30187
Question
Vladimir uses a 6 cm high print to make a sign.
If the actual sign is 120 cm wide, what is its height?
Worked Solution
Let h = height of actual sign
Since the ratio of sides will be equal:
|
|
120h |
= 206 |
∴h |
= 206×120 |
|
= {{{correctAnswer}}} |
U2FsdGVkX18Hn8Xe6Lo7lJmA4SU19n6rBqrzsaJbRwxSPb86h91/5CRHpQqk/akphYjVkyjyNSrJcR8JzFLc5dnKI43gCM4C5DzGGMNhPqvjRa5ZlXPPkOhX7bYGLPAGiPzEAmqhglQ++7MNTL0fG0FFfL4j2KS2ua2AuIefTXLzcxyJVY00qgV9HfHyMrY1/1GJwuzn68p8CAH4/D2IpO6v5kb87Qwjw5R76ZzTeH4EmBlUs7+JPKB1tiHh4fl1oIwRyWMKeUPuAgEEiXk3e5IA8q1f9ZhTnupud9FUesQ0Y+yLITUMYkAa2p0QhFT5vWTht4UTiRgE9u3VmEze/bB+jQkmLWvPN5KFaCc0HFZs4jsGg5MzMbrQwRcS6jkNyq4RaJu7k3SnkH4kUyyg06HRqdbbpr0LFhFC/rqTm5lKVdZGAmU36UOu0qP56wJKQh40jAOFxQtCsz6ftj7di7KlKlkuTAJ5jDpttql8C96YvYKh1GhV1Ztt9u8KucxAJGZ0Pq/wcyQCsJhsIUMlRSOYnuGDZak2t9ZU4YkCzLqKSU8u9dfYf+wJu0tqZ/mcm1dUfrth/P2N1EkxTjLsgRKtzP258cL5vLX4CD+VAVh5Zv3OLSPuJZ6j4wsoq83q7qH4gTln5m5qkjwvrvELTkAurSiBkSc602l7mSM/NU/O61lLinUqtOYrCKmQYiEuyQkAQcelo3fl7Vo5QDLjbyiVe9tIAgWe0R5honoj7zLtTPHwi20UqhWJFDZNqSJtqCBJjBXSrrUeK6Ro+rG1N6iI2Q68k9wqhPmalggD0TqF1uQHPIYWV1C0rZShIDmO2VQeI8w/UuovZNzmudB39PU7rg2/wmCKpDADtGyFXaCgaFbLEgcI3f7xLZ9430faFs9pP3ZoHsXduDIbUABYjlX6DSDg9DEDyYctR7Sgch2YKZRM2astub92gy5J1pqLYGX8gUOnoH8ElXEF3kPdaV0egoDqRxwrfds3jsRJhhEpCXS9S/oLATJ3t1m5kfyte/4fVWM/sjjhMgyyWk8FV2+97OeinwmRn/+2JP1tkVcm98KDFKzQLwBC/n2ag0A+A92/t7CZW43es1xTH4K0PJJ4GejLhVTOeeQX2jYaaGj7JFs7mZ0d/dMXYBeRSpASTDgA1U77qQld2/UqsGiKc7LDqH0M/qHL8fkDv0CPRjcLZgzbGulVbJLkGndzDojWVbH/71FAK2bto5WkVuY+HE1/NNFjYNjn1PDrCX1YmH2XAVqjvXZ3FmlnWps5oHsxUr+8iHvzuA0Nq59xBtytOhtAQWCoQzYFhisik02eHiCaPZlIlUJ266HsDkdBgCanIT94aKytU4QkbX30qOWeaO72rbHoWV3cyMHaWEuGhL0h+3lYNz5bbohC3MNWF7GPH+o4hDRwR+naPH4+S/eNSWQGAhvmy0fbOiVX7hO4BLKdSuTh/BLSW/g+qjpm9K+4zEnWCSONlii9jXvUdPdTlmRcjZDx1vL6SpMNJgXWHEZKBf+er9MueN+70ANahNf+TnRWDkVaj6Ljs/K3hz+OazwuuhOs7zlhB4MFFGc9t/lVYEF+NnTqI5feepLJePDfiooITsfEAB8S7AIkFAih3dWz/w6Th1dJtDJrOj2U9GDI7b9u2UKxJuG4i7/Skg7WqWlG3QZOLZzipKJEVesPrdNpb5+pkHe1pbtRfOkNYffvtW7aSpz8DX9HWMm5FBvJ/HCupnfRK1PTWsx3OkCl62U5ABwhc5HC06CxHISKaFkbQaFFmAkBvoKQL8iAn5vv+MI25C1fcsi9Yr+wjXTMjMEv8uwu9BR7EJR+CtU4xAEFwGSxVuXqYRZoApZO6JnWRhKEguUZYl9d9afYqSnhmXWINWDJKh5c1jqbzjmf9oxZoZ6Qk2bfklZascH3AzlQIiQ0Rf3RU5tszjJIp1Lqd9KMs6kTYoyN2+bdAiejm/DWEB0ZtGgqh+bLOOQfd/9Aty/fodliQ6kERmwC4/Ic/bTOv+UOISMEWDM5O3lyIwilReXWMtaNrvJ3GbNJUntOzHf9C3shzxgxPXHL923w//GOD9iQiG+/DfbxdwMzwNuq8wePgDTp9WENj1y/b+/ZKcol1DVfK+1G50NXaiRtuwQckOlY5LxvnNNuoNQ3hjnEb9Llpdg550kAgdV++jSw7GRePSz7Y6Zn4nb8yRTy+w51ysX9Y5XhZAFqLwN34YJIczmlB1iJr0dFafbXvz5H+cokbSf2WZ6Y6L2i5lhi+FD+6Qc/Yjlkqp9AlUDhnVe5qEPh704/lloo8aKq6HZvw6YYU4txn1R0bNfzAKlGrggKSMvkZbrQ+H+6bukxYBoQkNuwbJrrIjnNLOPR3mH9dZSaWP+p/+Nb0lPwt/VbOH2uWznk9RlT1TIUdgt47dnwF82TWP6l8rDNG/TOiG9eGojNafVwk5//umbOKJPM20veBZaoL9Zj9CbzmH3i5XAnw9rmYcBziEQIpGD5tOLFOEF+9lksQDrf5Rz0oG0CnaLVszODMJ6+k7v3/NohfFe96vNJyaHA3xl30o6fB6PnAP2wrOGgF2PnNnqJ4X4RGkVAdLOD1ieoMFMLtapidZthGlumYFl6LYORXw2k73VZMDWV5f6vVCXWVauX8AXBsm0W1xTZ6Ner09uLezNasZGVFEaMR0wEVJc5bnzZavnB8NCJwCNajQKbbyRb9kvXOsr208avWfYmZ4lI0WuW86zP1e2yxgXHzPou7Y2yTirUmPqGqAmejEkGsfQZA/lqQbTTT+R9xTFk0PAvd8lJveDobBj0PJpan5wHDVkyuTq7hPLHFAGcZmjFeoJOjB/4/5ibUrxpUFy3a/1av9t+kyyJqtX+Ui1MomHy4vPRRXS4hPaSNleqgbiWme8zuRycsRarVZZee2kzJ2ei6UIL9AkT9VQUQmM9HvKxzX111ZOTc7FRVT5eky1po3PY1QK1OQ+CDvXWGJIRz1jiiBmSJB2HXMoDse5Ebo4l7HcIsLBAHUQ6o01lrKyoS01BJsZQFrrj/JuuDTStGbjfXAmN4Pf8/DzG55UohrmxBW/mOD5/WDgInXmzCTanpM8L03orRGTQnoZoJqIfbrMDD7AQHZcNduYaq+mH+jihYA1ZteNkE+dfhmeoU0KX5dNfEtQCgk6DGyWY1Xrqr/Pldl2eFxO8b920ZMmfRX1M1vuDhocmwfXunwgpuMV2S++xT5h2mvOflyGxeLlcwMkn73nSd2vfcEGtfiJH1Qk9w+fCbPyyN9ZZcy/JlJQN+Q01QRCkeyEDJeqGZTniJ7pyNA3nHJD4PgTux0Bxy2Eiv44R15W8x9wuZh/HnpclSI6jBntU0aHXKfkmhcgXjoukQvCUQhAElAu148Wn2n6+/WBuYar7RNyef/TrOay8L8rVocxJ+vQrgkdJcYim7QqP5j0d1QOd+1SqJaP2uG4zR3dPWaP2LexyG9HRfxyShYBRu61ZvBww4lrkK1pKuvKWmJK6pX07WL/EOBHtRi1PocHGtHNmyrKQHz8NqgUuXse/+CVN2+shn24kQif35vePI5+lMtR8ihE1h7KFcVHqFQvkLAIy55lMRnC/2TnRCgmZT5gnLfTR0II+oqMQfRQW96sR1+UJE1Ckl8xkFOkJcYUa+nJYMXWk4PJII0X6xhCm18LJIJSMQJhVaNs6XDWVvKZA1AWtMDL/Xk0rQ6hj3XzqVs80F/SatY4phkVDoMmhAw50q9rlfx2EamK+gQWdIxZK7uvyx30alfF448UmV26HJOVIwux+qR5p4WsZrv13b42k/3m/ojzgbKsE40nzjJs1tODNMOXUsH5TQlMNy6No/U5q6rYfvmEPvxyiZJLZiUMO+Bvxnsa8HJdw9nPQOkg1kZNbeIrlLymIDYTxAGyMKM7t6V4KY8tdx5coA0YQ1CJbHjO3T5sZ+/nLWpEAhck6qBK3EwXh9C5FjrAfyScpJxP45WAqyopLpPpRkbPGDDlxshrMuA8MmO/dZFqirGiw15FnHOl6XZQQ0Jz2umpcn+9TazBn1mqxTps2+1irAV1SvJpM0Y62MSraY8l+BzPend43CzQ7D2V9M/HguSVa2I5f1XzV2m9BtSBZMg+1oPkqUVpOgujEZyevmAJ4IzF/z2UjwSM5VSjs1KEXmNzolxchAzlVOJLRdNN8KyQtS6dT6E4LYbTOXcVQQJ7eyKFyBT83ffnTmafsUWdtST1BOo3bz+R+TmikVU6DMdHq3cGdj0iiYZz1PJMpx7lWPccekxQ0IRpYBo2fwyTGEvt167bq4ydk/jvVJbGAfX3o1vrlnk7zhiC9bVjd8rHRuGj1U9pmdheKJdyqG/1geX2e8eMuv+h0E8zDWguLfFVO0XQKKcw3gfx33otP2RW0ErnTCPboVI8mCRP1zruXLA+0JpUmCfrjj5FnWjf3A/6S0QuFyVlz98kRwjlqokb3D1a0VabEf2b/9jHpmwARVRce0lf0+e5kZg/Ebxw/wo/Dzfts0wqFrzEIROIDPKlEhrPQ+KwPRtiunGTw2rvIJAVdhfLNxJTNkuPMWe4RjgecGivKUJZmwDlbW9Vhf0aOGOy4DZqwhcuFII1W7AKUhkIbVAkDglFKM81RrBg64tqCBTdwN2aRuXCA1eS+Bkmt5+fB4EiLmoW7wMpupwBJx61eOjHmjS7PUQmsQy2ZLyk23sj1nfQYwfyuLx226b+kPxhrf+yPy+qMm2XZWenx7AoNNZwqqbURi10WQLDSTviRAodhrE5tQx1iHkLf+xvaHdkpzeF5Wz5YYUt29fgJ9R5ah9gb7mAPGHDCIcIMNjP7no2TPJzHXEVu7zsaJDnm8Qo8d9BZd/PU6x+bHzFDkH43sEbhJ9FIs93sLZkbVRIyON2MFWnScIgrJBbU+0JhX8h8KoT5kP8Mxcbj2XF7GDCn+rshbWEDbamBs/Iy7AWAKel+udaeh6gzC2G0Y2VhBvSzX0HgucTLzz3slAUSW8H4AwO+8Hv/A/aVeDLP/L2+NQ4dtKiP5Huq9rfJXlidV4/LgdY9KAXFneeLowJsKui2f6jhfPafOyTrew6a/7qUh/KEnsz06mhX21BKfXQJSoakShyr0WXexYV8w8DYd09Y69LnOIkbQFRu/tBBvMYccU5/KTYpXSzQlJQ0ZGmNpjYpwVZG3VE/rhC+6JydKKDY5uiLkMdu+lOFDAOJYNVOXfk1Fn99Up8CaLzu/+T8hLeFvyGKsW3C/d/H2Y/cQeKkita4HODRBrqLrZpf7CnCBY0bzMi/n15FQHDuwcIrUxgw8ta6scYxEQrxW00R3exBSjff6pacBc7G7v7K0dQGEg/lqDtxtFoREj50qd1sGPjC3qxZsQ5a/h5X/4jdZ2DXo7HoBiZ/FOSgTl3XkjfStiIhuz0qbuAGZkZ7U4bWZur5L/6y8FKHGkY7CIzeDcpTLpktLIQST8VeCK9garlotj2eK84Q5GVHXs1HamcZqVw/xaGcihiZkNZejA3Qw7njcf7JrPBvMkITK1pZ0bnX2TmyVRHAlzHsisytIslC/5bDMYZYog1vcv5JPUkQC2DPcw+/vjmvQILYIo/xJykZkat9NEs+I/A6midf3UfMuH+gXlY3EXn91LW8wLDc/wUwU+ycnvm8WjgE4M8iD2EdJejGPmcZ5JNOxE3pm82DH6DD+deKFbbc6Bxb0XzU0SmhMLhqbdowI4fxLP7t4cWtCBrBEfyH5QGn+iL7MHPOVQdnPtJSlMc1WjPiNIaXogn1Wizkx2EYNyxB5okt5QYn6nMPsH/P5TvtCLYRMzI7PZWQDsLFclMtYpaC5kWUuPEbUTL93qJ7n0U5FWdPvNhIVI1QbfQcXeFQ8BBAdLrLhH8hYSkZ/JahyOs0lrkeifUY5Vs6vhYiER1AOZVqINAt5LOtb7RKfvXz5XhKYTnlmj2P0xzyROZ8lVMDdnL5LQSvKCIiq3H6SSx6SQUwqlU+IueJmcAAQsJgyoRm+mimtqmQLHX0MKUrJ09zk/IMVfEwNEy2UIM+nQnIUzrPTkrq893FTTToKsDtSPizBy0gLrsBnJYTOmIorgrObpX1Y2NLH1QnwW/bUdtkcm48vWvggR2zS9CY3Kse9cNAk+yPoDZQNRGnkt+6GXUDahecCpUUt5lC0DMvwAnLzWo988jRop2i9NRtWSWmzREIHRydBE52fnHry5xAKMWakriJoixBxJWY6CuAJHPa19tRKzV0w+uJ0WT1SHTGfzBoH2HSeyrq/mBiv7OM8x16508lgzNUad7rnhG8bLddpcGusMSfOxi0Nbhu2Jzqze1JpiQeVmmBq2SKj069yMS2YBkxJmkJt8qXX5WbEx4OWFj8DB8vY4j4FaDiF5OvYqJn7tnKdhI0IWcfFMcufjP9unrhTNqXdqBRXZwq6j++oxnhbj3GBFwG/rvv6Fkf/sv4LJJ7733Y25gq/bybqB2ZgDOdlZZ87nJp1GmhI8tS9PGlEgfbFlPhnm9W+wX3PKC0YTX/l+E5JRW8t6xLVstJYEskvMHhR/1AujPaIaB18SNmz1N6k/vCELtOxxpGhvpuRjLD5X8CeaVxUbkbsLHjLUWDt1+MQMo8Sk9NJX3svYe1GXXJVDUvNHpLJEq06NeYI/sf5Gy4Q6w797kmqP7d8dTo9/TGIaX3QpR/oxKY4gIM8mY7rw2mFsZlkjwUtRKGVHxN79RsZBwArPndI62XOnpa6J2YGr8uhm9ar38swDMyfw0Q06z1/SqIDYfo3zhFWqQ3vn1uEtBwfmXMjXwSlG6HYDZy56ZywylhoiH5alo3HF5tGuKxNW3Ztn8Iw/I7w0cOJuneIcQOLheveyAZwtRZ/PzsK/Xpb8DYyzK0J4S4RQw21VlWzaWx3tLYlnMbpaHC2WPhfX5yQ+o+mr/CvgiyvZZnav8/VqEvjQfCoPJ40ZBzP9PFmmuV4yIarQFE/crE3Z8jATHV/z3pyUa0wEnd6ygthtSuioGAOgZ9xWTrUn+MOA6otOxYxzsbeazPfi9uQThC25cYjgEKZTVO5jIcvqmlWkqvrPHFCVCMn/A7Rlfy4NWLVadma0OVB0vIvoCDPD6YBHRTQ9PgicngJhzanINvDWRozVb/BBzP8y4Zy6J3Pe2FKRxiwKTspAP81GQgtcjYS/rPZEDu5ODyyZrZd/fcuidqrvjO1FRfZqc8rdtoAw7EKiUG9LierFeYDVjeUQLI4Xgvrc+A7VziGeMHG0wkaO6uCBbsIQjfyP9GSge+Lc90dDc4lvypKglt+rzBdic/bbf2uu8+el6TyASz5fFDfFAqoro4ChHpoqSM1b0NkLS2SzLynFQzeGvU9BgMrh0Wh6d1uDCoNGf5MCTkbnr57QxHhbuohq7eGZQjc2bNpg1zjJMBxaX4hAqC2iWmRIxKRP2gUhMssOsC6e5dWjGOkt7mSMTvMF5tY2uOWsYWi384YQeFx6lEKMb0k951cqyjwtKuz1pEUlIwkTAgmr+ivINJ+YvduVd+j2IJuLvvlEOqdM6CUKhT3AAW4M3ZOGBpqG0GSlDd48x8m84hZWL2b11lX2YvV9HxlqHBQwh/1IW29NgnjBrPy1fKYzyUFoHRUERDgP25tpepmz3/4jdzJooGh3BBVdZofVqTdbSSBKlhv4+W54OWP5Nof3sadIaLb+FGYwOjyxPwjXdGVobQlU1vRpbte20VS/3TTkIRY6NQ30s3IBiSMzZshOTqS0Hic0/qGVn9O9uobvzulaE5ycdybknKGttMBYssbA9Lg1deHeWx+yP+XHM5cCPHnsXiKag5jj6oolcp1duc8WG/EfsoObJg5aIYCeYcXz5b+7MNfsWNfX0A2QO8rbor+EMPt9mr55YORqLmMJwBjK7yxoFMQN1OyvTtIKtrsSmUOesTEgYywpXzVH8fWSP6VM8L9JlFMcpCduuKolOZDuXxSIjZF7T/vy/9kfUTFlGV89XnUipo4iEh/C5/c9Y7P8yymf8ocnMV8EnF2oydqsvw5WVN8vANjMAZ5f8/Uq2tfs0kwDfTU89iNvwHUHxMRjSiuPD4yDD90tU30sWe/IIWNHKG6iGVOZ4Fl+oAXdeUU/+67amUDA/iQs25Htz4RJxFdlFmlz6uwVJxt/0bgLKEkw3VVvrgBs/CcMwJc0TTWGRIUJE1CPO5oPjvCx2f0RbN99+p7sBT3M41bgYczpSpG4YigwUgl1Gq7cISjR7VgIsllknxMWqeeqiQuL8Lm94abOGHlmBT0i/K1yIuVtaNP0GXp4cXDXahCvDBXQQLvE6+cGWQs9J72e1OHqxsQmbwBK8gxAgbs5oOlps9GwLpAdQmlKDs2GgOCIr4+7dhj1UcZLZrwoAYed/EhHmhjesq32SrDJ7TMruUsOVxtuue9/9EPK+aDlsnC3P97L6pS27rPTSoVuNVUvgK1qr+oosuow/SN34sNFcVO+HCCihsc3ibXnD+csOd4dN344lHXJDo0hX/sLZU5vGNUh+Wpm8guze/8rKAQ+bGE3xK98moP7ObOC5f3VExTRSp8BLNZ3M9eSqCenwybkzPRD59IRltTLGuDv5DI8RVqtP8e7UcsYQPq5b32e/JNoJx2HZOcmfhW/Fxo5l2QKjLjnbLfdeW3YWjPb/RNaMWHK18/hUnyYBrDMY+W2LPUXPawlYpqAJnEyHA/oVsEkRXv7PzxSoXYa2rGfKgsxflIkSZooo1vFZO1/TvMHihxKK5l/FtutJF333eJEO4K1/G+Y3jq0EpOc6zSF+SdqSxAi9Qx325OiBmx1Nk248dljaVq6wlnKAuShKjWTFS4xrdn6gdUdBlzsWCLgP6lrgRu4xMijd5rz4QPcpnGj7NZ/sJId9H5X/465nFn78CVZXJnLCT80RbSpwSFAAI9FEPuRosdDNHVyHxhpdhi0cB1MWMNFYob3C7j1/CZdmH1uJvLB5aX5ZqhnbPl6GF3+KjxsFLfetVsxAec6cqpEGAS4DIWa3gQTm1EHYjRHhnvkg5pGkB15yJORrNGHELPot6rhXj3SuO5/88atfRf1r1ctSWV8wabn5M8ueM05qHASHQAibMBoH/D3VzgYSm4FVZOYdM3CQEG3ssaUOtHG7Np1B8VykTqskpSuti/CY2E2c97rl5fKex2MmchBO1cAGwuWNAJec+0tKBxH0ZREsETFb9WE2LTQLtb3eLvkgExy65oSBXxKyKFeBW9TTSNNurvrS1QSN91AUMs3ouxxsNAW0Pvn4BNqlxghWzg3uz3Q3mzmb+PNSwVMwStAtDRYv7cGQYJO4cfHBaO4B/4yQW27Z2SJsnts/Jfbn9VybCLz3UERujfT5HV/31f86WUizmk2He+o7xdfF9kElRSx+gbVBfTcpiknmUVBLui6GoUYcX3dC6Ilzl+w8UKRy8XI+ZaUKQHQOLL0vd81lJJN24UPEGrRxc4+QdBr7oTmHzwfVnDlXPBrEODPy7n6aJno9sBzQgOQPlgicVCpcNHxL3JXkFo1KzrpHKq0qUfMcv+mfEHokXJUHa+UY=
Variant 0
DifficultyLevel
572
Question
Vladimir uses a 6 cm high print to make a sign.
If the actual sign is 120 cm wide, what is its height?
Worked Solution
Let h = height of actual sign
Since the ratio of sides will be equal:
|
|
120h |
= 206 |
∴h |
= 206×120 |
|
= 36 cm |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
correctAnswer | |
Answers