50152
U2FsdGVkX19H9Jvf30Vd3gccMDEuXo9geUN1QnRiazoB9XotRpx1OiScujPToBjTMuhEywPNI4LQG8DXHwMQefHEz+qC7P3HR6xftVERXjmmsfxJGAJcogUvKKcOu7UqsLLtjL0FVYRsMQ/PZEja1PYk1eNfnKvXgrZ9q4L0lrzjz9yw0sziB+4EbjXtjooXIObpKWdrpCj6GsO9CI0Mk6QAn6YtRsOTvdEkO9+fcZSYhrYnn7qWcMaEoY5snww1zHc2GfHu5YwjMd86PWZOjcIpEMeK5YXIXFIZjF+2sa6moNGMyjDXuANDHkWA4PtuJatS9gIhuUG9MyUPsJpoj9P3KFSl38rWUwzFoOOqYIGuCYTm2XY9eoqCOTEx+kn7CVDKfm6rdG3/oosJWpYO9kTUMtL/HC05zvN1TgSzWTCCxFuKLkchgJzqFj4U/+NUiXIn8XbCAq9loN8EsfhpXyEuh3drr8V3YkH6iRON6eKZHTim7cnrXW/Kr7X/fANIAEc/znTTwmcJV4recKxWPyZz9vgK8fsCPrbKK96trDKMImnQq/cNIEI1qkGWpgzSnYjFTeOW4QXAPHNge1U5DVqczFnZCeRqnm8YBvHfR5FTcWJe4eA//AlU8nqcJvXixicOaRVccPoCnJW9dPQoc1QziILSW4pOGs9cnbLO3Ig0Qjstc1aXb8OkPQ861S5/fKa0wMAy2deFeHkXwAyujVg9l9BiMeP5510H4PnvQLe8V6nVfimvwPU8kr82lM1GfCgQU2Fd1NJJ8gsfpit1/KddXo/MF16rE1STRHfrNDFOxFly95EiiKvw4WPicyBMwyUCVEjjeOGQ8KXhGB2N83P3TZ8f93/qCNhEIupJ1B0LGAwIyOJMIQbdlF/pPBBj2qN8oGKixt76fP7shQbtSTuI0ztbCibrUOX4WQMwD1vnyA8wn2MGQXI4z2mGuR6C/RbMcGVjLvaLlkPUTsRORSRFZ7tvsCeYbAvie7yzJbQmY3I1vDi2fST1WPPfoMJd5URZno/lika+A5+ML7ejg7XMUTTpwlR5QkPAnFTA/3AcGCCfqCYEezeO4XIBzGLAmeAKcwoud4flxsuhco6BXDqT/JY1AKpQ5dL+S9rm6paS85c6AJy7RHiPN8KE2I3WGQH0rddDKQSN9CjMi/LhP3AJWETe2kVktUa1l/3udJlwIm2yLtsK3+1fkzbqUr9uiuEBTBq57pXCNLwgTAzkAYsebJyrtfOCZtzshPpLhUP+XJqUJLEOdZ+YeH7wxp3gI1DLH/GmKlbJNPDJpokTmPsF6b7u7RmbrvZ9PFTxYe+Vcy1ZIkrtDjSq7+WB8gEuNtT1NCtlusha5hu51+z/woSSLXryzxyCNSrt4uCHeS3ERNjE0+PJA0PejCEbNpMjE6xzLx/RbZoRDk3H/bX4g5FFkJZBhCPfA8oBPsSoxsr7FNNe0l43BbajYqYUIjDewS34uym/06ANIXFV614N6MTb9C35Pt8fANz3f3R3o16qyqCyO+IxzyO78FOK9UrAPCfVbKNeyT35ZXVML2lgAkSJgX83edIrNsWugXIJyAj8liqxABeY1hBpNgAObZm+SAJtc7b9ezNZKO+noxgQAe2p5ndSYDYAs5PrubBwFcwHHt173lq489nNLeQjD7KPn7oHwHF8vGzGN7Lf0atmX8HEWv4j/SBE7uNE1a+lCerekR2RM3LJ3USr1q5fdjUXS5hsJ9QzTU4C5svC9nRfzU5NDiQEqnrHza2Ys6Xb2Sa813AAY6sPQ6S1wgSDN1Y0cUIERELGn0ikY9r2o21Pnh00zKCqGsTje434IGoyBK1ip0/zhtxFB56+I52unoeSpgHaYQ9carVqJ75rl+V7lpStWlmmX0CAYoUSQtQ+/OLSZwfwX76yulCQ55yFLy5EMHqDE8uagATLqZbFZX5vyUh9dkTj+6guJXufgneurVEZL6vM7WTTgluT6NiqNvVyPpXYmwC02x5fH58BmPOd3E1qeR1LkarMEdhgchGPR1Z/aM26kSZ+1r7jtFmHDhq2lIiWXkejWPNO0qRs+wFPtQcFQHstUOe0XSEONk8lbINXvNGKATayoxyBoUQsbAl5wNTUM+23aFYO5+v/O5xCqYRkujPm3rUR/ErOtpq/byHyDizRe7t/q7QMGfsoDVCyWt8G98gQ05BYD3cNV4V7hfyQqx2pt6V4s1zHPLVIki2+JcGzzsGwd/jOS8B3mrCguKejQNMPWD67L7vnCECd2QTAZFzdqP+utKF/hgaYwee7P3FDfe0TpeJxrCcYbHrYN+6v40hc/DYQ51ZmfdtCJrIRPB9X8yZL21YVZX+F4C63iOAm+I7CUq0NSwyk89YIIDhs5zjSE64hKw6ME3y9W71CwErDywNV3gwH72d8JVdV4qh7tp9GnSnGQTeV3CqcmjdsH6wmd/fdZkiacxBmJ+0AytLCVoBv/hIGMIEmnAdLkceV8AnUv40ykHfeCIr662Ej1VW8n08e3cqYxrSClBwadojBOHMF4A4DY2ZZ1ZPgPaB7ha8kQwNife4yBtnLpyhFFoBOp3LXAvpETl3U1LR+HDmDUhjz0QgbQbFMksUtjIV5/SzVJiw5DXMSRrGrBHuITr2M2l4/pfsqGqQrhLuDrpsg6Gtpeagre31QFWzl0CHcX+hHk82Qyh5Xl4iV5m9bfyDj4eN1Jaktr9wgS/CPVmkxyDteipYUazHxCig9NCO0PDwvxy+lSh+IhCCqUc6oSw/fimj0xRqJSzaTf878CkdI43VUH7aF9NIYJOofkGum2tZzs6zHoiYCrxgo9ymZP81jI0wNHsNiAeK9mrlJ6jtEqn+d/saeDGpCrBJpLhbe0akw72StvcxKVyoaJDJ7jcf9VasuFrDLotQkZtvsiSa5csBfpqPFiS8rT9DJLhAGvUPxCjkNhn4cH+vp9K4qMCTuwh7/mdXukK8sfpgkqym8cNf3nVMg4to8k9c9U1Cw7NytJ/nZnoRCZD1yqY9nBhE1duy4M+dOsrvRKAtmvqQ4OYOh3V94XMQejSgbDxZRmUUHcYDPQIBt63EE7upl5c2RZayWPRcoINPB5bvTXffyzJI2/RnMarqfsjDFliiMMb6Yqjqczlsz1lNRCIxlSLfjN8pCLWdwkf7CeZ1fhFOkI2SUcLP0WtDejXpkaGaK4WJbkjqYqDlowUVEaNXApE6ksrrgUi7nWAb1dNX1EGqxeT8w5/bX8BsNBlIsewwQgbeNTNGDKMfPadH3CPX+NikbS954gvHUxmoVKEGcZpgqq9zom1UaSQExVRqDW6UpHEN/CITxfo47QHc2fIad460z4SG7hAshUnp0GuYY3k4MRSGjFq1T3HXA0COv/GGYWC4IyO6mq6pFo/laJ5wYlG/tF+Si9weEEfdutFhU9qeFovQtyMjbGt/6zR+Uk6lxD69qTF4v0T4dkbDTxkIa0hfsVhsQbMYGpX9bSHf/F6q/FdBv7xVXraww4QyOOwv0CVO1iuTAOoEmNJT3qf4GXl27Cblj+kWSNNTW2+LWqzpz9NaqG7Q7p4Hf4LjFglPaftdRpJSiRvb320hd3uxh8xnYzL7okg9u23odhoviMVGc/qD9tF2mO5lLSxRCEi30cKaLyI2bo9I46NYteBh8qcm6A7mja544wFeWW9vCz6lzaFbukrFxOg0cYEdxSDx17V867OHMmeLFvmBcRiL160ZABC0a1t0s4bVEu+aPL7VX3ePhzudfdyKxj04zT4cRK22WqtwE3q36fVGP4xt019dqFyW2RBx3yMEut/VtDgpSLkT0hLmBPlQtV1HJin7+FM5/hVt204Y+4o7b6hz9mOMCB22EcAyrWXhaKDgoN97Yn/Aa64RNUbcqLaNEREdLXVejv8xS6A4I1ATwDVodJmhRZV1SMACoqNL3k/QyJ0KWbOumCpkFb0nIAq8ytqmtUDsGrgnyn4ozw9h+/zF/sfCI2KMilVWAfXTWbDvjsg+wUu8u7iJKakdpNrW20EXNdMX71Ugy9fMCQgC3Xfyxe11ZXkuPN8TPHBAYn3ntW3aP3LBATJsQC9sFuqXmHZDHI6CIjDrX0nDodzq3BPe2kWfBUgPtW6po4vMpGO9SgdsBSlfwrsA3XuIkjfNmJtXBuTNFZ5Z0+mutNW6BsjBQXKQo6kE28DSv3XN+5TKElDQxmBXg4X3RtXT1P378jx37fCHT7e1Rzyv1jxfHt5UsX4aZ5A/RvWcL8G2R4aHHOlKbJzw+ibt8htIX9JKWOO6KpiOc+8BHe1Go5NXeJH0k/FZEoSv+gUdjHfg2IXDx5/9lnSl083vOuCLX+kRsUzj0G0w4b/Vowo2K1mUNcFzQO2/nMl8zcNAVttVjL4mM+ccuH74rvYvPYRZ+F77ERjoXhFDbnRTBPBFbtoPQEm4YjKJMSrTzYxr+ToBw+P/nCWGCpP831YiCFbQYzLw6jUpt1ibtutVwu7xpMfLTecEDdq++vjuyYOkBAmC7/mSKaHd1hlQ7B4wPx5LPaHIPg3ACF/GdKofKrnM1jqxyB7ggmsHzG6bnL7667qr6eLuBLZPlJPR+udox436klso6KBDKBaCPglxCBWWo2nomCdRFhbaWuc7VrL8xYbKtNrd9yeZ75SMaGMomYelmlPat9BUg4Ms1Oq4Fy7tt615M4IA/MAe5QBPxx0d7lGfRnpLDj33J7kr8fzwsrpHV9JqfCcJHdNrCawuNJiQ4xkzat/4aWEVeT11OBlYOBKgXAzo5m2mCAlnQIvA6QwWmDgldMHWNEC1Q8V7gAbRKBtMQygUnEspn20ezev7de0ke/Vktfpj6ZM6kKYyHsVshElxXY3bB0KkxwFn1WmTwmH0VXfxJfIvGDCj5IUzo61xztBNjttPwoqm+bcXKmq62EnNxBvLbv77qqdpsry85p7CqPYBwxfxiETd6aNtZhpm6DtvaFYp7Q+yJjqJLiUAE29Wg3cyYODwJZQYaJbT1ekqao3BeK19QJbShemRrlgHuLZc6Lq7xvz4F9QrstKWujgJeCudTyWg6iAhx0Bk7IrDn8RFQOkpgx774kHw29HdY7wiqgSfi9zwTLBj1LDOdRCUIN/Wx50tKUyhmoVCdepGbA2ZmrU5taH4WOw92spbKFrL0fiXDyLJs14aaXWm5Oxj2F2Wj/3zn41RJp6KSHgxwSBlpQFaqd37DcLU1fcqE/CizYUnyq+R6K5S5u5rZzsxjlKLw5TXfag2J2w+wwrlhaCVslHa6gZ7tf7vwaDUCZKwgebQyFNU2vCe4uwUIMlKHVEN62UB4Vhgy7AuzwT2HyW/59o74WrlQSgihCOu4mQRVPQQhgA19y8F4PVmnVOV93Whz+KPl6mXKXDMr75wFu36Vo9W1/1i2WGAcGt/ntTYXiR9kx0h2aMDtF4sgmFqgNwwY99AjcMnoDRn6b6Vw5FGfZu3nZ1ro01U4WBcasZpuEy1phTohhkQrOSOWroXh8OpHDJmd3PpO+4CiIJv7Xp8qore5W6uKWOlYitgq4nGT8PJg497jfbShqgValAxf6ScaBzIRxPyL8fJ6S0HzYecInd/F7yT7rC4t+BBhjW7dIO/cOl4E3ExPRORqwvzwu3u4+jEVWXM7qlU/CkMPf6ks5hybzCq1AiGKskLz6vWrNAnWg8eC6p1a7JmDN50OyYBL/UefaUJ3QgL7sZSC4UPZ2ivjdkZP339T+Yjm6VEgcjGZPZqyFxjDA7ZdVcYninjF1EldvG1YkUDUEJWgiTIt8AfP2J9AnOSxhNr4jMxit+wggg8x6XRbU0QQcyvFDOl6mS/Dquog/TqdMA23X0jKqrMFsXh6YxFTg2Z8hN+fDfInXtknxSMgPed/0X904gq8cyyLUvWq3V8noK40wJ+snoykcowBTduG1lLh0lXZczcmSpqDwZPibczPbCu3QDDT08OH5cnRPb7lzoUEFf8cTmNKSx+2tB/Tl8US4LxqebxdT5jojhjmmYahigKc3RvGP9PlQaoanEKmfJT3l1pGVWqTEUbr6Ihd3NdDHnS/Pu0FrQK67VZ0Y0RmPh1BDOxBLSaNJ32O+XPqUxzl9Z+KNXBplyrl5jjB/py2Jny1dunX8jr8nr6zz4ligxcX5YAqyExJPUxowSK0zbuAxVvnb0tfOmkT7QtZ7G2ebJpD/4l78Bb7wrKnMvGWRmUM561iPlho1TQ4JhgrI0FGUyNfubu2cKmJUwhnCmR7gw0taaWE7n+AYZWRt7K8AsXcGWrbzyI0WW2HkYNfs5Oh/bUycNsUVc4touPnM0ULOrHrOY3gwClUHP4tllOl/0pyVJpY6Oqv9rC/06KQ5Xdfs/c5Mhoi9Qo09J+o+RIohAI/Z4XR3V+z8f6PDlIwHm7sCQlBtyNSMsbz7dfrb6Yhu/N9j5z0b6FemsXU0x4nDk9PNOYHKnPLqu7hh8fMzMtYOYqRbTaWQCCn5fAdCS6lHcUeFW3NEjWsgUQkPEy7hgzJUbl+IhP5zZRy5W+sh2rg+VrWe55lYU6AqPobEC/jozECSieo6/yyYig8NtNL1d5z2E+thgAkeMedDhyN6/R5NkqzRxkWY4EOF1JGw8QVwgVe/IFrjcofI5EhBP4zZdtPjcqZHlyBGyy/VfKio28UysYYiS3F3IiN/q8B7usxayU6OpBqpkRRtV2qXaovxPiRUmMDzoEmEp2rSBXM+10MbGCiYgUfcKRpLJn7FQy6gN2EUAzxUv4/Pf4FHWNNjlQvmPASrefxt0mc4CEq17IpYXDLgg2AUO+TGZlaUl9c5etke3dchk7cHLDDE2PjnUVMh/Nfy6EWDL7xvqlw6YUqd6TBBMQUQ6nurL7LcjHMIGEWLEelT0YvM63h2qAXsaaIaQuAh/d9c/jR3Dcd2dAUiPxuL66/ZDSCj9cXuF6RK2bxIxztT6CWhxgCZNq6dThaHjdt5/GEU2wiM6wow8frCe0cvIgEkdsH0+iUo8nBnyuIdBaPow7rGOIEOvtQ/icRneQf1p4OVtsXveLwJwDO6FV3OpwB8Yd7vgqgdSLZC6OAy3xtG/gEO8e6LG0EFD8MpPK6zekUBWopVgRj1Oir8AxmzJbavlqUdqNW4Lf1CJxXk92jWGGqaE0FY/c9hp3Wtw2AX+jwYbHoWPnZjL8lRRjc8ovEVvO2e2jiB5+SZoSQ/PMXcXRxMHaPC5N7znaKHP4xn/AWagXFKXhRQIdMsXMmbF4ww9Tf2Pe6zCORFEELzyebwB63Cx8f1VFjb4h8EUgF7grsC7ZBkdKkhb9JBu2AkpDgdjMNds1jiCYjwPztRV9D/4qLSmMPxXqBrTdxSquBxQJsvM2OsQc8IMIHhh5mQONPwVyrW84CTEyBBXFgTRrNHjhKcumIWGKbmYhbRKwJeH1zG3ps+fIIKXN/cCqZ98eGshrdwpjUZePBE5z/fN44YJNqDgsocB33VJD5vSkik5ZMJ6P7Aui5g+NCWlftmFFuuvIgTnxCEtL4uLvdwiGkBOc/Shr7lB4atMyFuCXNDF/qaxL7ZXuVLqbjoLpRRWU0bPLiPdF/KDr++la8a2uR1gADyQHHvv3GXJHI3q0y7dqvkQ3VK2INpn3lUyjXViIGI9231T97VEGfNK28Z+U8mygpMOE7mOA1oe0vyRV04QbNGhP+L2dlfsSwpeFv3oWNrKZgZMqLE8/hwOJyt7UQqBmWahee3q/i2nW4jhfDJGanF9amyT4RwD5hN08Hd5ljpDWYWTduBkpdtNGz1xINaNP6ygv5UzcB+5Jwhaui5SkA1z8WLwjILJXPU0B1pcaUHlsPZx/SilRIvM3tN9pVeCESFq4tOVnymELTXfZcIiGBqAIdx9EOWIaTT6tiwxWANVbxZu85+m9gcVPTx3O6THBguoowfnYFlek+OZU0vNS/kGqCIDMBOySCeJ3NOlbEe51+Q5CEjZgQDMFP7e0jTar5T4veQLINZbeg8TPpsh2FuVwhHJFei8QeybNtLEkhspz9H9JMhyY0yL8M+tCiFuERXcxTWLlGN1RSFsy9vdHeZB1bIM6zCLvoRPSoCbUjopp81gU07/GtUTFOHwkAvxn3phK7KkZ+9AIzfQttBu1Mt4eDk9DSacGhLeC4bljODAPfhxlHk8jn6y7cFFEdPrTWc2H+qk5OTfulGeLPXkuUY0RCNX9tkSeI2R/F1jP6Zkh6yPOT1aZm
Variant 0
DifficultyLevel
539
Question
Ryan and Oliver are buying goldfish for their fish tank.
Oliver buys 3 times the number of goldfish as Ryan does, plus another 5.
Let m be the number of goldfish that Ryan buys.
Which expression represents the number of goldfish Oliver buys?
Worked Solution
Goldfish bought by Oliver
|
= (3×m) + 5 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Ryan and Oliver are buying goldfish for their fish tank.
Oliver buys 3 times the number of goldfish as Ryan does, plus another 5.
Let $\large m$ be the number of goldfish that Ryan buys.
Which expression represents the number of goldfish Oliver buys? |
workedSolution | sm_nogap Goldfish bought by Oliver
>>| |
| ----------------------- |
|= {{{correctAnswer}}}|
|
correctAnswer | |
Answers
Is Correct? | Answer |
✓ | (3×m) + 5 |
x | 3+(5×m) |
x | |
x | |
U2FsdGVkX19y2VrkiHlGg1/vWgAp2hvXD0G8ZAy4Zbv5I50Ip016KP1F+NIeua6aRjppvJGnPbBgtHgfWfqRYiRo6bXK1FDnW5Z7Gj01qU0QcXnvRmHFX1vyyTg5Ios7bxDPiFP3i8iQsMYmYhqEtgSIUNmaZ1AtCTISZ7KUTH+VS6XLs1xliHgTAJlhjyK4DGRjpKPfKjHGzE3z0XO/OShkZFKapFt8MSyd8ClS2D7s6YSn47Jfhla5lK//lCjRgKCwuOzi+s/Oh+uPZ12o+Eno0s5BEF8bc/eVBN4FgMuF2horXHhf9OB1QI0rgFadJS5mciVqal0DHuQtMt6Jp+JFrwARyQZ97HO18lAOpkIU+vEWVwN0UQBjRsYNzzRRiQ/pnf8LHtaQ4IHqMFok905iSycLtIukfqxCJZqUgAbO0hxT7UK01TrzjJlck68KxPyTcn+y5N+AZnZVHPgpHtIsljSThbf4WkJsYrDfJFNmaEyU1sn978dOk9LYmJ+yjQIXoJVNG3/Y+4fZuED6brPHz1B89BmWjJysJxRXQYUnYxWr+9btR6KxgeS3iqwbEgrQfykxg5DnPOq5QPOFtSHQBQoTShvW1X8fBIXw8kKH8MhOXWTG+FSaBV4V2rmxMGHL//l2Dq7sHvU3qmqZwCTq7kZ2pP35VMFPFWTTyWD8EdP4Z1l+ikHSI5IjJDyHTI44MwAgGA6oYGAvPz8xiJumVi7f3ajFtUaqZ22vLYUMFDUQZrbytQUNMO0tz64cpuTxb9fuCxDmkCUBiZ80pzSdef2R8juKMNT14nFVicDZhDecGE6UH9OZ5Wsl6L4pao/Sc5aNh+3kbRw+adBtLt54V2n3IS4tGS8/xW96Y54g8mHNhqgTT6cO35H40FERnC4qE/9tVuhjlmbm3vObdusnTIk43yzl2bt46IrLADCbdtTLbUP4nn2auyKmgmsG9zu9ySIGH9zIgOGOdFfnJp9X1bCwSezu+C9SWFAU5JvrLpIQ6Bd6IuzdgvirL10KpmhZdmJ/V2wa7d9f4oqhh0YHYCpbypbljzvAU0IoJHR4QmXyFvqTQW1GcrWEX3CW7zhOj/KwPWilb5F26jFRdKELIwEAL188jeY2osThH1KOCqgy6BgZCGYopj1SuQ5j9aX75Fwc1OM5/ua/jdvS07Hkn4Uk35AE4WMi/bbtmqk+QjZqZrDn5bR8G93tqu5gFdRMV+OwKLMNF4PQB+efig58rKZ1cvUWZ/VudSmAlsko6oj7a65J0+iNY/7ludYw6UIxtbDFxEYpl7LZVBulUtKHKxugOr62SSzpKaJThRO+tY+gFT5LI5/f6ZdJ/9BVf/BiCKZLyGmOZiX/hRYCt8YP+5Df/gTLydeKY9wq3TPhirmXsc9MLwTBTZfyAeZYhaeyXMydhmKZwa5b+gMhBnEZx3LWwmdsk38vapVkN+eEhMxgktzZKtgXzzfuUzquS1VE/HU3mY4RtkBu9Tvrnq9rVtxjR5tUrpjAumM1VGM32nHINEcHH/rftUYSMvR//bnr4MU2SBoRcMlMgCn7NkvX24qRiO9N6Gz8/rJO0ipG5Z2hCDT6T1aqv40BcwEekjuCjz70qwbaXHG2JvDeBdt73T+6J1ULtb6+EDbeFDk+bj0Klw1KQ7DDAg9qDOD5jDKmB1gkhgMZVWsHjdKvolUGGkI7bmtNDYU0e8gSmPjlWFVAUGXIWzlOAuvF8hLfjYBNdAgSerMJ0E6tnns+zv7eFEXMOfUHoV/Ctwzjb0E9+HSNEbBELlRA+1LVlu8qXwv4swgdcZUA51b4hRu4SfGVHHjjTa8uHgBiq3rWBYvU7Sed6KmsGJDYderNpp9KsmwOrBusf31MJED7MYPXSRrgHshXWUYowI8GE7w3t/lVE02kL4D8olfVJS28qVRg5ToCmG/NUXu5p8KTaQhfanVN1chAvGhrf+LlnqaaPPd+kfvHlSTFbXuDMjL8OGIs2UN2h9KG9gaxhgm5CAUnQ7PWzY4K7WlmrX24zIRLL85LPbv1o2RumX7FW9irJOwbkJEcf5YDBQ1jminQKRn+5FsHQmkBR27HsmT8h3Ud1x5cSJtlqYeXSSzfSyBXdGe9kX3FVrWe05pOBtx96iPhYd9pC8c8/LUdbrBriXZCv25aivTwEEwV4WPmf6+UyYUBX7y65bwAYWs/pvSGZ3LC7UVvSIFSYV+Ud8EvB7NarmAk2g5/2CNzRLmyAe1OWllRCM8sjBd1pzI4u8MfATEgSMwoIsyLEA+hznGjy/eOgeYh6sZCWrOUnAu5L6Nf1f8yhnhISOcuYzK8HcO2m8PKeXagJ8bayefiim2veGSSHxmD5yd/UuaK2C1Z9DEineFgzEkETzpwRxkS4PiflsXUBxHDyrcNrafOqjJmJyw7vnyfyKa3IElTz+bOOuxL2zy4AmDJveZB4IyO7tSh1JmT1V2D/Rx4/geHu/0apMkqQgJgXxexQ7vJ37O0Bm0NgreKHXuR6+vrAmhgrtcQZEDyURrWBqWH7Oftcso7KLKKfpfNqdAqle4GiiL0tkKgkMtz2WQWZ4Wv7gQX9RqBAtfn1KCYvTY6a1G+GHW8k7BDMW8ALUPDHiOU/de16s/8o8zydIn8CNcZQsMffoTm3yHAsCB7v+kZP67ucb02Q8O8OF2spRbMdCiAChRA7i7dnx6vDrMwv9w3BsS5YoOvS/9eZrGHEa99+CF1mZt5Mq8m5S27TjfPGmIn7q217eXBbk1S7DwFKvJUCTV1Cj0ga+DaPtPRnUWRFUuiFUhCBUNGwegKbOn8N459pX3yEMsxf/2KT0ocSuuEsBLzTsVipldbc62YtxrcGxpwe1mCbRM8DiasgLgn+Z+iw+XAnCwCHknhxaO7aHsJ6PA7DX6eTakerDsx71UAl3IlxHhXj4PLntQWsxP3/Mq1XH0m5xLPkL/15nGkyCU51teG4xj8hSL8H5sastbjUtPHOvOky5MwqBQ3zPQS/myiRvhRT7xDh6os3u7aj8/ESwJotTh08nL4AZL4kj4fyTYwEPShGIuM4YcONnKhz0d9alC34QaiOZjl/GSMs4LuMeMLvP1e7uw8T/XEbrW0ukwB2kN5Im7xqF/aFTCNPYDCGZqYobfftwDKFP1a5yGTTSDOh2qstlVDDfU6g3NJXIfJKAb4xEkfuFjb2rt6KApZh8WDuQXXmYdVySCxnmFT475v4qQhccSqDJ68OVW4A2Hx/2K7WpPH8QIOV8oAjmqGjpQkphBACSBFNzcOVMPemTh0FmQMTkMHH//5ZnC5Jn5+Yvwtqw33pnbpmecthz/y0GeRut/9f8ZFuocGl0XBqMM6ppbDL7AtxWSEFwVmLfADg5xcx0pFUVFebK71pr+hu/tCsefoLQEG4wvwT3hqZKl/U0sJb8uCbCeD3Y5du0o5OsfwTYO9otHftN8xiL0+SnTXZfPmHCSrsK/e60tQJY411dUJnH5sKspui6T98chfNgUgcCjOCXwE0gWC5WdAbVH/erXfZO88qnY1gf7q+mcOmoIVdxcRFdfJCHkTlMrgSoh6WHbaPOPJIamjmHy7zp0QAo106/Bk0/rTaLCx/JDh5W6ZIZqe+ZvA+ENDEgZK6l6lc0pOSy2TwdatNJHSr9hNWE9WloyAE8gqjWNXyplcTTinULHSOc9CzgIrE79y6IBYREzDpUgJpeNiip2HCR4SQxFm/cMm7Suva2SwvQEEnRwWeBxJw8bseFSn5MiCRwK8yv3Jb4OUhv5cGod85QLPdp3ezb9F1EX+bbLK24ZrXZT/meNfucgqsWuY6R26XLNTq0quQL4XtQF9wq59t+0uSr4ef+4UUkXJFJiQMs4UUG/09QVwzzptvUdss3JGNSFXSfhEfVyMsq6XFmvSJe7mf2iUxk1/P9l7vqZzoDwtf4Sq+3BPAwOeWYAQJtNykIuJ55RRq1MNnlSL9gOnGGcVOvevOOKmQgT/rPMGuxfZep4lsKXaAhHazEYDIR7IjPf62hhDflwunRSNhD3rg5JmGNJwQVVAhevE1Jr/0bPy8USIDLxWlhIHPVQlcNz0OIKocZDEUOP7ZUFzdSgU8By4ni2lxzp+vuPeSbyYSgtZ9YBqii5ld4ocFJGdZuyxdNg6TK7tkOwPf/bR46ltRxTxFWDvdLm56UraOPpiuiI5Gnl5kG9AlDWXrCLdo6fr3gHSeaJYQfudzoLBsMNBceFfQ6PpHZoT/juFvyC6K3+6SDyxCEGJLHWVSxME6mZVTuSrxXo0ssucp/w2vgBMquPqGjFOI9O+YoD2me3NPK/FZALcd+u1kNrvg0KeW1VqlXv7J02HKkc75lvWWdTeAaI/j6PUlFml4xf61yV5EeMKTY0tx2UsX8G+Qk+EXnlScHFm+GCNSI0TY0FYEvVl+FdhBDWIdkP9aswX9Icfve5w3p4KieZu/4TMM3JrE07NbLAtZdAejFuzprbrv0HSV55GjctAXtJuhl1Q4H+EhzynaN4jde5xhXrv3H1Y3hNcJMvna/rsxY/mQrDBvvuRnQLgI+9RY5pfSfjAu+b4ibyzJTYl4XtLQfQBFSp/Y3ikvPRzVLWkBi0Tp49PqMem0tteur4Jg+eCyjxWGMsYcwCwX4+PI7GerYVa/vLXcGxJBnXyGgxdyl2wkJ77fI6XeG3hrUiviJpXigr7Ny8JnLXZwqnnLj/HEi2FyjYY1rxP/DagwehSRaS+95JB0sA3pyRYMJbu1hpcaWLslRiIWZiBad3szNM9439+CUImtAgYJYaBcEJG60bIK3nA7nPK8avPoYpvF88gDL2yhqkSTDmMrF7mzV/YPKfMkYvig0vQCy4hWF07IV4Jnb+uw0l/AGQeVB2WSfyToBuyLTg6Hmwqb/ozM8bkItRJDo3aTm2SwP9VQ8lv6CaeEjoduNBl6ZNFwNTq2IMRMvS5rcEXrMgWlZJXGyQTGy4KEdTo5kod2SiTrVsBgXs8AxOIyB9ca1Snx9gYPXuEHjfwV3oNtwrdGWSF62wMzdS4vASF7Xh2HdHjITbyQp2rIbGinbOU4bRglqnRpzv+xY3UIr9RlSZFqvzHWfwXLxyv1UQtHFb7IAKPe0MOZZHr/ofGG6fP45CLKuwM4KHRcY72qJU6X0Eymz4DZT9IihapZNStS3CdBI3WGXvUdQaNd5SALQRJ9sOlbuWIlzK5cmScwhql7Cvl2vbgZei/Kk9PT1q/wJ0FHqqZvLzZ3AfkBBOW2sWQdGX6LGR0GFNMueBfuybWVYfl5SuNaZnMVFD4/buOk+Y4blmTBrI6N/JxanohXsy0w3jA7SXNPSSXBk8QMAEjyI/ARCwFpzmrMxaQwWJL1OcLs/Oe9vOZPT7MXOdN+oszGgtciy0kyMKMMrQba82vMuL173pKoqxZcjb/2B20LZAkpkt/FNxjmfA+PLnpO+ZBww5XaU3jXvitABSs3nVQ/duGBbT+KEtOsqGiU2CBEiqNV6r21AEhBd/7DaDK0q7iAd71bCkhD2epG1wmYQLydDpbaZ7n/XCb1chY3FCDpMeRPREQTBVPwdz1cLE8QY6CoV+4nQ0CfKRD/mcq3DUf8U4jfp5hbDgPQP/Bqi00J1R/yrjh+DbHSVxY0eBxSYothRqyKGq1QygpHyIIKQHsAmNsaxg1AAUn31owU4mfZZS5thKn6GI6O6wdvYevzO0NtYquqzJvBnffTsLk9tlvkEIcdpQRRpLyWBVdGyLMwGklHC2LPAu2Cu7+uaNRo+xtSWBkdFwGsjzHE56WWxKhrJN//V0cLrgHyHmm5OBMnaXetZLJCS2GwKOxW3e7xIBzqIooWe+xL2SzyoqoH012nu608FMdK034ebGwtyvzoZxKhiq/4XpwuxBp21EdOz2fJDSlhiSWRC0xCf8PtvtIk576bapAXytyOfF2BsYjHUYD+c6BnNz5+3J2YavgvShQUn9SXMsf81yHNXuA/s4tMo6fCi2ohEu9kjbb7ZVqBMKRXMSbib0JqjpSoIMGCydibPqDOZpS+M3xa545UrilBHq/a/3iPA6WuRsieFxoE9z8eZB3ZVMJKOXqYLICUj61b9GNJwePIcxdqMgbAih9uOR8g072eJ7Jfr6lYMK0Vvfk0Bhy29S0rgewN/Okk8OgssgBgqmtvKeXL1m5Ehz3hOdnyUan5rdUu89c/dqi2nQdmf/8wWokZEOk5ylEHxsjhwvruBbKXqMoud3YzNPFagsxy+aYfFsNOcgGhSwn0Y4dBwpizLT1KALkIQGP4HQKYd520PZuMeAOv8YZnmt9BUaCPICZitlO5NX8P8rRGU3GEtY9/z3Rg/jo/87ynziGrsFUdlF7MEpxwHLT0LeeSOukBDF6bdn6/wo/YcjiAkdaZFIySqbtQ/xQBiQS86bt2UWzUswRUaZ6OmAIA1xk3mkqANf/vocA4v86pTNwJ+wivJcEJkqFdNiod1LeSIx1uY6Zq3JKp1kSPhhl6Vle0qagoFN649DDjtPCVU3Alb37mFOIS51Do1C8BeltqKjVhgkXsCvxS1F2SmqId89U9juxrPa/sBuzpUrwcp9mMOCM2MqA3O4o/yAt0YBojsus/PnD6P1UC1qtZmEoSF5qEy7NnWgzK7Dyj0Lgt2/TGI8jZF+xuygCtJchw0PpWLPT2XAxrXsOjjzB3CAdwobxUpZUYQSBQGygIoeOQexlmzr11pVoHeMJPgng8E9PFErOJ0OKQD3zjc4bZpVg0RpNBhQEXxH2ON3LrsjTNiRoevbuwRBMI2J5Ocj5ovBgr2sEeNGhAgSc69UBCivTcxSelqf9c70P8EzxtZ6vkjlAhUk74B9zVvF4tx1KJ499HqZnK8GnWYFXfSTP99vueDAP5Av4bgz/3/Aft+83qBIQhGppH3IN7uzdo4CzxleRa/ST6Yj8vJKm/foSf2K+gMkjIqY0dzXtXbk5UAyiNEL18uniqGxYdBRn1XT7cOzI5kr2DVZstQkT7acD9YC17bo6Xe9JlWPRq9c/kCkA1mni3DWDVjE49yg4PD6TKsvbHuutCGhart3+gEfNuGkpxF9TjnoLi5U/5XUeZpz/Hfe+TyakqhiTK7mXJBP66b2gzZV1vMkIJc2ocFcYCw6e4o1XLFp5SDtDw3VAMXujfd4YZyN+5tCr8FQcfNRQlfrXXHiCmDIb6r0VMN6HQWIGoaTgDUTLTQacxg1TJMHf10XxML+bQYs/QoBznhJnlE6NxztiNv6zj3Lo9rvuSFlpaChTU7+sAuWg0+D5eF5Il0EEFokNVN6DY5R2GZffqJV5C5o6eY8r9wpZp4oT36rkVVbE4vHZYZj1w8qVP4GlM8/7qs+gf1N2TMycmzggAx0KCdC6zN4pfPLY5bFl8axNi2xeVhVWDyTkng2pYWZvRMbiWYDYzpG/NkbtRbREwMeM5scxpdZ0KI+8I0t6bLypaPbjCNW7WoozGQhgjh9cXbNenZPoyIHdmLU5ZBqLj0pQjhc4nGDPLhPBfkJ6nl5oneN/Yo/1gXmTb5Dz+S6mNE27k57MLrxdbmhvDrs/UsnfASR5PE1fKZfwikpzgZ35bXjcLjdiUfhqxpo90RODaKUttz13ftDT/X9W0jBg6sCex3hrrhgu1uzPKbIzElA4/9WSReqgzDeIWexxTNjliaSb75ouNAKnUJxu0Y80HOVtp9Qb0pSjuUmhwpq2GGZq6ANrgCGwplePXfkIgxrZrd0pqD24+Ru9yOsnQ0IXQXzNkBriVfY4Iylb7Qhd5S+Z8nfaAwh3tVli2RdHk5YYw+x/JAl6uW2OQ8hBY7f8WKZdfpJjvbncMu5rhsE8VkNPffG70qpqEcidSsbCRhiky1I5O/AUypZ2bO9F5EYMsaOiBQN1IwOFI5XnL/fa6+rjmHhg+qwBvS2Et0f7vMtC9mJ/4X5PEpPDAXzFrUqCtQwoTKyfg9y/ZO4AvV6kU7xyBvE4yeuZcqf2HEbDRCDJ9c1f0HJvRvrAeXxBXbKj+2f7I/q11zxdpYZNgS9EIxUAWycNC+t6iyx48RiqzJmcjRBeNTjBsxTE4czj3uRvxmqXSbJSuHw5fIFUn+x6xN8PPplPMqT7voAB8lieLzJuVRo6MLQQN+nwbTekMAUk2EA1BtXcr4nbdnhaPxm0EmYXHFGXB/RFluwucedc0dRu3qjZMpiH9dIl3cJ26IkqpgIyylWGX5XrMyS/1NZf4/HeRUQq/VquzWli5p4O51erSKdUbmZk4Kodt9q1M2Q6qocmdRSM2jsFVhY/MpRcyUBTc1AJZCM3kmrEBYexdlZXJcebYSRdDT5FX0IQ5Is3igETwU4nChdjtkd9s4psOmGLEBlJI0+MExtl+nUB1nFJXaYpeqm7lG+NRMgoZC1dlTMrpKq63RZMQHbv9/srT1AUWT4mUDw29DV5jSrvWvDzzSYfYz1/UiRT8pbFAKLpd8qBeo1nYLD2Pnz/sRPbNGYYc53OaiJQcEFiE5J/gzwd7ynaZLdNIoHxk0Z74ejZ/qnRhBzYvvZbk0zaSjL+CG72NPOc/RO1Cmba4jD2RLIetlCQd4b2RNm25JI+YIKs4cZ4DQFofBBIuNq+sMhzutP4Y1cw9i21+RbDPC+Ie+jFdqiwH6a7Wgm0CHwNSpDE17bzob+rWe6odaYqCj7O
Variant 1
DifficultyLevel
542
Question
Gilbo and Burger breed hamsters.
Each counts the number they have and Gilbo has 2 times as many as Burger plus another 5.
Let b be the number of hamsters Burger has.
Which expression represents the number of hamsters Gilbo has?
Worked Solution
|
= (2×b) + 5 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Gilbo and Burger breed hamsters.
Each counts the number they have and Gilbo has 2 times as many as Burger plus another 5.
Let $\large b$ be the number of hamsters Burger has.
Which expression represents the number of hamsters Gilbo has? |
workedSolution | sm_nogap Gilbo's hamsters
>>| |
| ----------------------- |
|= {{{correctAnswer}}} |
|
correctAnswer | $(2 \times \large b$) + 5 |
Answers
Is Correct? | Answer |
x | 5 − (b ÷ 2) |
x | (b ÷ 2) × 5 |
x | 2+(5×b) |
✓ | (2×b) + 5 |