDyhjMu7ItpGLYClGDwKXSm/csZ/OXskcF6h8Qa6m0m6ALQpCjFKEKArZCmbnOmlDsp2P84tXYJmnBJ+CKjuWCOZMs5VK3yUfMhw837CuIuKxhT7OMMFrErXQvqC1Bov335WhmGy6pNLjaN50tUr7vP8ppSqFNNHyd77OmpFn/k4wxMoaQ/i5SclJ3vBs99DutB/+Z+avL9TYXhpcKX+RRs/pqXLGRjx3zGj2kvFvy05B7vHDrIJ4n2GNxLcdaYbgQ9aCw40F0HzmiZXozNKylaTz2EubLzccIMkNigLFtGb7c8JJuDybSyUZpW7t7fU3nAPJWFr+6HHyAIwjpY3PsFLH7rs9jOXMPwY4AkdhizTUUhPPm7ch6VN2r++j3Taca7n0XM1OyFk0h9bQFPUXSDj6fNWnDy2BB5fjcluX/RO2I78U/Ks3DJ3Ud6OzkUL6aXqQ67UEfWYfTf+K+KbBx4/mH7LwLf9GRuYVH7NetweGmRCefIyC0EWxBkj1yxm5p6gNjKsKJWvsKvr0/ifQ8KSd8MhudDXhGO1kbT1Mbx5RMsbsHUHy6p3ZAvJMJQTRU1Iz1EVw98RK8YRec3fVJv6zBt+EeVNL3HYDKvmybpKYcMeoK3qOxqHGFAcFBKmSsJmA1xdBur+LZONqOCwZECrzOmhp+dXrCbCuSSe2JWJu6oJVGIcHIy2wyXexNyc3eVj78OOcFgv3akl2j9129OqlkAv925w1pfhGCYe8HfPebF+lLEXULiXrMxYqgM3QZZ7yvXlgRUIC/Pl16Q67XGATlRgNMbiTHjj+VWbG7mTbBdm8Ch10OP+fsV4ixmJwKyOtNRi/X+YPc7PzksKKvbPJjVF/C1/aOVEmXiHvAQArb1utKY464jKsRH+IyZ7QrCsiPA3GLLu0CoiQWGig5zv4OHsTHeXIiJuQ3QV19nIvtQu9q3QsWFurwgqxCiLM40/YVkvxkkWNvjtfclxJmLG6I0LL56ai61xgdOJqLw4VeUOMTrCTexCvboWck1w7O3PshBWbwva1GN3PLytc+UMyjIFQqHCd9lh9p3CflPRObJS6D7xcULHyQlvczlfjgf269CmyD7l8PZg5lFf2XnyZd0vy+W4q+8hi2rdF18ESIUrYbAzN7U0n+lN7yZajUy49SjBIjgBawDmNsDNWHCdvQF4hTtcAFttIrNlyQEfiEOKueMgCnUnVXl3NRR3YcPAGXbCQtJRzCrkXd7a8HVhn+yVtu80aqEjee9BCtANvEHHZw4qVB4VmTR76ellTSLDD7Y3fp3KOeg6fGgfdw79VvPd3flUEFjS67uA0vPeM0suPz5yTvzm3ntIDnQJW1OA+qu5oZSJPvxOFatSVYkFnJgrJ2YIJvXtIST3qCG0jQzxyNQqYvTanoYmsJ3QljwgavV2LRYWXZmwyhkNWiQtKhnjb7fbrBNMNj3lskvaZxWgYkzEPrFNxrItaU8Qay8rnYt4hXr6unktc6lBcijll06i7oRv0fXf/ws6cIPhJ2Nu+RWZ/SmFLkTSEYndUuAFwuDmhZaoenVYwDX0RgAUvmKF/6fqxNWf//FhUOcP5nPZxFownH17z16ijDE1it3Wi6iOjmBwerLvWrbOf8Go1goljLgOGteO9x2RtYCGGYpNuYL7Mup4ZepllyopyS/SxAMLec2uZSDnUSsPRDcZD5VjyFUndeeZ6bTOmxLvg2uIg4Yz7uAVpqqagOZ+PkvNkqEYq0rmT66j7K2aI1nr2l3uayotXRiVX9RzZSSKnmGcRQz/PJg5xySOaKBmy/feB6K585DOOegVSUeaJJAUlxRxfu1+yBYijXJnudjf0W8jjCjxO3TpNZprlMlSs6v18TlHzyi048SMrZeo40ELN3PZlUBFYe9D0izDobxJ/venIeTvaj8yIjTbu8SF7D8jStfIV0JBaxqJ0NiemAu6XiDDDRLHfrK/Swsnz4pP9BmuBwviKO+UMiDYmzm7YceY8vObX61IBob35NMB9c12LPC9xZ6K6wbqQGyF6YqUAyFpNzkoSNbJ2G2Xzi85uvYI+i/kgjxCwS7+YawnGbQWUViCOKsEd1WFpUJFwLQHNiRTUgaWK8D1X45Rsiai+HLg64S56HCyuCz94yoI2MT2sH2JgOxZP2G/eTUt7IJYfJZFwIdin2W3dHf4F4T7Hm5+El7Q9kj//i9itLePLZj4Wb1Sz9pLTorOLe1BwJP4Xj45Eq+ApdnY4LScclFtLp1jvZNM//G5ThMHQHtMOGNM/pWdBcwtwadDSLCPPbXvBxHZsBWVFBj4fd8QAktQCY9hfYY7vIa+JJQiGsPSptdd4mw9qFZ9UyH8OvRLQqixvTV5XJspWLzCnpdwp65NX9gOlwTo58auQYzL5g5xA12krOe+kPSZoH0t8SNNIwvgLx2CAqkNG7o3fwu0o/ejb1wfGw/nyVytUlHBh4o1+daL69mC+ofCkpxivKwR7iVsz0zX3bC4L4ZAfWA82g6jVkBFtqO/+nr9/EEOBnMC1H4l3BjBXj9XSxZ9s0PwvvQdHV39jNgezIdFlzID7vbPiwwCIksENBxZ0KcUOe3cqBDN2U2cnozk9is3KHSN/bMuq027lUsc8mHo/wuPZwtVzzyZZJnWAIbQg6SGqZB9Kybo1Rn/RiC/Cizy6ALQnn0mSO3KUzaGswuUPUGbat5jsVqFeUcvpEJLGoBvxVLwwcHdQhJI3+sC9ZlXitHn3el/Ng1Az+CjNg6RMLAcOc8fbDxcvUXxU/GrpSwExbb2h3p3KUemRnYkgWNqJoxBFmYd6xmasyLGAFENromP+n7b8RZGksVjeLcg9dcsU7DetHGrS80gCO8McY25tVKc0i3gjf3Ww0yCi5MOePAV34tcJJSX04yi98H94f0EZ/DsjNFJ52WMrQTuqRjqIiQDkjpmuMpwaT+CKB5COIyjmvxBVLT/vyD4OcQ1pPPG6c6lDV4/oa1dmLGWZW+61gdyl+b5NU1+N+ycZ5QkgiY9BBxV1gYHIU97tDjDuorm2hTJ6mvm8kpSJO/8OiENkT/6Qr5vMlQ2KkSeCBQsFws0APboWy/4+IhRO7AZ1o8TE2fb9f87wmwByjQYxpyV6W2HuHEqDa7yk9pShdHURMWsQqdJFkLjLK/NOhD7iO9IzRL6bL8T2AwDbfp+lFoKjZLag2XUZiv+QbUo9xxSRyrtbU+N/siDzDViyHZ0d3XafJ7pSt4eAvAkrBnhU03mTxVvDwqgBpACqNdT/JFHt0+M0+xM2mwhnM+j56Wd68z6iouPiFtQKrzjnxl5Lz08l3i4Bp+I83vdNlSARKn/hQpDGRWyKpwC5iJ68mguB86G5GhqkY0BOM0a52xja0KPUuLUM9QAxQ3SoqKA5bgx8cBhT3f4vgVTEIkFqfkrmOboznAdZahtrZneMvsxpUMxXk6WKF8BIgtvoHAyF7bLBOBDr/rLIcvFiL2OxroT4uRbUgTXVIREevhD/0Tnh+hU87JRz5OdCMeo6wTE1Qvr7XPqSa6SpRKmf531R7rAMkS5NEvbxYhm4VVJFVyW06HS8CnLT6AkNx9iLbLygxElQ1hTI7ki3lqLiJrJlFAw+haRGNhvzd2L/UQJzYE89vYYuDoSpBAcrAOza8yJ2pvbaC82C3un06t/tZUXB6ZRhsQ8c2VB8ysL2wgVX4O7XXcFH96iWcZjLIL5tl6shYmbZTCQq3uYIAzotrtHjYU2l6lRGT9+uXyTR8vX7In6LU4YL5MT/GdhXdLVRhbuG13HOuy9Z80aTTmMxZq+ONj8Za1uLFb713Q6tzqBxuy7zXZu3p4qVKR7mKvIrcUYn8+vamkCIjhyIkEeEhZqHk1UgYedHs6nm5umKJbwFKGp3em1lpaeZP8LSfKKgk59qV5/blOxc9V+WKRjz4yZwFmUBYDKRNfOcmC3eeBru67NHVWIEfw4dXOFnMmPnJ4T9+23Nh69cCABsl33i/7vxnKJA7Pfw30tm+NGXOxB13KXNL+kl4FX3E6p++mIgLxxNmhnpxerOyXrT6sP3IjlR9/Sz4UjQqIs+RtASf3awMmDT8AMkP89GodEV2Lye92BX2F4+TES0Q7lF/yGtBqRIYNTegDy6C4BYRlMvdP+rjyVwYWQRYVmjiu/arAHSf5VhckGxACjBOhg4qNkU3FqPZlu1eAkNxES7Tdfm0qDcD8GQc2l/zyspUCBoboq+gTHwbatRvmAzGeYJ/zdZLmPhuP6D4ac2YlGJEvXpcckjKNPqjW8b77DX2jkxoAOF/ONG/xq62kUwBmSBqw/VRVdITH0uBsev7upVTk40RrLXDhqc2W0HZy2TZSQC9uGt/dJMUTLvjTt/CB9pQGmHPiF/7zGspv+8j6cbsMjQNHEWw/1AkxEMCqJyBLDsJDBurEXz14IIKMZW3yJJlb2FUo+zE76gijG9+ql0t/pYAOjVPOb1z8ATw7rD3GE8MlnvQBsP5EPKAQTYkSaCssbOGxl9KwkNBWRrAtOdgzKHAJomzHspDm86X8EUa6VibAWF1XomMTOZH6odAXXAz8dLRRRs6C7N/gRO95Qz36TPy25VzahNlxyaeY+s2X9tbj4wnZ22VMGbPkrPPhWDZkcPun4Gdu0qTcYabDuLwU0sl3lCKmY9pcjKCocf+HUPBw2zNr0F6qMSctGxzNJmVs1qEFZ7Mf2slGsXTBsXFTt8bw+KoLGMp+vKuXpjSmHRHMHzMgZ8oE2wez44PHHbUI7td24c4Aewwnjo57gjCM/jgk+1w1HaHkbFXDQSbikPLZf4Q08OjE8IZf9/s++C9MHSfm1C53WPIN9kWbth5dMU8PICnnxPT7S0OFFf0y3cZ2/d9QUB/yffBOoEV2NOGkExVMkcpQHqBfdbJjgrtwc6qe2/Ri+Joa1Kce8vzVxqwkxu6k9tjIKBfHYEGKFk03lJbM26Vm/v3mDTrmFQw5tC1/qZeLgsqxg0+LLo2mHHiyjU9waIsnCckKfYFAvLx6asTRyKCSyxTLiKXuTBefggxgPOZT1eCX8q4WBrrTQHp4iyBT2chldtnRxtinr57/zW2agEbrL6NNzydQDclGDR5Iz8MwiMhlDgkjer2SY5TCYWBJ0phQ/aPjkmYnEcT/sgvvpzHFudvtFQr815wXkN3U98dW/0ftvJybIyFPRCED4Pn6t9wz/uFKT11zlgby7hD/MK2F42OakMUdFWCDIXqTjmiUE/Zk66wBGX7r1Q++zeOhvpSrt4uI/2GqSR7aaZvz1wTsEe1HM9/igTFUVNeFvGRQ96JDW6VBL7EHHIer2YoHsj1VkTK7KPBlnUqh7qTf+csna1qx5kp6GieldymY1utF2nBxP9SNiwpUBwD76UpPTzy+e2YmokwcWHAq1uo+6q6Q96NSXQo3bCCftTK968XKW835FnkvflbLUqZyE+XT5zj8qp3bxxZQR51P0OgYGJKo21DeoTNJpp+517FLsaGo5m8xVNxP7+4T3+GjygXLkwq/yp6dv2gu6VjeNcE/LI41CnTEwVDwhBB7J+diyhP8aehWrgSCz0ay7XgHMUjW/GN5MGoN7P5LzpAXEx4JhZPe8XrzGTQM3QUJy+kfJzsuP/dhbfwmPUbvFdBDZQqIgS0E5mJBplZM5Xy7fvtreAJOU3JKMWxBuJtSdlY5Xee5xTT2DwgamvItYo/rHFALvqozIDVkxKXApMCzhGT8g4gngTHyY5+m3niYWpY7UK5dEJDbkpbi5DEDJ/ZkBdKm+pAgk3mKznl7alM1rSFzf8D0CWyJWL5ExvLsqjXXYzGiy/EOwtTf2XNhTEFvA6mzK9VnoHpZUJqQYJTXEgrH4Aye0U1p5gc7GDFkilCwoSV5JgPxPPIqX2pZCQlfw2jrtSh7WYHKCd3qttDk8ZAdTnNtI9b/PUfsGhodbAqPk8VPv3xxClbIx2mYme8eVAGdbJUHbP+gZNWKA6yIYr4sUN37BF/DssWSCn6GgjPGJoqDBv1NvUUcZgBMi4MVH4fRP4VdsNLPxdAXyMmM6aFvo4N0Sd0U41t9VhIY+QJAyy2jDOy5sExSIy0k4UgwSx5ARIFr2ejQptU9qs+gu+2kRLQAcbIsFeJFoDw41LBImC6XLOCLLG16bmxeo3MxeZhn1I1f4/zSa9NcGve9voigHH2LWB7Wztm30t94YHMbSSFdGLNocH5n0aCo9atO44yYb6tFmWdXS/pwGNvwdXPNL8ZHvRW7TKze80LNIJ0C0JjIVj3tP3+D54jLmZuFt+sLADMuJxHD/e+S27yH/44HDrpmuyxNhEDKuVMWfi6FIqBDHPAI1O6sx46kygxhBHldzxNMMaIN0DSmq7IwLOHwRS1Uzfpw1ms4/i7Jj4QltJ6hGoSzbrDv3M2P53nFpZGKPeuh4gDqbQqZFK+brMsCu1n+BA==
Variant 2
DifficultyLevel
569
Question
The diagram below shows the front view of a house in the shape of a triangular prism.
What is the size of the angle a°?
Worked Solution
Sum of the internal angles of a Δ=180°
|
|
∴α° |
= 180 − (45 + 45) |
|
= 90° |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
angle | |
image | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2020/07/Q19var3.svg 400 indent3 vpad |
correctAnswer | |
Answers
U2FsdGVkX1+1eJ1p+yZd0JpKkLI3vnaNSvhEa6JCLPeVG61PnTHRWD+Nt9Q+7ZxcVvsZZ+RUr9A8fkOlPyi2gM+aMInuSfdYpjxqsVNAt36syzKBvsDuG/mXuyp9x4eBsC+dtJwSvcfddm8rnZDaZSWm84DGBelNDL8L7TI8+jICvss4z5V8nQpqPboPWk3wcLIXgv/QmZHb0fJcgSc7EcDXlqYytZ2xJVWv5c7vw8IKf9dNhoQMntEq4N48l0f828LXAzq8t1a3pSnCGZ8DnExAk+GP3GH1K0VrqYTuraYMcPECx+LUqPo6TmWaUU3lHnPb5tDfguwlbQxckdlKB8V1f6EUXu9uEjzsOcYlyex72/uIryXHmNF6Zhx5jl0kEJ4ONBk3cghr39tRJZZX2mDycDivy5Wgz07ZMUoxzKcEzhQ2y1/R8w7GDpeWI0Q6jpW30B8aJn+77Kg0eVFLyRidkqkhBH/ZQbE3uKPAsAsh6Fss+QUHkbJuRnuv5Ba3PuOLiJun8bMKDK4bA5A/o9WkBjFI19tmXKzMFSYY/FRlGsMEyAJQewkika9UCzxU8G1pdfZKw3bWmRJuzI227y+qkC2gJU/RlWtwpB6BWkO6GdiWqO3N06sbcj3SvtKx7dU8sEjr/A8UTVd01VpFhjchSmRowKdzsnR8/fVKwjiRrk7wl2Vban0szXBnSea0Jya+KkhD498J1XWt4Mjwq022bKKOgGevuiceOFTwFHnj1JypcQlBnqrI2iGtZq+08LbHL9N2m2tDdTUmc6yk+MbP+BvNwHhtH9Hn7z7QSvGgv2AY2xJIgEoQfoxsDUnrPn0R/GeLtbfMwxNSf0ZJm52qepheb05cZD6ZGXhtBTfbeFTYvqTD0ZfPM/iN4OhVv10Oc0DAqXXJwczAFQnVli6pkVmP0dxgseD09TTCAZHUSQ+rzTPZpky5j8MHg2SIlPUnU+0/NR+BMSg632y3m12F1hNX646fzrZ/3VkpJFXJDlGU/5VcG9H76lCuT2HRXRURamrzhhtNGM0TVjX7DYrxjP8H9l/wi0C4wMf+9D89Xt2eAoAuJB/9P/vgbXamAsbQvufi3ba8I7CNcSCT2jACqxSpaTxQiaCnP/KMz/8BRt2xpl585Jr3GWNXRBsHD+9/Tw2WMXQ0dSSRf6BM+AAgABnjMj2akmZcRMoF8ccOfNJsZnen2QxJRSu80wwJv7icj7LkAKiFVchSNGPIg6zOqdyjD+nvJaco1glzMiqWjc8AegJ6KjpgzzHrLl2tTXOEfZ63MuT1iJ54Uk4eQWWnllIMsvlzNT85xOs8pPUSg+uUuz3RV4RFkvdpRP4a+PaO7QAD+UNi5sCiQUYjPR3lwhxCp+GhJHp+y0cMw+34ijbE+154XK9ctkmF68b37Pi7nKq0YUwdTen77rmzX1Q5KD+CuVEDtSsude3rhPkUHaRiO9CXX4EqE2xACNyVyDzdWYcbu1bj2qcjJDgofaLI5pnVUNbQdaSVykSyMYuLRRpoG9WJ16bNqRC8FuS57NOIrsTbuVQcVVRhEPOC35kWexZxdJpFXQeBfes3p4EWGi4iFQII2zP2L0sE5SRx+IXktOXV2r7DSQ0VA6Pbc+f38MMOk9eZVIG5sc9Y5E9VXR+ZSuFOA9ib1kv0YrrDn1WwoUJZeLDduULjq8biGmy1GWxej/rLM7PpXo1rGpaKnD0CPpPUIwSnQZStoVeqM+lJX3kTdFy4CDmIct0mRZOpHvaiVhuWcU+2pRXrjU5qMxHQWdIZM8KWJw5YXmGF5qhcMRRzhBSE8HzDipR3+3fZzXFG8MnYYZlkgKqkBK1r+aVOrTyM+lel9ZxauvXO+OD1d0szF0JUXL65ZXjk/sKHkhM1QlTFjuhJyXHAm+CgD9DSaWXQKNkxjZqRjNGxXGpg2pWu6uIA62MCkbmYxH7PS2Ut+mP9qaBR07BneQOQ/5oj0ocXEytc5zKcNt3CFtWM6tpXaM6Nk53wTD/vmY+YFD3ofuElAhCShLgoSs9W1HSsVZR+YMSK1t6IUcz+5z1leTifp99xQo3Dwrvdb9h126MNMgsvPncXjXmJhVeF4o60wPhiOydZDHY+0WvQvGRlOkX1y8hQdcA4147WwaDRWL8die0pDUfYZPywKF8/sEezsRG/gC8m8Ou10wKJwhQcItOxG+tnhSoEq/CIKvzfiqt5n34wTh/DUB7OogJ/TfHhr3RRScUEWG5/0hjstwO1ojO8BurJWcsMaW3AvMoFXgFlHGZ2TPVm+saSXLhAsrzUXF9IJ9D72H8F3XedSUS0qp0ESed9eRNDCNCK4Z6/AgPg7VjANeJPrDVKtOaybex7MezneN9j0REd9Qi2LqdtGQor74XTmH1WnwadqXcJz+WymZwmemaAmDT5DEVYlohjvdoVWfGJ1gLGF6Oya+ADGONJARGD0Q0eLgFiu0+0ittQqETmyf8++N280HS/dQtfC/1A+BQpE7qLNObGaWh1sFYoxcBXTb2GyIuwNOPlEI0adSJD5wgfzNumMJHpU6FCkO3OHLpEtDTfTK2cpW24izk7Nx/afKWBqGvnuqA+czoRRzFOhnBc3J4vtOAB8OuUTWL5UOHwYMxBqkzZZp7GXcyHOPHG7ihsJgmE6j/Qqer9m8zP14BVEjLXhP9qqvyCSJasBNWVXG3bK7rP1qr9I3y2yADIPXgOuM/uZOCsMH2L9vUN7F9D30ZbcbpYHZnGNS+OiMCLzVRaygCkNvHP1CXU7Wpvz7jm3dqH9Cld4mVW2uxVDBwD+VlnfuUQrvYMlu9KjNXLpRBjtOzb+MP5Q1lVrfZE9GO/+hvux0Nw4++Nghbt70GS9iXLVWdQYoBwv86ZIb1Bkfgj8zLjNkniP2EuEaw43U2tW+Qf8vlT8BGK/heIwvznAaBkTFmaY381mKeBs7YBAYDGFa7XQyw4ALI/5KFtBGOnkFnX1rYg/msFSWgJv51HDbEG3lxownsRR4/2MKYls9kF+FOIjNAnJ2MAIoWvVWihHGqlY0iUCSjNi9i06mJG3leeh1McMjkXH8dKWnmr2oExK7gENkeeh6NGd8NLzUToKKGqq+pdyyMdtScY89kky+Nde5+649K345wF4h4XBW9YaiQeHUo2UwMvKbCn4DVoruvF9lkxe8Ge4/y09/LGteTlHdVympHPwqOXq68iUALSDfpKQi/iJYM+ag9MwUeOunnJuRQ60bYtwk+Du8XK+9mHZjxkU71rLT2gwG6Q4Mixz1sD4+PN+G6ISWkXHus15XyvrplM1VDDIHW6Y5btmSJBbeN63wYpoEskuFkSJ45CEWvJn3zkoHv1t7jXJbFPZvY9ApcqZZDundFlm2Ly1HF1tvke8lb7ylhNFs6VycpjjqutdM7VNgKPadrtCEcSMsJMbQF4OU6hQYzEJjCv8If3yWHFJYYKoNt6hWEgSrioPoapfdoVRl2Mga5flzvjCE8EmOgtkcAHqYhy/U/BLvmoepo1Va83cz1hwFsc8SLdp0c2q+m34XCPXEztVcDClk1XM+9yZd9XyYk3fypiX/TyGZr6KPg0JxxvHQLI4xScDga1sfORDLm9ytYoPWmpQLS7L4/bhjKugRSpgDRTmnEIsqNJ0iwbEfkq6DAR056j3vEV2uCU2U+pTJOtnEaeWpjOjZhRjw2KC7l5zTZ7JtbMW9n2bnamhMJJHcNvRMMk/Uz3b5CVsPmaOakONalw65IM0Xm6lsXk/qKoItWnjVgroaKXHAmbQNQSliaiSByz7o03IVy/m6Gp+6cbhXT1LQvbj0hUKVGoYMdbl/1kur1kXjKvCBbv0EVsjj7DYQ/hazUV9V6ysCr8zpQKFuuKZNaLRbrrq1v3rEcSqCXAWeWVQWFDkIFvZijRw+mEn+SVXF/+/iSyqzIu52SgwFKgfrGMfKR+BRTn4QiUuRjlsg5NC7EokNOM0Ai6onXpnSui+2yrEL/2Ro01nOzFo+MryTmuq+YbVDGXouZ1cffFvNDLXrW/7dUuzlO5frMhe7N4LIAeFxsttVnFG88LJub5fOHI74e+vuGznNYpdjG6SxDBJ6mZ7i6dqt7dDqhGGnP3O7L/9kEmTbXHq4LOhuoFhkN+bW6gZvrkOp5yXyTxUyiSyFviQ5WMLhhxNAn7JyVhZ0oLwItu75Xfb+yvaZcxV5K2MrEIqu8V4Bcu5DljskJa5L3nImAS1RVKx6DCvBbl2iBhrKI131HxNyT8g3gVJXC/pEemsJuXQCjMTpTyN3PtlE4ivqPYc0JrLVwu8R5xWO+XhQJzDgvmCRSDEo6NQPSKHnQBO5QL8Yb0UdY5g6aWZ2+zmQeubIOTfadgJVz5zxHLA+49SbUX2pNt8U9Fqo/jEwhIRyA+qgwFoiElfMTKCKZTwxTCQN5UHYX/a5SQktL/jd6GKMsgRKVTjTNZEER1qWvxWv9N6Dnx1sxDbboXxIjiG84oGaJ5kN+zPx3Bio1OAw9OcYUSoz2fAUQVTRtKm44ugldFabyYWWFbyMHEigpiTh2m/znn3W0CfdTRCezqV2qKR8NMEfHyS7wrjRau5l23a3cxV+D/x66ODtYVZvNBy6I/wXODnnw2eEd5DhK7URWGWl1pi0O6vmcec0sCgc5kjzdPs+rhe8+I0C+WtcaDK5Cm3CIt6nW6+GtfooafSerla22F0McZn2wPg03tT3lEsMETpPN8fZYCqO2NOTxf+nOmo7aG+3mb22tLdOy7d3AlRhfqdAkcu3SUMT917b2B7g1tQjw7+0eenGjSo9Q8ihKyCWlZ/XwR9i6+p2czeKVd+l/CO66YXQIUPfOex3NvuihCUitWFlNbarxjUqcZPenNaFa9Z6HZwOPPHMMXHlwl6x1Omky7muGK6BbudEOnTo7ZWD6mXndoWlZGaOlTCcvJABZUMmAX2zm1U0OeHJIDQo2PJEwbg5qBCBMBcg+7AgExpCblqOtXg3GpD/ddlcUNxNjTTpw+PGF2aa/T4w6hypDLNN3dqKRURx4w4I7Gwvu2GnuT/jEIHUVLnDDCHoEH+bGimJtL1a1taAElppBjMILp9hLi/2UalMRHzqtii1xC8u8DUeis2F1XufII9Sw1zFTAS8Dm5kyXjMEknbK3CtL8qfktzrxlkVVmtyIW7nx6Wi4dymtyhAd5jhJGToJxXMtpYYYUpzVon+Da/XYGPQWTYZYMSFHgu7yk8XO12hv0L/edIUxhPhAwice/qpGRio6d8gzMyjuMks220IsRwM+JfnQ4HSCYRMLcCbvbqpEOKDNvKaHlVG6Jg5f9GfLj4fzvHOsPqO7pKHh1rm2PUc/J1xi2S8l2bxTp2trVpsSB+1wLXRWqg4q1/iE3+vBAVlemnzyyyyP8CkNoRcpElsjTaGG61E2s0mvBzMoyA8ofL4ijWvH0Ncp47aSeWqYxVu5ZgQVzRY2DHgBqGNsflxkw5D+bdjWtClEQvQTBF2UiiGXr7RcXuk+Z5e7XsmAfabiafngsVgj55apGhABRmT8333VYDz4qRC1NTVLgxtfCH7H1DCT+S7FZPL5ZIdj3JChRZxLbGIvkERuWF44nrnc28WRNxPLx2CUPehFubdPSEqUBArX65D59OQ/AQ3T14TPPgVB0Z8PYNrQpPS43Ymg+ati8PmBkUmu1EZRTq7dcz41xy1Uxz2c5M6xpiK7fWOMJHg0s7QmGnVn9nXmaiG2+egM98LuZymoq3n7WcSvKagpD9hvaBlEjfFUDLM37JUaHMQ0VIadbdRoKT7KgaOHncD42pRqhGaJubO6DKEcJkh83fha8r9uO7clOgAuNe9T/7bZHvdBP43MsgAvLy94g0+lnRQ30EJaIC+GER91QdJUCVmak5uYbgX4ACXsI5OLGUrHU4CbmHJTf7bgP72u04QPtoeyitSPXGqtDKWeXfZF/sECBxT9fU0xtq5QJ8ue2kKbWOwB2nuuaNAi57bdlEPgUvgyZSeC+xnqTmW0XfMl5BICVE6iaxShCF2o47YIcqBctNLzQ8MRCnSZPCzey10LM5jMEe9e0xROcjAseBn/pswP/vyK6Jr6LJhUjXE2ch/YS6oTb6MLxSp89Vz0MVXlLPQqE4yLE6YyqRZQwM6xYrtQizABk+SoRw+ViOr/C/Qqgy3V4eFCuROHR9QaUIbsLIBFDbktm9WfRwU3SOlhViRZjGfHD7Aed7xQKptg4dZZTmsdjS1aQWsmGLV7HXwhi1TY3HakzTdx/4f1b3o0x4WRn0Yrr40pm5a48U0qC3J6Qge6Vi7G1o8z75qODMHXPSc0CO2w2sc7PzMafoD0oyYJpkC9w/lNWnp5Ql6o0m+1hBy3dSuFhsU8rd77AeZe2ojK6UK2MEKKUVz54mdyMxs2y7SH6g0kXN855pedbhss1Lcfh8mhYg0qMPgtf3CrCta98jTHG5y8CpaOfd9nFtSOhe6Qus4Sdvw2aIQHrDh7MpRZneex410xpscpNNceOxJBC91SuRsqkoZ7sflrK0VMZVmpEc/ww3TqRAhPPXXGWaOtrhTtH8yivcNu7vIZaAuEFImqNCTh21zGyDQflpTOw9QHQj8b6aDGzXsaHctVSlrpGiB8ztqa+hkDxYFG1lmjL9ONm4OebTKyu7kOFbXLsuiL9OQSQR9ehjPSdql5UE0VnFK44BW8rey9VcgEabIhRU4/kWvDeRi6uWM0lE3pSapFhQ8VJxj5EYNueRWyKQdzcRQb4qD8saHCkwa6uXE6K6vjxclFunMPdji8ZawUaeRHbxVxUA25C2kp8jA00RCVQjfaHG0x9f+KnWr7vpWlpyFFp1LSvJpU2ueUHQ4gX5zA6wYMKiw067NJZYkU+2ON0FcYv+Q9By9wj7pYTnH7fQmc/tqvd2dBDWI4K5HgfIR+8vKU5v1hxc/eyTPAbYvlhimMmxdJlxN0M/z8dlk8tgsLkXLYbq4Q6NzHreO7ugoFh8XynxdWHRwoCbU6hdvXT82wxbxoBiG04a3P5fy/bzaaHq+UAPDt3Nrqy1F4iYU5DK81gelZcE+mPqNEFLIoDjrPCt1R+B/PqDzf30kmQWbINoPyYKRp4F2oyAtFBSSyHQbu2F3DhKNj0kFt5280rQGUje4JNF3j47R3R8o8lVqPwQm5GCUwiMcQJK6+Jza+WVpbzZ8XFrrBSEKBokVnbbzSjF0DcwGkyROqbnLsltyNJUKNGCO2G4qE/Y+dWyvu3lFd5EUCqmyRaeuKFbvoCBX3eM9CxGyjtxPPjG8ihyFKcZaowrqZHi7OQKTqhI6Ww7Bz/NyXgHGUoqGAVdI9kxA82Oi6vFYnW/IE4bP6NerZB99jUx/0QMI13jjA0gmqEa+14UOiBpFbt++RRD3tIpm1tlyADoImBTTXjn1aBWU8eRiG436xnYC4R36SDMp7O0jLKLRakj1CFSJAyOZQT/JasLMlhFKD77YzNs9or/qE7VWbjqIsxvBFMQbv0W4WOzCjyURcW5gaaI8i4b57MX8D7Axpw1EakIPpY8Ji4+mm515n07vEaTlGEGRH+ICwiPMTOQpzdfFqY2xqSVrRoh1wq1rVbTn1g5xDA/BkzcxkFzyp2JSQyN1Uxoo1eCj1QBEnbhL6YKIw68ddWZmyYsajurYVA8MECKW0I3K/Q1B0QZIJYaUe1CwKnGZx2WOn2w/npeSlMYN3tpxGC0QbyvaPzySo0B4VH9pRQhu4BX6H0463Cjr8lsxRZdt43sRCWXNln0UhHKhN1uCxJrt0ykddzCNzas8EVoKFv0MuxRJItjCOvnDxWwtlM9ZN/K6NjlOlS8ifQBqm6/onoMcROj2kX4FuUhWScf2rlGi0dJ4Ysr0lpznveMRw1W3z6wdgJRN4ih8tEl8BY8ryF4PvqiCUB6WmmGw9vkEGl8/2tm+H1FGx1BdliahzZvBl2QLqXxCVPczXs2KsxD6IgxwEnaZlOrVvLer3Eh0/yedJM5EMBwr0ueXTqpe9S/QkMQ7K/1Z/nrYHpMWiEd2mEZgun3YGSQIjuhv13ViKoLd4vT2x+F+l+qVd9l3Ozjb1/gY/j5LN5ZuvaVus1o/mo4z4sLjtQkkTlFxhIRMGlB/B31bDRt7hgjRus1y0hW3ljHDrHYOd0RRrj1pYBYLlD+Jy+TsIBeHdgSFeg+/iEIo+kFCrH8kpsxLb4T+71KLYRtvorqVTTFSMwcTcHP1JWstAigFkFSZFnR9i8HCwBGaaHdYnzaEvYjHxFqgYaNEU8hVLCotjiKZxVejhYHXApAB/kahyjTXgwvf137fgMs4c7Xzo4etirBTvPsJEXLjg9VmZnoXfCGGgtYfSCMo4P4hRk3tuS52Ex/BzL2gnNh23U0sCOUee1ZgQs+VDJ7Ms9BwyO6iJSlEtDA4uyjCfK9wk/W2YruO2EnBLw8P4WhQRqPo+E2yOUzjG+howJ9g/Pb2tMaZDoglhSMmEYwlh6vfmzWgCMZEdhRkUuDV7sr4W5zqB9c8EOpgm+4ROADHZ0xW13RWC0bVV48Pg1VaRWhw/pL5N6+IC+ZihWFI307UlNuZPmxBNph3R9ajJ2ztBs1zvwndH+FKWY+MdXywAjoyMzkW7Blc709NJqAwrxxg0qgFeBMR9gQtNAV7FYsW/DUHRp56r1OA4V8XyhGASwtWZKxGhDesLoo3CnFhV7f1S17cGXCiwk7t6LbDJVs3P+j/8qqUplshGYH7fwjDpoSvi4sMYzeff8Io/zWSx12zRFqzZ8GX7O+DasVvZXZrjnUZnpZ+iuZ1M1xrxVZiZ/YR1Zhn83jgrIvdTDGeQcCw9BuogkQn21HctY6Mw+8GMjHjnl0hW5QOhVJNqzLZcG6DVT8DgQJzv9OJz782jaurbvaFYTj+zhJXzsBCFNXU1Hk/1N+q9+oENVZHA0/OIkE2/7aqyAnr8+q3BCcqlZWNevCLb72k3ra8EIqr8XoElZxE3SfleFPvovxmmnx1zXrhyo0WMZts8oUVIXNL0MAobqg62L9wJOki6OnWxvveNQpBLqRMSAE5JCawKCCIkjHMNQ4C0HF9q1/9qJMaOD5YCj8WQsLKkwXIKQmt/ScNqS+tJKIn/Jx3Ng9dlaGS682K6kf1sVAaBRYPs35womf/T/f5FQImIySRik1f1qwr41dQG43LUcGiux+usmy31Us5izGSkxixr8LreyCPmTNhg4pDjLuSafYU4efefyJEFrOR14z68dNAx2nJa/HeF32h54cu9E/5s6V0rZ2cTRNT5apQnDZ+arDZWkIFcKJTRf/nrxbhJvKaafCS9pJZCyRd0MUYERPXAoMxAgT3sUXFIRLu1YYO+ld8WCOuA4LXBkvp50X72xJQNQ7OA2clO7/MdvtUfus7BHEjXauhJ0s3MERCmKKjsyZudZzEGt3By95IIR8uA7Pr6HAyJ42OkZv0o+UznmeCWKOP8XecfSSSNCz4L9b7pkYiltl1Lt7b8V4leFjrpej8Qq4joeq11COA/TKRC1bBG8Z+2DcpwWl2cHsok3vyryRfkL1y9Y6bF3NaIHP0z9pe77ieckiOAsYuImezrVb8HPXiVJeezv+6V4uDKEnDbTVhGJNRukzWzaqTYbhe0=
Variant 3
DifficultyLevel
572
Question
The diagram below shows the front view of a house in the shape of a triangular prism.
What is the size of the angle a°?
Worked Solution
Sum of the internal angles of a Δ=180°
|
|
∴α° |
= 180 − (35 + 35) |
|
= 110° |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
angle | |
image | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2020/07/Q19var4.svg 400 indent3 vpad |
correctAnswer | |
Answers
U2FsdGVkX19RRtrO/1hUylxmkvUejD7CtRCSI2w1viiKtkYDA8Sm95opngd5k3ILw8R4BNx6n+PPy/kOxgMdQoBBOnWX5CAhsxVDA1DqLbC9aB3fluD6SCkHcUTiGNVe3ApLfV5WKMajI54id9p9Yl5zHgjihzb0B/JOy9LVYgNcFdDdbDS9U+5/8DyLk6xVuX2dgGA3mkIja/M9k1gzQj8VTO+bymDqCS+CUEpTmV3Ej1Gi9jzto91Zz5BXqoj1mZcXLt2hl4QR2FUuU9qyDNyaoIV89dDdX83xoZAFhUrUIx08CtGDMyzZStHhVrxy57PwH5AK3WVLV4UITk1TNMIB0sYnXp8UZa1k8hk5ESzsFixWAifjbknaoJAn0yCaA054LuT7UP85XJovTReLipahRYAnnXHafLHEyFY7YepaIPIRxCLA4ZPsY94hG0O+XuL+Q/a869bM82XwhmePJPB/4DdvbJMlrJbwLDsp6rPLQ/X3GtDJV3Q+OML8frtdegagaYKxu5y6WsxirVMv09Rp9wkk+Unq+HswfrIqHUuDoygtvXScImvSucdUjoJ4m0LndmdIm+eAmm4KCcOidYXJfU8BqIxMSRo4tL3/IMuyG47haWeHpqfI2zeY7fEC4AB95rGw3sYXIDyGNFDI+ltS4eXrzS2gwifm/GJlyNKTgk3FXOU8FAl5rCQzYxwVPhIEwbb2ClJlh8zOXj6qtJGqzXU0wcuZx8XjnyDIldvF3vYJILRGGNZeNrb7dR9E3ATsu6xjnuW6CTZKihmHf2ou8xSZ0ntHNKwtPHfUxTFV8jaLpVS+2/OgPFXu0DR6HRUW/J1rBDqTb7zrRCmG0Z/S8z0XV5fVQse7w04RMORd4PraKnGqu90dH6q0oUFUDbv9en2bQAEjKZ9Q0JyZATTlpBFoumFQpcSVMoH4AcPiIUmbGTFZ/OpjafjElaPXSwstXxWQ7RJX6QRUbi+lPqWqAdWlIQ3zQUBdOrE8K28BwxdMSRJe6u//ncaL3eOAYm2xfPF7I6F85kOzQcIpFqHlCiYZgTfFgb6Ny4iwZh0Wo4iwYvmu1h6M0mNYXtYP2oKhVatcb+eF1ZhN2XkU0AJ2vRKv+AiBvllnV58fDhD/Jscs4i3EvH60KcqO/rq2+KgF/TXsCT4ekPtql3eRnJFlQIjGWm6jlaywmktyDaLrfKaFITOTXoixUpAUp7ILeErHES9tVR2U2q8/nM/sJWMecmRlWjA4Dozrisgt9QJWracMrFfoCbC6G6wkuBHkrouQykvtr1ypQfthDebQo82UhndpHaCEgN4RMaEbkHrJUbpp1/cvPNDf3qjWfV9ZytkdZCJNHl7imXgI1PYsoXhFVdjCMw4C/tBGWpxFHUK0qkvfMqvAn3xXvGbCaFZAAvylmI3UDNepW6nnL/NPdW0PIV+RQPHjiLROiS9QeQE1WJOxEDQ1WQvlhjcmJqv08Dj0RMvv8iRXQDtD3QXQnYU6hNRn9YALqXynMJNgsyDa0EZWKB/Ft3pVu6eKBC2E5TCUe6TfvBdP++r5j/XFubybJFBX2ag06OxlTvMhtenD7CT1s+3M70ES9QEvN+zo+hB6+3Sv25+5SAMLf/JKUYeqKs/D/EQ3QhjFBSzS78yFaTl5L17m9sk8mKlsTesgDpI90+HEosSgkIFtfryCl3GhQTPFM4FbMjms80sgbKxeBDVg9nuvhx5nHHFO3LWtIFh1ElA/2S8A4DuWM+nYS8WO9no2nco91i7itBK3oaMeZhCxRlA1gO/pXZ22g4ZjyIXg+teLLULfJWUtR4aSlcQj1d9mewWt91gJHpU4lo9ngqbgYcenFnnysyy9oTq9+lDc8W/x9N7aF5ia2fz4zvi0y9s9ACXTnXcJJ28RMhV90NvHDZG851OqRiP+Yp/XoCERbiAb7o+U1Y1E8GC40XTzmarqQckMuOJQPYAvUqFWbU36jb+OTrBAzDdwCCa4478x+lJQ02/jhM1PRuj4d31F4npwTiXyjtG7z/rVMpCOTrQ4BiKsGBGRivGRIEaqxyE7Bqge0A4CqR2P+f/O0ZccZuodI2aFF6BiwWQqHCPbGcSDDAQqA2SkVCBulxotTWE/5HznHovr4HFJJzjmef30N9zSr+oRyeWc1MSlK1Os0ShRCgo+9qh6g4wYGvbrwuoMnTZX3USklVAzHcZaoeo/SRpQa01VNoZp76bmSj6Tk6mZRRHU09A5cM7ByuU1RbxIjs/VxQgKNrNM0eAQ+Z0QjeNYNHCAqG+soKUpDUkW8tbJWdH+zj0ozDuTx2GLY1OPLmoSWf7XppFEAVWdOIxeDb36WNlqIV9fSR16ONPmZlDpMPSOomPx5EOqrBwmnElXX5SIKQTr+6xNoSq6J5TEDCrsrTJt7ZlHIWLcfOl7qunVNKLOSJ/dAfEBsmONJy1OWEGZGY1fjiJd9C/zqgK8aatxZGW0jKewVV0DsL1LlncaZXUXwSNdE7e28Ix3VDgw3TA9XOlhlHCC4Hclb7cF++jEr1IhxXLAh2Nd/3fHb49/vJ/ozLuXfftMk7JzedEgTx+X9XUSD2HXZsSlPGxAmr5seriCXiIJk7mDeLZYwOFYKL7PzMsrtoHxv2Qsu7YuR1lYHWXRdqdajIIMYdi8hfCHmTTt+c6SPDUCT0sQwbAPGpAI+8y58PAaEpzaFDTDTggvbtatyEX6wNwQ6hfX3v3tNIZ5KNr/BIVxKUQt3hpUAGN1BX3Sw+zjY4r2gW0li2EdTPM/wd/jlk16KvCGPzPNT9WJRt3ssbj9EUOvCQX7wKHUf6F37JPbht3q8Hekw605EwDE0AiQKX0r5PqOXZbgAOSGMusuTp8Ema0JUG6I/MgtL3YomCP/QmAFcoEX4b4qQO9ED8proKqFIovf9akI1G9oqRXmTXk4uZ13uUtYldFnPcQa/Gf0SkgR9g5T9ezqsWNt5DpHySOwdAEgH/dY4dKyL1Lnod0ZfSeWwch8yUUSTRH4kAvgkUFNCeVLecFpCSWgg0zozC2HzpNUgnPmfWiYQdNDcXP5SwaTHzitztnZKbaF1LWYvJfDu67xPeMlDdk4fsUwvhKwbu4kuhRCbeOnrDhNSrDTO+OLQQtphClJvakSPtK0/pCFdybwyiwyNrTSIoITZa3cvuhmnS8b7rBfT8411i63cduBoFZFM5H1GvmWL0VPWK26r2mZXP6/pGz6DRz6iA5r3EBn3b5XEh/5lZZF71Ab/EhCxXTfv72gj2JuLm6J3nzwUzfdSY48eCz6QTd23O989tvBr2sIhj2Ht3MKutL1qVToXKrObfxhCUUi3LOqQfr6Xj79h2CdhhBSbw0DLED/dHBOYTTTtw50DScVSYciHMAsPm1HZ+nnmFEAaM9FzTAD3g2nfwKw4SEBjmnEfzcrY4wKuNq7BDVOX8eafDngbTey1Xn40zug6swY2L8ks20kp/rwbwP0Tz5UoNPyN1F91OkZUyZ66B9CtpzLnGqTcDXuJhdIi4eXWhIb0Ierj0kWhVPoRWg9rQIZ4VRpPpF837Aco/2QORLgsPG3GqGX+4rYEP72mB8HhxPkPbUj6C6b10EGqe2bWR7gpeY5dToQmahoMexrqhP3LB8q/8B/MIUaaQyyDXZHQo0O8eJN3G4eN6tvMpFbJTDD8apK2dD6vYFq72xwBK0ZreQaCvk7htPgD8Jb3HkQ/DiNFBpnuW7891+3Y3RUBx5sHyDxa0ehkqaSbYGt1lVpquBzO8Lm1X3xdA01ngU8l0ruWiX2pruWmH8oqwRsUWp+OQ84vDRmW5ABLC9jgtYiPfa417907untJY5MWBsaAbMvYgHQ8yJSKMu5+bH2WwGSTGGfxTIxfmh9OY/5pYJ1CbyoMfJ6TdY/p56kWt7PQ3Q5iLkEtfaSvZ5L8U7/K5UzT/Uqfnfqa81pFTPPZy6JuGxMf+O5nw4sg6CsSn5LEXFp+F6VrLUcghYV2WloFckfEuuY08FiEDMOaFVsV/QoPcE28zbEZJBMFJ5p58+ELV1ntW4+tFdHij2PdIZbtVfUoocVr7nWZX9MFZhOXiZMgv8rbBLGoKsOOb3wMWR33/UITAGAItqqBK3qoESQxJ6nBy4fh9pkGMtTwzhCayg3G9jhaMd9Fw4jW8vD4IPvK2Treab9SM9/Av+fXAIuyk8PTul16q4KYXeLZTg/tSYfGEuoZsjIO8+NbeUlJpHTETSGnUVP9pNkmVmP/GuQgGVSvfWuUzvsaIgmainlx39H18eJ/BoBf4VeMx0Yw99/mmW7OT784Hx916CKb36MAbbLU6EljUAtfbJTaWN2ttrrH8jEANR+2KVXg+46eRG5ajjt3kANwVKbttVM40nb5FAdNViKOP2i7QojSGPOJ7mJKysPapzixW+4OpgbmDVJrPIp/noHtVXyOVEC1DCN1pLCmykf4BAZ7G2vxgj+lj20a/kr6j2dloIKgqQj3Y650w42He5CKlNWElGEUEc1qgP5115B3boXg7xo9tpU6IXSoWSZXUo9jLYG0T/OiSPRbUkoVbQj40TCXEe6/B3AIa6iAf01W2DM65DGvt8sNBIe+WkGYhoTBsGnNDliZX92anwsujmGZgLOVcYCAh7Rf4WEPuqPGz3ltZgu1RqEXE1LdqK8dLA/P1GtiXXX++nzUV++TFJ3/45PjPPMrarKUftfTVeewaa0CWM5MoTOHy8ZB/YzwHMz1tdYCUOqKjW5/d6E6bXFimSkXfOmuLpFe2w64sBOaSDxAUlqu5MjiIVS/ALABUIRG+XJaX8PpSRlw89VK4Xzfx7Y7jDoyM8JNjD0OrANGxqA/GyOMUWoepvqFL0hJM62Zt8ZWZJ430AmbQHAyQWZGCr+CpyQ6l4+kAfsMCtopegbJI4N0J1gDLk5zWW3JU3ONJ9VBUTaYo1gDkyyiLRcIpW8AEpnVcUgwDIs6QMgMacSSJohSIbgvSzNEEAJzlqZTGtAzIULjj1jOxc+a5BFX1jRs0xK8pwLUXL7eImHRW48gr31uzmSPdknTrnAn11uC2dUMFrgpmlXmG99Lh3NtLubVA2BC1byv0yjkDJPcVr2Yl4ldPC6VXXHRmdFKJaCWBZRYd2M0ZvTSQas6e6qus8b86gxySeA9vj9p0s3TTmgSFsf3lwSNqm+ie0ZnqYZPtBYzrmCJ+4Ff86DfvLlPYJriakmFkz4CP5oONLKfSVkDbIsIAXcfMNtOSZMgpgSXLzmiDzTULDhG1aYTxAKPyHDhB4YbN4WDoafTrYeBsCrfQ5YJuoArhInpVrSgvUZfUz86rlsedRViVO+psDZCCGEw2m7oGsGbJ+rRpGtxH3oz9KKU09LfyqZXvkOfkxNZtT1N2Zd3C6AKDfamH+7l+Atr913jFLzLbC8F4bpl7M6SJkdaBnfQmSLEPN3GpZb9cYvSQC6XuaLquuErWgrWc1GCOVZgetL7SFBf6L7/a61jaFv/Ib5yYMtQ22ZoifPDqmwZrmQck3S9an/zJVXGGi8Ev+eHm9Y+5CI6JR+QWgY+SUsSkqnPUX+4ad+pojL88ONdZzoUOaBrUJj0pHmY+WBvTK6ZRYcU8BappUOfT7xim/yXi6Unoogxg/XjT9NM2yUp1opNjOb+trMiG++qolappXqgDFgAU9lA1TgHndSWfCAXSy2UsWLGYW6wiFqhS6NuFC4hmcnwK/wbK28U482VG/uQDSElCBE0MXi5hKX5dYFH5cYgBvRa/I6N52UXLLjnbtaIVYUAYDNrjhMbZBj1/A0lQ+ZxyQy0+AjPfTuR6svseVpC36exWQrORAxLldi3RTozA6eiLYcgYw64Suotb/ldU9ObGraxakmUMksIGoxrzLM4NYedvKOpS0vEtIixD+Zraj2rtKUQJJHsgOIiUvbtL2EgRYvmh7y1EbS0AjNH5MLYbqTmd7ddEpwGz0E0zzOVhaq9T4cZkvkyXY+nIbHU6/5J0h77wAO120RxxwoApnVzgBDskSZwvwEJr3nhyzO9xel132nx1B5ySQhgJbXv9h3fJ/xYyBbcLR9AWP7+Hbr0aMpLpcv5yocgOU3E+K3mcye7NtliCbwIkzYbu3LKlJFuHWPzmagTyo9tPImQEwB0VUizUBjmllzDDZHwXdf8xVzXU6Q44ywGDTV9fic+2vaJyOPpEbEqBdvZusCpotbMSDIO1SjP6WqzpagM7gKiO1b0gEQIL89AN3dq6EYZ6OvmvJMp+3OhOvqTHrfTWhBUHeBAHhpY+3XcI0sXhY6DKNA9RNFbty9wwj1ODaDyoS+SSbI5059/5SMZBYwTGjaSbOSLp6Gwvzrpvie3g/7IsbueRh95deSTtsYLZmhB886x504FL+QSOgKZ2ApaNI9U8aVUYgKOffsSlx9ywdC3dNqrtb2GqDTZdV+gsWDr3qilLJ8pot4/9GTAPq6nxBEHHK1I7VsxAw9fwG32bA+7byPIzCppOTgAw9i/l7el8o3shyBNlV7jcEI/LDnA9CU+UdOnERdf314BX1tlCy6ZGm1UArzvkMbQ2Du73v87yF7nrR2GIz5O9eHLMSv9q31TekdXeW/5c6GdU1HqduFW+uCoz909Jndt74N6ke1X/TsLqe7Ags2VY4v8E7Y7mI5JczjrFhrBdYDZ97NyT+3Xe2Rg+mkpaffYxfooJsUWXNgrtS3naeVEVGZU2TYAzgKfqwThPNYW2kBZOiSSqEv8r5k8kNvgKIB/WuqFrkUe3mZm2JPV7KyVu+2MgLXqw6CT7+mTtDGPX1X/GSH2X5oMgEEUp8G25Vl8ZwJj8+U+I3IXq0RUQBPQPEQRIB7eA9nkHvt48OyHaxnhYTAJjSkjk3ICVo25W5AdKv6LnZ3FEUNyWzahyqClHwfdqKFtKaJaw2IYlr7xdrqGm6AcQOxiHViIOXlUPkdkXO5a6Tyw58ai3zN3Wy4mSK/+0fMaMymNKa8WBhslTZY+ymvuVo83wjiy83XcWO/VWV2Dt9apRQ8HB87j0mbZLcBfp4zuLVZ7WoORxn1bybSkcl9bjHMmdQR9G9uCqOcXp4tyCFHf83hXD5jCWM+9XIsXx8rl7LVHLz9zhjoNiB40SxQTRBpWvK0umXoP6NpCHDVEh9GOsQqpF+gs6O7gjuyoNtR/d797qIq/7gSbBWW5njlAJoVQ4tVc4WeoikrahhPrTG4s3JVYb9I3q8UXGZlwKMtJGY2J9AP+AsPfjChPQjKxAQyF5VMuOFXhTmFIk/4W8coDnt2LAdh17T+zz6axdWQ31hQtqOC+XL7o87hHaABSw4hre8mVojQvfmv9qscpYYHY9l6XDU1f44ls7oB8A3TxJW2/zmrXyhiEBIpD0Don7TkkVlb1DLx/zevjxRbJL6KSzabi5QRC1c/OVJsIHRWKF0GXveqiy2OszLJpB3xsk40jX/aMACZ87O1Ep9jFgaSgffVrDJ4m2TPVhXnrvj6I2bLUAKRye/W675ONTl6T6a5BIF29CyOlUeAsj7isHEC4NHamnupA21TXe3vJeKWF5lprCKpMt3+wxr2UBy44ZtrrbxSG/9k8TItF8L2Vx5YPQcW7KUZ96EPh0l6dIRUd8K6AI4ABkO2xX9YcbFDaqzuv6ZBx35ZimhPvldjAtR7TFjTcvH8a1fDiA452ZRGG8xj7C6a50SNFPjLdIK2zphmEBg+06oJEMInPRHDcsYAc/nrtmp8SqoCwqlKlr7SNNqeMH1Tgzw5DTCVfvRDLuLNSm4orSnjZ8a4rUImOeC1pdHzHnEt59BkUccUUlhbDUuw3obVi1pBUVC0z0EBqAjz51Rvj1og39D/7a1X99q1wALm+oAitv1gZjBYSNb1IgHAyGfRitk5c+HZPez0HjqySJCpYBNbAii8uim6ng/k0yHSD8qa0XCVs0LBIdpqe78FHIuY7/whyLB7+qvWEm1Z4Z0zofUzb3/sWohQgc4DvG6mdo9DPqP+vbw9m090ROBrUp/TChmFIox7vHimhkvPT4FuGNhYDBC0lvYqYbBpLTBZAL0HUblL6PP8Ted8DbpaNnolc6Q1J/bmoASoi0byhMRjNmaLmqJ8x/ByCaEqMsyvbctYdDCtxFlhJKJItrNpn1xjfBCiE2KXNVA/YAOUVpqhwrWwa2eIqIQy/bCv7W2oCrb/pr8AvJzVRoHXes9m/2Pi3L+a7mMvpjG7vbl6rGDYTXYFvgrnQgkTXerwIP2TtwTDQ8SMuV58HtAn2a1p/qwkPZ98WtC9T+OmfDyk0q2zbyOdZVbdc8iAJtAFhxxwKyht0NU3CKmDZE0d8Ern7QqEcKCNb+hN3TlhiX9MQ/9zgiABVDuBgUzxN0BdTCJXvHzNMyf+4Q/0/s52HMXMi1fxSKHXg4Fco5axpUMM9IGvYvGOlbQpCs9GVDflFXxvMAPJWxjqkreuuFWKP/YVSuDeQ2w7eXr52b9lIFSrn7adxcdWhj9u4DpoR+VbSiRHsGR7xCLKgzbCLaWTkkixpnKFJLvRn/7nZ6DBW7lVhTZiFuO7Iol1f3MaSVGL+Q0iiqsfmqEAzwmW57BsX3L7/WfgC687kHPzJ9R38dRiOzknGjMqleg105XjvF3jftZ3O1opLAljCYkFKyYu75GndEfHQ3TxSB4CGuvV5UT8vxJuX7WOe2T96KVExjp2m+7TEZbokoMLpZiwlj4jziUv6defMATSjCFkwjUlhm6WVLsMgQajKC7hgw2e47mtTZbhXWRXqMPnw+W8ifx8tFy4+E2TpWJp+4m5lSXlRqsFskNH50McpOaM1Hp5xIWnhz7SBDgayGe223wpQS2jA2Uv6PulXDvwrqxaJWhdKkWaAJxBYfwgJRj8XzvzLERPFPhHCdaEVx/8VKXvovID1LvwxGF1WTVcjppqB39zfnPTympyH4SKPz5ED9r7MiwqMU5yyuz22iH4sSwttHrNTcCeEQB5shUB0GbftG5pjDpC74OC8NbcsqKCCmFvrJcoFlPcbc9xH4vXz92XXdBPlBjrdt1UWOw1migDFMGrYeVgBzHBvAmh1aFalif+F8nhvUnL6yol7kdma7Mh5dhQZ5jQDHqECunqhpbTjQoY2ikhwChuvcBQ5hKmPMIR7RpVvJlNR5CIkgZhqfm5YW3E6FUGaWqk149RKvLuiqJHIvQd72j8kyIo6Ki6PcN/bFQ+163h9PytbfYPbVUHHDaEfUtV9Tb8QTvOJMnKH27X18P6imRHeRpSTdQQfoyF/CHuXP0Ovq1qy9bhrBo2+ikZx2LIJvKE4Hln0Tj3+JZvoYNAmnJrGsgLT8pcasXuM84qrF4WtE5MtQ0bnlwQChOT/zKNr+k7O7YQrtVrdirNqeGH6F9ghCcDUE/YauRsNLYsAIMoShFUbSVY/yGN5Bz5GDRHt4X8h5qqT1BQhPY=
Variant 4
DifficultyLevel
573
Question
The diagram below shows the front view of a house in the shape of a triangular prism.
What is the size of the angle a°?
Worked Solution
Sum of the internal angles of a Δ=180°
|
|
∴α° |
= 180 − (55 + 55) |
|
= 70° |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
angle | |
image | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2020/07/Q19var5.svg 330 indent3 vpad |
correctAnswer | |
Answers