Question
Dave and Helene were running a half marathon.
Dave had completed 54 of the distance.
Helena was closer to the finish line than Dave.
What fraction of the race could Helene have completed?
Worked Solution
{{{correctAnswer}}} is the only fraction greater than 54.
U2FsdGVkX1/6BvjXs/z31BDIv7lX3PhR5l+2q3G/IWCr6+XsJoiadmOfrtZIXbTINtl5l8LLXzE+LIHNaafyN9woGyQ1uPjFFOUV/QRDQ6GlyQHJY4G+a5zAWUE7T32PbxiDYyXM+uIx2pbWCliqy/PVn4LEPTrQhAfgAcL5E7CalFrKzQrmvdgtYTEpPp6FSaXFJzkAXSYGuKeVFLRmxINAZNmqe9/vU4Q00oZvL5QtdnmO8z5jZFjq2c9BpSBRNw4ohmKQFzuRSoXYk2fy0qDb7Hs1DhlmgSzCqBMwuaQJTjZfWwZFF3vTxdrCIFz4CkQQ2mzTG52AUMd59Emd1K4LtafVgZyrYo0h20JvGjwwOpThWyyBnwskMtzVgsNUsc0HHABX9MKME8d1raPkkkkEtbzg41xOw3o7N5Leyua4B1KDSU8NCjvpVW/CanB46d4nx8EUVYBRJGCR6atGmY7UVGQb2jlKcgqJp9lsSMwhjIjg8gckfyMOsGE2s/6zqBFz/Cd8Unce0v8RYlDLO0aNKWBj2H9I8WCAOnRor+ndnCp7njN29d7Mf04/i1iVPrbXISnPRn5UHsGzJWj8syLQRrbxVYU/98SZHaNvWTgynSL5aFsgaypKDTE4YH9QPJwg8HDwGCJjr7pZB0rIP8qYhJ6J5wPmzrYNH/FPl69wbU7ZjgK8ow8UCkF1bUlD0F1JUDkHdLEhHlDtwWc07o+5Z/2kkxYCIeou70w8qxSp3LTx8vl53KnIPI8z8T/sG+CKjZx2nP1yEYYFyMPZHK4WXcgr0PVTYmJugA82m9gEvtuXc3BYaSA8gG7ZhkMATEtVggB/oKuy1G/5Iyuk7Jvevws/JFJBxf6TAXX0VgFpHbWmTT0Tj4yL8BGLs1+0lmzacpP5Nm4MWVcz2QdlPtnH+VW/ELqBfYkkgvHUKhUodOkhLlU5njdEdzq6yQ/9Aq6zgbMuEtwyM4hjlVCk5W9Zj7m7/6Un4Jy6jrTjORgGoug6KqanN6uscJUnPEB15FKi/u1YlvI+O/sM1gr55+IGvU75bmxw1WqsIfFdIAnMfTMJhWc2yKAUwk7uXbXGZYLdMPTJsBFbmcbXvXBg6dUjv2sP7VQ+vfiKzXYWYrVALC6nfUu7U7hDdzLFQ3fQud7uca1KiiEfq5orMMQkZX1BnknXAhEw85bhcBhwOyzYLkOTr4FxwBWeBVxbPdaocvizRrmTKz1qCrp1E+4uSC7nE8fCW4WiguSQqTkX08WCpbvYQkN4Y2IQ6W2S9gdo4+N4SRTZv6L7aiCTfRzgvjrsiW1jYBTzRI4q7YfLPY6c8yLlxYZnVOwju9z81pqHjTrGr9a0VMeAcR3Sz4CJE5GgTHCzS+6CSY4+QP99dFqJMA+f+i6CkHC0J1bkAujRUe/B+doKk6DLycqVXjPCOVi0nJ5ojP+CIkTnI6qOc6U1buzPwiAIdIssoOLhqbsZGj025Nq3jCFiDcahBi0IJVFOLHl0ZSKcA0mX+a99NyriE39fFMfsEfDyS3gSpJ1dxXT2yjJxQOWkGo9wqiAIUvYSsnr0VB7eNl/ujsx5bKmbUJ0xGMducFbfCJeCi/5Tyz4URSELKsmV46gLdPDqNRvTy1wlnq02y/b+oNRkrAtvRSbCKE63LaCorDAy+MbvggQWvs26o13qddqnXs+qXEcocZFvYbp4MRJ+UsV155hhW3HXtN5B5/dPJP1JBQOBBGv3ujM180+t7Kut8qcfOLAfKt3okQwKaa343bOcPFkPRwAFZqgy9cE1+y6BNQ+L+nqgLVTNY0yd87BqxFiFwU/v/bnVnAylSqJTVnthiXyrtcUoCYHCVsTVmMVf+Btv5lQQiaN+LXpf9n2DsEr+QEkEDcGa1aBtmunnUTygNxarbfnBdsGjRuT3NBBIywjxat3esaNox1OprwXfP1+E2sFxX56bCVUeikKmCvhhPgPvWbfhdWnJSRvWvlt24Xjcjq+2KndkWrGB7uxXLT4WS4jsNjgRW6uMgsAIHXV/qfsJTXJ8nrNo16c3F55+tl/wVsZOnSHedFaAz/KBzMutFCUulbYFBMMRzgAdYMmXdqS8moSLpPKATf/y8RFe2MoAMxYJvn4H5BunhmJ6RrEw/6DfBuNLtCaHcB3/eqTYLyhLfN56f5mXSJlTlItUSZjaaobvla6OrUMMJxS5AjPLyGzsTfRRhDK06APYRVyzNWvGdULk4Os9MHh7e0+TFgYTd31AdEoK4zrcocaou6NzIQgmz3XRXNgekkCpQ0/0Q4Ugh4zBORU1aTuf1B9fH8/aqQOkNRO8VJ57bw9vccucxj9kC+ey7LDjzSC75zwv8uNf30hijM4stOYHJ5NqfXm8lBCgEghYluSqSUqqmBymDvuutIbpbaAkufbnn/n7UNERIrR1gEswSZZU0ALDNnVjs5b7sXjNbv0E1Z5oXpNqHOPWq4jIGMK8vO0wPD3EAwUNL1fFdqrT5ckoydQeikdvTBg8dfQs8AICrXbGM1HklSnxW861OQpSZd8SXKrwXIZF4MLb322nu3TNV8I7V3rR6yKFceKZSskBIwcmolQ8JDP+AXGDoSc4yEANpQFFBCjejbyNHsDE/H21V+SKPosPvx5i6D5l4VIWExpWf9wNGGFJLM12fkugQJtjCCFb2PSzwYea7ng1PQJPQxa89xcngs1mMYBgMmF9YBsZKHD429a/lSasXKhHNujMR6gxFQE47RQV94zL8cN687LxOCBXoJW0rDyZSND+V3ZbzawO2hK8kDCVFgNlnvW41sLn3VOLgxY2TLGkXCgvbWDt232PuhchTYvVxcaOheyJyTQBxUP2SSu7WtZ2xSxAd4lt1afXEOhsHktPCorG46lO1Xd1LUpm1zSFEq4KznXM7ZG1HLywPiZkP05PvXuWtigixumh7Z3uAJAT4oQLJB7GgxuYa1c/K6CSCxM5PgLerlkqTLKn+nWePvXNTN6z7ygOt/2IthdD9fuQ8vONEexFIQrGeevvrTeMGab5r/Qy8R51U+whJbjviuV+RAb/BU/TUwhOKM9SJ1ReMBQjmWFFbPU6VB58Hy4yyT6svCz3xve2PthaTsEa94FA7AKYQ9kd4fdpOA7uAhl9wo/30ihPhS1lQw80m3A60TZVF80WNiTKarkh3nNaWmYaGNGjm74Mw26gxSizEy8ZQu9qxUZtdfKJYI1bYI1We6bqg7voveep5FqNDiiGKpdTmjhLZqcKvLXavQCgTZv5DqWLVVSINfm/mOqTCOn7e2PXZNpZvk91LfVCeWK8Wy9FsloqAlWissScmq4dx3VNaWMO7/7pyXxsdOk1Vt3VhgqZszByIDXQIGg7U+LSK9hGZzUF0XcA2nHuiZ4/+gCG88Up9S3KmM/SWgEq+v7FM1cZCeTvSk5uC/2Y7dep5bMbvYpRCHPEp7v9ikTvGSvb0UTYT6bxVM1RlgW6HGd+BoYQAd1BCI+fwu1O2yP/k7wTA25XebRhvxs4RAM9RHya5KAj6anNw5a+Bf+nfKD2GfTrFxXD0IRndVstTFe2idLaT+MOW8Ef2jvngcuU06FyPaqnfKANARMBsgw9Dty2od2w7llWg0sUneRmz80razLoy08XInd+OSS6oSlDPpwT6X10DMaxDPpnWubGppyD3pZK6MFYezC+Pt0ogXu5VfR1NaPxSYV9LKUKtyoaSWcbkhLFEbfxsj1NeR1qRWqzfXnvCo1S7vTj9/TkhAvMoCUx08JbjE/K6EFRDzf5Y02/COKy4PrtbAsFwfF2quynXsVHceqVZmUW+q3Fqp9zOwHtGHw7JHq7WZQ911nXFFLvkrhFUniAaQVYoP7y092S8Bp8oJ8uc4jR+3Fiu5k1yddgxmhxqansvov1wwIWjLDhhG8TNSSnOO4KHridta4zWK8mFJ1i6zswir6U7hJ7C5mM3l2mnd+0X7sY4O3vGrHjwkLsYVobMFLKL/ym1K0ChCwDCW89h8UGxmqSuX+sCuxFw07okXAfkIAXeZtH2SHdtcN/2+osHqHmFWiekFWQi0U3vfA9SWtgfERrGU13tNsV+j4LKRsP3naioPbD1Zp675QxiYSzUDghbRuOqc5/la4urH5/gnanO54Zyjz3hO9kj3QZ4zp408ZjW2qJIGbxEgsoQDv8kDnqPeu2NeRfJ9g/ELVQV3qxeAh0KTpVcnQ4+gJJMGne4h0Z3RKSwlZsvTcvms2mzjB8LL43i0fyfRARiW+idcyr7Xs1lW6yNnyYGMWIJTlgo3cgS7h39s9PijDE+4aQz1noypuBTZP38pAeZ2HtmPTtPMt9vTop53ST1W40/j9BYROAvs4SuaxWsUXiOm0Dehk3CIHPQ/UdGndO1IwqGPXtbJlYo+pkua4C/2XZ9vboguEsT+sZqiqYQR0Q64vdrzUan/8q0lxsNRMjJaRjVVJo4jKcFQypWJFV9pPsR+i2tWvpaOld5nIjgQ8nj5f3AuL/NAats25qjwHWqmkegXl7LQsCqyBg+29zSMJyZLGm31CQLEHXgySeBrVW4Kgv9XeaequMoT4++n0m2p3/JkPj/OHn9tUKz6aq03FHNALo0WqzGkXbd8UbrCPznabQ4CAbU6+W0eJnks09CTwgfgPPK2kQp4BeJduFueqJ5j2L5ttbyvN0UZxjXvCOYCyFmhu96ofIouoyuWHp4RhWOkg64boOSXvGOieFnG8taVXkLOd3p9e8fyZ0ktFYSCNcZKUqfEkLAYDiZbrxhCDcVKh1y1l8X1OBiJjH8lht6iV0ImBWy/0DBygpL1wB/Bc23LfuWgDAUlu7YSwqm2wfAEtRS1/RoMUYKwVSkhQQgzuNwdclFLMNPdfNtCliTmfW53YpfX1M1lj6gUrOCX5VmgSgJcPqlorkH2g+vxUfEfyIuAvU/lrlYVE/ZUm5nV91LOaKau8+PJEJ1fwHhBlqnz28V9Z1iOlgugG2nQKZ7DBh5sIl4hrYayORv0KAYkLLqo00FhOmFz2pVO1NUr/os3YixdF1Xi/Ar0mCwRhCJ/3k6eVPwML4wbLkqdPUFNgsyxjmOYJreuD9QQNgAdTbC9oqOzTCJFN3Lb7bzr1XZ8ul9R/3aDOsKxJVks1sc5js7TWx4BaQTQsiRu4eO7+00xU7OQyu5XLV6h0Ym/FIaX0zyd5L6PaDGTkoOeckfkid2wTyWYHyuzSrOkd2mlyOwKHE0c6bKbXnHedc/Q/2lDY/jLUE6LS78F4FGhExuDltmf15jFiMiTTku3flfBt1NzGF1DxiwqxVslf+Rc2vNJUd9q7zui8gsLenv/KBia78GoFB1Pp/GRJi8lvf/A14j+0vPzYfm5lJDZK7mcOjA2tCPkUytmxDSj4CQGJ2vnnIVwvOdNO04XiM68Vn/mfJ6xCllF1B/OdMT2OopcCAYXEMpPegjL5ijoF6alRjpF1Jn/f5IEu/OMA+2hEu4Bh6L4DXepCXlEeRSnVuvhPtJoHXvC6YQlwtWgrh36oQRIyS46RqMOpXvAZpHvc+bdpxV3t55YBj8eGyeOQ5k+A/yeHj90bWfLpvPVK3cPOeH4GQHZu4l3V1a7EyImzsoIkNpsgqCJjx+Zy1J1DRuAfjswKQ/ruXWazzZkdjSr1UOJPt494LDB59QShatHF7JrBkWGXybOSfrYzE4qU5oZIoxu/afMYomH6DgHHRcXAZmAHFN+JYI7OtIaDMP/QCm+ojh6iv0cxPAqUCxJonZkD6YLreWoI7DRqVWEd+rwFZvm3NzfGLnLllD39B1cDth6C8VxmXlO/jL/ol6Ma2/ZYZW6Lhm4sNkmOUP5Xed+WK4xbf4SHWlZETCa7tSsRZvjvoaWzJ3p++I9Nkxqm+3xLWZwe8Yy5H1rMBwUCSJONwHONWcJ2X5siP4FPn9WyuSz6pVrRdEb++ItqPiHWHjk4n1WXN69pWwI5xJCm/98RaqTr5Z6fgcDUrTVn4D90FDl+sUrcXdMsCrksFVdoEMMR4Y88wKXSUSKJRUo/61Rf+cVIkALhXEuTDwfCg2GGBG4G/h5MqR3SKQx20D3iNU4CRBwsTeouTpu+I59+qeJIpS43gv28VEPea2ekUxaADd0HqJhzDoXbVFWtVF6cEGylXwIv2vvp82ngWbdkWhRR1mn630TsaejQQnii2w4uh+49foQY3zp/4maWnvHuHTZ/EZrPPht1RXoeV7scQy9qfAkY4lTDFj0YvPHbx1SaUe5FQHXTOXShuDbU0cPPzZTwgrWGoPcREwuIKDSSFfKIOdL+CrUr+maNdbPSLZ6m/NiYuEmLX1QJl59PCprfp2bct4RroLnTyUCCSJCaSCz03nSJxrhKAJun38BL8ACPGVcoGrv0X/h1PxCrbjHY+n0Yyqx1RSWuUdYsRzf0VuZLTaxKtOg8Stra0KXDi7EelwvT83Q7WLs7YHPdzZTs/JgmLbvJTARBhgjahFOqSKXxuchQ2RWIZRgvcsB1/IHDWg/M44A7PXI18+/OPoyVBweUcP5Ivc1XYY5ZiuPUKMv8l9zQJ0otV/r35GeDtoSzlOadZ4hWlSBoXUqvtXfy4hsK0y6qRH+sQ/UG1e0RewmUfhtxCaqH/e3euLvgbfxRsFaGhQtZc/Ev2IlYqVlupDpO6K9bryBOFra8oQwN24//f1nt2XCW5CxgN7YhKVD06sA66BUCVyi1Pqen8kJmMhFbqgIpRCf6Nhx4/EvJ3xZMU6lgY0q1zoo0KsVeg1PXGkwy+0ggZRpijsZcKoHa5oE8b5bJh66w97HspJSJFWWLDrBs4r5dNlbinXCd0wHy0u4W/bxrYt8ZSlvLXoE247LzYbhyt4OP+inEHld3GwRQsgwYGSLoO1h8IQQmBqTiVy7Z0oKHgDGkmJykxP781EBYmiFUsG21uF8NJ1q1yC73xbkT4KkAqF1jtACArnFflpgOLqICSQtKwMtiU6O8UlxJsPBLi6gyknW7TQG6UNbJ6HcgJtW3ORFOPaTzgnhS89TazPmElr3TZScUiqMN7v6XWr4qJID7A+zOsG2yEnyuw6PW334s7P8ERxT0WDNa39ESx2TsGkdHHIcPnj/+Sdd15+pdb0Lj6bFCHSA89+A5o8h1wjO9oDu3i2dgu5rFl7vUt4xxWZCOcBCouw2sDWx8Q8pkDk6MQ1QjV/6VdrHLYPzTJAKP9PBRDLZWZclihThOtusTcllaP1u36CJogzPPUM+Uh0w1vsZEGW+hN6tYHAakssojdgYc1ajYdmft5zyaERD3ak8Q8oSfXo/92K6v9XsZvZjbpOww9oTrL8CjPYP8l7OvMUNkpaQ0ZAwn1kxsG8Fw23/Yg9cyHQBVvMXenuy4441Ex9UdLanPcIFEhK3GCNkXRyyrfwzIA7ANPRJShVmltZ1bg25iZxQszmO0gGwfnO3BErjkTvHYG8W7kkv9Ph9RIic6pYkTwpDWRYaDOugv2QoDVF1grn8DEn/OQST7EnuGRvVqdg8mhN87vdO6v97O4cCGfjBvcuwsRKKgYd36euKhop5y7/q5Kg0Cp+JEUV2NMLVm0cJ6OS0b78z66LzjJvHNQgyOCsuMunGo3bQrP/TBJfNrIfXNG06gTY1f2yt6YmbjaKPxyYQ9SNT2jkutAVMV2qxI8/WbGfwXGoxAFG1K64J88qQ/28orVAQ2Wv8i5c8UTAH+lBh0N2TW/XAyKX+L/DF8WCbVcqRsqBFFi0z8Sf7xJNqn6NRLvDBl5g8fXXlUMSU/155udhvjnvW3qbDd+4Y8G9LmbZ2ChTOQrnzZA7EuienzTWSCM1p9EXKBVjddbHpLeW9VQ2VSRMCBhDGrDGijSsvsXWqp1JZMrbnIN7Mj4FyEFlUkaU3XOkJJx/zGLwpy9JE2mD3HSCcthxZA80r570yjZSVHgR9rdaG4U2cgnoSoHo8ZJoqSodaAhD8MKYrzuRZAqf33MZX1f9Om/yQYWjjjnJSOo/5dnVPYTyngocugfcVLjgKiP6k8e5fPz+ApWE5hpSsbJkcxTEEkWRvhaho41L4M5Zm1ZFeAkXPXN5xIIyRn59BaFyXu7+0YXD7BfzdD0hoG2exkwdY/9l1cx9PLwrq78EPhmN6QRIEMjnN3RsyGjNNDSnxngv9iF7p2T4pxyqvyOle2tZxVtZBfCcYESxa0PTXrD0MEYmqpy/mQmZYgK5bVFitRKLohnkdURRikbJrnwI/Ob8O13ruPddIDTMquBukQ8NYBce4NmwtsDrdKl5f0GfmxI9bUKUO4JgsYoSKsV4lh9W82GSOdCfZXo/05XgXWgQ4sz89UK8rKzySS7BrFY5BSwuzJyjbjZdN8ajzsZimUTZQiGtC4ardjEw5NraZ0QoVOzdg6yw7y001E7b5Cmog1IVN2dQArA633YZNsgYp8K9zhH7anwhJNtZbk9hsMP2e9o0BBeg13SU1yqza1xyJ468n6Sr7Bh6/7sxbtihtr4gfvw6BOUODCzPvYspk11IYZQ7xqQltq4ZbwccFcJAE2+y6KA10zWJLyG4C83HR4bSILIBkFXYIjROpObd1iixnWbDorXiYt9Mdg9QRj5g1v2D7vFXAErf9d9icv6km7olzHY5l/l4Q9WHMf+ZT/86Vr/8eJ6TnD5axjbIrnGayY8P3dok9QGSeXvPtJ3N1B37i4GbpCIFi3cr3sfEjJJONVnZDLA7Ug480/gSMaksgO8T/TDUzKJmQ0cY1N/HALEFN3cc/4LVjNTyU2MLoJOlM8OLRAnGAwgLfq7g/R4PLvgH228oTJ4IHX3Md61YYP8WZETN4/HwFbDz17Pa5hJEmKC75+8d4lpEh1zcoCqoJu4qdouutnIumtmlC+BbyD4VTXfop7QfX++sg96VQIBbJA7SI8zAvkKzUtQtsAF6gI4DRa6mpEYWdlyf2Xv75c1kEStNQCdJ2Bh+pNmsV2DLHJMCasPR5QV2WTeHDPlhk6TaMaT5K6SlFvyl9wvDF4QO04dY51MDgDExhs4DXjL0cA7QoVyouRX2qTZEeKPDwlHromQbgGvZo2WlvBEpwfxv3FYkUjVd55vHscjg50LItUGISzf66m+5m6h3U+SC3kVLWcb9X2RPee+yhPsC8QDSoCtKZoI3+XCG3ObP7Nvk+ShbuE5s/Psj6myxDQ6XPCPq6CAJW8YuPbSrvA51A1KpjYCBNFDw6a+lMJV2gppp2ALl/9v05YAMU4qk91XfxnfeFMcNCcWOv1gCcjixugQtS+M85BSZXm5WaIcMOqWNTofZXKi4RFiyt7x0CIBYCKNYQRSLswnglZ96/c2Tk4sEvqgR4u/vU8JuDaPNCIhU+iCXyfYoZHJ7/zC2MAREVEeQLzrkpWeJwxprRInhj73LfXOwo+UeE8t6i82Gj2414cQ7OlOm1Uq0vqAAXEcAIGqmVQVAPUlUNjmU0Ue7JQ3zdJcgvMjJXeNsHjoJ6iN3a/jDyX6Fk//TNWWNc8APBlBnDro6dRgFbwXcw4F41lHoDGU3BnPatsmnVv6eBy7gox517G4Kl70GXXop7+Xi+Ppr2v+7gT2ix7wTuV7bmGDpipdwJcL2BnuZcuL+NS1tSJyyeftkGyMVEZKLE0TLP92rPi7R4T3l0Sym/qdr58eN711eLOrx8yu4cqTm04DreouT+Es8doo3zlzWY9XcEDUOJiukwh0DkWDPp4PZbx/3vEymXhbQt1WgI7CswmDrpGOA/uJixID6EkuVzQ6slm3DdO5mpiJPsQEuO2hLSTXRXp+QTl3VJTJ7U59M7+XgFyN4IsFs4qCzQ33HDBxdtL4avuXSfvSvYZsvkpOAqFcFaxYYvvziq4QXkztGYy0M2Gn3FQE5A8Lp7DFlu+YLZ5k75MjOkT3A+7FBk4UKu9ataQR7nF75+kEnqBDmlQcjqDw2R2itp4E/EiNemT+Klj2hvS6yYs4uuklIi1t+v00PGaddtpEcz2oIUsKudzGvISUhtpKtH/HGxrhKaGeLoousqoZCye2EJt7DXDj9JpjN/qyAQXNJLaOpH5N/My2wwzOvXAPp2sP+5UbMMpPGTPH8AnO+lfv0rLATtBAwTGwRXhPbcyus1Gyl0zcXj/rgZc2wZ062JUKRIT3dPyEuhe3nCf2KmYKhZecve418s7YSi+9VwLhY1Xeuk9Ry+peaEyufLPAdnqRZavl+z6CFEw0V1QfDcJBJvFeT0TJGfqg6kell997pfUFSk0gOB4BO1GN0L/zbcruC8uxCjTmFoeUdIdmy6PEFVPi0Vv0BYk8lMiJHOpxz5qFeqinGrP71DEMF0pRfEwokkIfBBzgrb4SoeWxUrcoGAwShQYyHv3HVEo+cIbMecu6eZ5Al+1NyZb46BPYtchXhlrUTJmlDD4DMKByt6Ekv7fF6cygEjqb0H2Yr6jythKwm4FWoA1tFb5cIr3GC2oJwl9Z0Ab4e1thiGU48zNFK5Rz8In/zAK2b9BIOxDWSCVW/Bf+UWi9asm22MZTyqZgnSn8dK3s2ipAapqoItT30zu4AU6obiFcEiJU1D/YeYo39BeIUxuhgvey9tcN6195k2VS3U76jYeOrufwPCoAbDxXDJH9uA0jnfHHvssjBmOLhUwZcXVWjM6d2elxvOZ7FK9yJkAsn1b62aPpquiwibvq0Oe8qR3oyZUbg4yKw0GputWlXlnLa8ndkLdThu/e8jtYnWrCTQe8l0z+QX9f66ysttUMP2Kjiuom4rHXr9KwzJVdt2NIk1EaYgcNnKCNZ3/rLqheyXcC2wsOmK5yTRzv7KJlt1ZcxkrOUiCemkMB2KKAps/oe1Ng6KKGpPeqSJ1Y6fHuj+l4fOGTj+8nsN/6Q2qpsyE/S0Unw/vWyM8/ORvmoMzt43sX+ZgNDGpXs+SdWGrgpF566BDkTzOndcqL0ahoKp/yWk8o7hYM5lCpOE7bgJHV0XQP9rI4ACfiwgKRnIXoME9ObXXQ/pt3M8OFqd9Auftohgr1qoJv0LZ9tPeZWO6b86UxD1nTvkmVk60E4waJm5fkr7kkkC1vIEepQqUN2N/KMS1hy5WyjxFQvO82LJyJzxv0tD4qAnfN/Mm939Ed7w9FtyBIDfEvqutuJe2QVix5Haayhdvn0K3wpsJFylpNqkDN0KOH5akxC/73pmecjeDtIobwz0iLVwptz5iGE/RH79M5FXBO60yEYzHrPHJCZ3tNF8IEJtWthlc6+0njOUx2dkz1boq/a2kZ433wS/oiiml5Lc4rEHnUFYcdeVs5x34AH68K4AHxJU0TBhRBfBg5q5Lhe8ZlClck8P7TFPRECq+NIff8lancSxtJ+d9UlUvHkvMG+eFhFaUmZM0fqXxIiq7fRwKAskvbfFWl6+mw1osXQxd1pFFUYeOthWHIHlyzLXMH6TirdMU3zgc0G1KY5bAajgDClWJhb5oXatsDBHaCM1j7aMU3Q3284kmilg9RWk1iIqZ4NuuPZHo45r9ceXgFOvNnAs85MQqwNiYXhTnY03DYvIM1YudpxiqfYehcbF2wMm4eR2AAx/sooF9oEBAxzdMp3B2K/jJ0vrl4uLJu7GoSV6myi2xVXML5PD7JfTJ6cGZuG/7YovwKDIf1vEpl98A2Pnqv835RaqBoVHxYPAD2m69GycvBecYRBKTyAQjSPLO4BRl+kVNFeoNr81MbuqEiUZIi1u0dAMnAQK2sev8ILNAkQW4aYSEWzhcPDtFKJ+VppQiHNuQyPjWZdwt2X2qB4HB/7gPiv2Yp3TUf17RrgAIO22zZAlKl27XgT2RaT9GWdOzfIkIlGeFMjGxvR55YX0t+j86NJ3oPcv1Y8Ym5jU1OWFNSDcahvJ/sOULfBotKFN4OG68hO6i60i9DfhaCDbJzC6wSWLFS6cYVDhUhelPnJ5LYm1LgMKjRmYuc/P7Pkz5dJJ8WChOQc3g9q+ZMnR/ToUItejkAysahYSP9Wcr7opD7kBfKlZBCP8cjXCudfsjTlK7kq/jHtcTdQ9pA7oZZSO+R4cuunsCgK1k7t8Or3jo4GBJbJrTdzljQz8QSo3DoQyjU+HRtKqKIyDajUN65pfr96SdLMJP2z5Br5/ADwASoY2KflzhuQFpdWlMATmySSvA8EZ8BmRP79Gmkua+G2fgHAPCx+5vD1bw4EEolMsVZbOFQga9GRoXrzkmaJ+MYEnkn4BMQnB1yVAQ8qJNPADRc6rjyOk3va1lWU1Vy8Mdxx4MPvMpu7dsg3DaJHorJGKkdURSr3cI26lQS+qoz9XWETCGHyuL9EJzcSP423qr3O/ZEbCpGS7wBGaE/XQAzvNer2aezdDEaYMXvu4aq8F5uibhyFZ8e6DDOzf2/mKIaRzmkfthNxlUXAg9kZo8Ir/TCNIvauTvlcRmLGd4UtusrTzYygwMrq3Cfc6ARiVLPbDncZsVFoBLtPxTtBKvtfx6THRGPsUG7GfrUzzdkDA5OevMbf+IKVrdi/QWUH92RSoiisli6FvhAiV1EpRAIRtyAoVPmlRTajphmav2FqlECs4tvM7iBJ2BG2S+2SLRWBmpJGz91+pQwfQOYVRh0guqbJDFCuQ+f35EmJZ0czPTJSsea08XzybjDVAOs3IS0UhxuKbG5adAsRYOe4+Tnj46o/JmnTYYrCC1mCOxjj1W/nlELo0wA0pywSzL4N2npxwXM37kdfc6rfXdNj1fGR041HsODQN8kuKCJ/E1qnOk7I21Omofrx5Fj3MFasKmfOaMCB1e2FAp9rlxIfwWZ7zGXZlz4ZmSoHzyGS8NnaQMgECk4kUufZFo7uzA3pGXzRN5DyMh+1lJTuZU1oAt1ghELOT42Nkwj1BnxUHfInhCDikmCPuLifuF05LyDnFMLmW7p3a3dhWrPL38x66fyOfsIIcdqbD0MPf58kHpqHECmV+Wlc6lwIjVgyPBWFtLOwzLbkLsumc+Lj/vemGEj0qmtf1e/2rAtZsD96Xb0BOjUwlt0D0qt674SAuMBjMjh3FgRGQE60jw1MdmwbCKBPe/lDmdGlX0jPfQPXQ5HlMpKMbk+HeLsy9LVuJQxYMBSXJJ717wRnJdlbh1jGw7CSrALHt9LRkJo0uKVX7FqYjN8BK66Idd97aU+DGjkBKro3UvOwzbYlRaPB6N7e181sfktHVfS7VXMbnedCjht+pJcbsWOWj539xlIev6fWeiI7fBnixlnofXyzHZF2Lk5HguDGsFtSf3iIZIN/5rzJsw2XhJRSOiIpjqP5HFrOcrJB+ckVlQ9L78TmGx+5HquY2Lcf/SfDc0Dy4+ncIbCFWv0sC6AngdpUvsEzJVK2dP1iI8t4GoWG8R+wPp6/No7fB+mGL7teYY6xZBzNRd5E1BazMew2ObFocuLbr7VGtTcaul4RIssr7WMcq6Gl6PowBj/jgPKc+TpZE9w8eGyQ4g7g4nAt0/4wLMzmYwS9Y3N3TotosF0LkR0+5fEEECcv5TNyE2O1/QEodtOh/DMafBICJvwoGxBN6KaNNL6pJiSZ72197jZ2/z9DOl7mdePqJJLlKzNBAPaAOkyiNeaoMf/K67rQ8SKn2+6XwCfcnF5PsKBl/XTFv9PMrL2Tz2RSbFSnYVolV5PRE55oqzKpMMwnVu+9rlUPFgSOsmSInnXm35aWBum9WOBvkWjaNBvywKd3hOlApcwxXhtO19G988m0ph9d5OgRbSqzFfssO9f5kCy5ujvwQ9eh5I1O7tUOOVPKyZKLmAMpTSXc5EJjpOU23KNY8WdN4gIcEJYPs5QJPsGx8oEUgbMEkEee1I2bqf/WRhVkm7TFM2qwEaZRLxPjm492SScgg2JACmCPP3u2s/t6w==
Variant 0
DifficultyLevel
606
Question
Dave and Helene were running a half marathon.
Dave had completed 54 of the distance.
Helena was closer to the finish line than Dave.
What fraction of the race could Helene have completed?
Worked Solution
65 is the only fraction greater than 54.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
correctAnswer | |
Answers