30180
U2FsdGVkX18FaM4eE9TQkLZbi/v7lgCVPr7N72k+01Ze6+JqnKPkI/vA22IHd0LbE8PBm1nvHbV5TGLIJV0Jq05izV2jCj4mjTcORiKtO9OUvX0Nh/N9IsYibU6SG+25LxK9FFuWdzVx+vSeIiBR9TZbcpkBQHqC5g74AoNU817AqEujDj+d5GzSAWkaGtwx6rok8hGiK8GVY+K7TL6rflzfWFCusDinV0MVjGjvZaQHdeKD1AkfWHngQvt1VYCzzgmneuFx6wx7l6VInEaZAF2rKCTTBZy0KTJ0lmf73JOw9FYkDtFAPESyrYhD5Vi7TdiwQYsb76lMzjcyXP2T2sDc2C+pYBLchLedrVEtCHV1FJR+L0Ho88/+/f85yEd3Pj/SgbOV8FiZJM2T7QChej6hwk45LmWimoygnTrySuKZazPFIuAyokxHpy5sO4vtLwQoOKxyRAnk4BB+nxQdB0R0nTQLS7XXMasKZ4udBZD8wgEl79tl5sa8wET9bIvJD3DoajHjNE5jDp1028bK0/gfDAacYED23KxRT11i68Vf3XldKXcI6B31SYmB32g3XNhFeZjrvgJMj9EhprEK5cCrgFFKxcEifchN4BJSJsyTFQ3tSMZzXwca3f9w7VqF7HZb+3bHW1OrvkBMni51n3fQ8lIZnThbfq4iqjkkf8Q6dsFY/DtpTT2hoR+w76dGrPxh66X5opccGaXa7GHzUEYOvrJDfdiedSKIQSyw/1xwl/ucMm7H2n79qNPcWXeYitmzxQB/ubb8dhpuYvQ06tiskmCF9RobVMZrBjlDq2XaDpo5dJz68M9OQfsY65IILVmheXC3oZjcRYUUZe5/r02ze9wdaLPAcE+bRISTSQsmJ8uofpwuT0fFZAqvHWZvWPRJuMEvDX5W/incy7jNMSONK1Gcc2RxZe0rrQGPii8iP6BhQLBDH6wy4CqbS2a+NFcHWtgTWKbZ3Wfq871W2EGGJ7OX1co1KrhScBZDug9d0V2w78QglaxChN9Jt+HJ577w4I/Pf1rNDE5ReAWB5zBgggH8J/9g9TYgDB52th7YsNO9NvieGvms4x1ZwliibCm+N/UqYxgGLYk5bLcWjV+zm1JaaI0I1DHXBH+cEnVhYeX3j1m5Hr/upDoJy4RNBXQINTLXgrP3iK4K375sQpNhj6ATkxsIzuhoDojHoGiy6PKmyaSGMisJUtXRcOo4HrQ7LMyElcJooF2erYWmyNmJqStuIcNoVhJ7LpPWweChbHZdj8kRZlVWT1Ii4aGvN7wtAwoV6m+8l+qqXem9nhu/Rz/5v+XV4wh+B2V3/hY62hGR3cz3LX5EFL9Zj8UZT31o99rXFnA0+9AP6SSJE5IVStTB0Wwz0cRorMC43XEDL8vySiTVZycPoG8Y5RjzvSj0+bBdcfacAOHbcaxv1XzcpP6AYlfG1spoMBHLkLEELBNXFp+gah20Coo+tTp8vIOLjrgSzzXBAZqB7n/rq0zqYznSvSBhBbmFWoBTvrEbkYFmMm2SqLpMx5fXGUHH24rEURfOOXPiFfafAoCvcILtiVsBpFAZmNg9/BYsh/ztCJwohxHrkj6Z5P6aORS7VDSsnThXvDfsQp78BsyXrPgtpI06B6PiNmkFMi6vHBUFxG3l1gizmuLFxKgdLFStCWT9Ej14oibjcPg36yBh0y2pkpSoZB7DbSwUVFwC3IKZe1OHPRet++yD0JNX4a7iMzJYqZlgtlbprsYqwh1ru/zLkodOMfaun5/mbAXvrtM8qwRp9BELT1UciNYUuQftV/vcTHpqzmbWJdw5j4rbWslnO7L6Mpz66oRfopk3UsiN76SdPi3br3fIjiovEhN9e6dV7u5oMgBV/omMxStGGo79YZoj4E+GrP0TysafNiU98gY+zeevdJ1E0rJwZn/1AXi0NOtjdfa4ePIQwHX7zGeFb9lr2pjbst1A7WDi4K09LgcTLZOHBCPTQCzrS12ubrL5NCRgz72UQ2M1z2MPSX13NUmqkTagnuA8Fp+6xTqcYPFMwlZXRt7zYrfaypwz5n1tvNNnaEGx6QUHlbPK9IZXSJM1OOY2ehfus4J4QrIyFVp7MRNxBu78MaBWflMY7skNEQynn8Why5uhi3+EHhOJWdgfWYCa7QdGwceZvfZg9YrWcWSCeniko/Uz7HDuNp1r96EzSBz+nVzHGxs7scPF1zlYWvIw85fVcgTQn034C6jdzy1FtGhnHEhf1u1Buo/rLw2jmwKYHLKYDWAa8inNDcL8EYzWuPeBk0+J2gY1iGDy4c3W9XPiDNsc2vJRnXXvOqUeg4I7feSCSFVlhxnhUq369sMdxIwO6WqpYt2J7R9t8mQdCvcKZWG79Q8It3sfXEbFv2D8Of6pdmeEmTDDrR7fn5tRIm4K4Kxq32MrMHEx/uAE84CRbPr5dpV8YiPjfBPMtO+mLdJNJXzH5SOsMJU1WWYurSzejJiRsLfgoUldd8HxGuodlZgCeGPQILbD38zUxTwmSoFFQ2q1Kphs9lKBMl/Ggkly72k9uOA6tMWvyt8651ilFIfbcNmI4r8Sys/u1cis6HgIMcjWOe3iugxekj7ickQJrt66ZT0yUT4SLPNp3lPLyd45/254Zghl1gqFM3k9IjiSB/0A3z7J/SFrLjxwvHF3vdeM/HeMp852XKnLhneb/xFd1AwgUrTu0L2sN/Unndf9YHrGnmGbLvKmdFlj6Ib2H9dDPNYd9gipaB+vXFXCUK9D4Jygqi6b1YQqg+eliNux18c9Occ8HsiGxyIJ0KRYPpI31nTeNq+Yc7FUISS9v/A9itUNOqYfvRGj3gXZD+qxvPyRqbnQgimqRqBu8mtLR7ZLjLwo7fXA4PcxoWX+TVA0+1ZE//pq2+djBiBzkShHsHsa2VC7auI2yxzSk04miSy0RzMvqeGQNBmTOuHJ3Uo62o6hWE1eHJdXh1nfljH63xSeEUEqTLLduOjtBs8sL+AdWM27pNuEpO+S5bFz3z/RA1izjrlssx/XXW8CKhrJ2lnNLfgW2N3vFHdzT4s51UfcVslej/iiiEmfoqyLvXk5nFgS3PA/52wauq7KXw2rs45g7DHDs4YhChYmLyjT7PpzlFv6PvopBSl8Udb079275FTRUXOmvCkizRRZjP/OU1C12ZKk3j49UDV9qPiZfCh1CKXVREEhFrs6yMgeS6Z5BQgPTN5VWrcTLD8qWidD76YrseRaNmUsGWW3M2PG2g1tJGjiG23wSLrvLxaboyPgdqpoBWU9aXfN1zrO/UKYshYyZjCx34w3tQbiScPUf9fM1i3tihOHfBJmlU+p4sFKij7J1+t3e7Z5RS/9LB0Kgx3WNUAx9pIpuE3o0cQGYzbpnA89C1RxupwiGhtWFKkMv4TMTVnIk3ax5OndDr/XGfXOIfkYlql9dcZU0V6NvNnRNTCslQJ2RrnV1GVl6pBNZsHTdfshKIsENBHMnuObp8q+aqn8UXjefycj+KNOdxuURELzyijgvfLUSw5y1SyRJjhhsHsW3+V8O572zoq2JzLN2zvyGAEgtrqW/bsGi/tABdwunHow1Uk72fpuEBqXsOzAhmCrZhdQeC2BFRD3gP+Ma/UoAsdXa6sPYExbCdKzDFs5E8x0qTGF6KqwIXVBfmLhgCurtvIZ1dm+ZkGkNK8VSNH1bHSgp18jN3x2Xhokaa6q7X5oMNHDCj51L/8M58xlUMRsZm2p24NabaMyZERD+OIud47V/HPsFwUSV32mzkgodXZW8BJ/Cqy675WQxvhb2GoiQqlIwacY9kNqOXM7lmzuVpQstg2uU9v7h7/V4lsonR1WeS+iAr7f0+yP0/zn18RaYDzjPGR6mPjp+fLcOGoNVbq3s1mWgwTDQ5mFcuyA201pm0JL3cAbepLXh8fXM+hRGkOzSwjc3EeLs1jGaPQzNAcwmblp5cJcLG9/d/bI5iRrBt4qT/SDDN2xiXCzjPPVQNfs3J3WJmA4MAJv3kvo9aggeTT9VQYAwEOXWiOhV14mY7GoB78xoBXuwGCHoOvFzl6XBH8T5yuCwIDhQlP4wRjlqg+YGfNrpW+upXe6gFPGKmZzPL7fY6POCx3ZbkAa/kl1NZVdgOKl5GsMNlcW0mhVF1oycdIFePFq+b7jx2yzo24oD2te/BvPHSDpV+ReUXggbokaYWNAVjLLz30sUqENvaUXQNGVmPTedNRRkrr1FnWBPC5kxGU2Y3DJCKuOpCiQc0mtQrxRj9fQzQXPFUHewcYy+T7xmfM9VuUoyeezPlszH9Eoxar1mD9r/0BcZES/4apXq7Dt+40gH5M73/eisbJTNJJAwyGf97YHzQQLUVPPQsVYBo6qCfHTVMHXQF2JKSQpc8i6uVhJj1Y96+7KSJTxuwkze1c/SLY1h7RdLHP5O5pPJo8VfXFOSBUr5QFKq1tBMTXGW9VLaAOQScfCHg8ELPBoddPMXRcZhcCVBquhOs5uPOW0WMGoMaDZbcFXZWN19f/7+500DF0hwzs4anelA2oyjfJ8m8CXw5ta8CSZ6lFtUZppTi2SROuRZm+CdaExLkN/pI+y32YY1F8anSAjocZpqLRkYwycrIDi5/+wn6MmrZ0Toa6al/UAiBF9xKotYy7zvaV3/NzQeqaA/Hb2k8KcL2KtkCZICZYbYEi1wMomDvQ5F4vCMxTPJau52KOr11Q49wWR2lY5g06H2lM9uK7HPMe7ECHOCGblhklhvhoseGwVneZRQ3SL2iFaD29ejzZAPbjRA+lIcE4QiW+OZYrqcTf/LLE8Rj3h+nhcLsHN1/8NS51Wa8zL4OOmV003uHcacIGdWvzDKhUTTcXpe9RAZWKY9cZbir6CDZs73R3ABZJu+3L6pfJBY447ks/zLUiwX121LqjaQvOzF9LdlSv3Gik/pF5MkPhaa8B++mRQ+tLK+nh8lnWWRxpepw6IlRLhBVaMCEhHq2zMifKpusqkYpJC+OH+ygs9g1PXU4dkCAMS45mrFnSnpSwyWGE1yfOU5eumPt6RWNe8Zw7xadPXB6ecyeroXv5NJiPdzGLdd2Kfjgfj1iozibYAyOK8GqffEL+hXZtqeys0EBUqNNbnyZnmfXuzmQb0RYjNuPAmOx6qRzMjvUJGuoYpik+tQ2FxdFHMuOEo1Q0Z2MgDj+QH6yvhCq7BLYVEWLwtYamo6GptYpu2feoo8ra6tVQbWX9iZ1MGPfQLX2ixBuP+lyfh5d4V8216Z1nJxtxp/hN4QgcFvbZcNvjadKqc2Xo4T9DpcAD7/Wm2kF0fYUD3hIV+fatVkWt+SsAjCrSzUKAYDw/mY7gR
Variant 0
DifficultyLevel
453
Question
Barry travelled 120 kilometres in 2 hours.
What was his average speed in kilometres per hour?
Worked Solution
|
|
Average speed |
= timedistance |
|
= 2120 |
|
= 60 km/h |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Barry travelled 120 kilometres in 2 hours.
What was his average speed in kilometres per hour? |
workedSolution |
| | |
| --------------------: | -------------- |
| Average speed | = $\dfrac{\text{distance}}{\text{time}}$ |
|| = $\dfrac{120}{2}$ |
| | = {{{correctAnswer}}} km/h |
|
correctAnswer | |
Answers
U2FsdGVkX1/SDlvsmcgXk9iZOcDIpVVZh4emX5XH1NH2CGIIZb41ZCm+aH1eArhJTxYB6PdzHjM3c7qpSAGwW1aL3WDxtxuEngWm5gsGUpcTHxn5FfgTBjLlrdYU+UirrZKeWvifyhKLHQFYO/Zm77cwfRCQoDAnSw65vlhuq2GpUfb5gIQ0AkA2hsH7cuur63m60UeytidhAFSXWYiBFcrOGaUuRc5LLVdregDSr3yAUYRxOz4CpBpgfdJIxHXUHkv3Z/bOC/iKT0kRyn/QrrnzngKGSkKsSQAG1vwAFyVtbJ3XgiyPDJsrlZk+gbOY7H8sOxlBzx+uInAd5eGNnZCBESKE9Xb+n3EmobWsn80AN+SfBnGCIpj7RVjn2Vro++RK1j3+DtGWPoMNTdUR2OKuESCbZ/KNcQ0I/IPs43UIccCnPtnBqzs5K674PcmFf23FV2UKw5KasElGz4d1VhySZTKR5zx/dM53idvx13hKD5/fuQ01F+Jl0JSDwulVQP2uh3R1ptgfj7vTo7L/sUsoz8CXcXNBRkK59z/4eCYpjPX5jGG0Y1rzNScTxGHdpB+yRwT3EteJ3D+eDT2yUCfYDPLmE+ZFew48Pe2smDWzhckHSQddsblpbOfv/PoLA8qWw2b6IEu1bbyrChzD1sMS8nMy9GgB4JOxI4CQ0uMiRFYX9VapRggFB6IBU4AVWBPB+L9LIC4HTfdO4DzarT+t630+9K5YatQh5CfTvEWiy4HA7iCiwKMrhE7o1WuXnz9UXLitJgbJ/EOh5KO8qhwWBt9xWOXDdvvsrP2gFmXauhHrmk4BJ4jy1rHDo7frD6A/Wns544DqBN+9q4Q5gI7+N9/H1fTR3ZmgtptLUhoh1pTTwIESaz/E2TFanbRnFZR6cCp99f3/cy3puZutcyz/YprXsjs7Fd+8Iqlqcd3sDz9VwLgZfRBm3axhrtRYFv2LTygUuprArqBgXyCUR3MFpk7HAw5HE6szybq1SVODyGU3MSpJ4SkpiybHOkjIpth7AgLlEM2getUkZquj3T23hpV9+kkt2dB44tDgGGYIOttrucigTvz0nh/uaa2kbBtrUsCqCNlOfHFmGMWHP5Ica7UNcrOJrUchaS0bKWXYaBj0O/zSTl7wT5zxUltB2L67WZC8+roZQMNeWLj10AYA0Rmx2vFVRpwl4bQUd7iNOlk5QI/pE8H8Bjto1Qbqv69s6wVeVOTJFJEqfH3KfxU7Sf4A1pQVXQMEXwHTO9j4EdqpTqXMvwQOiI4gkOqFU79jFUWlma7zkvvcyMAdRdLzubrPzQ4NabTZ1VYdFoXHwv15Ptmv+waSnVy1yg6KTJAPIZXPaqvgUfLkGoTx5fGCg6NQBM+rIpwm6dQkg9yFNPQ35Rinfq+VdKofYezZVfi2DFvj/wmDS4DcB5L5X15rIEbrXBI18MBLP3fFS/cXEXQNhFMiCOSLMkLSUpsU+HSxsvjIVH9hBnh/iCa6cxIEHUOoWO6nfDmDCxIdvn24t1r+vfqO71bmntUu7NondVkU+RQQqvYQnHetv7mfphQ24YahTE7P6pSO5dGX9hQbZCKiqveeF5EehuhSj+Z5+Kc9UzYVDF8Eauyh28Sw+rRKQaekOtJU43FFr7dWiLFtTPM4+dvz5uNK622P6tUrO2c/TQTs9HwjkNU+LyyPV21DEFhBOQTcUJDmh0GsLlFRm1XNNe+vzMPqTty3PBZAlTOpXkrU2UgAx5CaBoUk1Y/YVTLWo6qEUDakQhRVpERWUFOUP3OOKR9uMxl8Y++QwoAfRVdFNLrpq3p1OELRMfVKVYijQtz0zwE15sRVEE9TFyBn1aAxu8lfTgjcG+cn1wZaz2b0YhCFDfwaC9LJor50rUZ7IP8ddI7mB1PyEgAVLHxKazxcJkmplQzcnWd/6ei9poYNry7O42slRcFcwJttLtfE6jHFPFyhD7VhnYvzmrv8Kdd/2l6ngtCVO2hWpI6fsWy+0JOYICBZj0ix+GUXNenqoMi58Ok4J/X4wnXnr+3KgjBQLluEpo176aUrEve1u6FUfudnACQtYBnSYGIbZ9ULEfUFy1bGkCOdDXPvsrya/QoP2Bxz76EQaTQ6V6INifZQ8HCMUbCnFExUJWp5jSp79E611rUj0YOol8t8Dw85FQyKweLz6+QnyN7cDBqK0tQ5wXoJKo05Qw3Ug/2WMtbwAW2eHK/JGZEJDdL3of3lDYYxA1NSvkREYe6nyQp+DAXTGAQip7dRJ/0qawPY9dZ/msg/IBZxQ3uTkoeiTQIUTX8d4SlN7jvfWb2G06I5LINrhebeRSRe8Rxj7N3KkJHjLEfQzg4GMDVwY2qEX3StfLDeL1yZoCeRlvmneG6rrQlnCT3qOOrc5f5fzfGUXJEBmmCvBqAMQbSYbJLN6/Nm1pGkwSdKXPCtBcOjwF7gnMUjXq+mNISjFJc8K5DZnMmToiYN9yZRDytlA7VmkxXG/b883m4pGUDXkVhBb+qL4p+moZlH/LLQcQrUDZr5RXXN5x9jp44EVDa18RE42G8jPT0GZX+wYsUuKR6FS9BEQcHfnG2CZI2VrtkiZVwlvd2q/Q8LbBzxplgx9aVcN1r67/NyzgFlWXALOq/KJ5ga7nCIcIsiZ+geetmZLOvfxr9F7ixTKDRz1ZvmlmyJX/deGW6pjQ1vh9SKY0y3LRZkm2MsPBrthg3pdKxtqZfVSpMi1e4AvQN4uhFQwfxA3qjGGxhYb/1I0PHU6Sv6aYUTaV3vn0XiqUsItZegT7FMuREhFMXwRuzbabxM56cqlU7u60pf7KhAA6xJ2/STBtkGIiq5AI+GIww+SgtSnfFRDnnp4tfXbOCf7Us1K8gNhXAmHargRaqb+tqGB0xRxodCNvOeBLomktU/rxfenDoW51W8ShfHhdQJm4mKWV4ZW5TP28MDr6Pp6AbzFqUjW4WJk43J21dljinZIQfQBr+rMMu2yEJkdg2mtVDvc1MCbVeChdyh3A/Y/5vj2GaGIcfjAEzrMe8U5GDL75qG6QStptuNqnPyBJuTYWSXwKYdRVy+XKDWEa0HkLo+b/UqjgvPkSZCRL2PPJPrb4+OsFTKPlsbRUUipKkMyCB1dQ45aZXA4Eu+Il1rFzduOSQFtxpEvRFCdfBD+EU7bSI3eI87KcMUs/poAIUpSncjl5CxTOTRo39IUxVXIDkMOVFLERUBoeARU8sMxPmjHUd7e+TnWUSWbVMwru8oYqLMfm6baSj80hKCkHB8qiuUn6KGfXvMfxXFRVN2x1AkpyKB6hw5UUB6A6SRSTA88+DqB+LaPBPBWQ/344UKI/BqOtxpSstbGYr8IkxLigYiMeHDKm8ZNRYO9Atjc86czM4Ofo5i0ov9GhP4lHuQMwtwZzttsNa0ausLF0OtuPkenLmjVXkGucaW/antn30BNmgBlMK21Kx88nq1DY7IlkZY94/DF5pNqln+iZRWy8nxnEWo55smzvGvC9+8TRxf7+s9xVD3ednN5pfQX+PZCimTromlZ72Sc567I/YJ++QkYDshMHlXKIMhmRwvh9DLlnqk8fMC4MebkA6RTg5FrlCrl/TIv5HZJGwV4Zre3Q40Cc+Ulfrbq0/xT2Cp1mn7LHxPe7I+NO21veKYMFNvWZ4pGJnpn9vBJ6rvL6263zgURl9vxauR5q/yMn1bvw+LvA/vlqkjcZeCkE+FzAA7ZaFOCdXikbIDoui81xlvevXyX3/yaGym1/WvSoiBQMZBKxzvV2GCYMJ3M8CMI3nWGmuZz+7AUXq+QveENKVOXDKviVwqzR2jmxNDTfiIYdQ0Er9Y9bzkHVSh+pFqXKhcZd2hk2iiP0AGe9dURYkewT6eGeEI4NSiZn8JmQLCh/Qnu6JYzMGExp3pd1BiQNdPhDfpIjoHTQ++liMQtiIaJ/AmVNB6G33whKuPT++DV7q7YNGIwBy+6fRe7Bk1NLX9s215xSCVkZcJKAehddNNeZbWSQZpfzc3vkqI2yJZpGKi15oq8WAoxm5Jw6CNnEVInLMI0WPsfuSae4/DHgiSg8WSwe7SP+MPx6wtU4CvxLahZ8fZsABRk526bVE6rg3dyzy679KJwpJTl1hPVhLFv+dwKphFvhjANIxQbsXQKbS81FNzGkgdfCpp2+VJWidAK3MwMZrSuzpoTwbx3S9k2u80l2OiUhxleF78fGbgooZqBN/bVKa20Se6+wKAWm7U5cLAFGZ7he6Kv910RzrqYWigOvQNXhLEVhOxen8a4nOxlLTr6wHta/6+fZKTYHTQrqPhnphhQ8jaHHGa0qA9z6cEnTnkTrzTK8OTZq5MsS5XIZayPEx6wmbk6igtvkRjwCKzWovCluEdFQ6OnIM/VJIbFKkMHjl0TJNTSKHzKBMFNBXo+QKu/rP8mOaxO74IPuf8YGsiimgckGP4EqQka3Obm06OzBdbm7eSSL3Wbl2VFLlz+lufh4Q40D7ZLQkss4X8vezVd1OWgcmS9reY0niF0Y9J55Qe8qQtzqSfVWSHLw+MmdXze0XLfWplPeAiyzPQG0qqVHerCZ3DhF5MvLqgxEZ8Mz/rBFxdktuBqebNm2kJ8F9TnY+M2WhTH2JAIg3uFDo0u6TpSG/WhZWxmlZz0KGmR77XzJ+QvXhWt2Ng3qhySsF2qGwgwDAVy1oZCJp9kh9wCSb1NTvoLSkprCgv4O74I42HdQlbPJCMhnbB3qe02dCZQpvpxwTx+NhDdAqsV6B7Sbl9yRQFQcyt9VDhHZNijrEz9jeyNwlDrs3RmOVGlUmetV6FYpl6WgXDjPdrfpW96mrqETm4IEiHZg0qPMInjUXILu7YLWOlqU8ScwU43usCxgRDjxErmkI0X9CjHHb4hdGuN4KELwzMYcMFHPHoU+F5syI7YVeYjDSLtfWvKEPRwJGw5lR8y6TzZ55CADCLDVokFgAr12EgzQraUdI2L1n1k2vtuyzZbwaj14LUnM33ljoZ6YW2mpSmg1i8cuW54khNxoDoTw3vOfWbVgLP+D0GtyC2aDqg3CdfPtyhbQY/fOeYLtlTF3avcEIkVBovys7Dybk9ZAfjsC6AIHBUpFzg0iADr7tjVjkR7NE45zE5KzxFBXDQlZ4vxv/AG4dKjh05ORbqX04HgwalWD4G/GFydyTQTqWck7Ylsc841lsiesHaoZ5oGrAczYT32M9vlngT6iuUzhR53KIQOV/PgRCkdVhGejM15qlniXdjyUhhNeZdQcMXsNUjl8WSdemfNDsOW28cyrYiJtAhrnvflA==
Variant 1
DifficultyLevel
455
Question
Andrea rode his bike 72 kilometres in 3 hours.
What was his average speed in kilometres per hour?
Worked Solution
|
|
Average speed |
= timedistance |
|
= 372 |
|
= 24 km/h |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Andrea rode his bike 72 kilometres in 3 hours.
What was his average speed in kilometres per hour? |
workedSolution |
| | |
| --------------------: | -------------- |
| Average speed | = $\dfrac{\text{distance}}{\text{time}}$ |
|| = $\dfrac{72}{3}$ |
| | = {{{correctAnswer}}} km/h |
|
correctAnswer | |
Answers
U2FsdGVkX19ItFh+EWhaRUFjgB+vqRQJQUKVpeQ214HlJWc85huzk5yIEXvh4nOYKLdQOYzGeeetr9PffBPQJIrbUk117TSPIDyTvUc16KjZ91emXkdQ+QIdmg6DCPbAqPQ/oSYoklNK+xV72gn/2BITxUnKybVU4yqEb0ak4dIPIcnSjaUbGLI9Hry6yD25wt4xTDADGseb67LK8CVyeb9uefSC++8VnhFCPsPr/Bot5n9kww48bffJOOcnSFOqeso9HftpHVqg120qqM321kHaclIn1t6JCBNI9TSfi0IITcaSPGOiS47dAMc0ABlAo8mku8FGNILO46YhdbDIDdONeo7uDbK5N7fGiQrskXnoEZkSC2LR+tZ0/7NabZCXPtB1IkEWQoEP0xQywI632tAOz9ZDhuZj/sXKn04YMkw0V8NOBlY9Ga/AkA8BMO9K+oA8zqwI0gwInNxuuClOGTmWbHHOyvVaa9dC7CudqoCmMjNj293S948HqW9G1YQLWG8pLHdytsYSQJ9jGhf3hPfhGFXhGlDCrAr4+RjsaSPDGdAcF08dmnkJWYJ9LXsbU665hD6uVYXhWE0np+z/oNQbgBoyRv/UY5ZpAiXDpRDc+5APUXIUPlJVVdkBmwFiXxp4sZburlHdbbQ/Bl2LPR2yVlbZ9QnJmuwQPxJ4nCBiFiUFKogkFPUHNv4Ntt3Fsh4EiVu8BUwXvWJz8M++90mvGN+iDrKDT+WzEVRkiNvyY96dEoVzj9dTXVM7lqVT3HynnJPSTV9psNatunWgD2PXmL9yC/A2so5Z22JGS3smE7+YCFibKTSS8QPifwqve5YdKV2gvzPbAkgz8U5xO5qM4mEOa8h0nJsrzpptknupNmcN2C380Bp4AwnrWtbIhzB2Jv11jXZBeOTLvs9l18CN1WaEgMh5trKDGVQ1wqAQXNYS8Q49s76YWMGW7VBbDICz+FD9oQexWxPEuv12OY1ImEbQVMv21U2I2nDrXNG40UPnklyb6BFp8dqGSaTV3gb+KjvfXV9AhSe7Vy3XZcPGM/tuz1iHZEhw5ZBn3ubRconqioyHWyEgVqVARcZfUlsvcdosYUV3LjwPYm2tS7tLlayDejTUoOyTXL3TrnaZvGk0cedlu1HnL7zz2vRX/ct8M9h/7PB9yMPIG+VudqqRye0HIo3u5S9544LhxLzoAlsDqK0mFj/rjQFlEFK2YD4nz0DkLkpcaTrayDj3AJS2B0aKa07n0dfFv6NvHJ0iE8LNvuPeBPYaPtQ9NrbYuHuOIR14AIXYt4TjohBpNwhkC9CYSkWvUwuPrzY+ZP6IC6Z8q38tEu+8POjVYi4wW/MqIBQTOnx8L6zuWGL3+0FZ0DL4eLfkP0j3YprBA1Cb6KMItK1lfMIJ46z3u6GgrtXEQTCEhwhuajv9Suq1tn9jeEJligjEOakhV/wdMiHP/iNkbL+hBuLEvlafcpaJwrokWvpK0iIVddGm1lOUXKU341plf2iNB5iNEYAfKrz4bXf6a5bVoTy11VxIsReDIDl/XJGy3lCFwb+6XYarEsAqEMcI5NPjlC7dURY9miZ5qcevU6kr7iQjZYsFbSNPZsjQe/2A4PeB0ApHrNb99DfJli6iB0r//X2FHc00/bJO8LeAGj9IuOBX+aaqY6bL5H4D5PI11u/q5XNB5AuGTac11pPZtK4Q9xYoI+f+fq7Hg9LWFhHX1QC1UWd2qw+8XzJrLyctw0RgP/R2wGxnSQU8mLIcd9aumyw9rMBdEbOV6ydmeAbOALii5w/N2VmjlwtA67LiF1s/tDPi4uuH6lnDsmI+Oa1aqhTvmd+R/GhGdveCS1S+1w/NttjNDEqpPo+WL+WZPPaybIUmEOSGrTqs0EgTyfGJuWjqOTogaeSSHNlDfXpxPICviLycH0KBKU0PIufchCrPqHoRZVgInSF6WbazjanAA6BOyZH43r779E21HX6U0Fb3Kurdao7NLWzz6ReG0iYSfjyLVEDf2dqpFmMgcvgB7h4DcAV30Cf82jwkz2FiVJh7UECF28UdmEnd0V2hbLrv9ufeaoq4ocmh2VF8SlyGcDjsczF9BrhZn2ImePPWviMiWeSjJKSoHhRcO88M0uyJlyfuSUXzdgcgOCnGO3EMJ5sxELhbO8wSkIvVqCbtng0HZu0fC0QExBffL25+T07LsG95KZqfMuBoXE7apRLDC7JhEj+FYKSKZ1r6EW3jhfe3Mau35CTZflOmJ+hnRQh7Kgwwx+lJkN6PutS0dCxgTTaQ9QcqzePEja+60VwEuCN8cEWBH7G6T8IlkLp01ZYZXtc16htgnqUBz3Mkio6E2w0LLnCVsZCYVYl3H4kfot+EpampaDOIJR3eE+e+GgPcjzpaZhvfI0jx86fiX8mgPfdYweLckNRD+2U6g8qbzS4lCuSFzfeIskDmih6Ewq1xYPJHX24HZ1NJX+Tnn7a66mzMEon4JhuBS2+mM7DPE5BRGQ10tG/TF3NojYgFFQRKaKQag1dUIjB27SttyB8lz2y55SdKzo2w/1qJtbejUQWVrd498/Uo4A1VXTVb+9u0GEy4QXnL868EqCojgHcC4rItpLSsue/x5BNzt3cne9qngaNZ/cVvATBmHGIyBoLi2a+gf6DuC9+2yo039ZAleWSxP9XYF1q2wIQ5wzeMbb1LDON3EHnQtDGVXDpJ28NtMVFHfeCmS+yzPeul/4GDOdNoiX6qBhs8+bCtG5sPux/KG1+R88DOxxfGtP/wl8YwNG7Yysqqnoy2/4dVNJFjITqLoWxwtAyZWkuQjDuqCn3o/qA3Uq+t2ufyZHDVFBaSGFxAA+wXWKsV5uy6Kc3Db1dm4VEhqhwhoh6kgV3ktIyq77sd3YkLxw/+GhzWG6fKYsVt3fOEc/7rwH2+n25AB2i7oMjoRyitgMMXzKX4gqIvseUULPzb7+0S9UbN1KNzHIfFpemlYTvRU0Z2rrkque+GmZ4TL4HsmWLcu5yOt6W0sC8gQ8FqcTdGxeQYVqIAzlRNLyB1IQmnXJN1Ado46OMccrJP7zNszxRnC/1XAlORDUqZ/b9jLf3e/9iAZKNnparQv8JKddi5Pb+nAcdq3AieO+wfYFbDmDZ/mQbT8G4e817S2i2KFgj2BE4Z+A+7VeQYRWdAKWEAQnd+A9221QAPP4ErI2M8J22gIHvVd4BnPhIWtcP2V+cNT6I5Wl9uj0b7koyJhNgBas1tSOIpT0byyIFhxfK81LtUliG5V/xsCBmrvqYSDzipMzCPb6e6KqLIuamyggefwwGXhmOv1Ze/sBMVS5XbeS9ZT6owSjjprqk6SzDHDNUA6gU1qzZoTth0MJXUsysOsmiHpOXgmrVtUaIj6J0sUayS4QsZuonkD81Z+FTXNBszbkjWZuu0dMwY8yS9+eozPpCdX+32jFmsR6F1OV0Vgle45As1JqTkd6ke7f+GqntatMJQOMQ6BV9oXF3diLD/zFVN8tqQqTB0m7++vCkAenWMwlEBzMCM2vOge7KsrXVkB3L4/kjChNX6zZBxnrREUla2Zyo+krAUUZb7L4HM5jN9OLFyOg7VYACKhQM/9jyasy/ed/B5ki3uruMkFpy1osch3XmwAeR027mBrWM3yzaTeDVnFDwkHxx+kY1ICMGknWBnqTBJNAiC6dGHqc5UxoizURH6bzd4tUWYgGxARGHA7n9Pvs8tIeHQh0O5NTiOoXsqE28cGP/VJFcJR5TT66dvp1f+d6wfQ+diyEV9aHS89ZtwJC9LV7i5rIYZMCgidPlFh1yfda9LnWv4fO0zeHNIHZEh1iYZblHfN/LwjtlJdIyQ6o1ho+cATIpJ2Nuu3Z2zlX8KW8qUQrTzPdP2Sx04uRJA4oezuegsXnhfSAFKGLcjkdQZ3N6cODfVSZ3zR7mrwNb/LIXlKqzp6PjwT5YUXJ6ys8NRzceqrSffO2QYikHchHbWOdjyYtB6J2uFEwwhb9Dvcqyv01qQh9sp7EJ/+ZiRFi2GXGhN3RrQ65PqMkGkhqjUL/P6S+erhaToHIgMvT4cprJ+1rYVG8jjsYhesscdxNqwBmxHJb64am6aHzyWSiQDLNv50l6vNltzJXvqa/GtKwCd8F/QpdSvJdQsf8r/I6RGobtWnjyra282lYLByr0W9PXi9JoqyFq3nf95RYsR5mqoO9xDW3sIJSItvyeReYfOM4Qm0FpTcD4AoN9RgMmEykb4cfsxptHNui4lpDIdysgJwkyfDtlUPlHOoNvpyp/0drdGvG/ob1DegRN4tEo5bJPwtEKdFc2f0CiJt2UfRxpJ3QK4YrUqa+Wel2LoEXUF0DSVoXjBLjW8mDQKK5tzGXNj7oLC4igXrhXam7SpslTuqVwAt0y12ewaV5JxFtXsHuUu5DPD8ryPJ43E2nq0QacJ6xqDyikZJtd19HcVqGkC5A2fG1m4bxQ+/tLd49GRSoU+qUF3hj949QalptcvOuWXoKfmRivFgpSWZBO7/jE1ZhTFY1Trlf5wRWnrIdodFTbtIVa7pa7cADAk4D7H+laxOZi3sYSaS5JErVMkA2HyNLYFyDD3r+eUJjvIhwI7BkwSEUQ59kC7kQ4J6LVEQ82u0DtECjPBo3N1S60zYtcFBagMWgoK/OXiISTECyeEg9VJ74L4/t4WCiuT4+J+ymYpR84o8CUNaKzaeQ7HZwDk0XdooGVRpltHRxI2dbj0La5enEqHQrVjjuEgtsiBgebWUZQuqeOxX1OxDbIctS7LlG7C21tOpHe1ZcXRIRnN0IUWLZKoyY236QMVWHz+nPAuqbn1xqUgO/VJXMa3DpeeWnyAxVqVXgCUw+SMxhMAw2j4Z4yDVnTFl6nqkqGpGyKtRLCG3kvsm55ikTO1XbciC14K2G5kXNqC0h8feIwbb8+1FkahbETHRQO7Rw6dtB5QM/GyySoxtPJYqOsGGrQzPk+ES9u1/b7k432Ci2sKhAdpMpOc1/W2qtHH2P17c8fkHx9EBNv7kiFGLCXEkG9o95z5H9ao8fryiORDFjh6RXgiFZQQgy84ppu9PoIcVcbtxeAotbOliV7Bynp/SGasurdyBGj7W/nEs6xMBry8jAtwCyKphtntcOUfo74PefrXsxi/YxE8wtKANfkg95eAHOFOyP9sXkdStakghrxh3CKBdwIbfmDtXfhtwezKCtyH/jtbnnkbPIPOD2YHJE6NFwSB6yrJu0REsqQJAa1DIYb6HfTbeeANG9vULnrZ0oA3tUUdYWWW/Sbx9RT266YdROcP66IsTK8E4pdHudF7E+zaA11BS2Vpl2S4qfvt27nLVVisgpFLzXBdBtX8CQMebThnkw==
Variant 2
DifficultyLevel
457
Question
Celeste completed a 360 kilometre off-road rally in 5 hours.
What was her average speed in kilometres per hour?
Worked Solution
|
|
Average speed |
= timedistance |
|
= 5360 |
|
= 72 km/h |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Celeste completed a 360 kilometre off-road rally in 5 hours.
What was her average speed in kilometres per hour? |
workedSolution |
| | |
| --------------------: | -------------- |
| Average speed | = $\dfrac{\text{distance}}{\text{time}}$ |
|| = $\dfrac{360}{5}$ |
| | = {{{correctAnswer}}} km/h |
|
correctAnswer | |
Answers
U2FsdGVkX1+9+mLQqVtZFyiuD2pk8MD7TDfpVycnseBN/Msq4B+C9ReXjn0el/wox7j9dx8b+nMh/2wn5hqaus7L/ZksFjxZh3Hlq538PVDExTiCjduiRAR6jma6SoPsYBozbyKnmcYtYeK46PkhrcvpwZ82SK+8cGrFzptjaLCjl9peJN7kPTm6xdATUGwsxINZxuajGhjqOsi0FElBNX9VizwGRcKUMabLy6zMcCQ2jRBUfIJ8LEdrazhD4gXBU2q5TEGwumWsG0REVxVlwRS7xVpmSWyE8xTxk6UaSy17eFGlvL2UVvmtS4vv0GPGy8w+myINfEhMv6/nRJ6exRmwk+znWgfhfXsCyz0coE/bK2F/nkhm15YcIVRR8/Kt8sNQ+Lh5YSD/cYN+gx8YBenyFPt5yuGwLob0xUS5XDJW2jKpsCOHN6uWdWtVGlygK0cFc/3WWeeTI/W7oTnMzAgRGsw0PBcjsfJhuAFOmCNsls6wriW6TTtgeL6NUneydxbr7q4OBo224YTer5VbJwNAt7YZzD6oxUQIvfH6WCvLNSEakQdtGq4FL4GBNLm/+wANzTau4yey/SfjXVR4gxMeTGjQ/beEAGC56sHefQEvVM/rj8YpyYuDxU+kx11L1xTYwdB3EDZwOaJG0UfmIwtlwaIq7fO/vPzTS2HDoBJ2h0eNOlKDytObG2z3O1qEWQiLfuCt01vRpynQa80lmJAKfViNfjA7MEReBK8SXWfq5ahAuLtggbae9ej50YSipEXVp050246TM5Pnyfc1s0vJEbC65tA+mXSxfbuT8aR0nLKVh+v/b+xZKqprZkAOP2bDYiTGEUc7thRoDyKBeCT9kWejtHg09Z+38HTW591cYGkb3uVGQIRGVRp6bMzORewdbHvSEqIHfOllhXCB45eE7C1PxGt0gLyiiw8r3N+H82K1pmwDazHyXRPmbb8d5JYBwkOZJXVWjTNDqlaETOaD8fNp5/QpeqyHWqZ4BXh9nvoKUHf+k5/191pLKX1Aktj1yv6xz9NWq/IqU7HiDThSxLKksKhK8MxLzjWIxwmJUHSTWu34L8IJjOenjvLgtZVmfzpFnhlfwOtRCVVCCBGZA3D3AlvYfOeoC+yuPkg6yfP+6lP9WmBN+RfNQgRH2mnMP2uu8UM9yNwX2Xi3Ik3isIfr7fQHFszsUKuxR+h/hP4fwabdf0T9t8QPSVAoMZO+MABY03Q+RtgMgbCSPADGhme8UsHQh67Kh6w9ducJhISWO1ZCFV48KcTTc8XXci/bb8zj7ZLm7vEzT48aY0GQetchfohKnsfFt1lT7/oyXjDwnHDMQ/Uxh6Zd1H3tmCjrC9LuMCasu8ecxqeIjX3M3vkcAv4CDqc+fvrjMyzpDzQzG0pEJHPG7Af0YTA0/3GV0N4qGQQoo6itBC5K9wjYhmsL5QqTrdaFhXgLQK4++X47W4RarxmVx/bwtwBuTbme27/7O8w4JyX0quvfjBjCZMcf0u61G7mp7xfzuHLj+NWyu9kPT3h7mdFyIXT45XPNwqSrOJu7zrJAPSwa026mbWUEAkd5/sHKuP4gxlBHUj/5DwHPiK+3NwctiK2PzOdIidpIGjIpm5Nke9gH+tlyM9nncBwPSCVW+xnA/2egXJ5zAHndAAS/7dXjrxKSHT5iWClfQtw853LFeeuWVcyd/Yr5l/DwOacyHvZQP76U6Avi+LXC0MpXhJKeQFylAfwWSmN18rIcTp7TLEjSVF4qR7g1fLkGCydxHMkiVoNgQlFx5wVdLoK/K8+h5SanqFyF5tufzyjotCfGUmw7lmMLBRLUy1LJFLkX9P36zMQL7YX/VleYnZbBVEUcySAlOB1npzA13j625DQhXDVGGA4o93h2gE+pb0IlcVDb60/rGxot/oChHbh7K5MF5t4P5cMYGDxc2yDDNVvbYbQQY3j6TVZJ527mg5vEFZVAYUpKIKa5j2ncSFJjY1xSCogJ0uv7e0spt3nH1J/6J7H/1Ehq3oiHySt4Qw7C7pMUFz+0RssA9WSsW3RHNBR6nZcwSWrVWkSUlE2x+flxh1dwZLVLw0iZWWMy32wyLbZG3Mv4YhnLIEi3VzRYIHlvBaEv1wAc4qbKBkQQaBQgMrRd+99iEk3KXc1Hj9/+AV4LfKkYGR6uiLYPGj4d/YScBG3mMC2Pyfl8/eg0T+oenJE1WS1kNzcjiALEBFx0wEDcTfdq1DFBjWFO5CnL7hzYZMiLpinJh4wIxSCOFy9LnvWKUintyo0zb2B+HklV8BvsKXmZCWufOUiRQcvFoQLVr5fke2TdzYe79dtECUWHfMkP2abK1vdxzE6vC+t/M9ZKFm3n6E8631slr7tYT2HSb3sVsrnxPpWZWphgsxejYgvHiuc+6cEoNP7kEi02INaqw85IarQD+AxLyaIeJEcaU8pQ4FhAtwY1PIKxgUBJlG5UfXY9kznzra01E0iRNpQN0gwI2uNrNccgs1j+WKKeA8EwxSzhQPif96DsasIALBSb7EsK9HIG7fHCb0FLLycE/VYyPGSSN5r2dDSh3j4SfpxRV0m9AtpSv4scmnM1KpKiYzbdDUA+KluIFEohOI4bKIeGItmSq7tftpZY2xS2kr5TTvc1r7yodoxPH0K6jlbu/Rku54jo1GwedopiM4Qbq6TDf51kh2dePiTswHwd55mikLfLYgVXAVwKz8fUc0Od7ojbV7fVCUpbdqY1rLHRM/jCCX49zggR6kpN7rYRuwRVEb0YTskobljGm4LPjQ3wzKJ5XMMuTMYEltBzcKLYuIpMDoqzdOPkpKZraPrGvGqviH+B8qoEY0wyWTtaZoeFfQJ2BDmV/nJLSiYTZgVUPSLMCjkXUQlqx63rQ6pKmzkK/O5C6mKDi1IsEc1CcSD+hMobbQlPA+kO8ghtiEb4yo8CnGZpRmvF6cNdTiE8B24rFdl21CTjeDlfg3F9r0F010V/CiJzDvkumv1lMkS1qaxR5gJUOzGys4780FAhPubS2XgbHMw0xHvsbboT2U1t4xmiUk6OSdqlkNHjgcuLRXrAX04MJyyIOfcBSsLdQWPrsl2KuT/4r+73KamXZ6Fh/7xj4871dXeE7Q7hmIP0F40PwoWSzoy+VWLI799c3gIr5pUOav3TAHXfoe04jLda3HyoB9pzdhWMQhaIixZ+w0s+nXsCs0DbbbiLpRhvJTY621OvXnXRaIThGeFatluBNfPPI4ncT9KL00L9OEefwLRwdz1WhBjnOcdFO0OC8V+GY7MNgBpSWI6wMYIfxhIJenXRFe7H4sf727vASDRFCXv7fFreGb0b089oSfSf6evUX9+jMoTlUwAyAEsAHnPbhMATmHwA0i54EndFWWKdFm6MAMBaxCfFjexvdZ2IuNJSoleqB7aub+knfnNlba5LNTLQCL1giYhHc3UXouHw1vm4kgQxst7yrw6FnD1HfyHm1P9Sf6WMhE6otF0DiPO0gse+KhKEo6yf8/FS4WOXuk6xUOx26EkznQ7Yp2Q/dmI0QGW0/oyre6w4c3aFh27RfOJEyQF4cI9z44AoCW2mwngDmiswVDre4QC6p77FBtuyxZ99AJqZ0/NnP9Ch1TNk3YKwkd7JT1+vhLSsRzB/NvR00bRQGU4aB2ItITZRN/deRiWP0iY7xiUvBzYG1h7Zo02k5bqIRqWCUQzN725nONHt4nc0HqNDHy2vcsYLgWVmKyjsYw0gsb6Hl+STqApnGOVPyvu14QGYNAjl+6NffCxHF6YsW+De9ktpHOuG3+JTarm0goTH9PyeIO6/1Mn+8LKVwxQGs+O/2+d2MA2+5ImmkiIKdQK6nHO5LnMW4F08bJkQTzWvPpmsKTk5TX/jQUTahIf35PgxxxRbRF5UEVwZujD3bkxCrBz+sc8mIUDcc/qYpsYs+YGNvckqHgz2umwNUTej3YBw909f9VyTAIdO2eRSrgGye9NfF9Xx2i4f7LwZamuY8RTC18I5l5tAEsITwMuO6Rp2vdVJjVVUT9LkAd9qjsL5wqibBHBjDM3kPWrLTV5Uq5MOvz3NHo3Lev+Nz1kUoiZivAagI8OrFUV/m40qtRUyjqUXJHlwFwjQCHeEmY6XSERPrCC88DNAQRiURAvCmV50BpXctwBL07onBzmsG1WB7WBaJ3xP2qVX5s89pWOPf3dlqhEXkVo2Nst9ZR4DjvdWMqeN6l0gvqU40d4cLmQuXu9nHKcxRAFLn/eEpjVzp/GQXoo9LFM5XDMg4l1NDVT509VNCUj++KS3DVZ65tK89m9PrKjBaCmK7/hXrYH4+TzQ9EcyNez+lbMFhik/k6m93ILFNkVU1nEVzNleCQd3Y9IFCe2eZXmDNLsj7DzDWNjkvbjnZfc3dmyKefhR6j3HahgKxoGSlZCLaxu/ubd+AKEfP5INVJCQzsgVh36hP8kxPyygIWgWwy+LH80Gx8bs2MriMQzNqpagy/8rxptlRM0679kkE4KC/p/sBICpemBAlHU9qhaYVzJZW9uhTqNJ/IMj5R2Ng/dlprxFF5Z6GOc5kiDNr/pq1f5QnrWlbSqFFUrVQ4NdFXBB3+6MWOJOKgrlaMsH9G8TgtVnLgI4JEPBMu+3ALHp2VMcEpClp1lld9RHeftROFO9f/kPmOl4HeNGHZdOylSqnZXcitj25zPTFA8BPuYo6L/LMxBJr11ulBvyCuUmyuF6wwTQbrOoH6X/oL/0kGMHY3+tNkJB2qr8kDhQT++pUsm08a4+3yjHEZG5C6WGvOx0I97klgPzLOph+yuPnWFqHIQh36nGGHmWes+9X7KklCmmsvgzaNIaP2guDhkeudKSYHMDK+8Xd3bIDbK3z5jRRDX1uObvPMbjzDDZ8Y0UthpMzKM7X0RpZObe+dUhO1TsUqp+f7zMy5LrR2OcP+rpbugggxPh0t+6b6aE9FX/NlCNlUk0cUGeRL8C+mGP1XV8KaSYGfWgylqXI4gLc+ycPckdRINXKNnX5HRgHkoNe/tgpvirf9FiVIIQF2E/YkwCb8TZ7W2YbfVKPyCk+nOoa88Xqoo9MMpUPTfSVXsAsxgdeXsU37CHDnpwddVz38fAxS6j5+lS+O7uDw/8fPJRlU2dcXQXz1W4v2GV71fxLXfoluupxF3i44IpQ5l0+1PLiGpoBTsN/daIy1VbpMzunDCHn6/O69tV0179t5lhUtSUj1JBgUgsJ1hrMC/d31bcgsCsxr7ptf1X19V2742mav6MMWxQphB1PzZ7a9q8dhn8MenPsGyd/edxNxchbHoOQ/aFgD3VYN9E+sd+4NSMDl6shF1neabO3pgG8zNy9wOB1A1yy/aiNcSNgUc/azFmCsUP8zejtmlz+HcaqpE=
Variant 3
DifficultyLevel
459
Question
Jerry ran 1500 metres in 6 minutes.
What was his average speed in metres per minute?
Worked Solution
|
|
Average speed |
= timedistance |
|
= 61500 |
|
= 250 metres/minute |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Jerry ran 1500 metres in 6 minutes.
What was his average speed in metres per minute? |
workedSolution |
| | |
| --------------------: | -------------- |
| Average speed | = $\dfrac{\text{distance}}{\text{time}}$ |
|| = $\dfrac{1500}{6}$ |
| | = {{{correctAnswer}}} metres/minute |
|
correctAnswer | |
Answers
U2FsdGVkX1+GZkQQmsvaeFnAnaSfpAeH8mKVL+8o19HYEPgMQRc7XTvbTAy9WFqqFKyP38TnH5QVE/NGTRVljm/hKjqk7JGtQBGGUqAe1ktj2fi0pXnctyGHhstPV3QLkYLkquK3wcIkpCGFEXBTVLQjSdkUDgcDG0CDjiTMtDP2/uwRhkrGE2zulihYimicZ4AtVZcfx/L4lc0WifM6E6sbgnRjMs2IeC6oHWEQCU+PWiKhYAUDZQabFT0kENlsTokfM6W+BXWvbuVkFIjAM/Y/Y7kVNnT3wTVZT4E2L6JIxvh8Ei8oCaD+lhS0B5SMq61e1eWOWGOoyDyNaQxhIO32ov3ES1CwK7ngHX9pyI4MhejZLxK+yCY0xQJZlyHn6uJDu505IgwIA49ufLulItScfM6FlK1A6MosTW7pewOHU5CdRkem97lDDQh3UxBLD/dTMHiynSpJZWhCqldxutF9isbPhtEUXDtFfAJEXhQQuNpKI2CEPMnqP4UzgVeITQ7SvHj4cLyH1VfLt2NNWin07Y8E/LlEbs0CjEb2GUk8S2QynRNQdahWIqQ9lpGMzljpjnzbq2YwcxgWNRNlHwInNzzN+f9cRw0NBw5l5Lab7pfGjrNkboAcDtSO3GPSdVTje/Nh5bFk3KMBFRTl0Di3eyewCNNZinKaAhYJt69xU+pzFxMT3QVRQ8e3nvzSnfKQbRWE9LtBvuLXxblPNXZYBYBrUtRLulgCikv8PwIKa25aMy3T7VLViEvTu9OlLJ2r/d88sgtvSqPEgPtxj6j7gp9FEHQaAk7JsK93tK/0qlR2pavs4htzf27Jl7btfQoIPgVNHUsdZ57AkvZmUABNaoUHqa0ngBNuJUUsV1kwbwK60luVy4ewXH9kuE7viOmwmd6nRAtX8wx1B6nIA13Lk3e8VzB2rPaF+gWq28i2BBBD295DFqLfarL97DtU/J88Bl1scCTc7aSA9S97x6Sje3TsWaFWyJwHPWYyquLFwv9sRppC+Ogv9/nQpCYMo6S+Yskpm9ImPOBT3a3v9xtsVt9RCT+YO2uEk2hZ+4jHNbBhKObFxmxD18/TvcXRQvRxEVPtmz+bulVljjfeXzaDxMP5wlJXeyxeWmoyt6AmUgvfOhejhrTgrUB8uis5Wmkd/mKMF+/a7jvHbvCVC+FQNkThUzhN6r0gPKTH1D2WT71fz6RkeyBugbHTiHXlwzWcmYC+1XG5s685R2lTIsbzRl/4io4CFmD6SLTsxa05tGlUzZqyeIqdel8ts6GfdTC/6yNzdCyh1h4bIOLiDmg6XvP6TgNu4yJEyizCofP2o4zQssp8fcyeFfR492921v77+0HsXdbe9sbupa/X4RBB6iPNxz1ZcxcjOck7hXF0/zjpdy70qH48jwGS/ME8LX/84p8RXErUj4yVRd5AsIivpCvva2wtCAfe42Vb3ds/PvneNhv/EtiJzvdpFC0Hg306nXLX5D/+MJWWdnoh5SNkkPJfNkcpML5dtg8QtmTY2+bxk5MKOCDgYwKfWXrpN/FkJeGw+9dfjXnBw1YQOt6euYkPDiSi0CaMPL6TEQYe9E+pO8DxFvIeqLdVKE1xzGiB381HlChltIz9edBD638NIrRcUD4/LpcUXcmsD/J7v6KoBWk59lZEBUjUqyZpqfKWQKxUt6ph4Jx5pmWIbzXFA8s5QY2HP4fZlOyQZgRlajyXxpGorlzw4iMpM9KxqSBmTtMnXl+tAISyEXutJBJP8Uk7B4YdS+k+qj6mI2r8o+UDJnWFR5Stp5NApfwH39BwR3HSmVi5DHjpZJf7Z+T28NPCi5s9hkp0eYbtQ+ll+HS1UTPZD2ALJ/p8agmvPuD8Zju0UtXx07tZy+dAIlqFUHkC1sSo+OTXeLaHK4IfsiG85vzWQ8SiQHNm8dCGaBicNbdDb1geJ1lxT4XWtwBZzWfZzMZov3HIESFNBKR5iLQmBEinIGl+a5nOTCmOpGYsy/oiuBb4N8lbTG3pFYTi02gra9o4FMvqp47SBOynuua0mKpn4dc6BhP/w4eYUY33K25iZE8Dkf6ilij9YVUzmyRq8SkOI3JdE/78f5PX+ejrkR9/jcKKwNvukNtxwubIrw3gLsEMgE1Qz5lD0wyPaPkoz9efRphlca3zvL+1Sq09v2LauRuVPVqQV3O9W4Yv3PvPBJR98WQTFI7/UHZTFhPBNadqGG0vbIgrF4PxQVnhD89h7A4xaKSgM+j+OM9LJS7cUa/Jbc810q0248wMlvqY6DB+uBoIknnPUEvlP1U89nFOgnzfGN+IkZ4cj9WluK+Og4Mo5ffhHw7JBaZJxXtBaf6+HEkXeuTzgcc/luqlbyiSBafcy2uChWtNQl6j9O13dHGAHWKdCG2/yoKXRRjYdtyvlSj/SPDSSkV2m2Zc4w2XvG3QuV29CRYK1PnTvtn6QpmO8WdXD09d33Xp62yGdl7fDqVUXsFbXthT4hRDezHZwAMMcRG5n99YTljNqnCzcvE83X0RfG59rMWrjdlTa7Nr2HzQQYhT7S+BGtEHVjOcjrKE3n7b+dxREEaWQXk0ADGt9eF4ToihW1WAqkLcj3exuGyxrDVwCd1OeOmv/pb31EHFFlXGNvg082NUzGqSpXppxht/zymY2kJpsyZH53k0Ix/KM17exYir4h6hZHCXyB2+zSfbqZZvyk+jZBrs8dEXBi16SiYLKfwSa4JXQkcnslpDZ8Z/JVBHQWIgGRA0YmW2vELp9aB40Rkfy1c1vYoOJY/kJWpdRZ/Gvtx2kFJ2uTG75kDOlbXDrHixSSQiYZ940qtjGdviH8QpNq7Jz/Z/JM7iefmo/46tQwodeHUMjg6hgYLnt8CqrbDMjxRJbJcm3T4kaJLINowvCzhvmhTl0c+lxsO6SLu4L0A2mUDMOcx370W7sxQYfX6R3a1iZxNwyH9RmO/ax9wG8+MPZGLd42+UpppGuVOpxM3HcBH7q4NAt/XrggJlwjNrxMAfKojmQySXYd4vzBezsrj97krCoLkaYGKkioc00rPvcCE56M7K6gZ3U2ERofEmF9aQlA0/nbXm1Mg6hVZCeHCvoNThd+00o38cdlAxIV34wnVXXfkODHE4rnEklQy6Xnnjiq8E8TW4YNepPBlQGhdiydqMf749kvgO7bVAet3cK8iy/JbsjmNdPW9Plyb1EkCJtMU4AjTAokY2yIC19vqvD9CbendEgNCgEbnJvQ80Lechgvosvwn9XqIaYjQiTi717Zg575rQL338QYrAPxt3y83004RbMEwg1TeH8zmvKnsEuJOh4R1qvNaCgGan+4JHzihgTZGAQgvr1L/4JSRYMP+edez8hB8+arHI5qOfosYGFxMnN90nR7VVtJIBT3D4U9qRYR519gk5wR7LxTtEQUr0M97fm6eLgLmK66Acu1YhcfJaNxLBN6VpzNUWqC54VkpfYPsH73S0zxKmwnXHuyg6R9bA/5bkgicXem8Ymm1wG7axinEclorGUEP9tWXbt22byRPemtAfairkTx39wedJE/HdYSupgjpwxwhekYdPPUD5f3lAv2t6SaOspveSyO2m0/DIBZTC8MYLDTM4Wi7H/YXyBZUP+NVSEJsO0tvG18n2EBXGspFMqwJkiL7+dNIq9edPkFPPX4uk1BI787fc+0jtx42ZjeoFmqI29yuCUUN2WHUL7Iw2k1zq70JHwCzNV+C6l1cKEP8VEg/pF1LA9+HmaTzMn4mXHo26zcazu1s/t8I/OS19sIOVPN27lLsid9cCm8CUCBoIGEi33IXo6g0ZmUjvpAS65X/4l0ztubWpl0P7/lbYt4jbLUTj093L4hKj7aYuF2/DkU3MYqiv8JQkZUVAYbgsFavX+IaUB3BhafLjXlwc9AZKMgrWfq54q+0eEFiP7NK1aAufw5gX2+Jhrmcu6eVEyZ6jC6LvladtTVFbWGqCYFVqPGnYThFrDJqC2TbXJuSLe2Wb3cqRgDngzMKIuUUN2/NE14S7RkR0C6OFOc0bfgz9UY0KFqOjrkEbV8tKMn1QrV5PJd3Ydo5pTWaKWqTeXH4NMRtDPhF6HBW92kMe5wuN2/i+ovV3ptL1NkPJroN6DHN9tuOOiUlAczwOHVtr6jjxfG8oPLfNUFb9LV6/PuQbkTsSeKEz29c52DGRF6lRO7paGT28R1aVzc31Exhqrgz2IR5hRu+ow6OJgxEVLizIIs4yuvoxrL6WAAuICIci2nCci+wNTMw67ZFzaeg8dvXCwamnxIVXKdZcCX4HvYSFbjTl6mqBiCbqIzdfZZ8ZB4Qx0VWazgnwnJlnUvo6evRzCDtdx1XqG9tlFcVH3mu3snBc79602J3zU9F82uOyCZlLiqHEN70UeV0MPYRAaLSP5ESXEdPGT+eUdZ2turvlpUZm+amfdmd+nJDAL35GaCNGormU9+fXBVzbLMpUTdep/3zmMq6eUwYtpejoHunIupYGl9q11eQRFH3TMFqxThGRL8iWtFlIu4iHHKFrnVuUf3+E2GoNl+KsIRzQJyCy2/0ezTKZLh7iYyfDLUOSD+8eASW0CxS6gDgMo6jZyP2texizfdNlILRphr+Y3b95UTlT8Q/zEkCy0ZwbPSZregQ+yQUVKdqaIsBgW60SROQ6pfrRZB6MhyKfbLsIw7rh3zsShgX6BX+qmRQtNuNTXuf5t2Hjcdufh6QBCKHjNMDy285OAHIAWV38JJuGymnppasRXXvzt5R+zZ7TG1CBXswk9lsQZ+Kf0zyhJGmHeBli6CnkEo4LxuPUkr8nC1fUSe/hcAYDEjfZDXFo+AVoDtdbRNV+s4/Xtyq85x17c2Jk+eF0V3Xhvr0ExwoaYOuFJDZwNPfk2bW0ZkeznK0BAyyKrxgom7IOIOrKMEWCW3oLcnvUWSPsIxS6fX2ndTADGGbYRhA/wD3vag09DHM6LsU81dRsh7IEikU4F5chz5NOnDY1UPkBa2PD+AS6SWPSxLyebVH8G3whrOMt/7PDoxaF1ty9MYcze7kgW6qJ73JcTFWqMhEk+Y0wBoirs4+Zva6elZtHaM/ELKt8FmAWJ2oMwTKau4pUEjnVNu7whPg+gCnit2a2t6UhIsr6cosXEEBxW9YeJsKyKDlnSN/JJDiX3a3EZ8UVpL77+zBJmI7E2zA05o0lZRem8u1PkGhed/hIL2yICqNqjlY0WADO92/6mrWQum9jqm96oBtk7BuLFWIME4wbE2ENub294gWn7UHPS0nyfAFa8/nRH2PfksVVTJP7+231eVd40grhB5k0gZqF1ZbCk40A8gXWbw2geJQVR47SILmrdGrI
Variant 4
DifficultyLevel
461
Question
Gayle decorated 162 cookies in 9 hours.
What was her average decorating speed in cookies per hour?
Worked Solution
|
|
Average speed |
= timec |
|
= 9162 |
|
= 18 cookies/hour |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Gayle decorated 162 cookies in 9 hours.
What was her average decorating speed in cookies per hour? |
workedSolution |
| | |
| --------------------: | -------------- |
| Average speed | = $\dfrac{\text{c}}{\text{time}}$ |cookies baked
|| = $\dfrac{162}{9}$ |
| | = {{{correctAnswer}}} cookies/hour |
|
correctAnswer | |
Answers
U2FsdGVkX19Y4t+a4NLvotoFnevyz6KOKqfmg+pYYDMAypawcT3K+eFpngdSYebwp2rY96RvnBv6mTwmOW+nWeFszqhSTGMXWkng2ZyGMEiUCslWxr+cMIvsyU81PGdWbjnYyPgSZIlF4SHvfgt1jwLIT4Qr0mA9/dfNRHbxQNxMARd3xW+xyPnA51OZpVcTuQfeAl1hfYi5hPBnIWdVqf/Jbcv6OIw4+jp0LDKpw7mgtJ8yWw5KsGU59/U+2cCNzqA+LOc9s+M/i1Hws3yrVFIXyykvxe9lEmD+fGH2D6E1+mrTJQHLeoXcOVS7AYYTN/RSBr7DkXsHT9nGMNOauOZiynm48x5mm6DzismdHScYRopGb6GWVy/+xzM72FME9IiQM+yvidscAQHwQzhXf9m37ilvSU+EsRcuvfWmy5wfZCF16fV+uoni5ZZrmliPzh2yDDVXDRHdHWfGW22Z20HDjGJDlOnN+AY/FYt0ZBIs1IkCR8Zat7gwjx4/tdYP6fwuNXG8dv9YtZpZEiO3UxktfULSk0FlfWq77NczYy8XPyNjYxm2kPLYS7s1funEWzgf0zd1wxYCMDYVrK4aC1gdRHIgM4NKhIR2gPqy1pD555dSe2usFKIwN1VCNgq1R02hdJyGEWS97GEWBp43cdOQ9dv1jDdUE/Pj+cVd4zJHF1K5xJx+HlyNnxzkhPg360MQzKTZZs04Pjw2M9sD7V0gWRwc88Yf5SfzgLg635sMB1+ux+3JHlLcIrEk2lcfKIVGEVeWXq71lxv3jRynisxR4qk4va4a7Jqf06+jWuxUTMsBWy/itd0Kjgu2pndqiZc7EUwzoMKCmOWJwqr6ca0SvjVLxjeBD4t/toDS411+Uj4eQPn0JA8rLsvGg5+Q/diyaBNXZeU9IVyYGpRdDRafKSH3vvPT0w0bxM6NNmkA1hWlqoBtyriBpm/J104ZQGLIdnPqQJS9XHdc52V27zyNEmZyK1OhYMFJ7A+3JAnflKtABkZlfHtirVGel1ExZA2ZD5Rs6rFkuxZBWi4Drc34+NNrSawzT0TOn9kfW8ts5d9Ck9wlNfyDhQEm1sU4ytzwQiJS+q2h6tL25esZla++eeVVUWlTCo2PbQbRgLg6GFQxc5F0T/ywwYM04aCzbQ+MtxelSyt8fzbmN9LgoCfOOlNyivFDL/rGkaJmHrSPaF7rV9f3g6u7vBY2yMvrprJkb3YZfhTCkzOWLp60JWmSLNu74x37yCxBCY5zTv29ar+KFpAVJMcN31bcZf2CY5AqFXWAufio6m85Ap8GWXEAhY+OhUsjjw5reSXzsyyBFDLf1cxfTiXnVwyVtJE38A0Ym4ww5rD0UD7SCsXAU4bFZZ2VaT6tbkrzCggxGzGY/EoceHKJZXTsTDHWY+9b68il1GTpo7Abz9PCOyohK+nEzXaCp9jYZpxEnhw09yaOE3GcV9OauMpTu5nrwG0pxUC7y3kY8TbUxj4pYfzJ8/ek2muUkc9LGu7x9sylgD39+Z2INZlbOlx6gwJCgxkEqN0gb78IaVguDPIcQeASIalG5VcFWcDYKGEeEkMhyFQO/grcFLmwgRUS5n2pyBvR/5ZmcokzKqrIhtQfK/76TWm9TZLnHtGXcs3lpCFnA0qHYBzZmtHYgjlXYORH1R7VAMer3oobVHimrwO3+/ybGRqenbnLkKnnfL45EQSII2E7h3C34Xoxm+EfCZqvCWzYeeyFdS9AmT2EcmLMuve+bUkbVpVstqruNVTFu+mhtUNcAVH1FvygNzkv9LlgASEGwrxSeaRXGI0Pxt6iTmhXqYLZsTL64VAy/ulQrP7ZQExTli8enHi9JoXEm2u8nKYfNpnxXcAQXJ1SKdoYdDhY5m11+lGnINGaMn+lHtI/zXmJ/yPrKypAldMac805wBEZqh5qX6b10bjdRYXmj5sxeyGkVBGUVFlD3GVEbDQ9NTK0ONcsLBFzlGLa1pdoU0u1O97kSFBcgybKuI6o+yC83U/+GnebH7t7/uFnvUo7TH3aEQ52GPzNvleQ/g8O0MU7nz06CLt4o7WxjJJDV/H0Lm2W6g/As4HDnhesSnUesOefSKFRjNt1ZyawZKiSXaMJQQi51NRomVRuD6VqvBziz0UFUV5zJimg3G7Cf1w1d2iS3vaD8Yd2ae/8KeTjMzwlzlvtRdMLQjExvrhWRqL0ZKo74KSOxPpK8A7QIatMCdnkhJvrmpUv92pqrlWXDR3GNzhoKFs+Y1qWzz073Sgj+JPQ1xdadVdx5aXNup3HFrMNNE1lCwt/zx7zJqI78dVOyPE3nlkVTtN3UUdDYgWGjXwwJCs5xJY/eRU0dwvSvEdr5pzdgZrbRQPt924KItLYlQLTH6hYOT8qJQDJzmB6NoFl4Ilp2toPn45gWuPpQKdG5SDoSoyjQAWvEhA4Fa+DZ+zRVC4OWVq4Z9SqiUHKL5ye/vPOMIMLPSRUl+m3tLBMtdy4h8t13QFmPe5WgUWfU2iPPWpBhIKvpa5IIOgA35bUIJ5t+KWCM8qgHMzrzPeHOAUmTTW8bQcNpcjpC4Hn8dfCcBTvW00VSgxV7yZvHJc6wBkbvFNeJpDoJIKRkCx+onwWEiLLETlyh2oewHm7+QB9wNdcONzdseOsu9D1sTTqjYwjLhSShs+kmjjtgMAELPSldX3N8PxlcslHrJjQmNpOE7GUR4S3v7jvJ7HScsq2MP6bDEvOZyQ1OMzJ8hEzYo13qfO14/HAgC3GsVZadSZNQcGmUH6dWUfa9omoXjYzROinV9L2EHq2zNJ02FGYyeOmudK7UtJYGC6REGX9eJ1eAVUg/nvHW5qvtBgRvsr70Z6OpGsC8+JqFQOTKQXm8cnaorU65HIFi8dSJ6JKxcQivLhcl52nLSakECww8lVWY4GievsiBrTNlmPM170/+xcUMU2VjNKIwh6t71NaGTQr7zeUr9GEUJM0bHt+/tfaM8zsJdve4TErltbvIJBZVVLd/aOqorotFB62mF39WzRiETylHDn4zrxwVt0YGX7/imz4OI4tAedZMTUYQORRHorqAG9+cqjUbPb6DZ0WHGokUtrBKYhMZ8JYNBt6/8QKROeNhnYn6zO6qqKO+QJWqPjAAT24Nfj/E2TU1zFNPMgW+fFuW4nhy7HGWxb5pN4c2CJgR8eGvhKgtsphicoa24LdDwgwfHt9R/r7sSuM7GdCUpTSM1VE0qWMV0e6WeuVxBh21nM12E77s1f4hmpNlcTmAnmmm9YuxodyZ6+PXboVcG64Czfqhqyxjt0oOirvG+0AVMShT1/Wp2xsprvUguAa+kMDCQunRka5w2Z14A0qVqtR2bQwkhma32iGo4eV2bYuAQxBlVIofkyTUSawd9ImXa2ldkLxqv+Ud6A/L1wTpOyca8OF7YxFc77gTArV3ePRKbnpUpVPfKjqy6DQEKfEUxE0Uo+8FdbO3qItKDIpyLW34GiopKI38JoNSopzghKMcC+zQHFxGEqiJfW32oBE+1MzJp2xP4IKkbY3OJCTcp83iE0/A4I0tCbKLT0Z6oMtz2GelpNdSSM4V9O34xmkvSOse8AYZ7WMckB3iZPT5TZe20uhO1WLa9mTU1Zy7xct3vD4ZSmuS4OMsgqetoA73EmXjdb7ei0ftqd8b8ZCGiQLtqzw6jU857niua1YQM9xLX1ukXve34d5n8OoYCbe9BG4rDZZphoOYHAr7ofQr/PtbFJDzQBkb+9Vy9DulXgNYLgFtbYtQQUS/5LeHWtsqtyd4kcMZ9xP5RJCEysD30Cv1f2tyDMqLu/rvuRhbO44SJJKu5/HsFjClF50ZTJrt+kq6lCX6IuuB2hDbcHtRiJRS6o9FDQ4gNTZNWFkuxLOG3n43uYnEdsQ7gysW2rQAAj+cLCZCtx4EaHYzJ4AoSY4AEZaJKytfQBoe2peCAoMZqNybCBPwxH+LDMngh3wuDCKYMEh/WyspTZqC59ugnpNjB/J9IAgi4suX+BoCUqL07Dd0Mc6BEGVsfYRrx2+kBZZGjuUGYYrwsKVbRTwRmRAcrqt5zHBoJ7ctrnoYUCIu1ev7umaP26EKBiwHJfaUlONYvjoNK4WWBeHVF35Ug9xMdlxZHQzmuyD7rRsilr36D/nn0zL6eTUs+8le0GleeKyd8eBGyeqmgtbQOPuvz7g6x7VQOl96dYTOHU3MuVH8pFoq00SdJgGIxsrR/f3VMrITUThpOseNyqGv1JZzs36pvEI49isDK54VQF2/jbFPGUIHD5hxdPXntOk5cMidZvbq6QJJPKa7nLkQpPSQo5BbP6hMy2cwdoL6f2slhGNNgZ8IIx/zS6i6od2AcPWfemB8ve+Rmfhxo2fRm+019qsh4B6FJ6VBJTNMN3KjTCeUHPLKsOfrHU4nHJeg4hji5pYVfUQqHKVPeBtdqPp9uLu1nZwi6Z0xbmCLZeFIIIF0Xeyk6OIZu/UV7LJ0gdJNRLnBR8zULYVKnoDtbjQp9H5pGhzDivaY3aCFUOpUWYWC81jjJoNqnvDI4YRg5dDkMN/F4yeoJUGZCOTR/JSBHT0V6TAikImS3LLb8o8N60LKEjffFy/+MyjcfhnEJwxXiF1kyawu+wzeX5aipkmRWfJrZ+R3Uow1L5z6VIDIipwT0h/QNkr923V03zoVNfcixU2WVD3VWlGVdt5Y5UYKwXmJPpQFYL/GWhL580xndkpCAjYiqWnp6zLByLytgRCwvJGKpYC1KGQalYmLqKiCYfdNj6xnFRvANwYhcAw88aNsA4xUoxiIIVsHM3Uka5ddO7r9o0mXbW+D9nPlRIIoXi1+2I+RPJ4aCX38lCKOTruqShh2noKz2UQ/PjzD+TPsUZwr9Jp1ep18dvL3mu7Sop8fkQJnNfkHo2F5GxO5GovXY5ChXma5qDxGrjWmeSUy6nfDGGeZ3qD+gLUoshS7yY/agphnmq729ybxdLgheC5GStCUlwkWiUds5BmN5SUgAWnmzPwqeJr87ArbgYrDvT6BnEHlHPjyknAgucXkP2J0OpxSwD6D/Y6lcunyOhVbzEGXe2JiSHIM1yrUdteUI/ua3fPGdszLa38b0DxGgMClo7oRI+kyH++jQ6UhlJVIwfmkDV7h4gJ7uRUvVr+lHSATFvI7cQqbhehBAYZDZlR+r4nxitIr/QZx3k+SoK1/U8s1SkY1pWVPIqbXNNoDGNNFCnN/zwmowpfNkYVJ061iOWKb+3Mp91F9I7v2OLAlYP1jYK4DBAl5w3F2StcECAlt9Rf68pK+mvIMbbjd3G6I5NcW9oYEUrzJAv6cr1rwVlfVVnl40qDF0n6+0GJ+XkZEb6KnRqtCQrKJg==
Variant 5
DifficultyLevel
463
Question
Hans completed a 378 kilometre cycling race in 9 hours.
What was his average speed in kilometres per hour?
Worked Solution
|
|
Average speed |
= timedistance |
|
= 9378 |
|
= 42 km/h |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Hans completed a 378 kilometre cycling race in 9 hours.
What was his average speed in kilometres per hour? |
workedSolution |
| | |
| --------------------: | -------------- |
| Average speed | = $\dfrac{\text{distance}}{\text{time}}$ |
|| = $\dfrac{378}{9}$ |
| | = {{{correctAnswer}}} km/h |
|
correctAnswer | |
Answers