RAPH13 Q5-6
U2FsdGVkX183d7iybMLfLv7vOu64bLm6bnviXvZ2fBvrMu36PT1ftG6nReBCPDkhUBIXCrve22/bJeQadD82SMe89csJjMXtdbq+FTochVsiRxVBiee/wTCjyjQkzQG3KURn+Bm1tz8GXvruYlAW6cj3553ruhjX3PYMvN9cVge30asbA8lpnkuKrFPlf4+vCF2Hptxyed/4pQn0yG6t23Rq7bNu1x6tO0Ivx0YDP/oN7LnKNqshA9ZsNLyi4KQwaqNeMJSEO97sXHIQ0vFWjx/QmvbfoKhXuOba1uQm2SFi6MpP7wFNQ1JjPJCdHMjAfnIw6MwajuAvSziFsXrAydMoUzutP98In/41MwWKnBMNKRghohXphZdJ8MDlDxAM0eZBUxnT3SM0n59B8Kx+BerXxmfB2Z4I8B96PA7p/cbCfu3gA2jqEVGoIsDqtvZq6oWf5VzPFqoQv5WMHLiu+keOBh/A9a7vOzpHVXV9c9zbIAoBD3IYoVyZwDCDJoGdsmqVcRdR8rX1+0ARNkWHTh7oi+IvdWsSn+e6xhCH8XoPPd94MCnveMXC8IhQS5ztS1YV3naMAAJp4TvaCMpFSN/KFg5lAn8BpdM4UD0elarT0Zl9flFoV17xbWAPW6Vu3WxCWFSNZaB04RYK6i08eUy/RkSG1j1Zt2iHtY8DjQVkV7Y6JW9RVJa9g7maIoLZjJiPTq6Swgz90TZ1M4Pej4NRJdhSUaus09CYFOvcAH9bx7/QDmiQpuj5H/i3Gbc/bXtdqZGZ/PBSZubslAvSX+Uk/bU/glr7Q5BoM5hxuAHSddvGmDo4zZ+soVO8PuGi/XWzoT3/uiPhzmiooATdedEJip3kBXcwNC7Im/ywwYNIt46MSBhHRmLrNw15eYmy+CqNiOdogWX9Ym6DhxWdL6UxILmYyJh21vtads9p++RzmHhw2iNxgWCj7MOMuy4rf+zSeWrVtEuVR8/S2TmQGgeR8IIdvMaaCcBlXhbPuwVm0e3ilIV9vtcYgn191IPihcwr+X4eVOBdudU0n2txCg0Bz3/bRrYTu1XKfZR3cdAj++qiv/m7TCGWesEsZ0x+WAFWD1UD0XLG6HsVvkCuhrqepnVY73YfzHk8GwgF3G+lpMaE11D2dv0lpMbtVXb6fQ18b9oMFYZ1cKNSsU66m68EXdxd5Wm2XoNCenIjDEmZAJlinw15Zy3oXjencvfFr+baZLD+z7+uMcL15O0HVoNG4N2M0S0F1v8xs+zK/3QKyXLgGq04j7gM72BSD9IR2O7L/23FVcptg07ftOboSj1ZRB5Z4/bltcYhnDKS8QdyjBt30dPZZn2lETVDG0EVMJhFbA1059cq1ubP9dxHjs+qgCzoGFLB2APbybi3GyfVehnuRX6kDAQzRQHXY8070H8V1dmONBXVEObEyDPAI7vgW68wlkHn9FmeHtMKRM1sT//zaqrGCnpuPfxOAy2fvLdNuQzV8rZJBAvQ+Pf28Jo8WDiyXKQUAh+ooSrYu4DUX4OMK7gWrc66KBnpekts1+honKWgR7+oEOa3ZipRLfWL2nyOMoxzgk9j/FJFMp3yTN97yisvs1wlt+IV/F5Nau2ZflO4FUiJ4NriLQPdCFr11aZEDW+siyJp98kfBil5sTwvn3YNJkYSOajxj7RONUaya8VO2EXkl4/TAz2aaLI9+aBUB9uX2SPAKEFlW++e3vUpuoepqB2Siw0gA01Ekduvpt/ruBE0ZKim/CZOq2R1gsUz8lgaQtES6tRT2T2JXK9O8wUNtxg3mycRAIduQN7tomgotPU9vElSSm5h5U/iLSe/cjHM7jlLeG8yzHjkhjhwkVpXBQyhqYbiD9Z5UJctNvePFG4D8liaHldBs+SiO5+k4T7AOylqe9rqy+lX3hzSZgRTS0OJRwEZke/PryAdylzckUVf8KArEVafISxc5TyjAvG/1dwnwmNmzoVJ1ZolwyZblsgDQw08p0jU9zOYO5arQAfjAZvTuatwv8B7pCbFQ8chx8oLEapUboGauQuW69cSlk/UsMmvfImy1+QEXQ1UQhgwvWcuwe7d43OCHRoohhBEx1YHGOD943UjfgtdkcYQIbwXHTyqDVyRRUsFM36UvHcCA982lymY1E7WBDOywwTeevwpzRZM4vpC0G0MsGVNiH6X3+c3vFpTU51T5a8g7osn8h4x3LMz/cI2AUMF8KO8NhEyX76Xa/Xl0KQH7AaBLLg1cXb3WX3IBZ+xA7P+2bjnV01WKiW5By/ThvPEEeM6N1omRa7v6HDpenrOySqNi2W2AnnPLcMoTJOs7gIyeLka6XjLTTU6SuFBkvo4GeA+zCwjT21XAm4J3np03DYGABmhmqo+oZIkRrxk7oGMSnmyZqKCMBND3gvW5ZoKxTw7Frx94eSLRPP5uA3lBgUzJghB5JS41yTQ79ChgU90zqkNZNjtXRFL2rA44T+6wY3VLCf/bumKKuDUUJunvl7Vb2DzVNR7QgF/vyER2qvdtyzAVaumUCcZtjabudRUjEP0x22Ado99HCByGHpltM0is70gM4CIF3ysRSQzT0HLV3h77DIArbRAb6uvrdpU5FfF7o/DXSxdtqZqV+hCkH/x3IlH5D9sVdsl7H9VfIvRd5DVfIxx8wohiL8C+Y4uHGtGl3vCwoxXQS/FmC5vOzrebw500Os704i2p3otbIFvTOvr7ieqVwZzcrYrDeDiBjmf9sb9Cr9/TLvKhQtiYwv8gJnPJZFPPozPfZLBqXJIL/HiI/pYCf2kCLVgtyTQdvv9VJh827PpKX8M0BHCB5l3XDm0YOjZbtRUT5r6nVwQCng+CpjDaC6LLtVeHWzoQRY/5ttDGzURWEd8mFl4lpdvzOOsthz59lmxPmKw1CaVUJjKtycH7g972nFiXg9fg8PTC2occQH+MJ/dAAcMJOdjOuAk5GDHIRH6hGC7i14kgicN+fcaECR6PBLWFRgD+gjGFM27y8tTv2Oq7wBKwboAS70b0L7HOfju29pa2JxaphHiklXDG7lVwx6VNO06FdQ1IbYUuV34DB1WrO0pHGcapkH6U2THwr8e+A+z/Kdag8zC+RQx5y2imrwE3U/xOG3gQ+lmt47u/AkW9/fM5naVybonWfWYQhGt2KR2YHA6SL9C2e+wMYaJM18NdDXh6uvNG8wYnp73v3IBo7+nfRnWKWDnxny9KF+dr4kBMl5nTLY/8JJlcchaBOfXoTiwhdNROrPGIU5OgIVEGR1eyw/yPWns2TeLJWCjoY4YnM0Cddjo+s1fKfQt5NUEr9MzdiXVYC5wmRN+CdcERB2x0ODGESwwlrufUmp9VC87MPn4wgmfEvKoJFnDecJzJnoKZPd4F1LDDImTuv2rGMu/E2HThDK+6tOXPh3/EgsO0rKq2X0qi3VMIaXckD125tmH/RarFTVBX60prnIElcjczmNnUnGMYktqDy0wzV3JfEZWBish6aiSbof8I0vdjMZYTs2u0Yssr9WurPrDcSwlbIPtFbF4fmKNxXVMs2U5GKdey55JbCVhP0eZqaiY1073vx2qXZWP+VTm/kSd97VmOXDs/TEWXFW6uJzvv7s+vncFyaXDpf2TP1nGueNUx+5ecxTXznoNG8a8TZpGbWuVyCat+WMat8CQCt1sxHXzT3oAp5y+DVGzLKARsWymOrZvTOY0+iEbTFqZm4Szcf2+95AorgjeTS6S50nekn4Ac4/9otV9ygoMkabWCugDsY7c6eQBtN573i6lQ/SrnH2CyyWrXMgO1/h/wIdVCe6dKlUjpvFeQPS6e2l1EGzl6mpr4ZJTe9U1m6NJuALLb9/OmYYf0gC7DhbwcKDCXs+HaxIJ6+1KG7A845duquTaZqXuQhJPLUUOqTnJMxjsqSo47FR9QG/NimjCdLbYHw99NamOrcicI7/8I57Rby4NSmOv5E98Y4alKZZM+9TOK/q9u+IGCz2TX1SAPwV9wPLdZ6RslpyvS/v4DCPw06bBRZMnqYEHcctuHcOOZWNVsl9JLCWDEDzOxGMs6BK1N6mfTaoOrai4lCem/gQ28g724o6VjieNR+BRbFyjrZG2NI7J1NiI9btz7IZNRI4RFgaElEGx6T+E5nzbt+hiwUfoJQNr5n532Y6JNUG2OyD59gsXZ0PHj0LYDz3c4AjI/+E2kkSr3J9YmRp/fxviUVUhZYnMJxv9PVimrSy33spy6cps0u8oinyQlkLoVJYW1dnUka69tN7WbF3UzhmM3d0RrQcX1YwntabCWUfltbyAv9EKwgoSBzimadbNCQ7OEahW9AkD0/cMMM/7s2XcZTseO8lIsG+wbrdb9UHq58Wlv8J+Hyp0XL7Drxc1eSUjShaz5w3F5heYWDPZn82XuNVspAquOnOldV5m2i0n9uljgDy56RrJHIuRRgDZ8gq8cRl1cyJxmSyAe/fnMIuso7+lscHp3wmtHu6Oaks7jI73cMMLVMRtbqoomjOUl6eVsScnhVjo9Xu5lijh6Y7bbL4Nlzl9PCpEudNiPSlupBF9zx/5V3sZOGu2BnW0FzD/uzsG2vEWnz/ze2hFqNNw4wgRIN4EFj8/+uDsK+D2nCd/kCRCiZ+yU9IMpy415XC5PiK9zzVEbfzCi3wiQb+k1QB3d03dS5/fqcFXButLuIpKSYvN58/cxigu2NVzm/gvVOzP4Ytc3EN2AWl1P8YkI3X+Y+IS0G79e7pGFyTbX4ItU8eGnYPvTkGPiUHN626mJGpm8+TRdtMPq9mXcVNFzODeFvEDvGaLVLal6ClitEEu7VS5yvFmyEmo+DUMfnPwArJefh6QajCmnUJ/5hhUF9M4IpF5wQ5zjPa28UrOeKN/4bC0nZZPgYTj7TBrbkmDiFFYF1zmexyBh3BmFcZWG1QtEmZApL92zzDfywilXfYn2tsa6wHbQRBJqorEfBvX5T2DoQ5VEAQl7fX4AbnNy+3zboX8bOC3gL/PNV+0/m9QGaDW/aovqm5PvxZYBWwq9JgIbqOrKgB/9t2Cj/X5xJl6+gyFA6HHau/kYOLgiDtPKuUX2P0j2JkYIMdDx8fNOP8jTL5YWob/CgWbPtawbWWx2gFTpQDUk+Mg1ysKGnldZhMGCyQS9WGXetcxka3umXnpLTWn2+Y7EJc78UUpVlMbJVeq1rt0pyzqyUjyp6nNuduJMGKswKdYmoGpOedXZIIEqlvGTC0rJmTRP3byLLt0FsfipnSLidZ1ZlSM1+WabqIhkJF2YKA2LrjBlpdWj2aS1Dg85Jfh2DX+8hiOSTC7SKA5K7ogfEbVbpHY6+5G2NKcj0pnSGHfVfIVfEcH6y/4+xAyKZ8j/cWmEVG6LSI1JXQYY50z+KopPrOm81n52i8SKTHgt5ZRdRB0fj3L6ZuWPO7oS2/L1H0J25VryZX+1eruwgNjkbIM//gR7inyRrvkrgtFtyzcd3jOPB75840wPl21NDgiSNR6U9wKbVQhy/MoS7I0iyxKWdgYx+kTA1bFN9/+fcTY/u0l3XisSu6VS/x8CEAwCtXQneALfM6pL/6sVtil8zYHhDO5dW8j+hZ5W3aYJQS28LcTCNYsQHRaokARZ0IGZ8XQB1YV3yU4i06/GQA9Zl96yupjqIjBO4DbQmJchJi58wLCj3Dx0aZAen4n/z8nP5GlKxHkVA6gXlk99dZ0jtmztsRLuWE4fpikyiBrxK6k5sYXqbnviOhew5SdhMyFg9dNUEA1sDpbr2VLLSnaLwXmF7DG6BbEFbkXEOHkmDJbbH0UKaXt1841elA1cWRJ49f23FXSx0D45S66I4041SSuNoN8pMeKn/DMVmqu6M9iWUJO1KAzHXYnJCkPRqDgcC20ZMCwwQvYwErXjnzagidZ8e0ExdAnNrMj7B7wYrRfaRAqf/eUfB5C+BeJciFsU2Ltz3/e/+4+ulHu/lhOyhUS3Ls8wST17AjLCe3l6nreQ2mBh7YB6KXNLUsYtFLBx4FZ2VxSErwOGJsBGr1RIPeqfw+URciUkoc0RoZny2iUlsrguQ4F889DwPpuFZOdR05Mt7h9lylWrdhU7UV7EXaqwvfF/g1LYqBaqAs9qCaBoVAboozntjEbpFpWxxtPtrqUeDoeXH6t8t2PHSHpaioyMxJrgU7Q47i4unnvIFKMSGeFf1LPa+cDQVOkscI/ajr0QXPFGq/+CH+5H94RFpK/AmJP9rY7QnZ/IAcEe0N1hA8BxANHnsgnTEpvkxTu8StJ2xi7GZuldOkm2mlLt1XzHX2jDwiBFU8Oy7HPDs32AqxwCwV4jq39PUpb/dzaX30XhpRCAmj3ikSw7dN3tTdYah9okMIoDiQdLz/MOkrbLPl1a5yWnxLPyRXMzoje6rxUTo7KHwsrEWnATm2pLMDDjrNOEYLChZ0+BcOXF4rd126Z4uv0+Z1XC0VBMtUTCNJIo/bhTs7NNZ4AwyG6HF1ijynqHKlizPuvMjYXHrWUptB9mgzs9yBSrU4sglRzAcomdXZaasRBMgzFd0kaCGhbWVGAlvKn9lqSyToNnO1YaAfIAQBYMGbnk5empvZMLh+cOkOUjCya9sYTYKsEBPAgDiH00AaQWMRmpBbiQnKDtB/dpC/BDqaCzaGnbmyGYY4RnYY1GCeSX1aksYtOqBAj2iFG599x6j1eGIGQXL61X3lfLY6GM9f6sQ5Ai7GtwgdofLdjhNAlfU7XrXagtdxx8+SNV8BgZrH+dQKP3963Ujhl1yIcDiPyqOMFxVDzhjziCQKwCbuzmflfHHLzn6PRwCQPovIYLiUNIvviGapBDJ6dIN2JPV2pi59edar2ELJZQDTOFI0Fhrsi6NnfFZITd4pyO+cAWavDUBWa8D0E41gc6Eq7oFADXqBzOWIaGYmAw1/ugLRgu1awacXVTp93jSorOAhw7LWekV3kzNPw++hq1cTr93D+Mo2Ko3asbQ2mbjX72jHBaYUMwxB9WXkYQ7115yaKpWXoghMoJwVS9St9SzarKH73s0m2CG+jspwl8IPG2mlqR/RMyq5PZRKl4sup/vEk+oaCUHfjnbAgvBpf2gXBfAWl/XmSDvVwa3XoV+INtnGgo6O2nZNR1QjSF6+fRJBO2bir+RmbF5jROX8OFFBgZgvDTTTKVUXiQfrHB/amIft/SMqJ2RFz6ttxNuYsP+u6y+d9K5gol2Hy+LidLHMmMDTqCQNuu6TtHeVENScBJSuHmmTuuG2BY4rejpihiKP1n5FDS6Db6i9ip1vZbLvMqBG0YQ6SmPpSfCtEpWxXm0L795bGZNHR2JqQc9bafFhGEvYWlyOb7A9o/Tzz9Nj9dQ/g4Vmwwd6v70gvaOW8gJqZaMFbDAsVse+rY/Gh1MmKfbjAzlv5pKRL3pFZf8mEuWYvXX8zw+zTF1MMxXMThqBynDMYLq85/8h32r6mbVwZ0DYp0pEuE0YOpPQDFoY0A0hAM0SdYqJYfKrBwZtSTFODUPdp1Z1lqKNJM3QOo/OuxlnbovVvwxvh+cDSft12SEaAxOh6fm/2bVwgd0a0qpZUVu+KIMErpWspwk5AVEa+NOeymuZObsjh/BXWV85BDoVQATrMFA/zuNEjO4psaczKg+Nug4/Rjuut6qU5KsR1Kc8l5Xp6L0uBd8U/b2tJKtB4tjp909CVlkU3+N9BoRwgi0mge0T1/azwbj8nB6V8gM2SMlJxx3KaasmCiiU6ugY5SG9SEjlgxI68iSrpjL3V9o8m1yOJEpDtu05sKjGTnuh06pGXODGCRJq/8rxR170olJb0imSTb3vM4aJbkjzx/GHBV2G1mDi7BlnKpvqLUf4zvw2LvrYAv7h/0eL485fIWRP2EkGvJ5pSJ5AxybU+9NIYOFWgKnv21mQnyWThAGfKsaYvjweMC8SSVPbKwrJOmRUQhdPS7YuOpJbZIGRHU6MdKWIazPGGdZQtWtC9p1eorkpYqh9VocorK1w1CAtq9AiPslkgztWmPazIceCBeXXKWmqX7z1hZOw9ME7tmjFIpexYAzs2QOP81xOp6RJPCUGfm1KsN2fpHMq1o5BvI9PbrOdW3JynCIhGKneOp9CM87VstXeup2/DeEfXJv9276q1k+YV1g/TOHaueoGZCakSYJBFB2eUa0FIqZjOvK1c9OTkiO7SDRVRqFrRdK9rqCREhsJgnrasYLScyFfqy3UHkeT6K91av9f/23lGLTKSlwDrDACxIf0KbsC81iI5lvb4GEv1F4D00oP97vWzw6gtIaxaUU31KZY8BAU/ynHxeM2UzodiHEuygq/vrQkX8lFcleWBSfUL2BWjdE4TsSegJdYRrBu18GcIHVLgQde/bLJR45T9BrbyI/o/fa6ofASVqFDKQY3th/wd5ip3LAKWXSfVlKEas1UmMRP0W86iM39yLYXAnuDihPU0ZR3BrGDJ3Hh8e3la3Fe0uWqMRXRzt5am1+EpiJ1eAQKphqzYtsgkrdncyVyt7xUZx04/r26TQ7UnoJnb9exuSN3uOpqx9CQPvicXloYbSTVpB8l8DkGFGVCU3ALy0W8+Lz9drKGY1k77jZqBceR/1BfK5R2tjR0PlRaJkr0rJr69nRjtiOEc1+DLNRjgAelByripJ7GlU4x3xv65fQytqcpAvsAY0591YjouIRm74mBgioDnXvaz3pnXB1TTlnHV8rkZt7cyaA9+cFoG+Q9yjpAGW5ej8C4ah4r2333BPT9nrNPR+eTB3fLcXsBHja9NOhqsKnEUERrLYJeGMss3zOB9QCfVwEb1BSdC3tU/kHpGBWWAmkNPf7nrU70XhX2e10h8yrjuIVnFPWeiLDHH1flxCh07o90NZSzx+Yxuocm3MmY+wVUebLjt0ySUnD4KWvhtBFTCuGcgWW/gbFSaRGmsHUve3MHOnGGOyCPME2+BvJ4aYqqslNjmyHKVHNBZQBlZt7GqBBIJOxSNJTgSYe0u+x2gfXwKISgp1DliHF0ppiIwDF8HAb6TzroT6Kagydn4pUJjh9xXVTx3/0KQMZCphfCrlBCqa5sA1UQq25cHi8J7zI1YzEuMpq3oLmEGgGKT1vl1HREHb9XwhswQPFHLNdnOfLsNUSg24dVakjYaMbqW2MsMnea+KDD3PlOvawH/BvFWHpm7kuaHmJavXLGsUN08q7EyjnCRRdR1jV3Z4V258/NjC0ICvP3Qqfn++QyvNI6bGamYLc3kuv6MZypPzXgAaybJ4Lf6binfrbrhlZ+yFntUwJqg3tvt29p3Gd9173q+O1JNVVSeTmHJ/aBN3nzh0jbYSAGgk+cabUNQr8BBdZwbSHG8paev+48vHS1CPanm3ZlN2dM5Rduj9qTgiNTMUAAlGZnmpCZ2ShW4dsXaLr5kPDYqwSoZ85CzsQqQw9dauSAxWvQkuPvyj21wK3AGTdYlnRut3YdUzZRCpi4OZvNUhKobmJAKZYUTuuaGhdNXCmLnbl4Xi1Iai9NyKJwZidATfCa550giSs527pJLsOw64KJ5T++hgZcZ1DPG7FezSADBPQkKtjipo9IgMdlRTpZHnJmMwXm9SstyihQQP+0nyCE9zr23KjYQ+6iXgldIcYQMpEa6PFGRAYRAdG6/6SnhyzodqMb11XebBvCvW/87iU45QFq7jR0KckaIZTdt4q4sC1Sl3vn0NmRfRwl+ZYBmroLyXyV48c/yUIKruJ4VsRifbKTEF83SLP5tlV5t3l3m6PUVvACoyYY7uzhyEDQ2Ub/ZI+iHKRgSKJI2eoXPvjfreGxfuEwK8dcAyH8Z8voOvF/eX6RiJqw0C0t8bL6Ys1MeBMU1me67+oIAP/Th8hvibIwgy/AXhpHx8Se+lu00BlocfCE+6N+ex3+ObQehL7qQQnbyXpDoA0Tv3VKRBogG+7f1DWNnGsKct8kc5Mpx4h094+t1zxMy5DYaLfWC3mL/2VHPodSW6e2k3jWKWZj5sTGqYt1E7DUnbqYKbmp+uDlQhNpLfF/qdHtjgAG95OYDcRLYfyJUA6mROW/ycTkfP/e7or44dMfIKiG+ng6uivav4/LAJFk1IhLSKhpYDtuCUST2kK1bjuBJMaqJ28tT4KHPYsDfcGqexPsXbXcwETZzFiKiYrD4RcEokvM1QS/2mfog9hxcNVMc0ENW7lOTTRaYaUgONvhN5CUZ77+Cyk6JIi+F98tSPFEml2t+LDP0Pxx9/n8OlQ9N+iOmxurQmr09urbVUFimNFCiCvl+8YSvJzHAosThRdsDjO92PnZS734UvZU2+4q0p5krl6OTL48s9rjFFRZDDF2yI2ZMsA20TKjY+hTmkE4/hCxDJKnb4s6HFKUyAZk/y+1+fMR10SlVyMeiXbMY4G+fMdzZezSwETYO/6HntZMfVBDHce1m70/E/ISay3AT+rrWI8VuxmWNUEVI2jHq8xgne5yU5x4OfeyM+yRVS8+SmGJlSGox+NffU6FFl8+XwBbqWmqKNlP4ucLrJUri/nVJS2UMmx8b02qFCfMiI2JGrka03UJ/OS45arceWamJyFycjTYhXHnSPomx6vhj8OFenvxXyW6shYkR6ZF2Pq7GaKGjcBJqI62zajAHGmOSxc1qrVnkVDfp3YM0dK43/x4eUEUkRLanYVcjgu1OGg8JJTMEeMzGC3SY0CJCoMm8rEATtnMqh48mIAd67LJwtGZPf2etrcLbLDWWPBmN4tx6ZuMH2xWfq+wmxeaaha52jzUEA2godwQeFzUpURRTP0imF+jUke7yFQpHyIyb/ZfApnh95IoIxhrK6KtxlpAbtUCqUDHs+5pxWTBm/y/ZUbHV2wqAGo+LyLh5Mk+Eop0cJHO3a2HlbUYRqRrYdPE30Jr1CtyKuvH2d1/NSMQrjbq4z8Zy6W+0O8IYTkj8VKeX88ieyzdeZDRxdQzNry0By3IpTNGvJaOYCWbAnZ80hMxQZDZwUu+d20KYKqRWoSXpeuGo3ln0Lrg9slTuXMlktOUU+4Ac95ERNXk4T+QUuyhwgddSyQg21vh07xNmxVuOMHRgOZYog5DFjufpcZ2QeogEYHlJZQcrJTV/V0h55WflFXQ6Ejet0XxbOXQFol8e0QGgXzbcSA6LELcyIuK0woDLiXzjK/28779roWcX2sqQQwx3Zx470GYVgP+zpb33i1tt1AZi32kjxGjx/yt3m1fN1VsavI/+N8jY4Ff0aL7JlNJB9devkmh9EBCpL9IcgUPKHi2TxW64Cge7pAV6TYKpfJxsWEEzkNJnXl8AgvKA20UG/0llm8Nf/dk8iPAwIwC/Qvmti8OeDuNH0xTVcjGrIittHQF1AgTQU/eOjRSsZquWT8fr9vbj04zEIfO8tvxOyntnBoWRzFojXg4OSbMaziFiytSyBtQiamaUwD8kbUGl0xWoGygS+28P9ThOBl5TjGpMJZSgbPU2r/t2PtpBVwihy/zU/qwIhehKy3MTMWDrkjwSKzpyf/oTOviiXsTuJPbktcgnwbkhEo609T8NCYd+M57324MyGXblikI7O4xTlcDzBSmRlTJOJx/KsUIrNi7SaxUMg+25mLDW5fOvVrQ7KPisR2sAs4MZtgLssMNvIAQSu8L2VomIvuJdSLFlMwoIgTW2VQEN4RTkIW7jo82eIROS1pc4/GjtaZnCrxD3MPzh+LyA/DPYtzFtK1wNdF7CP6PTBzzwC7GQBYePqOhqvY1GGexIFKnsRkvMkzxCMYycgb8/DIhZIAJxHRkCjKlghdpWMeGmiGpISvKvkAC0NQDUT+yShxwtU1Jp10PsUa4IQh7k+aD7xFiwOmmq2wzcY0jkiDeau91NpT0XuWOZerSN0bNLKMKGo6L0TZ8rGY0sOWg3NzvUx8bIJxFQ6NTBdN5+I62JXoqG2QTPIB/+06WfmFuItmRUjptex+CN8BeyA4kgZT8H5dmsZy3mBA0WIYzvp2jEr1Bnswuat8w/HzD8dKNlvvFzaiyyC78S7gy2jQ17GSpVNd6nymYWk2PEIBumTj3JuC018QucAA1iZDDB+FAgQhJGuP074bjuEo8ZZadsQEx4JjKCTmzTs7A1rir5GPn2oVOVPa8Do5FzDFGFkJBeI3Vi29yVHFYNBVc5ManM2EBlvkegpnEP8ZjDDjDn+Y98Tz3rUiju7Gb17f99OlxeVg6KinMXynVX7yvqSFTdMm01q8tirooCpGHoYi+9FIxEibz8cweX6nHlQx5YXpCQ8QOUiwealoIKXZxr6UWdWZAujn9BkTlhrss8rEevEypAHQB78QSfn0XkeQPCN9hstdh4OdE4p/HZI6s/MpJR6rhqxD2IdSzG9wn6lyDNFj4Nm8HvqiY9gFsIJPpKyN/lPNk+rxgfjXV4VvJlf3geW5okqofAwy6/UV9j7ol8blu/XQyLLd8Qw0Vkyda/0UMn4f/RC5663Zmqa28wyk4uC1rMxg4vZJqBzWzn5u6IEoiSNTc0ALfhrHNEm0zJzjZlTvdNnlrITK83c1hyqu/tXw6xgbZnzKeEdmMcXWhVjs6F426GJ6YgGygrdZV69FtatHA/O0Q/c3zAn/C8n/Y37hcbiZZ0mB+xsR5dUOc2L0mGQfHB5t6U3o6NHZQDduUbokG+/coCBxo7PVirdAsi+XuxABKsUGG3euqdYgx/R+dGiGLSHYzaRAqEUoQiBekSq8A2K1wy2LRFR6JilRGF3z0h4n+lof7Sa7FdmG1JCxtC+D5TGrOk68KoixTrsLRZqZtaAv4ajktFkUPJt0J4DBaSgkJjEBj2V+GO9QdGzdKANCo0nI5Atd3WVfy0US1ysImpzpJ0yJnB/8fcyrqmC74PyF9YXM5VxRXZk8mbUWQarcro2BGd+0NfTlvkT4vwV1hCaXNeIU3SOFJyYmRqwgWkZpP3vm8iHivtuIsAAPthigucieFPm911zAcWx4G5lYkvXME9Cfc9+U7JXn+AzDmH09HS6G6brtmmLfaU+gzTclg7fmtucMXRtB9MyAhtMTBtr07eWp2Q2YSufrqJGKpFXyRH8suHfLzwCHrzaH1668/3cf8a/W1wbJ1UmkV4xdxGm+u4mQ+U5IMkqKPNS7tsFKlo8VNyhl2/5eWmLSH5djL96TN4858w5PurqpN7BqPgKzGVGHNSbGxBPZgxes447A4muEaA/XoccGQ7XWhN2iFBHZr1S5LRETDiNLN4xkIEGUp+s4PBTnbt2kvbwADJPYCUpSMavB+YYNm85x+fUwhVUcRp7ovQkEg8BSsALWQhpCLNc7l44A/JQN2cpZnEw5HAndZ890ghWTaBBPrSOCTIvWygSI7rHk7HnSfGx2v1O5HV7DNQN/vdS6ulj/ky90bGJrft2SOHumkTD5udmedJ4VXAUc1hY74QU9SGwps9tWon8sp3avTsfbmnkE52Q4yBfUUuyulczk8gT3g0jkHF8T3dAuTasMGynIl8GJ+YXvxoXkd+eNXMeFYkLZ6Z2e3OXjA2/ecEvyZUZlFSdnRLpV6x7ZnQNtd3dDv0hExu86Il+BAbZDMFaYQ9PTPgXksjXBX2pTVt2hMaHWRCMzf3v8Pg1j3MDYttcQV9KhBcoxrPCB2D3mnvo3EHnuV83RnD3MNB+RDr3FxnXkfO/BIlbbwpmF1xEFesi9Cy0NnQZiRu5SNQ/D6RfB1abuoCN2MbFANzCtPTQlsv5i7PAptqoGnnGMOMyl/IDXPeKAEBDvmGeamL2Tv2QcFKnDxoEa0Eo+XhPssqtbpuDZo/UMNwFLSdmJDg/FU5t1E7q2o3otHNZUoHuXrfp15kpZSV0KpKrfjVwvABGg7T5vQwt95dXQkLkrwTPQ3SSUDXDAECcYZPjCiQdMUZJhIkhQATCajwwi9Na5Y/zV1kkbvvW+GJhs6DDOmBv6puxJZwT6Gqjsc28lBXFUhS2YyOSVdzOUDopNes0AR4nXxYA6I+af77vFTdmV0C8HplXGEgpLEWEEwqqmJrxu1XoiqOKkeg+bl2imwhTtxCFp0dDKDU7WvTmDl6vZcQNftcr/b1jwXcny+QXIcaBFQFL/kJm+1bzLm8JjT+kWgKUqTQTjPUJ0KKppT/b6xFq7+E21SpLolSWDTFUikKu7I48O5MaPjFa4piV6xX4578gVECkY1t4yvLBsNvgx6KFAJXZzfHbFKDPmkomxD5duq2pzzmWLRlPUu6MBdL5gq3F+2FodcarLjswUXj9yOtbmNvjkzVOx/39hwBjygtgI+ZJdsddkXZP+XAS2av3ZVzMG0PpXzCJY1SvbEgHeWYC/wSsX0/avcHCoXRzYIvDFcrioqe4Wzwc1JWbNCLyUDrDPoak0kvASYFl9GCP6D4jm94nDXgqs82Dflm4tM6S0KDffM4I5F9U41r6K6hNv+lITRZCBwE5EQJIgiGoIykZ/cEjLeSiJmbB7+QzGOgNJdXL1rbeYdiZ+qpq5DOT9tkiXT71DCl6iOhQRwbODvHDE7OTlpvnS1xmYU4FucuUD/e1YOBNpCOWcRYDAIOcbLnKkEM8DMr3opcQ3uCg8uwV1OIYfuAgLLTRXzNwmH2Lf9XWbpevT+ub9NWOm3sDgKZmo/lst+dlL6DhG6bsmJHc+4P9510tkYfKTOEmQq7AEQ7+wmCY+dAfLvtNRU6N688uRmLUu/PqMGd7vmNda242BkHjyyxTVXzntPdutoO7DzLlJ4XBvjN0byic1WouoUpEVSYTjQFKiGOjUtSzDL8tmyQqjpJHJ5zkYap+7GrTXDdM2bymh6IU+lWnESYLAnnqwyWQNLEnmHU2FTTwoxnjpstmgBM+cTeoxBi9wjK7a1NQmvfISScOSpt+fdI/QIfT70R+Cl7PkBhDxwg5nXixiRJ+htj4AAaakcCH9pkD7PJ0sGaCIdyIb+8n16Y6pHulvT7ep2mMOnxhQGSb8aI2xaQPnz7ern+L/uXU14WwR2QCAhLh90rl5p57Lt3QeO8RQG0Rhh3LrHuRNduB17SMLWIzUnsXsb7SVp1qDwZRV7FJg4PHF4I570javKubPi9tjMYEtHOLDsH4K+Oz9fDCq3MooSVBcZeo83cLopJGGYh+DpxUdID5e9pch1fXlgO8zhmS61MaK5rm9exShovDlu8R0DhnBBurBp1iCS0jS9200hDfWL6VWHC8Ihu0CpF1VYfTem8KcNFXhiVMh+1f6YSP/E+BlJiZW/9/IAAGSuyInhkruMErsgs0oLB3WR4XWq/tGnNqKZGyHcI40sJgHPFrrfn/hVhe0RIlaTc0/+TE8d7D5Ko3vYYU662/TItNsjWgHwIxxzxiVqw4coHzKYlmAfzdS59b/Uj5Zx3RYmoA2Y9FpVb4P4LVvrRbEoU9vo+GGwi1lGdIl/9/UPgsWM7l43oR10yR/35JDK9ImeupFJ/ubpzZL89RpLmYFLWG/SktJhtHkLI0SHZCCIExYy7cNhUfjSBtxnCqTSLbaDeYX5IaCemGWSg+1h/x0Q0ncSHxQHq9Ch2GoXrJFbnxSFrLIeD9UsRohh17Wwr+g1qpF5QO14CsOnNuJwLmqi8sMtBjOdAakNMBXRFlrOo0VI24TIxHGmhOXK4lUzNG+4ozkbu6fOSxuLCs40J74IuAz5JxFxFPku14ElFYIWQPj8G5Zss5NWqtM8a6QqsOnGOICCVTt+jR6Qj14vA48xTTrHEmAS7Eq3DxILQdzJ/HYW65mjaFCG7DlVidHH8sPfn1k9uJjpjQwvof26Mgnta+AQdta0XV6bG6qgsGz9vBYs9LAUSsMdxKxQi9xmECqtD8XB70FDh1PJ4PkeUfstrgQAJGOqshaqCqO8KLGXxVyNKlOAvnxMsZtnBi8Upq3o4K21KL3VZytrEPI3YqOA/X+8E1hYx1sODzXf4JUZohIAqOarH15g1JIAq++23ndDuwShLGXmN5kvm/vwz4agApqG7sXoOKgD4SY5qZYa2+vUG+V4o2E+G6heo7nAwsm70FqNaITgR+9t2hi5WfMZw9t7cqXGUTeHwOHMLceQgdGKJZ7eo+1OCZb9hAzobWUg8ipcvk4AwZStqAa/tPgjMatjfxQ5xzA7/T/Mx183n54bVNgH4eV8i3ON6Yo0ab4C9v5q7w+7pqRcYKQUoqZ+U/3dBxqKkuYJS8l6sHqbPmpySw2aQ5UBuM7BrSpPt2+l7w4NY6a2ByTLC0uRcBijmrVcSQ0L/UcxxSXq4OCEMcBFD/n3/GJuyplXdosziI12ZzOy7UIppchLPBe6jzojqG0V9BIqXlEhVXluWZYpTNOORLik94i8idXjcnpyQkucsdhFk6inLlknE+XcwXBo8iRKvf1sc0t82oMzbhNhDinxAWc9Qeo+K+mGLnTAGW/4V8jwNH1i7WwXJLXO2bQSvRXUI0zbbkuDh/NyIJ7jnQvSyqWIuCyGu9vpeVZeHGDNRdjJzCRfIAvJgWaUuStUMeEcP6gzj9Or0+hTRHqlqb22ugsUiJYFuAVopYoAQ3gW/cz/KoBLcNdUIFFQSDe/7xWLHPU//A9kUkOrGz2FvrXIOp5XAc2+IOip+PfJH9ExLedxiibu8UN+w5Dw26yLNWqZWJpBrI9XCthaKse+XKfCLNACBFNH31YhI33T1mrFcK9wwFIYy70riUERJ9tWehlARg1k3pBzVHLryb+ePb7hwoqsKOU7gi16moceEMlxZ6WlSwf77aeJ+iQA44bkxDuFDnghfNL++TE3jm6gFG3loCJ1L
Variant 0
DifficultyLevel
590
Question
Zeus has 21 chickens, from 3 different breeds.
Breed |
Number of Chickens |
Leghorn |
7 |
Polish |
5 |
Dorking |
9 |
What is the probability that a chicken selected randomly will be either a Dorking chicken or a Leghorn chicken?
Worked Solution
|
|
P (Leg horn or Dorking) |
= Total number of chickensNumber of Leghorn + Number of Dorking |
|
= 217+9 |
|
= 2116 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Zeus has 21 chickens, from 3 different breeds.
> | Breed | Number of Chickens |
> | :-----------: | :----------: |
> | Leghorn | 7 |
> | Polish | 5 |
> | Dorking | 9 |
What is the probability that a chicken selected randomly will be either a Dorking chicken or a Leghorn chicken? |
workedSolution |
| | |
| ------------- | ---------- |
| $P$ (Leg horn or Dorking) | \= $\dfrac{\text{Number of Leghorn + Number of Dorking}}{\text{Total number of chickens}}$ |
| | \= $\dfrac{7 + 9}{21}$|
| | \= {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX1/SU7g18aOa6+SFQt/gJsG4vXP+oYsU8G6Ia15GxfECOGJ/tdUi1IzVHkj3ovFMIGmsdmZIb0DihdnGUIEEENsAhBKFQSBdsirrjc5+yVUOTTSt2bVxG/7pN5oEPmdTD17yK/BKz76gGYvfMBEqJntSO0rZvljcAFplEWtILWhnK3DYQG0+U1JOuS4MTa/rbqRN2QAi680pnPzBOZWSe3CAq8sJ32N3+VtOp6B+T+/Hzlj/+C9+Oq8AskDfiKRtSciwX8sTAzeYkKweJmzuOCg/xmacYxy6nZsBQcWdCOhA4+6TBkJLM0PwVszukPLok6uy2oRfxmRnLFfggPup1j/qqMCgZzz3SKEPV/ew2/uURa4VQtTzvECF9nMURVhDxe/ez1qj8gShUV+F7ahRjydl8y2s+cuMZXSpiyqFtU2G/TykXgBnPNEsNlCpvr2+bELdiVgjfVtewuGf8CZP74QVVpg94zRMju+kYRG1Akduj1+MX9k+7Tr3OX/tvYLLL6TQmqrHDtkt/nNIl2DTarjw8LDIgs79xq3tGqdekSlyHiKpyGfilw7Q7IQL9/a0x6Bp3UW/ZKl4UkfZFQ4LQH0GZJVXlDnu7JZZPKs1s6yLqcGAwfnoaUkkz0UAJfyC9G8EtdXPdF517TpWkcV8/6wSo1aHO6l/GStmGRJeyu11QBPu+u1zhU13Lwq5d2tfiA2TK2v8QVv5/8FiJY27i+pwpD6cnGWaI4Gpamg2J2yRhevb0pRRRmJoQ98ht3EG37j9yjUWKLxJF+nBrp47Ms8pZwZQ29tMOVHM3qG5oDGMhbCagRsKgL5u63+Eg5S4to5jA+UktQ99b94CnORqCVNXQ2QALE29ov1AGddv/G58p6S8FVbwLFUM3qtmybzeXzLexhfDVh0b18NazOVpw2qnyg238md3ji3FupJtdoBSfP2iGgBzgk0JMWkr24wYZv0zBYFeey8FOE14trbfaPd5ikVZ8MVPLRqDaS904xMGyK91/13MRZKn4FKWZZEB/ZZXIqOInmxP6ReZ7GIEB/0PxT30Ryat2wSUwqGcEj6Uyxa6DY6B3PHG0mCANJl6O4yVJoRscdVXMVigFwN5AtcnyKT4uh5s58AAX16a1y+pqa9SggS4uHiIrAn6L5/06xFVlHj+YXny302WYaDtVDsxy4QHglHEN8ohzvTCXaoeIzBrcLwV/eCZP9g1s6E20Op0f7T5pdZmw6ZaotpG1UYnYKop/YwdO7WA3XsaHMl9Us+4ANKduBGKmIPW+nDiYcOlAe3w2j5bteNCblYNXjmasoPgYv163M/BA0eNV2F/PUzWpCsSKt1ZgyPzV4XYygKDF6sjBLMx3wrhZ++yOSPaMvjE9iOzaKJZoUDLkyMdjCSnlVY+aykU3f8WgCG3A8KuMaAgq/u/cpDb5iApYs5/sVcIzd+/5XEP5AyjZYbomMp1eUQYibhw0OD+acx2gyDcgQGUno+RWK5qiOkEA5Ch7Ia1xs8mT0Wl/LaNvLh8wGPChuzy7W46ammbSmtrk5OG6mXLu3ngcL7l0HHNWP9IzjyWelwyzn+p6ikXyQXi4Mro7J8s/+IeYBUAUchIYztCATaOxmdrxwBWXXhCEeUrOOiPZZxFAQTLvTpRaG3aX/wG5AUnO7jGWySfIrEp1mSvpcavTELvrKJB3QYLw2yaxRegziPsl668HCpxCWZTO9CLZsmOkCn0c1r2F/zZTLoOkfvnbsNhBW2mMbGa/fV8ABUGl8wOG8s+sE88p4gfOavNARInuB8hHaoe1Oa1qMC2v3dMeXFLnIkpkXSAkWhFIutuIEQu1JL2I6k5DX3ncKF4A5FPz4Exv62+ZDeCXwGYVYdt+OornI8ify9n9TLOAzM6EpBC7j+ABnTm9KrDAzlc2Hxb2jbnKqTe5Wjo9Ifu3Lj8+m8Qdnurfj1HvAV4Hcwwr8eqjJh4PhUA0jpXcu/OhkpAMK+wZJwmQ5/aY+e/0J6ujOg+UPKoCxthHh6gqUURCYUfBe/IisXGopYFzs2kQC0gzNFzl3aD8G5BEZtAlFpI45nwdDaEwTGpijzPw1JDrnPjzGwY+8r1wgqjnhjoebjDPH34xJfvFx8p96kzD35m0R2TwtYqsE2+TgjAnjp5p7yBi9Gt13szZXj+2ZaIByTtJTf670WQwMKhtlqc+1rjE6PO3bvJg9autcui1wwfm5EvArP/oUMxmG34K+KrQJcZGMbLSet+6gAviK6RAujBZ7zThNXt6SBO9QoGh9r1wBA246WZwhlth7yn76zNKHJxeo7xeYDiMhDkScVN3IxhIF7gCZK6FwdXT0IiMepVeMvx1wrTFFRLh9pYTFt86YXXX04HnHJu+5mbsmD+POTb8JeA5syxeLbZdaEituN7YuLmWrhvIl7FS7gIuJBDBsaqOlHkzn5kYbVXcRb5Y1VPdNMXP56yRm1lOdAIN2CnJ0DK+B/TAjhfXTW/wYFCy7D6L0BH/NpeswdSVOMRM7ZN9o2Ds10MHsXmMVxRZXaFZKeyl0AE/UDQv73rL/felX1InWrwmMFNRJ225e4bBuu4mcvtMeAzmh3+wMtfjCGAt8UUrX12gX3tdVe53YsNAeiDe2Q1DqbLUhAWvWK/VhcpZzDEwWvAUAe8uKeJ1ry095+uWFJLnvy7wfoAqol1CxMDP4lscqMVzXwMGgtZGS9ucpl7uKw19fh7PYN4y/uhp3IvXgVJ/A4pbksgfTA2M+r+OH/BdbdyJEbsgeFoHtF72FbBogumms3izy32PChxoULQQixMBl/sOLLNyd888edF4SBRDakezkp8HHJ8xjnLPr1Al+dF3kKPs86LEEbP66ryozGdEhaip3vT/6E6V3Hy3SOL1mU4+eU6jnCmSYP9X5hJc9Vj+27lbw7G5qe2utQA9Ckwz3fyWfW7VRjbNSjky/eEfZSvuc4uVgiD/TbsscwjhnpMEVFPJd+7bw11CQ2OJLEKmWurxztCZhP8p+6xgfOqwtbVzBtya02B0i2JRY29DtBYZXuRSfLZJ7sIbWUE349a+uV9uDgOUXcYroCA0eJP0DhVE0TifWLX6yOpbN7Y4baE27fHYZPzpoCcG3ldDkcwxpeovTBdc6VuGullGuzDm24DaEbRspN6coo+y7aoYwgVHhnZClIbhmLODK4QmYSOr5b3pvOvTbP5nUkUawQiurNAcVaW6bliRrzYzR/jrQcIImFRCuKRyFnTVtq9YKY6RTiuFCP6tnTKb15Fp/7C03x9NtAbY3P4iok78E9ZA7eWP80ooy+qYny3keH1SoTvHl6KCFrJPxZ6etVl9AUPTGOlz595TYKDg4dMM6bEnLp2ODKofwPrEeG4kgloGhvYcY+EyRETiUTQlBiAgPXzFLmzyqlxsHB28In3F5favv3H+J/rAvp+zzcLoZG8rUruvp+XkHNh1fIovakBr0Vt5iDUhRFhTGpHputV6v+ptNnJ/MzWrDD10PVVPYB6Bqz0E1wmluTxdkQpcS5fO42pIDVzmHoy/W6WfXHUJBqBvgaaiqXHT0Lz3v1TU6yPE8jVCZEvjcLJVLCttUPEfODEJjCLxAZiwaKoMQh3p0XaqA4CHFg3EzybsK00X6u1omMBj9bhDk1PVyMM3t3Iu4Tf+gK7iutrIADHePKNIU/y8iY1QhlGrO/W6VrArNbxMqNFB8zALWxbdlayhRD5cPK2IXsA1eDEw1KnOOTYVLBXer6rd6N0SldLzPRUvZz9WhiyfHwyhoCNOflZNCxf2rsHYE1RDLXyrcG913Q862WNPh+8WquzxBOj+cjeZTKtRXFHI/3ibPH1II6Kch2vLX24MrCtI+EphY45PWUu+dXayQ2GukHnyuDAvGahqu+1RSbuqXKDZP6rVvq34cf3OKWe/c5a7lqBFv9CzW/2hLcIJUOqmlTxoa7JoFDBLoIIwHrBI2TQzhQkp0QbJYdaUu7j1n4v/6Bwf9qBZxcZZSEVimF44JDIU5+rmmp7Nz5Q5OoJPmofZrcBpjGl0mni9MAKIaSTy7I1lFVDmbWvIn7LgsLDXph9p8/tj/EZhGuYsQ4jFIWTiwExYbF4BnhoN6XixgmIDLKv0NL7bFl07OjcdCIPcZyZkCiVAQXhx/NOIHwGCQnxWvwOIWoGXKRqf4K00eX7J+p1S7VXd7tQ1jyvgXhH+ESoG3a35tweCemMfK4/ZcgyugQ1C2GjTa200l2A6mOQTGbzM/cGApXJ5lI0YGv3/bq3EZDNB6wd1uVRTosWZuZbrYS0+BGXZ8YpAAMT0udZBgRP3KpWmp1CUw68ediMehyiHaeoBwv5BPKtB9Flv7Snt13+6Xi0NhqxDvHOL1NzrTefmdI/8KAfsvNV4DPRTwiMaN28/eJbo3sO2yD5FaJ7ZkeMyF/IF2YXF5KN75u0Xw+jw+M3G55ms8CeyN3WWj38e58FttCoXgyA4PT+gqlmx09AmMfCozmL1V+wvooWdU1smRcrRNMDxL7DcshZTzlzxBkzzmcfutljWAF7Mvg0G90ift93Zq0CxkhYoA+tKrgWnfo0F3UNHAJ+gQRV9Ro8RA8GfIDpLhFPXWNW263FX8PCC9iAgTbEvaqFBsjocN3J1v8G8E2fonODx2MvigOxnZqn3wmK/YqP0UINn5RwkJ9UrITspHm3lRWzZ7fq8A3M18bQBOKdaHoyp6nzniQ1oH6nGwqIbuxt45lRodt4e+HGDS1AOHOKH0o2tQ3IXIJJSqojrk4zNFPe5ZNyWENw0Z6nNvCjp/5exCbeKzuf1tfQQ0WXPf02pklrKATXTZog8N1KTvrpbfB8zZga1KnS7In8BolJCEdZJmcS5t+zZSvHDGMTlRgm/h/JSvZMf9rg4hUW3m9Ze1ZVPyVLr/xmo45wrTfDBUFhS4wIoqXfyr8CrUR/Yku2C92wLXbgwf5Fiq7Gexujfm+Up3EMZlXY0GZeWOjY+C0WHQuqGxmEqPDvP/4yelxUdFo2W/tvbhqaiDY/OBKo6tX9o+atu1maSz8QB6PL40HpPp7HlD4MefCja0/NmkBgZRbAng2TKflXWeuVCj39LissaNJ+8kv4xiF1gtUEpVcW8HGAo6usC+i23+ywXrot6Xa9JDdgb+tlfI0thGs4Ushph3Iay/63Vtlf+8nxumsrB9T76rh+egqc92nPQ2rOxcJkhfRA5AFfclt0gnu7zTv/LZH6wrs4VpNcpXXWecWBQ1YBpcXKX3R1uh8TaW1XNVljwIZuCGjhtmjYwhm71xK5TnxGQetsSkF+vTPg09ZENKV2DP0Pe29LuBRhH3tJPonCL5X8EiRamRvodrQJ69/r8vVWIrG0cwCQAcAf+bK2lJkgzYZ39EIhmz5EqqLjE32gDTMaGDMEGmQCxHNmiU0fWCFfMwfEJ+WZ6JRLZ+S2gCqaWNS9siM2vL3ql6wq/6KxXW5NyzlZCFqxQmFoxpKoYhwvaodGZ2xm9hotVgR4r7k6MH3OumzHhwqIRNuBqcji3u9eTyYcv6jWDyGiXZvSgvQZYZFya0qhdbPIJegB8di1at+JaotT3SWy4l076HD6mN1fOwxuYJJCiZCr6MzQ1yigTPHOW2yJS93LytS++1b+n63VhgCcZJGTohxMjTF3vjVdjIVqEEfz47EsSOFUOxiUbvIXRhDe+WknxjzIW3Uxt9U9dQAlxEg23ITO8jMUe5lPhpvdkm0jwz/aR481X2cMlLbCovrST+oU5w8w9Wn+vByaRpI3eKvCjurhIQD0jrb6Q3kv6Tkaao6kOWgc8sbLLhaRJ6IkZ/mJtjSFogofmnXvsZGR/RMJwAIdKn01zJq+jLAYhxUFBzCAmJ0iClas38Dp4S5apGaaR2ht1rEnd4ujrGUKZcjUq/79QG1ClknR7GOBJPHMYUjJfslCSdimgIx7EQ3SUnq7jlA/ApRo1ENWqdcB3WAyPKjmlgpJwgFAKgEAIgmfhT0bbSwXfUm0xX5TOQD4+WMce7H3Tl6yHPibRTgyYW/mUDrR4CrwtyFudaoLRO6PMqNKCt7t2VAioG6twJqlMAw8EgZe92a2b7l0nB9bJn/UX9qLaz+IT6AnLjjUmwusEJGYfYXfPTYWVkk3evFQXNAA6T0aGmU0Fv3AUI4VSTWztjOYyLbrNzmRzMD1r5f7fkEQG8Q8bw00NfDBChD2Xp/9JEGzKQh2rAn1mfuDOQxNcpfToJ1jRrPVcJhadtTB6zUQD7KJBxn8JlUDcxCU6fby8dzQ2VbsM+4UN/LqmoaQg89VT64DfNowMeitgaU+R4dmlJlwHR/tHKL2suvzJxK1nc0WrtDpW3f+VjV2BBeZDfmOQX+gwnYCuRFSDXhrMWjNMcTiiM6RCyTzrpIx5guOuvYEDabAtlbHEo8EbgcjNhF+0mom0CZwZtnucjENspuPLJLJt13ykOF4o0fbFkFCjj7PQMBVURuUv4w1HmXId9JI758mgv5fHTf4js2SrZ5MjQ2dpdRXqjEYRKBGAaiZVWna/DkfTBXQqvwKc9uprhlrMc/M9exnQCMlM49u7iii6JHGHhQOsOei08OHKZAxRxQ7B5mp2NaQA00lam0Dv4AeJUQpHX4iIQgkBEbddotKcIkxgbP20fydbt0WBeTPiZBhSKF/XgNH+XXS5WfXia7po1+SPguBt4Ngr98weVrm9Pk3a73odRag9ip19M5remd/QO8kyVkkpt2z0stcXMc5mQrsYXMBsu3AH6kJLNA0EWkukF0Ybh2yXnyCXZuO0PEQqovCuvTmRxJ6LxVv8KBOYCH8ruga6QTU77itAheYxpRydytLpqy2nRY0A9asUujoBUYTMQUuaaHBrVJGm9dgJvPkyr4CLvK3zIVqUuFqbxAp0aX6e36/bGAOBSS0nnmia0PmFR9x21i+9og4kbIbp+GTXYgzKVGFqAR9WR+h6euhDMhSwXi2FOMBBIsSUwFrlaGaJyDm5INPE/QBvtVsZqEvqUXKvtFEiYIplvjDPzqPFqGcaqDijE0efcKMtK+Xn+9nK9k/LZNSYr/LhlgJjwPe7vcF5S3yJJMq9pImx/qZTVaVo2wbOcJPW9UyJUiRehKanHreoMFnBzc4uUlkjzivyoECjgt2TS7Gyu9Ue5OJ57HuQNH11xpwKZW9VU5qJXmwCXOEeDaqahaCilA+VB691LspycJvGCNYbMjwQKH9nkZs3CL7kqpOLGVkQsCVeJRHGncBz+sy6SEE4smtIh8A3PMGFaxGvbG57T7Nek83fXZNAdYYYx8c4v0WzifW37TV4l0k7OxyYlQxPgcYQoNkKZFDTIhN3rNec1peQbRdKE/nf/KYDjtBwCu/s5o7tj/wCtcUSN2bQHwmJYLrLHPacNa57D2cVldyDuWd782CVBcge91azphI0CfVn7f5yfSF7q6cqXa8R0akYRXw/+Kck2eswGaNcVU+ZlTBpdQM7v0he+xNKCrKIlM9XiHUf9TPyDzDEQQjddnRorJiuhfXym4Lk62Vn8sYlMF6tyD+2iFuaCn9mCQiqVe8j6q7kUD30W6HhPgEFM+Up1p81IKdk+V+xhBGKy7+Wn3RzOXwmXgM7LY6AcCUIYNE9E2XIzA+hOtqXJuamIByxd4EwfIUk94+ZahvOZKkBSm4FcNdcBsY3kSXyGMTKkMJXzPZKfe9bqboER8fgJUVWihL0nrvG5MNkalO/hQXnx0UXaP8dDp5cNLkhJKFn8vjiwW1ZxzarmeKHY1JtXxMvxeP5bLuYOiZ61+RXMG/iNsXCgiUfPiUEZ35FwmespXlpf4gCd4X89aaFQ0uXXOwNJ6FmuKmLgIlGmv35aPUU8n6yir8a4xcxItwZfZphCk6mCQzKr9LwFqHBVUCMHOHe2asN/wvTKtS8Kq5+gl3dVL/ikUKIfoOQwR4rCfbBbNam1HIFJNB+FqtvMe+464s6Vzx4RHJGgM1tK7urzau+xlzVKTWSBgl6ovDDY4DUd0Wgtqx9ghAEsqwHdAyHyKKtxr227RPzlCqaRstvn5OUibSLBIzdLWotVEAbJqRFviGLXMR0VLObiQG91Tbh6qBYhaJ242alG1mx/NRLkfUhpB573BAeVzsSvYFYRCciAcUoRBiI7iAf8qLmnPPhKlypr7Ffze+/MnTpi+5uYXQvrLQbLJFHNgT+pu4CpwFkyQWG2is8SJsFIxHX+9ZZOVgcLIiGjcvzfMAGZB5tNng+VTb6OfVswjrB00ems/XHaDrXWtFiIEwJc/YFcGuPHGGhRkUOzCeLLhZQxOTbkQcMbABkqn3sKZx3XrEiLZDnckz1yKVkEfgSSrr+KUmPFuOd0kPo1q2O0Qfo4LKJCHivJ2yyZo14GxdOV83bEqqboH0VwEmjb0Fao+Ey6J4zIr4zhY7dw9+0Y8xf8hOrdBSTcnDZEzbjQdgkLZIXpJ2yFpLYnkl6E6YK42TXU1cRNKk5vuA0xp15913shmb/ek0ESEMYrZH+ie6Nuf67tYIrvqXU69lMDyvUK40jeLgFPRvd+V3qdpknhLP3MzwoYGzJHwzABIHEHVpBQ3XoKDmrjxxZB+i5AVDxT54KWLiOAMLqOdOwXmS1X+4XWF1zCgsr3OaCegp2sgG39AJ9l6EwtpYz1tue/KUVx4GllehtEnE3O1TY57TknUGK6d4y3zicUpWRN6G++e4L76nnfBmOe2h0HZdbo+B9Cv4bVb4Ds0SOsvMSJbDwWVlSjKBBaGs+cJgTbNI+PRIj2k86J+Oig2h6lBUiPas4a2LAtuHlISO2CvndOQH3LUWkU16wSr9LOcQ3WAiLGqF4Hfzrf/GY7Q8xE3ujrjgKzRy9yb8dEFyzMYVSr0rPaYP16U0K5OcuL1qQ/4EDHA6aVLYHUbt/LOG/bqY4XMRItFhX6ps06iy6cKeVDJjiRSUIRAsvHt3JCt2v8yv0gBm57OoVoZg2ywhlqnFyfkenDmkSIKaJZo9YnhSoK02GlGpkYBUjIkudgt7JAJnxALkwvv3DtoIXCsMulDXee/ub7/NDU2LIAj7kswndJChF5kFujVjG4/KjHxk1lYcOWevT0n2xp19ZBDTaqKKGbTzen/4jr3R0RnDQQ2gOG9hAIfVzDhoyukOWAeJLD+8vZtSLNFFkPMAysUVU0lepeLOxuAT5p6E00ta8V3ZU2kQXiZYkCt+xGnd7nULu2f43EAlqWzhc4tbEwPyVZyhmWViZzMp9jRSum6AH8Pia+SnKSK3H8zPWMHYZXsC7Obg8LvNpf4S7KLbnKPNCPD638UfTYSvlaaZf8SAkOVsz90Kq+NjCVJTKV7scL2NqpV9Jm0vMz6T8TJLJewJyG4YXa4YAQP7O1DbtHNvXLLK8EFPR9IZFOWqJM95OdxGnA3sAj7iEukmKkAPuUaH3289K2Qk1HJf8KLf8P/n8J4WKJFZWNYDflVuUrklN/35NeSGqZOxKji63fbCCjMPOkkET7pR4Bff+OQgR+gIHRbK81664BkpAY+eSzkRVVmcfdgicV30WDoMYXoJZZSIxlaC4mlVAMQ/vIle8lGhqODSxkwtDyd5ULjDbY5svYiKQPBubmxFKZF2spg8w8rvmivzAauzchLITfY6cPIA99AMiMpoYBR5rAsazK98YVKXNDRjZUEqxLE/M0wVOvnxm69ioT9XhGBN9BnHrk8Osfa7foFaDlcfvUiwEEZvgCCchZxeABb0yipjuKdQpAK6zyhmHGPjyiTIyumZe+ylsN6m2JHjn6cxztPMy2ORgKOpVheTQGGyHLs8sTiTAmshIGb1vuEaUzSNDyyeGM2wCxt82ikopr2PWSipImZn/PEtb4jgWuVshl1PXOl8GHxgQI4KS1Fgh+Mk67oTaqO7OyUx3SfnTQtzjG2musEM+qTq9T4f2xCzV9RihiMAGemwl7yBfJG9Vvyl/4xEbFEtEzSU5qe2eHCvXzy8kbZong36sdX8Ym7InPd1amG0DAfMqSyQb7DXKSSC0R49A+uP0HR7BFZ3PgLNDKnqS0m7hMopCJ8Hzd3Gv+k5wT3iOgwS5Jq5dQH9Ej5J93A6Qnog//775A/8Wjqhe1X+6J0YXB3EiRJD1+at1H7Tlg7GNeKC93AiSnRDfDCaijmRikKLNm/Q9rFQe5ZH/70dIYH7cbOHGx0F2AIvQlg3DQ115umyt5fb4HkmHLcRCWRs+DErOWJhu9b0qUQltrM8dBAumCgMJi/2HXL553afShkx9PJrOLA1N3CC7nXf2znBJE9mSbNKt0eKsoZB2oTHuE2DdWrX2HFt9BvwWIz+28hCn3YMouLDW3zCeibqvUVy8Lxytddk7Ifq59SeoMSuYi3XzBKae4+6VnmipiofoLgr7Ngxz0QVdqNsKzFniyEW3slg6iCvcv0K/+PVomRGS+HzNnjRTrRZvbthX/tP1sjH0mSJ0RfbgrK5krYyTAFWcQEscs8ObQ9lO9ha/CKII1tEf3Er4dLBxunVLGcRtpaEFEQiy8vkm0ygKXCq/M/WDPUZ/njhnx4n5N+dfMGVbd5D4o6KiZKRjwz0UiH2P/goTa5yLNARcMmNSCR19LB1Ye+dhjyToeEdzMs4qhiR352KVsYFvWK3p5zLnq64PfU+HN1V52bIPK+vix/5Bed6WPnE88hU1AqrcGC0TbDXvxzFc3Gl6aKSr+If9GDpKynOL44T6xaHbyaK5CljNfhXiaNcVfMGRQkcYxIlu7Vf/l0cEbuyhuqn58/qdsvul+J069rWVWn4Sd015e6qVt9FPFMg/L/aUjqVIhcBlkqfbBAYaFGMeNkGNtJP/wicX0mt8Fk9kKza4sCtqNkbAsHV8kb8W9Iy+m2LvZ4dc2rjj2XyT9Q1ROvKgZMSlz6pkN8+saAR/g+WVKZ6QFDCYwETOFXwPYrnT8iXUyagr22pHw9Cje5CW142AsLHBySpPTBeo29AnbPL0CIPLITk+iA8QwZzVXK/EJgnCSTYav57IaNfRq8lmQ12IY0AlKD6nF4qmI8Kvyzg+lzhsIjgwJWoGX3ZXGQ69h1au7RaP2SBeJ2iRzaawAUx6yhaEYiDAdzuSaF0BJ6bIJsOIbKgtiYoANyhCA+GAij6PLKifutaFFdNi15LGNBBwIXXKrwPiALGN8QeVmyd4StDFLX1CECWk4q5Xfof5rBuEJu4qOFtBFCeLbOCFDHVLhmBPArZCDcUd140iitELHwK5ShJD/uYpBgCYQHH1au88XvnLmPRUgqATenby9hxzM0SMMncxk53bv//8F7Q85P3P4IlfiEecMCmUsfqDjPRTjCDKZAl8Jw7kbbGZ6XMNbrKqcDkHxudfA9PrESV8ucYbf4aqnCqcaqv2XaXBtVhfBBDbou4wnXge04tEbiS27kCsWBw3DYSg3CGpABzhYmGXjKqACw1YSJiKMP0ysC8ZACp5QozFN39BGMSANnegoa8S7ayLGJL2AUumdyQZoC9rqBN4yBFqrVcx/ztKo5NEDiJ5xMgUkGCZpaVKtSbz1oXIoGSVehGs3B45dcul0yXJB1vigTDVa81mFoq5fxV6e0dR/5hu/TEjekgpzWw+Y6xiy1vZ8Rj79RujnKQ5yV31868IB8qhJW90IYvABq3hA4YQ2rbF+hLNjei7FDUaZX6zY+g4TpciUZ/3h4QpZmeXl2cePJG3JEnUpzNF019FvJxks7JU8f9Txi4y54X+SVyKI35jHFvtg+4ycyfmawpnILV0b79bJBF7crQAizOMFppcpXMs6vWDpN87vf0CFNfHE8DZA37rO1fz9ca8E3O2jhh2ynXvzvl6oAFu785IMv7Ja9NRm9nqDGc6R+K+ixXmT4IymxxjU76NfrW+yioz1n6qvBEEvdBdSpRXMn+XFxM5xpT+uRp9GMS+2l5hP/zgn9QlZxW2mWJ6SYdiVYTpW1C09w45O4TmWfqz1ZvO5hQyiLjDl9YtpSuYPTEdkNJK8HKfwjyzIBwIWRvtNI1BZp7Z/lUeE/JED1fmYSQHUZhmMNSTQYLBowosyk9dhOd4GishzZsIsZNrLZIn6aOTKyARga5jHe9KhKxVPXxqgpDQZWG+JPM8Thhf65/Ss5C3SvLQ16UKSjQhTdGxFrlqsI8iCVEM2bUAwWDyUiFz3g8nopR2157EbdjdwgSj+mM2iJtbF5GMhd15DyAPdYRg+o1aYPqU4FlAY2DLRunkG3ijIisBnmT/Zqt++Kd63XDaIr8nlJ5KLf1O9NTo7AZzZ/HXkQpgWuP+DcgFrdBUDoZ2AObgTrTjnI4nuksB2EP/cbZZzCc4oKhAiRictOF6WOw/ACEBSLcdD2ZRX1iZzpkY2ZfBe9e+n3pDDujdIKBjmhpeYlht1FNTlMak8TqK4rVTG09rZey+0wcoP/X8csYNit+hbe0+wQoo0aocOH1d2UoQ6/yD6f2ttbaXDD7eeqOphyYciFHrq51IfSEWC6TyMO7k3DsKE75S0GKzmSHMZNODgp79xHF25nhT5Gtunro07zyqafHhoylU2HAXvjYuYqxWlca0jAvsMXbKXlVYVuMUm9BEnbu0QFRE+qOdFBDET8Kyv0McnKsEiwboVJicmKCE0efkGf/B1jPbESUowZ1BJ3tQduAXWZ3zB1VNmiEqJmkmxvKCbmOO5x8OpBmMY/lFaPZUodTZKZ6Tlkz/WPTtL93jp/C2XCrtvUikjSAdLInB6aGj2UHQ2YujxiTKWPx+BzGjes7uIX8mfnDCZmrWvcw7xqoqpF+sRJP3R+T86buZsSC2B+5gtOmhK2H6eWhY41+DbV3uQ4RfiBFb3n8A7FCk83aHxzx9qhrnwHKAfz/eK29pwDR9FVJQRBEqO22AFiRvKoMtQGFLJzBPl2JIVMzQXlPXVjAq1dKrQlVZ6nvXOZkPXXnR33/LcfQPZYxG9EBwBDtiAwZes7jMynQmDb0NEpeCXlJ0CKV/UV2z35xDvXGtR0Migh5/ET+QSRvbJ83X+Oql62PcwK2x6NHInjfnMJx/5/w78U2H+KOPJPDFQPd0+EWfLIQicwXMw9DvFeSHhdCDOrVUevt/uCoPKVEEeePD33p7RsJtyaGHE8swAHVAvjD0gRFYEzY7NnZ1XS7JWWErh0o/YwR8Kp7rt3o7Vw74wZtPGBN3a1SmIBp034S+Hx0E5atUvM4Whydzb/8sQrCvY+tNdB+003wcmNr89cbysF4Rz2vr0REIzhyyCv0TT7NmIUbt/owJ3jduf8Mw0waasUOpqVCsoTqULt/StTSBuO6kNyuZQjNSOe+ro95WHiJHEi9sFwoWLP69D8T33beKwY5+QI7Hi12nKAa1oavCaPvKjG8I8qoXNZmBuPttnluOUA1X5DigvCIGjUJODX96lsU9JFXYYkAYoe7rZnSKDfF0+wOiCkHTxMq5vzsAm2on6sLuizbH6c2STUh1PNv6blpAsdCiyxfgaa+C61B6OiVS12T4azD5OIsMkS0dwPFMHyVkPUINsKnXqWI8dMzOQwFNL0SSr0NXBOkzIM9wBzwtl0/YFUD7FT8HfcAGps3+6yQo9I5X7wak+2rombB++JpenEcfrSUNQhvkMtwR4YLTSyYZwPI+0CQLAtXTuY8Add4y9MgaB2IQ59Oj+zqy+E2APvNULHWB7/KfOhSMG8IK+beqZ0U5SwxguHF1oH38mJpLiMi9FE4AwnvS9rAnEL2TKKZL90x+SzMSHNnyCRbXxFlYd0A5JeD4u6J/EluYY8/x4dSmh9BZPdKK2x4zElxkl91eCGiFTNHYDSuTU7PtMTjsbc2C9ankaZO0OhNoBAqVBxL2mM4FxNXAFwkGkUaTXvEW1UVOHP4Izg6c7haJScOOWY9aYPuQ2aBHgIVsLi6NRTe5oGsl9EksOcY1WNYzUop2MATgRC4apm4wS+GFkaRQZ7RElgYqcwvSuNwphhM1orG4RZKJlApkpTxc3GqkhwR+gLQ6Gp391GZ9xBk72GOSJo7f/FgLJIVNtu9zOoUNLugJwXPxMaIuIWuVVQ/pKMAkNJ8UvLUju5Jr5uDVi9+qCWD1elOgwiMbmneaODRSDqgfr2kOXIkgtnsRLlRS64L0x+JyZt6WrI4xHKkze4O0lu51Si5hHyPrIAUWxVJxhXch3D75PsmuxBPRna/5fE1+W8yzZUphkGCxwD2DMrUR9Heoo5e3L2axmFXuoJYtEdBeVImg9GMUkOoAB/dtt0vyYP77yP8AAL8DY/GiWBQrqwOuIhMnXL1LL9KmJ1Rgnq73vJJWo7rlsKJyeVjInE+jEEFAy8CcUewimyGqqwLfoi1zpOH2aQGcXgOhfaZumMn996pUZfn0Qn545STN5PSnPqzBboq+4E8UvQsJyeHkMNc5BjxvyP4pafxRDlhEtnTYO2A9e73YAS0G5ZzedmxX/T3RSb4P2751joxR/3w4JMK9IXxE6QKE0LkHmYM/ejYTvDf0/3aIKNx/lpOcXFxRLd1eIv47+lt0Cous9kn7J/liSolDueG/Zq5mARY2fM40RLejz70Gxo7NPGRxHpsfqhzb9nKC3PuB9NxgPTP7QesB6ZBjWu05itPQUl/6cxgA6lyBtpgdgWdj2iJwAz8nEWi8MOMYU6EDGsCKG8dWLvL/zPllA9EH2l5niEf/3xCtNZQMMnRRBgpNUc3SQPdrUoOZkzYOBLaQlCTDH/D93c35GkpPTEnGpfkKkFezU2R1IpLCfDguNmAAjRMgjZITEUfVU8zTVFJLqK2+litNhhssQWcN4F54vLvHjzaaxEhOh8Tm+VaWLSAtSu8ZraxcrAJms+DCPXX9eoApsm3AQEi7AghnM3QaHah1zJXFN89QfLTJ2//5HkiEmu1GLBX7jxOqhiZFSTKw6cPE4YKqncz/0CxFDP+VNeKb5MdKV+sjqHvORhu/cF44cuPTgp+62+jj8EfXk9kH83pepoC/eCUzCqZmbACLTM4wBKh8bVMwbequhmlzGr8mCUAj2Q3YsZe+i96k28bbofyztJPxfBNULmQx48Y3y4Ap/52AtDEdXkRbRiFKMgah2W1utGx3GNyM7G5iLN6draNk+uzBOV7qaKmZI8pZCXP2W8y6P6TXb3RkjwO0ym6cuOWMjditwo0HyxGBSdlISthP4mJENYTiSrjwOFMke1V+lPJAtlYqGgdNRVR/itLC1qdfcoa/xEScIjt0UuzEGnIZLLZIf2YQti41ggaionfqI4G/SOfOlHCf8YWQUO2vFyDnaKdEq5slrPbc+p3uJNa1t9r91pmvbxE2S2sWF3TJeEHtlCWx3PQZU2y1ISgcqw5q2mB5zYTBShQVWkpXh95k++jRHwbQdIrtn+cmcUHtUwxN+aXzEAn1te0VILs94F0LpJaFzKBYY/Rq8nj74LCZ9Je4Jw2ayxM7yBtsF1T4La7IGgdyxdigX8teapkGzJslAR1bLO2Qo2s4ZntPESVy8hxRbhiXJN3Ci8drboXukb6yrpwO4tdcG9mKx9zm/AFFmc7phVrpmU3HWFrTZMOhxcB5/scPuolIIf8cLMMswu4I9qnwAf1XGrU/X1Kz/ygYfpb8EfFWDBqaaXi3BD/8mdHn1aX5DCxgvVRnmCPTBRBr3LSTKk+3OvOQXiKzcKhXaZ1tFpzRGdl1Cgql+pU6NtitQ+Yo1/Jablecp5hzA0B/5goY4MI+EmIQAPaa4hM/8o2W+QdUAWqIbz6HRwnk7qyp7QsrYAoRoStRDOtl2MsGNWLNOFbySEj+OQHK8Umeh/qCmtcS/ww+N1P905KR/8nNkah5u6pZIUeqW8CFPA0peJimHPmJ5N++o/Whu+blYrmxgJs1nVbFXp2QKPfrgjLvyehfdFgwewr5wn0GdyVPIj8IOdnRDdC0Pc+yazwZbhfPwtVTfMNR+Sdo1+FfRLn6mxfgKGeC29gxzyBcpwDiJz+lcWet/SeQjve8GJGwKYGaFhHCtodiPLsEP48MGzX/OmXYqNIaicdx0fOkBQLwqhpuRsq451wCk340PoIU95/QCi3/7vqvjM/NBLaSngTY/TO+inpozcPnkV4ZTowYD674bchG06q080Yws+pQI7qe0EMU2WE0mYc6tP7gli/XEv1scV70NCh8eb9v8d3jPx3hOBJmDdJ4GHd8kfo0cMqYBZ/8uKJjTmbd+gm/PJBAIGdjZDLgdpwToUNa8YuY/k82ppJfBhM6DcdNIpxBcnEVLdC2Ox27UfSvexeeDxqt4Bug0YlCLSiz5rNfomAI1805/qgB8WTlRmy77Q5kVDQwPgz8OxwJnHi634WzQf91869dELzyBr/A5iTf047En161FvovfdhDCifAlRBBDO+CsGL2lTuTfTO4EJpUBLUyazX4WjuLQH10pdzWVuiGFNAf/hizXFezrB2XVSPZAKRxQlv+ZW1P+aRyBLknnN1sjVKmGG2EbqTjiW1TFYlK2sHQpWMyMmaLbTVHAwJqWZT4I2bJ0sB7xPf8UFQ53/UiSc4QWMrLTFYpvMujMS9qkmWDgtriVL8++Bm+zHwdXbeRG3F3jhNEy9W2TcnT1HkeFd/4QAQoo0/xHdsXesIy9HNhAFYGq/7Uc2GQyIa2wWrGcz3RdSp2DKToT1tTewCCq8HhaCIMu2qFD/eq5axvBDtwaUulFLro6dP0DANUHOyb0AcXNldQ7h0+lV0AYX0WJWGjgMnjLrL9NQnpftODPtu2ANpwgfkr0sOf1XKCPakL38PCXHHe2v9jPM3FV4qzkIaD4xMoxMSgJu3oq597Ol8oYkiFcCkVGbOs5AX6Ku3EWCjPvKsmkr6ueGzWnWUw/hzpT7fKg4KtP96AiezrBRhobfGHWsB7DqhMjCeMTHxmSu/5xCFlgmf0k+i/6/Ajelo3bFg/pVr5VB6fgSBLND2NOTdOWCbYyp3MWFduOKgaaNRTD0Ws+oeBEi1JvQDiSS597SWGi5k7IyO2molMSAwPWRDut0cr+lxyQNDeZ3r0U+4RiZggje6kNEMbSMDohWvWCh6NGbXuM9FFhs/KQh3C0XWzpY3E3y9WHgxsSnUDJUZNgRMe8oYjPUUwwkOvlW7UFEFLtTYM3UCGUNItVJjze1ghBHGQGHnUgIN5EunhxZZxDU9n7vuImOw1whQY9NoBWLyz5p2kCPK87tLpUkM9zV4+IaKspJmCVvCFr3aw7ktoIpYU7iFoSszrP8XCcaX3/2oLSLzZa/Kl7OcLpBbUZw1OQd4RDwZXI31NwUxHrUBWIwn2IyjC4ez627McG1Sl/De2VdOuwv4T7sUD+DcTkMpxaIg2A4tupImbo831+jgzrbsPRUdxrsDJ+lM4E59a1BGs/jr3P26Tq+G2Uq/DWBsHo0fHfGs3ePmPMhPUg3rQYCJ2tI2x8YoUt9hr1+CvN1LNtPUtWDmPf5InXR+Jj18rtQfoaq8vtDrueRiYAuZo52D/gA/jH7eIne8qQ0Uoy0L3y+7n0uOYv4M91h4ixb3ACa45HA0+NVLEh0WINs4AcluJX31qvDr6WigzyliOAv8KcVf6DTTWTW+NDCe4uxrOHJ8ovn2hHQtr1VGTJatyJeJsN0lQSHeXhUOHFi5ab4w50PSR4tt19v7KA9tkEndVkv3Gun92ehgBsvfzsAZdpHVYu5svDpvGMSJEQCBwDFYelwKm2kI3101Hp72AGcTBWIxs9jgr16Q3ACEk4QNzKAOf+Wgel9VYisC6ZlBnZWm6hZIky5HSNxWSGmp/NJwN5ArWU1Uc8QxRebmE5carO8Tq3dTsURl5J00wTrxYA3hTapIICnBsXwIiE/O2JRCjhxjSW+kAqcOUAodvzSB1pID86lrOFmeneySvp1HTHVhb5tTazzXSk2WLfv5WqX7d0QA446spFW6f3SA011xERbjDlue324TAJqo2zBLOYUzsvVsneg8pMqKcJtwwKQA3pnjfDOqbtkhLsGobHkuK0NKrIds90sf72rEKds07dCF7G/mZSbhS893/vd+Ul3F84kq6AWzEogyw7uPb7cZlcnbfR4XtFv+IUPwquGM3U6UWS8yeQnVqyC2QRRu0Y2CK3/oiu7Uoe2bXGrEjXyHR4tDCrRSeyLOfoVcX1wD2//wiUhBDWdnSLlLF2T+MY2mhCA2E1L1D7E0pyq8594DPeeDKZH7MFXr+Kkzvm8vrCzgZx3Gzy9yDnboriNjWZS4mQ0Top1iacjFvesyze+VzgEFv838b4C2vadh+FkTuUEB3xMdIFESgYAf1EapLh+p5QWXgtDX7MNRWnhdh6/6w3UI/9DV5HIOx8RWY117wD5xzTNaATEReWhMvpeiVfXlC8g6VkWr0Tq7Mh3FgaZhw83nfxFStU5RgeeSehpQetnYzpmGH1hDomFN+Lq4AQ+k4iva9dpxbmm7aWL/9lRB8d2Dx+YpQ+hGgyRa2huX/B5LsRHlw/pjADgfvJVq420ukHSlP/NTIffhPGMW9ROKSBtAbX6juU139IKJ0i0dAT17wwocCkOdWoR9skwgr6iX7LBV2XyGC/Q8aNrevc5AY6umN+2xmi4H6BMCkAXGA2y1FEQasCl3JpKyxNwoKor7kOLolHZcsBvCqXIgfqJXmQRxhJq34wlE/dRKn5qzsFPYy0eXgOX/3ESgarXbn7AwjIsbEgVsPA0e+A==
Variant 1
DifficultyLevel
592
Question
Wendy has 32 different flowers as shown in the table below.
Kind of flower |
Number of flowers |
Carnations |
8 |
Tulips |
6 |
Dandelions |
11 |
Roses |
7 |
What is the probability that a flower selected randomly will be either a carnation or a tulip?
Worked Solution
|
|
P (Carnation or Tulip) |
= Total number of flowersNumber of Carnations + Number of Tulips |
|
= 328+6 |
|
= 3214 |
|
= 167 (lowest term) |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Wendy has 32 different flowers as shown in the table below.
> | Kind of flower | Number of flowers |
> | :-----------: | :----------: |
> | Carnations | 8 |
> | Tulips | 6 |
> | Dandelions | 11 |
> | Roses | 7 |
What is the probability that a flower selected randomly will be either a carnation or a tulip? |
workedSolution |
| | |
| ------------- | ---------- |
| $P$ (Carnation or Tulip) | \= $\dfrac{\text{Number of Carnations + Number of Tulips}}{\text{Total number of flowers}}$ |
| | \= $\dfrac{8 + 6}{32}$|
|| \= $\dfrac{14}{32}$ |
| | \= {{{correctAnswer}}} (lowest term) |
|
correctAnswer | |
Answers