Statistics and Probability, NAPX-J4-CA38, NAPX-J3-CA37
U2FsdGVkX1/XBBUJVjzLqxyiye0tEZqH+mOVxQf5boMIQxr4BraQJfKtVvPHu9shIowUNAWRYHS8aFQHdsKEHbqRtMZbx9nbjcITYOTEQGkXRQg1luXYL1KkCglh56NQrNXcPiR9pU2b2Xrw5IpjxJ8Y2EyTVqU+y2xqt0+aAzvr7QfJmqKdMVJq7iARwWkEi017pp8k2JDthfU1gvH/9LkTTRULQOo91Bc3VFL1Y7f8eob+iJE2PHKEV4KQ/M3ZE/U+6Lq1QsF//Ov4jbpCg/uN8G+liWCyzG3q39nca297KmC1ecTH7VAy9nKvACzJFi4NFuvpGVTKCrtfDC6ANPI/RAvkUKLlPTvWz6r2a3RAXi9R1pDNSAahG/zXzQV5GByJy3mlCjGno24GGv4D3U20eNGae6vf2hdAQIE1iGOts3KRkEjoQiGBmvw7FkDaRdT0+jvSiC9ykq+5bVl4b8NpvAn0qGYeT8QpHvzRkQANRdymtShDgFh8Lbax9Bj6E+O1cwncizPV+R3cc4aXcYLgfeZwIXRAa4FCvRxN1VPAKZyFnDasgz3n0gfnAZ3IdiBmkpm3z8x3DQa9XL+yRnD42l3agysqj2wJQxnnq4tEqztI71reswntyuWpyxOFQKWlOrBH0BozCaiSa0hONe0L+u7hG4lG9G7eJT9QNqhkF4iYzcpgUwbO4NopW+KhrxbP1HS7l/QtRQ4cqZzjFOsLFO3N1cnhSNbDBJ3RZnSI+el2Z4qvTUOCeRmICSG3vSVYTDQEPsPpe0d02Rbwk5lSqcDgZh70Atocbcgyi2MQzwSNNRoO0US52lHojwTdKbuIQZTBA19PgEP8kM26VBu2c5DfSlLlnnfiS1gVN9qjvYACwdsVPk+B14nR49IrwR3X1UgXAxbdXzAOCSoRWaxdIsF+LneT+xCjjLYDSVQBKoXRjANTOTFVLzXZn9yZ9q95R1KuseysOYjDFpYzybT8MSCPdJpNjOBcS/sM2fJTVI1m4hQ43ZmL2yg6GYOpJMRF0/N7b4hQTmCKUQd49ySXBH++Zh3bjS9xtz2rkKiWHbpnbwIBogsYdT6PxHDgAQ8qVkEXN9rJSuZTgSK4PL0y6lVA1nAQOsswu1O70AQ2TKlnIUS5A7KnWH8dGb2J9+fDsNGMxad1xV8EVt+rmG+LJFutzT6KQfPWAWNAFs8PgCWqJm2O7uVSi6NqYh1t8Ce/MM3XB4e8JR3P62Z4XPKOgkbkQKb4jsbCRI0ZUyaj2doVRjz9iA0jvfN5wWKg67Cu4o1P5dhejSX6QJQ0oYURdXYlNXxw3MhlmjqQDXvZ8rgXpzZpwBCrwMrhpAMWn+fQwZJz/JH9Al3fOcP/BKd9+RBMCgktcfSsOQSHOeQEtsvR9YXcKDjBJlVx6jzUjavU+q6zKYDFaqLWYlGqstDiluwRK1yQuyDt0og2q5A7mI4h/NWPsAYS3xyGRCs1GB9U24f62qQ+SoDpSfe/mVXwFn0KFRRjeq+9VNm52rfeMJV5IZHe7gH2kArssn3/eHXoZiR4e/73ECnTnlN0bhjuHTzCoCewDBNVMf+RrPs6UDDGreEdze2h1V7iIaLcvH6NRyunTckgUfLfO3qAmj9nnEghuTLc0K6H8cMuZrhyKQm24HFF30KxeTANbV6RV9M5Cp4lga85nKxUmqW2ee319zGeVAXBIqVkyIbxpcIGQCrzujF52Nkl+STzefgXr5SV66WJBXJ+i3x5y6z+/QVfb2/JaN0cmIc41aY1yX3daBavD6Qoyzkar7kNYVPL5lybaEewrIR+wAmCNXFzFck/g6TvxnPoy2F0fXlvpJmAbCy+38O+D7BG4XcWwJ7ZDOmOZqWBe7FxruwKZO8nhaN14l8O0cUTl8kqtOVJqnSN+F00ytxXDg0S1fKhDNC+E3JwThuoaqq55QRI7PvNQeH2VMGhZCgPDu2AIDUPTuTfvth1A4/AUZrRU9TVUdQpJJd1c8D0zeI9VgjoAPuzBg5VPUG4KOQWRX7AGh7XLC4iqJI2kzYR/Oc4/4zsis9DEyc0852Yely/BjtJTH1Ie6Wnid7UtPRofrM7hUhDuScC37bU1sq/5BihSwtHKrMGwsw3icwxOi3LjEBj0cMMs7i+v3+1WyePl09GNd7eDLdQy3hC6YDaJ9XTu86pR4GBPxzeKJUKn4iCnoNhkqHsWdhIMSy9Sao4x+C4Cc4zQznPcUmq87MPlWEF7nV6e6UtuAQcSqOheoE2lW5Ztv3Mt3/GrTHh/okmqIe8fbVaMqJPQdFN9UNdOddtf+/Fwd+5nwjOpOsw0s8+e+JOMtd2aNST18SJ18VVz8eKDKeU1P3l3AlB14HUu8H+YG0zmQ6Amg9Kwimj0atMvkasAD9ZVwDjwZvjP/toEsz9IsVoMzUntUxHQPEi592aIoOWo/2v3OFSpwX4qxnNfqPlVwV+C1AazYcEf4Qu8v8dp/zEPEx7FM+m/y2eNZlFZKEQmR5w6J+iGkQ4npMbetO49ig+0/PKqde92o3/JTkkLSankYFjiSS7gLbzSOGYhmszyIu/2WAohQrvf4GS8UxSXFe/OVUsNMTAWPI7b0c1p4LF8oYw3VLcaE1KKkQr62sx3Rj1mSzn6tG1vbkhAKqfNH4rwpsGeYtffT8XsrQhq/PGGHcwhFtm2es/1qbtmT9ptfzytuaOj/PTevN3w6Af//5HJdN8ee9sHpuwLOYPofVk4Yg8l+zAWd3l8dPycchdfCSDVfYgt+6RrriSjFI1qp0X9PwWRlNXDw+o1+h5URUR0M+9hpxsd6XUWKzfKaSYkR7RFgbJKU2GVi3twmf0vTD8RdkujolCPoPozo2drmNFwKr6AEMlYsbjFJA2eBUN1dOu/eqmNLkYNRJmrNzNht2bJN9d0XiRILkZwPqCtKtdTeAWLD8ArdXkJWuRkyMa767ZTcWHLARlM6ktSO1yQGek5LKnhBELctwELENKXMZVg1k/P46+qyPbZTf82NMVrdntX+YlcmqP7NXjqxq4kfjR6fErgYDr0h/V5FFULsm/JmWc8hetzCVC88KNpkaPjgcCvWUVhY9nfo82gaGxOeuMEJ+vgqY1N6k/ird7uZ7fWwijahfQPwmwycQBxlCcC1QV3pz7+uDptcQg5aVvN/3MSCgo09fZKvCr6gcsyh4oEotLfI6DaVKrtYnB91XLWEjV+Y9uUhKv2irEhSPTkVfnTeUM4gNJm8xck7CDguTeWPg3a7/jMRE+/kndi+nZVK9tALzQHfSg7u3yyyQxb2Bqenq6YDD22JxEuLI2KlGslHOCzFPbdj26mDb0rUPlaUQHC+KZVXV4wmEzKC+NrdlCLpx+pkI4UIVBUbnnD5ZI2dRiTHTB/7PcFEZ0xWTqD0jALq11hf98zWayepBGPwEWXRgzr3Z43j+KtkZwAB1iZbgA2F2LoJseJKxElnR8l8IbHs52HykFpqEQoLT4ln8LwStsHeJG/6fgt0kgWcyQ87gutWZ0mDD+Yuosn2mneH0fqSCiNhsx83r9LGXf+9zKlNEMDJgJ9xPgd4oO3eHY9wwysiF63i5uojXE6RnznOt1KfvFf5UNu1tRYIEGWfOeJaAYeF1QUMpYh7IVV0/JxONwF6FF35O0/OB0sAytEn7Tq3e5hQ2CvmkW1KCwssvZ0BKMDFv1+ovgsSuUK930cljd61QD3VkgNy6rdKgXf65kHVvMK4J3DOc/R2BbzQvIh3eYOPvVeJIEKjpqJgpl8DXajzwN+lezX4tIVFuHOQljq7PgLTAaj7sb6EfbqKGccglIs+qF2UiID3HbKMPrWsL59QrYGGaC7HVECGYwWVip/71OQlEWubDykNS6O+P7pBAlg89fk7jwZl1OfDxVq7z/DnCFu9hqoBGfJ/Hg8MpicWJyhkNNBWJRWXT4+fcpXw8IL3hcEbt9ltm3atWD00WdBi4AOWpghSfUrSIrIWSBKgCldLtTcgU0a7o4YPtrVTW7ahorbjpXK+7kd6iUWVd3DsdwPrE3bk1pLJDzHoi4ydfDsKcXeiJ+b9bN/CmQD+vHUnsgFgAFLE9rGHABx1a3zqTRNhGDSoKaoCiMxle7FQ0mgNBioM+3DGCVZDDJx3+kAXfHtDeCInBEa2X+BKn8H47vQgZHZB37poca64bONc7DBIqxKbPmNlkgY8xgvK94POd0imCoT2/cwFCtcnxuxipll+5sGDlTctMR+iOeGriapg7wXfJHRye+nkX+jpG3jcMjNOWk5BfpNGAvHUJhVYmHHivUt7TiHTncUeCYCculTefyGrhoHRI41E0LJBfo2g+/mYLzsb1qreJ1OUx2DX+OwjqGp941PH7USrFuCGEMss7H6lVVOBD/GbCjSebNJWQVZcxziR5ogU4VPNRjQhHPDfEjKPNI/hqfPA1/SzQpnrPsp04pq1cQnRpV73a3wWyfAIk24+Nh1FM6LmA/0Fagq/IKyZDJCV5AryVOJ5mMKj3kcI+9frX5docvf8Fl6H+0dZ2Zpyl1n6rXHYXwsexM37dgHbkl64QliIQSLugo4aHqWDhbIUHZZEPVEY7DBofJ/xJMDQpN4M6U0six0MiKh/TQJMiOewKf772I
Variant 0
DifficultyLevel
740
Question
The Strikers and the Hurricanes are playing cricket in a 20 over competition.
The stem-and-leaf plots show the number of runs each side has scored in their last 15 games.
Select the true statement about the data.
Worked Solution
Striker's range = 148 − 110 = 38
Hurricane's range = 144 − 103 = 41
∴ Striker's range < Hurricane's range
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | The Strikers and the Hurricanes are playing cricket in a 20 over competition.
The stem-and-leaf plots show the number of runs each side has scored in their last 15 games.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2018/06/NAPX-J4-CA381.svg 340 indent3 vpad
Select the true statement about the data. |
workedSolution | Striker's range = $148\ −\ 110$ = 38
Hurricane's range = $144\ −\ 103$ = 41
$\therefore$ Striker's range < Hurricane's range |
correctAnswer | The range of scores for The Strikers is smaller than the range of scores for The Hurricanes. |
Answers
Is Correct? | Answer |
x | The Strikers had the lowest run score. |
x | The Hurricanes had the highest run score. |
x | The Strikers scored over 136 runs more times than the Hurricanes. |
x | The median score for The Strikers is higher than the median score for The Hurricanes. |
✓ | The range of scores for The Strikers is smaller than the range of scores for The Hurricanes. |
U2FsdGVkX1+81txalLxM7tWnl0I/JY3OMFS2uFolP6WVgx9+dyBCuvRB2DG7IUMLX2WP1MbAWy2FRYnLHPB8cVjECJYxlPm8Cp9hJJCrtIdOEQOcKVB3DXXejyVgm7kBvFemr2RXTXn0ITyCZ0wqDUGy8b5GH7h7Pfhh6ge6QH+jpBV0RdA9CizmTM1GEJC/EHF3B9+BzAFG1hc1oTD6wW+NAjp38PpMWMZ3HnUAsXu2weTIDS+UsZ34v8tfH5D0zIDFIAKjSaFR3pjJAaDPlp0vEoEBBTsT/2hkbMvcQAqmPrLkKzX61E8jxayKM6ALRa25N2UA17laKSYb6l1FJP8v5oBOpFMOHbq5ujvvz2XEEs7qa4whgAtN+Bidpdn78VcAPaqC1cSBXJYScLXFGBOoMPuTMBp/H1CSdfQ6yQu4C4FVJIjGjy4lJVCJQ7umgG5VpwGm1j2eKm0MoI4+UuOH64EZCBi04DJIYRur3i+0baK+EqA/fPMoUVIaM4pG4X8W/ZtQhtAAb82XMyVSPGGt0fp7704ZWhwVDwbAvXTbxc8eT+u19A3lFDVMcoUx7wo3fuKkx/rTHGqwGGjuL6R5vcuf3OCs3hv4BTmKskCrROWFKLU1F8ULdewbDw7VGe6nLYN0kMMNP7gi/nMtOsxxMYO+6ynMqyvPYyLeilNZ3P9f7DuTaIp3jp8IOZBU5gmD5+SrtWCSblRaTdcSJMidfOdlHuT3GFp7+bDGlyj2H1atZuuWj+P8QdDbgluNajyQSVnOdtTuBQW0mE2xYy1RR2vnIeXKMTyMNCSNcSDfJHkM6EHCs0A1/FYBG4+3T64himQTcaDmtJz9kwvgaiaZvqCeVjudvSpZDd4LgLLl/bXU1gZdCZ63iYZDZAemXSi4WxEpSZgZ7ng13pqCkKfnlNuq79kBW5zT+Fx1GJO7BV+ygcEMGnhmL1q4qP+WHfduKyY38n6YtKWFiATgHteIs1ahZuQ6+QB7X+gvf2U/wOjOsk1GI7Tzo8d8Rv5h9Eons8hPjMb+XBI8SmXsQk0avRdKTVB3wu0jJt8iGd4ZZKjHCyeVO5wydrjxBYT82y0L7cY8h/U9kFT9OAP4psyJL0bR6Y3KeVbIksh0GFJ1+wUsQlbWAlm8wpdA4RP/mUQonNmNfA09TnXsVys+CCbLfeGzGsV4nLctvMztBs8tzUbKjaxfY5dSupg1UyBMZBEmIwle1vvjUZPdzY5swgDnJEOLJR7Jy3zNdrK9UVcgok5wCPN8I4+8SfNw3NeM1AKWecr7pqTyRd3iK6x+mFQkRvIbQ26yqBBgX1fvgy8+k+ZEvUU5yiU9vin+gK0hswBgLYWIuWTqF6aTGMAy7Y7tqDWP3EDUWu+18VKUCE+iEARjGjD/S0DCLfqO7OiWzARTWJADEUgQYjnJqTepwsJ/Qm3CGkYcApiVhViwWj7jVetcifJkcXezLV15gAyAeHpkuA967ih1jZk6AMZmd7y0z/oO/s2sF5EAMGLL5yxmDtEXkGbZx9HDd9clAtbjlMmJqFW/HKZbxcKUKbGg2OAtT+8bvy1r8LosOnFNVl86/jmmNMlsvTWI302nEHX2nPC3c3aPkoKQ++xsB4Aeut0UcuHY6x2fga2fD44p2dMpXlyx6rjP+E278wdp/HM9ESJfb7bKzJrqu+OmvyOvTQ8da148T4ovc35ZSRgA5Pk440oeJRbB70ry/Do+cQzWgqfg0cQ7KwVRumIHrv0Gi6KKWOcsWaHRmAUBXHaInLFjluP+Sh6cHSn3Pa+6Y8CGkKvNpaQvrbdGMaQ3LE0s7i6F8n6p8h3Bb1rMm66+VaQdqJj4ku7/G3P41o9W/gU2a7GItvJcDkEtmv7EtZDC0m6XqZDNUCXh0Khvo9+pBE0DhzWvZ+e5LQQRJJmbhB/kzOufdmOxAeb7h/4pHG92gI7LVFn82HJEFsKmJ3G5Bi8gZiMJRSeVpBy9SxU9dlEzVM2B6Q6Bp2QJJtXykkWGbv405Mce1CKUgZr/fE0GsA+QskbTsY1H/+RJzH1uBWstPW9vzK+j2nJuHb8kfeyCefg1au4XWP02xaA82UXP4A4x+LCmZ3JclD62XhcbjIMQf2pWNdBRvfgLl62iIhyJXFUOPjm8pCBWtLmBNAbzX9ZdjBHMfcpz7s8doD+AMvwo2QrSAV4f5TVpoHk5bDQvoaEcIq3NeR1OTCKkvG3DthywjcbiSJV7Hw6+yhCjHgKlB4eCQWNk5jX+59mFXdBy/SeN6V+I1r6f5taEKTRjUknZdZcYA5PM98d76TVnm3jar1YFPbkgIgqRNkMBjsFIxXe/CfalN/pHkfS1QDhezNOwx9qn+6DKSsUR3AabqAEIXUzwzMXena5GDSSUV4rl4ldofrybfaeaCSVf3h/j9mhE4i0oJWZodZaig5aFYLt1QZ21BgpxHf/2Nj/UNEF6mjDF30k9m2XFZhjsJ7uszWnOMzN0R+8U+/O5YxUXI1+2WHYzwvCTrmOKPnF7E0wES8InBl0dF4kDnXDf/Qb3rgik29PuFyRxcKwargKasmgK0o+zk5gWa3bGyOXcc7PBVZzd2thn0NB9urSsvYRQGeYq3xrB0jP8679bjwJ7d/G4nfPr3YexGs2uMVLk6osiGpypVJQe/dMaqRHvGYpoiIGvQgmz/nZ0mIIeFHeX5yzt4Gdkx6hI/9aHGS41nB7dejDpedeCRs8W6tCrWh1GWy25zP1jA9tebZ9j5HKintoyp/CWyqWdYrLDdFqtJcA5a4LkkxDtmmoUSzwnlIh9/hGff1V79NBJ+YFt2FDN32Nqo4LEFDQJ3sIjsm62BOAdr1Q+OfP3z0m3UpGhARO83t4P8XQRJGoWK4t70F1h/KQG1T208uRWRdxQtF1WByU7+hsp7+DSU5kSzQdoMiIMSYFjlpnhM4ICaf/W3ogeue89tyzO/knG1V/Sp0nHAz2ljWU4n7W8eruzOCjS9jiDv2q14KFVbyadTd3ytlifBuYpxiP7EnRgAX6Tji2U8hmBdcSDyggxaEv0EiNKpIrA97JI7dE2HZMTu/pKD2UaUHXKV8s4m8WuXeq8n3pU92bT2c2KFgSqgu1xxEKF5BO4C6SI9N2L5VptshyFqV+9dV4mU0OvFG3R9VoqfkgGPQdFE8Vrsj/Aciesvoa1bEm1uCNHP0XgvBlL2McV1ceRxX9Rdd2S6lAQNE0sY/xSeiKWrcA0T19ub41FzdOLtDzjA/OML0gZt7+4DQpVGjHxe3jkQgiaTJKBLKOTxJmSkXN4xDVys+Dt6hGv0kuI+rFy45Fy6Ysl3dVRMiULQQjp9iUKW5pZIY749eF3ZXcxBQkwJJu9PD3tnWi8/lEyrKCszDs7bfK0PoKuWBtPoNLzROO8QTe4lZa5dheV7ZMIunihEDswtKPADRV6BWmuCvNYZ05AdLtM+LpeZsyr7UP32vYKL1XAmein42z+Kyelyr54PWO5gIczMX5rPqQBtilH1ICD9gjbUXPede4SbZvfgiteOLy2Z9NmdjRqUFqva+mVesa7MV/XCbNPFywOK6oQokXaBvvePFAwQBxp4mNn1mK+N6hfypykr5WW8rtg9WMOAEGMD5a25dYggN/6h7rtPMn23RxLZps0Nhzf09jt1SS4XCrj9MzY0phW/piFrvXeBTLGfVG+p9mDCRf3EuKO/S02jHrcJfqzUDoCO7ctbIYyW8LmOKjJ037YNN+/dlb65upTArcs+RVrS31UO1dx65UGRAF5Qu6ifovQwb5R0x2t6yFbVcAubcUgva/TA5pwVX85V7voFR4a2rAN5CosJuBt1OQDWTmrK0PEABpBzKv7eyvIKpRvK57brXDf2RQmNEdxpJU/LDFWqOphdgofNXE3iiwK0eK4HNZPFUcQJ8RqYXoW7x9+nah/aHo2epcfFyrxSto2yg/dAzYk/8dezgFdoFqyG/hwPnUQsj0b/zbCh1pDLmqPd4IPwTOdRZowyIubt0kkjcaGQzGuaXlDs0VkdSHbPillOm7LUquzQG8VZNxW4pOhiWtaeib6U32Ad9LuqRNiPGn7fVOKYo1Etg3Xo5Qw/DydLBTrWbOuq3PgFQ6AvLkLgzorg34P/5rtPtbPSTZGBomLrOoFV31ZzT3MPFHJWt6C/CgN+QHPv4ZSsioz8GmIofaRM4FJ/QuMeQwb7Ck/MSse/0NSV+UGTcF42JDmbvasq3bKK/hmKuLgmbrZy5v9jM9VIzLeydWSnUH47e3cgKIbeIN99ntfyh5Gt1veo/0jnUs4EMI4hK0NJHw2PWzsYUIIOfAc++gCSt0w+xBmhDzME8rNTl03iyr5Bb/vIVM28Ql6C8LsK4bgqf07nC46X3qJ/2dhjP7Yo+toAhfu9JSwOU5otK1UpRHpwwLlChvjJFyj2J+CELmY2AdMRdIC/Fw0x1tJHLfMMpdzyiIuqgAwCLjWmzFfekZkxeYj5l3bs9gBH2Qr+kaak8ncfUSDhNjbvt5g7b0Beet3Domt9oedsvUoBJXasanu4PweP970EXsVwkT9igzN27X+14zC2jQ4pSgeVqpr2x/ic0TKToUaOVqg93+59SUdSoUJB72ZgecTfsUo3ucCGKOkiCI+ElkvntltBQQmrh1e7eiYSs5yYaiKYHTmPrNKzgZNgDeWpBJ9pSLax3+u83Gy3C0Rlo6bb0XQ6kEOwqvV/wRMXyaHFN4InOlFS/rJ8HNvOuZ23TVIBlW39zBt2+3devzjF7Le83L14c9KYnh8GeAs7apZUID/BQnXuxPR3MULr9MTd2CrB/rPioBSHZYpL0OR9kKEDQd1G9Mgjl8Xp0MYYQCL+FqBDRuUizvjQE3BQUbZL0EyiyBBPQ4UCAaUVuRNeDaVjTtSqPYof1/JCw0Wwz9KqQvhhlKdpig+R30t9ByJXQPGcKEjWBw6DPDsCC+fyVRXkQEhnCR2TO/MV4gDunrkKtnJqK+6M2fbGjnRdoWsQl30mAP5bb86bjhPEIl6isqvUgHcBDgZWIRR17sz7OgVdKkUtFjvGKEvsr62YmGyUknWHq2grHG0h6zUcDFHeznrCDIgoO4CIA+fwr6C089WMHuK5o8sPgZ6Q+HoroYYcDuuF+lINF7gn+oOFh2+cx2YO6wfTTrNlpbE828cWeWAmfXWz6rj5Jbq09Uw/d36ZI2rQetQu3Al1RFuz4N1R4r1Hw2AfAdY+5ho81QlZ/pk5FXE0JjeWnNJPUdd8SKABDF0iuf9f3xcKdWuRjG5uVyolFw6RANabdVdsUfJqCmShg1au02KSo21U+5M2jO02SlRGf1YQHnKRnIF56GQdCh2q8TTD18rOeN9Hz7WSx1EFiGAYNG8Us75Us83yG4xZT9NsPOnpGTOXmG9kbncnfKqy04LQFOTJUBo15ePWToz4+zTG3v8pjEBx0BnditY53U4UDLLY2ADDUgaQxIL3bUngxe4OS/k6oEY1JrZjmJh908ezO46Adr+Lh1RLhn7fshyQgM0Z2s9YKv5edurLpiu0NQg/JqfCSCnh3k2O8S/OWx4x+4hj33WYEwUGP/lge/K3WEMpZQHKC3y+4GPFbV/nJBNIzQ8jBGQZqJXOAq1EvmKIz1PHKv4eyHuJicDhzAkXQcHcz5M8wwsCRQ6TT9b0FBaoBsmYTFINl8GnrQVs9bOgQReGyY2qRZW8nl1ZJ/lzHJdXBI+fvpJp7VovEV8s4gkNTRUcf3l/T9KwnXaSqt/BCNBH/03JlV8FZ+J8xgbNTUkBmRhTPW+EVbnNoGx367Z3VxW/jH2UF/VZLGc8xTILDzSmjJ9EnjVf5ib9zM1f2FvMYRvr5RCgGAWn2JkfPZ+mjuESvb6UCH2J0VaNSLbz9BsBY/wP43PbXprQVExuwa7V/kfLzKYSDZT0Rey69mSIHGteDePsrW1NrDn6RW+MspVj6vbHxcNIuzIPcj3SGHm3aeH5Dva4bsykTqSwErjJZ2parF2d0vvchG3XU61wpkqSFaKtLPMlq1rBoHTUT93aOFfREBNjVH3swaOlExek6o2TjoJW898odev9NwlS8sVOZRmu+7EbobL1O9BPQA2lJjjN8tCMWrJg415uZ73TT0yUnu42U82r/VB5XdPEgtaj08z2YPkzFdZjTUOmpr2QVlabmaallTS6/TNT1LJMrz9NaNsVglHVJA7CW+klS7pLjDx1jQgwcvSHxxEe2F3OWGBKdI2nVhoWoRRQp/Eec9eBPkEwpWvu8uSDziaL13qUl8LHOQhxhkQGWFdZ8caT7jf50hFcfZM5BhBkfpZwkcsxfKBZvD6jL9jB5qFuTNdDwZbIriisLEkmRLmJQiIsnTcEvEJGv2GTZ3WKDgOn0/L2aADTGnNbbUPxCJpBRnOw+cP7cwXt/4hzTFBirkf/LuWt2O5nz82pLMg8MpTWCFhPvDz7Se2pfW/gyw1N83W2dtn53SZYmxVjHy3NGZxIkFpwzcrlRoLxwq23A1Mk5qm9gI+5sjohMLpbUiljZ5jOH9RnlTsdWWIVTUBfJFb5NPDfj3FOGzNQ/4beZ1Te96UL6IwW7rfkfZls/YGqsawW1iU5um+iCHT7CA0bD1fNGnaJz6Ts4KsL9cNrIsHSlncU7kYrLEAisd3JTwAd0DHRJs7n96Cxil0REsPA45SWJmVLKfck4R7uJRcusBn4SqMCgzoSHZMChioKhOnzKIPY6Wt+AKhkBL+pCXhtqr1/wnNDKNYbpeT1qeqy0MOqJALS8AO9T0b0iOseFs2oRxtkoQ4mb0F4zm9bPdG3zB8AJ1Fllds98iInvgF8RCVb5wXsZdXo3lwEtxDeICkxFdNyg9E//crZL3Ujn6wjRcztbBL7qCnmRTbVQj8j75YhzNkCmiievi0oqJ9w7ypOmeUVRmawX6/YlKXwI1BJwRVQBFbQE+oRMukyjJw/CCUPa3Ex7Vj36GRQT8l9svIaoi/YSm7PZDfR1Wq34JPaE871aSnJ+fHTteeGBK7Cs4dvdU5dB0drRMjkhlg+3uZpQH2dX7WzRA8QzoemccGenOratCBojPAjOwi+3jIuzpC8UOhvDP+YuE6jP13BS0QEE2Lbvrn6GoWkuVFWjwKN49dUupOf7BJnZm6IEjf5Grz+fsdwH5HEGzWlsQEAlEMZitHpv/DX6OmplteZHP+LV2bX4qqNJFXJN7KCQr0loh2s+WgOvZxlOiexldikt6W/SIWkffmbiw4XQ8r6pZjIvScFpkcafwaPzFl8Y6V63cX+o77/vC67AzGl3EaV/S+3SKTK7NdCAEYGYXTXEyqWRqkYcGwHOMBGXPfIqXUUFAtTjWS8Akp9ZdLnrjVWg45/53jEVhEtRqlaSRaCpiGOBWG87ilkfEevpmHTLWJ6Vw1Op1zdJi5usRS3vwNAO3kqRUShNE6LkREITOnUL+UNr2vNHcY9WF6Med9v7ErS6qTZMIS4Gqirve71+ljFslUpHl0m+s/SUGuaCBsDkzJa9AOa3r9UYxXoHVJ86TLTRuSfEKYKdbvFsQs48GS50diM/zVbneA8FQVXTE6Fh/SnlanHQPGqEkff+ZkQQRuO8pjJd9HMXy5kAHlZ2qLmbUonYLpzYu4IZRRgIOyuBAiyzg7V6Wu/LmSUntg4v4Jgv9fC+fLgz+Oy5sSmOG31UpnUHy8rilRYn7NewnibsI5LjgufJViKbTumZ9JVHKveFQFq7BsUYZCK3/RL1jC0klINB4PgWFbQNiBVvyUz2//XjxT5s32/mEr3OcbYxfqxC9BwqrqXrhhISHRy1Qs0TuXHeE1EquPSOHqNB2cgAM36N4MIQfj48MqQqK8E5zxoBWtTwDmBzN8/8RzCPghwJMW/SaKZhDarCymoT4bWlY3Rc4B0mXrIiXu4Qmk9n67boMuj+5IdZIfiNzWcJS9YXhtI16gBK2FiT+JSNLrx2g+DmBo9WJKl524k69wHWSp8Hb1OsbKPg3x8kItXarSC1mw1Eec53Pcb3WemeMo9DqkVNjE6QMcYrfjtmKDQRW0D93WwxcyiSfMx/VibMX9sJMTanWRivCdcmwtDp3sDxMrLzpaQ1XaEwMiyLZO/L27OEvKR+3cbmf//6vmEd+2Tp8/oUt+hWBnXlAWiwZFkmxw+zGMhRWhjt0jeVBc5zAPbMvx9XYdfYfcMH1LDByji///NErRBBTYZns70yKUgCzv8TGEV6vP0gP96YB1owseCZTRoXYM1WBlXBvZQGTymHBAMIe/aZ9mSyqQBl0O7Kv1muWfzhugwB+H41ZUHlh/H8mZjCYjq+9DYaGFPfhoV834HOnfYV2UMyFcRPVIJ51E6atBbqinpednAOx6tq8FORywGo2sVcBkS6nv2KVvLbncnrsSX/W7Cgb0gRPeIeqYv9Kvk+rY6hUS4+7CxoUUuIfC1SUcBZ0QNMjRs+Aot+h5ZP8g+Y4e6leOL38BGX3xWO37K5wfHQgR8FMceN7Sq7I6IEGseiPqRi0UyxCU2uXzNpyAePdhFWwxivBaUeDTyJ30luQUoYWaZPTLa6Th+wE22lf6rMpaBAjESTl7XlKZaKyrRU0SWi40LigeYFcNbgz//hnbKyo4qqeWL3xynvXZUdIAeTwdnbsQETFCMBqYKpXC547NA2mylTKUGBe/bU6wRN/XXwX7Pvg9MIBzEyWBw/EshxMmclum6MWB3j0UkUPtxp5rAkTI1DR+zyoUVGejuIIxrdwxsQXvFpfLLAiuOoI3vDiw0QjIvobNh6CXWn9ZC3u/Qjg5brBnxTbPmg7p2rLVjEy1cBKrxB7uG6REMxPN55eNtY36brIWihl12rP9N5PFM6L3roEuyxoLgQRm/Gy1VLhMeOpZDUsRknSihgiE1gF0mdkGUC+MrfJS7+DiKNn+Fjfajf1fJoFJG1bJo6Z/lWy9l7ITq6cPlM42V8CJoE9CQQv+iTt9w491dRHXGpYPNsjXQfUmzZVvvsVsjbVfgwivhScxnE8pJ1URtSyXGBfFFaajmH0ji611BoXa0TOti89WoZcwRL0wrByHBQOp0pk1KgTgVd8sahDZqk/GctG13jmg5badK7hzvn2k7nb6ylQO07jxvxMWeuBJ+/7OmOKrUpopdMSCAMxpJP+DZmKBHx5GOqR7QSb12PvmdnKKaMdl7k72FLBQzvIm8QQ8+oEOv8Pz2TUhSQ8Fgzq3YG5lXL5WWhoVpriFzbKhX8xvFu+73AA3szDs6YDDopYPfNoHkJUjyiP/WvTiIQDyJeVmekxRrcu4dlO8XqTReMGZ4IwSiQDqKbh06Yg1r2M4xX614HS2ENJ1eoZZBWVQjpN0n/i2STMbSb/5XOAW+bIrhUJ24z0fVk0C3cD+cIohNtd1mJORD39WZLjBKj4crRJfhn6GciAyS8MloAgKCDw9QmuyZOxUKHMFbBZq+9Xrynv2r8RD/ui7NdogCkxUCrCil78EGkFZavMEWqLzZN9ON1DaHKSbHryfpHb0cYe5zHcLGzCWm7+n6yrPsmDv+o2uCOL0X0eBFn0m7VP440TElwLrqME8884PcbsNDaB5dq9YYpXWB5G2zD02l0w8Wwe9Qew43zE/O/lfiiAR58s0Nw6xEP4/iaRPs+R+6cqZ6VJlkS8OvYpb3h12dFSuL3GKaIthokSTPUozc41/YlZJWJddFB+4bcl/B49Y277n8FlDLJAoxg0N1qvNrVLReYbIH0VZQdJAC1HH/Q+44DX9ASCGtQJLYzkHYS8rWNfHUFxf7jY96u3M0T0XNhtDmVodvKzeVGSgE8HISKQC5+c+OAjP3yg79ZZeKUJbEhbHVabsW3ajYK4Il77OBb1LsOa6VqwTzZ2mMbfuxXsCwe2+bD+lJFVui6ca6cqmf2w2I1/9LJSt1vKViq+5BGAF7AnMtoKK5s1m4b8N8som6EM3k4yAczV8gOtRMLjFK88cHtNItbS532OYY34eS9EjbOm/aiuSRZZR6cjqF+A5JIP3Pw3LPaRRgC8QTc205n1pXKjHeAE74cPXOveIxUgEnXWPWfKcmN6LMWs0OkKkg+bwmaYlyMMl2whArJx9eKYY9Y37h0xUAiYJob6wbmfaZgM9cLA1Zwnox1U4sZ31FuGBTTF7BdzAjvcFcb7rJtdqAdLR1vgDn3k5uCHxF3KofybPplfEG4N1iUUKh0KsS9GtpuXaKPT9VdAsBbWkEnISLrT2EbvDoYfjw7+ggPtKG45/ev2nUTjzXG7Jn2fK/x/ofGpuoKNL+AuLDLm+EQ8emwnqFlGSA0Q60KFbKKuh7KdREuu8lroc1l85Rs8r06uMca2OyEF6xv0L+wMm2eLuqsz24jGR/BZppSO4oy52+3BkBdzu/QMUvR/pudULMPu8Nq8XkeqLtogybRxr3tRoVv4X4UyUQNEdVtt1xEjSdDNzFUndqujsXsd1Fdc9yRajrPy0P4arwa5w7tlAy8NtG0FJH2aWFlVGRQM0BPBKIRhlTt2ATlfDYy+MsGNF0pGJQShu/LlJjt/rXT43B7n3hKIW7j7+x7D0Ouza2DiTDKEq8qcoBwtmvKWx9rYlkgz1+WVPg87RDWf/g3hGb2yAVZoqcCXIISvbj3jKQXR3d0f0fCPeKffhIQ6C2CFL+kGVeedeFHUAiD5h4/PIIMcAN5op7qdNp0r22imedw8rqCKtHAE44EQGxBxSROkUE7AdERZA8hLpHnbIHL2o5/dzLz5FRPEyUlt6z2MqXJF2CNiqIUfU5Vnv+YKPSE2/YubFyjK2Re6Oqt+AZlcDFQ3wvft6GctqWX7QUkgV2W3ly1x01IkYwCvS7jtPvQ1foCaP5sytgvPCHWvndzV9fBYprwlOuZxQJbRCiNnYG5qKQsl++u1gxdjAPLMQEqs8KnDGT1hda2NmPK+2T0Ugg3bEYJvzDCPuvNKKdyPsNilJjXjdGCLVRWpkdqMZYrN1fbe2P6onCanTsaT3NXKL/HFqCFcj7ZYZdni3LaY03IdEjKOWKfUOLzt3h60iZydWICS2IFvc+gWauuakfXqHicp4RtgfCNNoySNsi+CnfvOgMlBY6jFb1PxldQpOIgPSQ6byecxC+3Ko5j8GLTRx7pihlNGcw7av39qkPwfxIby9SizMB8MkHi3mSkfwMl7pdYYr0y/WR5fArE0J9H4nicLnXm1aWNdy/9LgtG49nebwNWSs07SQzjNi4MkwVaWUvIFYYx1AN0jqsvjKrX+gdzNqk82XM6njm12U/lAobiFG60oyuCb60a82BFePgys5lvZAJFw/px4aBJHH2apdsYyzFRlUrMKleCh/mX9s+oeeBVHI+B+9KY8BAtOCjFLtpbL8seZ2+iEgaY8KQ0YZrlMx1YOofEj4hrYTGa2YIe+sriHtdxHe5N+kD2axyH9NP5FsxUfhTdzaEgJNQFypNcizxQMafSvPOU8DdYjmf77uOBkvAr6Lv9nwLqEl1RfZhZSEMMtUazSnwFN9rQCv0xyTs3KpEA34kbkluj69/pHXB9KPb8OGeR5zHlbDVLBlML1HzndHDkLa39twfXfIhkVJsRVTvJe42SxK7bCsdysMYt74g5d2o1es5P9aXuk+svCkGsLMtRrw9Kr0ykFqFHJ23Z9Xzfr6ur6Nm1LNFyqm0kP/2vkiuljQbGJkHhLTnsSVPhwa2cG1NMaCDtq4A0lDhkhKPzFX87OvEjMa5I5q/koHnLeinh6m2pBU77O3da+ns2McX0vX3AOsBVy9kJxGRgIE9hherhJgVV5X3/Zk1uKv420zaVTFTvHgI69L0UUvaSEypCnwIL36s1qm/2qLhAGadZbbESmTfSTwONU3/PtPfE1VSR1oh7fEgy6vZBVUzD7XcvJgK9AP/t45+3k/G1MebikQ4YaafzJMchrhgptEpCqB3iQ3y/WAo6ONEVhksOqqVJPpjB0RbwckpV1m7BqXdtVSQICM6bCgqsPh5iHe0hXRJ3/MCr0IkSZmBUDbg29QXTq51Zmn2D3Wk6Pq/gqEXY1RhotaSGNzzvflpKIkqpRAqKP1koEXSPIJrDMYEUk825flKQu1dQDWSBfbiOtLy+/7XH3TYwAa3bDVPlvHFqem3duz1sYKrZbCx0ECceeO6SpjPxY53jMJCOSqUP4lxbOBC5/zjgygOjOlCYj0rrkC9tV/xfU2SPWHuv94byhHsEVRQdnNeDyANJ6xcWk+J3NynGniwEZ4gbXcasqyxf/9unmwjoGXFL4fKWmz7GFA5RvbHSIYrk1BLVplRRtUfggXE9tLHIqIjEZpCAgSrXevyWh0o/vmuC/eLKwAWJUv7JbGhj4m+EkaW3E+lbVyIQnYmsyNlK23a7p730dWqTDDjlneYQkblp6zpLuP4xEE0GSByZRbT7g5Y+6eQOtaQCVvwxKfR43rya4UBRVuq5lc0iV3laVCiUvpNTGnWufF0VO9L5J6P+mZxKp0fMqF+sRRsW0NsRc+nMPoZYcQdQph2JSxca8kNjTG7607KFLeomgXPyVkkE2Cg+/RzIPRFUFJtCPOy2/hgWosZzR85nosUoMHdTb+xIKNIvwHUn2vrdzAHu7igEve8Dg5qo45H1n5CjBuYXzYTLjw8qFXqaMla3c+IHmtl7fdljDumwzP14ZnEiz9O/hDrDGNoWOwcqcKMedaP9lyv/z+hBjQ/pvj/rbte3jEe6M+7VaAcoaRmsFMmgTVenQD7M8YN382Zgl7skMHCngxDHYKcU5L84y3vHDSsBaHeTIm4K9F7/8bFzd26y8/KooRfRNI9+6ZX6TcxyYBqSYH/LQ2mApLZ29Qvub0y4OLKAyjTWISvBylH0WSjYboXl8URpHHB/Qd8Q2xIipiIFHWVxAS8Dor/GUNLpyWkn8CJWdrSNmox68v4ic33aS25YByNffG6M9CrBplddIMWb1PU6Favx1Siu+WuZZEot5m1TMZhmjo/S5m3XASICIZm2MN3a6tnnbjDtsughRWz0I6tHUp6Y28OdXgjlfUM8xstJCbEcQFIZ1SVOfvGmgSJzTEPqZ56PGz+sJ/uXGzIdcXn8D6R//I70dpsS315CwRGjjGU+ZJX7k4ou53Jyf/+f1+VEVWhTXmp6zdQnVZEv9D03+5P9SgwehMBjwEAmBj7na6evL3ww+Qx4ZZ/ak51OFdQ35P2omGsHi0jD0n17zBvOHtcopLPxl1SYyEnM2HHvxmz7K36YjqQQ2gZXna8qY+h10kzP/vcox5Sqh3QN27IpRHMEjyP6WUKmuHtoBvVLBdxPYwryxvC4aNEeP0cK7X6dy3xYNocdDHJxCfbQn6PKb8Py24oZG3uZqzrg+hgU9Ni/PiZOz4sT++RVZLYJ1AzrcuxkSoLhvFoygYgK6pV9ofcE9N9wnsW3FmyJpL8EL2n8QYCb54hWU2RN7opeqatXkDnZV5bqOxv1wlL6GAZA+rmiURN8iW+WAnPA3niVq2R5AFezWoUSkXFKrSQm3FH142KA5NWBKDd5JO4d5Ih+pINfWOt/kIrEZyN9/4IZty1w5Iu2qcpnlq7RfEn89lmUWOqtmVxd+6R5DBrF7js1/dWpsKHhhcK7MTfiFO5Nea/fX2gvFSKJVxMRdqOvTsCi6eAqN6gE18ATMM0m8dxhZ5mILDJWXYlK0hah46kJoS5HC8IcDfLfHro+PQvT0fhVwdNMV9KulcRwlM2++oq1I0WwbVTAXPvDChTU2Re7HLzy7B+9TSKFB+3fNtFhyAMQcaTFBTslHZUaMZOACze3lo0uy6wFDmwx3WRYcgJ3LBjyj8O/ocpLmXnGz78cZFZ677HR5iEIDauS6wcdCrDBFat1+Z3Gsm/Yld/Ts4qIAlqtxXF0ZwZnZ47vvCbR4eTCXFkTlkGMWyQtFe0OZtqmai1Ei7dqGC0liQ+LpcsArgUkI8358NqWzOVwCsgix9dUWgn+d3a3N0fQuayE+nw97gZqZRICRK/V34LyXQCwQsxsRJWinmIEWVaCRtUZh6HiLdF/EmZ73r0WvCEBubQxjG8FR7851r0itdqyogqbgVwTrOZYYuVmqSsqdAZzOX9K5cmEnRkUBvriXSwy8+scaPe+8/K7G2sv1A3Zu3vmM2JfEiL6rnqA1x7BqMD+McZ5pbYj286gaEqLxvxkeNqx1obvnSUBNQRpBZtOrefjp4FK73rxF2VwZK+btrzpCC61dCd2qX9OAV/fKkl7Mme6RjVRBfupkjn2FEuQ/mK/Rf4qP/zn4MjeHg3dmyh1OnhU+SQ0usFPdiSpY4gQDpxjhnqxtRmYJiJf6vbIirlZK+ktbMzF7wWwS3fZeCJezWQV/m0wWlFeQYeBpekSzRi6Pc9jHk+i98ED5IaiGKeeAW01ilNE/q3xwSDrta+0o+ZrihKX/tmhjaFFkl0ZqDTVBVGhhOkMB1r0Q/S7RLm0ITbTP0lEk9X8cJAs+KR9+Hn7DeONbBHc9qNHzn2WvBbFMDe/YDasxtTWqHV1CQ/KzoqkBavl3mHQOvQ9JDigzDOke5A1Qbo36Qx8uS9qr8Zswd7jHaTWjcHvfsUHLPVF2W8UgKQnNn98gxxrQcNV2StsIq+liIhwmzwBYOXFmt8ejCmXS7aqKNEYakVklojwZUkVmYooLZoDZMirpszZ8FrPTphb53vHZjLfQzCjNDvuJvLyAWsBd+I0vVb1brON+6SPBdKc+nrfP82AeRdNJY+CoLVZPNInkkU3hZLdTLmbmH5TTDdO+IDbW2y59vHz7OfdiwU1YM7HMYS/9LWwLSnWAY3nmrkfSNBTwOw4e3rhyiYxyuoqI/KJRD1quNwwnwrp+ZiVanOYqFuQIzmZRHqc5H2w46lMlBEGQhCmgpC3jG1szO1wCsEJ0kffiIKtDroGQRGuy/GxLePjngKKBQ795J2Ql2a8WAHxpfDVL/j4ZJW9nUIg4ij1YO2QJFZ0Tpev2TDkiu4VgDRe8QKR1HiTjTO9tMVHYI/qdYJXSbn8u19FcqzeM5y1OlZoFZEJ4mhy8BKrNimK4AwirgpTn3fPLPgSmb7qeIwQGWQJXOBCS/lJzKRwRaEyv42zvsdU2+SJn4amGMe0wv1lwChi3uclJetbZNBs/a4vUXIjPUtx/Wz18Yc6HcKMOFWEX4+lnzaSY=
Variant 1
DifficultyLevel
740
Question
The Strikers and the Hurricanes are playing cricket in a 20 over competition.
The stem-and-leaf plots show the number of runs each side has scored in their last 15 games.
Which statement about the data below is true?
Worked Solution
Consider each statement:
Low scores: S=108, H=107 x
High scores: S=146, H=147 x
Scores >132:S=6, H=7 x
Median: S=127, H=129 ✓
Range: S=146 − 108=38, H=147 − 107=40 x
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | The Strikers and the Hurricanes are playing cricket in a 20 over competition.
The stem-and-leaf plots show the number of runs each side has scored in their last 15 games.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2018/07/NAPX-J3-CA37.svg 340 indent3 vpad
Which statement about the data below is true? |
workedSolution | Consider each statement:
Low scores: $S=108, \ H=107$  x
High scores: $S=146, \ H=147$  x
Scores $> 132: S=6, \ H=7$  x
Median: $S=127, \ H=129 \ \ \checkmark$
Range: $S=146\ −\ 108=38, \ H=147\ −\ 107=40$  x |
correctAnswer | The median score for The Strikers is lower than the median score for The Hurricanes. |
Answers
Is Correct? | Answer |
x | The Strikers had the lowest run score. |
x | The Strikers had the highest run score. |
x | The Strikers scored over 132 runs more times than the Hurricanes. |
✓ | The median score for The Strikers is lower than the median score for The Hurricanes. |
x | The range of scores for The Strikers is greater than the range of scores for The Hurricanes. |
U2FsdGVkX19NU8tPaFb5rg682YgwGOHSraRuC4ThR8n2xrlwwcSlnvqdk0F1lYulfxtQYN665yi/nJ88hiI0D1+vrb74F+1Kr0hImQwO33z7ebVLAjDxc2O38a2RqcGNZ3XPw/LfsQy9pz31stxcdTLvORpSa50bjjCKrEvw1OCnu+CV+ISgkVvQRE8IO/uHBmwB3I15TNW6RJ0iZpOP7Irhrvbf4OsBXOw5KzHrZd4CNPduV7xm/h3w641p8ojiHu3mTroExbpBWP3TUG0kqvAFpUo5uj+6T9by9PhALAImjTAsh5SQxSnzAUKttTYayljaFiP160SqychDrfmEuuCYn0dptGT0GKuYHp2mP+U2NpfxdAxIE3E5bNWvEoUg61sWEfcfKoeiOAIQkz9Hchu12KSXyL6eBGxKGv+gEnkvrowbBRyFaoatPOEvrQrYBab2OEAGpIobLN0mLWTknDGFYekBH1Plc0s827o3oW11wv3jshcoGyrIL3hgRPOaoTmQjiccruiu1xNl9jWDV05EvNst3EC6VkgMNJoBcXk3K5n7uv0jvkdETy6nWHniZ18PS34rlshjAn6WuqUqlfEpqOwxPMyuEqJ9/H+ww4FPY/bI6MiDaydqDYtT9x1jMiIEQ7gIotPXLyeCUdbMA1KDw2/WMJQ1VmoQ0MXRDNkG3iuwdRb9FN77oU3AMSPu6FIkjJVLP2q4Y9HmT9Tdzpe8jKG324K9174jKvJ3WlFnWOM5xQWC9AzgaFIw/LlW1WKmb+z25y7FSSRp2FeZCDJtE9ThHxdmhMsE0Qi9N1CYhDxarlkImiv8Nw9gXaJD4IURVuugW3H66glzY0XzgQw39kTyJAeb2BUU5JvwtzVQz9L5ANPi4W7sjKNBLDrTsFWd24H3cS3bYxYEWo0bwhDfNaH+FiNFwbQZL312NVLCd50OpGmmj5/1jrNoYXUrufCK6LnnfkHEkAm976LOfY37o9tfOGsv66UGxh/fE8j6Y3tgPaxxo33qSl/o+BF1jC5/IwbvF2cXqqdwTutpMhzxJZSWvcbmR0sk0eY/u54yvNnXWNsK1Q4buINKo0+S7OU4MmxW3krUFm7AkAAOUkS75dXnDycJRkOTAeC9g1XDGqkhWoY5IMNLONNYFQhyXwkZrP06bGVb7U+oPJsQbSJqQHBBC02CLzs1eWTn1Wxfr5AGpub4VBiEFVYPfBtQgUDoGIRjvf4MIFADfHcu1NEOzWDPikxiuWjmQY0UwZK41FtGJeiSm4C0EXn8wbgklsomV6TvHge0NuXV4klId+MCGNYG1MD3R39M+MoQ9jLfROICk0IvmN4Fxc7RnLUEGw2t/9rViP2WBONkm1Yf/txNwNvd6wkR3jsOlt7AOgyKnOD4iRVEPBihVtNpXeBgMQRyr0gxTv5cbl/2ZD4sIrE/rM0j2b2nHYHgyVNlOlq59KBbqnTrSZeyUnqGrh9rQih8GLyK7Ib6qy2KsP9mvVL+Hr5WqIlR3kJ0WJ2As1DjFNWmA5JQGnDTBIhLQ5gPFV3Jh/dIgLfl7ah5NPso7Mg8t9KYB6N8lDvkmPaf2cjdoq5EJYZUp0GRR345Ej48xnEP+K5CKHaKLTx35z7C/tFl1ffPv6sRkLVhGuUGhxt7ulwGxvBmYePftI+Y0pVAe++cSvUdk0xE9Jseaxi9+s5WvS5kqm+UeX0cKAS28QORJ4UCCtxvuLruSjAgWxR3cNfz6QUj/A1FosfopLW9ipNkSMhCrE5Bb4Lm/4YGqB9xRHh0O4Jtx3wSBqhW0hSC9uepdz2TWcP3T40okhJVdsNRg8DEA8O8OAVLcFnMkk507KQNQCjRRnMMEb5wevoA41P46wOlMTFHRYbi8rEslQQGJ5AtP8/YBwBAtLJ5ng5gfjitzEA4EIROCtZDL/sZw+4Rth+132M9Im1YioL+ihIBPl51HHV5CpGKCk7jVqaT4Cf1y763zNo2roRhHyNEpg6TH4WHpyTunZmr7nSkp5zDMAqfPQbigSYzoBA0xNRz/AGC/v/YLpCyJYeBDskuur0AZU2Rd4fmnCDfmnc7KVT0obE/2Tj3DvDPVmVUAthHbYlujeD/pLBlWz/KoVBlQWOOK6ukzTvdebA83BgzDSQOPNoOv++Dl/iZ0y6MUmzDap6hWMhn3eTbiNXgopmhR7+L0YhuEnhkcT+EN5f3X+Nuzp4auQSuOaByCDvM7FPJYik1/+9W3zhv8xyr9Cx6w4kbohMEowwpZjJ+o9nOiquz4Ie4IcLoBZRQIc6iOGwh1AOFs+qVrnGU+ZVJ44r1yYHjz3xfHZ3LwzE7wQWtNH4hpsNfrLIpNIO3Ti5dxj44QkYPQ5yyHsfLSErAUz+fg4gp/eV1bnZeeVxWp6TgXdA85o1IpFh0D4Yi09VlSdutC9OpQLAb/ou0Ju9WJCCb3bgimohcRKzLmu+/T3AmvfLUfpUIaj7NaxMXU5Z2vislBEDEKfRJ8xkBw0mSsR7yCEfZsWlFApk2wXEZIk4HX2499AGlv2Tndg516YHFKt3pLow9rDvK4dgL6R4SohuoGUE2wl9O+pvZ4z0gRe6pqBN7m+3vmjGMbpSO71+KMkgSGCl3XKJK9/AZqo6fN+XKe8A7iPvy5e1O/1Qf6V3inkztdpYPrLTxMxL8UyiGv5SYKw5g3d+Y9WmiAuQVcWllZPTmkL3iD6otWmtqmEk37nAWRXMhJqgkVPKfwkxdfgz1YA7MeAhsbT3rTwsT867WrgtRUDrJERruEV0/VNuYGumludZgcXlgujgbiyQI1PkuRu0X8HZ/5kV6czgj6k5Ba4WWFF9iiNVu7LSV6vF8VODxxPm6j1Q+9KqI7J5r1aFJ5abN0TwP8mM6HYToQTaaE1LlJ5hlWq+pQJo6qzUaKx2uB0aSl2m3cQ6VM9SgwQBTS2Qq1yUlCUCrU89ZV/UHiWwQAfMda/bYwXcCsc2ubCWNgllNUqHsP/ROARNZ2b1OVMPraYio/KR8hCmtIwVTq4pphYOX6Dw9gvZ6MZNo+UkTsm3TEuJQHXNtAymzFw3dJIe9saJFN2QKoSdFWzjfR3d6VH5fE0fE8Jwb8DFPXFN1MQY0AsCpjprb5YhVLkybbUwLFgJFHAc61twnwgsK6GxORqLTtFonHlvHrzEHeVie7H1R44kJ9ljrOhPMBHIKpDkR3tMiF55ZVnPOQ3oz4aJRqGPmP9Ss5qVnWsvRyfq02M47b9/PGAezYDtt7n6jJCo/uzV3IP6bJVZFGpYnIotoEmHp1yolxP3tVIWkpV9YgirLOs0iH2mnHiVwhSS8xdt1PLDT/ofvNx82WYG9FSCig4AvQMCX3TRLwWUBH6F/6jwChzqz/arN2Q8WMqvWx3RRyODNYUwd1iBawyn2TiUNUzH1oMeg56u6n00iI95nsctifaZwD9hvPfDQnnhUuNAsoh+iyusGu5vdhoDh5ENdZ4tryQ3JguKkorgP3mItpMAgAsmp0r584LXIesTZ6Qoky2lLwlJWNVGgxanjHRBMkZfje2g060gVFv2VfOuDdDAGLXLNoxkp0abpGNChVFX6dkSnM0WDtVQl9CvMWmfnCpQ/rn2sutFaHiSf9t/x+3LKqQ9vsO/BBQquvmAFxXBln6tKJY+w+c2nrpR3de8+IHA8jxXVPgNaaWRH1ABNhTn/0Rfow2EUostAtLREzUar6PmfrmF2zacWYLhisx8VCKlo0tDEh+wAMyRJwuUcIgeRA50Rkkbiy43clflrkL2JEA7YoMIfN5LgD16UqymX8g1+hQ1+Vj7ZZVXdvlS8SJtBhRRzbCy+JZxTkrObKbkDVNvMjjEH69HYvGOPxefeomNC1F3ULR9orAgEbtJ4U/PveCvshRcKajIG/bSSaAR3D5IDdpkyb/T1GrqviNZGTtxwZH22VjS0EzMkSQ/hV8vI36teX8hssZxZoea1Ezq0mNzRTaO2lIwSU96iEkhunzZO+YrhWgXs8kY/dUVY9CJyb/TLPlLSNcGNUhrUdjll3jqkOl03XWE/TWraa53ttxY+Na6F5AhT0xjccloE0zRDlc+hICn3iVUejKIeMIOi3m2xOL8kKo/xTFumk9C1b82K1VaMQe67x8ATajc39GZTSAv+BV6UjQfVSXv83l0dyB4a/x2oP6oabfeCuVFQA6QKeSaoP4KgQGOxI+ALOH2HxNuIW0HRk846srLPbDMcYITO5Dmz64ROlZ4nrVWGdPKnmGBbybYhDy6ugvOh5ytNLPzdOtWVgcZrDVqcM0O7NmBxaYMuqttLdN/nEDe7yUi0+FGvCAodJngFoQ+0ZoODoW/j+hEeOE/w6luIWZ2MlF3p6EyA4Te97MvlLSWcri+R2YOP5Vt8r60Petr9WUfudvE1v/2z95lSIX2JY4vNWjKgj94i4+2GnEiQdGkalOXGBTT9Qnr2YjGYuBQCgzRNIzz2Q7r+0o/v0cipSkpHnw9h3vi+8V43DvSgQR2igKQTclN5zvbRWcrALaZe+Ffxb5lGkGg1VyiDD5PWpTxAZ1JIjM8AHBhyuGcekR9yyJw47G5QwrmI78PA3QTeifH6u4dgejIRxRRZx0HHd9fWBmNwuQwZBEdOD18RQCruGV8PGFTWDzrwFdxnsphPWhCzdySVfHZYLsTn4wC/I8Y/EGFfRJzK0lEDXv+h/vTYuhWPY0XHRy1nUaN2VV1PtvluxTvcNxz+NAHaeM/hhw/MfHK0/TAZ5iOI4doi5Buac5aTdp1v1/Z71Px1iqsOyY8uZ6t64uq7ob8fm3Wkbw58MtalsAX+ubwIinbxMrj1PORcIQq4ZHTBbMEAW96yM9gTnwc0aosjW/5WpKQGhnfB2aoiRURe16LWbI//94HUWvSvdlNl+QWY9FgjEa6kFRM0s0dLhVXnTnw+OzG4iZngIl/Y8eHqqwSyyRDy3eUj7Y2MXWqrKKyavwf4F5S2vgBlGEOrmWDo2NDH7o1my3D/VknPnEyJhUkkCX0xZekJDkIgMuVDLICRpEKPoXllIFmYQqWWu8n3Cd2Ek4YWdWfUs1YZOkCX2h1AaSqkQCRYaCcAeDcfs52nnqoiKiVVzCs7WbAP96XuywgFmgdi4sKGyA3O49fPASRqluKSSFVxjeVmiQRmgavo06sc69RoHtKttKwe3bTeQsyU6SjNESpVsfmyrCbzObZZdHfL77I/R2y6ZP/+ggplQsTIi/VgZ8jiasQL+v8/QYaQVwVYRvZR3oox7shMZY9fTFfKzo8VXoKW6fkvkg4K0s1ssJcdx8/B9KVjnfHsOZ5gdBL74pHOWn5F5RoJM7PfViAgR+Mm/Pm3PKkhbVN2NMfQKHxUmYydvEN0UUJPODah6Kyv0msXDGcEyHxQHopQ1AFIoIzX22zmEwHQ1BpFA8mGT03yPzsNgk1HCNJ0X5NH0WDrLdrAewmDFSAUia7jNGgqLT5g3BSy4zBS6S8Nh97735cSPbHXTFkUIQws5GyUInX5RJAj4ZXJQL8ILe5dr891Qyf5Y0n3eVqjkQ41qQXTk8HPC2gJxJPmOenu+kV+/v4G0koinMbQEgLthdh6JhVW2QpFRFO7Q+rF4fhMyI1gCvh8UdBqPlGia3EI+LC7xRWiBY1fcecRwVg4nZqEUpQ0pmtK48TxbedbjRTZ9NJ+iGScC27B2UwAYRjRF2V9vwIKwkNZ2K9jeuIM9XpB6EEjnmKgGWpAjDUPeLTictPA8lfGLBafn5ZJQme8YHgIt7fCrq9bMPOjPJLyKN8snN6CWQM4jiYxoF5siVfjFPS8xR4xt7ME2sGvEJlq30+is68C23nrM3KylWkGeUMKZ0l6tb6OTK+6AqJW6+mUQG8Y5uCk9zBd1frqS9wDou9YUVV0wJTGeX5aAzIsK68Q6y5nQD5ii4qSEJIHhvYQlaA0sY7ZRBHDTVPVzxG+pEDWwPZ22BCVdIBGAMtPf0+zcOdyGPRC2tQ+UnOhjQytZMn3h1axUDhseuPGEoPn7ixCRBuF4Rh0zXvk91UPCm8FTVYlkzRvmrZyfkxw9nAWNBNdBjoGMaup1/cr6JKKns70TtCmwriawRO8Ez7typbrcXMWyTzoLKJlhv41Zs9dfCabZ+61l+K/E/IwoPPgI2E0pjDq7R/TZixiK4t4LOGT51GX/IBcTLTeaATwf6zEGlYhFc04AfF4YFXDnXsgbHBVcIQpHlvvJTzVfoFOh8Q+R8f0vFm+RibyfOLvzLOhWiv1ZuRdyL6gIrFPPqIrhe+rjPr0DVccbLn8WfrCyDz25AxFg8ALmlgWE2uJ8xzaUgYYxeKThrh4+xpTHiiNXmIsifyqXQUCEcQkxIYX/e3hL5EyxdsQOorLKPqrYTa2XpxYM+sd23fzbEkJ3WPM0liQ8OWuWGjoOSozaN0VsNH3Wy3RCz6lquGrS110BIRmgTiMK4dkfIOvSccQYV5GPp/bekpIBAqaVXxBa/O4XXnG1LxqSUTuOUdnOFNxVVT0aG0otemsvu2Tlawf06pPTs3f8I8GvDeyZIeiMVI7Y8s6nAXVUwic1GiOCWiQLnXE6SGXoPLzCuMW1rkB+/C/IIHvR9b5K60tI56P7rsEWzaX4BhQEZo9MOaBTG35Bjw5ERIbJSj6K9I9cKGU+T2YDU8AttQDEP01Z9iOvDIc15f15VpBtG7Ag/LdssNegjI90lj9EWkznMNQUgXabmKK33s4eNT1VmyUjwnyzMFHLiy7zfXIBEob9HqNb4lyEZtzIO7+S4SYSOw7VdIdxkxAjCnfQBBiPD3kp2KpKGnwWIkWs+8FJvSKQjdmz2tZmx8oKLKjCCJaAsaRlsFo6Y+zvEtRO9wG8qW4xIqQ/s5RNeIxBcuBbWN8i/0HRgRNo9FDrdMVoCmIsSqQRHX6n+g+Iby3FrWaR1TijddN5P39U4thRFzxQzsqEczYQTVjhBtLuOSps8bmq0JnWEWyu0rEFixFdQ9jqNnQYd5M7qOqAE6VO7k3gSZHGw9X/1bQwwlo7sCAbG6jjYJLRSLOeaiHSNalCYiiqTTSDoeuryoFX3fqDIQnpL0RutueuD/md7Mk1gadASXJWiHLu/Rquk7TjN2bmlZJS9fwqilb8/SnESRgtW1eteRqorBxwNArpEhcP9F/S0k8HxoguVFEViRkgqgXBElNMCO2BXn8VZzAsBJS9ewJGrG7P4Z6EOtUCqiWbGP+/DsPy8TIsbpXl2cfRgJ9h/LJmF7MVppDIHndQsX0GpcBjsJEqsuqXZMWi3wU/7VOVmoy3IfHarrdE8rIBdI4U5oUL6NMR5wnFXGZ61l0C+eTzh36jMDOaSbJ1ZkqIPyUggExnQ/obUE5U/Q6+PWfNF6KWVVM/jGWspPZxrmcgxrkks/kcJ/fASMnwls5bWubNFiyfr9IX4YPvMemnzQzkYTN0ceH52hQgFCoWKXkJIakpfL1yj43z06N+3m8RT6o5Sw8uJKXh1niRmSJpVk0Q2GwxjV0eLp12gxAOD1jPNoFEK6ITREskHXunV+DoXjAhLzI4AD1l2/KO2BPPdkc52+dOW5ylJUquVlsVsDSyQtrzmWZZ9s9NFrvqjvqqkgI9ZToZbKYrvGoaO2BkwfldhphKoI8DS/STMSzkWs6g8bsaW8xWNk6tpXMvyeu/itMMCoHTCp3f19o6RAlfpXZ6WgTrChx/8n9lZ3frBYJNJOeaEelFbCsrfvaePCg14NILuvGG81+fwg9okx3Hsirkf+mlODk2WX6e84FMQwhaPu/Xb3p6O2TpWYpyXBvzox0WhdxLvZ4ZEZSXpS/3C29r2avObj8Y9ZGSyBF1M5Q788dPNqhDBgqUnGAm++uKlYN4cnS1uwwy6y+Peqs0f8hlkZtyFpXM2LZzrbZzM6KWNPsr9f6XZ21NxZeLMjOntNVBzBWt4toImlhiOYhZr67pDi5+Tp1i7Dum3j2OQvN8Jpmve9sPsW0ew0d+bQFXr3iiABQM7xmYM8XAlqgCbBicm8NoUh4cUXUNjGxfZM+NOS9SdAluWvBBabKbHSql93FDmdu6rEZ6PDxU9ggpF7D/LREHxCkMIRla7wRI2q5MUdoA2H7/INbBYD1231W1oXRd5bvndP6oEogBwbsBFCfANua3LpZQ1be6YymW8bVJQepkFAryDaYdmHvOZ6y96aTy825hfSRZQIi8TmCWB47LXAe/bBTvFFjre1LtTS+5gK9CjD5vAS2jwJaeNOZavYm4tWHIhJ2iif+flKoG/s78yYsQAdGjMq4WBze2cAkLsDDjMdp7pdghCig+7BWi+VVLqM1qcWnBIvRZ5bVKE7gIZ+6QCHK+rjkOesAw3L0/5klswFRHnd/Heen/irJxgAx0J3Evk0Fsi7Fpvf4FmWU1LmvdcVfVZbbclVn/gjPyaBn1t8n2hOeh3lHbuDQ03dXT7AVMl6aG0E39Ga1wN3cuTqR+c2OVFQYUTAF6+/xpqRHCWQq/0OOwv+M9OVyzTcuuVi+W536zMHy3bkZFCUNpicmKMDl/LgOut0iVGgsQ/dRJRQYyKkVV9LS6ObljdIp4Xn/E6Nzwukmpd7aMK+ULzGK+dhWOefRIDF06olvSFSMVVPQ9upNdvYFv3H+QBiIZbIzccNuJr5s6emVGWMKaEyPs6hirUUVkRqZja1dbTUQHZHTOSlr5e3cbZRMJuc1gyStfEAZ50z/GrpvYggo8BAmR+9bDP481J3txJUpN7GB5gATRVHLsn5JzcHWSmFMVOetljmwRdpK+UVnjw5jZ0nqodH5ziIBx9Elh3jImyM7bY6RjZvT9iPhYeNesUdvQj6ypyN8GlEtoDf2EHrjqKwNP0oQeTuQYW7Vq9YhW3bc+nMHB7T1EHwVERwwn0LOtUtnilStuUex2cNJmE8kGy02n7N3vb1B1Ly4syP6rkCcRjxfGf9bu3z2jThtAo9l+vmsTGiRJmdbWBJO7a0PEGIl2JHDSXMvOTiUoj/2eVnX6oU72SEm7cSRD1zxKJqV7WSHo828EujGWZuevyegzdzf4EoehxJz5FmkyG19O4lo213RGzHjW6cSMA+fOzHKVBnszg0fltSkDqIAdzatQWYtH+gn1E9delKHbb/yspytI+P835QQiiOAWbz5fV40SXI9f7G7YI7Ya8cGCKnYtuF4Rdtu1dbD3szvdqFQO3C3ZL3zX+Gjl52fK5/429MVztklqTd25bXIqcsuutkt0DhpQHw/RkcTnwl+F4Q8+6DjwacE6o2KU3/b9GvMFe6FdD9X4zmKfzLiDZGoXvABO8kkRhnBPhSLy/BFSpzwfFZL4FWebVk6/BQXbtEKSSvsa8OWkuQCJj9236Z1g4BJK5owhr0e8N3NRt4ZQ3jA/Pi7qOWG7KYRVsKqsCrLrqHDhqAUCwJhEZpz2vMPKFprWHtudaD4ZUDU82C3GMhwqtryXpmpcbIGTzxc5syTlXoHgCHITUG8siWauUU7nF22ng5/4yzuIeOoXOudVImGa10TYvLv6zrMF9wHdBFXtcGmxinO2EIuiNaSHmnZJ59tbsL9JMfb/ttckWlnF946h8vLWll0WMPMON+nDU1z4rcaFn9Hvk3yVgTwKUUq384b8ck4BEm63TINTl3ZYAzbHsPQAM3SCW2PLvgCgWvxbye6lY9gVGxg1cyvp6HRYryJxPuk0zM9Afj35RX/+b2PzOPTJQIRU+YYG6uKOqnpEHBWqtdkb/NLOOspUl4GypP3T7RgpHjLPkoOJtwv9eLhHikh3AbJ8d3iPCbDP05miMW7ZN5aSfwQshBK1N4DYoV+ucuvtv+S12tLv6MqZogPmPTSiZlgxu1n9quBCwlzyhpb1UzAZ4I/pF0u30V6K2YLuufghOVCacltROGIJxYs0Fh6zPKLWvQcXTPK/sDsc5Rl70hRnZqoEPBO9SYdfrNLpnURAIHgBShJlK+gaXsyLwisJQeaoyGiA7vnV/gxZCOwd1+Qb8TDCgEd6crgcRMxFK48IDPSVEJQCOgYb7y3PqOGCgGs9XbkyG6hxlS3iVTOEvjcaZH3dY6ncOO6q+vR5NG1xn1Rf/1Ko9jOn2exthD+5q2Br3VIinquk+3Iu5kP0B/uMdbIbWMnJy4ZoaQDaIVdqOzxOR5g9g2PHTGo16zxW79aCZ3OeMiJLMFHBxRlL7eP6awTra4vMHPsM8p4zx2wwvL7mh2XMr9BgrbF1LzOrdNEztSS02Azkx77d2gmVvxOou7hK3FAMoEZ116iLmf1PvOuryb6ux/JOWVin66k0abLvqXoKQn36nWLnn2So1a5GgTN9Z6MjfpdeW5FNvY7cHyE0ypC14apfDXYHmYdvdwoOhKOUwR8AWVtIuQ7RgkDjtaU45dbJF0m53OMXyR8U6ybzjwkd0Fm63Z562O/dVSQxl+oJEQXLfR2JO5Ig0Y1urrZgZYm2jNHwu5N+jVFULSSe8mboY4NYUrQOpJNxtg5IibiUWqjhLDuf+wtZ/6IFB/tskgjY3RLEgkVAL7hL95dUEcBoerJEoG01RMN15cdvchrSR4aEiJ0QTLZCVZaU1gm7kwY8UkO1EwfyUCtsw/sBCFp9MFAmo07RroOg5d9c4YbIo1bphVckgl0xLc1DIoRf5TSM1taGP7eNDqorOW2f2TCzq45UD1gMLzpezpOAFAVs1gnMBS4dMJ3qz3cXd40xjnFeqaTyQBVndEzw+kyNZOYh1ju9zL4hlRema2Kf8VnBtRlZD4j8nqSDsKkM3Js4pZnNl5P8BTp8w4d2tGqqpgQbDUO68mi3O/El2HebePkkLpWSNZeZ6mfvZXc8klb7+kl72u9V4I+Mw1BI366jqkxOwSbIul7M54PhL6M2FwXyoe0Pe1Yn1XA+V7r2782T3iOEUhdcWVtbBZMG37h29YDGHxm6CdO/pEIa6H6rxmR1AWWnXcBoTelkEC/RsuhhCygGISOJeBaUsT5RSb9JO/UMVpcCmRSBtKomNp5Cd6DX8vAxBks9CMLoAVB6LK0lWJjj0JuP6uTxX4EBJBT1e9y6EH4RBLyMmf/boQ5oTP65afiVn1fCQJI422KvzwipScro97md6kvAEUBSDmhChaeILUxFpsdJgBvYmzsigwT9qUkXb5f2ypqUJ8hZKzXNHtbbF+3wcNlKkBAIxIyD3OR2IF8D65wLKBLJkEYPU1+bSIop6zMwsjgK3MQInxKpdgJ56ybHp9M2iiyc2WyhMAa9K1RyL240fw4J+Irc98+OgTJQ69rEC6ENAQFM/ZTQHmtoexSXBtJ3HtuRvhyqmARBnv1AKcVEPT2ZGsTIt8JK1Ww9h4rx5j9weq/0hR4TamDZRyABSi+t7NvoaiUbgXzvcst2DVRrgnIkD2qICZgKiuxrZTJQBjUcA3W+iK9JC0LZyQglIEaNzLIJW02ghuSUGsnY7D6lMJelUDKU12rO+Rw699Q62XrXEpT/MmoAml2gLBz2s6kyDYM1ygUqe9oG9qKBLQfOOR1jGuVFs8nP28KhOE8lLZR9wl/Gbr09iPAaULdliG/xsK6u3n3bNwwMTyF+5Sl2aMrffzP6nbYyMLEBhlZ4mx+eZyjR44vKvVfvZAb+/wp8T6mNsWp3vtJpHkF+S5FA7nCnJEBRd8P113+YKEPHpnGSv0t3zrQwX6q9KDm1xhZoScdWQ/qTUXL1OU9bUZe12Mn+7VB6P6L62SFHrFE77zMIcpP0C+7muTMefnv6HOgBX7xGlQvE9gwKc/JQn1UBlXpxOgT5Fr4Zu55kJq4AZEgfO+apDqp5JMxcImwGl94zLOrLsA8DvIGAyV6wvc2xr2D4jLYtg51GSnYUDnwM3+wl0aAHjc5UAOskJ9980H3iMMymCvMga535ahNIz0PFSYpc1XHJdx0sL5F1yXUIMWBs2xn5+rWahNnC0lNlVDGgTzPkctKZ2bcnVicoMwS7NqMLXy2qULbsEc9qQ7pEdY8Kxq51FA9D+uQksZedNUd29kiK2B2XHcNyxMoZf0n/cleUiQJrv1l6Yi3iaZbuSkR1ig//XHBeW5mZ2+D9BotzoSt3s9YKL7lYA0WvZA4PnuCjiQEefomGHbZzpeo926Q/Y5JDDeGcsLLZy3lPgmfv1f83iUO/684vx/e8fOO7sWFtJ+eioO2TTs/OgwVb0z65PwAz6y/rE8eJT0dV0zbr0vQx9rudMaUXQirsaJQ6/9/tOxnyzOOhv0ApsfqA17CoQv0co60ZcVpu69/H4kvUmRYPaASFILTXApI6M1he34zCAq6gpgfOIkHMa5IezQtvo0J/RqrgerCqc9nDDrl22ZRBtIk8V8TaMgWIxsVFKKWNLDaqTGrNDXWEHzCzrJomKoGZp5gjdfxY8OqFN+rcocf8KB3XHs0BiA/xjZoIh8vbwYPNz+RM2/70Ur0BiwzIkuBe20lKQNkuA37k4xI/d8VTid0GczYArNOxfPGG+RJUat12AD/YXzgyIivLW53NuBXUZe/7mHHv/UR4m3GKSguf3AURmGMiuOrWbJgtfMAZWOtYkKJjpElNVMMMpGbRs4Jk2wtCbNDAJpF9NYixoIxPHn+MgkiCwtDk0kYG9jeeZYPgg9QZky2g30Ahum0GajikKCPAYVF5vxD55h2nt9fjiDeJjZA92QcalRttzGhKg8doibUX7pDvTJ4U8H2kQFNBdqGBSnUsxNet9irZsBohEUqDpNmdiwBj9/dEeAqRcdm8nAy62WSFifRnLPbX0qTY1Zw3eC2eY3BZpZH4JiP75yoEPZ8ndiO6TLUM0bDvQ++g+9ZuUWimHujF19j7tSDkBCMGnaY0syDePtrdRQDIDJk3u8iO2HSujG1X0mY8DL5iGsukfWvu80C6MQlY8UWDIs7194j8FpSQFIX4eZ3cuHjsyTk7L7UlhLxp3zlOhFYLwZfP+mEYnaHnjNAeObT3OkDwT6qfluYRz6lnYv7/g/IBL6t8xtN6XAn/NncprnehFzkwmNJ0DUfp9gp3S/cDNNB9L67bbCBNrbOeO/I4IwxGuhB6QSiOS7lDH17WCkoEBqqsp2NmdmPvMiKTVvrZNdTKbI4IuFl1LcB1J6I4XdZxb90WrKdDk3rxbBI/bf3y9GlHa1LTBXYeGMHmDu4FQ8EsBFkszk2j5nsxrE8j7sWePUIX2r6tSg+H24UpNwddYotq3E0gRifqyBnKmixSRs7DXlrXuY9hNS/f4rzJQbxdgRMCkfSiwsuA8zCQyXLQgELQ/1oygEnAMRoomqWvsufdHM6XISnOhVSdTO4NtJKyztttroyI/eLrk09ryR+PTJUttUGwoyOGNT3/0/DXTVNbGYtDSIa7NKrjNRfmL+i2ucNDcQQHJjDsyHB38g1KVBZGFgI6v7+qiKwjEgL/XQS0wG00Um0mUtdQU3rcwTS52o59DZElmdT+qwxg1BiPUeR+5NqZZaHIMhYsQotS78j0TyIrPkbjRFPS2TsokbilybjT3eXRd+9B6vrZDaxTu0fvE7RU5CYuA3Y/R/aZE+jE+SAVMWuj4ZNdcXhc3qMZyplcCbmikGkBBGY+cjM2XQWcnOFBlt8byZfClRFSbyVcPGDNuXqHKoybpZIC0rUZcXi8nmkFqtxpxF/PfZelhC86jB7ZArpC26U2md39cYT0s1arCHlSKi6Wrm8KGuvmbhgdL9q4mvsuTlw8SMeh6f48Qj53vlIzTYZhqpShj02mfQ+PQeos+unLjgghByOD71eRoABj+jMmTQRKQZs603u3kArwYjNtCMHl6AFZdb6Yk6C8fXvxMwKi9i/XCIivEN5OhkhpLjK6JrZWAiBjFztvTt36iUU68aNiQ+sI+SssQpPQpfcfim7bC3s6mAo933g9cyMx8sYQu/spJhYv63r+3+TSM7bE7SSsLYe+VEwbP/LhPxhnOD23g0GUmo16pfkmikLpl0lcb29GActZ4vBx+5HfhlRUyJUOxFP7mprhOJ3AYqR0ohljpeyWLBLwhZ2Z0rvpG4XMfgi+Ms1y+KG3Ht0WbVapN/n9OM57rz2n5DQbgz68QflFHFWvVGkuoQf6bU5VIvrjanewfUQTadyP17tKmzEU9WvDFObq3nL+Wc3ew2CVFrv1i1+Pqe5uTgUkE6y9i1OjPHzUrLUjKEIjCeGKJ50rFKf9X2CUMsUfK+v/ogGYTVo+9ujAkd/EpMsjKp2j01EjyLYIQL/uN22Ow/AuxASNPoohVM2XIBACK8yFoGpG9d8XYiENBCKx+Fp/HfZWyYW5gRlx1kJEq0c09LhxcXG1NGglbN+mwGJiyIRtT0BP5Op4RwIIplPZOgdKrY18vZz5nMEKdbdV60ltFPDhQerhsx1tik5HZDWsYTAhXhfzGrdfi1BY2+rZZFWIUGpjeV9zAdXAIUMBNhavBtGgADKyGpHEhAKmXmHm8X5iT9L+resWrLTOYoDRC+6uwSYA4Sb7/Ht8qUHnnSbMIBob3ADnTPf3l4Aff3zwlH7UTVP2kpAGkkLANJ47Nwr6Ehw7jdtyFesnKULnUdJeZyWxFB28QXwmwlVxO/LP7KBsVmAYfm7gma+vpo/ICo0cbZ6odRy93gxu/OVrOFsfKueOGYpajETjTTPCT/sCyWu+1CX/eBP18fnywSVoBRPvtLElwWQU712lry1jHKaoVHbIMkTwtq8DUbaIdOoJT2B5I+M3OZginMPEShTwoZ+b692fbU7UNOhLjlE3kbqviDkoaSIEqtqjez1drLq2mbkqgPzrw9Vo/zwirbUnJkBjESmykx75fKMq5WSTHowKxpma9r8gRuRUMCv/45vg7mjnJa1AqRfpvoVmpTXXFNGa+mK1Y8Wem2Ye/53V1c/lv56l6RWLSMmeLFtF3O9EhmeX1zFZd5Yg/VHuELqnib3zSTEBB1h6pTGks9yz2HYJ+18Z4d/aBMjHRDA0n9vl2NY/D/QmxFxdPXNrVdOu8cTScCg6vKeNaJeB22W4hx1/2HlsSpiQtohf7vPrYUK2quPmQja95evIcNyLH7mf/SBTVhD3JDXE9Xh4NUMjigXbZhhXg9ufeM0wWARIVqEbm6wUcBXfaqxjiIkf0ibL25gOzKCiNl+TR0BFZigVVmQNOwFYqKHORtXNhayBCCWOTYpfO9uSEgg3yR6w+Ys0bpE4aEOhgVXnhsLzqMx403gEvoTvTA1rf7HMtImBpk0Jhl7HE31NXuMxtsVqw8vcsr8VDGWWYiWXj2qS3ddSSFJs+0hr2pgaqpa7amFewcCLh5zslAvBTXhEJz+J5wono3mM5JoSHSXngNPzxORjCFNnmbb6pfdyBEbHAWpKfPu2I/FcbPnV/gjgn02VeirO/6fs5Afm/P/QMP6lQAPB3BbR1aNQYE7SC0+xh1tt0SmQ3huPt8MkHLPEFHurFXIfV+p1fb6JUQRz9/0pK//Od1hnEszoN795d3BAGXxZZVx/Ri7M2tSHOT32/DfY7o0p4EeUVuemCQbFGxvQ1mnUSlD3pr2GsGtYx9mP1BQSfDHgOdjJ5zzNjyaLyybiFdAAQStfOjpHW+INUil3UeSjQhWDWM0ta4egmnX09uDnLbG4XzJu5BBELjBnrk63tA5SZOmQ4XHw+0vdeZLX/wGGt7AB7L9/wQy/L4AP2JYK7IEzmelaODrEM+VxJivdePrW+0OYM8YHHY5fF/6Zor2Apu349FnXtBhMPQP+aHfy2Mc841+8yRL0aBppxlH+Vh+Ots3CnbY7h2UvMlruExTBkdo/niGjZ/k6ND+L7StE/Uuqmg588I14uZ8wwdW/0BWkWCu/S6uHH7GgP4aktwadzOpcwrJ/ExOBEaWoFomCr/XaTixlQD3YuzfvF8lOj2vYke5YpKjPXxJA35c5nsCHu0YBS7D8G3cslaHUfwEDMPrSimzzOhx3Q9IwgHDBrkd4jZoFBSuRZ35vsd8UCrTgI6tlIZI/4cA7edHVUqRvOMWzc/11Lzy6Nc37WvJTRtIrXIb5qE7ZoDaxlU3
Variant 2
DifficultyLevel
738
Question
The Sydney Swifts and the Melbourne Vixens are playing netball in the Super Netball competition.
The stem-and-leaf plots show the number of goals each side has scored in their last 14 games.
Select the true statement about the data.
Worked Solution
Consider each statement:
Most goals: SS=75, MV=75 x
Range: SS=75 − 45=30, MV=75 − 51=24 x
Median: SS=58, MV=62 ✓
Lowest scores: SS=45, MV=51 x
Scores >60:SS=5, MV=7 x
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | The Sydney Swifts and the Melbourne Vixens are playing netball in the Super Netball competition.
The stem-and-leaf plots show the number of goals each side has scored in their last 14 games.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/08/Stat_Prob_NAPX-J4-CA38_NAPX-J3-CA37_v2_q.svg 360 indent3 vpad
Select the true statement about the data. |
workedSolution | Consider each statement:
Most goals: $SS=75, \ MV=75$  x
Range: $SS=75\ −\ 45=30, \ MV=75\ −\ 51=24$  x
Median: $SS=58, \ MV=62 \ \ \checkmark$
Lowest scores: $SS=45, \ MV=51$  x
Scores $> 60: SS=5, \ MV=7$  x
|
correctAnswer | The median score for the Melbourne Vixens is higher than the median score for the Sydney Swifts. |
Answers
Is Correct? | Answer |
x | The Sydney Swifts scored the most goals in any one game. |
x | The range of scores for the Melbourne Vixens is greater than the range of scores for the Sydney Swifts. |
✓ | The median score for the Melbourne Vixens is higher than the median score for the Sydney Swifts. |
x | The Melbourne Vixens had the lowest number of goals scored in a single game. |
x | The Sydney Swifts scored over 60 goals more times than the Melbourne Vixens. |
U2FsdGVkX18FbB2HAU/jhVAmz/OB5qEAVQ5EIV0nJaMFtZoOx3OLKr+EsfBT5mcxFMrZXfud60GVgkKuie+qGdXl+jwWCHk68LKtmPZ4kVLswOlgUBk4M8diL38HIP7LfVWeiGbFca6REl3C5ZRLudVuLaEeehL8LTJ+mz/7zvFxiXrLmKkFzzgfFSJvz3kGmWR8WUQX2XefO4nZiSL8boT1TWnXdjFVaj/ut2d3aUJG6svmaFSnB72oXZ28U9znHfMdmAszG7SIDG0qsJeRAyp2qgPnG01QBS97S9fstg/czpHa9E1ba8x7JL+InB5qFqL0pyUSDQibx5eUGiG0FBQmOveFmR7syUZZ4ksexSs6FQKUCVymQwU3iCDm5ihhcjrLoNzWGIjh+i0uH/nCkSlL5bxBqJfdpudwzBpwBw0/9yHkIwUwPemAJ5QosfdhXcHEa4VR5KGD4PDLiEiwJ7o5KpymFBid2/Hbu2gwq3cC5Qa2NC3+QN5FpAJwmBQcIJ83tirhFka+9Y3z66MWClVLmkTTKlefn1huXhf7F5y3ne8koxUGPZk3nj08NOkySTxebBA9j/gHDsoxyXJM/JoOHN7/5t5UKTiATYnpbm73HYLxaCPL1jBe3hoPtpp9XS/WHbWxKF7bXolVMlTcR08wy19JEMyMs8M1skLxmIhl6YvPq4DK3fEes/OBhDRZKr2NuD+hUNkdAV5SNjH9ixKZRhrIlR7ov2g5/UpWRX6Tt6mx+gq3ASH0Ao0fJ6iCCrqhAzX5fK8+9feZpkmJzc+n017ch5OeysD8gVC0w57cBkBYKzLM7WrpffM7fEm/XwMBz6hHhjqw4TH28tpR/4ibNZzWYgqbnRB/zhSRaQbkzA6E4qHOybfQ6lJ2YMh1ajilrNg8U4S3oaOPl5ZTyBz6u5hF2/9DOVCXN7Ab+5q1HR5cRpP/QE+6GkldmjQY7rVl9tiDdLmOtfPf7rmHCj0144cUnhA1fUorYIt0NsAAmUYG54CunrdNEWrx/qGS0bjV7IdlNvOcoigKTCGlAk02+pppFLF7qSMfmL63hEx+AmIkybepI64pzMgo644A/21nCahmozTta4SZ3Ed7qelRLaSzo1FBP6xAt1rnzALPCr1+Y3b1VhSposVl4O1w3iu+8GLyMg00ICd/UES7y4Y+noWOhCYJ3pNO2/FqH6yNm6T9MP5whMCezzXE78mfrA/2N8E2oGe7N6MvC3sWKGWwjZSrsYwPH9DvT5gp7XUb0GteM7mqXdidqCJZA+Dg/O/VFL8bWvHIaTQ9II0Zgeb4njx7pGW7AJuifeAyBuPYAuaNd1V28kDDVF5GLCQdls4o4gM6fwMLgbPLncC5pZr2A7ToXSSQ+7LWBA9jAbF0xOupNHxg1ont0V+hNvXeSu2fQxH2kNruYo5y9EYChA+61xIjvnu80+6veIxseirXScBkOHmw2KHP+18b6JxjF6Ooj0CfP6fM4C4WqBHCCFXkfUV0x6TIdYjlvdtDq2Cwxcum756i/sTvZ33g4pbBlzNgA5l3JBEnaEPzhVbiZiofdvd6zZuTB7XZ6RJ0qMYzR3eyD+vkCwYZjep6s2TdDCTYrYgu6FIolsZPOxy8zrkbAx7VIeGqx+10+s0ws1OREcdJEvvDph2J/Chz8/qB5rFtT16OA2eN18gjNZKbr9+JPCM1exHbfkDyCE5FiLY6DF1Z195PyzAicOYwY029A4ys4+CMEsdXxsrAcXGQyzH+BfLUElC0+v6K8ILEvlv0S7bPVW9AKMBQa++F/4EpT/KcUM8e9/WMxQkOE6u1Qh39dv46By+UtXeJxPJvolaK5X+w+epRefX375Wumrc7wXbMm1AJvql9AdzcNFJuh177Yiouy8uJShgeALym2HJAqA5ivWCfTmys3vzjI1tQ3iA8GMhEX20QVsAzpkBv4ICoTjf2eg6SkLo3JkgsaTJIICn1zk6LLjR4umZd1ZucZuOQKt6hin+V3tnQ1Wz5DDMDY03e021LHihC/74UcKbKpiQ+4HyZMTBFsEwm9LMseYT9vCdLFdLYD7YaAolSAtXvUqYF9c4VpUq+3XN3ubnpVFBlr87onPG9ds6zt8twsIojcRALgVb7ovxIaPb7THBvwKfOSFGJumdOGqraohsEM2D3Me9US++upclh4yyBDfD365/qnIyrTdcaST3EkynsF/y3Bs8CWSw7BjKgr9AfoiS5H+EvqpprVV/Vbl+M/eux+kQBSMHz29g6GlAvyEIaj7uSyARzRUeT24/R3vc0Epihs4vwGsGcoOVsqSAdp1lwfgqMZZ6yBqsRoLbPCQYWwp0eDmeRYfoekUQNa7/Xz6Up8NIpBmp75Pkbw8JXFDQAu28hO9jUNLhA7xDIDWcKWubwLcC7WEhPHWF9A8VG9ARfRDr3Jq6TbExffOijWsKtta4LqUV1YOzcDu86J3v7MuUDynWX5gO+Nt9vWU+BKAdukMPHK+Rab9zt07mJMbe5TCdhGmcHAMKbK2YqDBjbsM52lIDPybDiGGXF7vcDDLm1Qh8PDvEcTh9MqpO/En4pkwLNyVebz2BYZfRUSQnu5kkwA0H0w+rPwtXAfYVABrSSju/njHf+puTRcimv20qa6IvlyBHKPFZIpPB511jlSBtmTUhdKVqxl0StNmHudXJfhEblHgoFcTmxw8x6ITHc6l4X8ic/goAlwD4Y9owxz8g5TfKeBPdnyS7a5zdAnF0zaN2orQhLtJP06ZYLbSh0agYJaGo2EnfXPG2SNenp7TB0Fl+K+tNSpbyYzXDRJT3/EoT2NkhlN82q2ilCTFtO/Hu5cAnMzm7xU0ACiLqtMQaN01tx/10Sv2TlJvzWbZQmJjyAPvMzo5iJqfcWGfdrzBc7luxT0Jsn1yBDAiWkFUe1ihETojdr0wZ/M8lAP4Jd8/FaonTD+jf1DZcEthM51U32AwTNNsb7K4mkBVPjto5/lovh5x8zNprvCaBYjZ/vmnOvY0tFIp5oVBteOLnEwPxE2MCdjcHxHzUDwxw3rnrOTNacUu+VsUlc8kIVspITAqyNV3r3PtDNv29qR3kRD54O1GoxoBOL5+WRR6s2/l/Dhm6PxlIP0mShlmutuRMtGV4pM1LeR4ijSRXS5y9MJYT1q1XmdyUX5XBBFY6GLW11OTIQy1b8scymyXQ7az7lG5v5YBq6Ld6xZsPsjM3131czm1Jas4/oQoBd4i3HUJrOBdxlrJOuPkxupDHMKIJIRxKCCytT0ROYBElXGMOsimmXRSmtcF8HeiEACP6P3mRIKWHH4xw6DH38IzC5J3Uggt5/BRAPSCq1zU5qB3YumMMVTwRh2LqWipX0Ka792dALWhxPbB6L1l1DojyadfmZp3MFv+uYtuBXhN/4QSVJtJ0VxxuDrFf6iJrGxtQ0+3gQoFyDRwk36TQFX0JCiIqGMuKOK4lv115PVfaY5oTKIa3ZtX3lHLWk36mmlf/xZafNr5inZ+V1fmBQeSp61RSypxxuxRqmKmTNYeqT7mW1/SPFRHxP+8qhTy1P3g61SsNLh22MrBueA01lAsUYVqDhLaXuu6p3c88667qHrLpaTX8GB/6ZgWbLcdPJfhZIpqhaSVwQmMqWnvFwg4XZZEntpW21mG4BFi8dX1kO98NWOty+gIs8vahrkRJqvR3Gwz2usF9F6X+7MIfbMbBI5FKmnTg8nZ+tZonvTxIw1Z2iC+w+rjAvbTxTRZ7to0Nt606oqoZdDlVCzQ4+wG/QZ2SLIDj2PtMPqJP5tXa1N3zWuewppCEBgMGiTgvV1ez0RGHgeo1pwpxXVwJXcE3m13KP13wBkXKd4yL0OwuYWMvi+n8CErsk660e5Sl9mMh7orh1FVT6rZpVBFbRL2QKwuaOSL623UMJnGmrOg4ydmAGuQTmiOJMimx9SbeF/5p2aL+Somz/nGvnORCyV1UW1ORhFdeI16ZyEj/NvBNQPKhxiti8QUVTQf0s/3GHCeU5uHIwxylyO4NgYNBtASUUaFKYv7u6JCIOjHLz12pnszj8Gym5xIpME/w9eoDL9f1XI+Y9td214gKIJaoMYo4z/oQvqIOh4mc+rgW5l7xdQiVch/NJvsWmPRY+wGnaSshJ0CRtDH2FoRE2VXMwKq+98bmYi/Q2YpGje2yem3UVIb0nx/TlHydgdVn/PiyBg92Yg0KtukUdOEAviEnyXDSHw1gKcTc5SVPKPTofeiSlxCIrJ9Ck8acBv8wCJ2MXm39Cc31Pd0QlnMJxkdXEITDYYu7aZK/tSssVfhZA5u+DHNzstmndStgbPbNW+iNvwbgkje9W3m87Tzc/1nMdgVIA9wJe0FkGbcs8NVrl6YCtZWFLewx7h2/Jb1PxO16iwKijslws6f33siThPzjvGiv2AQeG1EyMISj+pw0zpgbafex4zHqFD1aOiwJItYRGVH8fIGyczTCGysa4hEoeCK4RYPeFpUXN62Po8wCfdzBqkxwyOT22xR8Bu2mhNCOsyWW0RnAKQf9noYsYyyi+6S/Wfrg4pBcGIa1EbEjGg4f1jQrJpbM0mFp+irZ71iWNpktj3P4x84B3T7wbUQo8KmzZVMBU4ZsZeTW4gA9tYwjaqBmykC9RU2bp3bqc/Ky6Y7XBqmWeguU4KBs8unEfHtvP2RzyGZuh/MdxFcBy+v0bgTIbl3NeEA+MK1G8xpJKGW0MOmuKKCqGDrq0IkuuTLBIRAyfajNYvlVZ0TyxS73MmN3eb5j6gZf+fFMWCO8IbDwyneqOrrWJlVI+7yXfMTjiA29jRLJOHICwD6rSpiRqsIqbXDh4htuO/0TZhrsmexXP9neakozAe4qjP5BZxKK+UkiM12tk0aLRgGCMCgQ3XSvCqah9dDsWnYb7cFZIypPpCwPNXbnJ4sLeSQiZAeWrj17A4LTuJer3GIDOb57QYutfEDmrI75I9RTE/prcdjoxMWE0gdJ4D2f8w0DxHidE1z5twCFBr6melP76YnHrFz68Tk3VMgkoorXqh0f6UoGQBaan1FGM5xvukc6dmexTtlVIKYVWU/HR4om+k9guU5g2AZyVciAtkU3i5vr9wWwvZsQjwJ0HhITU9Be1U574wFcdyGapJg1pTZyUcjMOuh/l3LDUGoP3Ii97ES4PAyfOS5Ch33BtUrz/WX2DPhpDzwT5kCwXy7mSSmK0SYCEYWfBmgNUj1HgeSG/zDJFF+J+o/DaOJNHWysfLUf9GYvyQkHQNMJ93iDFcTNnVEa/WHpt5i65cm5iYt7W+uOo0xqxgRpynUYXZmIby9GWUfDHWtfgVYiiP4N4guq4xIUeIAfY3hgyUoFbtJXFl0eZSUi6QHc5dDrdksExl6VLmXqLueqXDe7TSeyplEbOhRkDuYIa1S58sGGMpoCtjdwEWQjfQSlDMRsjbHL5JxVnKqoVYwrmHb+onDFpsrR/mRjRyWAmc0BiJIKWodlMMfSY6zcN/OgwcmbIrciqBP159bo75KdqCqWxDQ/l6jURHpDZBc8+o/1FSwjjp/k0tpMnM/KGuyC6znb6xUdNXRzREAHpUce2BAiZuqBDOFEYEkUrIGTZVbPHBUOPHwQvcqSjv7nVS+EoFOEMEt2L3cyWg34jCcCHXtOBvpVmlQWKjgbzcQB42uRRvmunR4F4HmU3Kr1gRTmu7Z6FQxAthIcTrdoPa/aKA2aOt2Vmxie/wuWoAV6uO3PP8/cCVbdAH6AZGa5jHyacQkVX8CU1zdDWvtUOmgwOqG3gr4cMIpgpTv82EX4kl4juT7RL1C96r+wXBRKI94yew7AKS7FhcHRZ+Ap+9C4Slw6zApcUNMGGCw6G96zRWCATMClLNnC/93rwRL5DY3ol2N6fKlVrKQCa0M989EbJiakPd2dKc1wvkg6F7dBMUC8fhfg3j812bFxxFguDLtJnFPbGulxcVis6uSP/Ty4bi7XhSPgAotHPEDVzetFeBvNRSzacA2UBrLYFLK4TEU5hsQJ34iWsO7tZauxlwZEt1lFb0jVLxc420rufj0O94h9nLkOL4F+qPXMVws4CWf9LcRVk543UDBQ02SxTAIuQtBI5bZ7sO3V5RT2LZEQYwLow0g7bioq6Wo9Sc5wPgHsB7D3arf13bdYEeFRMx2GLkVvrk8/6Wygrl4558/8bBL0lbcqr3CkHUTGW57GMl+GR6iypS/qzA5leTtWwl6S+/sLuOMJhMJKHnIQM2WWk9b8eiIUf0/MqT3CFG65WW7tpB5X9FCULUkOaBxUzGCY3znB5DToMFOOPYJFe3NQgsD0SMpl+k2o82fGijbJyy7/LCVlGkzXoRspc9eUzn95C3/DiQG5jgrQeSLZpfH3JU8jffmiIFKH0BZx75WgLJEPWQK/6tCF9A6d8RpA/UipQS1nnGUi3jUlqGIscGwOJdSvoqyqQElqlN1qmuUYw+sUC5d5R7/ZtnTwjA9/S6lfsWglF6tGR+UlPaIXYgOttP7147tSC3fLUzHTl7wvB9EimgCBBe8m0FXTpxTAaxBmp39rRtmHsd6GDjdO8eSGhmJxoulP0z8fI2rv7Wem+4nP6GpDaakZehtju3zRpFjMn6oBdjAKvgKyuuEQPhGgb4Bs98qMILIxdBKDUGdQrqe1OwvzaHxj1mCgP2N01hjLih52nYY49zujjrqcjMw4p6FB9VlBZ0aR9OfnW+jJIPKa8sKIzNV4nJYyZeFzduaQCBKOFhax9+UWclvG4uzlGuM2hRj0ags9m6ygKLKgEI76I7/y2inBOE5XPoXLQ19e+h8O44hrM4b7SlXG3CQi5YASB53uFeQUQrKG2auL5TyjnaLFC9IIh1O/VBPjdSu4WlYoPC8fcJ5QT0UUCnxyI3rI3CvJgN9P6W8S993mi0MiuPQQhVBBsUy8iGySfyHdPd/8NnEcwNnGToLTQCS9la7uq0lAo3P+mtqc5idkHXIGcMvoYPbralJykBi+YM86qBpNMwxUVj4omGq+Hi+ZvJrELlWrhRcqi1mlJtQwoiCRzPy5RtFHlI8KDgMxQJEyZ84VqzWU6JuWlsg4lYtodQZavlEn/JoDQ08EU7pIpWhIca3084sHqAozA7i9DFC7k7gMOxTM91wVCBVv0uYv35wFMcPYeafKNSzCok5DjapHmTdzoC70MIclX3TvZC60FsWQD7J/wKtZuY0LXgnCcPJCn8aAmqFq+SBdrUVlEKv9SPD2KO5Bl3o5K7FLcMlLiym99uX6HwILfR2XRUAxVqg8xLhRQ6C4c7zXq/jvozh/ZriXT2lW4rGK+Q21vzAB9MCBskOi88P3ZvTew7v7dCacZyS59Dqt8+HigwO5vYLeO3johoBTpALOGk7X2N9GFEHk6aolfDzFIEcG9m7v2rR4nPmLyBiug7v8whFr9qSctDy3yFzIqvZlnqbKKejmyRW9/KWRxmcfoBg5A9g+KE7qhXInMTTKwLC+LJbPGR5mEvM4hVHZusDIixkCkdmpPwf36STahl+M4DOhPt4d+32aka1QeUCrLWrbEjZHUlWixRfvmMsxLbL9waNyXjWHkcWCeM6LtmYUgyETqnZ+4KLvM2cCv57FsInB2nTYxwFVLi772j/1bZDsMSnLSKbHh+jeYhx+LuzuMLxzuoOkPKHh3qAXqDkCBqeNJMVe1E//UInbgMCkH1Eex5ohOOeOqbrT4CirNh6DPrzXTvXPu6d8yR2bivkE/zo3AD+T71nPzDsOS75dbyzOAKqbnROpCY0yfF+Aww862pnCAgSLxoyCNnY6FqW1/HozAIBFVrfdzCweMCBweEJMJLA63X3YsYHBKVA1hHK6FaJS+3NrxMBqmeFd14s9oVgtp/yorSFE9rMqs2omnPqFS3eg64SCzqR3drbGgSxvBoQQaS4Hen0I5WqRR2kaQx8mzv1vPuvNadJ+MXgL6GcTaq40emehjQucgWPdHGXJz9F/aOBKvB3qtEZLVaeNUmEr1kenrcRkZziPa1UpDZOrYmdHtz74akEZ4Re6v1G0f6l43TI9U3S4xuFx7BqgIpTx+zyQOqADPhyMWxZhaPHqMDMzX+Q9msmIYJiyAvhgyeVq0s7ikEBrX8p6dO2BQi23fyp5iSso9AXma8cez5iydu8OBrlMo28tsmWUTmQrK2yvMjH0PLdHznBS1oKeyUCvcSbqOV5cYdMHnIq8mhLF8FDbq4FXRJYXdKVZST/JL42zWQB+AC3cOKPdWBESqKpu34KWys6E+cu6CuOxWFPNFmQLyq0J/yKTTAAuNCMfLtZmNs9YTahCIp/nBuagygq/VTYXGd8EIRlHQO8W2wgGcPuQ4immCXK4iJk6Ai3JuBqhkIj23t8HyY7pWmVdJ/Ek3nzTWjyZzr9pi2Ae480UsJXAa41rx8RDqMpHRnSYnPEzURT8/+SZfuyRof737nC83v0Id0fMO1yfc2ob3Pv6bCrXn+IkISU9L4D8SuJWz8fvNe7Z7b7yqLHFB8Auqs0RPVbbaZBys32opxA6xSkq8mNUFPo6T4yptqfLXA8FBjX6ZdNg4vlZypPsBa5syKcRPeHwoAzD9cZJ5JBrR6/xDXioHnHttQSgMVFJMV0qigaxvDHkksmH6efvFX7Rmt3ATHl+KNLUMVKeUHz9+SZyeVJZGHm70GkeLXuBNCfgwR7sTooW0jdYO1ZZTD+WgNB0xUKjH/VsNB93wGwn2e8mxEKGwD8w93IbN5Rnq+wBbNGSFNjPVPPhejERlHDcyRsjODaRWMhAX/4cbkEwAqsljT56e1GZkiIiKPmV1JxhOBXK8p0X8H8gRF0ureInTn4kKlgvDZZle+XLOqr19l8U88p9CVlxse8u4btnKK87vwiHoQroJ447RnhKDgaEZ3liSTdQZ72IbZqVPe/HGXr2Db08OqMR7ZpHmvgyz5C/ud5qARuUgJdji7k00c5OOrtR6y/sgkcxj6sbzf5mghHFo3bX5+5DW123KMy3438iDJ1ROSulP+J0MLNgrtVZyqeHuOKmoflDi8wAx4pED2WHsIcF91wexUDWPkpxT/VpSzenWrBTD1cYzLi5IFYBH+LqbcwfR6+31U1vfkKDP3i8tCbjLRkp9f46N4ikfki4ZmrbNchI6GidoE4fcuc4ONE2Qnr0K6rgV1w8CTrpzMYUSAhPlfMiz/1Ey8YpIgRvJFIQfkiIMKeDZqMCmn0Hs/BKFV7MgyIE0FcIdsmbiMu1NRQNfs6JwJOhZVlKLeRgmPbvykVZ75yH6pv/+NGHcJw6AqvKbxswDDmGx40nnjjUQqR3EIfj0b9fIBTS7C+/E4XpfDoCKJzFxuAkDNhfiTCun998sfsBd9y/LFIPrikS7I8UyVS8+m0NNLTv8/99hvNiw+oIr1Zl0BIeWSFRTgLV/4APSxuzP/omsg8MkrgJyHHfpcAi2PQ0vSvA89y0V/XLfDDr+Tv+jUX1fZ3D0uepUKRxbtW0yI9mYWtKyxrrN1KJUJc2i1hJS2f1ufPI2PeTUU7JZ3xa3v4HIyzkIxrGerlhFiSJmYpLlg1LzuQnCd7N3879a4NePrvNZ+735No3HYXtAcMpiqf+vBFnf+231rvCkYX0LHCK0ntwx261zlAIY4zCAGLR+j6mzfotybaCsk6ur66wPAS6p33ypZneg68Lh9u/acTU6JFDOzfso+vTenBNlTd939ianhrD1H6ERbsP9DFUPYPTek0F/iRUjlD9F+NhNTZjEM2t1DODblc54msyeegpP2q8omQuyAF6zSUeYPdO5tHP8Vw2N4zcW/y16xTMT3i53KdfxFqxK8xmKnhnP9FU0Hnl+Pz6TivEVRiixfvEd91uqg18JP7tezJIw/owCDcWH/KZPpPoiqAk6u+dWt538dQ+DUY4J6vIg60XamV+aBhhcIgkK8XpZLEcAqz7JjNAOXRI2UmOrTAt2eJU0Y522aDBGgFIZKwb9NziGzHPffE+UUFYhgzkBppqvO+ceQMHvDKnsojaO5TpxL7Wv5zc7Sukxm3HZvlsXcRO5MGDIx52mH78a9E6H5tASWK9ZOiAmNHhkM6r50HTbWhJI6begdsK9itIRygHs/Jkz+OKM2CdBLcodyYfjtfnDDcuu6aq4+tBViWzFxyLHwyJfkGcf3LC+lXpTspqHEFBNtxYNbBuvTEHlxgucvejaiik2z5CennL618UrJq75Vf0OcT8LyYhsNzlS4F+3DMZFxqtOy4skqsMtE2/AWPxutpwaTHvP0feEDpxq/3uHzNzkIkGn6FZsnN5tTX/VW/tVeUss7kaf1/ZmMNBA0bHk7I+c4QfyqEERnVd0KWKGpr/Xh/05CJFh5PIUea4/2q3fr3zP7z22+MPM/UnnmAtV50nGIAT7ZXLdDKIoblUnupS8BkyVF67VruiJFWMPQ3kCJJYKAV8BpbWFWij1DBydX1pDz/IZ9JCd+fUOV0hwzz481Qg/zW5hdnBvM9z0dtICmk9CygpIvOm4j/mUIczubqrz9QOqaivHbpgIlw2+XD/D0cXLOAblU33EZwWjJMpNdjh9ZblcgbRn0J0J1+Klb9H7y5NJjHciFt3fqPmH8dqStCtTe+WvYR7mRiKkdwFPyoNFD4g4+ImOaTeDhoU7Ehq7+6yZ+9A/6zxNzzaDpMdpecsDOGkx1xTYYPL6pM/MKT64OtsAuKw/CcBolTeD4f4bTjwpFjORp4SGdO7QHHtHed0IUtH5vkTGhUNpqmbP5WWpezGhKTVYxe7Z0q6b9sQYkpPBDX1zRsULamcVvGttgLZMiQDsLxURxQAkuZ1fkj2pTpkWXKiaWpvvKVuxqPfc7IftZ9vadQ8DmRPEy0gR/AWcgjjuWhmurfY2fQAJGNfsDAMuCVcByTBUlSNE+HEOZhomL99X5vLcZk1GnO/NoHRzZp/L9eNkdoxPhNflEo9VpmdPU1sy7OvbXkMJ6onKvoFLFz3ksz4xGD8BQ28VtkMaV4MfW0W/zeEVS86pcwXxeOJTkv8YwqOeU3NX8jGk8jOtVuuCnmCMzZ8vcnYjByiG1FsGSOp3eQqkUDwDYbdllnkwg/BmchywVxUBBc6fruohX+s4KmgNbLcZiw10jseuBPwFTq/8e7HyqGW4V/oee5c/sfLYyJn2gIWFnmYtnHFf8CFb23vynagdErOEzsEFeQgx21yu6+2xDxKJwoPMaoEQ7unD81Mgyr3FO74hr0K3VxNEL8v+peMywW4gwOX76vVhXYk0yqFsO1R7w7JqDIqppJsYew98A2vZ+B+8weEQVbp+2/y7ASXyniuPX+cFjBZTqPEhAhuPRbJQhg+1W5qmewPSVLUC2yLnAP/Kq+MBWqWmHngRDOnOSJH9GCJf+Qw3GHz6sS2E5o3D+O2QbnpBIvHE6jvjh8VDeysMnTDNK5cCylR3IA+IR0BCZUz0Q+XIgPqC+dxb/A0VPCkf9i4UrJvfR9ueqB7lWtuap8QjzkSqw/neNo4y2n/IpKFh95wJv+1zugPsmn0P65AfDZU05HOxy7Rru52cUAp/zclNNS7NbQxCppYKGGHv1eI4wAlusW5qP0+uKEOapuWlzUgSLKMvSOrrdAmKsS4vC7azWkU49N7P3cPjxAsqxrB4DbD7cYDt9wcN8cT3+MPYvaNmwvpJdGt/k4U9BSwZUyLOpVCfkBmoOKFW5ePYjQqhweOzX7VcNy/QQd7amgXfcbtfE0qxwgvkHbCmB0wdZb1tZCxHFVbSZgcByMTBz4kAYD0dn5FguDT/5y3C168ae4LAt6vR5VTTWunpREDUpJp+NVQ3OAE/nIVLdYf6xeKG4Di3lnPmSYnSMInfmZSfimZlZU9YOVghcTCmYZoegsbEnN8CCit6O2sLdUrgXkgG9oyAunkwsq0svhWocfP+fUotiJqw7OU8AdYEsYugSwk1zLomtjdaeC0xX5UXeiHLhc0zGkmVPuvMT31Sj7BB0SrY87zElPsKI3VsI06+LlgtCIIVv7LdkWv/BJwMpwCbcSUVrA6JKwNzzUaZBzy3vK5p+OMLFoq8J7iPw3MNa1Us5EcOO7zGqrKcaTGCAzPHm+37q3elvCSPPolQ9hGhkk7UVGbIWZU1sNA4RNiXmDQjczZkBxSc2w757auMFQRZnL9MnkrS6f8XEIJtLQYMuJPXck78G2x+Azqv/F9smBBS1KKOK9lJZ5Um6eaAeL3EXm1mgv/rXhytlDMd9cEFDWSFDBJkMuczoJsYwZHmq3x8L2mPHAwP7oL3BxnNAw1nXpSxK2Mm7ar2mTat9xIZbiK0SVPiE9oeTzBQHCW9a2RSRnKVDaQmcBaGikyYSi10wpn+P0whmQCJq4PFU3np38bdP5vGDxpTzCk2+KoKwu/rfmSWct7xdONTtYywjRY0NhC3KtXW5KXiR3mVu8L7EFzD9Hq1MUoCgf+hlAdW7SD7AiHtaynfB82EsAIQo6L6eulVUpX2kbH+SPQ/nXxvgzcD+7QCs0Cc4gDPj9n/YFKpcsLGzIWKlCsPh2T8dQ8BIqj2tKB0JbxkGqf+Wms30bO09ufHq6l4NBf1ICqKBA6zKSAVsAp2rzaWjZSsNe91w0srccOzQ8sccKl05LJRZ7upgDCv2+wbwC/bt3ioQgIt0i3GtfOx8GAjcWXcNkk6MR2hO6OVURaGN/Xu8Fgd187aIgLkBYoYJu0RpKCPShOxxAj5qdUeare/pgVb7bdgyYyUYM88hLbWjYwPfDRQ+CxqRgQxsCoODU0MNjY1SlFI9jM77/fQ0YdlLrdBarNVoOJdq6EyJZiTI9CrSxTXRGvvxK+Lj/3nqBNcq2uBMS/LZmDbzTsyk/EtJm4PArbbORKEX55NsGaOZSx+MYNeKcgc1udEPs8tqZC8sZnnA7jJV/kMlScWN5cR6vr36P36pslKgV88FLwFVLJDfI/y/K/Llmm/50BoiKZfFOIURGwU/17bYdnpX2VWLQ3xWtdhQ+yWyN7fbUxj7nn1UfkWD4gcVijNauQg8JUQgBCq3o0QdYcB9i3MOK6mzPk8ImFQSxVCMQ3T/sVbLUo9UoNVTaSzvaVrNXrXK+wRIuICJb/SP1lY5/4Dy35LmTN+lr2wycvUS+3f1HsTX0qM9212ENSIt+hpyepVz0EubI+hz3o9IX16cxXbWvbir0wW2xuJc2z1Mk5fSSRYMO5N5I/6lggSVnvB6D1TrXyBHn4XyDW3iBXl/v/lgNYfl7bHL5giavDST60km7wgg8FlCn9QYcg9dx6jgnsvcCldNKGk9MDUAl6H2Y/dWJazZ3bo5ls342mE9ow1TOLMVoHk2ELw8943WRO/DAibnsjM7ibfjDyEUzSTlZDhFVyVrkQXquND08T91YrAP34P2tU+QTQ6Mz9HM7OzRT1rivttKE3C5ryLWLxxsGUvAX8vzQz3LreoYDqQ7e9iofkYKGrvHOKkscXwb8womhaXZIrHGF5svzym9Uy+kI8m8c7cNoyRbapJoSMiC+joGfQWCCrhbZFSPZfQAVh3+m6+UImeClt4CExk8qawrLs0+CK2ASDmUjOPLJcclL/2sck/l3QPHqyojN6ZDryJx7kNPIoaJeFCb1k05XJ3s9ouI5nDaw/hb3dvqU3hwfOW7ymSZyL0+1jfUVKHr68AA6i1Jofh/m0zpsUAgpjCPufFvhLGpa8i+ot4axD3T0mHdE58mpU7ps2Wd1SU342hIt4n8L9keEl+Lo++KRveTM7uj+m6bAIujW5ev43MpTlpkKPG4hUwy8dCtqtaZKXVYpGkRbVYxFHDknDKmzJ4CEnA+Trve88G8/vTYhIllvGK4+rPXI+7+1P5W4M/ZGx/gtSqWVjqmEhTavouijFEBL1Xun1AZnRcbq79cMThAdiDay1rBPPsnnAf0MuOuIovK+7OSGwFVNxhJyC3+6+P8tvAaVWy/BrZ/9BuYGxyG7hXiOBejI/MJDeYA0ZYgcEjE2ylVnOgh8OTMRnZfJY1OZMvQv2gWIV3qd8EB386IPucIdBm3BGy2xtMnaGlPkQ4BQM1a7nQUxCD1DS9mMTTQaf5MRGHdF2nm297h7P8nGQiSSagZ1eNEiH6rpzH69DbJuS+2Nyg7Umz0fe3wpWG+GSqXzPFsidb9PMBHBQwLbCO1pJVpYDCQ9E1LLS+yPU4el4jAgzA75nEvpHAG47W6QokMVYBjdx6igwxijD2lKGYp6zzPsUhjxuhNNCtQxb1lbze33pdUGkL7I0pdzBUS4yJ2nRtTdtuDb8r7LTzw7fQbImg93RzCa8k9j4U02Gwbr5j4EhqJh9eo+f0AdBHV+2A4W0IsRIdwyzdgp4EFz3/egWaC27EkH1WDJvrwDe4oSEkh1G2B+8Kon331pFzukzZBMEokwtUQeslVnxXCpuU3DjFk/NJh/BG2ip+MXwdBnk4yCR+DyPNMtlbENM4fYn0NFpeOsXn8gWQE3s+cMqrQax8nu6dz97k7kLZ0rnDVP1thUvRxFHRLPp1Cz+wUFNfulPqnPTgAKNNBGsWwsstOYvKrlwQ5cEZNfVBlbWiaOGqmLmsy2jSRRTrMxmSwsxj1PIgeHqDGQScHbXawUjynY9B70W4dKDYexmPDUlv6pwO/sHO5D6FB8m1UhB5aZM7buLu3LzEC4EJM6SuxrK7e1TeAxg1psygPQ9LS6gK7taxp1mAZr631bm7SHPBhAb1srdHdR8moCSqgiqg+Uv0tVIof4M/6P4I04w0imhvadOebY7U74nIgx+AhS4rYscZotmyTLtkPutpXrUl7kg2XMZyOSEa3S3FgB5bbvs8lR/ZqN+myt0cGVtEmpthQxttjSR+TjFNBoa8KRvnWqUMKM+LL5SfagmoZFG1kl0/LP6IOso8y1zm7f3PrsvH0FO2AJGSsuLRIADturUoDWGePO+9zoguYruaXSK9GcQn6x5zfiCNVEwqUhyxHNunkI4sNeawPfWUwqIwTmuJowNPtxanTYNX4YJgExvvkc8YyW70IZZtEZEaaPolTBVvaKNI0MvgvcSV4nLzKmfGkUW13you4e2NVZ/d4VznEjLvbzLE/xFSXq89gx5Zl9KmbfAa2sc3f86k+EZAOdC/SJZNajZENl5VQGmc6ClfSf7qjVy5DxbTDwV9Tfn8TvTwP3MMWK3kyA7R7Ezbf0Lu7JMkbR3Oa8qJmFgV2lijAy0BgNEOyt562O7nzSWiLxh1usXOMUCzoLA2BWorUnGeSmkUq41qpIZ8AUebjjzCkJEAB5WIdaldjJgSdFnOIhglR83+5Gu8E6IOCwB94wzD3Li1PzE3BkUlxwXCXSDV4qGt86Z0AbpdVNJtZ+UejNU/te+8DhjH2H1swO/ILXN9NdI4rVC/9sIgxax7pTnmGqTnjF8UpzMb7z/Wzj94PJOXy9dNW+jEDb0zujrby9b6VawVqoju6/EjUBxU3B/5Bf+4+D/LbqjVWHNLuMPa7Ntd8anhYM0K8yASrb4IJMKMbOrwMJQLnHjt/vVucYx9QEbrJRawwFIekIhomJLqPXPi+3PVmq97SLZ6kpODPRir7c+wGGPATFrESD5Vhlkzskj4FCKTT6GWNPWa4lBpXGCZXC7acrBcjsa9cnVyHpbIBx2qS3WMdD5nh5R467XLX7Uh/XiRAn7NPuGBxZxuYyM8nPCE2mQe+DeQ1jhyCIZdLENdOtyx7W6njh65TwHdb5U0Rrh6q7e4sF+OlZ+ICjy1cxOOQDM850Y/PARz7WNRvgBPL9PyhZxSo97bsil8hSk8pmB6AWqB12V7l3kUIMYnpeR8E9Y2z1EeKkEjly6qU6cToN8EWRHMn5lbbuA9j5+9Vafc/7h8shYWOBzb6Z3Wmwp8Iefn67hxpK5nKEuuJ+gdqnfb2fKDY6Zx36AxA3JAA9+QMAe8rZw9vdkTAFe+tx6ZQWh6XHoS4EQI1E7vdmqjJS2W6tpvocZbP+b6ZuT9p9a7LlUdky0SyDeyB4DeH9rHTUqf78rBO/G9BUC5b/3yvcs3K+IYhxlbXvhP4YcmMxWMQ1NzCV8wGU7l6zu5WzmSWEt0v8Ay2ej9mZQ6kqKJODfE/zsPNx7psDPV4Nv1U8E6Bg84SDCR235AuAsIoCyqdqs5KLTVZSyaOCvReMYOAfgt/KiRGuasY4opvjLoLGqO0NqZa/QYIc0R8ylGYFYNjsC0bMvhNEHgCkEPPurn+RSl6CPrjctUdgJBmE08zqwfL1q42sMtoPiozxElosljVPlIKrz0wv2O8g7kzZh30ytbVlvtGDK3EiJe0Ji2qmdfolKlc4g/3i6NWb9DLsiWipz+yzn+141MCybTIgu7+xODD6zKrp/YI2R4+wPaRHWE0sCIpoArA8W2Kin3Hxji/eqChUTJ9/7unO/lOCBYNyQ2klnqkIH7XI33o4ZOb27Na36AldV4P1Babj/OUNJqpMJV88QKsbDenZYiqNQ2M8Qe
Variant 3
DifficultyLevel
736
Question
The West Coast Fever and the Netball Giants are playing netball in the Super Netball competition.
The stem-and-leaf plots show the number of goals each side has scored in their last 14 games.
Select the true statement about the data.
Worked Solution
Consider each statement:
Median: WCF=73, NG=65.5 x
Lowest scores: WCF=60, NG=43 x
Scores >70:WCF=8, NG=5 x
Most goals: WCF=86, NG=82 x
Range: WCF=86 − 60=26, NG=82 − 43=39 ✓
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | The West Coast Fever and the Netball Giants are playing netball in the Super Netball competition.
The stem-and-leaf plots show the number of goals each side has scored in their last 14 games.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/08/Stat_Prob_NAPX-J4-CA38_NAPX-J3-CA37_v3.svg 360 indent3 vpad
Select the true statement about the data. |
workedSolution | Consider each statement:
Median: $WCF=73, \ NG=65.5$  x
Lowest scores: $WCF=60, \ NG=43$  x
Scores $> 70: WCF=8, \ NG=5$  x
Most goals: $WCF=86, \ NG=82$  x
Range: $WCF=86\ −\ 60=26, \ NG=82\ −\ 43=39 \ \ \checkmark$
|
correctAnswer | The range of scores for the West Coast Fever is less than the range of scores for the Netball Giants. |
Answers
Is Correct? | Answer |
x | The median score for the Netball Giants is higher than the median score for the West Coast Fever. |
x | The West Coast Fever had the lowest number of goals scored in a single game. |
x | The Netball Giants scored over 70 goals more times than the West Coast Fever. |
x | The West Coast Fever and the Netball Giants both had the highest goal score of 82. |
✓ | The range of scores for the West Coast Fever is less than the range of scores for the Netball Giants. |
U2FsdGVkX19CYEaxjnuufD3AI5Mk9cQJ7kOyyssDLvtaSpoDKtcO2oXZX1ejy2bvpVa3wv9OolqdwBNMy6Xszk8XBDd+/2kauYvXIY0rcJh0gUj2f7PIE6S+sfbvmYYF9Dd/wCUfmlUc++H411hj4cteBusVwgcs9vIyBnRys2Hyh3vhC4P+fYUISW+uJ61VCaWSNEYAVRvu/zu2M4ycXfT/6RxgWaywICbyiLfiGwx+JnvUphGWyheOUeaH8wn9+f9nCYaaJI5tf5UYrwKQA6q/feW4vXn5BpP5hm23IuU3FEaVeKsZ/VYj4CW+4Ugx7fVBPiYLZfU//H4hBSkSYttFCLW88ViSTncevhKCFjnsWzO6ujkS7Yv8+boVZ6K+hP0yRbUDaojJdZZa+QVitbac/tzezPRCSz7vp0PT/SIOofQveOriXNZmaLhV5yS1/WelphZpkPcp7UoETA0Z5S4JE0cfkOZbOM0Yct/OAs6gl6VhLVNYl7IZhU2TpyvjwlEf5aixK6oSkYF+vfQJ0NLC3vcq2OztfVQkdLcPO79wnnXKynmLsyU6nqIXc68GKLWpghhQtcMVijAL2M9o1BgRDxTxlYlrMb68FJjcTh7jfSxU3Ue8HBeYXqH38Oo9pZP+5EBbZLFz9e1x3K0O5W6hb7pSR23oKjgvUIKNGqfqDhhErFLa020nDjqsJ2cBkXIeEqbObCGsX1hMGXsuv32yzp3smmjVJJ5ION1g6nfxp5XoBYNdlWBA5mn/bqUEoUEmjOqEAi12Oq/0dnmebSc/DUgoNYixMYffkC3aD3Q9sxSe/4IsHBhk2OFP/t3A8Z9ibBUo3DBz86iIa7yRKkYdyjC4T5ePa9n6MqvsatMj9zNkYFxjlSMyzt8xvJJFKB2uRY/E/pMyoh39tUDF/nJZX4bFVAGCgSfBLVkIDrIVd0XQo07V26ihEoytFqZjhu8LeGbmMJizMqFJp7JXENEcJCCp0uuUO4L2s9uXaY8aapbiXWlXLFPrwO+2mKfmJ8GyDIUNvCbH1NxBNmoJrmtHr2E+RH6Xx0qPCSGiIvbfGpJ22TkdGQkGyb72hURLTaKqzYjG+i2+tgVRmHtbhconPJKns6Zb/DIBBzPxMtVoIlqvVmLklLPywiay5ZkuJEiVWgyYApUqr7IuDLG/g/SRmbM5B0tMMIgTQddA199Ko13w2js2h0AuhOr9/5pIh/JbWbkx0yelWtBJj8J602gIyukPH0Kz6AHe5B04sL4Sda3oi+j9/vUE5hJQZ5HyrEZmGRGbNXJwyh/qw+v1AUq953vWUXhLfsIRmWq1HXnme/ugyy6naGmOQobSO+mIN/Y1GppaSI/df4s2B1Tq0H09o6zQZFIzvfix9bjckMn1gRys7axWuHVyCZMocC8WUJHaFpammMJ2d/aFDe1bjfpSNSp7N4bqUukPvvK+sDLTiHUS77XPCd3lkq9pnkiE39hV+4vh+rLP8q8VDtSUTOcNQNMIjnSeHKncml/+BafyFpFjsy8s+oYzt8STUTBu+I1gY5fD6JrMCSyGoKYkWPHOwGqrY8mQORuBpprfRhRmD4w3NHN4wjtsAi6SuMVafqfHqF/X6rOStLT1Jpycl2nwGmCb4fjkHo4wA1h52uIrUpbhaDvLsbiveC/wJsdYCTrVDBNAE0Xy9ZeEU1O7DtIgbGbdZH556pQRPdetShzXCn5OvXpxkmtSaoqR1VqoB4W0ChoxW34rp9wXyavg+r9z8MXccySOULbFlg8/S7UmXEnWnpHfHsVK9GFASXdenfB0+pkO3rVE5On7YNDxo6YZGjqCfsumdK2/58I5Bu6UX4cSbDQaOgIO353Kpup+/DcrVdMlmVKkZzVvoL1vqIghcNidf+ATMDC35SAFP2oTCfi5ardny3fJv9CtB4kd5XB6uw3HqQjEevUBP8bcO3RnQuR2BjOlxKZ5Oy9zAd3irqofRJjPvyzZUwkjHlpZJL8xrSalPyRs/bKU+YYiKc3kGswPQtdVKmMi0t0i848yzq5J0Mp3VFEqhYPbICpWiywpv0zhOmEeX4m9aZtxyRGZIramMm1vnXrPtbxaqOaTt86ID4W9YTBs/TStwKiDEC8jDgik8gfbgVWXhqE2HhUtIvDcRraiQ8qO4ViyUiNYXto4krEX2ENU7D+E9PiAByDqN0gvrAaK1JToc337aQt7Q11WU3p0xlb/Fy6usPz6ujOOFKlceoouAC8f2rhqv3lYCvXf4i43kC2U5ABsbxlKSUA4zwieJ0laJ9gvolygcBXCzpW/IkbOx+5Me+x1CaGZoIw+3oHiYVYMJMUb2NpacqHX3e/ie0a1LYpnBOERJpjrJrFwSTaee7iQ6Xqv2QewMM+9+TOdO7ar+cjifxBp1X9E4CSo67gToi8Vpy71ZRj8BB2oT1e22Dq3kuRgwFU1kI+ThFoT8Q79ItN2zciuCgqfe5ueMJprroKYQ2wYQQGw3C4VBrE+Cr5bVrT4YzwbIFxfOwf6ieOF0lgqZFCrW27ULE+di/iQJe5ZZ7iagukU7lihUXtwZl30+jTq8WQmwY/zTNmUJOK9t4MzJt3arVkCtWPr6X+ViyFYRsQFQY6gFXIaeTom7v4QlSkCVN19lTfZOgsgxEGUjBbvzjJ2em8GojwcC53PXvhqBamOL71iazKaUi+icf2EnrGK2OS0cbsaibvQiZ/QiiBj3Sl90BnK1v2XPvIXDs8IvBvUVaq36bRM6BUktc4ZcPk1Cjts5/xHKJEmR0NAnZSSb5MTpCHWf421otmoEyFYUQ2ThhRrFcmCdMVXFerI5n6Ft6eWBb0z+vU5It7K+9OffUHlO4UKFMVgDRw6hg6GN5pjz3xm5aLcHXkjskTrXWhzMqglEktyEQETmhxDFLeI/UmTHrzRwlOYqV+ByFdI6yxiXaEpDmS4ziEAmDqOjwIUyxNKdVGtmRATHdX+5XZ9aFN1jeY8AhTD7Icoebvr30oFm8IVXwjNIRWpcO1VD7QvanXChPfTHiHHVRS8EgH5lEVaSYNPDTafNBXpcQslxSy4vGZmGdpPXUK2viySzhBp+/nF0gCS8nt8cdDfjHCPSTxnM8eY0aCe134Jc+Rs2mAl1V1WAiRhkPgR92+hVEVHDxWJ8iB1TZT6HbcNn4gGhxfkGHD2/mVSUphj1AmpaFeUawUdYs0iBY6+gtRbfTpLuIrlJg5pzsc5XztRWvplSTzHrNPipwxtVr7AkbRKzFNlfQpkXNVAbj/Bxkx/hjJD6oWyk5bbQmJVfDMWguQiFkHe2E2rO+SxPboHBsJ3FkZQhTTy/kHnjUXYsEO60mTowIv5ozEYgH/YLj+apTfQ/lZazUVaga2uA+XSbUu6/EMeoibqT2c5n1IaoS2xTfbo++ZY5tx+zKsiBIs/JijZ/o0u1gN8sDoovCtrHKUnUzZYhhsvG9bwLep3farjkHC035hutjinPmJakBNIcd+31gmMg/5ua6BijwTfFgYezugOJ4oq4paguJ5+u87MEuzMzanji6/XRw1a71XMQGtxeV2eqSRlMIXl8dTedHG8gjnaE4O/lqqpEfKkTJibGHVIRK6FbAl8VdwrCbkUGi4ArNnpOFcU2fAgY96hfFmsVSnuQ/Oa8vekSl9XjipVn2WctCym8vMPXAMz+lPMPwuoBEjVjmo4RQ0Y8ZSNbkVh0TBcfm/P75f7Co4UGXfaMEs0cEEBms5wk/qgFA7nZuqCXVmgs2CCxGBkZ3z8BI2oFc2IMDth3gLRAWyiIIeIawUy+2Cyhr+dyb0wt20QHs/hX9woYp7wdnP2XiZdwkWSvzP0ymXkCK7iHnr+Tr1MmpyC0jhPEl0b9MkcsBXONaYKdqXugSWdvGxFew5rzn7t4ZBsd4wdd8Zm9hYoBg0cuBdSId2I7wJZORveogLZyDECneacqWncTq53gvPiyEkyHqyIxd6IeNZcBW/zp7xk/EGWTWnKcHQ/8b424WydQ35vUAChIx84Ium05JUvnyo07W4bKJKwB3P797Ii/Fx3Lguo7DM670IGBEO0TKpEmJguiCnnCbcUMTYDHegggpd0rIMTky5br+DcAlK9u/HW1Ct46zgWGgU+urtcUhJlPoRBawgG4fT6kIpsIc+SCURs8vfMhVvYkmDIMei9Go4CACRrYvCVeEJl6Brd8rLDv0NhECE9u0NwRq6nbloyOEScSaf+u2imuTApbODEjzTMlwWDZP3JANGkv5+7QFw0mdACvAcndbsUadzcWx2GFpbeDThE5XdSOZYJvRtgWAMp8vPhtahbuPUGpWLrDAVIaukHi8Ix12jShS1X+wwrhOK5WdZbAdvfABNjZ+Bfy5nJeZKVQp5z7CN+RCTuFeEZ1dxcNH78ffSs43gtva9cG3SD5Bpnc/fDJRItJonY87DnklnJJLKejn59EH+CbjcIk8jS9agW6ZN3JP32Tz6oAbaqNfkx0KzjuYwFp6r6U7KcTjXw1sSFMURwcALyxnTGQH4TOFp508k2jnj7tqQiVr99mAVqrexBpRixP5AW5qrnSupvC6J+MW2E5/7Fy0Rj3vMbec1tIenATTLmoBCKNDwJI39T1hOolal3boTGqB/7z2oQE1CnyKvCZpjZFR7IgRpjY3IjiI68XGyPZcH78Tb7+gFLNSHzFYqBpGaLZ1z7wJL/BUqPAeq8KQeMTGRi/o/u4SXSlk/tgI27QoHrwKgGBMuMkmRJhdFvQMeMb5zmuHjbWfVic3D0KugoB71dOjhoxnxTGfGsitPM3JcEI6kTr2+F9FumEeOZJLTCW0Km54zsulvnb6FJj2fWqk+mh0ZOzdG25z7Q13hVY13RmL9+Ogxlr3XtSvjroiOyI1+ON6iNxk5cYrgaXsT2X056j/QEsBqynJCv03GMED/MiVNiHdIn9DtJx3OH6bqfJkW9zlmThTIXqNRlMDTVgh1LmZONwQj97UG0nkLt0tOnIlMZIcEfsPRW28Fhqw00KaE55g+W9GgNIHwH8XOzAADtgrrvDvl0KueZ7IwFs8nv28DQ9M12kfc8Zk7wF6GNDG+3FjrSHRMMWl3k+KBXthOjJZyYdUeHGy6cy6SrHLCt3CLGQy5lNJDdxr0TH/WYY04en+lpVBQbi+HdWSk00ClSOeTTiAE+7xJhwJ/jB7l/qDQ6tdwoan4l6/p/lzLZGdqi1+xUqUp85xNOvckbjzjmah6beGRhljKggoSXElmgDoLHtZJWoObcWBKiR6+R99eqwIh+9fHzAGDSj0WfgkLrvTP0NU9cUXV9H9pSuXn3Het2ubnCM9zrYY8ZrL9+zsnQ7JrvB864CWEKx86X0fdS6gQQ5LgVd5jMFhGsAWfcBmIXTEtGC/VWqPB4ceLpAN2Ofxif14S7/piMawK7nhJhbZG1fpWokagw2XrcKM9hvWL6Xn+6H9pIQWDl2lRgQQseHxOvAxBuEYgqemqtxCekxORqGJlUuf6oYzE2i91f8I7hOZRcftGHkGyx7oykLIc65ECjFt38s263LAUdHV0FVUaGJpN4nkiPMs0iSj+kWKtRdX/2iwGX2y1OsEAKNIcDef7XM/7Mq17p+0m671pWJIqUGnQgFcr4Sdpd4bkEagpHMyJ8hptjqMxPND296cw34PSfN6Sf0G/quuM7W5rUPO370+b0vx8n/eSaWOFtJpCM/lzGCyE+XDmvCWJm9FN5wleT1Y0QK0OOyURmYa+k0kpYPPSbH6fMsLr0i84xX3UBVipDhr8N+y0x+gmGK2KACyVSzPZY9qxcl1VizVRnIPYgthxFVnOH/q1eizXXE7bfe4s4ksDMA/SHIcBGw82zHpmczCEwBJxA3nOmt4tB+KjtX+F357G6KGqtVcWWnoE72mMfxeYA90CmbM1/RzzmnWhtI8Y17oOZwc8puUCMhXVPBa8aN1KLMFALIOvk1us6obd4mKuwocwRw6oa5uO8cG4Ah2ZQZNcCG7uJLzfQrrRKk05xm1KsWXRvUnX+Z7yB01GcJhKvWtlBq2y3l6Yx0aKqJoTD7LNiZ/j0vE/BW275v+PHR28x0u6kusWXvL6UTvFHf+9iZBZKjXVBVPG/kLaAOz/PY20qFKVmcO/73wCqgrJZsMWMDCsOc6S+d5/O6GTVvyKdhZHpli3rxQAsvgwMP8LR9VQTw72hS06C9B2GbAF880pKfulK/+QK6FldGe7kkJzo8c71dwD0BFjBaEf8mTZ6OI2Z85mz1xE2xVvVHknbpipKJk4VXiBrL3ycCIcQD3ibb3kCZvweh3dOstjFrx+vbE+HuxOxDDpFEYJTKlrR8LudlrQVrdYmDvpYOYFzKO5bcpV/ss5fNYA00V6t4+YcVzBpmGtB++gVVIdKa6Op+/W1dIRYRYnlSefrUuWkbs86bipU8/3om1vHJ29gLVXFgpTgsiV7KjWjUiobS+S4NYriZbnf0H2vcgkgv3HPf+KJUxbJtLzdLd5/eMBsJMnmOM4yKhxIDX8STapWX2bXfYxBunt7ba7LG63jT3Y6T/4J5KEVTtEaEwEKw6/oAT6PBvdn2QplXP+uIXjVV/ewV6xqXud5TmMPilqgv35EcwZkSWaYZWoE9bWzHG3Op11usiJ1H3HtIFS4HDiS3x1GlZQdziogeTLahzezLZS2LYIzAs7V/NlzKWpsVXppUdlMNMAkihED0dWoFsDVb2dXXOUFG+6DOxlDPYDu1gHHbynAOdrvp+Qa7dT30mA3Zmhv9fVOjHlJdOfnlLyeTACwm7aoMLxlW0M5LLrIHRncfRsq9IvLA0L05cdYci2Fr/ASO6DeWmME4C/BJM18HjRCr9Kw02h+1Q9n96TB1gf6nOemNEnaH0CAXIvH5znbDIcujFDzXD/G51NJHbFqDg/dZqLNIkIWKhf99SydZmGvrxfoGfxosLUzjr2pGxQxSsEwjjkuisSo9XSuIPR2cAiQnmdnxGL026p7i0XpCVcNRjE5CyxbMAZnKdWhGhqE2vrDwk7DqOmDqWSfoHMIf1isntBN6kMuvUm+auOVEDab58UErStDiakU+zUWjnO4bdsknGlMLJdjc1nabD68KaV/3XAM5YUvV+jy9Lh5pQwb5vTpWfQHMtXaGFrh5DjvdbM8JG8JZZF/HFINksNpw4NAA6c+IoAcqCRIWf53Za2CNrY5yrSNcOp7/zqcVyU+05D/kZ+61lmPzgRBph1LoguAgU3Bqii4JIe9ydvNeXDumcEXziNOIqm2q5buWJPCN2ODEPJNi0eqKgNUAjtoYSf1pGV1gEXf5KPr72D+ev4H4R7+QvFvrqEwYwiEBPm25d5n3KWtNpc6WK3BW1v6KCJ76vjMzMgkDCUpgTP6zPalntIEQ5icnU9maH91plgS9t4l0WKkxYI8UVzUqY4QVtAqAHdcweErqmH3egzJyICSUg6/k/mKN/WXzNkZIV5MUaPyi8R49EivcldVgjAeeh9K4kCG+EaOvItvqAWDNfVunL9q+YZJnZ3gpcgleVk7XlBwZojQ3pFSUqWHfMUaeSChL3DlOea54QoGR3mv15ypPGFIwqcdsQTSwx9CnaUGO2zLBRZYDXiGLUrT7BUnDlsKkOqnnjVQdfeDB1uALYhWDgQDWK463EP1loNuoOF+DIU6EDx2Y8L49XiSXQ02ocNv2ZEToLW1umy9k+U67Oy+yGUQblYWxknhYU9pZOsuy1WR18fZRVd+08yucKfxkcpLDrWnFrC6UswlHkhdyBJ1KqT41ByOWw10p6I0FxXnxeTwEb3Kr2ZYmHMQi7XWgyWafdtt9R7zceD/WTmDg+zGsFE8MQZiDYVVR8Pm6WP3Bad2gsqfz7Jgx7i0JCazfH76Nfh+WDd+66koovzE+mZj0p2E2pE5E/dlKd2+g7FspRlgR68mF2GVxQqcKjZvA3ETtx37eRr+5yJM8Fb6tZm3bN/v0adDw7nnewuw7Q46eNlwvHKg7NhLaJjotukUBxof6YMKEnNhInFZYVSE3HgNAHKl3x1hOCVW8+C1vQ0jtMw7qgS/36Vnm4oGHaT0RlnjCYLqFsSm/mHDYkonx437iBg3nNqmOjFzQJxwDeNe5GWh57D9cP4iTnqbZfsO7OBEBOvZv+DWjYSyqSKVZk1/NuLNUdtlua6THXrDU3Nc3J9AyTDbIIjIUUwN78qJtRP62z1trdg1yDNLJb+F3/jt+QtHmbtq9dOpkOiSIkR2YdPgEI68X25FH1PJqUq3yle2LZzlsfbbWQcePmYscH/Cjj/d8sSSIjs16qh/dgGy7ZM8nqTqTaH6r7ViLGilZYBM6xJZCBCXkXJ1XseTB9lOwnyms5giN4a9uotrOmVsWYrf2vPppf6rhpSP1eHk7MRCTIF5EBJ7Fj80C+aa1+FPMjFzuVyDfPR0BygyFBe1Y0q6OxAoqlpZfQBT1wOv3z1pvFUSs/92UCfyOtRyXoMbRcg3INQyUAjtjZXtNJWJ/oR3qqpLMT3nQVnZ5WkzCyw1EFFIAtp3CEzq6x+jtdWkhHiHp06aeX4ddQF/BgeZtjhErmtUq8UZxYeJjAp/m2PX9TxxZ8/eMqYlSeeCudnTxexla87LoTjjl9dwUn/Guiv84RxvpXneKt/2l/9QcKBVKg/r0Rfnuz7/rSQAY4Qirg41Hp8mh9rkcEErid4XRJvHI38zcG2Q01ITRuU3VP3fkOsRnqLgJWZcrfaKouYmjfdreEUpej55nax4VfxTzKCw/8t2HwMef8PdAuukvoFdZNQNy57zWzty6m3vW3I2lfqEBQpYVmQ1XjpLlyOsXh7HdXY+w0ozLW6cApbnDmvNysODQMbJssXjXjgkTqNFUYA5bA3MyeWpZy42H9QRksl0N7NO5BpUusi10ELAiDs00zRl2p+k5XSbx/nAeRNnFsbF+KsCh3x3BWqUphODrM8MHapgBSd6GNz6aRi9PhAQ/oNLLBuCP2d/yFGXgUZjzqmhqFP0hhM6sPHungO/EcHz3IF7dWpJJq19ZAbngZ+UXffiMWVB+ESxqOYk4wy2gJbpbP+hk5phLb0j1AHaz4s/wZFClva0KOlfnHvyp6g4Xcn3oM3SPxyQCzP9yTBOlsrutlePtUmhDQq842ewrwKRR+2447ATBKnq5hrXzK1EupmC6xRejLHvPOV/S+nKdsI/pm+p3FTa9GuLSntwu3WY2kPh+cQgM1fjO3hkt1wvylYSHTQuvqECuphDITz3IZgdxwNUDx8ZfO2qHFrB79Qaipb2bmbZbU8uI2U6j+AyNb+D0V6XplKgnAxROxxJiXegw3zbtH7Ic5LFnijyILiQ6DpN3VVLXiOhvs3CbNlGQJl4k9vlpPx3KDHoscaviXlCyo/lXzLtnd+IwKqWdLbtAwoCHcrheLWUj55ep8czD8gihriSPC7NiutfFs0yr7TPJ4LVU7xfmi6reAEizF23GNWIRPys6dsIFjLQCOOgBJVBnwaME0Sfeoc1miAJfELeG6rwD49mt4UzDdF3P1Y+pNDJzSgo+VYFShAkiJwtupn2995OFb8Dgp/sToB4DJyr/yopSBoK6dcMvNBw0N35Nl4WtjcIu73Eur3wVrPjT9CQh7NW5k1uD5EV64Ids4FB5OS1RQbbav+y+FY44rzIMMEsdEfdMAmWiJSCVv9pz4cbclTVbo6ZgYXk+NbR6to38FtXa/wlPISnkICIuuRLGp4SDf/2meQ2+q3oOMoscjvwAAJJsy9Z49JJuH7Wjo3Y/EjaybR4/EKJ0ratAaUBBA+o2hRDOr+u7OLQ13tPWbISUutGxDEjwsu1QGWK5pj2cnHMrhILOc7iHgK+4x9wMQaUjwdGIB5pEP4fnHPfpJ6PzmfQVAVxykzVkQzj53bdOwjGOt9+QWbMAGmeOz/fjiNuxsy0yqUtJV0IlQ0/VGfj6pUxjWtwLb36vAUfu1Edy1SQ/khSm9BDXx560Rkfja6TdRPcrWBCxIQaHMFlMr8QrMBSAQoj2GtKFliOqocdNw6MX7Y7HEZ4NFVRLVbfGE3u/jcBuFDY5UhgooK/F22l1YySlfMPG/2DfYNuPiTC5vzXvzA9OSjQ2GzauoBESJ16f1dw3LL2PBBpr/m4c0ujgeFy5YhCo+of5If+dh1UL4y6sRMXQcGKymy0u70lfkiw8GiQA1XsoiJ3eSrCtA8U4V96MfBOocNoNHceSwD5Int4dJxKj4xtK4UKnU35MWlg4jtsA9/EZRymTDfhO4tBb15ODYhYMrySdl4faUccmUHapGZ7sY597OUxngnyX1ZT2EWJyneoeUZ/QDX1GiS4CHMYIucfbG+XYD57UMAdoFHPEWh5gIv0AmktmPJklDZ2E4XnzEStxA1T4n1ihNaRXG6ChmZCUAjX77DTD30cjrWMEoWc8hBw9LJMQTs1EixiHrDMCXd2AAs4+EV1DBCUAK65bhTRno20T+DZIHFoCHTakoJyiR/Wl9dZz8TdD6QP7j2OJHnSBFSrTjgwahycci1f+WVcBvHCL1U9pX3yLgor/ihlgNN1HdKhSzUgu6ASDyBNWzk5Ugw165m6ljwctRzT46e+AFkp6xpAwCwTHWGTvt8qPh6xB5t4wMp4lsFtIgqHSGdozb5Epcr8v/+YCDBLjxDLoc2BaLEmAB+YoqKmIePLupj9gT8vSwBeOn7Z0PcpMOb51N2Honr65dJEMsB3+2SqL0wj5yJv0Ko7Gjstn7EbqzUoeA+LQElt3KWDaecGV7xnup702vmBrrMPpWOJFWvOuDxGrXZiq5LVPwU8wimoFc0qHmaUTYWu1gpvC7FlMZAtS6d/jMIa+OPfr0XJIwwROgcUU6n7Stei2SvqLIM3U/lOwvjUjOwOzZ/QMaAo/aKPZifpwXUFiaIGO+3qnfW+0NyRi+yUFyW3XMl6PdZz5kK3QOiXaRC7u57Mj5bsetZQYPjguUkThWNzJhkrhskME5LBiukohTU72oPK/t198wiVQSS5D0NHgOsu0h+7AskjL3RDDmQjkHkfDiZ6SVQMNrBqHEYqlM3SyLr8lYd0S+iXnnYUtlg/km4NhLQEOJMAFqQir5WSSBPO5jV0S0hQymE3AkZ7TmKCNDpKMvrkzDab2lFZG3eLC5hUgTdzSUuUNZqhheIQGF/pphjBPdsoTa0tYp6JORwxxulqGe2oqK1J2sBWOak3HIr9L4T0FEM3A4SKQ+cedeKDMilPv3IvsIiana9wC27a8b/NnJ3IWnlezGOar6euQojgF4YY9uKWaTH3adz1aFdfEzubHm+mCTbI9sbKKJGcVAS4r4BV9bt2IIRl6Hk+fmsT1KveD0G6ckL+hCCLT9IwG3+qnK7MsuK5a8TS719CUVCK0LNvdrnh7BaXA/4ur48bPZftGzWFJkzx+VZ2Ft/zDVNwxGbfLa2ZuZpY1Am/vU8LMlruU+qcDLWDvuwKvAm0ooOzJ42/pmgtrKRVcVCFL/RNcQxyRXrN+TiEmz3T9lo02rnaWKsGDlKoIc+OOVWzskw3zIrkTb3OkKl10P/L66QJ9erhomZ4ef31PUhhXnpRf0znoszxA2ptbx5osZtV/I86rn4Okn9aGKzkhNUUCtP1LnUFbYJ8Nj/UyCEpD+j5TzjpzKs/ZaNs44BInsUOx4j+OzQWcMJ1004BEPeicyMNXebVzBKIyTq7ocfRg2WwdUAxAhzAN+8tDyTWl28z8FACO8E09VysV1vp52Q2xjYoD3M4IZCEc9qtsm1iqYjeIdIm+lUACo4gwuowIZ6wrl5txgX4T3LJHzmswzaIe3hUiPYXZ5sRRBmZyjhGsPKjcN9nlhmn++0c7d2pXEHdHWnd1Y3cP8tgVnC8xY1y0F67w9SlyZlFO/5l5EPrLI3kodKyHAwygpVdJu7xVAtaKMCVaD7tm4GxkqDkN2wKXeB7iNHBf0puYm1TJIS56Q81cCydopvjy71VOpymRTLhB9mMbrxpxY7GRkTkoHKNSOAWQ6O9Ym4IDEof77XRJ+8uGlcfLndLTVsBxvlBNEy1vsyavhfvwmWLegE6EDA3dDsrdq/1m3G0BQ3ITPlTiHi369+ePtOVJEAM9o+jmMRaJiFa+/QLlU2dGMWJVJ9jNgv3oKSQK3azj2YTLtt6WtquuJOMmuruEXE7YgA7YjqBylfFPjGiyQIfJXFhocEysbWoAoQJ5VXjO28gqTfySKmdvF3nVE6GurXFa8RY+5b3zNU3DZDc1+wnEiF5z8dlsPXZW/r/FW9mgj9g+pT459jqZfaqe5zY5/FcG2YmuKLv9A/60smhSoantXebf4u8GVGYcCSj39sYjShvPKCn4B4wUnn2qKXrtzz9F9fjrSjlMLkzPFTKLbQL4iwI7OiONXgrE3w6EMO25/eWo3qC1662GneZvjf4x2OgnoE2rn/sQi3gw04kzjawF1FS/siAh4gCw8gP8JGKcpgb00TETkh3feY0Vm5xRofpjzhBQaDcZMv64oQT8PCPJUgSiLLVPfR8WS2WjXy3ELKgNmbygH7XJIFm4atC5S5q9cnLtbcscP27KdAh5SyBEEoSH5UeT1Rw0RTic9Imeh05Q7H+pNskVHwdNAWN2pj5QfoKQ69QOx39xR7SdM5vSOkIpj64jXkbcB9q2TKuh8OnrjezU347ljQ1AJQd9lyRe7aAYABrj4BDWHr1DfxI9fNLvfgOwpFRMW5EG6E3JGtEk/7sfelb1EavjCu2JTYmkYXq+5gOEQVi07Y+ToxdWT0v7vBBkh46QlJVabZXSpgBX5OXjG/AiurtrpIY4S5wlS7kphAb/v/u843Zw6/V8ojcKPXHuHNhR+DaZZ3ff1ST61zxvt9DzebOg1YLz5AaWifqimbuk1svWU7N6XHh2uvYfJc1VL1gdCZPuSF3YIMWkpMwy+BpzvihAc8KP4YEgTxm4kAMoghoBzuR/9pyHgW44zQignRh23FOQb4L16jpn39ekgAL6j9OIwW4vJ3rvkDuyJi95G74Hz7/mPeWMxOhjEG/DA1gE7FU7Eqw2bmcezSUp1KGaaK8jnkb/XFGeuP9b+968fakLXagbrS7QVtlUKDL/AdIIfFctePOMmhyDxePdtsO29fYeQvQU90zz0Jvf2Jx/DZJmerxOhchQ2jPXlqwfQQBbcJ8mEqIZKMUBXLGIuvly3fqM5U225lFw14jPNf4ROgfNhBUzXSBwQpeblhrEMvfireWxgKmHcw0jHCgfI5/Lh4hCNvayDXNhIZtcQEqblkjwkmsOjjh4MramJXfJH7+t59P4pibvUhrWnRdjVPE2JcGuUd3pCSlC8NVDJLfeWjYDvhcMicHfemD9o62PVs02Lp0Gcz2TT/5jKB5qxuRiZIHkDK/hARrKG0IDEUPJicu/Kbj5ZGORBEyfV1AVvPZpvTVyqP4LA5aiAbf0jpovfgaEBJ4m8VUx1Kd+F3EgSgY0WERbHzz0UdrYJCWTvqddRWUKJkWF3eRUMNoCpvnTK2L7hV26FsGArD2qpntOyEeozFCxDmIrpJRHdB2hqjbVHlW5g9d+wiW91RrgYsA/LA7PwNfKEgeWikgiRJDbFKINPtBXvsCs2M3shxedcaTspbgoosAeCk1prpzWq62Y7qLIKsx9j9b57VyXCVIVKNov5fGZbXiHzrYMcrk1/+DOTjSaGs5/WOaaeIw2wnHwCwxYS94VpEzk8TtcaeeoVZir0VY3sRB+/EK6xz8RrQZbeyCXdGi0mCE7uUJVScYNy201YlUTh/JT2Vr53Or22HQZwVeuCUd2soS5T9m+DafHoAA0ltxGhhqiK+/Vkjd+vf9GZXbKtcrlFnpagzHLBLv3MO2wz2PHBrf7lpc6/OkiTgBv6XTHEoPJGUcjoT57lctVIZ3Kr2zWoSXpUDykwJfgiB0h5BxuZngLwOwNTgWRZFEx+Xm1RsymAFJl0qJd1jYDjvQgB1sOBjLKka85UVx6HmM9nKAkkaehqWUQjjxVji67RAaFuR5VgoNGmSheQXwUGFPY4V2R+NAP6ajA0NR+JsjTQUc5ZYI74ssW5T9YCf3HHp5SsLpcWI1tA5MweB5+wCQOSO7azXBJu+d+e7u5u4DLdRDoTL2ylXRW/Ectd26IUUnZgAl8zLFPCnbRlemg2mpMX/rg4hcMC+nIuehQ5/eqPn7TKXJ0EBAQLtSwJzy8GD8JseHfPeOIeVbrsGmUHl2n4ZrjBLPU+PhlZz6Cj6a4v6iH3hDMjg0SxxT1rZ6pMG5/Z4HaeepHhQtUq4RELniygcXh4CyIM5DRMTj3/XuA0EkBgy4UK+MSiM5wlmrJVFI4c/Fxm355lTtRj0MpHxnhP/gFIb+fs2pyPGwaYf6X1Y2iQ6QalqkMnZujH/QgRlvu42zYvf6jD0FfUqjPk7PJ5CK51RRBkivl+cBxue1seLI3b1nHkWhaYGRwzyrDHDedwvt44pcM9+DIKpJirtaa+18Vgpc3mLxu8HVV3Rp7fT8G6ZXSAPKfdaHh7Bg3fwbQXaYs3fl96EW0WYAPpEuUkSv3epqreuKx7bhoZxd/JSWex0DCVGBhue3C02BTgpaHrn1Q4+0ThG+4dhHeNQWSOuWwCvrgVzSUWMlelTlIhIASEoKJ0nZPuPWkXX5IdEGs73mWCqQ1o34ngkZ4+diCTevvsjZK2y2YdaYbFoVx9+0WR1WDcO8GKsLIcb9xrPQigv2DUzwcWgHw1AUKZD3T2ZC8dE1Ph8jIX2g+la3+uGqhzx42KEqj2hlckJraEoZmgMWCl3jquYKbpGvPkyUasFhnM2Yk3tpBNOn81l5SMIg+Scx+nfxTKAaJQJ5db4HLH4kVD35axCg1h+8VHxmeh8eu6klphARyUN1Ysv/M/kaAe74HZAel5XhCCbgm3nEefUoaM3uf5o7HSGrsBjSHSYKHAvlmHOx0KGsEnGQCpHIzTgv0b6sYvCwmyYiS65tMKYSPivtwYWLJAMl6MFrlIOjAY6BHtVzq9FshmI2nLbiEYZFUkAC/kktPpKumIU+FV+yjkz4xlTzBnNlPvZDoiTNyfjvx7NVyeJpLPyJltHXxUamr8aPkOqs9HpwGJ0qpE6B2FJImr67lxFpGg5dR+Yl7gTAEwUWeBb/zv7cgyKEsDj99BmIt7QycfhRSDCr0djstv08+7QCAl4+K4GvZTjSeyKQN+0TLRf0/TYOg7EnB5sW4LqGm66FEVp2SM5SpXZa0QIjda4u0GDAI8Ht44EMkLcUKRhA+nyDrxo6oV67uu3PCaTFDNPTKttwBR9GItYCcEk1fmJu69GyX7QtV1PoPmkR2znWZmzAQvM8tsbVwrG8+qtyvAi8hansgt7l+bd+WKMSggEVC3euC8Hd9J5EkW2u61MEcgYNLTLaZvpRAJzYeyj2ux//dsZkcn85AzOdvm54pVhyBqiuysPSO/6Y4pAatIud23zXRA1XB4X+9EyABkGayFDWYC8YEivExmM583mCoKIkgJjLCbKC9mttUcjtxajd5dXbx8mzLl0moCFVx6z8q2yx6MJkSZfaaFjzGlW/Xbs3Vs14cX4gosYFr/oonN3Mv4m3or4KehHnrwZobfOVT//8+PjwcHwLYcYl60ZMwRiA2oShQsYSDYQNgXFDxs+rml6QsIK1J/F089fYbt7C7QjJR44GKQ4gu+pZshWGKAwPHeBjfzZQ64Buix6WKkhqJVVzLSfQVu8TQvJ5ycZQXjugDdjqhYpjNPABB5/qkBLK7x6XQRfTfpkluGPTouBG+hi+q6N7ubBCSadZFwHo4zOqXPk7KHLQO6MBzVODr1FViGPw6ytMro06x51vl35ZkfC02SJJxiPCoQjxD950IWb46nbWD0Ev5e+8xY2uLOg6lHun4nBLXZQHB1ISJHaNaqEhYMGplpYc2WW/v/6o2TbsA11pMmiYIwOR09hz3h/hwEvOy/aUYtYtT82pjQFXJm8s5pus9A0IXcWrw+9a5nxvlUrMDQuLxCVsC5Mq0+mxffWaD40LuS0scEte0O7MW+D/y6J4X4Me3IhQbwqGhsODLAynjhbAJf9KErSV8M8dN35Uz1I7mHmyQWLc34rYpP0jlSRm5fEs+OiIA1IimIMCo7pzJzROu/qEzuC342gGhzRzDJHEcfbdYRQaNo2AI0wB+I9BndPJiQBedrCZnNXjmvMFykxqn2+FOPQ/zHWeCHO6HET1M7ffd/mkn7yc+67GvRPlzWEl6/WBKoPWgsqN1XhQ6Fl0NjW8Tr8DyJ/AyVH3cqb3kHzu5MW+sd0ih5SP6La0P4mW73CXV0wzGTjmPo23bc/5KTGn3uTeHaTAYexxWTNzXjDgo6ZqPqL9hYKVcv1G9H4T7LTtpz8CFFxqMCPzYhkHBLGR2pg4HpYeqe5TNBROsxWZQi9BYC7ZcXIxmrAUIS/Hb1U1GHNDKu8hiGYbPqIvRRXE2biu9ZDJdeOgotZSwGzivabySw3N0QBBcoAJUoLZ/ivJLr8zas4UfFCDQLFrXjVv3ok7kR4imDHIJAzCJeVlSPMkebS7XE4Gq56JzczfqBuDY2Fzv28OBtNFXYmLLaB8yBAMuffL1NFf118go7lCcj+vXNGvDagBclONAdUXLbcAVPCa+q1tZ1rt7oMszm0+LifB9teddjvSNnH3Fhw6FGwBH55a1iwAarebxcp2Y25r9pKUxnqpE/cmrat9mNdxXPGBekF5Sj90nxOO9nbCeGeNB5iOfdL51V+TyKusMIBYCDuNUjQfoiUsKwSOWHloITt7PQwu+myU2kl/iIcevTU8LnmMiRa4jxWG2/1YUR+8n0QmdPKOEuoxkp3hbP5kwYydcWoQYurikmwKjKPKJg1oeN4qjCTH1tilwLZgHWrUBUCOguyTG4M5xzushsxKO/MAR+eidXPUxxj7rokBA7iRZ7MSlMhOFg578rUGHgGbG52gNZjAhlhEP/maGf0Lm2/LPHM8prAqwlzybk296nDxCwEqRX4ouvPcaa7n3B5SFQzoa2dABlk+Eek098/6vog9yCGM05ZZw3Scz/b3KrmnwYc/Ao6ySw6QVqZGTDz6+HV/QMkDX57GO+nObovltFelzqUQF8UB74tR34kMAhKFvMPhqBEqBzk9EmOdLYZ6d1f8dFEd4V2Gt7cue8qSeljprLNkfKJugi/SIeHt9HXxtPznZ6UhUcW2Fwel09EDw1c3uK1p7omPP7kV+81hynrDWVtmRABIRr+lVF+oN1Z1xas4gUXm31erxY38vHIVVqNCqN355vBHi4KOdfmnemCyC7ihxo9teFo/aHDDarYJIt2Tq5UMbhZwaV/IWXaTE+oA8z1qICrKC9+PCHWQsaZemBVBaJAnkTZp0n0+
Variant 4
DifficultyLevel
734
Question
The Sea Eagles and the Panthers are playing rugby league in the Telstra Premiership.
The stem-and-leaf plots show the number of points scored by each team in the first 15 rounds of the 2022 premiership.
Select the true statement about the data.
Worked Solution
Consider each statement:
Lowest scores: SE=0, P=18 x
Median: SE=22, P=32 ✓
Scores >20:SE=9, P=12 x
Highest Score: SE=44, P=42 | Lowest Score: SE=0, P=8 x
Range: SE=44 − 0=44, P=42 − 18=24 x
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | The Sea Eagles and the Panthers are playing rugby league in the Telstra Premiership.
The stem-and-leaf plots show the number of points scored by each team in the first 15 rounds of the 2022 premiership.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/08/Stat_Prob_NAPX-J4-CA38_NAPX-J3-CA37_v4.svg 360 indent3 vpad
Select the true statement about the data. |
workedSolution | Consider each statement:
Lowest scores: $SE=0, \ P=18$  x
Median: $SE=22, \ P=32 \ \ \checkmark$
Scores $> 20: SE=9, \ P=12$  x
Highest Score: $SE=44, \ P=42$ | Lowest Score: $SE=0, \ P=8$ x
Range: $SE=44\ −\ 0=44, \ P=42\ −\ 18=24$  x
|
correctAnswer | The medians of the Panthers and Sea Eagles differ by 10. |
Answers
Is Correct? | Answer |
x | The Panthers had the lowest score in any one game. |
✓ | The medians of the Panthers and Sea Eagles differ by 10. |
x | The Sea Eagles had more scores greater than 20. |
x | The Panthers had the highest score and the lowest score. |
x | The range of scores for the Panthers is more than the range of scores for the Sea Eagles. |
U2FsdGVkX18fL+iwnooy9ToUNKydtm1XYNtWnCgHWjEIMseadRNWwFblFgFPd9YIc9iwW015PtL0KmLjlxonF6GQW4I68vFHepRJN3StfzhwIaj9YPOFkyWQK/E8dXuLJ3q5hzL1Od4DyxtWjr405BMwFgNs8gDndSjfUQONy8jpVqaGetdYx+2iSClmDZe3QVUHKwq0JXeISepxzO/Edxa63WVaWObuQS60EJlCt50c4KtXcKtwzfKZke5zfl1x52UYq9zKF6B8mCNsqOuEPfEpnzDB6wZGJRGqbBszP5OrR3z+PRxc5L1Y9CXyTVvlywkGvmMLU7XbYHxr11HCR74JSeMv1WGfE3l+fFJUh7xQZEUp471jrz1Tuhxq1lwogD7mihfmpxnsr7x459p1pbt20TTkhiwq6SxF9dZtr3g2QnMKq3gAPwWn9ec5xCv2vOsbnlB9pTtAkkqDXG6K2Boa/M2ON8yAfZJDO2wGG+eGN+xqQsl6rb9Y7x5zMUPW67nz+IZRF5Ky0ky9iXX1GgIFvsq80+0xcD80a0wObaK63LDI3WlXKeTulARVF3kGL2okHzCcdwJjWu3W/7CsAFC9Hzkd1eHgMVBMVSFiIWnZOaHncZ4FvokOGUnWILag6LLeP9ARPAZ8qzNCaJuZIkXfcY4p/D0I5SV49I8sxssf/b8YajjbA9qdubmHfjEhkkpgCbgyDXG39nxms0KXyIQw1ds/XMy15AgFRhgL4F417E8hb8o/TjpRlQh99BECQVsSFh+vF87Iq8SS2twiLMFtTM1hYTcDHlVX0ljsLAJw8CytBmyJXp2EDRmcfO6V0gVMPZCV9ny3sfFawzqc388C+3jWgMz9hTTLwFemR2GMwTIrl6/xjlRMFXhnxJ9pFhfa7ceN0ATpUfyxtXLo1Xvb1+IBGz6xTjrxyeWHkQZnOSVoMRWd3rFi+m1gRaXqzTECh7/XiRvWVefoCICuJSVEKL/eBCL8J93ZIkhktawme7XMvHTpK+xbDxO395EaAgTZGIOH5CDYq82KfVMOcyZ+p2BhfGWXRVklvFbrgcAOVx5OUL66OhlDLfVx7R65XTXuTwH7xitquYghv9HmB5CFBvDxeSelYN4V/iXTtAbMC73fMXmZopFmQpjWxb2F+Pkv3JKCr456i9KW607y2V9xDcI7DRb/N9qcI60dHsg47xKO/LjUxRs2rqtvHNmFU/4dJOfCwHWs6qE27aLx5FSTeB6qOJKNnkUT7PjO+iaKAOe7sYlJ8mJqmWYahcDGa6oXYk1pQe38d+atIj2EGiNX8FBbY5QaetOh1Hu9CwHwxGG6qlD3DkZxnQlvsLpjvZ9+6jnsCCtVID8cCwviY3d+bzIvHOHXnNDXG5AIkkBTF/yABkRcB2pS292IKDJLUbzCIKVDFB1hq/TOruXNbYtgxqidoG7bBu/aRwK9tZ55BOfR20hY8UtaGGSHRveSS+mnNhk4mmsO/TqtGofPNjRADFl8uneN2jbzYcIF4YXjydq1RWYvwzh9MFJZe2kZIo6hOB5P3HVHAWD8FOzYG3cg+R1N4PtytDuI/dY3UoxBw4bsPc0MQTXGbkNbzyo4LXUHEPjRJ9wFFhINKTGedGKl0R9fYXfohkwIw5KVnseGpFAYo8aNbUmzqRGbrMLnVp1CfcSF6TC2f/8r+fqe/0VbqV9EjwHsH6mVzHmrEQ62VeLGObJH280CvE/krzneJM49+jhNFTS5U2DXWYm+o3zg+J+pnKAocpXF1lTdU23z0CsTpbN6AZtKhTHYU3SliiOKhSk6LCS5o7q9FbgMXzoPV8eTgr9qpyjninhIJTgpbyNgcp/yy1CkbMH9eTfYLU3xV3Vv6+ztbdMiLUTno1/J83kGcsNbxrrhRAAIVcR+MuvHiDZWBbCR0LlKTWMWjnWoj1F0tk4VXwj9VTUdfQEEeNq59Cs7Np1miya6HaeDGdvBzhT9uciFFcG3AHNZeBPO26q7CGyva6nnlvjsXbj3jzR57x6XG4jOAHoieZ5HICqSHfSF/UrtPALLdJImCEOT2swOyVRIRvvoeo0mo8vwzqng6eArgA+Ej/79UF232USdcp9xdxXbrgaugP+k15g+xkwDMG78n0jf/SMkItzoYJO2W54LHfvYu/JMamoPeAqUMCOAsWl489CZwSaY4TdGQu/BTl91GUzt7KKE8ErC8BHYp28CMv/ABfq3utUMA+Wp/JyuIIrL17IRZ4Vm+MXvzcXxXhwc7rwSYGlv36vnKpLHCceTuQjep2Ye24ydh6YZmsP5PjrXm4K9/jAw0fHoABm/aj6G9sA0LOk3NmzvbtHcmbkbJv6im3vfwc8b93gtVMzKqMr6b/TK425PyZVNoA7W9HVvlUhRFVbb87wd+OeDUeaEWhdDaFC2as2wbo4gUmSUvK6Saz+GefWRbsOSRe+UKn/iOu+BSQWQgqF1yYxGx2AqsKVBYv3QEFiJwQ9GOXqrLVT3QkoW41bIZPaC30iDQxshU4u5kxBuOuUoYxOWa4N2DX6r+Bnq189rnGX8NbzAeUmUxWT9k1eb0yH7oxKX020JPePoubBRxqamXqCYOFINBdod1uPycfm9pfSzbH2yp/+T4oxtG4WdFBpTTLmslsg4z6tbunnqoJnTDFeE3mN1I4tRRW8afWo9B8wnPBGdN0otbTyyPB+T0cjKR812VnBtSunwnoKsI6U56V0SKC1Td8P+Ge/t13NoyvnyOhJKPCdrFlc17jlQvAQtg93b8qQUbwHZzzzLfPuvNaj7mmJtl0qNRW6oIo/p827URr6b9yA0WBXMIV3Wny9wY2ninwHU6eSglSR9WNPo4gtITRcd+CY7mZz24hCxPNHkdoS9pHal9Dy2s4rXsRi7hr8umu3uor2nlOqEU+T5k50H4GIbz/FiQU9u+aatxX2FMQ75KP0ZdT06NonlCbSzF4a6pSyw9pBX62zyqdefuLjkssjKf3tABt2rl+Wb5FKoikHUnD4ghfq74yVq3NRJ1TVPOYiJoJoBEVx1+rFEJ0sH4Q01l/p2m+WnOdh7MKeC+4XpO1lAJ1FqQm4pr3GzLDYkSLUDcZZ9I8Vnqvv4VRGD1zxjqLsJYVl0MfXgiXYfuzkcMqpqZdLasXqHrNu13Rdsu5pDW4oi9iqAkJsE5TgExUP6JpiPQjJOmE6ilyk2j9xakvj6ShQkoZc8e6lsr0oicvw6qxBdz0+Cy6SoehTgcv2kFttWxGqWJPyTXw1Z9dUei3AcaQ9asxuMz14Nq14eQSGQhHtntrnkDMyTdwmmLijUWUlooTZLF21lY/UjMpAvkr2p0iy4EViXPBe7xMhfCsYn6+/dnjiKWSaMJItkqedXEL+5ySWTVBXWJ5dRmEDYSwHFjCVey3UyUJGb4i+FUyV8DBg21ygckZV0cTTqPoknMs90XO9Ye/Zc2UkXI2I2x4UZX+ZpxvCvQhx9BCSCdB5p5uW1UYUfw1ydzfnKm85O5WTgmVf1Gl8VsiLW17DPA9z3XxTcWxmuwwAUt5xn9ysOfsSzXmEQ6xu0+NkrmYn7eUwTX8A13TDoAJCTpKHnpIbEtNsO5fSu6yRF1ThdTOyuRAYVnefTZ28BxvHhblfTY1OF+TQWJ8dqWCOyhR3XpbloCrQ3QjUYAllC3lpRp8dQgodZGASEAYclB6apobB9CrcBDWjGTny1YMEs613a7xZJcGkHmOpqXQkddarBevqVpkcMS5w8K9nzBDN2hH3xnwcHLraNCl5v2bF/8/055GTDzJLItg0sFcffjxAWk9LovFvYmJKR7AOrgJqqVBXr8bn7OcTGnDtPBOwXpFOyA0n3EmUPGumjZLMUcpSgV3QkC5UptVNSoME4GyE+qivzDc30HeTvgjDbYV3nz8DH5gGVqWjf1RrDP/vRVSsan5Kl0x9a+xKZzXKKZEDAbvoW3vhXxsPpYmAUMpiZVrOCDyOvhgrySLWH5/TdrPED2ZTdCy2WVs/EA82m23Q64BNg+udg5GDko93mcSnuNcF71hJxkDXZTZv3gP89HwKUT0zMp10PVwW1MOw9PaJYAH4hbIRn610FB8pkBoP006K9McDl+nmggh8GU0voX5pJizg6X/BqX2gTpJNOqjyKIK0O0kgHK2Q72jcPVqHB1IbkOwbFbi4x+tMdrALEPMpokT7klpeJBtXvAqoFPWXvh77iCLxBUQotTfuS9EOiPHdibxRLiNeK49bVggTeG/YCATvPnn9DKDKt2dS52aukq3Hwaeil9vS3mDTWS3oukM+FoF0izJYE4ObLHRL/cDj7AUdgAd/t8IeZ3PFDqDsCyt/yHUji74zLFQXR86sp3Cqb6y6Jt0gXDwKuv9GwVD6kcCUEWOA89EgiS6Jp+Ifv9HfK0C6Xk2vWi9N+9T5AAL4cfPRM2p5EOSuMBR040jWn/3Dnqit2IIdj0mztc0Ogwvu+qXBEUmN0AYdm2dEmSwjYUT2u8VH+vtTJL4/TkKnvgAgxIb7h0EEJg7P7L/vvFu0Sx9DF+88slNy2U62/5d++rvJZziBjiqJJzGb2xlx8HOgnlBWteIRl94qMWAJob14behdT+Bv4Kn4nXhVjofi3tyY+0CfFdfnuFZMhD7M1RCYPmKtu6RRsnlUajvW+BZ44ExrIIQHRksiJdPhhgE5GKW2EOwWABqgRzcgnVlzF3uFy74vaKJo9sijd1SLcMLGT1L3y7Dh2QafIM3egzMeeAXxIR6FKc4p7pWu7l05xyCi2EpCjRCf6D7rgd3gNM+B3UX/nurTVS19rOME1fA1pMz3HDOesfCsUcUQVgW5pXdDGboByf7m5nVWhnxI6bkLf2bBuoCXA7hYPkToaKgecS73ZT+75YV97pCvMN4OlvaYr0bQHvJdC/DWs0H85Jo68WfF3sCb0ei8yoRUCnYwi8BEeSUmugDuanpPSgGIjMNEJYQMq9dhVPs1wJczt+/RmK/ycXA+/mkcw8ChxJsPeV/GxnAja0EPHCZnvz6HtLXlI08tgjzwiN6ITFPyzj2fn2oJfLPFVt31lDuSwmW1I6LeeAg3ACkVhDQlAkrV5jZGIrQygvGdz2TvH8TdL8taxGhcJ55XPAfUuzAnJuaHjPQ8JyqTiLSU4eAXexpDKIJWHTqApYt+RBg4ork0gbusXW6uFNUfFtuA7mJmYjGRS3qPToMkekqW9M6odP40zmTLDgLIjxHnp4QLFMfMwtZFmZceCXXfQFJywS01sisRD637amwwg+L4Cbycn6xmgFGwYf9zbPfXu4LzHsSnzH+uMsK6rC81+ssKAxLgETcOe9QMHDOguLmjCHPJhFh37465VXMyxfRbrZ6lszk+feWStAYxHVVrBUcneozRalmJA5zbJVUi8BqIcf0MJfRyDLx3VOkhWvibhUZXs5LUvmn4vIR116JHbb6Z3866DOMaoaCG7rlQ3oopaKcpkCVx7aSHsINDa7Z9caXph5IjGkt316C+FyHHDAtVMddTM7WJtPxosoMEZ6a9QFy76aHufKqD403ueAmVBXrdqoVuwMXjimRT84J6mLPnVtbAf01GOymIQeor4koR79ahuA356XvFDqE+b4vbzdJ7NHhMvIMHJd3z4LUv2MulFYLfc/+/B/1TOsspBP1n8QSE2oXL+DEi7JPf9FKxKOfza7SMdaiZ0tK/9lxq46DPSl84VtwWKSLxKsZmI5+xU9X8mbiFGEfu8U40IFAPNdJ06s9Bcgikzu5q3CwfvohDw1gXyq3Opv2nBu32QaMG69dIhC8mRdC2jE+8XJa/XZg==
Variant 5
DifficultyLevel
732
Question
The Knights and the Rabbitohs are playing rugby league in the Telstra Premiership.
The stem-and-leaf plots show the number of points scored by each team in the first 15 rounds of the premiership.
Select the true statement about the data.
Worked Solution
Consider each statement:
Scores > 12: Knights = 9, Rabbitohs = 10 x
Median: Knights = 16, Rabbitohs = 24 x
Median Difference: 24 − 16=8 x
Highest Score: Rabbitohs = 44, Lowest Score: Knights = 0 x
Range: Rabbitohs = 44 − 4 = 40, 2 × Median: Knights = 2 × 16 = 32 ✓
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | The Knights and the Rabbitohs are playing rugby league in the Telstra Premiership.
The stem-and-leaf plots show the number of points scored by each team in the first 15 rounds of the premiership.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/08/Stat_Prob_NAPX-J4-CA38_NAPX-J3-CA37_v5.svg 360 indent3 vpad
Select the true statement about the data. |
workedSolution | Consider each statement:
Scores > 12: Knights = 9, Rabbitohs = 10  x
Median: Knights = 16, Rabbitohs = 24  x
Median Difference: $24\ −\ 16=8$  x
Highest Score: Rabbitohs = 44, Lowest Score: Knights = 0  x
Range: Rabbitohs = 44 − 4 = 40, 2 $\times$ Median: Knights = $2\ \times$ 16 = 32 $\ \ \checkmark$
|
correctAnswer | The range of scores for the Rabbitohs is more than double the median score of the Knights. |
Answers
Is Correct? | Answer |
x | The Knights had more scores greater than 12. |
x | The Knights had the highest median score. |
x | The medians of the Knights and the Rabbitohs differ by 10. |
x | The Knights had the highest score and the lowest score. |
✓ | The range of scores for the Rabbitohs is more than double the median score of the Knights. |