Geometry, NAPX9-TLE-28 v3
Question
Floyd draws a sketch of his back paddock which is in the shape of a quadrilateral.
What is the size of angle x°?
Worked Solution
Interior angles of a quadrilateral add up to 360°.
|
|
∴ ∠x° |
= 360−35−82−113 |
|
= {{{correctAnswer}}} |
U2FsdGVkX1/xHrryp7BybsAgQMjetEdPY/mrTzwdsvwNSofyhV6KRcGDv0/ktjIKXcwlZLukwATwpYMOMoK3j8YWHmT53AmKTjF8EXUnbE6UXVwEa12JiYYqZicfMjj3HnoHfQUnKmUfJRJ8VmN8qeQZUYYWIZWXap3ectoRlqfbKB/IrlnJ28PfOW14voXBpu8E67EuzEFlMZSvH4AyZ47kZqGVwEon7MQxhQBviB9maQsxk0vxPYYd8fXcEfYbyc5yVHVWPQL0KYqm6S88B+Z5cSz5lZSR6ydjX1URRtv9StLx9pW2GuXqHOxERdQ1lcTNFuHzuNScq/zHlMDcvYheQCtDNI271CAB3Quq4XobOm8V2J6UTG9OHIKjokkMu0aE4ZyBG3r/uHt4CowK20p6Fct0mh3MC3kkrLU6DNhRrk1rfDtzIUU0lhLL16hCo5JMGDKWNbXrgjHBaan+1FbArNOG9vzKuEUdpBTQ2pZb8Dikuy7PP4MRLoPU671eKa+iSSZ2iTlVbAepTVZcJqrd99owzZol+TipFAOgQDeQpm2UfMMS6j5oCh9pt0GSezQ5OIYu/AzMd79e2TDBPrp/qIB1qdtG0qrSW+O1i2g6S5IajMlz7mnP+7OAObS7fpxzQpzzEVW4IXm6SVZP7JszlFKp7tGwD/n2L2N7t9PrayCTsKznBOrGCh5cIu87VaC48T9oxgnwmBDKhDRayDXGfpeQ0Cj0SpdClIkLraQ8o18msQ642V4ilRlz5cHk/GowDk+0tWRR0bgIUTZox7Eg4peebIT0X1xlYiuOW5EBDIJnu/Kb5sSZQbG6y+CqHoprT5RsP+S/m4VBhNPnNjQJM4wmVCQXVxdTRazwLDN0R2nheuxY5j67VpYWLB/Lp2BpkUldwcYWmXihJ+FcPfku2wRtje83mXOnnr19Q4s2/XFOin33ZaqnWH2RvZ91w71sIBVhG1gpXEeJnds800gFshoS/Fa1JICsnlZd7YVuGp4MApXaaTKeCXVNPC2pBS5gPYcqZhobHJ+mEBblYT+TeTgY2yPUa6DCSkTU8aFa9EuchMln66zIS04iJtSwtfcyw4XwAJai7/tcYYj16k/ieg1ofVVbhgJZwIb2gXFW0Xt3R/NFKL2LTP+yIk3KTvIqGyQ8jdKArMlIgTWThJcGCmZWRgUR9Gf/eNqBfPsMNg4/jh/6iOR2F+vFR+EFXk6EWcvPCySoduowFwPlzfGhZ4H8ptVtRotcZOlEu8sQq613K4HS6fXYM9D5D0aYlsDfwF6PmCr32/9YPIHwWqEyPloJO98f5HSYIOX+vmOtOVSTdvfaJKB8+BGWjwbe4EFrfPHWR5gD2+sZW4SaHwO8KOsKVGYvaUTbg559uUcp4RjwEx3mZaGwXVi7UXtYK9ZM+a9oZBuNYietEZXvfGoVV5Lg77/h79iSpTYTY3S7tVYJxHw2wAIKbkKl+S1eExvKVebLmdrCoxNUQREbTo6DUIUoHYDXKlFFyCiiUud/RvduLkQdiNqweM+YottwIQbsLrBpxN/D4UNK72jzWNXpEpNJGSfMsklLEJFwcah/Qbnt6fHYIRJrkT/PFb82v+443W4Ho1PhKN/E5lFkFIDcNVG3vx0IG1+qyJeLi7qHFyxS5IN+nN5rESg59iB5FW2/UasU3bSMeiGk6hNNWR/ZUZ7JIBxMxY4ynQ5jJ9mfdrbUjsour+17Us//vbZ04Ii2IUhpsgjd3VRkr0+H+GgG6GZWq8O7Ij9w0j+lxU/+PyzJuOVZv2KEpLoO8+uwCcWQNnUwdA3oBoQ9lzzu3PPC4ra448B/Gy+Bx+bQs8FXfDAgnkv1HaJuagrV7XVy4JiRua1xtksIiXfOeLEL48ADI3U4ooPgH4Qw/D8knXlWQOOgNYj+9uyY8T/1eclyNPxMto0T4nvPftnyYcNq2EjtrvmTvwBuAjLsF9UF17jUt3cUbKfxjJX/DX13lAEjHWySUaQkUzKHzAvuMg8jMrm/wVrmnmncCdM5fsIIcWdnaddsgILIVNJvu9cRsIPfGFoIIyl/xZE4mkE5yM/cttaDuB5vlYkpO3mYbRz7+NlY1ivW2gsCtDk/KTh2mOg1n6pxnXlMKgLX1CKRY//o24gyuV0QbEW63EHPr0lFxFbw3ux0lzM3A8ixY2t1BC785eHMRUnR1VBVw8vNEodaGXU9pxC9oiPGYpi3p4g5cYZN93dzsAwsJjw5t5ke84W04eS/Q142qSxJBCaushq7o4Y0pEi5SD3FeaeMcil3lKrBwkRcRN5cgRWDT7o2MZlTYFFhWYjbhgoxdmGKuIAtbG9kUW25pcg9NhAqWood1Tme1fZDcdRXOyIL6aDlwmsYUKTdnapHpTiME0OMUFLLEKh/GtgtWkoI+2RMhxeonohXJdIe2t9uHvkb1lpUZ/rug5OkUawHakIScfbEmVUjfelbMMlfgDGP/J9RyeVYIuy/SL1RN7OcVV9+FXzTP3kjdx/JLab2t5IyKjFFJREdBacnh2krrQzhGVceRKAiiLso9RrxHSd33gh2S2K3qYsBAfx3CuAFCXvJz58ogfgfsP4U1n2ZlS8N2RVCnsepso7rplMUV1rdLEh8ApUGLQ6MXVK7zm19nwJ198GMPwUNsPRoZmuTpmcWdalO5rDpeezNzKdps1aiCUMLEzJFzd5CgiB/iP5qA8SZnJSPPNmLUHDU4dHfP7wb1zsU42znZimiPyUxW2H9ax/qsIrrhLZOpqU/bfYcT9+46xNQHfjvmIuvooWIJhe7pmEwTYIfU2SyA4wNvq2u+WPNOFe8zUDYgXB5rzVut/95VibSz7/04KssyL9YdbakUTvgzAfEVj7zxq0n1Htv9eOXTQoH95Bf8JqC8tMJWbP4nflqTTZSEpDVSnBt1P148OFeNmcMDxCgr7WJSrHpVZlqvxuBHJF572qf7GrxsVIm2beyWYz0jdxPQi+FV16Bu9Bn0reUALncCQQbX6NEaR6GOHtXzq4Hp4LXmoR7Vjdjo0RhmOyO5Gr1DRiPHOutb2wSMtr2yt23SaM4SCu+fpWLlGcDAWVfC7bdGemrrb2v+xPHDzjRsqg3e8Iop8lraRjMMfygH7vfo4mn7Yd3hSjn8Oxp5f/Tu2zSWrX97WMrV6R0kjx0SSss+3vY37OihJmwCddZzs5C8vjmS+0xlKWwzrlxXY66pDQMkyqQ92PTaG6Czp5FLG+Myb90ttzpZlR6ZUp12/0/9Vqzrw1HHYUPKuUntPDewrBNtx7nI1WLQ1M/kqwq5KUjZ5ZBb+ZPV+9Uq3hedZVntzNIzHx619+NoJYDCotiEbSjzRRR/CYPEa418PKEON9KIKIv5mxt1iDlGL1mzEGtcu+tgbJNXpiMqTXdP+MF1YWme11qplg9cUgklqI/bWZTjdSUu32Qy2MuUWAjM7oNMsE6licBWlxvZKInGVf9BXfS938iKH9UHqOlg72Qlo2MueWG0p5w90ES35UbL7WONs+iY0sbAc9glqwFIHsSKFBUnILv2ealTiKVfadSXk+I7BHPAWA05fltdLIUdmwxGwrfDXC7IJNGTj0yZnpXuQwxLjrakCmdpblP+WzmaGwhSeuaACx2rFnskX1TRREbODQj5F57IR2XiRDtcYmvg7TydmHVOcWc2FEhMFAD6YxnovffjdwzX1D67cLhh07ZqwluFM4YtgwIp39zMoa0cd+Ou3KrpoTCTJD9EyYPj0HIYsO64hc+eQE2lrB9htJYISp+Hd7oJeHAqh3ALH70d8s2R5JwGV/C9VLoFmP5ltqRXoxjyief7A1o/mzUOF/QuXUHtL60tprFgWBzWEFghQVlEEiN4uwIEI8pDELyrhxfbfnRaJcfQ8ASknufJQsdKTzZYEeqjVdQrKaA7NlUx0sEMP/5ypu04OGfdaLQ0m8fNl63ayC9OcaVe8rIzhbhoEuwMe3l3/R7B7i8UNrAAovyBI22DFM46xaS6uu1Xd+xYy55yw0VrbbLI+DqATkA8Bh//7YhQ2FJ5+hYyqoM13DzUy3acIoIQCa1Hzo9aa122PCPpqd/QOZ1hzebzx6OPIgVFjMs2JkiOzT/9d24GObSxfRxpa5HPPl1k5QJRCJAMhkgTA1rJgsTtBdo3wq17rLrPtBeGCVred0nlKiCX4jZMP7MoVeXBNM3xo4Rp7yZJ421sDJ8njhWnI0TkUvOz0A8pJ1GqeBM5v3iUhohhG4IC8BuYnI+KX5Ej4OYXDYJbAiBt+jLtKqnvAacQJuhdblOCEYPETil12ZMA2VAszsDpVg7eqVEi0t3BaERW1MMDRsLPbsI+PK31RejZptowrhT0SZHHAMynfbWs2K06aouagjFwPnVQTvV7aRZcft/TngpQaiXBKNpu+dD07dZ2PwwfodcDa5o4gZJuk1N+rQr0rcecB+XS9d18gi1CaBqaewfGK0oUakvRoYo9CVPje87WX6o+7AcGrrom4Dm2UY3mGpIKi997fVKjLaThIxxIySsZ3ut6BQT5D3KobeuHOeVomiPNYBta+8jVvkuqjlJv5kxSMR+hbmkT2ueAgg+ub8KyHkEsHsnGgkoyBGxaniVgSRuiiPHH7JDZ4ChjBJAbpkrJMeC8DlrF2p34lK+qIO+6h8nNtY/IyTBjCVjTq0PbaECB/rVfZWtpBlpR+9Mtb55Eqyl6Jz30kWXJA0xwhRlFBl13SvZrQFdVP2wXYLtdxxC0k3i4vALt3hpmMFE7y8CzJ4y54v21GmiYqEbcnM923Q1NfDtyIew+f9BvvlE1SYQu62cN2n9u5IC4XnBCOzvaqvvhMfcEJQaY2ql9dS4HuVfm0AvzqZ9SUmUl1FzrECWxMSa2vF09VKMUS0q68uN+Kk7dzTKbVeHglrr+LWQHD587vDcCg3mBjIqL6AykMdTQg9u03R6DI7R0zBwz7nIWse0Qt/sbKTPPadUeP3wanpoBNxHKi2r+sibLLWBhwaKW67U6pcj4SeJ6k3ZwekTt6QJbWuDx05xS0MhbBPw3xhZ1sTXZEJqFs3ushU+/RZ+oD0dcdt7XUWpkxlsYYLxaRy49oCcQDAG6zOyOgplqB0zhxPrsQhKZg3VntBllt41HjjR5DWwK+kuN/Sb1W865CpO32LI3ImGt5Jeg3Xs0UzViDy6cNkZQmG+EKYFP1bp9xnzAVe6ZVuP8u4K6NdLz1OG/ulOpu5gfiUApswkH1oKlgbT/JkvHdvnLbeWq6M0wdGDAIhBH1fBey2L9+8FKQY+48p8PRrNh3dvV/GYPid1xre+OIoMBLVAxmIK9bXrx68ZyFuvKkf3Zh6nWcJhj0BWxF+b3fLaFbAqUmXfdVfHC1yY+sA5i2SKSUK4X78lr/xYCGYCrjrpoUgQeAUlZ2cLsRyH3BsvYS085wpl2tjsnDQlq+HIWEel++JZ9N3Z6Mg9BiNYa3BCT41tWzpQgK4Jd9QjhHrA8yU48I3uaCj6dFgYIh+k1+CWUu4lhxwFJp/M0nzCioxil3/w75vFu5eMfQcGflS2w0JYQWV58LqZ/+DY4J7PTdf7RqF5S4QCcx6hLXFFg2qnAtHaKNNcVu2XiWtO7fhmzv6Xovn4U0Sk2gcOBKscKLC+GWZ+MdbgX2FFjpZ3eTWj+2syz3SfFSdfD8+EBqv/OnPbf/uzDI7PmxAHTGaTqBmEwXX1im07wehkSPych2+r1/X4K0i/O4YjlfIrPetqx1Iu26ZLdN1dhD2S8ZYSdwWflym2mOHyJy5HzkRbjS2RWxb3baHesJjQvX6/pST4QtxBPj/AiSHz7eKRv9c1WDEsDVBHFqqV7ED59E7bceNWeh1F1O3MqqPIEBQnjhYhQfo87o78h3A2UlEGTv6Cl6WN8VMP8xoKoKH1wrdTtT/ThjPySwaeIC/01fMNP7f2fo/+xTgpP5gs2UMlx6e+BVMldQkEzyCxrGQ3FDa9q126WhL4R7//6Ay8SctZRLgg60I125Zo6lqUr7bHQrrtLyjy8JHLGKMkNxSC6/X5HT/+b26JZ5eQAvHB82ej+cfptDzU2evv3Ta2+aCUXSclg20LwS6PNZJSU8uk+KSiuI9wXatSoItfcRPrx8oyBsArnFa/dmpP96dplDwUhuHra48j+yAVHSRTPJCgTXvuo20yF4+G5nCQKhBT4d9yx5NJ8F3vNfMiirLZgSa3FZMLMdFpJkDaO+dqfI871rgwy1mFOjWxRxB+/5RdiLkPAfxWdmyQxp4MB7cZClKoP7j/Wy1pbyR5g2CsB1DlFlS6zmxYuJvL3C5ojXew4UwxBgO1z5/sqBlpzntCC/0z6R82deqbUQu9pKBcPshZBhA2j+Wd/6q+j7x7nHksiD0WYHF47xdqT7SSzyezsOirrHCvHuIZHsD4SpLW72kB2NNjiRbz/CEogbX0PB0/ow+yufmPzyw0WzEz9Rk7i3mk1Fbt+pkWnVLmRtCzev/NA7QX3NsP1bXgN65Y1p+G4eVCd9uhFoXb+Bd9H/iuUVBqc7B4l6N7s1HU3a4GINpKLyiwliWkfAHRdT0mBDwel/h0UkkchO373BSwbtF2H0CzGnevjGdHNffNSKBbmAUrt6zti2x8BpQzPXVCAKqRRRkwbRQux0GX9QarB2Zi7DLsA02QinCeS731LasunJXXusExhyyzeWU1V1cieXpjgpjVJhMB62uiBjNxJUkeJtI7yfAaNYENhfgE6heaXJSM/54XnRV1lUAjPntOsYs6FEKOgcwK16nDbFz9qvjQ+DKnYRHC7uqbB2rylOil6UU6dRPkpTz+fzMkN80xUmH8fip+ZNnhH7qXfiSJJ4WjRyU+N9OLITyveCSdWRewlg+hAk4PTVv+EKWC0jH4bSv16C7HSttCcuB2VQLVMvIyXqbLoKdJVRUxsGkWCiLQIFPB8/Oqy2auJqbHzQLcP4WGN48TyWSCO/3H3cxIYB6b1Mdvi3aRNumdtDY5ZyuX+oeahwiUB7ZPv8VXuJU0TTo9tvUOV+v93f6Dg1ZsIvV3TOCjNSwgCzATmz10cwdThWhVu8+c6yWavOHAONOvKsUf/FP9wUZSppqQZIXgBQGdlkFbuHyPMXxmWCwfjylgaKLun0tKkVPOH4O+ZvFlaL5J4+X8pxL5nPDXtyO73CmPPbkLl+AueU32VOrQUXgG7G1RkLO2glJU6LKtUmrrqMuKvNAeKB8mf/xc2407GljOoKWRPihEXzoOvQy62IdbE6zu0sSkRbjDoht98DN3OvrpowhITZES8apWEP3YwjIGYowVs40+BwaXdjvBrPYZw59JJRyUc0cLhBDaSRqRx41DdPB20siNwGVaij6trhwkh0COwUNM9eQ8oMNRNFYBKsYry/vJB+JSzNXmShOTgUCeky5f9MWHLyshKWEZTKRd+ovGX5c+lygYMiyE9trELn8zHfHfKJKne+gzoWdUaiCuaAcoNlZoVGpM7cD+gFWmLZt4zo14iMyRaeEiOapxf3EEFWBLk1kjO9SqSTSxOMmYL/ctP+TZK84xGGbQrs3MSp9AepKhKVguYoezvT1gf8h/7VmK+8vx7EYRip6kwzRIL9YEnhhaLl7uetVctDjIQ6x7AJAOJU6Y1l0660PK7F3DhFhAcszXH65DldcjPBYakeeXVYUO4giNh7aIYxHIobaUM2HKQRae5v9xEfjHEuP2mr+nVTdMGU9kAY+Z6jPIZ3VYLpsnjLBxVwHBTJBACpTQc6H6jt5TXdHe15vzEYk9NHlY88wbI5KtcQofgiIY/FyTgZBsV7KqXH/4Wc1k7xb6GOYItR2bThR6DjIBYsbcP0oE0eVuhYemel0P6o1vju3GINHqnhyFFXnrIvNkcw6hsLs/vWZmbhfFFq4RglRz5N1Z4V6cE7AcQ0FxvJqW6H5Ab2z3ebzhDjqAQajnYnabDjCiIx9HQYLnKC4/+P4MT1DxYurhH8dpL6irzlfFaeWxGs2usqIAKjQfnwxzMYmP380KFljNGPmM4emrH6H+9iyT1h9Ff0KkwMmBNkPhAy0tydCuAS7hqZKWeznWN+rFRejFoljdFDztXT8yq/UniCaFHBdDXB2qhcnGP7nVOm6BrEm9IJAzGXdGl9SGyN3NJQ7Rdc98eZSpEpn9tnkyge2nZJhtQyO1zyEIjdIqt+iDTEqcJadwOyTFE6jyS0ZLwc9RoXiteZdS6EoxvnFK0jizpO8Xx9ehth2FcbImwvAra7MT2DspKCHmLTam8r2yqfx4wqVWD+KHL61KLmoM2o9To83cm9FSwEl5iwIu+d8cN3Wp42Ff8tiUJWPxkpFxZTWnw1fVva/35vINIMuze55iGQ0NR4leZJ50PDs9U7J7P7WOwe948f7s3vz7bgY17jDXc6xbK9sp+BrFrZlP1chMmCLQW1f7KTrw/XCfcDQF+CrOlnibUc99ZFJ0wOL0CxXcPFzNjA/xUhIGEItuTZBU0yjBiswasHD4cLWvVi75nOtW2jr51Mvi7R2q+bbxFoPKa4jcFRtJ9DTMHQ615lohfEoH833YQdA7nX3MuBPVtkz1JQlL20q0ndaLGGZYAWVqFiZfZ1IqmOW5LUblGqe1w+uzwf/fRSgR7W6Q/JGyqTO6cJjl5ElBqgWsmUWDROq8l7uKxl7aFnON/4Sd5mQntY0PlP5RxHUeApfW+0CpvqswPp6+lZaa5vc1hrs0EYgTwIqIQYwOQXDOmRtctr+d1sCgHeWJMbzFKn82cVilBZBfcQUuc/JJdN3PyYxJAqODgTXb3xekGi9DXaT74sLOvUDMGmXj3bUfuN66V8go0fTnX4ITO+gVdJwqAIETnQ7W7YwZYTGfDHfm+4Lt8vb/fgn6lDGzMc0rBO1xqWdxtamwEiZPIEizxiUTFI3lInDuNjcnK2XPdOXwZ6Uf+4HZhkBkKU1mbxGQtXy3ltGNoYdnktq+RHDiW56SIHQAJoTgnxXZ4otYJf9x+Q8pgcwNtYKnVk0wXqPe+x+35U9Bi6jsLN0/QUZDjx5/0HkXt5XJiVQarTtw9jaoQm4DqJ8dt0SWFWpReurGaJzjdER8YnzJ2PTr4INneien22ji+UswEbDK0ZU1fNmI5xeoC16wjd/dEjpvy8WSr2W39u2EJo5JaK5UcgeQp7DzevxAo6+Kwm0xUE9CoHVF7UHTdBrUReb8pCklCv9QGM0RjHesIj30zX062umZbZVnpdS1PmUJHntKIsQ+BR/LrTRZs3RcdlxjIn6gIdiR4Sr2DBX9EX+Ufk4ehOOazIYKTtzgplUbNU2FDRGv9G0CzkYaqZnIgyXEZSG8oQWPthGWJRER4uZh+fqDPnII/wbq3CYZ0VZ5xegA7H4fLU12El0BREMCsCj4U+yNH7TNpNt2h6wCg7RuT8tpHQ36DthuL3kLEW0svEKw2iAcyVMH7sgGP9TO95JE0SwM2GQy1QtkFp7Dvqr4AES/fllHkYJDgJUaiXwHWwxzbRCnU0ZdrHKNuYknMMuk7tAolEE4FvadmYS3X1OR8xPM1CU3eTz2ei2MRnnO2o7juMY2v24pIqsj7vsf/X+5RGmKgqanCoaQYTO0oljEZyDXHZQqAjRRMLB16+48iVOtvhwHiHNOEIBeM8hD6Jwsekbi4e4DpKy0dTdub04NoJS3qkywymTzvicoi+tq1YkbaXxL0tdF+bmqyiaQeqDsk9lg6K44sqJ4jb2GRHmEvH+74udTDfxhAexmzW9q32ORDroU1vWK5mBgdVFYhioaZRmlM7xpNWUqbSJlYdDCIIimpvLn5SqrGEcjNhWAryrfreu8Efu8Jc+z8+2gxI/27qZInZ0lPBFE3RpynNcB/FP82heYYyTY6vSzolcNmBNytgOlMoiEZ5FBYSvKWBeHMC0SUPaCd5HdHgXK1nvBXUTq8A6jEUeCg2AVtzHerceVOKdCPwWnoHullBE0Z59+dt8gHgdbK4gbQyk29GBGEndG1X5ivuzrMBuslBVCxdmaOKdzKvX0oRRPqTKfMNMmwE62gsFG55kLECTiaJYrGxawRPliIwZLPbsqVAMBk55zq5wV7OD9j+1xFjbGm5DBZguYfyhUHDpgwSdtjYFgkok5f19Bh0hbq3mv6ESWb4fGDXc/HS2Ila6VGcbfeYDbI9L1AMiEuI+DoGoqZl+kb4ROnl/lVESkLduoDzvZKzLbn5McvbprV5O0Inm0WOR62qp8NJKGzYeUU7VGg3AmMWw6Rv7dXrxtzYdSsmgvClkIwtfMQ0ypnesNJF8kqvkRHtgzwp7aTSEWtGelD6AA+x1nof+MeQXZbJ5/bYgZUtgD/KU8/RlpnHyqAGn2h0r6Eajwrz4AT00vIvDmOh6Ax5xmN6XaTrJNGLb+Niyc2F6QS82XabtUpsbw3rdboZoiKbp7kFKkj1w3bhRgpa7H55OJkwnzVJNgW4c9hZoidmBEb+0tlOQZd0qmv2dx5nenKfu/EH2KIXD3h5nwlItivb0ZbjgDxs47r5x9XWO4tQfzTohhAswCRE3Ujd6RQBIaVcLZhtOfzimuDHuQpUjPGAxRfaqVHs1iIz8DWPFcJlCYJfc4fvE6R8sgfAn7DKYtkdoAh4SSZo+ovOdhqrm4MkpXeaPVtpPWhnF4OF747ZXPD+rMlK6ukPUg2GQZjkq4iuepX5cew6dhc/hgUrW1H7SV7lAwrK+LZzp1n7DW1NoTNyhXQ1r/hLcpTTPlhiT6DF1MeFVBFJrwndLJTeXRZDikeHFSBr1T6GSsziSLaxLG/0M+qPMzpxb4aNAbIsOK/VHRCalaptPzApjAYOzSShRkJCDjDdXu79MYoWxieYcHbDkiJuVk4/fZGdvtn1sDpa3T+fyHjcXWJL1wJdyb8246im1nKM+lB9SnkyYfFSKw/By9NtN+0ZmQ/WyBp8U9Qsl7/Jw2KSI5G6oUOyb/2ZFxtLtb5f0Rqn4hqgmYZiDrLMChcJ4HzAWITC/kHDokVVIIbCdnbVuA9nGhhf7gU0/a9DWJepv31wVmn4vMPKN8zFhX89R10ibW9dz2MTteYuLdTGjTjN29/fhQ2C0PQsNzYlQrdK5vsftI4o7OEbKKFOmi4ZfDaBEUJaT9dCYFF7+wcjL5q3P4f9foWyqyDO1XchY+qPn8g9POtHC8xkWCd1eQy1JPFFQFlao5Y7viH9KvDg378/7WwVDh5jwYnq+5amm46C3CNz3qkjnCfwIUWzPGTVBY5/p5me+2/zgGcTxwX3CA1wKUkeHG2AKxgyBKoLGRM5Ou5fwe7kDPEzc=
Variant 0
DifficultyLevel
564
Question
Floyd draws a sketch of his back paddock which is in the shape of a quadrilateral.
What is the size of angle x°?
Worked Solution
Interior angles of a quadrilateral add up to 360°.
|
|
∴ ∠x° |
= 360−35−82−113 |
|
= 130° |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
correctAnswer | |
Answers