20298
Question
The rhombus below has a side length d.
Which expression cannot be used for the perimeter?
Worked Solution
Perimeter = 4d
Options 1, 2 and 4 = 4d
∴ The term not equal to the perimeter = {{{correctAnswer}}}
U2FsdGVkX18iowRvGTLZLwID/qSC98vYY8dlQB6L+vOQawFTQiQqe76/ir9uBVYgtrMc+mKmVgkEMMJ7LzR2lGUtdKc4nY8cQe3qf72qQWZdw3Ovd9lX9douC1bqnS3OdCpj7I6b9KwnSm899MLhpZaPrMhpzfuciJoLRDXrz/ljylpMWa4Z/TVG2V7OwzdxN4QpsQ2/WzsHdXNqwQd16tjgbkqtSF2G/SAZUHeu2b9xvK+r/Oa55tENNmuEvf+vVgoTlI8QcCGI98EfPQ/orWDH+Dm3fwXKV1Kt4Av06MUjc+rlvedIqipWJSdINNHogIV085U+xJ7y5XPrtnXlk2PhkxjGmCvo8m4YkjK947VsShFwfuhCdHBjpVgmlDVFQAjMjs1sKb0pekZPSbRFPbPUUpJTIX9WptySTKTQpK62B+hGMFhotTGJ9/h4ImBnK7fUjkPGv7bE4iYmOrqgEMG4kOBe9r72lEfNPnszM4Xj6Df/Mxwwge5wIKw2S7iiTuVgbnkNme7T9B/GDnIRYhKobmdiQA4GDgtK1euVTMeaBMH1bcfUVmTZ0dwcXXywI35L6JS/vty9t26EALp+QOL0OXhSDXSEW9Z7U7uqAPO3CrmGoHJL5Rx792C3rrG/j+LoH4lpynQkDKMSbCkJ9lpMLXW8lhBZIVVCrD2j3zOSZhxsRXrdvWKp49D88N6Klb7/ZdUz+tOWXEnit6Pclv2CA3QqubrIhZcw0oGV4vRwg0+6mwRtTo+AQL/9Xyi4sCO6o90ksJeUlVUY+YXh4kxKO8XaiN2tB3eFZAmu3q89KVM32biArBHdvnt6JPPGTuzEk77ZR7JhhEcrRmIaSJwwV9LDFCqybMiNqUa02Dbo3ngYVzrSUSWoGMCEkcYry43Y0Ek+vWzKGL9GsBRrG7rauTky8DDRpBIMHCR0CsB4r3Qbp1ekmDZiedCYiBf9vpvfHmruulaOsyBjBThgsQ7oqY77i3RksYpPk2Yauth/KKSPFyhNC7e/f3WEENS6zHyWfHQ4VDRMewSBFepseRVHH1X9A86vbkJii4QapGW8DM2gfygkpAEYRW5v9k/67KpP2eCC945D3a2UJY/LFOz0J3qgA8Fv5S2O3YkSylExwFAXpRxH5Spai9CKPk2AvoBqKNxNtDL6FnQNIpo8OpvJgq0w8YvOvHuZSzWIxzCEfrs16P8jGqQTdbBAubR89z0bXD9THo+cM/WGhmlS7TU0fZPQqOPQaolkNaB/YsiXoFnVhuGxjwbMDSgwAPDHLKsa9VCDj2yFVXG3Bwe1OoJV5TMiRZ7vqNcLtlHwhT4+dWXEAi0S8l9pCv80YHjfmrI76oK2Kpvn12ps0mjn4pi3QK/vUGZXUmXJHO1ZP3UWRyLS2E+hnUCbTGWZGKUDy2l4Vyx1z6niKFl4XGkqhS5oaJOG3zY3dawlkht88/B345IiXO/NZRPoWBLjNboWw3Rn6Ondza1myOkaeZwDCRl7KBJ6lYIn1/4X4LXHp69BxJhdLdhmHlrYZ9AMRF2gDvB31fCZ2G8BNW6zZU0r4eAYFmTw+PuuYuqNnP/BFVTwGjl/4AY34jQ8wj1Tkg+SUQ+KCqxbzFAbBFCw/JCB8vhB3HOfrGNQrXUbeTPlRvmkzDej4JjPQXAfp2qS4Qigqv+Kowd9TAbr5ZrWvjtTH0M74k/kMb2SGry9AFPQvDrUJe6la3qvzG0ODaQsgs2fBslIwvrTD+2YjgEqV0SSWuNVt02tTXR5B+ybcz78musCYCsv7w7IKSTuYC+xo/8xVwFVoTDZwtqxdYzz/oJS1uOjmuTB9yxjGcxakH62RGixvwCmuKiwjXDYDHoRw5S1GaN5Lf28hN0orMgNFDDW7SU531qj90wVyhB3lwczcUdsHSzsxJ2ZTb6hLfKWbSQBzGFiRvY4xP6I6Bq/l8zp1H9eiti33+1E82LoHUJFj8hSeU9F/mrocii4OfSAg3PECBPIy4mLyABdLY/ZNUc17UkXG6kkPPT6hc0psqWnLIxKI/d9cW7XP/0zSETPWl0DsNK55P+5b71Hv9J1XFxO54BxYH+qeujTN52Xlf7VpUQ+fGlWDb6h614O74kz3F3vdRIyO6v2lpeinkSt6PmFPcjCIbuPbsq5JKOg3Hx2ZEeYpKFkHhvKySqRNiPH2p2+XAiLAXa4QWx4iezz/XJjA5dmS0rG2vicy9aGMnMq1zU7yCz4yE5Vl8+vLZPMudCHYJVivAgLxm5hfM9RO+PEbpfaoH03Z82m4c8hGjNYZNDDKMXmkG4ek0E1DUsFIygCxELYIKPMVi9fU2ra7TU2aGD2vYM6NulFRuX6iVZv5XVfawBpCkvdMZDEt4ETykXaBDqWQPnKhhgFO22XeaZXaE83majAeFFR4FkYxaF6pw90JPV8gnUZcUfWdfO1tM9dsrABDHuG1kyvBRgwm44mYyOvwgDpdVgS1Tx1LQjOUEr+f4QHS3c0veYwj7XZaX0qVB1Sjg1jZhsGuarftKDS4LXYsCuR5c0f377J+irVzXvnqqnKFiDlLr44WRgVd1E8M/u5U9hyagrAYDmyOu3iWa6q1neQ7EB4ZOwEDBG/dcah2zVvcGuLWY1XoWoxcOxDTjUo59xA266VRzLW50GMp6aJsCsqz6XSzcfr9VyPibuWD3LwWssIoW6MorLMlwbaF+RPt8ZnqpEWHY8BJBlRDJVVzKN9R/0KGaJ9OYrxfEJYtMYvtLJsaV5ERJrvxdi5jQIo5bgCuNbjK6ocLPVTJaDxPOgyveQuxZonWSZd3dEFdgrivB7mTRnrtIztrmfMirYby3eCoZFRW3+yt0fQjT9N8HhFmqONYyoMnB0H7bmuV2EBKyacrut7WrEdBnwcnYPD9bvDJqUtoq6A5rhxZYLoygjmUBIQ3yYQ20bd+CPkJ9jmBV+nynvYg6PYhl+P5JifUEj0hwctq4YJ0y7ZeHVVWtNDq+faHDsuP/48iKGpVOrK7G+MXlZ255b0Jb65BKgRWaE8DPxnAlFHMq1yhl9/BE8nX1nOez2zc3aCPsP7kybtXb/7hSNVN0VhSg4ACN//CBwp6Qtkpou3vLvhpvnZzcOytcKAJzLG+AbcKwvYtws6nnZMfq69GUFENv9QZS6KTJU1J/OFDPk6xZsfw5mjzcLtzB/TopzF4IZM4vt05fkNp9pA2XageAptz0Ad9vaFgy+7XQkMmaa7g4CRNTtetdzDPzoopVKdcCyOWDsY03wAAuF3nsq6+mKKYYciC4xdGJv4o2yuUkwkVtCTyu2d4XZMToy0+d0CyJY0i+Ocjz00UgcnKcSH9sSavoVSIyVCdG86m3QjwGkH8XnLJGlnE9OGuQh+VyKcdnBhaYDlCXG+7SBrQt7A9vR4XCsZAr6Tg1tmNcdd68eOzer2S2felaqMUqc7mIpCA03aZN3tX5BeCVX31mBFYlCFa/yr7sqS6kC6gGT9iGGnwThqWIX+6S5YkeiDgBtCnc3FZp8nf44FgDjMMiF4TstBcc0b/Fr11sLJxAPVQgqP7LDaGzHgUJX7t5oWMtUOxisiX7fyw6D+CLtEACmSRniMgAROIvLMLCHFJOI5obUQz6cykvqMPeyNl4PtG0IHpw7ncAaKTIE30iO2SWKjbMz4f/wcVtzerKeZ+ElTPjKCecKZ6uJ7vm8GAkzdxyHhDG5farUeuR6lSjr/3bOPmnwzdF1ahLrt072xQlYcdh+ZDuJrKA7niU2L47b8je1s0B1qaWnDgPX9lwE7TnP59tPiwNwuPQ0NY/x0L+w4JArsKKOA59wHkNbuy0fPImpiT8xtiv+5ndN4WVgi1apH/Ap09wbiD226BWOdfwKDOZiOdT/5GDPhXkchck8DSNlvEWtSVIo6EttBLCBHRuLV53HY+cqlLxvhIJYl9pYO0hIGVUE3NzaxHkRd19in1+L2eAlizvTcliFibb828Z9aTxpeXLAew4xKpms2WdQ9DA+6rqan8c5szdjCiOObuL64HpJCXliAjDVI9b9frCyWwmN7Jd/So+JlilQqWrmcBSbrYnNxP99WIIL9iLDBkMOUq2p81IQCc6Da0VbUPhd3gqG6CDOpidtqJ8ySt9pwWRhO2k6isSlCuFt7u5207hL0yuQr1sPUV5ig6Vx00WQmSGUbu1Tv3t8SlkbgDrQezu7J0vlbRQ/AkOD6HLyhuh93ij/f/7M5H+YeF75pFjncuabfOmDxlLR5yC2ipcNBDidCC8fXCJoktzmqVQpQeubC44DacFoE+42In5/qLaljznnD630STwcLT6Slbj12yu0++Osb0nge2MQsxapTwUMJvGcmu+9ge9PwSqCn307jfqYDdWfYS6yttKbLbrNdazUM7HNeiOEE6Ja6flz2i4RKoeARRauq25soSv6Hs83JALdSsC+2AiEXapeb3tZFtbdOO/ZSPY6mFIc034qAQCH6ZVUudTiNFeaK8TO6N/VRvM6f7IM/3RyiiAjN+9tYEbjFeYWDYpAIK73qRjla499z72RWRtmgNLmgVHPwRDsS5x04xxputs9KgPc0rX8xnAfblMOlx5jPWCl2a6x94sQ1m9Wsb8bJBTubrSMxKWaW3AKruia48Na4ETPDF1pnQrUmkwtaLH+tSK+LZMWLk6jJ+prdb37nmX+HL/HjliQoAO4MS1KzsL8rriO6XH4zNGLPq8wx6NF+se1aSVRIr/JHcjgh56we/byAO/JkbMNrKftQ0Ks4qPMhbzN63xfFvNOMbGYayGFi5fjLD8/ZB4czEs6gAz2OoC5kIG5GnI55HYemrDvpaIKdTChZSXq8zbqRa//CDeyM5AUzGfO1qtAAHsMpZPy2eOgbs7o/pcH7Wr+HV7mc1iCwZTJfo8kLXKr4WX4DrqJDsa9oxCnoF2OpYzGrtocO21hXfp6S2MRucx08ZaRzDRK3MWeBi6IDutscKoMpjV8/rrquGU/g8yVyYah6UB6ucLVehZIuxq3JZg3Shz/qgfHbxUhmIqqFIkRQskDyuDTMM1tyJiEej54qmh/6so0Q8xG/03vnlrhCqPZMSYRw+OEwpGWqdVwnsuR+upL+IyCk4xxeh8+u0OBM5FlxU5XjRGgqqD546EQI5ckAdy47USPzIIGLOOGxCW0O5HpiNRrsQwgPbN+0gyxlExQ4bMNZqQFrBN3/iT0JkcclrPoYMSISuWZngDt7NOxmsNtTnYDXFWSnM731MJNQE86HWD/+Vh4me7Z3pa1FC7+oJZGwHgMZ01BeLxn7dvM2q9IL1EoHVOvhcejYa3+XS7jesh8JbJQwrGtJNQgeu81noJtPzU3htOD5yaoZqZ904fV4pkeszyxvrTcf+hK47vcnS7JHVEvJwG8LmQM8WMMd5dh+YhVSHfnon/Lb8acl+VsUYtOzi0A4s+IxPTuWX/3s0Z6wjRlkKnmwp3QwYw/06ikNCyZgSaoS6hXhCJS559dr5ff+6MGolTRhzr83a2iKXmtdKbLKdGHCbp+Nk1U94jtSp/BFjIP1Awe/dz1nw6bQkc0DyLnnQA6O1mHvaWmNq3GhQQbNxK5gTO/mUrzhKTSGbTG3h+eou9xAt/UqPblHKODNs7QZGlEqmyfFs/zJZzuPgC0oTIW3r0Tl2emKcybdQG/REf/QRN2547UKLQZy7myZNhcBXmIDJHeuo/S6cC5bEN3/OInqt6cJ7NPohbfKVlgRsRmW9Jv4NpP7WAfui78Fe72g+OzWx8ghpv7azmezIMqWPdJfz32GLgwUwpf+TlW7GqEEDY0wLQZcYyMIixdkZACO8srwtllJlyumQTSXq+C+/MvtW0ug9G8CEqvMUCURiWRu93KuAHFHnrQnHpXzT38/8dZWC2MKSZfF+TrX1XEeu2LJe/ULwSxgc4E0xeRy7EsOFIEqzZpuUe/kBZ+AbpOsPFfLYtjCbotAECEU3XEqrrGh+JK2gRt4+ahEQIGmiLSNiywHjERegFazBXN/pY8v3xUmwbyBbZMZeWBZOKMBpcaTAvuEJTyXUtguYOyPFEsCQ83UnB4PQLaK7kGHEDgCOFGACPMr/T3FykUpdqen1NPt5qEy7ntJ/QDszTP32o9INH2T+0YxIRbIt8biYsTheO/XFmsh/NgImtXufmyvLShebTqJCF6/qC3BjNWyEtmhfSz7/cZB5iukxOoiPFu1Wv7k2gWeN+BZTFQ7C4ILZ/TWaGFNPL4lTLCPv/NfsTgG3miuC10E0a4azMzHjPC5/hm+VrDO6aRyAir+qB8aiT1s77dXvBf/ABEsQOLIiW1yLem8qhcCeu70BGyC8GM5IXeyZonjimPDKWrKaTvY3nnODDEMVAMmKF4yJHvTJpt9HMslVGTdSlFabv8o2Lq0p/HyXlIwF/slJ17SuyxI3DhlMQgs13T5C426MSP9aUDzOXbn//7tza+BUhf9XwkVCq2BNqPQjp5HrYEgsVnUbDYL1Wo/zo9EwQSQmDah2MttIIo71gSlkdj6zNB1Qb9a6DxbAEOP1jbYTdgMrdobO1N+9u7Uz7Euo2oiSMousm3OD+ExirnW+PIqdg5y0dvMOdm5T8j5zQigR6uiA0bwuidflcq8CXjmsE/PZDPOzKPOGzsQ8b6c1GFN9JQcITOqTyk50MXYncWojSNEXR3SxhdUcCmPuYDD2oBSONegTS3m+EsD/qAcV7peobNKfqacTKcSsWdokISL6DKf+seWAiT/vpO9QNfBtPLqoAq0HJN5aoSA72gEUZ3vIdBocCRsSpzy4uAzRjz7l0g3aTUVABjxl/Bw/FwaVhopJbkr8J7X1s1DyYBSRQKC56SbiGKlQwO5v3rnlZWSBReHQzdR3Z2ECas+8q2eEDBkNf/QXqvwjH7hzAljERDXT/jCDocEUGkM8sX3mEOdtKfvLBoXuqsWJK3LAIphNro0MzikogTMqOLW5d8tS9qb0JcNGmwYZFtRfsu6Fpo+hpYEVZ1C/EQLo3t2CsZJAqnokrZgBM72YkvitRR1VuD5yj+4c1uGvSPVB4BXzMmDS/wA5y8IfwP1r9dTPwmR7BOqKScSQ7eMN3b5oCm4Q/7Xr86H+JgJd4fztoQfzHMX+nR79Vy+HCbP1OgOgq8KxEVsjZ5VkNLzE5EBmvEp/X5E3HNgxaz1Au62hWM3qCJ2t+UdAzrls2wBIB2UuOKmEy+mZTw8e0LpKPhyNwYUEMFoJKax2fSnMYmWE5K8FViEhCqXHRlP3phoyExpXNj8PleeQ7QKuGKRbEvS+XwiQaT234NzewKMxPPB/FHKk7wJ+5YqErC3JrJjWDmqFjZrD+7AXToq61cVnC+4pxnaaLQ+6RmBzTkffoR1bOF4fhR/uUyhPZvfOW6KteRMpfCiWBXXOr38x7I4mZvMOTa+Z8vwTdSUFoWqqbTGI07ufhGOupz+t8TJ9/f562ta1pZcYeP6bdgtQ+WOXzf+rgVeLwihNawiJ8G1xYh9mnvSCf9BrLU0h+eZ95eE7I/531Xzsvwy5HQPiqmLNpq+x4im8EpinQcCdXbFvbY+Zk43KXQa4jep3MYk4QQ2z9NiQmYP3y3CTdvjBzXJcmd1NQbJu1mGQS4HQnb1loKyBytXPUxpxOi/LtykmzWghiEf6mArpBPFgb6pBZeIb2laNYAwXXg2QXa/WCQBr/c7c/K51wLMUBgWmr26bTuy/zuyRJN9qOgFAvY7OlEYTo6tWcz7okLPF8Sl55kobNZPZ0eeYjhvcmKB+imAdHsmp9mzVypmt5gFlxCGuKKJIooWZxTlpvFkNdTekzCiPHpTAdtfn3xWL42uuIdU1O4TPIn5hxzHJBiTYOYzJsNBcd/8+6uDHN/cCvUz+N3HqEtzCUG52iNWGK285wwJxVwzr4ew+QXHppJSHWRwF1EP4PPfRBv2Dm7Ag3X/DuMq6ehi/5xg4K4uXEQbjlAlUFbcO5DDVWYiTlkm5ND8RuQJ3k2ao/7WPeubnIV4hUqM8vOS0uDdhtnVHa2g4uFT2Lkhvk7tXyD9Cm16HLZDgs5horsNG1/HHcXXQiSxRmMdabvzEqkXRTT33BGrlOUwA/+5kK+V2dMK7sh91wg01blLNx1Tm97OZiJOhx2ZYE2gthaQBhbg+OL99ofax+OjReUq6YgZVkVnaswFaHeK/AzEnXnn3e3KCj+qrcT1uZAC8fGI8tYoRjngHUqxjriV7sXG21ajuThesN/rSkyzUcwOucvuXM+7EjKjYjCF8hsSBo/3I3fySYcWM4uPL7rkCl/ldXI4CRojNDonZ9iLhU8D0Md6A6AlsaFdyCrQ71g9UlQ+X3c4UPFOmZVHRCaoSh7u/kO5SMO1XyYRgsKW3EPD8OEn7yQ6orl2pbJ58a/RZP03hlAJ9dGvb9jqgmRyWgy1kxk/7+uWxIInLARH0FTk7TZhx+Bw/Vo3B6Kw6nABUcFnBvNxCIEpWuvWv5y0DtEDZjPpx7olvAZz/uvIuB39DvOc1xLLxDgBKQxnZkQMkkqsHZ0T8b9a4XbPyrj07uz1LEdRgkRqQSReY68+EQf6EVQTgA+wiD2BW0dP1siUAMH6BBnh4pvX6E6+vY9qpMtQp6M2qmNIPvVuUFKEf0aPfj2zCuVfeEpWw/YK9HT+keNgMotxYxKT/kXo7t4MxcYhqmoXXKMcTOFMUxJgBvdtPuRB+vrbsiR5Bd0DayI6KCcBMpLp94TZQcNRVOn9MC8GT9HWu+VwprjdsAyFnXMI4iPcyAtWvPotaFWKu0nGxG+mx14mj6m3EoDMZwopvILK8HrK8A1L/1wBZtTjMWtTNgNQdq/4b32Q/tL7863iNF05akCHRXVkZMKA0LXWp+5lbqttLApHdN7XFhiZlqXFj30o6h8c1+7FpylGySsB/pIbbqWSX74t2DoPYpxfLIHn+GmkDIo7PVIDLfwgzO0EDowGCWC9ituNKVNZIIG3NYq1pGR4qTYxEJqs6qMVW4iWTz4qDjxn1UsyG5WbKokGvSZQ1A+2LzoWquAyHuh5+JIYQq9sWndaX+E+FWLgoPXRzwLD7L2iGpW//I0R9dFyf8CuV5yV+s49BKs9QCSfmOerc9kPWZKUorJrERlZfo6fNVXiEs2ORFaO0TBlgzwPj11wXHjvetC1k4BIrss3ah9v6yfKeqGLr7DUZrHF9ef3WgGK2ZTmAr7Z5ezKFAyAo1rHm55yMb47+IzRCj9RHsAB9TMcW+B3KTpE8xKYFYUFH/+qmXfBnmFAlfgYekRAKcxDmyaDpZ0JsAk3U0jWUXHi0JZF63P22+c9LalANVar4G5RXJjh37qgH+AdtvH5VugkeTF/OYVAfiqT7b9pnlvMr0YioiXTNanqozjyx7MsLkhuzgnxNSCugU5H+O2pF4bewlXBeqNw0UbeEH4PgfPWy8P/jx13nihWgPrMC18J8YHL2ZMgWzf4TxTzG/l4hZIj4oU19ufv7Yy9MYvKhYSZ0f3nUrK6xncJ/WN4jkF7dVq93uN6AqiODjRCql3trWTYWKon1cQzGjNZB1Y949mL52uoGpCGrcxq7h8yiJDpmQkexsqXxgduDhp+e+pr+SOPT2Kcggljf3Thr19AD8NV3GcrSXxQJ51BJLJ1A+Nd+H++UA8RvIvT6RIUvaUoWUTnq/IbPrE1s+UfLM3aEsA7StRbW76V24gYRxd7yGFy3ktksjSYivtK5TIYw9wuwnpUyYegO08l8hAEG//g9KBtm7xcWXksY99VJJ1R2JmsELzMO8ygDppdIqmhzh2+4Fx8DeI5d8r00ZTPbUTt5PIP6PCPLG4ga5+AkrPQZ+cBZ/7yDP2ZhdazpktLqFZtrkOLV4hvrzevrpOrN7LfLCQY3kkn4P0E6s2HvPdxPyU8R6nFbubaIvLImrl8S9meFbG+RojlgCsRqO4crl/vX5Yi3n6AwGjZfq5lhrGxxJ6cTrgFeCHEjQYVWmLbJQMmr6i0gYVbfEePjPsLlS/NdONzCHmkzDuRRx+6325THJNdi5NJ1N8LI1fSYeJaGyaH2tcUIOcjLDX6tQIpXJK2vqgP88HE3FKXka4Je5zrlBXuBuj4mrAJa5W/egvLaD173EZAdCy0/TaQvtMJURPRfc0gB2s2vA0xlig95Z1mD49LOGpg8Imu27FRT2l0PZxhM53f4Ghay2c5+mt9yUx1+ipDJyVbpeC+tsMg/9MQSv870gVHtC+geMdpUUNMLzcli1uJHfJG9/2JyLWZEx+OrG+TfZgldNHz8Bb/gxVrbFXO3QDHcMUbxxSbbczsW1wYObhypCJipXHLb4UIzLiZSDUlA0c7Xp7o+eyPLB/zTVTbJbUQT0VsrqyGX9wq20Uy61ybiXmazo+6m8bSaEe0eEWBDsnRd5D2A+yQm8k5PLVLurlfxlCY0Cwl/ZzGgu2T31LFrEh5W9w7vlp9u9vjkVtn4pLJNgLCOCe2hAuOeSfJnZVJA7ZhLVZKKpDe0XciixmrH3i7OWc8mAOHjxXEr2CuzJ5TZ+CKoG0w5q4xp4TgaKnJKOQ5Zcj/yl7UAKulx+BGWhVn5aQ1Eevt2ujnh3nkSVLIJ64oiJO301+bYiqPmPSaRFmxPss+LT551rwoenk5/YIWsiNt3UKg2WWnp5fh6zg1AExLn2iUEK6BVlhhXIDAeOQjDqXYDWMg139eT7VduX9R8NVgfglPo4mRNwg1V4pNjai3Uq5UwRVcUrT6Eo9/FvAQrsThOpEBtX64aYtAQ0lKJFTIVG252CidfUEyp3LFwgZolOntFJ6zHFDE1aDfcPSaamBEJDvDYeHWpblVxBLVFxUci6zBXGWZewm1ds2/Z1UHalS8ZGvit7udujVVBBpmyuf4epuVfRQ/cnwWuoHn2k5labAPzcE0bhOJ2CJiZhokrgSl277zWKdiRlm6UCO6urtA0qQBiLGiIXANbkjWy7OAd/XaemJUEKy1m/g1nekiI49UIKNQ9J1OxY4YK13ClT94jaSZIppOk8WiZBRhgh/f1HrJGCBc+y+KcSC4cRXx0mmOSk6K54LeOI8mJduKocDVkrOy4sBvXxEfEAXVAUnBqNpI0mZh0fRE30DVPIrrX6aGQ9KgEtaZBkbRJPN+yzNTAoB5uAUUu4VBnCQERF1DV8Tx1p1dDughNRi1uuQpsvlnaikv8dsByKcEIhADG4X3jLAQauT8gsFUsI/unddJ5k/WaPJab3rbgYnmzfr0jZISYbirmSOsTDbqjDjzdwKypq1RgWLt2tLHe5/Nok0jqbAcUwyeSw7GV+GzE0RlTcTOfm/zErrvn6gWqqaqhJ/iSS6tbEZyiNde20fciNfN1laOPqRtsvOElCgvS73E5kHw764lRk+h507NZgcy68IOPayn2J0LY5yLJxB0vSrFlal7M3a9vpbp5B06T5kTExKim68LqZ0j9lduOSYCWht5UbG3ZI+tywwRhxq1Z7rumOXfNAIczumYGVCCLTJYxJeJnj6wqQWkgGz7Du38cT3k0Vmelbte9nUs+GOajWmgfjFn9e38p7NBtJi/l/1MUC3QEyG/F+F3EhPucjQfowRwE+ZSSU2L6kSEkHWRkDp/een/pfNsz4zNweHGL/QGyt0u8LALl1db8csf8DBGD3DQ+AamWrhJ96glhGHuuf0q8/KxLSiwiEPl4ZENVZkFael7zJGjxZqTPWQ5igzp3K2duhJyJOt98pmdMYkR+cvzFB7U0zUoacL5Hv1Bf5ainAujVll49SM8Cc1ZFnjnVkT8TlNoq9My51CC940HT2CTc9at9mm2Ka2bxNoNC9eG203vkwpWukMla0D2I0GC5W3k6eEF2JrjTrkS5YIFV+OK6STVkIT1DjVtCGez4/5L+PDNbtfvUM7eYU5hpsv3YyrD8gav6sjM+GBkQcbu9XOFRnWqNw8rzSev5ux1rLgaba8QZTJkqY1eWqTAOI6KF97BNOQp6ozv9oP8EaL+iyWWZvjO00JadmZAhDf2wurIcqGFXK2SRvQzVOleEbWSrEbPEJpZ39O1K24NxHh0vMNLby65uLMNUALlAwS1zLpM3rY8ny8lrKOWUj0dsreH/uv+FkbOZrpUbVRPdNsHSRCM5B6wYa3GJZjcGUYWQH+3SoFObVAWV/Oxm46fqyN0nAyV2eIagk77annMKyjfvTHX9Ti0bgGQm6/5o/fQHywiSGX8Y/4eIBd+6Ht6/UjPNwMz0aPzkFDcy+XTGc8nBaNuKhxcEmzXnIoZqtqXkZMdMngqrJVMCD1xsDG7GKAyDZeR+BT5k7X1KMnKzVqNahCVBYW/3OHYF6tyk3SNE1VgZZLnLT55hTCnb73iiiqp8fpQRrW1wH6ROh1xFg4CBBWhO6S3MwE0aKlWtqB4Nnpf2+eZuhz3hxKrjfmVpkeztHQXjXVlQwVKfwuU0NuuMwcaFK/8LIIhlEcNEEDsBMMe/wx5JMqPrk/fFA0JuE6beJnX/VAfVTv4jW6Ao1btTD7PDlb8SQV93gJW/2VxQLAgdcI60NJUpn6xPTw5EGrDLDx0SEijwWj9xdJd0mWIKqnilYJChOUHODpGPAydXrPvmPGP8jGssX9tMn+vFHTnb82Ty0sTCItp+1AZResIqWVG0lijqTXhdyP2TxlppoHHwn3vt4B187Ry6GzhxFpO0niOjW3u4QbkXlq9GyC624Oy+PxkqJcgAx5WE6xt+IN7lgZz4TgEMDt8g+U0jyplzwxNnj4CsIPNBl2VnlRN7AKSJ7plU+yZmK3BGQW0rEWxFUt+8Bf70MmsKRyU5zauT5J+hNSXzdNjowg2C6CqbZkHbI4NEJ7TjLWCskpva4cevDGsxE2ZGI4I74rykAVJXVeGRXJ5QDw1DnxFF3STqGEY6ysNy4Vs9HWZYRcxxVjBNBAVEEaBz6V4DROkXxhc/zylDnmjUGwlXB7/nllcIq7oHk7+s7DCaOlMhb/dWXZuQCTP5I0sLOFw6kH8wvvS7LZ4now/HBGxBZYD1RPpMrX3mJWuYvRyqU+JVvYAZ8UByEO0ps75JfFbAC9s/+orlW1leD4gpw3fQLdHJIVCsFQ2/pSPC2f4mEHl/mlQoQaYwC3vh36XEihiWf4LBPj0UW4r3EUY9YWwv5+/ZpLslivXSbXBQpx0xW+i52CGFbBJVfpI4Oh5sW5miKJDjUCIW2xXx6b/b8/81l45u6rX26SmG/kVmAtPet7Gm12SKYUTqwGgYr2ghPpN2xD0aT731LDUBpKy2WMJY5sx9Ge/Mc3XTxtUGRUAvWO8XKQeqdpRB6MEmyB2zvcza2f9ZFw5SVxVRBhIBTAHxI/wkXtqNwCyYdmDD7lbqy71RtvsFlf+kYTfDML5Pvcklj1S2qGbCokOLDBpvaNOPMxi71ld6m5frOMP1XlUksCXIrMXokbQXTtf6atJ5Vc5NXflMsIC8pLi1Ed6FElL8i7IhMwL/N86a2FWWm6LBxqotf0lAzeOHKCoslZbI6dX14A9KZUBKRW8JJ1JVEWDOGu5fcVb8EaV33Wy0iTv8IE91MdYdAO9QIZqN3xe9WdL6tKq9y/KRt0Ko9p08JkzronzYJnKvUYNkF7ql90uLWp0fcQN0SaF/IDkiZV+/ZxZ5d2lGLHxfuEfUtxWfHC26wD8n+fseVz/wW79hzfwQ9wHxaJviarbV8nAl66APj7MCjOSl5BxFy+eHn3QP2J6a1+CAxrWqd0HwjL38g5akIg2GeBW0rLpE2weBbtWvDAIQV7GmC8FvGHhckcPqBMbGo1dWjGbWvybKe7fJF5OzXRsEg3kXP+90K+t3xpsl2Y3yO21TpBvnQtuUHBD7Jw0wYAzBXMEjj6KDfWwUnFiRwAyPlCXaNFbhNQBnCPnabAyMSu5xU+18BrPtoATjqQMq25hgmVHJ6rJLNVPDoYBb/AXlA0Xlr/GEUKT2PZX3ag2ykrXEuqvW+EDBNEXUbFKiMAqdzSBNj2uFe6DEt+Smg6B9bge/asjXiDQkxFiWdBLPd3AdGLSFd7ij59k84g85Xr4rwPPMqjSbD1azZgrPZ6TJWTvI9xYyuOa8etcs/fK1wJ3wo3ICGmL/+Uv62b5xUxA4kqodbq5UD4t/1os6Yw3cezcoRHZK+If+YIZymxn1Aa3yBU7nwOMxLwyHsSloftAEEW/Em5XUH343p8nztOmub7XhDa+j2gWVv9ngEdZu7rHcPb+pDuhvt6uhNyo3Bl3agtDB6ObvAOuWZrn+mtUfiUkgmsoMPvCChBi1wm/0RxTObQklbAj6lbMQflPg/4ySCDo/BYrjx7h5AyRxEP5aGa0gejITiqYf1WAmX8MGWx4u9qSp4SZgIKvOhzCzWYSxBqDss3vGKM9DStUmwfCGcypa7eus4TxZf6ULxIwfWSOb39SRX7JIS0lIqLcIOkhMMH+widnayRSWpmdSmKr1B3RPgv5W/QisfVcKJnZsg8rj738k0KBh3aJ0g28wKpb1QGuDS6vK6Ziiu0GkfoR90m0BsckEOFvFZJuf/NnFrTIfhrGZa0HsPSr4qxMSFubz527QgJ1aYaF0eu/rE5OF62Om9bpxTaHSI+vX86q1AYt3J8vmVqwEfKqmSwOOZNxY9iHAmhmWiS+xJQDYG7FxVfa7HOpxQk5TZCPWcqNVRFaPpb6yEmMBqWpDrD5Umsbro2aIGpFSWwA3ZlKsKltpLDEXxCD1RoadG8rTdFL1E9OlrAbHAme
Variant 0
DifficultyLevel
554
Question
The rhombus below has a side length d.
Which expression cannot be used for the perimeter?
Worked Solution
Perimeter = 4d
Options 1, 2 and 4 = 4d
∴ The term not equal to the perimeter = d × d
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
correctAnswer | $\large d$ $\times$ $\large d$ |
Answers
Is Correct? | Answer |
x | 2 × (d + d) |
x | |
✓ | d × d |
x | d + d + 2 × d |