Number, NAPX-F4-NC30 SA
U2FsdGVkX19zeuICkV5kwlhJ2fX4VViJ0u1BivHXsJ8T/4Cww3+lbqoYbixjkGbpT8S5A+fow+pWLb83pC0HFpGQaEfp1/gLLrVuX0HNImGVFCBwMjRHKN9QrkopzFy+CQUSGGNxrEeOwq+keSex+csK/oQkX1ACfXxdLhzmXy/KiO0OPRVj+HYG64sVQV3JazzbmyVAsGh/KPx76YFxYFcQMM3dV6Cpv+jVAF+DH+R5xwxZXa6gFKs6Uan/pGoZgX/+5K0XZ/xt/sXAUE3pghM7eqwNdG29/yeS6EVOeuOCc9thQxF7WxlwH992sglEtL3qNo0sRwR74op/4VqSjRlfedYg7FM0kE2y2dkf+3j3sLtaZAzO0PE/2CyKfttnfG0jffPRPgQ+qXRUb+RW+7XgRFcQmb6D/yU+G/o3dnbCwa0ko6fR3rXqv71YJ/4OZYBbVzOdLcOFDwrAAWui58xIKncFqtUQqzRRO0l1SPmp9mGK0sTcfBb+Y7lS4lJ4szNHm+NcO+mgumKPXDoQCS3gs9SnHSU+WhgtaeN4hAGQKCDY+W6kS1uvexJq4oU8Qm/VcZ8s2Iaubf+AsA+M8PHrBYVdhPtOy59eOQkWd+lLBOTfDZK3QEr1sOT5nhskt1rtA5X7eVrsarlfgGqvDqo26p3aHnYtWqx6XWnTHgYqOzaLLHwXBMFgO5a6IicTVPkLRN1DGywt2aQYp2VnMZBXQSkn/M+g1Q6Z4jYjqOHuM3Bb39UlYHirEc2dCd27aTxOXYqUeJrqlodqo5VWKBG7HwBGkKWNB//6RRCuvFW5gkHqawzLCLO8eWiSIsECyEA414AL18UIJnK1lwhi0+rSem/l2A09TscBr2Zdi8To9I9BF6HHDi1s2aYI9VSDxwrht70dFJcL9TgJj2HDU+kC3KdCqhlrLRnpOdpD2UkGXnjZpfpQ9JG8mBXZyn6wQicsbl38wndQEdoWQM/0CQm9c71wngOpW1H+XfRvk8wQaHEU3FpiBUC+IJ/m9VGEir+Y/Pf04tMUo17SAualr+yU92+jBXWBJ3Z+ugwl3Dpcj2xr7HnsAWqwziU6QnKviTw5Epq/G45Z14Zw/cvo1XK5vgivsDGEe7QHiMlQ+ZRch0pxRc/C6xdTu+LU/d+VRGY83i1TKwCqiqS8mstRT/qL5t38KH4y2t/XTtNvjhup7oxb4N306osOomubwt/fM/yNsOvyW0cUm+2aJljZ88YbAWFsfT8YRQt23kpbOmCpEbDFJOAE3YzKJnwwQ+EJ59hLx1N0/hEzHBn9eZ79aG064XA22cMf7VYwxZuQCCeWpdy+ibCe9PmrPvxE1mnOpRSxAX+yOPutuB/4WgnY0KTrABJ162JcigGEZ4JReJHdizUnrmFI4ACoMUeTCThr3ZMqQiHpPsn1MWNxp3maeM+8IMsxj+tYPvRBC8kOUZMvOc9cIC6Bh+O18Za68jmVtnPMeC47NotAVAswvMmaMLQnUvfT8XWzweAieDUWLcl94yaKui07LA0+KmAw2SGlns/qACXfk0/vl89kPud/OZP0eCBfVuuvv/DKMg7jysf8969yM3ahbFzdC+adfkp+D4CHg6m6TKi8ki5r8S5ll2orRynTUXDePC3XWQdKAKE5U3nk6yUjBjip8IRMY3rmYb6H7IoUIV3+D6Lq89efGOltWlEZIRk/6o3zZDM3XmTiy2q9KtQ2BQbxAD5p/M8Fr3nLjZ1FvvxkxZGFjAx7CS0ICCSLcMqx+7A/KjlSJpAPLZWqF+H4CDVdZwQjHZlrMR/HjhcfBPJyefN/FrPUVgz3hJYSHkPQKBo8LlKKot4jJHh/mMezKn6QXU0Qw9uxU42W3rUNqyvYYwHoiX8YNUldMIbayfBF7b0StKhufpxUpXvlCB4e3DC8nDMJss4gXuYfoqDZmWJwFjmN7AZD61jACjpN+YUvroY0zmkt1z0TFbXCrO9JBKXr6IWAalY0xUTkKP7jvwedjDTyLnnhqOCPNQY0CKT1cr0iKYCHQSiLPRFsDuyifmHeIGR4bXAWEogkNnv8+DZjVK7ZPbvgN/nuk4heC0T2/XdRzJcrB57djNp4HJ/foTNbIFQCmWNj0kUF8HS2UppOAV7GChZTEmgQl5M96XyyrnSF1joPUmaD1H6/jE4s/v2uIC+WcHzSBkiE3BQsTNdTFVld8B3VMQlJfFEZdYTbuIwzhFVHA6FkdipYLLPn3M/dNpH9gZCL3fOB/6NOw3wscI/+W8eA3m1egWrqylSeY/AXfBKjAQR9RAtGZjECYKunWm6W0h2uq16rSz2yPfoGJNhDWywWxxhZGuOiwYhcTfx2DEJQeaZytLZXSuKuj0YoqMApGkwlHUqBYMk4PWJtWi5IJodO6kdywLB4xksNVQRDzb8GEKXSOoEftWsZdICAUa/gNxnoK7AFJQoeTZNoO3CfydSkMzpkRxf80UrUjneaEEnUfUb5F6469Xlbo96GSysg785OjWB54Tn3oJwTLwQ7XEroNRgjlJtRIjSBbYok0SYWDban2HawNieHdHXZ9qlEHz0r2T/ADucLMgJMOeWIaXmcPrzgJmZr8mTXi9MBCd6/Y5A6fBL+dlTk/tW71gPtMNkR6lrqGyLw6uTMAXUddOdYYIgAA7jLkxV/vLlAG/83ILnXveDBMII/4rP3zD1N7u7ATxfrHC1JnTzolgUqd2EsGO01/ItHrvvOfmL+soqvcERrjMNSngCbkZ6Fges1pjDY61rSlgLfyRqXC6cDPzTOvrTo10oF3Gwcn7uIR97+dntU0/uQ+8tD/WyWALVXK4+8jX0NTkJ9EEwth+/bbv6wimPy5lGUWYEzBSfRtavGjLxOsQs6IuLKv1z7H+6jX5Se2InfgKT5YEFBUFlEqw4Sa9Km5Lh+Egp7a27/diZzNNbNfWoBxq4VwBR6UdOJtwEX2pAhLNhqCQO4UBGwOP6aklNIyEUMlrBOCC6C8DyqnYFc4ch2W/kwEofnYthsYoZaBFoI3Pp+bfptGTIERs/wwxOcjUyyDKiQ59qL0S1Kntp+WJ9RZ0e6Dz7WksRtbp89aergJ52QL/mMO5vWsQ5Ydjr3B6IlSUwmUZ2AN7UyNVIsvJy/fiP1We3UGFjDa/3fVtzIfpI8uxPqSii+EDHjilmlv/mr/i2ctEMDSzvqo6CrO6xdXOxp6XDtddQMiXHU/T2qG0VMFxR2ZKEMrXJbIUoCS09hYGCCQS6A3hFX0Su0mGEbIpwtN+Gdhyo87muCiZCaT7vNjvSLhYnorj/GnsBXTCigmtAONKjTmvZwDPzmTmu6A+Bd6Q5S1w73OtMdpbMGbzfl1auEMYo+sFT2+2ozQxoJMSukw/Z/gsBZlTBrJxa8JgwANLwkcXyalTiSCJklnSp1+065qYkIGFC4xih2l/j7WpnX/iaYNGjtLr/mfcAPOGVVrSD2liXaQwbrT8GdO/sJzP0JDh4+AkE722fz93QvZzDTPzCAqyEPYa/hy3o01q2OECoh/TtvMmwxjRnKbN2ZNYFzhjdgVb/ZLN2Pl0oEYJeUriY4VfG7mYONdE8bym39pneFccBVOK399x8fps95MY6GCwIOTppdDURytT+42RQC8PVs3nh3r6zVkxA2aqG7oAvNu0ihb2GmPdNEl9s+9rYS0hEBabdyD/VaL9NhEiHVpjOTFv1vXZRp/Hwe22baD9H3t/gw0i4O0bCEHC7fLIJBHhxj6fefrq9HAHHzCkXg1vFq6OWOJ+THDvnyYF6xDR+j7Lu+N72kPnvetNWZtyu0UvxYrFfNPox5yifnCWjXBNDYrVN903DYrVnBdXS/VhOPtRIMIKKq3bkQwoMJjdRAK7QcccyXAcudxXD7nLdkXu327ZGdogKwoyu/eg/0KDCxT/x1+VDciYBeKxi20GjxcIRF9W8g6Uffv6Mx5P8PROCdnuX8Mxqgof4bmNrg9b1GpmmoOD/Mm6H+jbU+fowIVLIahsjmYl8rJFgWHUOhkbd0F48M47fUS64YN6sBrSTTdl573+Nd66ui+ywZbI65fQx9XQvyKkf/zuIyotw8sbqpf2A9z6AsQKYiCvaBytwV/eFBo0n3Lgpq+StFryeFXEN5Ivd2SMpvNPjWAfyUp1LuWYTaVAqrJSMzYjwaI5TTIaOcne5uuBgoNUYljhOiGsK5X3hVbB+lBkI22MdZLb1HOUcaWyBIH41wRbhlOSDsXq+sVIv373eiiWGaQp6V+y1ulmMA/krvqgTXUT4RdNH42AFxb6HVUHGvgtjjgKdQtbSopVUnjqIfp5ES1HH2P8sukyB2cuPYiV9X3xNfTCTopEtlYw5cYEqUTE+jLx0ewO5n75r4U7XaAd5XyvhQW5pMTR1MAYPl0NF5hCClzggArO82ik7dZkoVRKxPRS185w9AAu6YbBOj+zcVdQwmgF0j6VTY9jk3IN4/Og7jf834zmEInf98/f8YE0GB5B5r1lXjdm070WbXRflB9YvFObP4P5cIoul/gQ2wUqO2/VFcR+1KOhlP3PEVvalUh3Wdfx4KFhG+T0/1pMsC5Izu8+7+o0dZaLjt2l0lHT3nZxHekZT9GcV4voWHq7RaOzbrC0v7ghMpGFZdPZPQAkMKz1vcs16e9lP/NGLrESfaCYf2PXUEarTGAkrcvV6D5slBO87amQrz8NLi+tTTteKnE9l8d4rP713YF6O0+6mhQyYk1/BjpV9LZNMsnhrosCPLLKLsGwptqRU41ANmW63Nr2jrUYDAtBJAp34/+5ueTIBo92N9sUGhLhnGMlACfAkqeNhF4cQ9mrfYRFcbf4uWYsOTjFPtznVuej1cx6IXhypEarATJwiVqb+gFH0/5IB3LzJtJB5axXyw8CExoidhOzuIIMfqpfX1uY8GmAVXotvgxDtacBz0kYHOY5w59uDZmXSkRifS9jq5moliKisZzECsD/BNdeHDVdfEV596ZOeGerjgiS4S0uuqIPpOjkfXs8Y57XSWRXpyAgSxq+09V/9E5gn/xl1ToQCsVsyRc/2uLw0wQqxfrFrlyGmkP+11YdOOGJ6snRdDWbk8YTQkiSvS8yZ4Tu+G3lPe3+tGhefo8LqhUJkJPrLAtGVrv07zuE1xnqBW6PQALPJUcRTNslupaw6bkBiPeKAfcloVA6oN0CG1g9JSAEDZhm9AjXI2XZRHAYtU1E1rPM3nwAgbWppcxmXwsr2SUqaUkF3BL62qqT4lSfh0KqZ9sK2Gpu2y/AEAWduD9vdO3vUUgC34PCGj8YCGfjX+2E18DyC4/uCL2To91QZNMwKj0HYHDECvRBIhyIPAHb8K6zr0HTEvTb+Q2Kli3tROi7OI5qi8eufBFeaYAMvXog5HzLbXE079lw35BD4ZjoTo4/mJlzAtzEQQ7lNp9fIGwD8fOt88sMbAWSvBMNODnnqoN2fjFTCsZNWzOsk1jWjuXQL0lCkpNb4VFP+Q94zNDlm/pXb1idK8x1ENgVIy50jUhfwHAU8v5Pa8KJU4pD7tUqs5GP3h7+/2tlxdrVlQ0E0EJ34Hq0bG5A6QeE6z/8BGLnOcMWWa7NJX8j+g1vFc8NtoMocUxVntuOFW2+jGZ25jvc5gdgtDKYksfs1Dk5b86iymR8Gvy0UaLLKVvfkLhirNThnC5UyZm3pLaBF4DMtBBVzZ4AQiK4g0qsB2Tg73dmFfedyliY9Ikrn/BmPm1wjfwzZuPrwZf63NOD67dVV/yyhqWFv5jLUI+VPjB2iK4Swe6cO2j4X5vTsOvLH3XgdaytHKAmgQZ8UekQvic+UDSXtJe4fSUkiIEf5bQ4zQ5EvVhAlkA6yEhEtIFGUoZBuGV33Ughr4RVEzsRF3ppjIDjbp3wwd2Z6o17U3ERA4PwbvXgcxxZQWhqIzy1IOdCeXcDsI3TSq4fXjym1PJ6Cpt/l5tFTHdM4fFsPh2Uf/xfJ1Ko+wPpK75ULZuULDGKTj7bnc5vepZirICSgpeQHitpHjAriJWVTHkz4ZNNmTKRXpoJVgHvGTQB7Pgk3FcV45ANtjJ7ckwtAIKqVrg+uE9kAhz/cfer1bWb4u242B1KwE2h5kFCRt+R/3X4jhknPWyRlTlM9KRYk2B/I1PqaJ1qFwSvWxbGeP4psqQoztz7ZwJGEfgk9CJ5ppqza7+3OX4NZJf2199FpkovQYG64F3dH39mjyPXIabEJ/sts6dQPNgS/uGLQibGKJ29PSpxmnSQ09232P+uOASwL7k9QCqCEd93s8CCR4r646iBTvuXpmOaC9OaWyhCgCdAU2HsNmCdRsFgL0QwKNbvXZYlBb+W/1UZ5FoUD07GaLkoRREHqtrSJnQRI4dCdPYi4z3mrP+Q4h1xu6EVBpze10i5T5yIG+/5J5Ayqf9CLr3cMPMLAb5LkwjtGUKfqBKpvFpmk0DGLOWHjQqYCN25c/dNvSJj6I8xZ90h+VyvjMq94SMNDF4rsdZLOmMo93rr4MCXBmgL4LCFWcU8wkfdmkVOzpuO+28F8n5EsbrNv8sCQrnnhBAYNgCq7/EbTi6gKlUmz+zKriW9mh9RvkO414L+NkwN6OZV8fkreg/RWsBHkt1S91wnwAy9bOw0sT6yUnXqX7L+BA8gsf4jd7hPlYTm/L3ZJsX/8ZN/lYAScwfh2Gslh8uY3IMHG9nL8qM42GeEEZJR9ZmphjS1+eMoyVKdNhduIG7IwDVf3/9b4EEtUq8/jl6mJEzTmattGWR0qPSLIxFM+1qiYGR2dZ7I/DJE7j5fhdnrdunQRtj34z3Aet/vbdql9e+GzPFoLld+pC7T5kZQvkZV0QjUwdF6yvBfV+JbVxTmHewn7emMqJvEyDgkfHdHpd5jwUJCEV5o7k8XtTpZ4zxk3Afgd5Ej8/h08Fg+GF97FgGcEIBEuMnU7Ascj3ak4D/MSe+I1wpC+fiTBpIZHGQItXzHuoRF08rjb7luGJjBMJcfye9lhT6Wz280Sc+1YAePax00c4bKn0PP4ZZirdQ14Er/ufzqMaSlDP0poGvCpVbuWJtf4fbiLkcbDRqb4SByp4c937MZmDpTdP3bE48nUiRq0xWOXccZPfG5Wrq2r3H+oPwtCRfzMfEbKXpsSA2p2tO0pVlXuJ6MBsseJdzGSemcAmWXPHIS6KJehT55/cKZoaeLwpjTScfFZGsrLvsVT1JlTy/gqNZN4g+m4fi6qUMSjY4Wiq8izcaraZXdBvaAiAEYIlr4f7YXYyWCfp6BDoOVHhU+J1M7VPSi1S+dEpfnwhT5/P8YLE7nd4Vdk03sCrdHN20q04G3Bel/cw8DUM9CxjW4bn72UUzNJH2JBjfxXl6yLzd2WTHkgkDKPRneX1dB92BSklA6G97HH6aaL8nDYYHFGKjcMW+lnoRYK2KS8uRjJ1bQoD10Fl78StHA71eohfDLM9O4HIxgQaNfWc3y+CiZv7m/hqrLqEX+C1Lw6kWRavv7sVxokvIlHAfwDKHy6Aw3KUvrn7cnFX/DmOFO8h2ns63GEuFeRQRpg3dR0Zy0auWMFwavqtDm5HKImAQB7JNEF3mt2aosFbWSxUW6bJbPbGWRdoB16PrWDG4B9GFSF6PUexiaa5N2IMUVErDTQPcYy1pgpVh3OpCX1W2o9juFeqGXccOGNSu4/MHDBAfoShPcZx7L1W0dkNFIChT8At2FTHx4k7w+6f12lJRBPlymNYRV9036CUrjvr3yTmBS6fcYlAg+/J7kGdv3ahH6e0tcrWfLOS3JrgKLvZjUsViAjqGfgKF596CGszaqAB7GOgbpewyMT2QJ/a70AwsP9w8cpryphdrQqojesgByftnVM/aBDjIBjRSBkyi9klgyWKOgF1HIU3gv9uOlCG55XrVXn5BOpjEkmy6YkNC+LuY/xSyzMJtTN5uGSdxJ7GKFv1ENfr6qD0QJpxuyh86ensNFxXwK85QqEpzMSe17uyKB1JKwR5XMm2HHFKn5ibbZN8EPbSycSRl4kttCAcHqvPNeE/uU6YZoZB7+2Bj26fH4K/vzt46woUxyTsdjiIFTZplwiLtfDDbQWeRVp53zRtCneRJ4fZgXw9qBqr0CGjQF9aFzpAzHBcGkIv0R88ioALYxEzJZZIlZ+/dQa3jwPAZLDRlteIDhYBbi3wejJEEIIYuY7u7lxGYhcz7BNQ3kZEgMr+55R2GELMCL/rDWXWkGDoqstO/6QizuAZIlGH2Tp/iFY+eIDXPKy3WDDb9LkQma5Y81OWEVe+V4YW+FBeAowgas/etFeWxmElYrHpMl4wUBpdW6sQmOoz2/bVpzGq1Cf/Hr7Fc48EVhY21MQR5JyQj2bdJOBHWzAb2ZTWKFO/jk6nN015sCL7xPN39uhFZXXq0yV88DgNfGQxhciSha4l+bH65WdxfBhFNxbH9CP1Z+IHhhD3C93H7zoshqPHWCF+bJwoq/KeOFDfeohzy9VgxW/PHgs9qMamlaLVvFaaJlAoMo07ibnNJ2m0zTrXuNrNZiL/6ZKX11IH6N2MlfPhThUdaFowoA76W5b11RLxxRLLXngxEWSJftrlNPy4GC8PJFqR4J4wZOo1qkZJkzwKfsbUNjR9PmcZkZKyhv/oneXvWv5C+q/eQb5Av6vxJNOuSXDFfUj2DwsoBNx1mFt91dbHdFpKQ8A0IpNFDjGny2LSZue0snufCmcTOnL8ySG3VqbHlam0DGVfWyxCaHzwZkCnleXOFoAslM17OwKt5HGa1Xt2bALLlL7JMNdEexHL1WwnkIXsJ+LfkTN87YNh3+lpeeqyrXjgVBmVbZZuYhz0hDIFy3BNrODw9thi2kpnryhCXnQ9VNeicUEjCfAqinZ1DCy5K2goP0d8csvQIGdVG6jGw3AKjz8ZXKr54w9GKFCmpuEsXQnkxzxv9sWobQgnF0fM76tjhiW0Z1KSY+s0He6mQcy26bHKxz9EmFHLzBceMqR1z29nJecU9KMKva4xVR6Jq+Z4xar1FNiWYoyZk/fNMPAjhpCw+brC+JAXNU1xTy52fQz8r7eA/EbPPogNkhbxhmmxwrYEt+pOlja3dG0C45p4+d2pxnJPteYDKbB+OIUbry5zk8nLDLkmgi+nClhAWaEbUFIA4v8j+BIK+bF0izpk6Wr25yeZcZ0oziSbb4eEL3+FY42Szp7yb2bHLiupNLiI8nJw42Bb8HujqpN1GiNaP4um1QKZjRvGyAR4VjX1NnIxyt5F+I4rtRCNIy0c6XCf7Gz6kQblA5n12Z8UPMdLWjTEZWK9mmcfYgMOziDceDChai4W/mN2zJ5LK3zrxcO8yALj1p+EhjRTEW7gjArTx77JkQ9WGeox73OVmJ3H7kEYQiV0cQMcFFTp9pkCFeeW9KlnQu+ZYNG4i9LORKf9BGJuWLsPvewPVhJJ+uipYFklft3o4+Bv0olq9lb8SCEeOG7vISxnk6ZTf6pF7LkMgIS8X323lmTQG1vrVZKIWEaN72hHE3uRkOicWeGUenGyhmgHUhraZ3qFeuShr+S6gXBnX5P0CX/Y5mIG6ZXoeIjKU62GTF7QKOkxzU3+YMZmoIBVXII/txy8J/lJo9N52dEVBVVGZu32GbL0rQKE8HMk6kHSUM/nNByQMAlh/oer2lp6xARCcOReKp6+0O6Irbot8MvGZ3nBa2SoA3YaVY/ruQIuU9J0SAUW8TBznojByOHfBb9BukfjyBWPGDkxN+WGPVSAxkAkwIi6oyYwc1zaCGqaw80NYo7NXoCI1xg+YcHaDTkfMDltYBP2XETcgXwECr5pdtdjtaVyzwPVTgJlfx2sV0h26nv7oUM5gAGIZ2ivoCGh3ACNBctBGVNCapBXQcRryvrX6vG3zJRCRfyBbuWVD54QzTdfFdpbFUC5H1QZogd6mltc2DsOTKH1+0nquCQSvinm0MpUcgUmtAnQ1WpBX4Fuw0lASGphf0R0HnCijZrq0tzXcTnv0KrS+zylBJNF18/fRmY3sEidxg2rAEtGW9xki6HXUar4oXReBzepCswCO5bYUbCoql763opYk0nXQpCzsW+99whRIKttMDTPiqaRo0yxfnJjU5mi/kc79FyQs63+GEsdiOqa5Uy+d1AGmjrWZ56FxnC6tPihh/BF6DYm+B5bx/yxT+nEqDi+rvWcUO5D5YKO2Y+/QLKWIVeQN45xGXN+RkmPLlGvzTOl10K4Zmvrwh8u2M70fMFS+aRIGTXGAnykSV8Q39vRBEw2UqqkWCTNYANZjkFUiogFm9fNgwsBsNoAd6kQ+k5Cl5ii0tp73N2BgQcQ/WS3RaeVlXYRAumOqpQcYFL20DC0PZM+dP9n5/QjgoEEJRPyRshkyJ+InN/2JJiB4EFrSz1Jvxp5BTt1JFc/fEJFcUkltEB8OXy+I4ZqCG4QqKHxTe+glfkFy8B4rfcWI/JaACEYvdN10MSNU4N418MaJVlVT4ULFgBr1lLWNza4nekA
Variant 0
DifficultyLevel
729
Question
Sisko keeps a tin of lollipops on his desk at home.
His son Tardis takes 1 lollipop out every 4 days.
Sisko adds a new lollipop to the tin every 5 days.
The lollipops in Sisko's tin are decreasing by 1 lollipop every x days.
What is the value of x?
Worked Solution
Expressing the information as an equation:
|
|
4x−5x |
= 1 |
5x − 4x |
= 20 |
∴x |
= 20 days |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | Sisko keeps a tin of lollipops on his desk at home.
His son Tardis takes 1 lollipop out every 4 days.
Sisko adds a new lollipop to the tin every 5 days.
The lollipops in Sisko's tin are decreasing by 1 lollipop every $\large x$ days.
What is the value of $\large x$?
|
workedSolution | Expressing the information as an equation:
| | |
| ------------- :| ---------- |
| $\dfrac{\large x}{4} - \dfrac{\large x}{5}$| \= 1 |
| $5 \large x$ $-$ $4\large x$| \= 20 |
| $\therefore \large x$ | \= {{{correctAnswer0}}} {{{suffix0}}} |
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 20 | |
U2FsdGVkX1/IiJXxiTP89MW9/iJ86EcDnHf+XgVqZEtHGN0WJpgTx4dZ/IJDWT3S4NXh0tsG5Y9Zbuy+9ZPvJxztBX0hYnAiu9YCNvX+a4OxRHRbLmfPzyCPJaTVnUYI5n6USSXecSvJXM1luCjSOV9CzmShLTmgHnJ8QerKzj6E3Ny0NyrXcw/LzaiyqY23LIx4PnRRKCC2sbItarpFM2aX0vnngN3PbeTsWlAMkJ365jky8NJl6mpVUKzi03cXfplw5CQw2aGwYYjcDUWyySbcotS8MAsD3dfsHzHfhdeNh3YMD54V4ow74VQin01dHVoQ3JwCXYHbJEpetEsfXXRhZguu8erwQlvxLuA11mTfZDN3fu85dS2xRGZ81n1kGMAC0+dzeeTWXuHhkoA2z7n87WgKYCCVUfDtWTbs1brSzrvVscQY7d+6+Fmn7hlN+pPGP5kp2B3V2hM8/4wLgVxbkbAHOoaivXdaPr7jdRwUgReEiVg8PHin0TCCP3jZ0Zv9B0dWFKBCT90tx+L/bthgsynzNshvLzpjdPwUlFkZ/8AtLWwhZnaplfp7PU/D0vnCTicERJ0qdBANW97eAIvgd6MTELjQiwdR4b5TR3d/lV6of8GMunQsJLJdNgg8hqFV0tioOGvpP6R43vfCftY8CdxPU5I5JfNurnynADtd51TqDWrlFbWqwQ/eQ/dZlWCp+S4VxJbu7IFw3LeDhj2FSTFYT6GMfSrURRYREsKE1ncIg7QmcpM2aOBhdNlVVOgAsSFM3nBDpMMKU/wCcFEdqxmYmTWtKqtMs53jOkhlKPKSvMJnF86I8HDMiFHuRrbsSZmrh8APnFTlP3OgmIwDMdvhUZg+1SCrSPD87yAjTZamQCEFQfe37qcj3/TfogoWWGvC3qfqPjlwqWuPx/9dTo3hgdWL6lpBt/lFiHomQkzzJL+x6lIPaRhFMkaNTsdZxj1llEn+nxb1FTLCXN6oAGn0PG06UoPe0J6MYqLtj71OYzyxY7FPUSJqtslou6EEetT9XYWGwF2mGu1taHP+cuK7/09z270xw7YjlL3U1nGwEPfFoSUEXgFL43Ovkbe1SOLRShVZBaS4U8UbCjtM7UVEtanIC3QoREuHOZfrjTAGyPoDqceHch4lmVMrvK94aaHf5txNgNl67z1mjqOpA4HH8a610Hu8UxXRPmhOE2E83YAJvXbHGrBwgHww8A0Vb6RzCl2LEe/RFv8UIPs2yZw798yY++Ks3yOCnfrpp6TgdeGqZ206n92vAPub7l2vlOPNyPPRIJNCgxS+hPXV1/xX2YpHH7Tnmq3ENxVTHYKDTd46RdhWdNGh4gNOULO97uQ8iIQQHviPYpXmR2n7Xafuvl6G4Qis0lHqkJlOqM8x48k1qkO8fAe/5HrDaw7PIfX9NI99J0ccFdw2FS/6PGh9h2fU1YomcpybprlAM6MCM0r2Gge44StR/xNY39ButY4PY3JqoaPwDDIpIhdTzJiyqiXLnRXd5kLOoRPkBlE9COF+fUOb550kRWWq4Uzd/ki3Dwo3FLVmJRjoWAeH5YxHhfTBHgHqRshk8xePLJMNv37dnfMaFCB3lBAhlV7Z0cmHgr8OSlHE2TXvBBzm/8dE4ejCBwOrxpe+hpi9lKKyj600Qx7C9ZRWv8/ZjOSUYiha4BdZndrwjCC2IZQ0LI6kKMZta3xgM9wl82lHefYHJOWjJiEjKcnKNT52aSPsdQrud7gRp9C4R00JiPgSHE7coS5I2gRzd/A/KecstK/XadZaJ2PGgyl0os5DfwDoMrL3ph0tQEUAvq4tU4r7lLRkOFrzEzwD9kJfNP0T+pA+wtX8UCBS7DTjvAdWU58PfebcgZspNMFe48NsNwsvv9Xr+MPEz8oVJA2YL9Yol2hDHwsng1dOATLTZ++raxjxTvrnXDeQAwAw+S+QRMqI5M2YtwXeS8d9NPGQ+DDYl2WWeLQa+CIbXthG0gbkwHONr8wqYcmJPrmvsX44tfeqosI2kkbs8TfctUnnY2zwViZ+WtHJfVN/Wkyp7N5dFQy/SnTpKdfDKgJQbMjzzdXMBJ1Bmvn695tqkYdYAnXBiHSr5iUXWrQU/ADxBV2MYQi4TLQ91s9encP7WEFxr/4QPZHirGgfulzfnEJuOUG03D42BVO+NBSCX3Km/x9ZEGwykANClkF36OrnvB5Qz96SC7txX4x9wSwq8Oe3Rztddeqdb7r2qxcDACAUC4r7Rtom/vwQzfFQwtN4eU2WE9zigxgjagGv+gF+ZLDkgkxTAZOyDZ5FYN664x42V4rUdF+DTSEOdh+DvgpGpnFVR+VhYMvNAg3zYS/7tbREIIP49PWW3BQe+KIpd6jbHIcPQySUpUZ4Vn3qAY0c/5jtD2GDDnqQJkXd1hd9F2vO7gi8qOyoi6B/EoChXiA4UjRFjb8XC0NQJJKnA53iZ3+XfxIBZcDljEzvHRGpmz2CTHAUW+zc4yrK7/1AAxp7CrgyXVDV0WjDMvnMeOvDXWoX4nWCqKhnCvyWxQLXmPsg0FPk3D3c3FYBlAIiKv6ftcUELa2LbvqreKzGmw7w3q8y0H2WaMBU8vx+AbTCKfNuOYQGDvAM78pFIkIL37E/w9iXZK7Y0oUbJtF1046v1odbpFbjjgMEWQww95RLMve5cPf1GIYVpo/RmJFspKSAKkRdAHlk65JUsEcO0oTrBv+eJQjJTs5J1Te8xi4tQed3j/Z5bi+m7BysAlAckuKaFBsOCT5YATmt25nzuvpis12NNeIfFhbflbIx5ebZzbS1gP5/w5Vi8Min/jU1kWBZaGNEIOdZzXUPqO4qzXKF8hpp8bXopBSv0JiEe02MrhJriogrZmkcJtR66gy1/7PZhajqD+8vDbWZrmrwPTneuLsY+FXtT+p3VoRpv+TQzykex1XhpkfsNRg8BSY8S+o6VVFxhcjDoEEW3YVKQDDSJujYSWOXVKpGSyWsh7J0AQSWNl7cOffQJMVUCyy/uRbDctSWGQA4YzIYCQv+FS0eRAguL60U6IyHaUn2I3Xj+5a2StfURBFWxCzhSImmicvqQYnO4sAH144F+0V+F06ZLNKLImZx4XZlAKC9olsu0UCRT+VAU+W0SUq+omD0ntsx0MH2CvxGDKHyzDOjXR3rfZSZLEPvFjjMbZM7iRUP/7D4ANKdGFi+rEqHVMv/bPg0M6eO9PQ8Mp2ZRc+9OIfHRaSh1k7vaZKtoChcPZfQDdAbc2DbQvaHwlazqsf1esNDUIAVMmXIXxOolGPq4ieCVc2YdrHWhSli1BT5WCMsEvyGGb3QHQOCY2sw6Gsv8C16OZ0+lSejluacTRAeE6Rw4yHzdMQtFX/dtQD9MCHv5T4lae8WbH76G2E79S0XRr5qziejkF5eJWtqJ2md9J+J9oRzd3gKCOR4p8od1WV/Xrd5UaEdiBIeh+ovVsPGR+JN4UNW8I1YBgLgsM2J8NcgSOvr9CL+UiqHYyug5oaPsGBYrtrbz+lV5WvOZQCRaLm5xDoVv0nrCsjHSXZe90Sf267knaqlZNaViFluucLUtklY/TkwDzBHLiIhDnCrxsThvK9DXZaCTxTRmlQrsZqlIM4UShuG7ZQpRhIYN9qjvptwyuHrK1PJzdsDypqCBhfcZH4/A724Me1LYE0Ye5/l5PMORRnac9P+N1KuI0IkQBdRjxE08enoGYpTR9y4EsX9wVFoaRCq0qepmepoNntuxc0MSmOSEutPazleGbZkDb0wxeMrn5fuZaprAidL1YDF/goSM5YS0kAvpuBiJZ4OjJfb5+EbB3exB+EjGMYTphmH7+PcYZr69KLTA8+PAvGhMWllkarfzLprmzHE3UvzUJU9zWCWLBoOKp0GkuHGtzaR4IjgYCGn79Hxz1WVJ3NsO3JyvY8JzuHyIAcJz6my14duc97XTUVdJ1stlWmJCwr0q+SrD9O/ZLp5+Kl608q2/XouDAQ4kjBzV9X3SGg/R6La3vihke3Xc2ZQNXqfGe/uUADbDIeZ3wOLvjOzbuYB6ceBV4Klddy/Kau+wryeFDgNhN4WWwcCQpXQQiqUTw0ph/2S3FYVASvTfMcHDJSq0FPypmrwfQtIb9+nq1oLZL3BUBrVL0N7D9NnJWU5+JRppDEZ93gSeCV9evuQYrAPZstU8bk+5tzEmloUCC66S+oPbm3mWYCSh+KfT1/psK3be5SGkh7TU/8PqXSBS9or0RMZcM/yZzejwOpK80mjX4yC0F52+AsBCilxmOpFPmUYmBgbIenYu/+oa3mFeGHXREDDqTVwby15AHX8VmYsPpXbfdcXxsbU7NOLPvDT4DDnLV2QsCWO48L35cokEWM6fxiUxKOBhfmcFcArM5uFdOqhsS/jWunYZ11CjdfYV80fjzbJKdnx7kST5jNBgmmHLLK61upbEpu0KOWvDcNveJfs3nULDAG4BJE4mmfVf165BpJoHgjQAUXwd6aNHGi8Wz07HbPPFdY5EFPnqerUIB5Ion6mpsrhM4cTOk50KA6CIrYo6azPIZ6VCYuPxBGf9DPx191DBFrclhe/plpg0PSpGywmIxLSnVZvICRq6qqDR31LndqLcYGlAgamcr/6ThX7xOhla3OxXz8SwskPsLVQxycPS03uaKjE3rHevFpqgC87+GQOoqRnE+yUD9CGruGa3idxJAcnTOfC1rfweTHOzIWAf4MPZNuP3bRvyrysN+xE19Rep6AGwl7dFIfmyAbMCZpT/PhB8uEy9YpVYy75RYfi8mjB47cZ0CKbi6C2wVWlZWYrQstLu+hZL1Rd5wqS3LMRcpGaaWCzu9P6XmWxH52MsZp/aukp9fF45U2+vUnHzZnPAl6Druq+8X7v9jAdkoDW2lfdI36/xbuzh1nki2/zEHQK9kSRLuOAZ8nJymrqbP45hWTePVNjTn7aiyh3laal3JXWoQ13R5cXVrfngRyRdFC6GqGqgld1DrpAs4c+i/AHyR6GtbfCkhLjInjDQIZnBo9m4rrcgjrXB7qjTHo9500F2GAXdeo2P3vbRxx2Zi18XePSFceRYM/otkq18MtOdgg59GPGkwCG3GwoQTzlFf6YGWVCtTUOc9Oim9l85Fdgce9hYYERToi1MRyFAtA/lLSw3hHg8xwzki8ziHzGrOWwiCyoNsee4F5zAr43G7/apcW329qgt7Chh19NGhsip+NQqq9J/w8YTatMeaQmOJ1muoVTIO1JV3cY6AXVZbP5mWnU0oQp8FS9lSQ2xmPlPxzMd/TOYm5+PL7gKQkqc6CJoAdt+Ntul3epOB/o1+BrTBqYzEvHOyZNAyll6CG7iS9mBwCehF9Ed7fsTKMNxfhSLXITjriI0ye+OgCIVBEFJ5jmbNmzQppyMDStWEGppAnQiPaKU1+An6Q7Cgn5CcrIF3vbuKAZT1/Fon0Rpi4qNOaBJyTps2RNHJHjRuHIp6XYXKswVQzkZocXRktRqvzPQwLns97qBBtO3tumbW9oW4bZmQlXaPYxl2n4xWfLBW138tgo7Rg8T/5nERI9MQkEh9Yuq+3B+VBOVKIFTlsKVUywj2CdYo4GDoN/TICZoNCLzA6FApmen2gJ73m7gc9Gssw5agrd3qO2sv0tA9cHpFCkLApUPQp0dC9YZhdglpEqxQRVlUX7K70YftS09P+HFmXwTQoQc+LPdqh9k2aFNjBei/nOySCY9CoaDnZPmWzGv7kDlgOE39//Xu7hhfXtqPY5gteo98UL6ffy5Xu6F0gVz5QzX7K1xzKXzmnSMFVLfZTYlB77q5cmZAjy4FDwYToQ+EQUQy9t6ovBrcCTS1d8t9S4/hfD26Zuom/jSeA7PfNr/MJt/cmnzYQbIR3jDI5+cQCpDxkxgxxsLGxYxoBuCtk8t3tMQuryvEkskaQmoRnTqjkteK2t0/c9U2y8D5S88N93RA3zUokRr4IxMLlMPBKOtT9REBr5ycF4RiG/DJJUTTe4EsddrKALtZcz5DIWEK1yj6USt52DbdCmx+i5SqmtPAR3QuHcibaNTgVZdUgSS0dq3C4W3XhbzoeYKoBJT3RY50f5JiZOEoVuqRD6/pmium+OGgd1SBJLeTQclHUGZ18cE358qdtN7FMKwNYlIEhN7sX+GkXX12HwiNHZrsNVQd/tMKKSIB+FSoBwkevD8FdScmmfz40W4Mf/x0A/ha3j5JWsIb2Ub0CgE0kAYSB2rCpxeYwDulTPZ2hQncc1hpgUfW8BI4U2TquCh7fRbGKMK6ohw6tZiVMkbir7Igrf25eskzC2joO9tIwggO+mOLWwNmo23sCXIHKbucd0Y0DjZQSPC10nUhosGao5jFlTnQeh8jlEQcRdH7F+zdy1gXNodKQSzCaRA4tYKWTATh+1n5QdrDjwd+WDcMo8G+R0yg82g7XQxHP7ioqxM/KYLo/F/IfcdKAWMuo+QPqklxnq6jYIJkoCIa92yDrZpRrh0HZ1588DoQ32BLdTiljc8xljsDvUWIdrNrkx4CeTT0N21fnUQ2G0gwt6ZN5cVTEJQeyNh9AfX0zKuIHRYvwHlCP0m52rp7/SdpkFgHXb++mvtyD77s5+mp8/njo/cCK19IBQIBi/rvXPTaUvhisQG5RzjHtOFxO3C87C2UWwqN7EJr+S37MbvLEwuLFN8HA1MRMKnxS1QfL+xZuawSgd3b2F/iE7hW/rwcczoeElOoYwi22Lh2TbrnrRBnLCz0sep7kF3de5vgVTRsvvYiGnqtpJCH29xMwbgB7ENgwfmc4Ltz40BhCpjkxeGbcECEkEFS147LFuQRpBjcPEVwlSU3xCX/tpgJgVqqyflMhX8hfmZVapVl0u5a9M7yiSUlCn2wVnrj7jMPYmn4+H+KTrBj/5+plu+unhK6rh2VCDXAGZlEvHOEgPs7rNiN0/WoTJMqm3fA2oQ4S5YnK3f14xjsUXLBg5o564qc/DL+AFwZbIlmuF66ZgQAt5OHQLqX+MU9li7b3RFkWA3WjuPilJYsdkPcEvcfV26EPJO1P0XrsY8oguPrVz5+A2hy45RQvPMs2MfY+q8fHwPzvAf4DAVRT3uz/R/jaHeu4Q704LKsDVQD+FeQGIvKTL3NDMPGP+E7Rp92CFCQ7xtLfZqoj8c2IzsXREvUp42HKsfIZzs1AiYiD5V0JTxNr1OdjT8OgRuD+GkFKSguY/Hm/SN20SYeeIjTjIGYWqDhAA52hKY4SzL+re2ZGlywrewERDxdtiZWt4AkpIYai2b2R91wu+RVoWNZSMBlUwUhqvtzdb7+FeR/pcnkN3AaqZq+vdkmhamjo1YD3UBP/tItKbgVvG1jGxDu8ILpHitIw6g1sSCoHgG3NYqp3L2ZNeu/WUJqp+JpVG+6k+3KGlCjY/N5A3pqU91kqB8yhl/0BbqD2qtetExX18Xx+G/FrIC4cv9sxOkouulwG/EMAFltRP8oNoF9utAcfWltFsjPUNL91r+TwRF4busoIpN1AX7vNKqzL+ew0g4uOQbMkYAVBG9b/I0Mwf44quocH6XCFmCIOQYhlpzuwbTWqJHE+pHHsTeMwbcyGsp6QBPE0vnzrabxHB4JU+mANVPJyEBh78NP9zZFhEkSxr9fngNzEw5qA1ANNe90SKVJZuRYY5MvB1evIcpmPewSq4NAvw+o3SGzOKEp748q5OXE0j5jqudearHO4HAezZWNy+m/DY9IexifQBD8ThyC7VNqn568tp7Jx5VXiCtafXexg8D1UAWuusOQAUIzaj4RNDF7YmNzBohj/7HhIRnZuTuTBQBZgEjW4/T7EUu1rla3VFc7hzRM2sVcI6gmaH4oiSh7mG0XAjV0mqcNNXbSTJlT9M3K1/3wgVq/9q1wIAvMmAvxj4YR23Yj3EThhHkzSOHA5mmMfQhEG/Z1Mi0xPwm4Ukz+nxcCGkmri+yQeq//yJf7TXlyRd+BHGtlLp1NsBrcR9NvTv9897X5/jhqY79IlmuREJohCFHLHyZfS8qwZBaaEz0CF0uw3zlhn+ypzNL2lOdTSPjJonewzCR3Dc37J26PZFJaw407iHtzf1QzYjo0TiiYXgG/9iTaeokXft2mDE/EOIqWavV8k3tFJkb44mkTkNeP4tT8K0nPOxiGpCBQqOyXi4jBwSAMhlN4UlDF6+uu2YXSNGSbaOqXRcDx2lPqrnRxRDvxNI32Y0MhR0pjsr10qoDgN8UGBTfCegY+81e8t4ZEW2Xxyj/e5Vj5z/naixG4RTKf9xMwC02sbJa5PMSe6Znpgsm7INb0yO0I2IJmzCBRg2dFKQ7r44kpiQd+ryduuROEjbcRRBjvcMpFY98n/6QI9eOJWrzpFnZGVKNOsR1Qh31yDrsa+6dnKnvmdu3q0wa85bh4JTG+/sKiVn0ixU0M4vL4dbpPhNEDZiwIm/hLW0kP4OqjMwvotO2fH+7tf+a+8OfJmrQaBwmEp4HRWBouDL9YgTSrZ/YTrUjrmgOEyZO6DM31V9vYH1wgKGI9N4Ab2oL7KdFuKW0I55v8Mb1t9LAqd7YGonJPjXrve7Z3bcuXyTZmnJPk5nyTy9IzjS+MPiKIdRLQfZpH+Bk6Ln9FAaOqxwsr0fUM/NK8KWDxyAH509w9zDIEMImTy01a0nzE16F8yQmiidB/snSNyybOTvXICyD7fAMakiJIvnjnDwijPhrr2dn3kA86TEuAGo1yAVIiJOKjYjNnGWYiK0R1OCm8ah4Te+IHsCsySm7JfzzMzrOzKs9m0nvIHdP9UErBzbggVttoSHjYomjR/bdRFFutRhDNQPWDA//zcZF+YqNJQyU8oglCzXJtWzUVFDlgdUKLjzixOeDtHyUZe90lVGKJKcsvXG6VTANfgn8C1uBL4B71CbwQffNerByfP9gRzcqqpycPqg8AHBtIynpfD57BrlOE0hAeDuV6+5B2yH6Y+9W8LJcknnCM9aEXDwJjznHNwgjqZvHByB2k+0vdQIhsr2x81MnXbjQk8m93rxoYbUrfrkLuxB1Lk5fAAbc9r0q5g9RhQhuICMKwvzVIOUMmgNE6TsOMt47vpEdIDpagNjSeg3N3Athj7V9OLayj00+Qq0cinooKqRYLgi1lyW9SYY1/LM6l98sjqM9YQzAfysJnlpoc4jIKR4oIiwDvJsaZPEBftIrWDlBN0QPIlPNBrRtCNbqKKSbqBIaHuvl4QUkYw22TvaEhWODQduXRi1JsYQdjocU9uAewXU51r99mEpDbqflccac2x7NkOZGEfREirRfM3Ncud5xaKPzL26SeDWCmIofSqaTVz0keTqiGzFZK1hnknf7Z/kNILRa5a1UPlg3AxzGV9lKCt2lFPQB+jKLlaX3VWTIVUBBX6yk1T1XYUmNdA2K7bxWDhh7s/jqjWJ6T8Ngm/1IH9017tVWZPhxCDGWPyFU71+V8k6NmUhwEJ/uGMLz/OsgmtEJkKHCDeEQM7usnWiAczySXvXsBmLfnEMyGI0fN1C+UIo7600nShkyRlkY3Dmy/iqpxcs00KNdGG5rlOeceV6VMW+vWVNySO5XazvnZEm567Qm2PT/BSAR27+UIOhH4XIS6wy3vVdYOHSkLjcu7kRHjww2DQ/toCJhSQD087AgJu7EKY+qfIAPye7tDGbi/p6mZKQaROZHE4OPgEXI4/QGZemSWxJnOIkUyjeQtIBEM2mfczkbJKmYpLtBsmomW4WiWey1XgbRc6z7xefwtqrXn3CHpJqadifZ+OOBgi/QCG+pW0qtOpz0EKn7hO2VvSznEgBvCBRlnMIjHyrVdD9im/GcNNvvSMMSnjcGAgYqk++JRjmJ+YmzCd1tFC1qyPXlCbPT/a21EoHqp45NODjF3vACzZuW87roWKNK6mTY00fu46HQ+wKg2xR76SuR6bkvI41Ka3UNWRg/tJj5tVWco176hGnQRuH3r8xx1AEpZnARbHyfETNFKpyWQO0PuWC6PDKEt+Br7pBn0PRT4f8r98k8u9BNl9Lq97rC5jugyPRxXVtiNw2saWc5Wc1OOHZ3YeE4YdqMI5m11kyZw7u/q9RKBCb6cxbsuFeQ3XWq7knbyy9fHtttQwoqwYChCSaT/EqRwmgRaEoma1ucDk7G1pXbYuU4q7+ijAS8yjaUWYY60dvG7UqWKd2YKUw6IODGFYfVf7ij28PdNTjdTnh4kHdpiR/HxjDeEHf9GwDOt0QTWtQ35Rc0y7N7b09HL+QqtizevWhNErrovBScjzVkWjLy70Hjh6Atux5k6fhRF1mvx1vZUunYG3bMJIUV8xZFCrnEB/EPxbWwSaG9EI5waj60Dq+k51S2RfHrKvLz0SK0UpRmESre/COe3t6T+0BjwWOCpgl6Xb6kWYd+QqMtECXCuylRQkjTk7X4zhibOjnb0Yq+22/5cgITA1mNewrfMaZPMbRaW7VwJMkWvcHnhxBFWvmp+yNGVkWL882UAudiY1TzWFDjHH5QhM0xVNkqoA5w2VD466DL4T/UrLwV/Qs50H2Gg0=
Variant 1
DifficultyLevel
729
Question
John keeps a tin of highlighters on his desk at work.
His work colleagues take 1 highlighter out of the tin every 3 days.
John adds a new highlighter to the tin every 4 days.
The highlighters in John's tin are decreasing by 1 highlighter every x days.
What is the value of x?
Worked Solution
Expressing the information as an equation:
|
|
3x−4x |
= 1 |
4x − 3x |
= 12 |
∴x |
= 12 days |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | John keeps a tin of highlighters on his desk at work.
His work colleagues take 1 highlighter out of the tin every 3 days.
John adds a new highlighter to the tin every 4 days.
The highlighters in John's tin are decreasing by 1 highlighter every $\large x$ days.
What is the value of $\large x$?
|
workedSolution | Expressing the information as an equation:
| | |
| ------------- :| ---------- |
| $\dfrac{\large x}{3} - \dfrac{\large x}{4}$| \= 1 |
| $4 \large x$ $-$ $3\large x$| \= 12 |
| $\therefore \large x$ | \= {{{correctAnswer0}}} {{{suffix0}}} |
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 12 | |
U2FsdGVkX19Ll8qu01uvi1257oMVRyUrXGO9F47sD3ZqkQn1ZJ7FtCZXDk5ikC9ouLFILt1ruGnvpWUY4c5j9iMhK3au7b9/tyquap/t6+5o4JsHhcyLH4iccVwMbkjlaVXTUZY5kcwUZlLIfMjS2cCKWIqj/TK2qKxyVcUvEW97c3qoC/XIei1e7buiUrCWIu55h3isEn2t+4/1+Mtq7b0gh6+GcfW35I3SOmu822jdK6CmEt3Nnmf8DYEQCFS0P+qEXAonv5CD8SvpuPrHUalSdJtV90qtbF8Aqi8OcNlfUAARzqu5yzyiM0nPdjBpS9tg0fNQEV5PQUE7dfsqRp4Gi+a8ir9OrRXIvpISY3gD/QYvmmL7r7xSt6YyC3HnIBqpz53C2djxJyM+Tjv29fhHxo3sPSfd/WB3Ml9jYATJaKqECIQvsQ5uYcAKAz88dpR55Mqmw95PeAdCkKNPyT9Gt8j37/jY5zbkFIN2Xt/99e9FadrFmAJmd19jvWCJBIbSNtVb3B6CFaSTYYg1EgguioHZS7QYJTllqBLuuFoaqMhL96UEaHjG9sAdtxGoZC3VCQT6DZocAkjelgJ7YMHCDI7X/0h/0Lm64upcLpF/ArtMcNDb6AjFdb2/1HmixLpKkIGvCmKAhHx5VVKso0vy/dnGivpBMOVbBcbVU6on6X1wqUJWJ4MAnImPE37RESkIWrcnahBsw3SPL/vva8PXKCtL3xmARa0MxO5Wltb0Y4NoPhvHTLBq2F+ano/XfSsHe4T1oIVK7oR/huSg7pt9dtst79/WEgNah1Og9GlNugS8pxncEUx9jPGMvdRT2/KSTQ0BeAdt3XIfbCLppM6Endx+xMRU71FELgh3qH3aOhkn0qaKQnJux+qK+WpIJUS65PQaVJQ5YwEgDyITVINfK3ftMrtmstBa+KXR04Ax3BYO/9TMCivODIWxN/uIwjUvmB2UhQLYscSNzKMECBNOBbiZRl20bQUX+d2itCmmXYPn6D1nCtbg284t+y15AKgVWvpcDRhwr1UL/Dq7c/JQabZApptiYbHmjqAhM+VQEy5a9mtxBNrxi4nxJ2DgU5s6Ht8pK/0jrHlGqdxOF3CEm6PGpmZvi2fOdIXdQT3ypBzpXohR+I+AHO669JAN99yAzOSixOrtPYZqVsm/bHhV0FVMUEv4k+TaRUnoZd5a3dd+D8po7FJAcl3dwKegeH+7RwAdtO5ueMbgyiVCVx6Xe7Umjadr1oTLv9iltO0YjE0FcnTrTBv9NRo6Egb4xjykbdMXtZCjhcDtH6ybpSRUZeLQ5xNssVZNgxh1DOVwLJmFF6AEMu7Q3dTq7dUsD6EYqXCHPnPfE1z9yziqbI45sz80+fqcrABqbTvSIj6Em+ZFSAZAbdkM8HONzhXc3f7mFefYCMX0sprmHZ1f0q3Ts4/Pt89zm/b5RdcT/Uq/OHWPCaOPMFDI4pET3mUVl2yME8oX841eDdPENdVsto17rKuBe2JkUbxwOKNaqWNnH5X4ogDfzIMMRkaipxR5Ht+3N6sMS9S5ASYL2Qv3g0kjRDtRfrX5OQ9pAmfRh7BtQ+mnsw7fgHF6GzBA3jVT5AxYq77MxzleQVgu3MVKlkybUwIly8SbjYlUGbQ2CmrsLP3Phz8eYCRAn+cvZcqxZBYPAM8su2kJAx4aszX5AGxn1CAaWRqtWi6Af4xUqi1pfKoKRdxMThOrUDm/83msPZ0AeeMMqv/LmyQ+xHYG7YLblgt1A/DtZVvcZ7j9oGvsiDhfEiXZYYPVQlwg+vZKQg8pZ/e3yTPSIGe87+71q99CAvW9l1wHY68zu/h35v2GsuM29F1uF99Y2nKRBIPKD7F99r0C6J62VDeO3PH9mkiHNhB3+r3QtqgrvI3eNL71H9An7Xi7pL/u4d+DgkC3OArAoVAlu7nNnaMqFDxUm+bVzHmsmXWNj/+vDklHzjxGDmTllT6wgYIOdB4Q5NtKuqcxqubd4LZ4776A6n3AUQJkOOKkWJMBC/71fpSGtAeIEc/FXEaMhVMkZLFF1qzMDh94lHGPn5H3BWSj7OTxG9Yud4F149tNyk8M6CGPCkQVsk9L0g9X/M3LQbQrwYMDC9OuebPrUYgHRjZ0br62kZ0NahFlVKNodkZBDqwk2Fqm9lBi0+2r8VE4uQlAB2RMt0ATL3IAX+N3jQlI64teK8qnd5XM7jDbK1dGbV0fklzBeV9lcSeP8kEMHfeb/FHTP+hhotAIDdVR+XyLqk1ber++N1ql9Fe2pgTzLyAFITcHxjQ7GxlM5BBdMBdT1Zt0b7SiHV/qT+TEjXGLKmiwR5Mcoqlq7Tk4SypThn5LsWebGm2VjK7e7sm5gnJTSNblaR59kPbWqF4Bk66/Nu/7Rz04TWIUfOr+CJcwPL6U2FQI+fJGLNOO4EhJa1GZ6FMn+RiwvhA1F9FZV48aArD5y9ur7s0s1OHfGt5A8rS7m1sDoqOVrb5U6PP3/nIBrQFob0HnfoiY4ESGwv1iqkYPIzqbn8eAb04PEVUlFszaKKpC0e8VvDGhuT8aCLg/u3Nztfmr9If9Ieg9wJLhbRitqydfM/vflh/JnGlaoIXIDMnb5zRjCI0cmCejIH/zxYF4UlErHxn7WuJHs/3E0DdkWBEvP8/YIgeVQ518cDnAMjjq1joEN87+1xgyEATwPEDdgTK1oHIB3z9BSLVafoYWxVvFJf6z25Fgp4mu7L/nAmETpZUVz0mJVia66CViG5koX5Qqqq/drBa2CD7JcAE0NjfyjKqYhUttJG/uIzfrV3dJhiD1AGH+TKG5i2/cussaWw1ioCDAM5rw7Cl61X30CgZUUpjULqjkN70T6I90lslGSdlKY8BiYzZ4E8M7xqsBDgnb2/ANIEL7jdzdqjHhyypiyx7K6Mwy3M5PhLF+qKu6q3OkzomxaRH3Sxu2YQNB1Cv7dAaPtYlvmEiq77Nt7eFpruyeeiXcWhx7jRuGMDw9HfdxnPWYwPiSxWIvwcgYGdbkxex7B1vYyznXdaTRSy0eRbX2jPKLxXMkj12bjRfDhNstf/RWc5nwqQN7uqskdvfoqjaN7BNnm+pfPXbu4szoFGkvj64gXCPt81mom9rBNQaJpJhlY09aWZE9Y1BygZT9L5b7wVZgihwgbfxbrfP8WW2nVyF0cagCoihWuajjTXbOECmAqRRlxM18yDKEcKNvCUhXopu6EAQexA1SlkV5k8OqbYQPmNvcjHuiS6mwnrXjdMO9orCEvtmpAvEbTKrul0dlaY7b4es/0JjzdsQn7rgNUkButP9Yrqt2dAdjAaViz13LX21xlI6YpQ2gL2HRrO7lZQ/rFFYO+xmRB7+T/82fR3ENmr5ySScMUR+RKTIlsid4Rs0CqyPU4/pV9wVdUx2mP/FOrOSG1SnNCSKQoIqeRXN8zKwLyubs7KIwn+7jsXRL+LGjkgJnYfpSB3j3x8ZGAq9TIzO037GavsMxSOGpstvvxzGESRJC63OYiaSLARdPidet6cLfMvLVQyUb7KXSRXDDjb/W6yDT4JWUbBiPZ312S+aU5psLsH1/GuFaB74IiIcMofZODX12+puzzOrIJmZYQu0Bvkg+IG4tv6BkmEcDHymuJP3MIJyqbw40111Ouq5XEOBiA9o4AN6edyV/pnIF9+oWkPIhAeBH252TmpcjSIPabkYttUzSq+y6Pm+Rj5Lz2ad7aMzWWnUajrPLwtmHiunBVqGtOC3StZqBEodJeJHn7AyY8jIltWB48g6X02goir0II/6ghCGLnS63HL1A0e0IiSg55Oa3uV57hWeC26Xqg2LBjjMnRRiEXdsko/FMOUAzy78sBrUhk+lJkmQex+QvY98ifkWJQH7ML1K21pkoWVjjDLpal2JAKK1D3TdVodEznMd6DhJWpzwJHc5nNHFdTyiGsskhzVRvlqCk1oB2/KiWva1P0rppK3wqnUKtRMEh/vHvdi1tgvXDyrw5be98uRb5euYBrEYf1Rff88034W4DwOQ4TSDAYA6yaeJSI3aMVp1FYTFdgiC60Ea9p4NIHSvCZyUyTpokjzfq2XR8LsKQJCCaR4Luwzx5jqTtQaMfWevZ+SwzmOqMSxBdUKjldQEqkzKIIPh2Glh/7hYsVGeicjZZ4lkjq8wlhOt35YiWaQdeHKhr6u1onZczyEooVgUcKd7/ANztLnvYNnQ0n4YEJk2lRvChZAOA16BlqoFF1eXXxSoeJ2zv/VpMq8bb1NT8+E6n/1FhQa+G81nU6Kr+OwgJbzaRGhsp8BhGMHj8gjHcLcIzh61fJZsmZF+N2vNtVdZAyDPWtkbuYD18c0V6emUgD3WiSQqtosOL5uhiY+plosJYV1je+gxOBYfmqc0cslDSFK0CPg/pra9uUvBIHrr6sl0zWZGwkGliGTkXfv4DK8+eeS9LzXYpaoL+EUBgOmTeXbTPhZaIJE9mWTNymJljAEprJemO8wDAXFbMEsmCvFQNk6yvQvdBM98UdX0sR32GA5W15UOy1LANTUG+C5lvZnMdRgkbFCaDwFqHj7M+op/jXwNVElRUK/PYZ0ef1f8FIi9OfX5Etc3ZdmNRGrO+jC6ciGhOWM/H3WoHyjovljDYl3oJy6OijDdkNUIaYyLQRoAQjFe3hkfcnTE8Jqtzt2Dvw4QMRNkjhvukm0A1xXDYHKxNtolGdSOxH+gnH9NfAqKPZXQnTzK77eJdT5/OqN6txUYyShe1m1Iqzp8zcms4Mp2ILamRilepzSI6PML95KsMPtwFVTlScbR9jP64NvFQLbKAjTjt7S5jSyIvmTDKvMmll8mEJvJuIcoFaZ4b+GoQ/c511geKysckoGU9E56w/6yL+zMoYG0Hm/zOdAF4E9RrUEPU0+ADjel81tgkpwfjfXVGRwVq251IyfxZy0KDu3ywO68sYxH77ojhhHpBIRl8mAi+jWwuzHZ6EQ+CxkVn0grrXwPeR/mEhHN0xcjpPIxdDHG7BSagfJOdLSLIvHchzO6zc5fyPf3fP9W2srv0IfX1r++lOqsDJi4wrFZeWt4tdiO+NmvTU4WRaIk1HzKEb8qgcB3CjrdVi35L5p+RsiFwW1NQWB/BjAvlgWQk5mF1fznKumhybLTWO4ao9AU00R9+hHDr6YGkzDCSz7d3dYw4XhS3aQ97lz9RVc4T3dk2dxMSgkw73BsTrcQzipOo7KZwQ93SF+qYlt49HV/YXMah78u7SUon1//jbjwsJGJ8fhZZfnXdAjVpahPirdPT6oO0ZvQBWmCe9iwtI2V8t5wB3Jh3X15sEIVU7oWgoL/CxHanhgBfxw05gYFsTf9HUHeseNnz8L/v0JZHOlZXJ8EpUe+ylsr1c68VMLb1JDAiLBykL72+1FZfXvqLB65FHip4FqwX75FZUkADF9/tGvBWj5n1zkTF4LezE35+zyyTMejNDiMBfZ1zK8zUUtct5/i8NCWUbBLdbsRvBGMPLjaeqQJ303xGKr0AzYCuYfLBGbM4p8wGLLkpfMORWDcKsrxCpGXc1DZKhRmtF2t1jIZK7GaQkxcWoDORIVxBmP/KxgFGdfLU4AW8WpGdkHxXKuExRyfUM0WiKjwCCR+hZsLeCD7K+wdrGgKzIx/AdZSR87GklIkanm8uXOGi2dtdb3Lsdf84v/Sfk8Es6IdQJJiIKyqTZrOLaKJZBXoJTM9bc7Q6CGawCsF7C0A9srjEXk5TQrW3HCAltRwbsq6P0yphbmpSYVQ9541oVIwR+I3d1gI7JlbPOJJb+DD5vkHv9xBXlXn2gankXQLgX70N/elATVzycATyxolD9f08GquwMLShPl5EexWj44M7yxHtQo4T/baLhuQaro6NZFikRzRGhq+W/SR9v+JLZBfpnYKUKgbbxFIXVpTjXsCS6sMPmevaiYKcQZ3eKMJEkgltB2ad5HOIrR3gUNew223MJFAPRAi3Byd/NH30GdhvP1lfq/olqUNEn+1MOxh9Ju9Qrmpx9IBfurpb6yVBLbwsbEFsS7jAw6dLDeRJ8vzNml3An9GHoXhv+u2QQNN4L6qiWj3I2NLWkEe9uFenG8FhrRJ/QEe0Ry/AO8D71qwMSM/3Il9g+dbyzyhMOpG8cZRUqT63RxD3K889qe/vR/2tw3sFuNIekg5O7I/ciAaaNB6bjFPumgIaQRTlyrCL78hkyWM28Fpy2+jhYF5lMmfACqfty+ac8XvrZ8la6Gcd8HxF+QkxUbe/NKb8wEb4I1YSBlPfUUj3p4CBtM93bI7SkO+7AEe5RuCHLkvllou6IERYgZ5V+dKEWLSRLIa8cDMbvRH37Jjb5f3lOcS6gVn9IHVse7h9Ms16lODpGD15ZxjlLPmYtYsI24NtGFvvTFfU45A9ytHhuyWI6NLg9Xtf0SoWc9o+csVDBmbeqCQ+L1M8DFDkmJ27Hx9yTKvPm4gkAgveLt73DsNVLnClqyyaQOhm9JHdyg/Vx3fyL4ASmg0B4vXkXnk2EDuNSEiOFRuxf9uZHSUzIcrOPR76bmfYroJH/33FNMVRH0iyASr4fjRNnjYa88PAnl4I6KFOKEK0PiXBpckvGkTLVc9VrofE1GdgVmcafXa9kkro5Y6ABHholjsVT0bgoqAa1HkdT8KnvYnUgLmKovtaGRdkp9dA7Xqi3AemTFTo9NF5463oK6G9g00eQ8trgY7TdN/yvqZcypl7/9y60Un+un9+1VC7b3xzdbWZDvcEqFHrVou4OyRtWZl3usPADH9J6xghxzAwVPn5n9RfWVtiU0HrP8np318DfanSJNulbAtT5PmVQ31oVuRgWqMg5b6Q2o23gWcOkshy16KmxvDaw3QZmA4hx2E7t3GKLHQQjk9O8ZAQc7czZcxY0q8bTA9cp5qkXxMwjX5Hc5ELrzID/bFwUUYk4bmQ87hCmnt9JaUMyYoM/qlnOdLQMIqbvapmlvdIeJLWPFiajLr+YqQ168MpLCA09X60VMoeGoPV0zkjnogPs2mGJjzFolrtrq1hvfnPWU+k/7GzSNYx4rv/Mw1vSOOMvLXrb+DDITmFd6d81uoni7q+dE4wtftajifZ/q67GlZvmYrg3zjes4QXWNexd3GMayLqG5LRtG1sc8dBNueWaYYynHLSgjbJ7Q1aRvJAftLVxqIhzxv+ZroFUBfLB1zIlpy1yKKitmy3tpucXuAaxf6I2rRAEWkPFcHgF7l9pw6dHxalKCzh935K1mGt0s/gR6vXQv0p1jtCJdQGz18XW2VFHhE50p2t0rGkVIZBG0K3m0s8oMICtmoQoo6uBBbrN1iz5dOEgKtJwBnFojldO8ZX63k51DZHcbrz2k44/Sx6m7Wc7IDH/YapV0Z/EKDos7/YOZKvoT/eCDgZPBoZW2bNOhTyUikMSDASzrqJiC2G/BLBpN4ewqzgEU8Y/87J9kdFfcCwWhyxnhubcfYJeendpJn1R6Y3vHBb5wmzVVsrNqq2w3FvXzUWWmKk5YUCLklTN0zArVmBNWjkeQDMmWFLkKvVInJfo9/sQKTcEUYkpuPPwwAVsktfP2rawaelgjI+tPI23qrwDyrX3rGrgKfVIFHlPtFD10UcZFZ7iq5pqs1Rw1oXhq/cYO6LlEMw3gkrU+U4YHMojYeHCjAKKtJdbVQjYVwJxu2znmRT2ASGJlkein4vG5b3cRfVrP1dr1expPM22uIrU30ghZeC6Jen8mBF49j4fOM0oDy1v0T9IEBWdU9wfk8MyJcL4t3PkzRUI91TZkYkm19H1t1thDFNT29dGPyHZNw+TLtByyQ31G+QBKyV9s23HvKqzhf4RMSf2sBM4Qj9IdNXrsGjqd2bNoQe99vw2ewWVT3nnGljqf3f2tjXc1EMJ6SV13XR0VMs32PeqawWeOdYLI8wbc3xpqEooWPdeDBLNWdq6YWcdfXDURYUf2b7C8m+V+eBRsn10UtMWtXX4MaqPBbzTdNSLh2j3k+wb8WYClJl4MAKhXU/WV3Z6IjwG/joYkj1s6F0aAMLSUiqJqE9W724/MCLwoAvD15at/bSTduIueOP8lf7is9XqbmnNzAsyQ848Dt+KVSv46pYxZqKC1FUGrqkD41Z1YlJDc8udctU4hmYM+8OHlD6eET/u3jReLxkfEJE+d+LkiQUjSHcKwf7M6qy7yxaWyKjwY2WEX257sf0ri6hWFqT2xzGrjlg7MElzvkEI1Z/h2n8On2R9t0ves+M7NFuTfDviFv+aNaQ/Rjimm6otVYHWQgLPgBEI/Ojf8TClozwAReHKHK+6NQUY8lQ5Z0yVPAFcM0FIAmDKr5WYdZi/ceXoPOg5HFz0ekbGz4QQmO4B99xZR5U1W4fvXPIL7JYtor+2WJ1SeVKC5heS8Ux2Wjqj0A8pUihYNQxlXo3eHwQyPejZPQj0etBVVvsIBQ6/f32Y2GC8LQL/KMUHmJ9JRvS85uGKihopj4OistwtMeg2uIjZySqyzDo8I1NvYztuW90L781NSo9kD/AUGhk0EW877dBdfIeUvDbTibiodhJtt/07iJ+bYHINV/wqLO9MNwUZSLL38kcq3uwYEufS51Ba0qi4jl6pu2te27w6AOCSv6Bn8nb55+/9+PFrHPu/QyWKLAP587xF1uXshACsNT8kmrUDnpHG8xyW37HoCLi3TmvYdwxunlX709trBkVimd0D+0j83THkGesnXrdO2qYV/QN3xSYu1gooVEcRXm924LtGg+fPYeD5pT96RBbkJhBpsrdDUxQCjgf/rOLaskxrkIX74OkUzs1zkWYPvgY4kcGbX+A5QhstpDyRkTv2SunKY97VPAUaaULjRy/zczb8wAQ1SECewtzWWMGvAjnM3oXTorucGJzk507/rGK5pNPRpmWGDqfrEtHkBJ9goyZcUqgs5XyQp3QI/+08FHsT4WtLN5fW3W2b0dRGd/GyTniKbdM8hMpJ3t+HZi6AX3nDu7X23hUOIM2E8hgff0zv/vaAESnXTRyCUsl1cPyNjPaYvKcDDk+zX8SCVq2Az20XESR1NO15md+OpWrRRfmgFOjtXkAEc/i4ZyYtiP2hQqcDS9CyH/K9/s0FYkY5CWLwS5Gv6Wh1diB5erVyPqh7zWDyg8TpUceoOOl+KJX8rNTft+6PI71+Q/XYbaJ1FZQMFTP39JKFBXLUqN7zjuJW8R/T8x98HTZSLpHahPTh2nSnSWjZMDTnK3Ma4JBQIBguGiMf1j9tk2Y29MZi0eJKQALvTBY3mk5ZtFfB2bnYS8kuyuJonX/cxabprJAAqKqpA3fobrM+WgBZz0x4zgMnS7Hz0PsYTFRzgERKKnkcFC7dS2ESngC/aMtJzfeL3lod20p/oTfhZpMROyGa/1uvW8TV+R7cUW4JbRu0C2etci+WiWgvrsqM/jinB9odkzmvxdtS/FJyFqpcWdLY9b4f7n8U8DeI7WAfrJxl7vBQ4dK3YTpChjV/nLYROq4CJcmYAhHaUltSLoUI7tzPDFiN+IkhI+BaxCa/D4k4kYWYCMQWnSedFISPIHPxEQPKsARZZRpSxdxfAobJbmbiH2DUuISk/3cmqG7r/J2+ydcVbSZqkbSz+F8g+ca4bDzB9CQ5CoAqa4nhUASzc48xBhkil5J2es9UMa9e19JL8jl8VoVHJo7cQ/4ieukxsnP3W3Sn16CQTQbD2ZBQFf0i4FS0v1LasGAF1AioDfSLqeYSPzdL5z4DVtLjwiFDIGf9QeBHvXELxCAgNlLCaa4CzjAp6FyFKxnLNlxdJoCi90Lql3AMwNo8OmQK1p9c448IMOIsp+UA3Gj8QMHw+YzqTj9tvlHBxo76nmCSGcj+m9AWg4eLb6fmsXQhQ80y3KIqMHnbzk1sahRQuh0ZUFOFu7JH3Nm+SOk1vRQvkR1HraKEUAoU74ZeZve3xEoHrHvQ+4yHKPBgx/CeM8HxtfcyAjkiuw+vz8x9E2vpyeikxKqzu2RzwzajpjDwAzzfo9ENav5So/cHQ/koR89m6L9RTQhkQn9rynwjwDAJ7B1V1c0sZAUSykY3xAJyElEectaNniICgqXbSV6N8kpJccI8gkaF0VgzmJAHYGTsF/gtfgY4Wi8dH4lApZwBtotErkNLDTPAX4MsWvJPoaUVZFSncLkI7sV7X4RVKi+hAG8XOHg0QvIBsWlu8JNEkkXpX2/0Bh0jJnwK2UYoS8qROFcezbaMih2vhSIH6DxqophI7jBGvtSdtCz+vKNdo+/KmIJydWx/bJ8BhUKQbzdyg0MC5bYqxtcJoOy4BaNDghC3TinXYcZfVFvO8tZmnWdmxg4zuiThI2lUo3rvtc5R0Umm/PChZJXgpDd+LoD42b/65+jzuryZpd2iw/HqPutHPUE5tTDzotgRau1TUbygVxc9XyZr2H5MthxpwYdUiTB8SpOF9PqSXl0vDJ+bjKHSYTI7ctzhrD8uw2LnAIdQsap6248v8ztuNOp2PktwpD8zK7m2tyqPtBDaQ==
Variant 2
DifficultyLevel
733
Question
May has a pot of daisies in her garden.
The snails in her garden eat 1 daisy plant every 6 days.
May adds a new daisy plant to the garden every 5 days.
The daisy plants in May's garden are increasing by 1 daisy plant every x days.
What is the value of x?
Worked Solution
Expressing the information as an equation:
|
|
5x−6x |
= 1 |
6x − 5x |
= 30 |
∴x |
= 30 days |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | May has a pot of daisies in her garden.
The snails in her garden eat 1 daisy plant every 6 days.
May adds a new daisy plant to the garden every 5 days.
The daisy plants in May's garden are increasing by 1 daisy plant every $\large x$ days.
What is the value of $\large x$?
|
workedSolution | Expressing the information as an equation:
| | |
| ------------- :| ---------- |
| $\dfrac{\large x}{5} - \dfrac{\large x}{6}$| \= 1 |
| $6 \large x$ $-$ $5\large x$| \= 30 |
| $\therefore \large x$ | \= {{{correctAnswer0}}} {{{suffix0}}} |
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 30 | |
U2FsdGVkX1/fz8Dxw1/jt6zBZzVgFth40wTsCJBkJ2dusttxCLcVshFfYbVE11EeOSa5NG4J+vN86m61aiQMmlMc0G/qJ1pVUMC4lnK7UEyAVUEY25jIp80clJI19iT7KC6My9D3wOj/8ivpgQ1FiG7D9sqbDcUYCi3HVdkXCZ+0lDjqCAI5EgtUg4xa9DAXgMNY82FKUNzUpE/gBVYz4zGnhh8FDFmgItTlFiuw/yrEBRSXFv9rp2HG1JyCgc0ICV3xFPdSLW1HkErx/DmtYF3T0jZHWWxFZv+9OZx6Hzm/krsRqebEw9qMvxcHV2pfoEpNfJlp3VBsDTpLAc8700Jpf9ha+wp9fHfHKUC4MHCZOQJSx/kadjJadhSDMIX4Ykwke0jaS5bmDEq6beUD8I61uU36xD23RfICmDESjbmIjFHeo0LsmGOEojN3CHT3MElMxlDE+Zdyh0v56z8hQhx2TfeTdDkynpYb9914+2rHgoWkuoi3tSCVOE0s25Rxtiavg8iYscPp0uouVrBG+7zWXZoUU25oinQnDX/keat2dnIjot5JzvaDuYxPU4n3FEzbr400rI3HeE/zdpsPcpp5nySnOQ70mqm1hndNFSzRy6dKm+D1hYORK+qb4RHO2dF6EIB1pa+GUv/NVhXKUlQ4S6boR1FHTOLTpCvIJ366ahl+2ur3+csrNnFvueP6B4vVVoKbLBYOKWiIBJhGosFWjwdpkTxJSHLYnv2A95+B8qThbKsR1uoHwC8bOLXOsOcDlwStdlHwHtbVXcAvIyNs2QfrbckfmqIrNhyFmrwJlHkLnwYfLQ5Jg+FYcDBV3VvkC3VyIV5XtCM+UnAgQJLJ2HW1jGseBrPnRLXRmd/zEZx6p2Al1ZtoPFHnz1YNcbWSzNi6ieVPTkdL5gxbjDg9huyJwlIy2RsIevuwPQEfAXfkNjB7FAG0K7FCGES5BO0l84MTpmJ3SjgZF+ydf+INtZ9NnuwMdzutwh5Ygdd/MOvCvz8b/tlVEAkr2JpWAdDVskdfaRIVEGkql0jFQL6DXExyyL3tLjZ/7FrtkLuIrbvDudhFFWe5KyjPpVJdEIP7+0c4LcvMV+mVGMN1RlT14Degmtc9Ljd5Az1hZqMKixKTfjeld+Q/cBt2MPpr1Ta0xw+pHoKfhoqUg7sJ0SCIRIJrETPQoQrKsxQ1sXOA3E6E9CsvSh/1M2vPQpG6Uz7BLybXkRMerEwZZvL8Zd0y7RSrgpS98yLok0GL9r3MscLmW6w8Qx3wQ0rZDuOItya26wSyprNCCEXI/hED0TPIq5QAdgcTe+SoDgfCL8YxXQNvL1uLWfXWAz9A4sk3GpVS44OCzzZnnzrl022NeYzQTALil1YXDQpUY2LRo6o3ZENUIqLt2LrkX96I0wJIC/WOWRZEM/wJdAgl7z2pebDwFTqtz9VIrrr/rtTXu5tw382dU8V/tyuHD8fsKObNVKKChUbg2e6d7Okq6DC6XvNhr3PvbeDnXnYxkgZI1NFe0DyTGilFYCgiz6kyFDD/or+PiU6xADDE0MLX3PksXJI4cEMvaeSiKc3U0Plb+ImSAGj2VcQ6VcfioSaxoEKxBA1qG2FLgfjzDrJybGvo4HmS7ObVkcKTqRoXqDAg6bWYCH6tVpxvo40gsTN7WhnnK8W6l8WqtBc3QQnAB+DA9C1CIDBwPo/+LgUvYbrWARvI0NNzuT7fVc4SfuvGQEq/1BtKabcAQ7ecwVmxqtHYZtz5Q+Gw8FSjCTbcJawJbkPd3yjUJSrhWz2szOLzzduQ8oQUWKRNcegYivsPjCdjzPKfFjvgBn58SqHyAaNmR4x98NNiNc+uvxZ97T9baAavd9AK/m8mdgnZVQFabxckzqPv4k6i3LzCZ289Fno8h5BIARR31lGZaSGgIOzy/hu5JZ+8UsuBTbhcWLQRuRTy7y8oYiefG/m1AXuPYgGiNz1OqYDnmuyFLCUnvCNGDnw/57gZ4QbYxgI82gVA510HS6lQMTp+TxYqw4WWOaj95Lt3j7Jde6AR4f44ZWcu8gb1VgI46g7/73tq7FRcTqetaWjV6LHD9HDwi4hddaRNbM9Af5/9BeN7PbokG+cSwMAMIVZZYoQFJ6og9vy0fuWPeBqP0RgYrh1Ly6Kf8yVeiJdTt1ST7ETSjZwdrCtBO2WT19j25SHppkQermT1veu6IaRrFm0A3dDnpOUBfYVzdTr6W+bmWRGZLDL6saM1QVaV7SrBM4puDmCSjWEk5z/PJ3AKf0mdv97DdA/xaQ7/27wRei7NXT5cuu0N96ZnVnQn4hIEYaas94at8O4SHyTSdN+JAKdY1OfrRRu+C15wZ+wgUitDStkvhZtBeC9ZoSGHYZQ9eIdRZgTI48GVg1D16sy8iZqn+9T9cDnMPDxDh3z44GkPndt0/YK4oP/WVYwKVxU0RUJaFTmkbVlZJboDSdT8Af0899QaVXxuhQcBx/B/5eDDj9qVVesnvMqR6Nbl4KqFs0QQsQHfUTxevb+NmcHFk3ovnY8e7eMrFvEht7WkvPNTpXmyCEP8c+g6nCbwhLV+MWYW5jvtdMmI+2YWGWg5C4rxfq6yv6Ojj0gkL3qJz4f0OMzmCK/Ud+ZiZReZKEnb/EVCmPaW3TxkQjybOsNVcWOLXwMDa32IMdG3o9MUNt40db/wL/f9sqGoRwgjkyELEqep8vkQkrh0TtO757e3qYNLTOQOlVd1p9PukoW/7ZGZA6RsyyVbxLaYNJm376is9X0NR7du5Cyo7oHXe0XBlpQMxyFoJiUKU4JqFeDDMwVKQXS7YlhMuLmOd41WFYxwSeC0cYWXULBVLwm5xgATXZfKzFVB1JYNYZv4f/ZWKsmRQlYUArSZEruf5AGb7MSIC0da2Zf4Bn6fWOCtaOsfRCi59jus8PtBs8uMXiIwbi9U5yFcdvEeFIbTjzKzXGzz7e5zATMp5jkWg8b6ZRegq+VJRJK2CjTO4vOopW1yK6mJrkwt8WrNR1OostsMe1FJ/dVQ6dSfAsTwJVSJbC3LWdpqw9tnDJF5UtsYE2gGYOHgxOg46hWZ64Yvx/KXk17vYUDXxE7zbLVwKmWCGbD0OMqzwuPMqF37MYpCT/Qk9evo0BhuJNJ9BZdXrKU0om1iFzDWLVNcQ4GpcA2MPeXrhDV2QdjS9F7gak0+UtmnrIFAIvBQGfQ8Zn9hzTTEKZVpUoLRT3z5z2NMbcr1lqOiS6iSUiUj/uUEnzBKx+j8NEzHsvMNQmNV85GuzkBChLEIKU67h7V1KQ44t885WDCrm/aF2dyB8S+Sz1H3EDq2mjcV2oYFbK+AlL3lGDRiwcMoMXzThFaO6IczsfrL3N0QFXcc6NDBB7WsbwwfQZvC0SnHw4uYxsh4bmBr1cZYB+yIhwC2+lu24yGlpos5lgG3Bw0SZFZ+lrrc0xbhRUVs8IrTBoG/8rwzqUmGTu/LjF+4Q+U+8fA31lklYdSzRQl7rb3AHjLOsL9lhP3kjJABKfikkO38iqqnUBU8mPeBE+O/0VNWOU/QDYKmBdSpe12gw+mh2WcsmXZnbWUuTbqXOA1iqWXHaezn2UetSPj6AYne4DKg8FlgV0Q/yrHm/I2xn8Hb9CWQwQctalmZ5+KK3slaqcpdhHoNq0uGf6pkb+s6im5vqG6CiBNZCPODT0yOJ3JhCoPO1anyTuI46n2brnK5Tm/oEpDvA7qrTYLY9RWwRqFhDwoQ0FRFpuAc06zLsTq3M2p8Qu/PcNBd8IljUltUNKy/DUCizQUl6Tt8OjKB5YbExKpo/dV2lt+tRfTKWRwnx6jSQZckgA5CBFvwZm5x2/Ft4aU4S3Bl/XNjmtXyua7fP3dNHqDwx3RD9WMD7rHcSTo+k+dMSos4MXfweoQeBC8H6q5jGFHtBf4Dp4QXKsPGqv3u2xM5bTI8tcdEBvSGUzjdZ1CMTR7N7QlxxTZVtTxJ4zFPalvuw2mQRU+8EgLWbaa1CjfLlUGv8H9NmDBpcoQp4LC2H2lprGihZXeu91lO4coLnzXB4I4kD92AAGoueAS/3Xr+j3il1SVAc8ib/M8Q+3gM9n6nWFPpANoe9zDrtzoFwDRnM0PZI2P8ulb4lIRbLr2Bn4FHQQ6zHXUdKbfhuHUnbOSfWtCPstOp9RtD6clJy+Ad3VVIsN7DyXzxdQgxmY6QiCRFV9tPNSFP+FItJgiuo3RiDK6LIc+zZcNLEbBqwcJzdLTEoPn11A63gtwODYiFOwf9TayrcwT58hkyWwkKMGLQlnHVDTBI2s0lVF7xyZqHVawwVecrB9jM4BOpSQnku6JJVB62YVuoKcP7Mu7af1pUg85gy9BRMiz/HoK1ub6xFlG6Auuobprxg56us8y7bf2n8xghdVPKfKfJ6kVZlpVF3cw+7AjozPBbkaRR3STaiPU0Sgmpk8JtNAVR4zX1/Lt4Itia5oLcfjgb09U+3K7qvdAr5CnVycKO9bsAxWXCLzekVpAYhi5f+mcjE7Xd9+Lu7yKpLq9A4IU2+qjRJUadp+IaXrnN8BFgjTKZ29q2slxtp24GPbp/CqdxpxxDpNDStlYQ2mC41Mm7pd+pppaTaoOOwc0UDTRJsYzLV8k6SPw7SZp4DoiKQSdq4xgHEXHULv5vJWWnC7gnVUV3rwVjNUA95JLI/TnkhtAUkeLBf226iXfYdZ8vTDZuPcPYalwgvnWKg01bqrzb6Byb3MTRKcUcicnoqopE9A1dsRccvZr5RFV1NuSlIMQ4CsIkD7KaLk2V+P8oWfcme/E4ZP5H37Mdz53XW0fd17Li1vVrEFkLy+disvFzvzkjnEeR9U5qVQwjnjOm2ZAAFfy+RYnTioAx+5AticUQSkjFUWMpIaqPG3t6oJhrBA6H7WZPnK33+9MRpp3cF4dQxepHskJTkYzxb91sfaNMHqvRneYHJaIA187EiYcc5HrBR5BiV0l0EuQ1QFksObrDnvbxhkFpfx911lcHiD4XdttUVEZuNRyKCc54XIPhpLonwQQkqfIfZBcWy4SVk8Opqn1I1gV1G/YciZ6PoW2wrvpXE6Pvvq/bkOuAr5HUn64Mu+zwSJbzSPF0/IhnxlaY+R8cUE35p29b2opG/rslUbahL2jCYV+1wsU/urlQg5kuMCCD9z0xgCYJfGDhaWbsuiN90o22auLXOTJaNuZD5glkd/jhVb9YdzQhTEsdzJdTAmhIFfN9uVneQAXe/M2yLDy2MhFI0skpbnBmZp896P9FyOiHyY31/hQ5fI9xfHPwvoQDIMnOAyWBPuprCI1uDsQTDw/JAvmo/rZLgQn6TA3aPaPWOl4rJRouenT000NSajGNEe3cd7avk+Vdchkmf1ccfaMKayTJ7rnHU2d/ezeMaEa4YZVFaZ2iBmuXlxK/Ss5+UgOdKkZTjqtnJAJKJQijRZGsp7/jt9+ywV+AZi734S3KthMZGMbix5Grlx17GR8eapkLzU1qWuACaqe5HbxaOwMpdb8dK38sVLlQxLDjF/15gk4w38CU6+zur9giUpmzaQ4ReVCG662dLbpDECVC5izuOn39hENUIhQy9OYPSj1NjWCSHbF7/vEf5nNottO7YPbij2jc1qyAjUSqDx6YsGrcMDRWqRlZWiLiCRTH89TmWwtIoql2dUS4xnkPsfj2ErEpx8MEGPzuFKjmfCfev3AGtfzNqWR0fbXdgJ+whMY6cS9eoyU5qECnYWeL1sAyfoSgugUcmiZBQraYqpaZ4ubfrMvvwoTmmO3u5+GhZf+5vwRP/vEqDZcWeDOGlc8d1indC4KhiFevwG9xwsCTkZQPlPYEY4k6SknRKz6uhiNQ90WOR6B4pvuGUPZF3uQG/Cq7dX7gonoxZ+WfrirM7Ft4XH0olXU/BrXEEvixUys1yy+NWbieTNGgiW6Ch9VbCxiaf6TAzmV6X4IARulIGkRgQoys/FdaXe+dmINi3cn/r7fN+PnR6l/Vpf8+w3j+Jd6jAttr81RluutP+/K0LkXje4nL3IrBzh7GiJPaj/jAe1Bgk0GQ0GwBxEKDKGcStpjVUBfvKq6UPd8PeoKzSWHam5Z1Kg7fp7qG5wT1yLNo3j9w64DMWfGIoU7QU6dfYD5R5a/Rfb74IckHuhiJij8mQApcFvFMfotQulPT87AujnCLRMH87wANPqx8HFz0jQpSzscheVgxlskc6CSevwBV2WWvZ8aPlHnqstFs4xb3JtqOPJwpAMu7gCPd7y3goH0Wo1jBIv6486MpWozfcMfQOjtV9M+F7uPgMior4YChIQMmVPU0/ubQG2bt/3QfSx7gPrRaYxVS96sKIGKrN/xKhmm5d28uR/YD0KhuWGK/UqjHqFuQB8fZFx9Ip5b9POamCSRfQGcciuYQGlZtfGWnyo0kNMrGEQnv206fUiuXsRJONfnpLGbi7u09TtB5NGBF3VWpVZND9uJkhIXfaaOEudsIMGdVt2xjJt9rNmD/1t9XCI8Cdy/1BpfPQT5IgaJOMoEm+Dsrbh5SBxmMMaVEVEpVmI+vcDmwWGu5XMe9jf1d+cQ9+Pb1LpWhT5w8QsZV1eVIZ4haSu1LpTwuyHXHQw9XQwb4d395fWTu9EKnCRqIyoveVf3k4FHH3jHPHqw2Ztbt+gnqe5BgCCP279H4sX+LoxrVUcoltAtj7sh4UQLixLns3YA+z5DuGtng0niYna8GRlTzxSy4aJKP52WDC1IXb3+dZWkEo96SLfyEu7sdm7ydPI6R7ylTh9rMMdy+jalW4V4HMVo9Jm9dgQNcx1p/DBGw2JqKPkcLo65IlqLv2aGR+MBLy3wh667gPyxnDVLimrxhoCxAUCMG+nC7zxNWfOm0t75QmcdefFEwB55w4e41H7BGzq2ZeW476Sdt8Kw5DdQ98F9GAvPZzUnreZXWqxWnTb9sYfEfhK9tDAdeV0o4i+/5EQfAIk6CJJTQNV8KZTpRMwz5CVS9JDhVtohHOy8sk+KJyTePBs9W7XZxULmBlYmQZx/WSTowmij/Jxdaew1qvj0vVZCZTYLgyGrd5YhVKbgfybTejM5Gwu+b37qvDtE52jd9uRqzkH/3wIk7mFmLULcKRaUix306TpTZUrIOmjUJgENZhAcBaFA9fDbA6iyzXiTyElXKLcRZ9sw5MvvY+cJawHJyBTKis9VQfmeok/SAsomxE+4EvO4jDQBfMQvhBIlAs801g3JilYMOdNZaEMgRt6ccO0YRwKChFPDgIK+4gLtt4faPZ9uRa6tefhzaROmJHuvJD5z3ztg+4GBE/58FEC1KUQQRZtEmEL5CdQcy1y9tEr83PXH/6BCtudlqEpJa0evOC3TCbX92JXBk7QygonICsUhcWwoINFsyeiwJOLyN4BIaEcObvWWlR4e9CmPm1iEyzV83R1C0rgLQoPrKN8ipsTh080SLjQEnC7YNFd8zH0ZdVtDT+21WoUwjutJQtHyxfzvsRfSes40+AfXB3IbD6e5CKJII3Vr9EIZKu6xmfq0t51upkd6XM8MKfkiP7cKvhPzWWZfNYr+giysi4KMlmEaZdzPEi1uhNXc3JTa4MPb6b+8tLUMEJJHGhRhpKGF4qruw038QXL90sl6TErneP7t5L76tij4UaKaeWGDZ4b59xSVTSOQFwqoWwxxbmxn+1ZZs3KU7k0JK06skY3zQtbAgAvv3kRtBSq0EW9nBbawybVbXo0DAPE8WThMnhDy7fowruAkOWHX2EzAYhDwUKQvLorrRvMMvauAs0P7aRKH7sVqjfknM20Qu6j6M6MJqWhk6SsX4i6iEgtiTUxoPEp4obRgmSeewcJXOzhpD6pdE1x2c8FY3sfH1+KmLogqE+oPrgDPtxU9y0g0ETsb5SPQfLzwv8BN1ZxpNU7a9rM7Ni/f887ig/8ptv9yCcdxGD5FWE1Fx/tVDFRcwSs4MkQZcTSUzjfscmEpsMzblWU3BX4ftnBABLU59mSTTME3MbrjC182bSwDO15X0NKnoI/6qU2oI1+5l/KMGuqg4JY/Gx69+KE2aje4hnOeuWdoR7CQzB3FtPGjdEh1kd58C1nm/ebPuOkS0L5Xl3fXnE2IJYSXuI2WHe4It5xH8ie4yLKVqUNpVMl4oiHu6P5mHEHEG/+4Xa3zUZmkVeJIZf4YjbmNPOd9r05JJpBvgJd+fOsBpEIK5I1I01C7SHY7quqIViPy9ZK04yXit12+G/pwfrowVAyGwBeFcP/o2gOJzSwtqMFKzhaztL75XxhUC7jWz1hVEYfXUgraiXS3ZWrkqLJHJFZHixylERmfTgHzDZugG0KuksjP13TcrfhrrqvF+x2EKsK+j5GBDgA7SK1YKjg6+zcXWZtegARUM7k3z0oQaS8ddB6TyDoqSKcdCS33WzhUqgfAxamc9SaKyrK6j0YGppE0uf9E7w/kpTOPXZrfv8vrKuj80EI1KZgtHVvlen4Dx4Yr1aPSRrBetoXUa2td4BrPB41z/h1QkSsLgmI+LfIgevhvhYEhu5bNoJ69Ux6uAGJesRxGTkE22zpRV/AmDhhMxsRJsnqY0HFlkmumwpQDeXo+p8GyKJkKXVaa0ViIvU/G2CNr6BGllBVezz+0fyJIdYrX/lAWA7Dw6idPkSCsRHfXZvDQiZNza51QOeyeQ5CHtloAUtYK9/fxvrGUut0B8VGzQfYTK74sB2BfYZsXnX8Aag2GmjpygXG/UyHvuBl6RXz4rLy7FkDGa1gtxOzEulkdR3XimuEBDEIK+uRSYAW7MV+BzFmsknfLgcglHFqpwxGmRXpVTbeWxRnYy2joePLxZkuorxsyTDqrVC0DQ+KxXogfau578TyrcAWAijJARsSNkNfXJN787Zz9jeVTYyLggWE4J/pYnNJXCSO5KT4Gnp5TurrkqLtwtl4+NcUdGFrvhHcqTAIHwTsSIj7tdfyzcPE7Mbe3tGJrLBfJNg06Vf/GZowh+eqW92LlWkmh3vKh+puHc9CL8Qbg//w1Ribw5fScl0QmDmdXcQ1dylcgf0avFei6egDXbwMsr2mYHir/HhROxbBkaxbRkGKaULxpa2RCBe7Ux0MfIvVayPUVLzDejRlUdDjjdZYnLiT0IaFC9vijNG2tnA/9N1YPvqf4qhe39faVJV3kjKIvHCLKQX3/iksYuuhPeZCbtUtgv9AezpDwzGntCnokvK1ne1FHteAJ6Vv4HZT/NWT6V5nhHScdgPz7OAG9jrKaTRS3Odw5UamE9iG9xWHjsSXfWMZqONyBUOjgmeAhCh/SZaTRIrL+pL3vU9DbzlKGtSkvMPTk46xr8IDI3GDJEjP/9zMrq5HLMLqjS+/m1ha9RP5R+ly9W8cXMcu38i14SJqLjZ6DVNbjGO4epuMXSWRsBrkk8dRzXfsShbUROsA+CsB3gsYKe6bA+cSGuGHaxKoJF/fOJgPJo9arUJct/V0WjcxrlMQsbd5X7jmiiwGCDQcnPmJHIoImO63e9xUnPj0cAZTUek4tbNmj+luFykSLHb2SmKoucdcWFJNGpCUFnCFu9hgd9puibL/J3nfz9lbECvcShmPplJUY8/6gWcOihZDQkRE2BC+Nv74wQ+MnMkusdS5fEh3aA26Y9QfVb5pr9B7fTThnUpk36ImFJYEugpuO3fut4l8CGpUj1NiZIbLe8wfOenxR9osULuDnrUnwraSSXYMYwEp7Vrur/UenTvOCKRNJ/VZ0xnb9FcbNIKU3GDgVKxWyXBXJKH6SyEtVsDoHV+qvYotc2hTEJlDo2nlkmUhI+zJB+9qwwdKvSPA/7tUSn0bSXc6z/w7Q3A+2QYiHvHTvbweZ65JK/Cr3tSKeElDWancJu0L36qNFezDFhG8qMvW54ygHHWNeM57YDRTcXk9iYW3k2PpdYNb78LYHu0jPvRuTdBejVntEQCaniqENWXW9raTzYhbYZKfEsdc47RkZmQ9T2GxCbi4epcIawULzdw/grwYV+0BpXflxofP0Venwdrk6S2akK3LI9bVNfDkByo4U/tpiN4J6ms4FGpELQKmSfdebRqRQtV008TzmyabcyulULudG+Wgrz0BRAAhwNm0bQm6rqCjKjhyLCss/3Z+ZNTob6K/grlXWocAxPeuaisElyN/u8lH2Gp69I16DtQiakUdeLvpZyE9/YS57FXKcG4Fzy+vnzG7Vgyx4WAnDXhGA1LkMaafdHm+0jhkqXByoF2CDzj1rwk3aMzhDaD+gbdRTm1Zk/ugNQG1MqCL4Dd5Pq3coYu3zGQ7VgIsYBSa2ur/U1oBeh2W38hD6DcIYmNB2HjlryEsl5TZQafS1A3UB3afLxODE15oAqR9Opv9y4BG14yBhS7+QT1VV8Q50RLApPGveF0ocP4DLMuBgI4hAIaeAd7uTowzoqxORp2PnGD61hT/RT0NTYvhC5jzcMLrGZhFPjuqOAPLjkXYveQFOSOd1nUbj4yshG4KO187PIG3A850Rk9HKcejsJ3L3srhP0j3R+73jKiuKwnOgufq7V1Eu8tj0/al5PEKF9Ht85vM5vFHeEX5d0wIq3eSPijblw/4XVCY7jF9ZEn4I08J4i4WvlfLAKHIHdSnhkZ3HgzYR/0HKtih9sYfLntfwRUelMiUTiQqOE5Mmzzdlk9vySgv3b+w1rwOGIwP8uSL+DcPdR
Variant 3
DifficultyLevel
735
Question
Jake is serving drinks at a function.
He takes 7 drinks from the refrigerator every minute and gives them to guests.
Rob is adding 6 drinks to the same refrigerator every minute to restock it.
The number of drinks in the refrigerator is decreasing by 1 drink every x minutes.
What is the value of x?
Worked Solution
Expressing the information as an equation:
|
|
6x−7x |
= 1 |
7x − 6x |
= 42 |
∴x |
= 42 minutes |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | Jake is serving drinks at a function.
He takes 7 drinks from the refrigerator every minute and gives them to guests.
Rob is adding 6 drinks to the same refrigerator every minute to restock it.
The number of drinks in the refrigerator is decreasing by 1 drink every $\large x$ minutes.
What is the value of $\large x$?
|
workedSolution | Expressing the information as an equation:
| | |
| ------------- :| ---------- |
| $\dfrac{\large x}{6} - \dfrac{\large x}{7}$| \= 1 |
| $7 \large x$ $-$ $6\large x$| \= 42 |
| $\therefore \large x$ | \= {{{correctAnswer0}}} {{{suffix0}}} |
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 42 | |
U2FsdGVkX1+u4vypizc1RiMYIjThpVTaC8vFzBc9pU25QcYrAURPsaA4yPjKm0SiLq7THYIyPlN2l9GczpFYxIlWOyZzLxaHDMLwPLMWw+zNJk/C+In/KP8xLdbYbaEH+8lvIEEAznRTI1x0+vmWB5W6GFvsvcWtGXIjUP+GAd9HcmD1fIYJIt9Qa3mjMTRGUGkeoCxU1BWD5HXRROErR/soyM6KUmX+7F9R8ICt6NoUdgoU7wyZINtMEISOfVYf5RLHLbR3/eog+6x2aYuzzVq8bWJzctSqc+VVPEe8QUtROdYbOwetutmywYfM5i052BW7/d4jlrlplz18Lti6M+kMEhpT4kYAvcKWCiRRJPO4RrKDvD52gx+nrmbJGeSnWAcr+uyB/XXs9xUnZP3qDaA9ngpwUuE3LmMMq0gQKlwiHRvc4kNTIEZ6kLv2LjknwvaI1zOYnr7Angf3KiW3DCl7IOy6wntaiPwGcJDveQ4S8tDgiYaN79V99xzSqFvecKp1nmEBBtOdcx0/XlluViZ4joqqDCnEHo15oPqq923xgmu7z9RP+f9QIKI2PTctFGrV7Tk1NNKGh5doHD1wVleh7GzfjeQ6io/og6xGp8Lykf7dfSiRQKIWjqc/en0nASdj8jCdyvkjBOD2uM9QZk1VlQyg6ylttisHeAyGywZGpsiCXCnW+RId4JMzl/BoGIgZVTRbBoAt0ATEm9707om8srhkqGrsN3GvzZVoEuLyR+zOOh3qYhV1MEbOTazSZXdbx7FO4gA4E5Sw6N7PwSvj2GiiA7F4XxbO6apzPpplJ3S/c6uqpUa7tDa/GR1bzPURVQ2CXY96vonE+I25Q6Drm97ajE3h9xur7WLLrC0pIOcugCP39pnTrQMGkyH00CsohRZUJzje9Gbf0KzHVwrf1E+cKG6Ob1oTPVfbcJtNN04+l/DoAZqP5JS9iTdDzB8C0VtqkJeLf2IhalH9Ck0iKAwbc3MHFWZFox5CLpzg9Zg3Gq1Y4Z6JUB77Tn96+i/3VWtH63FNa1ohrQTpEAQrQx2mHrTb4cYpfDTSsf19lYMtZWgBDZERNag2uaXPwBGnhLciZlY3Jvp3wwZhEpzkB+5cpbrpq2BN12y9tbdR2LqdEZ3sljypomvNpTcsBpNwkPZJE8joBgcIJLv39du1E663mR7HIyQcqmO34yIHElbbLuKPtObtVCKMvVozZ9ojIkyR5U6rhM6fsvazKJIPDhxFcC7Ed45YsWfZ2Utm6FHlQQQCr/ok38bW08ss8cU5j7Qm2ktV77W8z9pZNsvHIlUyRNt6CYUyLeIkk+vfnARVN2ARnXCNSPshE6AoTOtzf8GFi/U/YS++h+RmLgBOods56ZS62hoy5rvsLr+B/XgpSwiQtIP6iIfr+zG52NXrwj1tjbbWiBh8IkFdsRhs2mUxC4AgG57wWDLyz9+Q/A8EmZ6xeMKVTWO5kgoEetcByzPIszPkxkKRz62f53Uz2h4wvbnS1NwMOIm+HPQbXRLLYgaAerOYB9m8Yip5j17+sFwf6KUcaVypJKEBEU852IAplhQTzuVqVKuVFI4opdvr70CJ3KPvz49EsPeMA5UWV5btv290PXOf/vGZH8qgtuuoOH5gwCVDMssKTYUBEXL5B8e0q2GJ/ijPxZTULoZzUsNY8avvzUuBT1AvS2U7d4A7UC60OQ4VSghuStnVhkSwtdcW99H/5iSwmWQwn5SGb1Akz86SiRCWsj1Dby7hXmxit8InSjM3AEOOIovOCl7nI25V6IGEcj2szZMHFCWLVON4QH7Kw5Jq8T81bgCu0jOV6M7FyGDaSMzb9KN8SaRAHtM4RgTMqT7J9IX3EgHjLs9OhkWFJtfEX1OhaazHDcTaZ09EYTcaP5eoHLnbsIdci73KX8UM8L++0msXXnQnYa33VmpfpG+70f2+fWJ1rPyw/4cUUfVKmZ/l+jH2p+qqpBAUhVBA5ga46MUCSx+q1huP4yHNqipH6wW39YvOw1QVRYgswBJPnqQWxnPrLOSFhgytMt+KqUZirAiILZimqUXiuuUED1l1nCzCGu8VTE9ljMoCbI0XKdUmSjDKqe+IBVfl55mAlx8v4uYC9hd6pG644xFyNmr3YEAmCuiaXk1M/ro2sECWZ3gQUxNymoQR3CeAFtQDV3olNQuIz1/fXUBtzVFwd+nPQSUmQ/Lw9rc+7Oq4sylcKy02CUIKkH5pgRStwDIrT2aFcapNfrezipAf8YR0Ve1QvLeVMNDcNpTSrJE7lXs0mkrwv/uJUf9FedAbfOZ3JzVZ+oh86MUIgG3otDmtXDQncHIDEkCQyrgQngmE1jz7cGgKmQCIsfOxb6Zi4dZSD7WUAgmF0b4+0fcdbKE9iMT23eIoXVUylz+9bInvd9zD40TcIGGOYIBL6FLLZcWvMMt1ntZ1cP0z48v5v2V+7ixcfCl0FHYwtfyJLZIOqa+HdUUW6GxCvVRZkWX5vBBLcAw2fbaXvNlzK78K6rTghWW+MyMBFQEEVlFpYM1DnSMHyb95FtPsTGV0hcHJc3OJTu47YwV9A54il4fTBioQAk4tjLfe/Y3TwoJJnhLkFIMKxh3w+g/wMmBMnFN0kOdUxkhezcoxqyXKopMKQmVUHMcZUAhxgxfj64eob9h3hiv6taffNNbDS0BA5TXDvH0fgBjm1wi0x5Fw26tpJIPTIxDhSX2O9VGxOj2c3zNZnDl4zdLgtv1U/cVv6v4N9yxfupXAlMNG9F0NOzod2W3vI5sW33bNwePuuQd7Ontw6DiZn+kEoLYLW9Jz4Sl6te18K1JglfTWkHLGv6S7ZrbB20SoSs8m80/icOfdJYtDVppwgO2iwTqn9fmDqWZnnHrWvRk1zt0qqJro4IMlgf1aglnV9P87boP8mBmpimgu1JckGYCjNnQim+1FnCo8v2m6aVJZnP2vTeHu1JNWu+p/bqmj9NrXZw53f2MyiIAUXsnG0/vwd6h1Ut3ikqPhcsesS4JCcA04s4CtTpgFzISUjm9A9ushqbhz77ZqDImfo3aqOE4uSqbtWVHacKFHQY966gElguktLdwelpONJVC2tJSdHnoEtiml32iBGFzUti7yVRiQxOsebg6D0nuBQCUS8BCzBoKUuq0agAkQ7Cqh7RLXa4wTOIWTJt11aU04/WpRQUTcnQ8BUpQJShqEkT00VhPkBajyZI4h+De9jigoKVkkIkg4moBjH+DMH/jH71wpG2j25EDz199fFVmqpaNG+kqGhlYyFURrLcLFSvl5jslo5/wRBT59/wNjDflYpBVIB9cB9iuiSXyBxaEFo8JyXIpHO9Iqv0C6SFSlbCXJyYQtlynNbDEQGXQe14J2rthtWvgJWmkaSnDdpwYqpn5bmezTGFiWPByXZMpQdP/tQpS530ML+OfTVuIih4dqyobKoYq20tUyOkCS7dOYwzSdIP/CDn4HCFpYJiY6fkGDlAbKutLrZwlnifig10iUAVMOuwlvM3akPx/Nm4F1/bD7wP6pkyyBWV+jNJYYrwvUpfaK/fh2c3YHlsaNtFdyPsnHS6w5XJrzlQmUEVCisOMD8qYX+Vq1EkqtWQyEu5GTttVz6VxabNM8sVGO93ZpsPo8mERh2kEJB1RYrodRjx4lGCSSsSe6ICKLuK6IfhISKYP82EFJL96lJe8QKzJq5P077OAl47Gb1ZLD8tT5faYhjcxpAHjKOe8ln/DEzyEhH6zl4w4p0yP4AczdRv7rD40FP+gL+aYVIi52K2pZ/Aekg+Gk+6LqvVVj7U2rZbrzP85DFSIBelNcGvtwWLwCOA4Tug05DUIOLJ2nh39T94zNDP689aIZ6E7GQXocKeLVNGuSAieK9+iA7W4MN+3e1HIusDyMbbkVEBxzyoNzX+Zar/wJkf/Gpsq2pl7jlp/AFbffZrug6ajrovFWBZJONPF/S0riuroNsXcWHHZObEPQyIGyolVSzkvrHmIW+UKE5vl+2wa1+nD9PwPkmd5MiumYAXCNzrjKbm77R4WeM4GNP7zd3OUEYlNnzOXT4NRXW+hfICrVH7NdpKPrIMu34HAJh+pUo/serGZGygaaIxjgVBGq/2puGez7ZpeKtIVxY8M5gN1G/5yJPseF5DYjP1EbvsFsFS9jARYC6ztU4oERde8zBNrqp3qdR5mgL7RioeUGO9KymvVssj8Lo0NMN+u9+o9nk5vABqoOX+g9yEbpMjpUqaExs7bQDXcoNdza1PSYoD1GAozFG5SL/xe7ZLepo5fYyJ8JrZMfxyUR9CPwo24FDsu+d66zy6+9kOplC3u7lrSxNIyyTPeIWDxtkJV5WYDTWTEUP/fRp+QvLW0SdJpFQJWymIaUcnCD9ALYX+/TF/P60Qj7w2F7LJkYjQonuxfs+KXxhLrYR0JUw6qxNh/ZTZjs8w/ttXqHaMXbFwkzasbt+o0MTdZq+yZGq5D1aU6lkbL57lLzgf0iBD8EIy5Iz9ekEyzsuBYALfkPb8Bc2dz90DTY/2ub8BDdOv+jtP0vlLTDYc4Ed40wJ3lkf16nwMOtATSKiERPSBB10lspzT52hpT18if2SrOqjSdNoRJdmUhICHDK6SLvZ9jz/dq+lJ/98aFy7efCu55f9KsxeimeoOTzV2NF1s+xC+tKQQu47jUxOX+MRJ2NnXGDvWsJltwcigqFqj1NeSlQrGFZjiG/2al4b+BmmqpYTcj2IAD8j4987ku+uJUuU+8WjVvA2iDHRh7keLCvqz2P/AZAkLW13rYM/unU3dtiu0jPXJyv9PJcLBEPjF9WytZfPRBzSLhZXxWA3oAeBYq+BSjJrJi0bJJmN1DUPa79Zaki3XAiGkcajej1a8EGbnaTwj9UhKWIJHqvCS0O0H65fboLJY1yFJ36IYcZjYXn4aJZL/MZ0ccoekbAdAXdQnYn5Eio8fN+5Wib7LJNtBtkTpqeI+3mFN880HqTc3QURzh7dFS37/aWxS0kk85W6HTW3708KVK5OaUiJVE31EmUCgA51OdtHEJtGQs4Z8KEako1Fmch7S4wXzWZPZW5C9ZyHkUU/HLVYScq2UBi2Q+sNCWNB5VmRgIURVslxUw51HK3IWYZeLDguF2/S3+3jzRXnhuTRONESr7WmxWxBP3ao0CQTnDEirxm3+WxrIDiwYNBAPlNRR1tvNYjr6h79csit5kTu+ZNFwUYsrV/McexNXu5DleH27+kxtOctOVPg396ZBB8hSnrmfQI1M63zwOtSk9hIFLJe9zCoDg4+JIRJgFagoCvlrCNeHBxD/a4G3ymWblFpUZir53KG30+a8LJcPiNTN47vsPHC+KshpZDnX4DEXhQDtwuIY7dpDUMM9Z+9A5svm9tKVUVHbNNsBxPH7Vl0fNx5nQjTV7MNbp15/kQLVgO3fARMrtsGdtGBpwZ5C30KQ2DDi9lMQO+Lbr2u/bOo9xEwCUx57V1w07IG4mkJ0G4yQLhGmoc5AoRzvVddwfVNMKcoqAX1y0i06zMklw4NZ5EQXy/weJaHWYuICH/vm9OOluMSb9THSKuLOSQzvzgHaPwfAQvyqtY2jdWXY71gtoxEIuUbn/rPoFOI1dljgyqgffg6gmz+R1KTcmd8MIZDbgvajbvKHGgR0F3Hni3BKADh4O84bG8v038qvBsLxgAe7Py3oCwct4hEY3K8pAuOHv37avOdaxZd1z6ADuWGgdO5/SOn/5sV1BdNYqrPvxbu/95bJQkjxPHpkS12A+yxbX4CLunOkpoBE1wPfB78kLK1MwHrKS1/vQdFIuAR5SMEAgw6/TUMXC+hetnLoDV8KwYlYPQejYs70Ma8oPq451iwS8D1mfPgW8ArVBrEkwVUJPHjPvYEoYpWHx+DjLSC26y6ATALiL9TPzC/DavKzl9v1zZWWJi69P7Es2XDCjO3SCxyfWy92ZoQmV2WdewjIx6NScYDLXNN11F4YqKm7jlyZA6NG8mKMj99LVcQqy/C+kmv3J1bPwm79kK0PWMV5/xejskdXRK3U5ZtUvwidGDJI/yuma0Ql+Btj7oIfspw6kgKFYu9XehlXrrl0wyt3G6RSrSpnC2nm2y42MtnuupS31Y/iUVn9LX/ZgngnGFK6cCK6a6kRGxZ/eOjHec7x/HGcgT80+y9w2u91GH1W6LStPPkKALEe547ogSe78I4qu5pE7Z6XorB+61rF6WZVKGCrpnWZtcV+4PSIwW42pX12VjgGL0+bHj2qSSNaoheHDnCLAjgJ7Y8cVpdOQaJnkNzLOfuvedaH6T+BBWZTdCjKoawzJ5kJPt+1E1uzxsc6cB5HZKDGa8IHcN7c/yqq7MgMwgWuI0N9FIebgZKiYcaoiX9/qgM3X9rOAvAYVzwTX4GI0QbBoFo1kao6vaXHDeNj0y2B5SzANm8tEbRaGyRIFTP4V4TBFiU25B5oVmsxaiywvFrAi1ryJaVOBwRCu87yq3+I1KuCuIR1HjDR3YsGuiCIJYPx7Gott5EzgYqOmiOwBWelybB/zjL2aze8ubjdoLaQb5S0eejMRdzRiA5vLrSXr5fxVDsnl4+gu0Z9DRAdKanIOnNiXrOuToRAinmMe2jbp2OBMChlDnxf7a9pQKinPELytSFHWPSGriWVnPtCSm+zpXIoCGJ/7tq4wQuh58ULL1sZ34z+CTNs4pEFJk9mUwifDXEY7fKtzs4xqC9Pb6xOxgVp29pd4VmmRDxJIaBikhHq9abx+4m4EA42U1HIOxB2lzcUX90JQtNMi+hkxIg3cEFHgOVy14T6TW+xn2XDD7ENqIxdQUw8zHpBTKrEi1/YInNiP5Ts4y1r5SDpaSYVw1U35uqFnuOuaJm5NE7nQgPP8VrH7WeZ7DGVfqCOMTG9h9bcDoIPB168tn5obUkwbjlL2jGWNFzN4oBsNj8CGZrxyeZcVOIQnjmyDB4tE5r57gDW1OmCKdVs+NQOGRT8ReFJQM47Wid64TQ5u5YEUxePGINbvDDfa63xDJAbuZV9gBd+FwgHjVUMy/F7RO672rPGGn4Lh4SKnsnUj13604JxH8w8Z4M9bsXicecPjqPi+S/sBc/JfLEdH5skrtxGPBhgKL3CZvninHPLoqYUkItY+ruYAfkq/0Svunmeo0DGVIWWmIYmw2AkMlbye1qahlGIcMJQH5ilSibqRs2lSkPkJKpRAZFKzcaqzbGwSVInvudNqHknPfgb/o4EMPz2hAk0sr64ZnD0+mUba7ZgJ2ygK8+WfejAAMnkZEF/9NqNLh6pAaXKnOmDXtcv+UKeu2oRYhKDT71XV/WX9kqeN3s8ZTG914Xiiqj3ypf4hX1BE7HfLczFPGrH/Xb5X7OroQEYqbVjSTrb011phyNOxTnySmjl8teKJChVkoIQ9ldJrr0OCl+x1OAu/i/gF031gp7txIOovo/N26O7jgoDc1RDYd/z1WJ+OLNwH/MmzQRZMz8Jysv15tL1Bwm0NlLMQUlpNVS3HyPZPTde6IsFLQfvzCFo5Ctqq4YGp+8kds80yCaThfLK+wUMQ1Caqcpg+IB16dUPgrL/jTznZ7zVbnPs7q8IFfl56hS7QQgMQIsUIzixNHVLxnHBlbF8K3JzbCXHxVj1EY5SX+ltzNJsPKH8CJP8v42jsUfBs0cDLWDQ1B1Hjsymw2SOgXu7me+6ZDV0Uw5385addWgcITgr+CSJd3OwP/KYDy1aVG5OXIww4PAX0VctL4h4X07zcpitRAVDO9/RzGuSejhv7KW4a4I+ac6rFvpEo0UQB/4bDVamSx+BJHhUwAxEgHL4qD7KCBe/b6eCrU5eKtHUprmRkFktnqHQ3tSEDE+RZUrx6C+yCMTKbvj3AyNLnW3cXMJ/FIaaGzOhqS4+sf2FlkOPQ0/CtMD9FzI+eCFS8Y/Y06gFRHnx3Kg03JcefKDEOwsugQzpRuH7u+Qoxrp6eNQTctWOmNziZCzfLBNoJpGcPSMybY0lbP3nznyIMkORsoZ31jSuQCeo8ShAupkEkqsYDk67fBsLrViQ2OcVug/vd63yzAkpzuSvu3BhRAMT7tLH3YDWYuNQA6OXTwmXguEKKg8NtQgA9qbD+sfFHNFkbpOMe78+M6A2Xcwdp5lnfMfpgpBPReGyMUCC1W/9EuSxQdVo6NO3j88wwXIgLtDBD39KTjyqzvPHZHK7MOlpOBsx07F3bRO0qHmqsUfg9Gb7gYnA5xlmpVXZodBGWvYSi+zaHNR3TwvdQbrENXb9t2SwutOutPuxn9sIoiQFntVYmTMNnmGMlZ9PoXiNL/0va3zM9h/8ESEIffULfz4gpSrytFKYQ/fmYxC0mxb7LB5amik3FAIVxPrkbFZvr8qOyZgG0AVa/Pzuf3FeC4sXAvyiJsnqYl6RlrGI9yEn5tWQveA8+jqSAVHlJAg3rirqutsow/7ZEJk7X/n5wlYQFFpuS8jNghcKldWAwl4ehbn0ZfERMY+nTctgkecWJe4b7bjBpE+q1TXmBnEaAQxQ5mrWvKWDmzYAXXdbJu8aztt8kaIOIFwScFS0/uOkg4Si+Ku3A/Z1k4ZxkaUFPz5vy6roHF6TNp2tvBCjA54nwsXP60rEtRrhTvMF/3ekvDoj77bNF73B3+PLlZZe7L05Hh98/My323NCYM6XW+6cetoAELmQWqtsYVNQc2J+xiQJnVegIgQWZzV5rdT+vuGVLi6GRLNVy2Shu8pJvXqouiG3VcIsYB3qJeLHNaJvM6FnqwPMr34hTcxJoY3KAfRyFEuFKngQko0xBaCRU9pGVB3N5E/uSVf0+qgcn/MUzJ97two9UedSM5IlJPHXwjn6XFJh11aftXMkqGZni0jf+mOo4VesPWpCqBbyTDJ5LiGFleUb7kwUqXaMdOYoBGwGZWKl+fShQ8bjD3POvMuyiB7pYBZWqjqf68pT3iKY8cOHql1OkW3DaL/es7ckcNypZwV7SkleF1qK0ng9paUIkTC8iag+K8kvJOTXOW28zf683xLRYqWzrI1+pF3y3NKnJbOXIm+iqgtqHpJ41ZsRmRcYZ04JnT2XTrWMIW3Qo6D3q08UK91pR5iIYBfqKG6pyTEEhWLImh+Uuc7f0qN2G5X+bcO1y+9syizoSRffhhAUAIF2AK1VIOAhRWPi7MbjRrU1s7vsF8XlDlECPWAXWHb6xYY2T4aaLMF1vcx/F3ExsHrQczeSI78b/AaJVnEidDVdfGNbvxGjjO2UQomx6RZJRZgsk54sXGqQjLEKfaBowllr6JZgpju2GElDNylzL/jQ8Vfk9Df2sNIwdFYfpWr5uJJIpiHXLRAWXzEGOjG5nV0Ug7TEMIuAt/U/YXohO1PwgaKRNL05KssmQWwHk6w7YD/PoOyfSFHELYIhC2J1Y3BpkARembNbgu7OaFEB/IofokkZIouNGIXFI6pfy3SC7cZVvc8n4IvT93Xg64AGGku7lA9E8axNAfOQdgcMAUzCunJ1/SYl7/3eJ8cZyJNxj6x2Mspv6wIy0/Iw3OW2tU7SDS0dKItvnKttdxWuTEvcBNW/FjIf6IkYhWu1QivGNZS5bUxdXMgcIbhQEiKaEz8EXnNgwMmR1fkbpXX18Sk6P9RiZUCWg3D/5JPvnWXiZDQFJHGGRhtAXUDazpAyPjJOmXlFD5D0d3W4po+kMgXypHrk59JWxeW7scm4G8iANptt648aVF9lk84tadJVDzt1vetlCzyx7XijdXKRyJ2wDSclzOe96VbfuxQP4BdrwnZVgiHBI3p9Py6zKtcnaJ2aphLQGQp10Bm5Fh6q92vXDLc/XUbC795qzO/rb6Ih5ywA/Q8r1zWJfl1a5nd5n2Cn+9vCYhKzheiME88miR3qlSlLcbnUB0QIi0s+HXo+Y/GzQP9oPeC76FBRhHYIdus6Q8k409DIQikjXqr8vrO0VwpHqQtc+HGo9ZgNYfKvq+rE1kefLipHEhaODDXbeWDQdcd0miYBjgxK8QSTVo88QxwYz+Nis0w8kadNGOY0wgqCAjYCrA/p2rGq3sU0xeBy80NKWor0j3f118WvPL0eYGuHwdAzyqu8Pa9hRQSN6qGkn+EGCjUQLcauwZxif/Ch0hFSw0q2BDZlBnbWikrLX3WJsYIlgjo+c2hmcGvsJmyPa2194RGqF0lf5D4kbzMf6A4UmTdMQIfJE40tZvQXpGcBkmIfuz8jCn9pCh5BEEErqiFeKDk0x5JXcU2PH0dyl4gO7yRky36RwMUuVjwTcewFDwSpWNJ5fclUTU9TnZIwgy02U/YMNTwFclgXTLT66yC0wlq2b2h5KMPi9V6R4y40vP49E1jQ4QdLb6CIYYwcsbTVBXlthFHIB6tC/6Kw/et/1qlQIaFeMSnuyaOBHRN3DJgkmHMF1S8BCMy5xzij4pMgvVSJPb7PN64UKiC5ybXJh2QDFXld52QtcJklFcQFZy1OF3QOtCh4C1mMpLVWAX551Re6z2Zosuh811lw4heFDwPXEJEkFJqcGB7FBCorxgxeJU2EM5If4ws43QCkqAYvn7gDZtAN5owthr2/olm9NvuMaq0wkh6MYnFwfXD9S+XjDXUVF1yHHH/MLKZy02QuZJWTkt
Variant 4
DifficultyLevel
731
Question
Clarice has a tub of ice for cooling drinks at her party.
The ice is melting at a rate of 1 litre every 2 hours.
Clarice adds 1 litre of ice to the tub every 3 hours.
The ice in Clarice's tub is decreasing by 1 litre every x hours.
What is the value of x?
Worked Solution
Expressing the information as an equation:
|
|
2x−3x |
= 1 |
3x − 2x |
= 6 |
∴x |
= 6 hours |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | Clarice has a tub of ice for cooling drinks at her party.
The ice is melting at a rate of 1 litre every 2 hours.
Clarice adds 1 litre of ice to the tub every 3 hours.
The ice in Clarice's tub is decreasing by 1 litre every $\large x$ hours.
What is the value of $\large x$? |
workedSolution | Expressing the information as an equation:
| | |
| ------------- :| ---------- |
| $\dfrac{\large x}{2} - \dfrac{\large x}{3}$| \= 1 |
| $3 \large x$ $-$ $2\large x$| \= 6 |
| $\therefore \large x$ | \= {{{correctAnswer0}}} {{{suffix0}}} |
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 6 | |
U2FsdGVkX1/L6QTwKPTADtD0dXt8todirHog1GElLlvKT+bMt9AUJDFxsINBU7zEjqD6apCvaY9mrxH3znjEunLwTIPpELtwjOh1nJf5LXcVwp6BWqLl8SrIeiUQpuAPVWxtspu9YpnD3LhqI8lH75CFRxUvPgq45YkUg81PE4R/4tjnVm+ZfcaUjC1iO92MdgL0OQwsyW0fSVJqh29Ao10ngOXkkYgF4qon6ooO0JOZwXkB9z4Ip3wHk5k+q0BLV5ktng99E22Ddxskz+UObSHEZkh754zJkwgGbm8hFEaVpX8i5ybCcgjc6AzodXKoTXlJW4tUXQaPG3SK4sY8keZ3lLakvd2JOTubds6WS6JGY2HgUoYvlzDVLq27K+Jtd3C6Nq2Asf+r/+rxIbc98m/WwlBdHplzY6jP1pSPCV2lWwqML7GrcTeKZlYJkmDUPy4weQMW/OU/Uey6HZe8INvSBRS9L8hDcMLa2lKVhTkKOJi+ZPfOAfRPGIGcnPb9ocPhIedSo4wiJKX5bJ2mUvsr3W6wC+CR1n6n7xaXqhvvoLm+ZzsEF8nsO4r/Impl9fkKXKGDgs748qH26s7wNa/IfR29ITTFjLjxPdNts/uUF3L+l0pb4wxXsMYYg+7/fPAnrGla61/uxhZPlS8FqOFnYiirNaRlB5vgcDw1HoZJv/HVuEvWfQZaYBaq89h4z2TwYCU2PWpejKqoOvRntrB41NRdGgyNp78FFdA62p6SCU7vdXb8DRCWpYUmmmjmjZC0GOj9ID0zFUY7qeX0dP/mw97L1uKpSUZHNGy5BHxa7T9QAHeRCHiYAaGrtoLzofFHBKQ45rmd98YIynGTAL++MpALYdeebIsTAk+WMGubY59gy9S7Ai9jeyiNwkJ5O+gqaPdraF1fsF1aIIk4fn6/QMaPlHkr0jXUJitgTE9egw+7pCssKLFNX/qoNCL+wZIwoT1AqoMrfE1p2fnr2wIWRVSGy4xSIRGMOIlMcMEAkVstWk13TChtuhIBVb9LHEIic2e4FbJfvuaWtq2yzTUEQil+ZYBePNtFklvoevvjZbOfhemjUb6J0t2Vf7F7vCrILeEpyU1UYUajnS81sqYNwrJmZyPFUKgL6onRAp2oywpsHarfJdFSu8d78e/VctRxB+aRHRzyBmL0UA0HC6rcoO1xCafEqDDJ0hAQ91R/QT879FPyW9zeS4rpVqTa/iWi+JaD5jVcg+05KGF75EPa/nW2wKDp/CQmLLPe1lKJaCKiFy0ccKFEcK63qbvnbi9qIfrS6aQVqFNI+bG1C5+/lNL7KaaEXS2sASAO61tD6J2hzY8IihK7tA61f79A/h9N4pRNnKwEGRJL2uvARlMh22gqCoPBln+6ZnKJ34k2OynCBKktg2Ly3Oxf/AMPSMUjD0XQrwaYhVy9J7QGucErcnVNlzBAQuVE/VHhfSBp+6YRinrebDszVTIsKqqJrC/W1tpRTihgs4nsv0bHYfxz5Hpb4LF3TcqX/J2Dy0A7blXSzOpgp0hGp5j/p/L1EHVhey2dj9Nb6oZZ5HQPLP0HbaLicIN4SZXpwRbaPzhoHTQMto5hFUJAc4qwNTITGv7uQVQL+rIOHzxrocLrmAKoRooMUVyTvVGy/LrUQ7W9cQoGp/nbfCIaa2FIok+zSjypb1dg9U1GQIBC84ccqGRk2954V/r9W1vpvXxIeIkk8VwZQuyaYM1busQG2WCVcnj7cBpulL+D3dspv/Q0LcSevaZU//89iDMxM+cR2FZx3dBnNMJeNT3w+VOWzgypiZHaS36Plqx+QmYiqkQHbegCavJwSB5fvsd+g0YvqsHd+vK7Bds8PNYQGXajSo7dRJYjRb39G5dAD/5f2Y6OMKQFt9vvyuhKkbDLWsXAFL4x3QTcbBJSq8R8N/L9IF7OkkhSJ6nNI9RBXzDWLw7qWY99NEefrVROXanoeMqKPCzT0fE0PgtMJQdFu0L6pnu7SnVesvdE/s1LBYfdbQ5QF8Z6Px5q4iO3ElWd8EQv9NRt397bRyfeNmnygUMfjj+0ddm5crE1UX5/tDMvsmHupGSi6xCvFrBQYrp/KvFyv5j3BsfcIZy83DIvL1G+3oS2M7Q8ZbtYyKdbf5JK2f1CTyVnSqzCeQ4/rsrXovyGPetyPu1/Dp5UpUDpUj08RqEIuxoqPUEbeWXoQkR6XzashOH/FWiMovQFwTgqrO4pSSnGEtdQZ1wd0Ed5vg379pY2/UYNHIir2ofj8N5NdgyFeJyGI8e+l+msa9Ahn4Dn5yf5ZoUt6w3pbLkLxs9ZnhD3xDsl1LxUGKcNTOKnsw8FRQFchiiG59a2o8UjTrwPwVvJilS5PyC8hviTVOUCZ6cLDWSO9uTggBGbcG4o4jsKbmhpdlosXSupVn7StcUIw0BFCGhfy0/YiUUDkdLHcPXi9IoM9ayf0YRhbEywKp9OUPTiYTTdNUmfygE6xzEQIGD/HH//mWU5NT5Jo/nwXsu/QnU7N/AkuEkMjtqObdet3ZndWDJE2lt2Pv4AJBfzZRDTICu84f/4CBdBw1PveZuBYuSzH4fqK2/2hUcAc4ld7ZQz0Eub8AQPJx30HlYzT4EPGSQ+UD06kx4VVEGysfQCkmbyJy5xvGHCDbdiU4Nok6sVzmW3oJbkLzFwik/bTUVaipMuolKNLWGwSLfc/Y5CCZhqn0DbnwcjoyITAkkUMxrtw3GrnjMfXRo68xwi7/wfyA1hM7H/1eBAeZdMoqEP96Ry02yhDvv68SPgpSFeyXOWJmmhzMyCjUjAH+19Z511YV3N2TYjzQK0ZMzMdYvj/9dL1Y2BANq/IJX+xCZQW5PlXSO/04cy2rg2y1qBvir97z72wM2FDx72sYW//hN/EmDyQ6DwRqH58UWmQdpZ8EIhlzcnChNLRVcfppoS3vq6ClTv4qJUivIHhDuTq7ToGnXPvjfSCsBvh6oWCExJblIa/8JVDWJzWw+5MqoabBmWJPB6AzBWQieyFZ5u2VmrMnwXcQ90LF4KOMiy7pdm49FAzdT7y3MAjezJIrKiwdOn3GfAuxOVSmLCREOhiUKbc5xI+5hsBXzuQlUkLnqfgE7js/QEtG/SnO6WyumQ7huuZaF6NqqCKrdjoOmi5fYDCVE0Z5eLIs03vZMur3YxcrX75KHSkl8rZ5MTZJyEQ4cPN2LG/5lz3EzktiQdE93IVaY2WQIn2VbEvfDu/VpvsJgphSGPasBl/c/zUiwYffSZ85OG20SMg0DF5KrBd4g65zNaihK262RMI1PNWzSRb8vIlFi63dnfHc4mQfXnPmvVgUzPtobZK/IviWbgMNjdqzaM/iEnDrte9f34H1gmc+fB6DpGUSSrMIpEN/GoHBOr5JaXXWhVTFtZTdFtCLcn1sL0N9053sAxcNe+DJEgk5BefhrAy0oypVgPvSwbq+MOmEHKqbXSH5wK5D4ppf/pv2LKmZpf/wxASZZE26IkMXuhRKyak4W1TxL4RSoBxlan7fih2SFpMTerfRkDe54q5oCTTHEDZCWiPV9PqhB01gGCsftcIHoNKZhZ91Z8eKHedm6lBbPBElNeCb+P4Y36zknKi8u3aVA12uzy7+wbO1j3YBevjtrQf4oUPgDUaUdEycMjZCVeupB0cNlzWbNAyBO42AGL8N3mnxof2TJ765lCWyAT9PRJXrCr1ZAcjQaMjBKVzc8D5obvEN1gQ2Q3n0Yi82f/ir07OkeX6Vs6rzVaesKt6Hltv0oUjBOnSq9XCdU6mq8LjfH9kADWsKmjmYTtTkqdQHKR3fX30YT9iMs3pAnWBT42Ueyr4RLOhUhxzoESPvsnASHQtZBRJjmZXF4uwHqzcgB85A0F2yoIm0dkPSRK7psfD81PDux1FWppi6GV6dkJd40XmZw+iS8veGASktOTr5WYA3TvuZz2JMopw56/6St9PTAVYqktPhuCx6E75Ui+t8gFIoLnFCYAZk9MpdzpDZsA5+7xSxTCpF1gJFeoGrncdMI3rE+1UqKFKtuMMAWUIgb6k97Lco0oEuWooGxMAAlRcQ8JC5u8/MDyY2tFfQyaiCQfJQltV32kRR/2U7BpPXGnRaKeyfbD/sVErMOsOOutn+9g6Y8Oiu9CZ7NJQ5rntgdkTe3NCb8xnqVwNkTKPp4MkgTWIzvKoG61az9/qQoPLxGI9AaSp+AQsnShM8wA33Zj6YglnScNZrmQeUud9XtR7bqDCVj3laJtkcZhMFCP5FhXEl9qpJaXfQUKBkPXT8NeFR+02gKrSAztKTi7yjhjvFD2nIA8bLnBhMjbG+uyWo7hot0k+gh2v9LmavG+fl0vUH9WZGstTC9RIEXR/2UIZAG66kIe1UFHdNbekfhBadKVm75uc7XWDQAWhRcKXVEQXv7Z/aSgd1MO9RZUVdlMZyZeY+ggyYYNDTy997QYNZVmKMG+ANg2LmHbrrpzrOWmMS3wQR5uuNZ3dniTSekC7+LU0B22DjR1xsSpURKxNmRh94kR+1qRDXpzcJBIV02DTyuMIcg0j2k0a8NiIBJlpifMGqBUd2moGAp95S7yZ6CuvET1JUqJgDwqWFyXLvrDkugtMqL7tcZLRP20GNVxr1BnKKVxQufuu3C83atj+Xh9sGG1rRW/jGpEBj1sFl0uYZM+hALH1yQUyQkEHtaw24yFtbAL07MwmUl9q/YNQDLyJ7/URRiwHoiolS5QHg6JTuFX1Yl1Ll05eBRefBrU4eYffrOnGC/FK3G2U4+bqlvQdoJ4uNs2uyQs4K9aAYz2X/webX+hfd9jMJokYXqpBJgH36i2GvNkVPK788slc9nc7ZsL9E4NuOg65zYNr35skqeO7Ph2+f7wP1LjjycW7eDl+OG3DEwObct1p/FBJWSx4/uydBv9ql3dxQtjaCuCUaf9mLJVjAdYqopbgGge3TRg0NS5XvXpuzh50V3nk7hHKW1nvOUa/uOg4w2Og984Ht094u3dqqNPO6HvHd8A2zy+la3K9zz1VsyQsDtpV4w7+jUqOUbNicqj9Ws4sDSqRktP9RwxIeSReVRpeaFe9fw3zrpKv/HAq2o0NPNiNPRmVT707XsmKdQh42fW5h/t59SQwpY/BaJFMmHbuFl3T2DTsvAp9+zMsz/Sv4Q49zfV5SLk6HkbSVvonNIurh+aplVZhHLg2zUEjwGhgsyiKZ1EiLcVv4DNvgdCw/1LtMbbwTOugfkuLV1vF4fNjf6+p6Urc8Jav3It+PrEu5Uq4m8G5+kZ7txGrQ71pctrs1p+XnB3oH0ICcgJjMyRnwv2tyFlYWPd61hm90vQeug3wl3kxo7nRNbWSa/SFUcWr2dX68uvkmZff38P/dsYPV7ne/qziRMJtGZ9xJcGrPeywUYVl+zRKGlmN0G28ddNNugY7kFU7fzo2oVGLtY5PYBTNafvZBLODG3yW92uqv2Miyp+gTSrKAPdsV5bzmaH8dfjpusMHyB3/g3qCSP1tHvmchwBY3G0f37s6AvEswidIQrnvaavDaa9ub8b47obgbq6rCiszhfFBS/DOEriAZCMd5/Nd4IR8K1lOjfZ2K7sFrT4Ekgn/5pX4RgIIdmJJKx60+otWaAFlywOGqnGH+2o1NGX+lDiK35woystEHWKWIiJxxwN6A50NdPICvb4s4Tv18ss1188gbuEAnqF2+SIb6ZJ8lb33IJANQ8OgStcjY3aIArjm7YDyzwm0KJk59jn7oVWbhPeBf2a9FzHJbDfckTSNhv1CmjKSWVHFK5OO1aM6vlf7IHW8xfUPLR91P1CI6qR/eo8X2MoSGAVoDWCYotgBYY13wqR/9Bwp6fA9tJ2teBnyaoBATf9KVs5UQ8OLZgclnQVoEiPBTrCTgl+A0MxSeIC7Y3a27FRkm7K9jvSiv3l473sqL4ZaBNedd4ym06zOVLVSc8D02VFm0+fy6tesL2KH3bwOs1Si205oYAKFHIKwS5PsUgBtM1mfMARoEUiYcZQ6OKseI881fVqOoCI1KhU9SOuvDoUXcOorEZO4QYrP4563WZ0l5kLPA2Ruy7GpkcOX9eC7YaXSnkDn1zc2aZJ/c6s32ctcq2KcPWITS7fqqpqVKwh9WdL+VObaPhahtNDp7YlTCVqg8+k9m7Ej3EvX5nvCCzZrwXnfuH/qZDazfOwAn7XjZTJmyv6snwfOvpiQY52DGySgmQbaR6+KgFiRjSbF8qxtRDqtQ/w3ZiWZnb/lf3y2VOAgb3szxMep88NUMqWYFPELcPuowvxE2V9ctYSBfOtsO2ONnstjB1qlekpQfZskFyg4y8cJ1DvxN6WMxZoXF0ygzpRl0AwcXZXHopFCKco39vkW7TEc7OM09tRAXOBhciBwBNWMAtlsL1yOYJoiCia8qmHHMKo/K7RbRw/7uBzEncVTHk3w3mVIyYt7CGXuVYLRwr62PYHlFSHTMODFx5U0DTSdWymOKT79DXzhsWitlYNTHu2MfSUp/3XGMq3Enlx2lZX/xzyKl1qhaMgskaNHpTISKiQ48riiaB5UI2Oy/RlB+RHBB4p2PgA3tJXESEh6Z9M2VJZFEVQTf3LnAlrwaX7vvRe2Ra3KLuxAXhuzW/LKRQz8gaZ3fwRgIs9FEESLIcXh65aAYJOEqWfvBD/od5pwErAOMRUoDPwgG1SeYIQCD3kk5WvkUKfEHXBj/DHoKbH7rfadKc5uiDdyJZDz/xxIyn/tALr6jqnVqToQtYnVEc0P/17DLmq2SQXSMN4XIvY92zmlmTAjnl+u6WoafwGWf0R6dzpBlh6SK35er+3849TVz9NXCqSaX3G3tIYm0dcxsL4oQ8GtKT2jPyhl8gR+aF406iyNpSo3E5V1O6lAaxa1u3ByyAw4lNkPPA+1DyncbVT3BQ4xUigOxLGwLO4VsfvVhjoE9LNVI2i5/X2T0vMKZ885QqBuEZ1apNaknItPmoUQOjU0eDyZpXxG/WcCogZakPvFADVt4hwOmN4QIwatyKdck1JUpacwF+EBk1lqmZ2BBM8lG1hxValqoc/gWXs/BX3tmzALv4YgjGAH9D80DmP9KCS1kDHemmJOGFg/X4Pj6co+YNONcIdY9OIDUCauhofw5JyMTPkq8J+7m6/ySe/pz2ZR0Dv3tdyC912G+z3+j+OuiJ5D+zzDmDt58wsDRUJG9LcZSS+bQCvqcB12yWo1Gw6J6d0o4DLBmApmbycUIDi//rGDmrxOKX63d1bMqo0f3a7yTVg32wxalM3Y/a82fVUnpU+hmfxZZnN2Betoc4RYZILCOyuBZuAjHI+nUNfofM82Al89pVCW0OUeU48vtnMqNW9ogKXWKu1oTrcn3kqe771r6qsZajFc3UqI6BYnS9EwKM8FSKBS7EpSox89LjsnWJ3zSgHPNoXv2GKkfEz4Mi3t/zCRlqUg+7VDdGVgKsO3/RJwxM+u0HquxYb39yj7CopfCoFmK5AKKPE6/cMx+sE1DZRcLOd8XWwDBfgan4ckNh5tJL7b9Q2zWrC6Gb4V1ibMEb9YVhxYui8gOErL6N8FM2hlfKRXr4u4PNSnsZmyUOigmxybhk3MwKb2CzYLv1Ip2Q62sOHJnBuUvphL8Nz1aZW1+mwtUqAsLyBMdY4Nwgyj8BfPQ8rYly8s+Xc5BR/KNkTutx0LUcH8uHTQGk6ddDi4N4usutcgrF/OnczsczAX794CksRLWmE6/G6fGY3WC4RArHT4cljeUNRHc31PkmuE4Qrhwp8ng1v4CFtJpJRgiKMQSLWn/uhqj3uDMQosj3nTpL6Yr9UwyQ04+inT2uXDVysJJ5vUAdrDpIY1HWasZ7scQ1cm76M1Z/imR9BGA9TeNYlTL3FlDgG19o5KiXsA2zE/28auyeCzDDWjh2ELyoi+uBza+JeXupPIy9N6iw6PFxDd3+qkIGeWIhR8OtqiE4uM+3cXkNAcWQSmHeBFdM5cHJuWr73kmtu6HCag3SgRb93W9hH9eKeh9ci2fII8ucJokKktb9rhREMBdrnZwIPDYq7J0esPRf8oGcjC1TTrGt8Q2lFAtKOa0OTpuukV9B92p34IqG2eDcEpDAEpGtr6xY8fAEtmo1Ro4wfRRjnGYU2fmrovEHsVATQU5yDQB4Vqdt6LvITcba5PFS8qW0GJIGPUqxd0Tf+G64ygiaAslpczhvOHGIm5+cLe4fvXn1mP3m+4qEpfrAFiuNAXxgXUGrxa38DVdMPjt78ki0Kdu1Mg1vtLp6u4C+18PMYSi64t8CYXyDfrkYoff9DSergeJLqyF/kpWzuOLr1VZ1eg0XrwgOZYWblCBDDHp4eU8A7s6TstkXT5YrcSslp0g80iTAKkxjh10tJjWD90hjnVE/UwZLu186dbjdnF8T5BXHHJd0pDCKl7ygeBuhcMOptPfxgHFjcjERIGwGh9qZZGURHFEQDfcGpZ2l1HGScPc3n7oEEVqtSW/UP1602Lu2X7QIySCBeMrXAhD4lGBtGDHzIRxUrCJcy44IOJI9SJDO/JjKcOPxt+8nY3FJVBv4LDanjKr8fUkz/0AnvJdOZOZo44SbRH3cjAZgX08DGJ2RX8aTYuxYpG9oJe7WHh/vcB1AkXn1U7tgM9WJqk3OzcYIZFkLRBlpU4il2LOColAb1oDlM4kQ18AOWU7L+8oHGbWn12pQUEGITBR/RoB9UDNeQ1RwecGPorWNFHS2TJWos1wcFDoE+qZjtkfp0YC2c5oxYlsS19N/dB22ohqzhASyqkFqzKmT77QF/pkIvuldaeqVtxRw14HZsOyW0ibGQ1TWU8BH9np4pyRtOSd6D4bY80kVEkY4t/VvebQ32f0l9xbC7uIAhp5HCC4x6cUtZ0CIXkVuFkt2nz8Ee5WfeMYbfqkkJGsU89xBatrsJqSQ6lm5hcEaELKOEIKVdBh16F9ZhkxvS6WjfYgRdakZ88rxCqHQCrVPLj9Q23UkDnsm+XqFcrBTlLATy8tF6C3xHva+CsZYfiWhLauzAf6w9eyAfE6FFKJ7TxKvoGcHcmdijihlJeVUENMa+wY7ewZ9aBOHexUrAVNomrdglHTHYl988jcHX18irDdGD8YEB36Ikz/HJF9NrnwU7kpvz/uSTbyCVNgH4dd/guDgjhiMPOVJaXSEa6sKkshBgM7jeIbQRVV6Fi70rzWIR0cYGz0rQZLtO3wIdZh7A1UszesWOtvaF2zsQYqXJHrGxmLxT1RQmyLo8S3FziOd8lYEWCnO4b0mTcUwpJIraTy5BhqJQdevtUs82M3OWdrRznQcV2t6eX4aWuU1iELukihPfUUvNTGh0HoKpm84k3QBLYeLD1rFVL5kqtq1E9xKfqFiaytjX9AQc1V/dLn7ii7vqPQU2OyJciv10jkcSLR4riXNeWu8WpQJK1zLSlE1iL7pahw6fnBNM66dTNXi8oK0j3OYm+WlRfqV+0webD0mAfNIs0jjdDs8RVkUMKnmbxAaR7sB0GVMXr43mRWC3n1DTKzfCP8xuJIYyQMztlQl4Cma66mtMZE3ZXNCrorl7K+ndgq5iDIs7ZR3ejrGp0zcet3Bv6OhcJzwciwRJNWJ53+33dvpNpY8U/Q4JJlAIluLRJ4kASEts1DIXXiRMK39oIz4ZAzb7XLHh/uniSemkDdXCRhNAQ1hfjWouLG4qAEji82WaEDPL/rb1TlXe87q40rcPepNSPf7h6VAP3LsumYSTSRM9EGWcsx3l+bCL04m2WmdryJ8ZXzLro6+ACw161jjUmqwLxq2iEJDUg1Jk4E4etVWXjRdF7zHX0nUiv96a5+JCA6ptHVmzKNSq2YW57z0ZBq36CF77sgyEbg91KV+2FzoyPeC8EUR1pEsOC+lOQupM4JySaeg6OpF9lM9tTsErEXDYrsA8UF/6uYtc63F5SInujOlaXtzhCg8Kxg635mGq0qVjETH3qO5C/PuZBXSpd6bnIHGOTyhabnhNdOJeRIBb6I9P+pDEes0IR8RktmJ3mnhwiiVMXuHw0w1cIaL4eR+LrPaCKECDrjv5mAFdenLE2rKsAnSjXlE6U1ykCeBewYcRT4ozZ0HXpGKOcohhTyDiIm3L0IIfQSF/A/ndhEt1Njz8IY/ROIdLrmleNTzm2Ocfdp27k7MBFCXgS/Bo3XqSTe/lilqcgH5jCX7DOSx2Ge5D44PSyvavTEO2GxTjFTBkaQAJNLCpDm+N7cZ2e2dOst3M3I+pO7GeiTIzWOOO09jWrJXXhiadx+xzPdWt0To3/Xf+KXw/jSTBX+sB215PLI4f5jKR6JKO0JaSiU97kUiPIXDo3lU8kCm+bhRHxsL0REZba0m+Fokl0ky71jaclTKyKEhjZhT9w967y0wkjk7kTq5gBtKwwqQJXI1C9hDMSAsZ2W13EV7gYVnEgCtMn/cjrr/v83zQOudznFq+PqKAHzjtk9C0luSExtH5/FpGZ6GtVQBVDRY6UI1A7sF/nw8++5eUg2i5M/EsJWjo2LS+wgtr66WqNDShV2EKdRSxKsdBToBwzKl3fEsuYxpepaWPqmkUJo3j0alg4Bu+MOIhXnJw42A6odOd0eiVd4fwdi0=
Variant 5
DifficultyLevel
734
Question
Bill is adding 5 drinks a minute to a triathlon drinks table during an event.
Six drinks are being taken from the table every minute by competitors.
The number of drinks on the table is decreasing by 1 drink every x minutes.
What is the value of x?
Worked Solution
Expressing the information as an equation:
|
|
5x−6x |
= 1 |
6x − 5x |
= 30 |
∴x |
= 30 minutes |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | Bill is adding 5 drinks a minute to a triathlon drinks table during an event.
Six drinks are being taken from the table every minute by competitors.
The number of drinks on the table is decreasing by 1 drink every $\large x$ minutes.
What is the value of $\large x$? |
workedSolution | Expressing the information as an equation:
| | |
| ------------- :| ---------- |
| $\dfrac{\large x}{5} - \dfrac{\large x}{6}$| \= 1 |
| $6 \large x$ $-$ $5\large x$| \= 30 |
| $\therefore \large x$ | \= {{{correctAnswer0}}} {{{suffix0}}} |
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 30 | |