Measurement, NAPX-G4-CA31 SA
U2FsdGVkX18ZYDRTWL636QYqVJIhDK1y7ZV2+k6a93YbPzaPHAO70gSbKdtZXxqWPc1vX7UdJ3A2h9bQJ7y0gY4uaGUewiG7FDb+CwivUBujeCE1tvgekJ/BYpybSa9K+qtHyKBtb8xgdBvYS1fRQplPxZw38kpupJzWTel4CjVHZYApxHIieKNPXVJyQ+1cIvKsJ7URNSj/wULChxsv/Vg31ECQ3rxX0eG7qI6pfHsXAtsI3sUEnOB8LVm94oRHLwUk21Acb7c/CmzbtS7ahN7TZCwO4fP8aSaycgRy63jLQv0U29mxPs8aBmkajf3n1Rjiv0asxjNoOBpPM1zTWfVVmDrHMWL05MIeg93ZpCVLmt6NQ0r1cjQCv8ASobFSsF7go4+f60D1ohHHQQu5U8pccx3+OwXbZwuwvcdq4IivxKwkQVv2y0z5rjpR9KXdSH5FSB7EFz9dBv2Yq7XVJ+Q3K4NX/tsonP9cLpSSJKeybqCrIh+YZ0jM7+hxDUZBeG0uIkQz3p+9xqYi0S44ADmWrMgYntYXo/Gwd6kjtN9BYed9vaHo86fH+ubrOAedW/6DbIrh3P+Xjw0C5cpUPm8DgODNvUMJ5297EvcbcbLBubPSvij//DonSyeJvXKeEq8cMfIaCKIU5nnE+bztWCneAza397gxvN7Hgqb9dwhRo3xMH5IL65GhYAlQ8+4oxeIhr/C+AzAURdcfuCOWNLJMmAHVGkSYdBDzWmuQ9PlPIarcW1XZWp90bKm0/uLVptd3neP1jkYcyEjRddlbh4pCSU9Wbo2a8VLRIj7275zg/4z7BYFmGxrojOUd6iE5xaDsctVOaCDt/w16Yr6TQkCLCPQXPTElqD+gNgu2PDwvBj32UhtSTM6jMqJM7ozBeFexZ6vMzhqyHA6E+U9pTxqYRfGlA7kdZV5tr3mQuqNO553JL5xwBWpI/7N2cxdGbf6VGEMnAb9iJSPs2bhtuYuP2U1UrUv+4JdNh5ZRYFyKfC1TDqe/4Hq/kdDmqypRn1uNc/SDvDLGEK+OP3aI1LcnCKi4InMWQ49VK7IJmJxBRj8S/Vy2wkpSu+GecbanX/cNHd9QaAknduEg4HWl2KejHRcNEkRiDq+h8ZMu/y2eKfbop9DUMKq26OR1jJpNwyqoalM1Qifvt0f/5AWifSDGL0QXZAEExJQZKcdh3X0DE3QAofelPqdzIX9q23J9Ql5cy0ey6TkfC+7zwOr9MVaoQd9lnR+y0B1FXPuXftjhbl26Luujgg7tiC/lvNCGfyULiyPzSyoohwv5yKjafyvKSyv2EyGY8cw2x6gXw/leq3Jng4qVBHN/nR3iE/Yd5bdKeiBb+1DqAqHyKdTng5sgbzI4DRGkPa5N0lqnIQZBoNlL5MOgGqyIFEoybylSZjja0c9c53XT2vk2+hjo8zvqP673P47TGCq10iWMGAG5e5WOdlJaa0nUYs+k7pllgAh+McJof3j0rV8ejtAItVqVhQqIXLvS1DjPuKispLoGVtjuDrZokpTTYFBZdD4YSRqE7CTHFBBUgySctYZZYDTZ82mKiAHK7Vk+DLjfrJifNI3TVg2gD+1+j1uzKkPdw9/Rc+pgb2GvrS2+ZGt6v8UHN1VIdip7yNV4gZJ77KjmYC/+ZOoZdjGMyP9gmC6Jet/1iS0+8QV9HYQBuON4NRFImFRzzJPZIf2kj5zTtimAgUlrxPuGNwZsuysRbcMmfNZN1iHO8JUi2vxRc0UmADxUAmfPymGjDF+uLmgvrgDrThRAC0r18PcxvY/0Nsv+KsksMOMyu79joTzMnuXcqwCBDzD67CVZKpiAV4gr/jtnbORnDAksoLYAydvqR1L8CTno3Ug9tzoiMb1pxNVEzQyiCuyZ9GIWP48HIMlD7E484wW2ThJyDD2nN9fqjbqXYWtRGHUAUSrYpm1tIKSWLvlFmsAcbYph2nHaxt1PwckirKCjw3mdxFTg9/a++mbpR0grWcwPLWHdAN0QQ+uVnB/84bn7NqIrw4DbfOyy5Sj3g3AFio80m206xUCNHUWGZOPDL0LxuCcQaSXNineB52m4lyq+eA0e8fnEo+4V5kjSWAzEy1zUFwUlYP+nxQqANb0I8KITXlcOxIohEc/tL5WXWZ4LmOlVm+7NUrbUATc8Pbg/m7x4BlbSY6yj/y02kxMy6jh9bzliZ6kTHzHK1guLyQ6FSgtwtzxvqOJxhILpVDbLSaTNLI7R7R7jljatNs5/EPoffiRSbW0WeCsXP4BdmngHXiinet14779APwSFu5aE1FGkcMZMBcLGS8XL/yfB1RWJyNhklVl31Zis8urxgzMWI4fnuWxVlFn8eJOIOSfuOOG1RNBpCBo3fN4UmgXm5Ooaq4/ngRCCc4JTNOCCWZz/dxfcr6EM/bBRCD+qJ0DsKNB3QsAcXXGE/NFYVbC/tui0PZrEz2LHlAhwmB/9BKRRk8vWghzohdu9h4auJUrl2QUyV+oaBgC1ZCofrcTJWAqwGm0OkN2ej0IwEKpn+BaZa5YldkMPzBvAiu3or8u6Wt1IkeaBWJn6BolseTY4FQSOb4xwD8lh+F5U9OZRAi4wsijr3oIErSRQVq7iRRwOoWkMPIGKtiaB2/4coO2/1r5CY/ksMBOmWkKzK3qquoXsOu/lOB+HrHg0Sso8T+C9qVX++mjJfe1RN/p4I2U4XKYP1j2L3s0RkF8/TOb2LKEmdfu2JyM53V9WoQPAQVg5ZeX3yVC30ZevpcrqFyL2osBxcKkX10hZNlLQwO7/SbuPcIeG6oqbRte2r0E6wGA14c+BqGtbr256dlvSrOF4vLUfBRjfTkD7wRjaljYNc+HN6GfS6xGssCzStjohpHZN0IrNq4QAECPRKhZkmeKUfUYq7zUgJcPoXfUVV0DYJ9vXfkzKI3qvO2STcbdJ6r1+zRHbXJqDjYwXn7yowqT9B9lom8vp8XaNEaslQ8y0e7aSGI9BLsw5C75X6naV8sQ1G0rI6Oc1DjnVIKery829Cf2Hrl06utx+z+MEm8makgsyHeg1bk8GDjF9DQoWaqQwC1H9U87eMRUFX+Hr5sC6BRRvaDcXGEfcfPhHsc+7AVu2c2BiFqVDLT2yqRvsiwARol8bS7foRTm46miYdEyTi+EP6k85xcGMh2cTJGgZ8eKYHkxE4AJIzZWLxSzo1CsInW642fJVgf2zQbXlYGWA95W5KhHg66L9Xzed+36VGNGC4kjzGp3UQAQw+qjiBcAhnhyx09j8b9gdG8VgwbONYlQ2SsItfSZHr87OfTzru9r3DtOySYaA41ftVi+nWfUzURRI3JGb1YiKZY1+F6RTGUUxGmGscwW4LJUsnzKlwPjt62jcasXI4/Wh6G9n46GsSUd4yToR/jCxlkFnz5ZwX8iqgb1E/6vsESPKvnCirWdb6ndy+YaKhiInyrPBQL7+dZwrBeKk85pHZx1bYLHO3GICKG3j4Vqyq1BhIC/F5IqJ/4p3RE84ORWX0v5an5LyCbDDdDNFPFYraCudSnaN5KPCbAt7UsNv81YNsjhMNUw49uJ7nsIHwTB0KZk9vY8uNS94Ac9kLOrT67FqvDRRGZpw9CjLCya8SZXDxWNJtwfeo3uq48ItTmaIZeb2DwhZBTwlRrj09I37m8eo8V5e9lFesl3lMhGSJgcklQf9EN+/0SAJ3JORh5jCfiI/6kKzWrTvX39uIvKAjex4ejUg0gsuwRukrdKyFduuTAgWFZvfTPQVjkHyN/QW+X9Zle/Z6ZF396TvZFPztSa0g/BUPoCm+YqDljRQ9WsNBIaPWrbFz+/wJi9SMdDOsDbKSrmuAgOZiiHiSOHf9HmaK2/RQMhRISV5nyjMKJZw8fgOirttTx624xEvcoIxtb2UFuzL20v8bX0MZa6zUdUC7EojOUJAqyKAYUnlmoaDC8B8fQXMnki6Qs/ke+w+cZFVCZqqi1fN//Xa1wRy/YO9h6gpZybMDAwhEQaOQTEHs/Pa/yNeSmY7Pvk6LPQzyt/7ovjpF9HmelkVpLtdl5vxlEBZrsO+DqbObRNrsVE7LzEaMMjTGL7Neqrx+JPqz6n8pBP7M7RdqiiTGSJ5KWcIg4DYoQyYkZuWtIq4kwyg0dsWbQ1S6ZQ4ZOcIOfidv+u8eJG8ibSosNrQgbUi5rLjruhRFfD/gu2I5zo7yOP6RS4uodUC/JFHDmF8hWIocDmYHBFToX7h5uNVtV1XWS8gEZtvlbURATElTJ0zZrM3G9594F8QOT8GIJlxk83JYAOYYuQtVCJmdXZkdgcPAd3xGCHVDfweCAefjkcHWWLnepsG5XSavU/6lSs+DCnA2Agd/BKyJBad/muEUJY5YQIiw8G9f7cSGzl35CzNsunqcEA4ZwMxSsLELnN1U0gUlsjNqKmX1Mq69cMjMlK6Qt2En5Iu6/s7ZB5mHuMSQAQ4//AN652BCcy90FEdZJM3d3QSC+c5OhWk8b1kF3KzNCDIX0Cl+CzoVwL6aAsZUQtixtmKML6SuhB3RxmTZX31qJZ9t3SIHXoTmXzk1TaZCHMF3cD20p6SZoNi5buxlPORPMnW8IPM9XBNwduO4fJliDCss50Z0qo3P1WHN99RFPsYBhY0w7lbtg/5VX4USgruMqX9aT+nCv934amwf/TZFqVlvkwBD9v7Vm2pl3PqPPHo3iMHjJ0ZuPtsE/KsuPeNZegs0i9JiuGPhtPrG/gq03x0EZGxgK0KNPMBd4nSlNIxIRf4SBRIa2EgsNcgOoYbJM372SIoC0NXC7uHmakkirRgO17Ikr0n89tL+L2AdL6ySlIc2gz8E2yENwZP4W7x/zNRfz+LPWhSYXsDvXKQddU1tC28BpHdKN9afqmJbqGFSbDHamNmNJ2jh+6oN9vnNDUNz0zZWl5VTz1OqstGcY6gB7GXMM8t6Fp7PgDcx3SE7Ti0aMlVcsXzXKjnPfLpqQy/PO0K+ejovwKL9bxYiA8rxxzv9tBqr6//ARHa6CJtmJ05w9RCd6OYrFJvwpwjUaiUnwZy42FCOzx4M5RRugp5H7Ms7rqTYU6FPLwcVYg2hpx0UF+4qCsVF5RSk30lP3gs9Prf2cEVvGBtkRFIfcWNpR6+gEIzBo0beoTpsnrk9KwTGznSWXcovcLsRgfSPwLnlbdPHP6qRV85SvsW3v32p6JpkayNns4UA/VcWM9kukKn+gq/jdWSsTjlU4sUkEjKcuZZZFj3cY3H9keioZSG6VnnpttsaPPhz7KjDaXrjmOLx44JKuprrJVZltTXQvcKs52bxGH0qGBgDQ923X6KMZOc9V+RuT1vGcOYIbU19ZN9BRMikMFFdgAuWr+4brhqH4V1veLVuS0zUH/BxOv5qqCGLlQP9rTFi8JNMYB84QQmWDcG8Uhy1jshB0/5Ho765hw0SfbxasMt6XkL1XXILPjEADb7Xgn5IFsymEeArT9xNBlpQQyACmYbXtEe6N/Eu7o+fXIbryUGByczhHmeIXueyPBBFOOKdl6lNWNn2b7nHtysN227TXiy9BKxs4BBAmLHJz4ITTxgaRtwGN/X0Z8yiG1UbRAeQg3brPCub6qhpPGeb6laCt1Cziqqga3dctVU7rm3jq3OvJQKC9K0BKJflIPxL4gqlb24GffkwgPf3bv7oekzeVgi68zYZImV7oMk9OmguOJ0eLkOoT0UyLcEi89CFzzNUMwrtd/iO1x/h5gO/UjjlOgKA4xKOvw0HBx8k9Te44SYCHOf7u+xDoLuOPRkiVbjPPv0Rt0Wv1Z98pLh+s9OKLi0q7Phb6wXhsLcShloS1/4u7GoG0a6NQL1LVZHb1HWvA/L/6mYmdgy9MQmwVYI3yM8tnuz8hAMt78rB3qpVD93HM94Ks7nvGEEIyb9WgVE9jA46NrazrDH4Q8Ec/GD8urzhbbyr9E50N12iZK83MfZFJqHZzJ2JP7knCewYQU1R0iBHQgIyjuWhNte4qe7WbZ5TRkVCa88xAcfsYdzSX8BTOhdGOVV3RJvEN91nrxrOZGW5/raF92burfpPU1RcD0UMToZ0AvhyD1NwuWG1dmcyPywY28EksWS1nAu2BlGQdCuZb5gubT3CNwR3peQSG3GudFyFgEIbRrZubpHxKgf97eZIyN/tzNUV0RmX0TKK72Y1mUmwcHmQuarYRzMgcr5fXvDMdr53o+SWnq/GXHUxFavrRlOKi2BmGwQeJFvUAOXj6frwxg1AXAIeXk3KOeAtvUj6F6v/vHBQlovUthHDFkhNfOQWE2aDgzwSIpmLN/sEFH9slrJNULQWt50TzW3+gwICDHCETMADlYH1Gox/YXb3JZnYqOFuL+KFXarNT7FnH6V1wDdcM467yabakjxXCuQI51J8ZqOwX7Fo/1B+eVpRu+3Vtod9+NkpAPiqKRfX1Rjf10Pc3cF+tKgp6aVv3CAspQw6zm1HknWMRdurJocQpkGZtgdCgR/jSq5EyNysq7afvpGdTstPB05nBHz+h9TJLNsEVaSCHRWyAsDpAB0hyfChuGm9fQwjfPlKvEVeGNkEHDnpynhLzsuDgWI68KsaFni/lV+nymCt0cCM13eCx6OXjcLaJ/8vSx4MxMqKywZKeFQk2RiqsDJbbJ09t1JuedUAd0Oa8ToSmzCOzXMcbqkXSak5NXvlrwZmZya9NypjG69kGQiq0qlMC5S0eLtJQaG/fBazsSLjRshcK/MznS/krDo0e5tNtHs/JZNhCA9cr1y5Qs6pBGPl04CKUfn+PnBQOgEXIKaMAB6AYE6CcvE0vXR+DNy6fl3VRJFek3kmh3C7AES93b3i7YV6d8L0gjzeCeywSwY0NztHa7yalPDgit35l1SI4TL4CDwFTcc5x1k21oAYvcxagd0hM9U2XEcDtch9e9KfqRHxzGqXELRu135j8brfwz2IxtrsJKG1q2TMOcfrutmJFQl2PLk0Qn3SXLoOusAYDjwbQsoF/XExlii/grATBa9n5NLFQAV1gvMa5WOAbe9OHTpG6PR8ezXbhDdeS9IdURhdwKugw+8Cfr7BiQhb1yZbAd/zHxEdvm+uYICpbz94pMlEF6CaQOQ3tmmdB5KwFkr9VEBkwdtTGFh/L22hoxp8g6zrktIr37HEm+EGHMXGeOhdWt2aXDBmcf+QMqDQ4u97n6dMzwNPPUw46FC0EQa9wDfM8y2abQuwBZH0Tnw++ZErVI+EIEGsVHw4foK7FbeQqtiJCVr98Br6PaNrGHfk7nH+l4RcXM8OIKjxbitV60QF6+R0+zjCTkZiLKxr8kRUtEZaO7+l/GkflrwV3v46tqsah+hrOD8sVcVh8R0vvPznJcY48cu63uwqmqyy2bIZG0dexzTv31szlmQC81sSGs3NqfRpUrOTMRUkYWeyr+DRr/IUP8ADWZDF/yfu7shhjQt79ZjB9APwJcQtDHvR3BXJ0h4iBacmSYNRSyrEuvRvT3hgKwlCuTKu57JAChJylfphNMZmHtFffn5Jn7W1TSIvVaPXuJyGP32hQ7+9Iir1uabzIxgpZFBSK/oSAnPg+h9KlcxqDBc+/1842WzV64/PJEpJxJxKCQKyNzDgukrqUlePmfcxYXlBVABpq0jtXShrbWqtmgojT5dTIocpGkQ/BrM6B6BKTcjRv8KoKrcddRH/wHhOxFizWH79sS7P9Z/m3NUtnVI9BacAcSdxV0LHJRAy0VIyP/oN5cgeNbeKTvTPZn/ocMn/qAQ0Mq2tFYw7o1OFnQp9d0jyH4R/Gv1OeFEEtElXnEwHvVStbr5aJj6fu0lfH3xI6zgxWMgE8aabKcIrZx8Y+Vzlx6tkPE66Cyduy11JJLU3p3nyefunWfvMlbV7Xaihhuue6V4vegf4omluOfJdw+rAOLDULeQfbIwFSfJdwaOPQdss6ha+GdIxqE8tJNbHOqYZrQ0SkvCv9wXsHgVkGSdVVXmKx5F93aTpUpk2kdh4mcQkFO3ZvcBuenYbNPONtKOfz1+YD+BEEoQaGiCSz5xXlg57tbEiT6b23vrYg3ox9lgezLBLdftb2CUeYCUukcms0sE07fjQ/YnzRxAfHBP1qbzNNC6CbL9n21iuPxmeoS+96cE7Bc4Yb51o7BBqM7GYxWmBGHM3o5XtnngwMfyRRVmmZcbYfxkgK3i9LCanpQUy1flKjYZE1lXbZQRACJ0Zu+QvDOP0RHWE0OgsEnd550NDyh+mnYS/ZxsDsOQ4tahewdnbUm+B3MhxcbxScYAKrD2FpV4eqrnq8wD335FhNCQDCOyGLGzpT1yyU8dvXXdOQfQQIqB97KgZRW7dfJvcLdLA+61TR9TUKvdClFTZQebFB25W7ImpHmGCNKSFEQCT8SZ/1jO8W6f81HNeETtEgq/ziAWwkVRRQSNFMZYY8e8iAiJNZZQHy0O/pUnkKlTx8qJ7Bm8DkAiX0PMZkF9tcG1rj9FRf/SxAixb+/YriNLDIM1Sipyt1cAxL6hbO+MNH/u0Ghl2lWsMHQECaVZA1bPPRcjOlM6P2daBjI0kmSYgrO3Ww0TjqGhLSHiPBrQYhBz+utWrDav0tlStCgBE06MfKfEL7Lm+Uy5xl528R1lK6m3YE/zGFwbxPgOJhZ2R/esIuO8yQaqs/u3f/r6/QL0KQdM6tLhqXZnnG+SAr4IAqlFs9j4fKV2W5ShfIeH+45Ue4xSAaqzZzl6xabMb98mlzaebsjlGuNpJxNyvmUafbx3yjZSrJ23DQJzx6xbhGdQ7SejifElgGZ95Y44QfhjAdO054y4OuNBNQV/8gIgidTsgr5F65QnO065zqy1Os2w/h5N01ZjlTD/sl3nNtOkF3Vv0yFcZobMwdu7tPVVZVMGNlOxKfV1euuGwVuusLzi/6bU/cgA1dXi3Ski9GTFLiHBq1bbLSpY1LNxEo/EmLPDMPRkdZCWsNKLw8ukKdEsOrmuUG9jas5Ou4Qy1S9dBPGz45qyU6s1tGdw1TbhKC0ychgyPy41O2IVkDecisXR2MwhA64pCWmdqRxegCfOVOrO93VQKGK3cBl1vKydrBTS0ng4TsgOYX3WEHXOZVYAfXjAbFHR8IR4JXqpEZb4wxTHmzL/h7qe1DxHR7jNASMgSIQ6YqC7AQxGsrI18YMuqk3sH0NOjYaK/a2yGlE/r+FHMlGgqCplPe0pRyOX+jo0qJoWC2uD9o3lAlyR1CKr4wQewhcU/9h4iREtcPUO4rt8fktKwG88dAUqtQPEoeELHSHoYtBxjlpD4yPx8I1Lu3Qsq4MYOSPYS+hZIBs73tFOTUOkfNjCTnqkAXolStItLr2fVQJOrd8++raw5RX9BZqxam3cqgb5BnPKCVTI+S+g/CurgEvptdbCNP9ENObprGVgjO82LhGjeuytlVKNbDETfa6AGFHnLx4a0O6+yv/43ItQJURIc0hF9fM9AlUjCgH92MBWQE4DAC1G9rYCCw6C7+jhpyx/MxBQmi3tFwFDZ+Ez9/Udanp5I5tCQBShvo+WyTc7PpUYCnUOlpD4rpt6eS2Sc0ihNRkRRSSFmVPei33Ayca45JLvtZhBJod5vWit8gjSBsnX3N0cUQvAaascd4jxilfSG5PWxoa8ugDVWvJ+vg+HQzPQvMMm/kBzCVSIs7jQ8RAJSmnhc/89TWqKVtM5fFDHWlnBWRPp8qU18Qc6g1DeyoO9ucUOUCF+8OabgCL+JBqysjoNydHt8A+NFYJm3qQUooj1QrQIX96TV4MMMG8MTQ3cZOjo4W84UdrXTHel/1B49lAtg3pCb44xYNnNsV6Sd+0psBci7G4+ACnsvf/0xwkdwFvTVphws+7bP8EvwucRfrZw7cr33sksjnYBBjyDdshyQ4dJoB56eZuHUrUVUreznLtxOp+JpwegmRcd9UX+eKilHEkv2y1gDZ1mXIXxnvLOPgx9lgdV/dgNsOsrEGOrIQbrhmhwanO1MEataLOrFUEd8zjOnz0EzVUnwt5GxwgUHw1JvsMSsT0sHnyxIERJxVsZEM/ivgXTVk7skz5HswfPbp+i9DnQzHrTraKWgiEe606THX//8yJgJLQSmfbRoe2eNdFKjE+sch26bevena+DtuiY8Md0mumaNE4NvMh5rM5bZNUGms61mkivK1SHnVPW4pD3AkCHi5NLNW5CT+337IHz0klsWIfwDQpDmo1SaNkZCOkxnf0njjruKl9+BuTD9UkA2ic0QO148kqUGpHOUMD0Xuh/nSaEzutrPbgYh5qwuCt5T2E8CIo5UcXNEv8tajr0vlUanyBCP9CSA3mGBOpykV9WKWblzWY0zWZGPJNdLp4XijFzjssZ1R5KI3KccnH0LWa3ix4/0cQTgzHZArvQkSvE1SaF0czFNJ6i6WhFP5dGa3IISOqzmvRoB6GGXO5RxrhvxerDX/e0Irt88wP/14x2GXflUaCB8myrcJ57pBJRTf49YIo4i+I3dHMjfMcEO0QXAJKsJWMQfRu35P2oouCO+z3npU6oNtM/WJ4ljaAg67dqYUvcDX8JHISqypuI9CCkm2o98GJw4l5lTMkfqrjg8/9JukNPvtub38zD55PlAlK6lBnBNnxTPF4+pQCqCPHhSSXUFcXfcPmHKSHCgyYHWqWwapBnav4HEV1+ZJ/KC4a4WBrHcXrtPqnJ0TLUqGz9fb2Rm2ws81mxWBg0iSzWHa9kJD20riV/dpIHD8z0zT06az4i2+harq/U/y6yq/4/4fn+d9l4fEWjsVWPMmZB7VTf/8/2R7uKUWIAH6Mk19ZoKuWUwI5B2LZqdGqCZ1sFnJj63bn/vYiTYkLKphRjxYLeqbegad759+NI3tga/kdHw5ZGAmC+ctMISDydyH42b4nEyGhiNAkwRtCAiEYuKHCd4rd2bcONMm+DLToUUJIz/b4K8jcrhnHn/OgWL8VyYfPmLJT/HT/ZYfsRTzZFahkgyFG4WoY4vW1u/KM0zwjk+nJSVMciNhk40e1jwlnv5vJNYXPg3Mwgcw48C8Mo/hhcrq+rhJnhBi5O/LOqq7BNrr0kuXfhOQlLLUkJqgQrxwMTQX2bNuZMwgd1c1fSRNNXpTXLh/nWrpde9o18qRBiPpKvwCtWv/58/m1dzGXBEPa05EKYauDa44ZBFNvSIp/pYGKyeaSUoiIJfASPUla/3xHuhU9/I7QzPIk1aZjbqV3mwQJ1CVPnAAwe5Eogss48OOch0g2RHdqOMcT2lv0G071f936ApmDGTe38u8ReRlPAqsSDNvkm9SBNP/Je806VcSle0+VTf9JhICLH22DtJdCGc/x/mat2koTKZY0jiN+1URczz8b7eFcla9nxe3D6qlHh7bTCKv/sJv/2NAYjmnkHkd2nIN/dUQn4PYCgsQZQzSl2XpNYxVQFeRhlbMGkNK71BH1KlctehKBWIdZsdXN+J6FmQi3vAoyC0f4Nv9VOwjgOajG+nAChG+6ETEc/CKkeVvLWzAaZUTo9/EkU4N7YRBXNgzT7pPTyqHwwrY8MSMa8oaawyOMFP/Pu4U6M9DHeDxYHe3LZPMjMVqv9Z1LdBScVA3DaDJNcUN5Qp/ACpzLO5ct9zJ4qrCdhs5QKGABQnWq1wzX7REyWD3b8Rj7MCKDo2oBY/UVnRs8QtjZjvcVVOyI7h8T567+JczHAFR8HnMGYdSHTdLVmGXDVP/6vD9SFnwtmZNHPuNK4kFvnuxB92RzEtgKE588etP+WV7gts6BWUAG227tuL4plg8Tvs7tQlXxgiZD0VslkBqvkvrXybabfXSKxLNJRxRiOn6g/qJAvfCVQ+IVQ5a68M2a2KICqE+sx6qvYt79/hT7Zb9cBCmoUaGwih/HMteVPzgFhmKEUuapyKrxWXQza6yqtzPDVa7tohqk6fxOKhBwndW83LJV1Qk06o6W7yA==
Variant 0
DifficultyLevel
738
Question
Lux is a carpenter. He cuts a block of wood in the shape of a rectangular prism along the cut line shown below.
Lux keeps the larger piece of wood which is in the shape of a trapezoidal prism.
What is the volume of the larger piece of wood in cubic metres?
Give your answer to 2 decimal places.
Worked Solution
|
= 21h(a + b) |
= 21 × 0.7 × (0.4 + 0.76) |
= 0.406 m2 |
|
|
Volume |
= Ah |
|
= 0.406 × 0.8 |
|
= 0.3248 |
|
= 0.32 m3 (to 2 d.p.) |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | Lux is a carpenter. He cuts a block of wood in the shape of a rectangular prism along the cut line shown below.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2018/05/NAPX-G4-CA31-SA.svg 350 indent vpad
Lux keeps the larger piece of wood which is in the shape of a trapezoidal prism.
What is the volume of the larger piece of wood in cubic metres?
Give your answer to 2 decimal places. |
workedSolution | sm_nogap Area of trapezoid (face)
>>||
|-|
|= $\dfrac{1}{2}\large h$($\large a$ + $\large b)$|
|= $\dfrac{1}{2}$ × 0.7 × (0.4 + 0.76)|
|= 0.406 m$^2$|
|||
|-|-|
|Volume |= $A\large h$|
||= 0.406 × 0.8|
||= 0.3248|
||= {{{correctAnswer0}}} {{{suffix0}}} (to 2 d.p.)|
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 0.32 | |
U2FsdGVkX1/hIbcRO/JZVvj6qwm1+1rSbBoY5uapqUerJpfYP5IfRbdrcY8jdQaSJnKU5lfzRBSZz9ssRY6CitFWN4xbB/JB72zw0H+2mM1BrqmpdCLvZRkUUKas/P0uNmD4xbCB56TlvQD55t10Rko8XWtb9t8wUTZqZanTIS3g65Atst+rawnYLf8GP/IeE8FwQDYjDq5aTwqfEpnDX6TJoe0u9c5MTbIOIrvLDS6cH04c3QZzBCGTD7J8iqOiK1PG+95Bf646CsoExT3QEUD+HOB36/GkxCDz5McR2adXLStR+yXBH9XAbDlSOEioFOpL+I+fauxw9K905EdhGaIx+ZPGR5p9yudpjfORG42prFbD7wmIyIQLkFAG2GR3tUu4VOjHNYEm5IDoy1PvlF22DvI/iojvwS9RmvTaycMRb/6r9WnJBSOyy8SypCAzfYVYgp8sFUgCRELKzFPDLqr63naLl0mQ/tH+RkpevRg0suOHn15z0rtFtl7rDA4WweeTerxUlnghxF/O1SRkrNWqEYZ/KKLfW4q/8VpWCP7xUPu3xw4miu3Mj2//7hZxbpjLTazvW1tfgWGhSD2qE5emDWIGvgGy4XDjiRjmQ6LQ/9XAJ5VFYA42VVVRa+Twn6deZbMNp/Kt+hPXgGegdnBlyMVhvjGn+2t58hh7oGwVsJJ+cbg0yhAJSELCXstWfypIRJcWJw+brWATdQIbHH4bGvIhMaCT3hvnWM39ni2adrvywGu48MwJOPW8Fq56JGgI89ZQ64Y0OV6E27P1KbUjVwk+86s3Fp7UVSpGXWQSvsJvDQAWBaHywu25j5XHZ3Y4uTClSfZOR8unqCiJ86CApWGVEN67i2T60MJSLShrRq2HMXtnma1f/QizI80Fb/FzmkQUuQeEuIFdgsOEIvj6TeIeeaEl0vaOoOfaX4tuCi0MyrfBo6CT5EKHsAtPdLr7hJpc/oDriW8dK5NsV1Z1i3NlAGm8yRMsdcIoo2nH/U4Av6G9fXGVxjOeor/wN/S3b0lDoarFxaa8QFqHEaJ3VZTcMzHjVvuE0uO8WdkrC94wQYxZqGdMjG45Uxl7ADcxHXSC87L40F9peL9sSJSJ3rDoz87f8Vwgf47u1ukSSXPhTBakRZI6g40pE+FCGXcXtDnjJvZvoPWA5gQnk5LKc7WiToCPziKIRqcqffjqWM5YNKjVjiiIcO3XPTOdJWwxKTFdyl0/7Q2/0lKocUXDFxfrM0XCMFLFEZUQ+v0qS4IvljiZe6DMPuNL4yerm6BEw4NR08TowoPcrrl4paHKz9DxbcdYaGRJoRHQo+L8jDM6NZLYX87VU98R/42nBuQhyk+/SRETtzgbMCxOOTlRNUXnFSyk/fogZod7k2Ad5+5toPUJ2kdzW9462nyKj+UnxSwVLCW/VP4Ygb2Wa3iBA+sLzu5958/3ICv1gtUuvd6WaisiaEW/bmDWO4wvcsJg5WSZVEtOvUsyaEroiqDEw8TPLuIjCHKw55Q/d1OsvQpfcAcPHi3cBqIt51C2IozbmIMoY6an+EWrHKSJ0/GEsPYadGcOHuMIvGqyFxhg0cOBBEXtcw1O4NIXygf5xJTIWFGlJ3C0CrIODaCwn/leZ5KdDYMmrheUZyyIrwGEKZr8rEHG7m1x1twcZSfSHfX35l8USryIFDu/Z7BDOmjcF7q5OSJHHMVt+tr44IHlP5P0oRse7ehiBK+GCLvXRk+8QuuiLjyQHmM47Do2lIwcTJF4Wm58+sytscqhJzcNeUw4LCvx97acsyXGZEXPEcN6czVy0unZQ6stQlhZfbOVWwH1DntCsjCPoUDoseMEvayPAiA3EtH2mSPqruVfmEXNmk/QRszrxySNyYciheNwQ7wOJzFvZ2tact+z3Ctnr+xxpvbEgJqCAeiuaPW1UcxrGueffEZrHj0k/pPubsY5qdobrfOEIxZO873TKTP3Yra24nrGsUc5ae6cqkPrcPoguIi5Zd9gPSnb3fBcuJbdfz3x2ab7fEKEiq144lrRFQ2JG1/jy65cS8egWvqHmgkeezLUN77C4yV8bcVHfteOhjh3Gp6BzAOJpm6fyCBMg36n9bIHR+uvub2rGK5tP6cTS/x9izs+xnQrmCIl0DfCKdCOcCRaZyA73c7Ray8+Fuo3a72PUSIi0VLe5gbYD9mZoNmq+FMinAqmsNhg47Me/ZXtz71rgIKjmhYptLQdeHyTDNr+VQ08U4OGPQwG/EP0ELS0g70KePjvfm1jiAjdSDWe68mZijHpyrX9zYl/eJL0sfVH1mNHvMyDDOkAmnIgXD3E7U8LDIufCc6XldC+ZgZc+njTyYsZsuv9BxeSnHr4v7Sgm77rNtlInkxURpOIeSzHaLfZlAKRs8ahMWvPlf+Ek/W+D0pJ4NorcriZpYoTOXT+Z1UG04Hdpxi2g5SO/9TY5eJEZ5mhO/PxtPULu76GYRhrYWGmr9zx0yBm/THg6Lq/oglnG59Lgi9hs0071qEBAY+9oQENuEZB83JumCYwga3OTK2Ef7YlK0p09onjw/NRd6jfKZsZJcFw5Kp/cyYcl/qz/B//zavgO7zbqVZurOKDRj2AWsumJwyW5+qUYNr82gVMU9aR1iCgrnCHkOPkAChtt5ejKnySe9IO6RCPo0lusQHB/XuocIfSckewoMk7hyJ/FCLsm/A388rR/ya8bedxPhypPMF5tt5DZRM54MpXw8gSrnQCP+7pjITsGCMxsgjD28qckqX8hU8aQcvWCSn6QDyeXfdTjOGodyLRcf7sei8dDacKnapenPAylEzyRYcIf+EWFXAbkL0M0OlDoX7hUOGDKMX8PXygoNu6WFuiOnpnPhtMcJD+YoMCCUHpQ1w7rEA255TSY4XtFu3y9zqeemKthYV05PkJsaEtXbSs0Q9ECGRoyKAcAsHYj6eYl6p8DxusZdEyEMNJyepWfEQqqqE9Gg8RFE6UUTxoc0hAlC51sdATyd5Hr8txQ84wnoWhyQ2mcZrHLmxvhGoZ1goKDd9k6+9z+i0dQEK6S6CzTgbpea1DfQL6GEu6LSyC3KCYNMUoLmZjbWvTwj8dbrINcKn3lafkGAi9h3TC+mvHOc6LLHfBK9j4ndX3OUx9hkQFt/9BSmOpP9KKYw6u3xSBcFKhGpTHZL18cU7lWUEHBxXC58vK6bCTPxQIICygwJ977LIzmRpO+/rt9oMXsP/cABm133GYRBAo/rQgfrIUcM3JVD7wqtV12SuifIwARc95ee2lf03PhONz/I+XD8GoV1nLJ6sjWYHlCUrVRiY1KIKchYYZq+d0JnH2Dcx+927gzyUpiZ1iORladHLn3bk4Ff22ARq2njFNqOmsJoeuZcyNdD2Yn2/LmByUXyRhwMFKy07gNlnHjgDuXztngFxSPa06vbkHS2xjtow2OWm2HVC5adFBpBjVaENl9AgmA485408i9KJPBvz6xCiwswjbQ23IIjwVIhJ8MrYJ47B7jrENds7rKGvFcirhZuvQyJlzwu6JxyyeInhLpOExj/44JaRHcRfn59vf6M5qUgphozq2bXBoXiLzlqWl/hLt9yUppzmiw/0A+gzgTl1CHDOAYdllQiLQI93ArQL4zyfGcZqns4S1qusymIqZwHgsk/q+0LZDcxjnayx377KVppD007RFmWA/2TXh1j/IrVGoUT4DWEndDQ6dVD/FvmCIwSgpscGIpEABQ0LDOt9wGT+89B1LhYrshhmLnDkYsCMqWEDOP3GfC5F0kH6ac9nDy7djmvr/HFLoQrJnur7QRghkhq1QLF5Qt32L1WMUfP4lhht2VvS8aLO/k86TkBFO+1igCpeaq8RoWiNMEIBReJh3Xi7/MoJVuOP0Tizq2rvTsHdfkOflDrzop5ChDbbxhx1/6017SHwSZeAWVK5uqg3yzS0hNkgz3bZIupriOH62q9+TIInDDBYSEDbtLi2EGkJ86kf5Oco8Mc47f4fM+41pNKJo9kPbeEeoXvif7jhiV+KUUIhYLfX5KNJdw0OEvf3L80KSg5mL/VYF/c+hukJtgYHX0tU+1en/aBfDK9OnK6SjmYhrlScJ3wZ9XsHa/YtLGfgCFMliRA5hsD/4pW++0GnjqrJQUcbprV5D4Pc3iUsi/FieCc9C/eBzRMRfwmo5UU85YbJKNCYpIQzhGVv3hbH4uCQCcT0rB482HDmrrqL+0F4SJpJZt8IgyXAsLeUTNhkjq5k8oxh+wGwHMqJxvV+AIeqfY19ORCan2NmWhbh1fjHUoXTbytc6+2GUaD8eMzQtTGcKhXKpeuKo1RvKunK3S4aDLb+8+UFMx8RuSZsVYfTwMJTSxDvJ4+6C5cYJl9PVzpvhEdoYd61zsjRALUAxioTwfilG92A9Xr1odmDsfA+7LH20yopzfTOPn/FmqgkcTmAHCDuEYYv2Q+IDUBiAgVA1rIPT9BWn78DiuxLbHCnq3ZTcd7tL6R5yCoD1cfY4d/V8N+iq1BF1JU3j+BC7uIDSuKB+r8e3i0Ph4T8ibXYBA+zzLVAGKI/mQ5Kn7mu7hycK52+4FaW3+gIwXqlbKPBcth4hOBp8DoP3miM0p9Hqwa58CQRbZWjIuvx9sLmTCfb8MuzwUmZWMOIB45flYp2D0Q4tpYGJ+3JAJJGBDI47RMtPGoikPTYu6pPAPcy0EJjPNXd0cbNcE9SdR3xl+OsCZQ+aNmrM5iHCVjmvgGoR4+Q05SLLHUa1nqnGQ3AAVoxil8/OswiQsmjf4jFCkeEPAMsxvXV6TZQbUGvGW6TyzaKgkEq9dd1m/OtLSc0gMUpAw/HpQRDXBQHKmz1VuGbGxfVx/0aAamqKcG+HU6BPBXBA2Q9kAJanwA6uJKQLfwUS6CUWvFecMLJB14Rh1/k9RNyptQN+4vAFa4WQDw6qeax6d6wQuXRo9YFvD9qBAV5XG+RUMEeFq7NxBaV5/Nj1J8bgaEEDTWAfQDgQWqe9NE4L2kjAlYpVPHKptkoFQRcRCSv4TQutEEnaGL2KpER+/HJFv3vWGVyZnbw7s69m1u6QvjGMJfxKYirUdiq6OokoMMZFOQUZ3E/VrZJPFL34eMjMtxFnnV3lee7pZAyKnAjc2EM3BxQE/Usz2pKrvX6lcmO/5mSNhUO6cXIguyOZgYGQIMxbL8SHE7hKfx6yZ/9u4hho+A88TIITMtBKb4rTZJpnG1SpBQfakiDYv5sJf6vDH8RcN08sTM1ITGrAs2K+5lf51KoVT1GtIEkY8LB/OdBbbfq031eu85f5xlJg1WdIClopIFmQ+bmK/ik1QzDo/O/WGRjCyqkQUgQLubfcApi5PcbGuakybKZqgPXqnhxh3AV3jypYeXVUeKRtILYq/3kTBt9AxjVt3sxluOkpVKRCBZWGauVlRRAU54AaYtoi4NdqV6t+x68cAslOFI4A+q8TwvFfDqgoh+l4zwXrb7VXx2WM+6qi5YhA9OL65LWNGeVuCth5u7xnqaiqxaNrcsO+q9FfjBMGvaaVEadMK7ESxZLTRZ5JNoVIVEDwwOAuXJJLkxkNAp4JJrtKuTxfE/O8xW96a+6SQihvbEenEJvICkNy7bmtKARxFt5LfFAyDfgoccluB2rQOWCw0cXzb0iFP5FOJFA4Bj/OPv6Lm/gjwNFLz2FHAKfqG9wTnZofQgV8ljA4hGs4tnV8wKBZouTGwXTa4mUreX07EeNvfKBOhciL2ZjaX6OhuVB+HsOvI+hXPcmfQVt3hRgAq3GFGpF0nFF6H0SHoEl5Z/6Jxg7YzdvupjjnFVzEnCqJoYlFogIo2O9CFLdzafixx1PCqQJeUMgx/bpgNcTRnSsx9+U28RzmY/bf68O3LKJDUTwiH3O924zX4WBY9/j+F6oIAMmCDj1isemAusxI0/StCxF2/oqt7boKOhMtU2Ly/OroDXg1H7sSc1+UB063a0vqPrJ2P1l91B3fg6nbHgzM/ukjQqf9GoTX2fmKS2qH1EnWGtZdxUwP8AczsnS4X67PTrzkhhG+o0+0lGzAlVeJ6L2sE9aAZTXWVy3QvwGJSjNeS8ZdAmYZVyzJH/Vf53M2/ZV9DVzDLgKWIA9oQqAWuWoj/ihtMoplAzaFmjcoYt2k6F+elYJDBDsFyhl7AKYHcZ466VrEuvBSZuhKL1AsgHxIzd3GCpjoU9MNatBfq9hCGVAemjyBzX2u1I176CZ1BC2AJIgZK/EdVS5yTs244XadIJhfLyP0x2du32viDcZprb3PatBEgCrQca40JtMrMbPfZISTw1LswQRzd1g9PlyXo2csIUzeo1/Zm1GPXQHVlTIeRN+qpBrNtNa/eo4qvCbP57W3YLAEOD4QdeJqRGZuYZ50VkXQO7IH1BNi/xGozwZfHJ1F8yMQwdIzHyNctk00rYmZWxP/jzF7I59Xz03MFyd7twLZcbX6fQvhMhiqfZ2CrUkfQqRriO4uRBwimEI/673NJ/56f0ZYAJboT+i1SVwLW1VP1M8Y9w7i4OpKGVZrgUFvpaOKeAdlYl3Cj6ag8cClIgcSVVk5xhjrbQ48AaHiweHgH4uFyzuI7Xgpx9uYm98MXmBW6z4CJopQLzHkvuioHPF8XlDQbZzdT6eZT5aBJiVb/1/iEfcVfdExkbHTvXTJbPvO4diY3gLeWQcr6rq+aBpzXo083Ev9TGNyo5LsFEBXEg+WtuaJBprHazovfAYI/zuo6FFDh8tcB+wsGtOL7vY2qWrlyJSbtLoguoW4dsIfENuhA906CUdFO/Hzc+llfM5MiLzHjx1eVhwwDNCezPUxEiL1rZx6HB3kObVnz/bM94MYPUwMrRLLA8K8i4Zm6nZrFoluFQCmp8XEIr9+ZFxZz8IxWoqCRx+9648cn6Se59UFizHwovyBTTkhUbkvFYLyr90tlXfeO7OGUBMwLBgaGbkgp0ESyJeZmdhey+HhX9B2MzICh0FExODOV/CL2ZpwuO3ZaMFXg2E/VT4vIyM8veR9yr+/jxI67agHxeHwwalbb8KLe66PltPtU9y3UkJqJvxtqzsRCrbetnMObr/gJSrpT/jw8bVn2xnh0zFpyQXkUkTObWXma4lg42Q0dUczATrj1DdQ450FCpLWJLw/Dd9AhQGr301RW/H3fqomrseJQSR2UFqBUc8/bBnuN9+++IaePraa7DbTp06Hnu+Arm2jO2MTBmW3RZWeoTkNKxwORe6DC1L3JNQAfN36YtVsKru6fRIy65t+e1yAA+laHDC6K0EHax0hr6ugUvedR3bGWdijwu+n+v62rqJkO904j2B6vrykZeAmXX/u8VbNiFSDMS/UZ4Mm5ng1vNLQvr51LPctfo9C7BoB80cniY8gIQYaUwUHB/TfrLaVG59s7sbeOJ5XyJu9YW68SveZWfsdq6x22HuMVJKn5FCFnRERXVpl1Xe8uBSwrsxByWFwQBQbpATjSTwoPQKoYKwFqFud3hSyjp1O6hrmsK5GpOOucpsuJhX5OfhbEoBOgbexqGq4c07JRLE9CK8WT33gTSzXQHw9OLY4ocONkIVh0RK/zTYmpNV4fBSRGh73uWtA4NTWnbpAZ5IN8FhhEEpoJozU5e42Cc6nXWmF4ahy3xl5O+5EpqrcQDKQZ3TpCDK4CZgbJHITJKlOL9QrWNVYwVxHyp48YLrIQ+8InPocQL5I7Ldf8rN0ksQgClDWsUTMKodO0JD8kgjR8+n4xmTjLIBJIuLFCtnBjFQJofy+AavE/ZuuAF0/bU525venPYb1k/jnr/RiXGx5zCmg+bk6VCmDChhFVSDD1w+29rsfpYcYGYGI915LoQjXq5+fGapv1+YkNg21lddWhCGIXUXub3xMSQTBkRIZDqa0IPZViXQ8R/7UZURqzPpI+Wkn3fjLIS2Q7B/2+w70yMFn19SnbTBHZMK6KQAGUudwGZUH46QM7JhlDKDNMYlCccRC6DTyVOYINypBJV2vPEFc5uvNEPNp1jlml+Tssxb/1sF2PlTBudZPv3pRPY5FcpFTRshrmDksrhW/Nu8IBPQ9BzfPPkXa97UxaPqqhg+i1zptk1B5zdMxJmVfZFaFnMvpQyOBFfVTaJsEEaNcmSlhRwg9h4gqir2GGrXRrYX1c1rZbCmsRQ8p7tt9O/3dvSmnmqTAx64NSxR84lTGeUKEPzAiFgIgHrgcbLzh2FZ/BCspvSeziT8nr1j5iLlaNdMp8C9WGQrABjZEaLTYdmqrFIKIE0QBX0j/4v097bFkK3ENC6+Qd1kyOE7R8y0rDEnznEYGHJr6j7KgPipFeG8J4On0odIg6r00t/+K4t7c3ylVxxhAFKKFHpw/gZFrjcjVmbDRBnxINAO3d3P9b5tWBaYmRie0veR/d6Z1EqxdiWec89+LkSkTchl4/bZaoy2VrmNf84eRU/CAs7SpcaO/LGFi1IJ7/r4WoTjw1zjXJ9Y6AIPkQORhjnIw0BHbwwhSPRzL4Q0vc/LjNynmh+8rrrjlvbYUTzEB+N21YnzlvLoYC+62VuwmIk6F/zVmAURhzb66sPYmGA0Iom/qyjh43Nb9tyYugOPyqtScD6C/PdMyaiQqOsbD33oFIMQtBQpvpvk7+uhOrGfDmrouWAi3lzl16MMOnBePsp8hVnc60inSsWYs0ubvA6Yp2kbJ+gZ6WNIcuMZ2h1UgANS0Wdc4arH9jstcD7GpkAHjWtfzCc4P7qlBnM5EoxooT4VD1DGsKcEvcrTADt4btIAvn3VhMB+erK3F2sTT5VsoAOMmpEv212kXf4xfgblCzEHlxmP4PXywja/VyQCO5642SDRHoHv8ZRK3xX1zxN5klCz3tYmBjPeT5KFMhi4oaP41NaZrhXsuKSB8r9iuVc6YM3gILPJyg3eStIU3KlkdU0QcsD+8WaMARPrFJJ8/ttbt2NaSgibGBIakuPrK5c0GsElDmITUZt+CA0bczxrZQ/v+6UX/GyjEsrRP/QIoc7/f17q9if/HoNazbxSYJALKriRkcr7XmqqPtma3npqjUJA72hK1JZ+pFqZN0t1E0f7WrKMqnwmduIGJfIivs2EBlV82X4LLGH9h1iRc+xp9pE8f8zY8iM/Kwy+xI9KhArGmpNE+dCrF2fSARlPVRTqjSOIK2c/9hNBx0/jxg8n3gVSqHXfREcT89L7A5GR8AS3J1l0ydeHwz4ogcjIy0DnHSAsneOCeLSujzcfOHgTEaS9C1+eoJeyEhiwzf/Cviw2czkuXP1cf4Vz/5GMuDrUA4uHrTiGfXIbDow/g3JBkYGsFjIB6l/qQ1z4acIkoTugxnYdWbxkunejSXp/Nr9S6G6+OnpnKnD/I4+0ZVY9PDnQA0eN4CrwDdPT6P/hqR/0K8FRBNfbUGaxnwejmlXguuZmeGEfz+CqKOhhVwpPOtg+IsnKwU1oSGGv76u3mVd7X9cxu3Tju01k1jYB33a6cOsznmK1T5KwrTACI43/8h8an0Vct+V7zsgsKukR8FG+XWa8DCQn19gUTixxeFyvVSEGBNuF1FYglswHOdP23C/vHoHACzz0lWmxACteHhm6A7oKurGNfQKzvCykXNE7G56/xNePAkoFzES0abtM2GEiHYr4V8ipF7KDYKRr4FsSE4YsEb3TfUYRBoaStR2bL+qupXlR1iCObOigQsluQ3pvrWsLGYmjCn2mpS6avDEZHYbFHieimOv3HIC7BYlrbO/dAqdciGWlYM4uynrBkdSEbRavZHCbPs1PtVDzryqY7NQ2nUtmD4s5ws/0L/E9v+/uLWF33+AwapU+Zx5mOdBRhBASvjakXTant6iBf4kGVxhrRLb5h9P0dIWmXQd7d+PTdfxZeJf5x5r6OkWvza9Z/ZvnkkGSxY9kaWRMLDWJ5QCa6lBZejd5A12yGByv12eSMxEEjGbFsAkv/GSWZjepsI2Z/2aRB4AZ5PxepW23w6ij7WuQlOZAQ6MJ+gfU5O3gVnqdti8NZRo5s9dvydu480YXishQE38O5l8/DqPJKnFLWJNRlu3nINgxOKmzWN2Mrh8GfbTGYWe8EQWg9FsgIJk3V/fJQWQ4Ao7cXEtmCEUuaqvQV+4YDkDsGBvyu+4kA5cv+VMDGKxhmWdLv/xrRkBZuiwxhHIx7PetcN2uKIZ3ZBke7ajFQPM7JnOyPvS7ramRZlx7QnQrBcbjb8wCe4gvs/4EHk0NIN4Pi7dCZlU2671CPjDaEFCNwFs0hNgzOMDgJpaQLj0VSKchL9XC5I9rF2t6PThjtDfbZtrwvKvKa7aAeTadODpE1yXgB38kORBDLN1SYarFPQa4HWNJrvBfEBk1sBk8rtjmnruBBpaNKgTWKUENyOSh/ECJy3buHBG7CcD/dccLFjDJ2YRg1iIvggyDpI32PmdRlJv62MjeE7dEztPuciHlhGoBMAy2kQu6oaK3NW5jP4EPq3H2h2Bb2TUOyNtuVZ8Gn9ho6HTAoalVdjqr0f1pYklbzCk6VYX5MAvYQ2w47s6JzJSE4HpuSruKbZewnjHM38jE67Wp1wL0onzxsJiaX6d+u1YE6sf2biJ7fq9kKdHgkf1DA70IefrTricDIdfzEYNjLboLGQYkt4hN/pzIrO1hWfPbeC+SL0UEPiO15/DoOoazDdyQXXaZDk9b+oyiMaBrOR73ta/uH90sMGQa56c0JFXnSExO8+y+D9gKYheDDMeTx0bQBm4Pjm6QdKtsKwdK8dVthGXY0BfiQynqLrPgA4IzbLanVwhf/8+OBCtGtx49+4XyokhAWU8Aq8rY06plVzfeP31VZfsaZmuEPv/hDVTkhVLLYTCRrciWpGB56109ZpeKoS+7/UYlAx0BzDIPINr78Mn/jebnbki+9CXKpd9rjkHvp0q1iHmr4w3zh/DuIZrcG9yC/JzlcE1t8AjEVeisqvMfriQiomJLA/PaeQ9gU1gtbDVXx/lddwIZYZAbowqRfneyJehyhWPvkyT8KE+HbR0svj0OO2bcKVsLxD+iuqF3nAgT3GgH94oAiLUvZBmQvrwEbTOGIuU/tyOE6VMPT1/2x0Hh2A8UVStiscIFD3FKLTMiqiKNsofZZdjw8kDAa6V8aCCHKL644cEib9wNmxad2/NBwVJCnhCcLts9q26jsZkJBvR9CCIp1zSz9jL12bRV/pzozCUg9imc+SLdXPj9QFgPVTLY39ASxOXxXnc/MV9/VAc/lxkJe7XvgW8zGAje7oHZowA/sipzo1YXw4UReq1yXFYaZzpfu2K9eAZ24UfMuvXQ1fKY0jgT28BWa6kPPvGFFrBRQ9Qp6f6/B6am1OrtgIlQv3Q0eGZdkLI/qIl+Jw0SwuUzBvonlHGb0Tme1XO91nkvMVBEUpxqavbdNLKRj0LHmeBGlJ3bCrgl/usMDrATeWfVKcVITstDSCbShPiLn9OMFLONKwQKx6NdbE+4HlnWBhV7rjs0U0Knmlvud83wUoa8vEWhY9V+ezpYnkccINNkXEyInknyNK9rW99VyuCyRTECZ0TU703Tf9UfTojk/ST9Pw+2upy8cW0fy1iocUgCco/vlBeHtERO9Xbzr8aYZjdzxv8EeLzJ0J3GzAQF8ZtTP0uSpyw5/Gy6fia9kuYTkXmzs3hffBhBlJKabBhb6peK5eF8OtmJPh5K1LI3xCjLa1YnzLTL93uWDcbvlAPkGR6K6vKfeYf4FLTSxDgoVJ1l5qzS3UIZHLqN7yCjzViTxd9bwaNYObE17ZlNaka6WYVX9l/Ztgsn06Gka+rD9R5Lwt4z8rd1zqA58BGFQe4bYERYLSkzHashzTxQyftrMVAy5cqtuNx0uUcPRSoZTwgsSoaQ5OZtkG9Z37kAEndunG5mW3IePJT81THLW3u1W7BdYZ+vyCr7pmWCO5slQAvj5B56ICUZdc3Flr9RWAT4JNTB7WUq63CEhJO7sOKk=
Variant 1
DifficultyLevel
740
Question
Manny is a carpenter. He cuts a block of wood in the shape of a rectangular prism along the cut line shown below.
Manny keeps the larger piece of wood which is in the shape of a trapezoidal prism.
What is the volume of the larger piece of wood in cubic metres?
Give your answer to 2 decimal places.
Worked Solution
|
= 21h(a + b) |
= 21 × 1.5 × (0.6 + 0.72) |
= 0.99 m2 |
|
|
Volume |
= Ah |
|
= 0.99 × 0.5 |
|
= 0.495 |
|
= 0.50 m3 (to 2 d.p.) |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | Manny is a carpenter. He cuts a block of wood in the shape of a rectangular prism along the cut line shown below.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/08/Measurement_NAPX-G4-CA31-SA_1.svg 500 indent vpad
Manny keeps the larger piece of wood which is in the shape of a trapezoidal prism.
What is the volume of the larger piece of wood in cubic metres?
Give your answer to 2 decimal places. |
workedSolution | sm_nogap Area of trapezoid (face)
>>||
|-|
|= $\dfrac{1}{2}\large h$($\large a$ + $\large b)$|
|= $\dfrac{1}{2}$ × 1.5 × (0.6 + 0.72)|
|= 0.99 m$^2$|
|||
|-|-|
|Volume |= $A\large h$|
||= 0.99 × 0.5|
||= 0.495|
||= {{{correctAnswer0}}} {{{suffix0}}} (to 2 d.p.)|
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 0.50 | |
U2FsdGVkX185vx2MHvJBYO7+Z3gr88HwjKZvT69Fwq9iLfqhk6BpfLnuChxZLDWSeq/jHnmIVYZUHgjqZH+lP3vvQRg7mUHiHwsMnrSTGzMWscr1k3uKusY2a+0uGuFO3EPUKvsBwV+9kkFi8blXoa5RMStz6KjKI91jZXg1chbEMjRcZU35qK+xq2mJmKQc8dWZhNnILuppPjnUDTy6RPeCdcbGbNywE1S2J06wdrVNgJMUPm8Bio607yV93iI2ME5RPmPMV4MzTiAey4H7ZIHI517zhKh76fy9TBnppAX7K7zRcn/Eolqe54QCYGwnGqGExc2eNl9gSnsu6fPNtliSaPA2/RVdVB431KZ6GCO6bK7EJaPI04KfdkYhRPbCwWcfIu9q1NhYhFpbOQGW3gVK6j5KF3eO+BxCFr6yqZ0BMXCE0CTpAQLxEr+XyGoH7H2GL6V45/gwRaEiUkEJlBsx+N9tCxVgY5f4W3SxFPhU2hS6aCffS60EfTxBI111mHIWKlOoDkKBeB62NTmj8zP3FylTAbz//CyHGc25eopQEbvQqlZIaFmOHorNC1iJmUg4X1yj5apYQYwsmmX2oPpnbwpzS28dVQXXgjF64BwuyW3SkC//0c6hFFEF+MjUpfugUHV2ESL7MQk9RsnOMix20VLe63O/vmLQuA8bRAxQfVXEQ7rMrIfADA3/hbqthMbWRHmOhwZtUGIGNon79qVJshXyyAchydgprmu06ghWnsg3P3R1gdrqpxYUhwGtQzA4wlHbFmY2EjRWI85u1AraFwg57Ch8+43DqYI6L/bqJDlu8Zri6VIdoAwJRqpFyYD4Ff0xtsnpHQPoO2C4VtiJrFf0A1GlTSxLyonuFaVQ3oxH6J0k6OfT9m6iL8u3scpX713prcCThxSQ9V8N95jErpwFHrMQNM7SgXfRfwHtVGQUML5brHJIT2oz2K4sbxd/8+jQAV8gbSyZmJWulN46Nps1Ps9PbV4iBkZAe6bJr/IR2NQFU05NBDnOE3Yq2D21Fh5XjkPoWJvA2RvU8rl2orKFLXRtE6T8KttrG8l9M7S58mbAAWaooPzaYM6Gt6tMikrNPktCPM2BkNcX/v3SkKbkg8KPF0kxnzl24fnpE61rW9Ht5QWCjCBOqH3dvZ0AqbFgoKoa9KRu5g7mE60s6NFgtX9FNOSVzCio24cBW0J5LAuBDHfIPHuwF6kBtKvl4T+qnKGlFfPyUZMrMEtwnSZUyHhgYwUxeZ99jGpz95fQCMfOJo+U7VC7m6xMVXg1M/bXg+DcNHKJNG1kmH2SZuoeIIIxWxNPiudEKmxabMniWFg3VH/FaTPBWkww8+KfLwBkgB69PGwXqHROaTdbbw7Ee1SpGthliI9TnfSkfSaXe3L39/OxMK1wc8DcyYVEe6EVIRilRB90NlS7PKERe0U8ckZ5QybBI1LW85QNtXj1nJtwOEH624LNbYVH5MZs6SJRKuKxFfgnVr4m4thyqiNbekIUN6SkP5ONEdf4/E5q0N+LEua5tdEqOspflL5fdbe9kkR4etsShqzzgX4h+KLR+0bkLLEznlO4EX1xat65uRHap6AjLyJ4PFS5KJ24QYydnpebskUniUVtrSr4OwV+4Fb38avirWlZRyoji8OZgofoEqJ0mJW/Kr/M2CrCBtqyjP/200daQdle199AwzPJGKtyd+Vkk7Guhu96sMk/76zUVQ0isfgG+JnUxhws49arVbuKnSLSQpkluMAQcr8GcPYTZzjTekKetjNjTYVfxHeQctzja4aqrY7gg739yz0LFJV2wtJ8udQxHnfUSF/RMXvZKEgFfI0jvJjlg0NYQhPcMjNTd+xdrE1Z/uqX+ADgcsbupjgOyx6doeKV7mpf5RHg+sHZ+BuNNocWOafTsRGrlcfU5morpF38G5RYAvp8HwZ1wRa1y475DmxA0E4CH2E0ieNkxZeuZuKJNzUVpitXggpZZbx30qjp/V6cbHrRxdxL2pzT7Jg+Q22gOYx8QyzQAHP+PxceTv9hCGbxG18PzeMAtHcY5G3yrzihoEKJQkJSX39OA7O1JthuaTyfoUhPdcJxMT2uT1BekFUhR78zd0GYAgLCvzv4B/pj0h4lGFzKfLb69LQ70njPE5uP6YKdj940hO2OqGjKgHoNzQRka3cel0LwUAlAJ8Y/Q0BboqDGNaeHR36mDJYblBltzCbXZ8z6ec48Y8hqFBp4zQdbL2oGSL1uh10lpqc2z9m1jtFyBnu5AiofrCmMr6Pt6c2V+vVdcqNZTyqacj0m3cPCvfeBESdlemwWjWT1goashiVNryNyHCPL7ntHiGCvrbQa776kX92DZ0s5Q7IqS0rXv+0Yj4z35BFe4Twwk9TflUrVg47lBjCBe9BQpf1b6X6ikUHsMjQYpN0EWTWg9wNldwwIcXpPO4/HYQBYTlRVBn5c8hmI+tWzk73YiJs66rlDU6ETM4mcPBbBr9Zrt7rbEG+BZ/q6IAjiGISx2etW1/DEB2ojuJDlka0qWB5r9bogsE33TyktmOqxWS4jBWE2V0Shu3hR/csztMga1Twvd4ba6pRO8+QANkLnYgTy24XO+0kzN/pAbaS6+DUwmWeYUnnMHVqbr0DDK82iSMDSK2zkVVGo3JWBvMwd02dzoZI8KD5qOPxp6HqX1KInbATIQEU27YH7IXJvEhtFcC9O5Y3aN7JTGUzKnSySjFKEWyZWuGdXz6kU5vfn6tib6ZLNfGGsCImf5chEUgOfPpA0Ulwt0rOqV0VOFFC+CfSKltdN3cjOoL/Kj80DJLGfbZ0p/XH6vGYFyfu7EG9880HBgcnsewD6VGHgRNTDrjxbFrKX/4icvKdc5/H6f0PzTbTlT3fmKRUYLWsE1oUFTDKwhwkb4P2iNLM/CxiK67pL2zDgF50/C6U8/YCu/+jPz3Vkk4mVtXEVSD3zDEjqq9XlLElZtjcJFpEqboa4xJQki+ZorRH81usNCmr7Um+As38HoqhkKl4TsqajjSl1NJuROCb+fd3EwrLft5P56YEA92ywgniHMnmRnzFV0DMiI8WfUfAzykmwo1BF8F2Dz+JbXs32FBcePBgcA0IdpAR206ByRjOfFzWtYLZsggJz0kblEZMnza/op8P9laiQzSvUTKXZ6TKXreg3aTQqn5c2fv3D7OaHOBhomgM1YqoBXjQTlE6HiyHy/vOk/uRDTaxi3UXn10yZD4GjJPBS1eZt51ceTxlhNObNcdGBZufrgjrbuSPwUhZdulhofzwEg7PEIGt1Z6kg9TY8Y6LeIVN4oabS/NFhw1ON6Eqn58XJNpt5asiZRNucheGKGTFqBDLChLL7oTJbXRdsnnkDozoiXhY5MKBr/NOPOLYLgQ4Ikah1HMgSnsjIUksOCcMqs289fL4Hz5QUYyKVKSK1E0mb6X2nlTIxIXOeNtPklGD8GMsb/oJ6FdIaVYduYeMcRPpaI7yPPtXvn+UXFotep97E3ETLNWM/QsycaWWwSgs4ZDJWvDcgOzrzCmuJBFh1pDQ5qp+udTfcnEa0mWpuPa1+q/3xGzoYOSosqkcMVXrR2FqRLiZpsJXKWXsFPC2FSo2zBvKLltKRnhJJMnPJYGeXgiNdwDNTmiYrh0fU05mZ4jgQXYrnyE/mx6/vs9KrgrXuseLphA/53ESFk5CRujaLkWt/YemiYKDNl+cplZePryX3AINtIfOGqt5Xwp2d7msw5BKEHP0coKNgn5LInoBEP6GJefXM2Cqv7o/NP4scN55F/IvP+UXuHaZwjYMHiF6ydfcshEiwp5Alxy6+G4eacN4ZTbWmtM+UlPMAfzmY2PYbx6Lj2dCmLVdBDhV04pJm/oO7z7aVMnjEi8a8FkNiUBwxas4qYlspL+E9g5ppoGnLLitqIRCP0p9EXoZYEfCZTTS/H5RVKUcaGu79KVhDaXuN9gjZ0TXUl2i7+Ss5UM+bPLwdWayRgR7O1ciPdMWZO50DsFN0hyPjaUzENQS2RPKUdq3x80zlv/fes3PEl/XMLL+TK8xYJclE6Wzz6utvweq9b2tVu7mXj7Ls4ULfmEDK8VJCFdZPz28tYdvyZq5WPw05frbc8exAky4+k6TrOiURMVIklzPwF6YM+IMgQlTQ3o5MLmWpxCtiWY4K8Kv9JoVsFYlDSWiPy/CcPMZFp9v2Cs7ikt8dwijx42N4kaaUuHmGx09tgfwsgW2a9tcUDCidcEsc7FWBaMQ5epFtEnc2D+S2oyHVYrdF5UIZBbR7t1kTFzXGNlXlzBJlH0gKYIMgxyeYbZrUrEWI5dHmAROO3jRvu3Giytt78fba+JKclceF6lqKFv2AJbtBqRhirX3Rf72rzz0UuNtk5BFODMt3hpMaE4tKJD0IZ7R7bHjXCkUyIpRluJqTFem3DwBx3fet6mLQ3LEJmG45h5BB3ivQ7NX9alLPPzCJKIsXuYgJx++tR2vGWKrmwl8LNZgfrfaevfCaoafTKDua9XfxTV16wJ/GA+XiVWt3o1+a/LUC6aBWxYzUo576BbdOskQUhb80VEzeS2SOFVqvmfRYZyCwktBsvlYmekYxOFEaRX08g/m4DVDVjjNIglTWEUv9rQqPxmXsdxCq9vjPA+9mG2UUB5ZsuDqI9XnbXum4Cp8oQr9r+21b6OU82O+CM0/YITguDaEAgidAiYXvSkvx4OSwMgHm5CoydocwPd2xTBiuP2UniPDWpT8Nq2NC1aJfjX2uPD993I5+VaiJpRJdd1v2OdFIN7EdigIjp5YVH0nmL9bXTBOKKKDFZK0Wj4yy96bEgQdZuXXquc+8GXrgQtwYGJWii2rafTZHI+fMcLvkd+OIMvfGbLZ0hDzGCfBB4W5PcGiZHrBcYYVShJWPs6vB/ealL7SffWWrudn3R3WCGcoGdWAHi7tgRiizbuEOppwOLt2+pUMiGlB9upCHy+vy+di0PB/k0zA3nDSahJ/+xOwLWFbLGiku/Oupj1Y8RYY9rLr7+6ld2Gq+Mx1qPDDWAyygTFtbl/QKUDiSmH1gxOLU/lUPM4a8Io1W9y4JR4BU67v5z45/EefVC3gSiHjgB8CicXbezOorNpJeH6t6CS8GLMyrGUUQ3V4LhZCx8dCMh/KCx2va/dnjQQdGqFhMf6zm2JjkfUnfIqUiX3sMuYVqN9Qtu154HqIeLN/6MzI4BPaB9/nfJSXL7YmiaHMV6PNXL9e/eNHSpwXkEKA4uZgU0aPnpmb86anP76gWPPYZ4SGa7eqA8kvnz525W9jqL3upZO1lwjbHVpN9uRqnVZ7Wdmrot3ipStEmBW6Szyv7M0AW44js2rkvmB/7wFfG9vODA8xEjcKRbcRjnxn8LmON1K6Gd2UxvyArjlK72PbVd59hk6V/CB3zRjNmMPOe6WDSBNeUx829uIxN6sDL5hn2WBMUqqSjMXgUMLRHUB9vfPsIcMLFOulUXONs0rybHtYU6QCS3pGJlEVgqyLqf6yP9X3eK6hJqUI0BpQ6PBDc6BnbEqEsrcVb84ljA639i4cWQo9SqO1TlrylcewufWpVBE02iDuiU0VSRzQbXSvDzmF4qqiAq+W/lNburoXDyv7RyyEp8YT4jx7grQFULlFxYhKIbrpTgsJ2AUO8p4p6w8e9JXEQCwq1fLKsOw1m4+e3vk8X8nQjaQPOYVPguoRmo8glaj3Uo4bsH6BSe6R/9vGy5Cf3EEXywZbUBD6xYtmy6ZC7fUudV/ui2OH7b4+B5BBjt2fZtJzJhzrHMrgmoaxgXYHZ1bQoj4TvJP3UIzDCTUgcwy0cUVztX7fezOj+i52D8e+uWQz12/3hzfCl2iu+QZwbF38DsonB9GIOh0VeZZT+147IUbwjzeh4uqXYE0TQ317/bwils4rQLTSfvBy7wvO4odqjB6G6zVLq0FC/cq6LAEkc9pJtxZulYIy0rqwsHn8IWlE4MwzE7wPPAnPcq+JOgSrCJK07785Dxkl7IH519AO4vThSf3nph84O6zDE4vOh2s/osCcGcJ/QURknfQFodUCW3JdLWis22zvzT06MbS6dUNOrai40ptD8hizSDv39JDOVFcHYItf7EO4UXSWKEncdDY6bEzpGk/68KCdrdFymEEy3vxl3zG52ZSByew+1z9ZobT3TePMEZM2pP+Hac8sy0KAxq3b4PAxf1KjdmeHT1IgPSq6J9iypquqT8igWRkgundblWtG25Ci+zJd1tG0hEhDsBv7d6xP67cPRXLGucAr4KvnEY1IOlktWY0gR/2OY1H6CzJI1NrQzaaSEVFEfQf1D7DFGD4ReYh9vxERX7KLl7eO07vwPFY0/sYEqwOfVSG7r00Rw5FYVJHTklqV8XW0Vp62vD1bs3Is0QuEB7VESA32BncHlqkX8QQpmTYNaEBGeVgIzPuranmzQV+tTBSEWJ12MKAWNbYSRM9UHcl+502rdrdXoPvXzuUa9+ozHPBhLCrzqUfheqzbjipTvFAqPNzlH9a9nWpCyQb3dNonohdvPxHsEHpecrGyXpQDx4hsfNf8uhy7eKK/6B0tOnD8msbTrEqmKj2JOcj2M/tA83Vth8Ph3jeFZ7GbMKwCIad6IblaMqRYnX6uu49TX0wHuNkVIfj6DcxLNcPszEpt/1a8D2KvN74mpKQf7WYAYPrN5hqoea++haL4u8xaHDITkXkx0tEbiiAc4zivdAXP2H14raPmxLVBxfTsmQBxuVyU+EmN2niCbrxiA5lHATbkZhmavi2DWaFzd1FO4vgXhMu3Xgqc+H2kEcW6MUK6tyljH7Bpp2MZIkQHXxikRIQ+jvTfCAB1BeUhgMw1qCqW5vpr8b32vBCI+GWB1OXEGDXyq3XYd8gxydLDA9DdcUjeb75qF1A/kMazXtFxuPD/NA8tlhZaeHw3vz2auePIWVUmNWxmJgY/Dq3NiBCd5ugZojKYY24+MRgqyZGv7L4YnvDnnWKXcxHJLLwQ7JHTvhxJZ4hm2PyRI72ceEEkCssSF/Kj4omXtfKNF0UnfpiX8TFmH/N064U0khplC4HvIbzTiMz2W9RPdfK6FqUXgOPAQN0hYTLVwfwEdELHdZIO8mDdWgV31ey/Ze8Pdr5Hu2iVdNFPZ0OtKLoVMHACygVi2xQn1+2wKYt70yfBWC3rUXnCgitF/aZ7kEAmLywWZ9lYHMl8+LMWi/sWqv714NR6PcpUDfqqxjiV6QwPmVq69TL2QybsXolsaPH3NtYtW3M3Q36h/XqmKu/VZwg9m6t8MYEOJ0GvmiKkIsORSGsEEQwyZPdI/Cy9XIautETjklRZJOiCC/P3AMM5TKjyS7JvQJKHbx7tSVmUSvoxkdYLKOj49lZLj4olvw98zsooJ4dboqf7eqiy3pBn7CQSn/u+AeydidgKOpuw+AZF+I6Zw0DiRlEEWgWmYucdPUZFUG0hBUs4wavI81++h9+p0PKAkyaJ41fEQLJRROhPXOw19akSsM0GczGr8tRMAa6XGZVQ99vgSMG5HcqgTJqgo/XUSUkW6PSGsTmyE+kS6nZMsO7QhNmVb+GeYFS6as95f+tBLOI7R60wHJ8U9dgpk10sbSul+EfHxnqRAoeWM71bBpPwETXgs4rMNEC8ElC+pP/ax/dVUT7eK1oOlkqYpoUAEORjqZm23WVvq1mz+HfOmJPI3JwxLNidscGlWszB+/GQkJ5t/p6gSdUyjgyCmC1e2II5ED95qx3P7hrKOc/Ueul1bz8rxk0gpV43Q5mk5pghPNTPTZZL+zMOyWQDeHmU/gFJazOW3Z2mKgohQaFJay6d5xHBV+J6pea3+UtUTrP4jRdVDaq4sv7Jxayd9YkPs5+6B/ABDzkRL5hTZ4DweMRjXjZPp5GXKG67Ggh/0+GAP5v/P9JdEfUEjk6jYcd5ppAtWLlBKDyDXzXu1ChAFJegGdNu3XYIYThSic3AD2pPZzhKUrhm4rc8btN4Cn2Bt6w75My8+31msDLK2vHkt9/O/u715juDFOSci0DhJIVOEHefoVujR3T8y86zpO55rfTFmG7Xuzdle2ld1ww4wTKUGOOjazcN2dKZkl8ZUIlT9Y7ChWfEmEnTYVquXlMnNLhcfN/0XXZcyr8QQYa7VW4mDJYK9ZYxF4p6D28DG7PfYAm5UXsMDjOG9b6NF0mWem+bEbRmQd48jTKZa1bdpe11IHPF9/0Bt0xcJRHsh6E88TbLhUU9G8G0yNfsopMaLG8uMPyQebqIyXuhXqnebUHxRuP/CcXxkfkpxlwcmoepBm/dLWGulSu6n3K/V1bwy9xr4fBvP6Bdhe940jc2XaD5lV4g38xFQhAMqfqafQZ/I0nZ/avUzjXWVWfE5WmdFfzpTH61rBgfDiYMFYfTOLtz04ZJfIZfuColXb4YbUjOEVzzsLMHYsd0OUtsL93xNJZQ+g9xHNpURVTa0ZYr5Q1DvpU5j90qfOZrrBhdK7ILedaoGY4FPqvV1huhxnjMNp3u9tqYvNPEQSU6CAlODT6IwuHdPs5LSfBTxjJAZkPBhhx/IYtxsprWOcXeUYWdQkskAmJJk+iH+LT0h0iOWHCTWaHh7oOHj4bZK2gvz5tlvmpmT/Ml12WAGjPgDOrYbaqZADkiMQYMzhENY8bsTAlEHMdAUrJ7cnX8uWSSJliA5ztAQv6kxqMBQ07fdrWfRyFUZuN6yXTa0l1mdQWWZIDgChvvl5rp70Q5nm8vHbF6MzF3cSqa7BRxF8BGxLu4/cGoKGT/zUgKzZjBXcWacGEMFdEVERjGheCRdgxaqGMkvrAmp4v6mvbb2X+B9mc2DTY/M1W+ze1wbjvhk8C3HLUio/rhcFj9XvKxmU5ZyMO99xUbJ6kaIbhSfMFL5PQ3r0aDw22CRIFxN0R25U2Gdcdv57HE9MJaaLoQLV+/6CbbiyJWvqfWu8ojdkIuHo8kLR03/ndV+wFjYpsq6y7FL6uYqXt3/V2HEsFzhgwRGw66PcXGjTJH02jVhdcSSMaRl9UMFFmwTxtCjRPP84I+d1n6RL3JQg+hbUYC2tp5qTCgFwawaiiu+2A3FlbwFVtJZprZj4RiEBVnY8k9hAAhDGNFlfB9/1xQrRx88LqReo29VZEWfkt6HrinNQKHUULtYOLY8kcV/tDSOwJfBaMLM4T4WKDvk1V27nUBpDbs5PdvTE6SsiHgxOcHvGNv+MKoRT7asLbQ8f12RDNRGpmNlb4YdLL5vhnZRpbGLlX5mDbYVXakwCYldn8pq3QGsql+Q6eFZgSpF8ExLmqz9mJlOuHIxTZ+gcq6rNCjK22dAr7auQZ4khq2S/f654axIORuKJFakQfvbJJrgz357n6THdqbFnp1mFJ2huvvfC/vUVVaLh5YMrJ8Pc3Mlg1FFIhFTRzdscYDf0n7vXUb4SmYsjhhZpxzpaVFRQYvt+S8F4v/JXEmA1A7sXVmG5jadH0qzgklEWdzMwticpXKte3Kc9c9GnlEZFj5O8KKGfpv9IgX3I5nqH7jT74VOfxaQ8rtsd60tL7UQUQVVWXM1CUyVapJFrxez1pQWafMLabKiUzoT5V71/A9lS00TXZGHV12v+4T8kTQZD5wMf9gPnIvjnyCM3SEsTYRvj3LJAaanH+r2Ara88vrtbbO9CWS7q9pJ1rl5wtMcsXi6uyDV0SMAmjdu4unkIeJtwvWjyn/68q2KF50jdSKrW137NVg/IWjtPorIM/bpKBDWRXt8MZo+QC5i00pchOpzxUWs+IZeWQoYgzqQPz+s9U0JnF9/jdp5RJ6y0gVGPJiUlE5n77J/VlJ+dcrwrtgL2ylu/evGBt3A2/GbrBeO1p+ucOB0IZSsMZ3o2OEE/KNUNoAemeuo6dS7Uv6g7om6scHhsWwXPjB1t6DL8Z7s0j49pFrH02glGBnYaPg6sQGAXJkKx108uARAI1r7EMKrfkC7ZGCEgHUDQd6aslPzXRG84nvQGYyJeT6GNte3/suuvfckNwB+hHiiWQT8ebLn+Kpo9gEK5/WA+fZfSYeDY6RntWa9mnKAaQHCRU9iZ+sY9mJP75jSN/vgIU0QB/MsoFwK+JTIWYIAp65jKzlvotYcaOIS45iYnsFT1+PQiAWZkivGFhqUeDEazVr1jn5p3eDQWoTWqzzOwHcI1JG9DZFASjKmOb91qrDwA4B0uprAdMcI9eopPQQeMtwRX5VfLJvBD4hpDhsR5J3wI5z3P+GNHTa9xjRGteboFJ8BNWCY1vS4hmYifd6ZvTMY8ul6tmolKzb7ZJd+CuIh1byQ73xqCclHYvbyvI8HiEs1TKAvCOTKnVUXI1jC4AosrD+T1Yb3myY5xdzRTDTQ0oXnyMedJk4ieejtYwhRZxOVwon06ww4IgbIoXhRxub8wNwVh9LKKfOhDMPVJinfIAKgtdH01jN6v8G7oGl8igkIBJyfQ5Xnc6O8OZ6O86g/9JapFfCp/8wu/NJqM76r4fxN+ZMCpAsH9zBcRU1EKHATGh+VAWOkLDNiQaR14toKxeadJ2QedP9a7bjAYyXHYgI4smzXJXqZxxhg3TtB83vlsPsjBbJM+75BPMVx/JxjqewqELfWxkDnaT9ID0qwv4SYk8fWlkR5ujkcYaWQIzlH13/+2AZZNBfYMIKybPMEvoLXAXvOXr7y/L4rNUYlkpi751vIAXjs1U9r5VpiojgCO4xexehqsowhRhiaATRIKqH0p6qoeafS4hxfzCZIRREE0lsB6biggDL9BUraF4gwuwY1IWtmmfi5/BxsdHg6XW6SH1u+xsmeri+fg/610KTO9s/8p21EsvMCjTg6MYYDykFhw/AopUEVmjjQUNo8DD+n2sMKds+hC1DRSsis3PTGq4ZKi4Wyd0ia8EA1waFarkNi0emwCskU7GhfJ1j1+DRMimYSVCLJAK5bqn7kbtR7U+SPkMI6OQNHt7nnvwnXqIvoBkcBPOyuB4YQabnBYlTeYx+/DdtAUAbApRAcf52AphfiMyqh1U0zvIhS06sbZY7OY1+Px4J/KXZ5NxVH9Jpfm1IVtH9O7OD7KkzHJ+2ezrGuBSHkUg8KqMQqG5IzAbd53w+zBkb+fFJXTbsPlzNsg6Hk2DGaJ581/ItcyA8ZljL64qkCAennUyF4VXO09lQ7NYzA4PWjz0XV5r6dGEt1iJIiO762X71Hy0yi32uz4Pq/Io2PUHH0m4NNZUg2IN5DGrObHpoGUQ5q4neSrZ0fpJXzpHCDLVa/Udh2RyzwcmebUKTBtI2fqWrXl+SUCerUwEtOlndn0Ig7Y+FtOVHCbIm02mxhdRb12iQzdYR/4EbVQQX7qpIByY/fFWqITe5DyaOvEW3EQUsH0D9dcmIAaDp1y8T3JxWeC2ijtZ1SnwgOWyJJ8yPiUHXx8zsj2oLvvAZ3E8Au2W2FWDK1GX5oifK5ZP+txE8qIbMjDSdUh/E/HdFSH2xfoAxwIeAB7ZgIQ+nkzW69v/y7RfSuGVJItxhuS2att6jzO7M6lKuXq0lfLUSBfL/LbbVgRao95pwo3qhNrXCA3kRGggDuZRI9lLMOn0hoJc7Y8dpgDg2BVvVbtlUTgd9+D/YGeNg/OLXjPJeTQ+3s1sSgBM36aP9CQB6poNAFuNNrGbtNyC1HVh8KC8K47yes+oUhC5Uw//RGco7s1T6Pe/tsiSd+sfdBBD1uR9oBJyGYKCLZuyOXKYDfYd+ZaZ5Dan5180n+o2FEeMzwf8ldb/x1LLBNz4qh4fNi2F2gu+TeV5HDcRVPCluHpFK80l/V3Mt4J2H1uB68G9Ald3Q1+/49HZbd/CuGjDGgqp5+wFdT0iE/KgUDDx0LdYhuDBAAEUOpOcIyN08IUWiSorNaIntBBlcxCu79ztpEs/wE7x29w+8MpalMCwyxSXmXVFXL/owgKmOrEllD5SAYjxLcpdtnbCONlSxTo5Q=
Variant 2
DifficultyLevel
739
Question
Bree is a carpenter. She cuts a block of wood in the shape of a rectangular prism along the cut line shown below.
Bree keeps the larger piece of wood which is in the shape of a trapezoidal prism.
What is the volume of the larger piece of wood in cubic metres?
Give your answer to 2 decimal places.
Worked Solution
|
= 21h(a + b) |
= 21 × 0.4 × (0.12 + 0.17) |
= 0.058 m2 |
|
|
Volume |
= Ah |
|
= 0.058 × 0.5 |
|
= 0.029 |
|
= 0.03 m3 (to 2 d.p.) |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | Bree is a carpenter. She cuts a block of wood in the shape of a rectangular prism along the cut line shown below.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/08/Measurement_NAPX-G4-CA31-SA_2.svg 550 indent vpad
Bree keeps the larger piece of wood which is in the shape of a trapezoidal prism.
What is the volume of the larger piece of wood in cubic metres?
Give your answer to 2 decimal places. |
workedSolution | sm_nogap Area of trapezoid (face)
>>||
|-|
|= $\dfrac{1}{2}\large h$($\large a$ + $\large b)$|
|= $\dfrac{1}{2}$ × 0.4 × (0.12 + 0.17)|
|= 0.058 m$^2$|
|||
|-|-|
|Volume |= $A\large h$|
||= 0.058 × 0.5|
||= 0.029|
||= {{{correctAnswer0}}} {{{suffix0}}} (to 2 d.p.)|
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 0.03 | |
U2FsdGVkX1+KNJSnbhab7hKK9DdAMVlvuhYRToyCD6uxJ41IL5pho70XMHDCqwi/W6flQzWzZpXFLPh08ViubOvxn/dZZ7gHDv5A+R50YohGrpixHgEV1k06csaY6emNY0UA4ZiCTVEMyuWwPjTD7Jt3LgWLOWFuYR1MC1Inv0uAllkrUAnes5KNfa/45tjMKZXDLL011Q5NIlwPqNyLxtZMKtI7rTDg156SNX+ZujRYWNYDDVDhXRuYS9+/6gXC7YrvmDfDDJb+eGQeYeWTthbHsZUoPq4WuWDSGrXjIf9Iy9yaPL6uznb1dpwztdKnRCuhmQGmrfFJ7avaT+wASzKhOCkRLbn+TCcfk7O65s4axouCAnzK6KYaEn6lLmaWdoPZqNyou/0Daaj9vu20oHEgrq33/4ZPwMMJTtk++RLLexK4lQEJfDCW1zgHIGqRW4JqvqXLYqzbSp1e0J1wgt4DjHc811C3TFHt7CQYAU18IfedJNJ2TTv3iW3cbjdK/eoGYWdUTtcOXF+ltFBHdndsHVa8GzNSrvKZDmqftFvESXaqqFzNfbZX80HpVS2wiUAdXfi8IFjx2GJSIkyFV3IxnLKeVPxdPnNrlA8hwZYqhMqNQ5pAipYcVOIiaU2vfqNwofCi7BUrGxpcxWabdp7VRRddMHyi1AIWUX6XHODBIbkwDll4CsliokVy3nkknKZ6IoU33+ggwFmSOMWU8ceqBcWQAUBt6nk6aN7bwusCgkg+VOTjAL9oTMKiIcFZP96HFuB6C7oAqh0Ts2p9kOAbllnjWSxLcfGd8/K/ZJXo2zZHbzyquxA+x3Q/bqF1fx8jMUYAVBzJ6qWfyV4jb6Rw7O/3lFdMcas+Z6Qy8d4wBM1iwS6aZx4TfxxYmdHREdRw+jIGmYCXqT+0BLe+DweLvPgQIhENisnpCtUURS2yxVE88b+HkMWRHJo/jyAiOHavk8aEcqKjJAnDCrwShevRc6zA/F29RgYg/FODBbFYDxLuUDkE1mLfcGVq90cJwcU86Oscu8umVLnFyjoH5IirIrjjnWCRs0Lnf7HNJwsMkHAR5xyCeERdy8F4uwvxUIDlk/rxAOAU3WlNv+xiUeHWgXUmMh6MU67LNy9iOZ3GjXlX1pMrhQ0z3xLHJAbgD/eN9/UZCuZ8+poequ6zbUVJbRc6O0SIMN5M6E12JCGKPlV7tYZVCOu03KxUzycG/SQrv9oROL1HmZoinqhEePCogCwyXUjAjD4JI2BvQBy/w2QyIvBjUNdrBuji22NAKX5JRfcY07uqW+qprxJe5kk6SW6ldeh/JPYoX/RePOFMLzXTV0VtUNFLw9TLat4/G2apVySAkBJQZAzjB/uW66aVlbVBdbgdmBb055YxNQdgEcI88ZUiB34f1TPCpzIQKAV49Nx9E3WAnCQPi9k9NLTzoj2Kt+5DAfofsr7XN79x5dBRb2EaUU8ibmsesc8YvMB+b+2JDlYgtCepdEKSC8VnboJ/MecsyW2uzWXqfLJFDNlivS0vlpZuZ8Tde9n118o5VgbtJQ9dXEmudUUm3tudmsbdbVOMZDy7XoPMDPwtvzfS1puu3WdvD0CBFcWSzsJqXcSQdE7Pt6VmWXH2kmS+cf0xpDHBxYrXyg7IPP7Y61trMB/E16ZTsrrawS29oqHXqao/1lVRO0DUiaXeSPrC6GzyEuQK4dj+Hcs4Z4ZW4gHTnliSVQY5rO1tLZ9pSrKBMh9LsvOvg5h7QDs5yY2i07Waemsw58ZD0mXZCd2PcWxljuEb9KExIyHxU1noyFDmcNQP/bxUezSYeqdkz7batuliUV2bdkLMOoX40+VoURwz5Pa/hEL491jyk/xEqUIiVhDOqE4pO1556+G5zJya6S4NYvXLmcAhpOFUn1gdKQAHrTU2BHH3rydXw6ahhmU51lAmLThnu06P4k6SdUIUKtw1kB/dDFbWUmiaUeaTdHd/fHGjt3ciPP2ZABT0OcoyySYp6J6djB1atTDykMtyL1byR3DZgnKu3fsJ6+kDJm5e71GcfZaPXKHL9Xm1SjHm+NapOOBeaSPhqonO9P+afNRLdHFrfFGIQgIT9Qgec9p0RUVppHTXj7n8v3+e61D0iCSWVaBdF7WQqgL1IsF33JeoaRPPWNAMx99+WEZrjlRl45TtJUAceZryGUj/Z6XgKeBe/xib7YdRFoUl1P2+oq+XEOVPV8hljzt06aD9t7Rm3uWbFGVHUAaic3rjI+Z6hO2gPWkg7MX76O/u2Ha0YysVg/+EwyUbu9bgSkcpu5MHsCX+jqd7La80iR5ZjuyC1P1JW1m5pj2Xblq9nodHNeLS212XxeoAG2SqaFf3HtQp988W3t4jEKxl6mihOGHSgZwxNZEvaXVbveKShplKEOX3eNoK0/97EY41ldsSPN6IwO+cZ2pxFrgUE4DuHp1xpPMpw2wbsY0agqJWSgIKrHh1kK2u4JBeYGp4PHrV1g506OWpbFmxrO877Kru/SDWPng2ap/xPvZwhshrDanjiViVe+TWSTiCok7AyW3O/pVm99ZFDHa2NlbugYepXA0ny1F22bmVa3c05vKMw2VH+p0/H0h3yM5pPjQZYBjDePHn0z4zcoRp+Qz/ML/5roUh8yVl/wnr5r1eUBI5UmpNzCRIVPNuIzhYnMflhZ7vnmTGONGqzrdNL6Hkp4KQlpbu6GxoR9sG1pdkY83RGyHK2FOPQACwtjDSoxvh2UUakiXQ7Yh6vpoDVijX/3n9nPHyZlL+QOy0Kg/LxZadMs5bKOxwh1TDXye5+h+HV7KCHbg5ZzLkP9a0Ftm2tfD8qKiNZPLfmRsEE5dz3pdulfrGJDydyKRclTyg8tf8l4x402IfuSn6NdfJohVGm4Jl+3AimCpI3QHaKzirOwQ8x9U0pDWxj7bZA32HJ/iesnhRYD0T7moPsYGvWwNKXuKy4jL5tZ0bU6IpervgN8e338E//4XSahCoibKq4w3JFYTlZpQcaDMDzsRDN91QUu+yo4D+TcYFQaXVQNLypiOVD/5TcFChvGwaBjlhSeS9qaztX3wPyAVoZZdoVuX/vnzY9J8SNgP+VmDceUhp6f60Eou7rpMpakQCl5MiU9o066q38FGMCGAqX/6LhCExJpGuc8j6s2dDLbFZB+LvrKtqSr2iOya8xg+JUbK8qedw5OM4wlGzQFuNqRcHfP6Z8XwSrs7YgvGQ5oqKD+z/118v6OSfoxjP+y9PSRb9V+rM4Od5Dtq0WjNW1Sfe1d919ARR6NFp0G68brKAGGOBPHqC520B9DRtPXIaqd1PRDz04cHsTdF7y7QhnZe5iNffEHxXqIUH5Km3DCjxlGIBcHbmaWi8s8Zm7qKBpjwYUFiLTSxncuPS0IxRsHcG90tVg/6CIvWv8kC8KbZ0GH1jLSYEVWakSSuYvbUSVn3YNFq8hxhzR14nHpiGljcgmEMW8l4O6FQS9FCPBnxpjd6rcN/jaDaCdjvMmw28km7Bz/Q5d6Zo9urBSqngWS7n6cg7xKQh/N4Os4c13YdyPIMsW//LIVXiUJuMgrATg6Gm2fqXGPj4nOAMSu5Pt/p86WGELdBMV56Y+Z/bmngL/UR58gLAWcPu/cDJ6FcXCNDsu+PzfTs9/f4NIFSqzaytIJQQx4nDGCRGOQuZ3MdXaWFC4IdAp8sZgfUquHirtegLTPJNHEwK3P5gJkb89k9ZD30wz/obiePRb0yGBfkbsrWYHToHk4ZiOKRTOJzIFD8Y5pFElAvBQAUB57qzPyznQuTIPMY2m5Q1/kwHYLSWmDgU/AU3hP//d+S0Zg/aJSz/k/WOHN7CsuNwK+UNVKe4zAg9lZosdn2FLzjGGzyo3+51FKkGFGIbPRZ+LD0zMa+Lbc2DU4ox7wpBfbGnxqP/c1FuA5NDjL3RPPeItYYCo0OS9iYyYHtQ99jtsZ0XxGNnL2jnxq/VPZkak1H9r1/60zmCWH3zPTKZmlvGev1yJDWindNVMhT42CCBXQcJ7oVyPxHfH2CgRav9nvTvM0NyP5UhfHzhitEKq973C9v5d/jwYLv0kx1pEOQoxMx0TpfJPSkU+CcWxuimTDbcU6JboFgEYLkNJY0ngk+Dxx8gHMY6Ia3yqj0wF+CCZWwRfYfpnu2+KfwonnV297BsIoXhQhT7ygBmmir3lqtc8VaHSPGrkLHSxBn1slD6wsGMETJvRj4pFDH76pn665X0HAudr4nf9yPtmsxiozx3Yn2HdKQ2LPEKkv2oc8tlK9Eme8tP9XpOAspamoCT8niR/jZK0EbrvqxIpWsbza8Ito+RnGtlHI/36giVMxL1S6vuCQmEdyeaLWrC9ANE/3YrY59iJVmEDRbzVqIsLSe7OAj3FdDcbGoUyijQyFrYnhs9WPwB99+1wbcxgoacdEtkfxeO47+eFzjzJmkinRQiiYD9cgYA5Q11z85NlBeMFPSZ/siT6vbCZXXPgVp2l69rABS6itYepNfXb1BF0aLw2uUZIv9op2xjMXEiHGYbocEXOBqraoxu9rv8SVCFrpGEkboYUVZQ9Ke/hHtmWZIl1gkCWvVpORyJi0SOuOX41G5fOPH6JuEY50reRBEASqSbACCsum8dpqUVqQvY/S4EIrYiKZuYgIQufSu/1kbH1yryLuAkO/5VDz0r7Eloc6pY49fnuCVRDLlTkX+XA4dT7N25EPschFo3gXH/C71J70vqGf4mhCLX82Zc609p5RMWi3WI06M7+Hflaq/xw8F3U0bcmxV50lpGowUOrwNclGf8m/17XwoCZWeB/VJQR/wK7bYDGVe+9PqLQoJM+vGP2/6p3CqaFct/lgaS0gbaqOJD4g1DfWg7XhYUzxn6DUuwUqNYiVQBUzzTuO8Aq6YPmUMtVpdfWn6hoHMTq7ebiwQ/pNXfbddo/NJshWO7un/V01aCTGP5nODRnRH4Wej5uK27AcGaGdRu6IsXlFs99TjBLpDbBdoOujg22ZJF2hShf3oghuHoOKpbT5inDRl1gRVLiz0yZSwvT22QGjhm+KkzKxY5lP2U/RZ9AH6TM1ljLfk1DUXvwGbdKHXSPFTLeWWnVNMZuIJJ8Ku3G3UDH/zI4qVLYM6+3/bw0HgI9HapOqNlF3WzdtYTs2eLW5i8E16T99CCGZExwKsLwS5wnN2TWXfwFB8Et+qfyMGvvcY72RU9JrJ59TZfvpizhGjrpjrMv8dxJsG+Q7q1CivBR12ig6mpihk6LC01NWTeciz3zoTaSCzynpQA9KT3bSUmsreQiFGwxKJV67dUqFqjqH/Y2Q6R75KSxn+OD9fjTvZNT+F48qdNg2boLAYngGYt+CK2ANKz4ts1UH4YM6PH6O67m47PR9dFsSH5cDhRzPlxuqPtwHzpE710bsP33pJLklWLCtZIsYCExUCbwbiux/U7kmxw/qYUEkOHYzN0xSan8sA3+IGAb8P7AGRRebRUTQiSypBzHRuV5GC1wYztj5mB0apHmIAbB00uVfridZwdDYDMGO03Y97Daxry+XqQi5VjHtcFGOuiClWDacirb6NlY6/9yk56MATpBPq5EqEGcUQbL1polsV7JE4VgIRXrKVPirNrajcHBFqpJL2WdijoqtVAcmffPHO6FF1nNppAmwXCzv8bLjV8Nvl03bsjd/q+3GE1GxyE3wH8FOASUzYCzc90TAEAwF6AAIxbjpab1zQwV898juPQ2th/lj5Fqk6T9Lw/otuKZYg2b5IxCyWAzbFKTtmH0CwEe+BPPFzgw+3f7qloky4HZ6CMc0y1AcPi+2vixLahelJnIAakKyr8IVPGAh2HmoT9xWnn3prXRxU+i0d98P2pJdTzh0lY724CI5GonAJ5kacu5o77q8QhmAWhQbF7GLw5U4u1Eg+BMpHfHEwOA6kv/5Gtq26QWfy/k8AKICabCgmBQ8H/R2Da3jWZkp3lEsHEb4qFAxT3H9uqDzmpyikx0awJUVX6ttZMIN+Rc5U8kURXDx/EzhwWAk+plJJjqWmgSoQtLEw2YgukwwCHoObiu64NkAHd8V/CrjhhfH3iYQV7LZqj/v6vmztsAEqsJ2IDnu8V8EJP9ks1Hu7wqmaEYtJnk8j/BVUlamOgxD2Jct7gXM1qvJgaL4YexBC53aACIAwODQAv4mcZ4CZZ7Gnr5ngjbKM4VLDqFIHctc6I1CB8RWzzSmhYYWg1yLEkcmV2MYLRkYHUPJvYnOFVRkhfVUHwwU2Jf/Hbd5L6wc4aJ56Q/AgYd2EmjxaQxGebWDVNFx0b2g4cwf4tA2LDVX5c5Z3FrlIIAFZ3u++PkngkDD+nry8E55OauiBFxiChc8v/fpZfbTomuJW/w5ABDqAqlPbuLUvhywi5gWbZLD3KF1ivS9S5bibFYcLEO2yzVAMyxfTFdoBL7lD6+82hl1NwKq0H0zmJtgGKtL66zj++0/1xLXa0KHJgyfWBP5WeYaKECwmzZcF8BDoMcKCrL2bx+wbPJqhoJ5jobZNw2gflBRLSoqqjaOIDBn+0zTXc+kSkSfg0GdHj2steeR+hMIt+7rk3ifyNnHQvZXf9qy947YfVSarKumivJx86RItw2hPZPB0zwXJoUZcUQ7Q52FSaivjSv4ykl8p8RfsKQ1383jolBfMQZfNBRcFP3bZgYU13ebmQH0m3367s58fice/uGich5Xow7b6EiP8ZLCNIZmpvVRNDrmMGN4uPtVz5I9zVVYqvG4UyT/9neyiXrSiPb0P4g+3xpQ+1roknpz56XreNZSvE1Y+HRe7OprgFY/d62EmBEPe3Ze6cdwMHrbA7etnCmYwexXOvsTHkeVb1dOm63VRKZzFFIXJwMMSGCoHM3VziJbzR0GNbxv34V9dtuXx439j443hjOsdk6lgNOLcvy8jLmO+Ie8V4Z42vHqhNNLGf/Qfk5lJLsVJAbM7u7Y/7RxL4L0SI5X86QJrSJGB0lAt1pPKCTrXCU2P/cXN4nc0xEpv9nfn8taJK6TuWJU107+X/bYkXjlN7wCin4G3ra+bbO4oQRGJ5Ilg5HE14cMRYYNemyBE7Oi8CJArsDbCYMTInRPqz9WnZIHhjwAla+psn9DzyeVCunE4DMl8qYDV4kP6V26afs2AO3r6xpCL8DHxinDTRS1T2uFL5DP1BjJVQBBD0z2uH/5XweVbDIXcV5IOL9h0HcHIK3qsq+j9u5Zki/op5O1ZJ+r0j4OXe0hDNNsaTrEzwwOLIX9QpLVzEWq/swCcd4ATlzV8urbNXPbhF1Z0wiItwI9YvoevsClNHPlsX81UQE3lT43dVf9/rzvdoED20Zxtx2+s34dWUgb/0SYQNTFnRvMWSUTiD6FEQCzGgxtxe5Fjx9fYt/5Y0+9vas1a+llid0V0a6n/imYtVNjJq8ua7urnYDzVT5pqpwAsLHIY0x0nT1MdCb/gIBCKuwnAXHUhihlWjC0m9fVcMSx72ehMNiv7n2LvSsW48GwyVlYMc8vTOzu2612M8qqVkU/ejZJ0OmTQwavzTgdS457TBKRwHwETJSKnVPBQRY17b3OwLCZkvHrL2GORwf8MFaDZ7BiaGV6YPg6QPUoJsINGI+CafkkG6v4fCMl7bah4ZwRewbWAc+0JpicF9bIrkm9m1KYUFspo6KsfjWlqOEWB5lKHQClVRV6RjlV5SWhtvAp2tgbT3ql0HjnjGD528XqNbDL9kny5pYusB2b32NM04crC78yo4HPIBVh6Ab0+kzlXVDmK65f1m6+oLsRkLrG/5z8XRortI1AaH2amxQet+CPlr9sEhD0Nymgl45nx1LNDXBHBLA2FbNxXy1TpwA6nFNopBf4lUv0lacv4X/emOUSkb01PhHDHALddEQ3ZcpMdGcuEJBxskYVMLd6pksplk5QkNj5FIu5Ly04xx9pLZftoaBOGghXGMiicMV8KEbr0cq+FhnJEhLJEHoLiY6UOnFhWoUjIzrLt22R9duJ2Qry6a0ok3JfxEYzikQsDF8wFBhRVNQVL5PudSpJTIVznZiVrOOlUd4BKepvErmcw2oZ21yWSSAFibq5QCqEqwzy4yzLcvOHyuEgp0JzXlQX8nUaw2p8j/+/I70egDw9yNv9oIJUiix2dYpMuOdtHREZA86gUANibVdYIwW4auQu/ucMhquT0zaDh0qw1saxTkWEQbm02WPtj0Ll0ShplgGBTqujeavbVBJSyWMwAGS+XdD+XenqC0CPq1ABQg8Zf8BH4IEwsGKUEFuRcw7zHZmjHcMnNzNlMkRzYxDudDOSMBDED0nGjDKfrVFIY7fUwkEv3IG6R8HoxeoMIRDVRmGTWA9U0a9av1XfdMnePakbfqEQ7+zHjyVKDdI2BRedXX6knplbV/VnXHy/IXLJDu0ftUhchATBLbvDN44pbYN31AX2hrQRp6+Hwfw0hMcy1fmiZ2QPtYZm53P0dKOu+cQqMg2XuBEAD+2QGIf8Z1oV80fxUZ8ZQMZgLiYQZEFwUV3S71Mn80osbV5olyy81x/S0lJcCTPbpGlZHNXHWNwgO42cIDwmcNuty9uVpPa/hdOGASoWc+aWOMfRxG/d0jYXIClsO9YoeWCbVJzh9AgTjCZxYj5Sr7O7EcV3FB4eZaPTlU6ABQ9+VgOoJz9UszMMY9uZFXAfecS9c80NOMRrASiW1vErgSk6Hm/KZEHbB/WHAPf+KTUWUgYRVaz1E6wgRpNwR0IKciwL0ZpM6M6SXLex6kMAOR/T/tmUdDjbCI1VxhT9OxDfbPoiIy8+pcYdYBLPZvxAAQyesjFdysQnt7dGVwVIo6AgXMlqtPErnA7yD/zJ4rnER9I/ULtNMacuCdKO5mUHiV2FqkEfII6eXUu/llstV78FBIYgi8lEEIMnXNyHjWEujOf7oACAFlMLHw0I88+Doy2TSujkwLss5wdy6MQleU7B3okil1ao83/zPSGcM1crKfZPps5Uif2JeJqamgRAWBgCRqjOvNaUZEuhVaJZnifjDqj6mQ9Ay93KH2tgzlJJmGLmmPyIRwsBP8fis8Zrs7nD5qEcEyuMq8jE17AE3ALZaxeEr10wPQS5OhdlKbpURZXJusY3QKmqjGoMuEoK8N4dlUKGeLf1gGd/zLKXKfwzzjOYnl7Mi4/DCPygBxA+gjLa3rhlIsFAap+wd0JiasOnA//fz+y2o8hzrUkTgnQoAgBMgKdc3/TENbCPVPEQrAHZEkZRcvikXApFOxpMQ+GlsdOx4qmJEUNz41PznBdGKlgNszmEYOb4vq6b+JEZmHu7BoaZ4gijHxMDLgfHg/a3bWyLDizM6No6YJntG+vWgNcewmBVqswd/+LD6fC1AwidDSTwSfEWo+MVxy8jcDuZLvDU9QfLLqyCxx56hbuD2QWPeB/8TuYfpmZSzEPzl7apd410O3u5XRU9rMOkw6Ikfc2yR9F0eRAkIu/SMEyxz2gsBpMOxJWJ8ygLY60c18EGS4oSIf95U8pgkcSN14/9G3fwCIi0oG0Eig8RDOcw8ZFA6e84Gx+jkQ/qk8FvbmC2PkHbEfV3nRVPOGtELgZMKiQWDKWmKnC+xe47LbOkpjqPE1z9+wL5i7iNc1EnT19DTFTCbxKyZ7Jk/wcGTI5CwAZGsqK7l2OsXP/VIufy9EztWWCrbyH4xnmDz3y3bYAMVhbvea/WQKydSRUr4krv2Otnm3PPL3CMwWX/hx0AZ26Jwq+Ke0YyNhAEPQ1XLsIsD2/QJaJiVw3AtW6FIsyiJReE5Donv3n8InM8LEfFFiLw3J6aF3Ku3bnAoq7Ee1aJsxdAMz1rDEj/YMuLBiBsfkF7Zk+GEoIUj9Gn6SY4FF0YoysAYv8ypEtkewxQbQ8h9MR37YXsZIG8L3Wy6nieqmv6lqAIihZKy33iybWXQx7gYOZW/szTEpP64pI5mI/hsEj63O2zBzWPoYSMXKW39YdgOwg6s+pT7pkIPTZkI06YS5o5Fdf95MNOBKPVIG2AziVervmcVKqB5B4/V9d5gfW7Rw3bsBlG/MojEovuosMhH9an/Xtq+q8gI1HWMHfsBMuyzBlzvfXUIwRpJzb29iECsVZMQqHUzpDVmhmj0JadWjGzC4yJkmS/TyCo6rN3+fhLjU2aTzVJSIJUxtiOgxNCQykElZsWCRD4qhMpkFsaaKCSfrZanBZ8XUJpPmRqY4PePCYf4hHNez6VbIeAG4TndAebgmBkGOak6IKPIl8eQfEa1swQiMpP8SGZSxTSfgTJBc+ozJqBOjwyQeosZG4hrcan6YvGEM5xVLn011JoVhZ04N6+23fjXrxcXVj8jeVwWIy4nH58mCikGfqIitDJdu++d92CJAalpAIfUv041AJERAPXYuJaB8x3iMOwfTyoW5CBKsl9kHhIMIFuGfjuQulHBKFiHjThavgSYNM8QhYoXAzEjabVIKUGLbaqyfEN4+sBdxbMDEX5lwKfHEqUDPELsyKLHaIojpfbkgOW5Jn5lzns/mb7/ZF+H8sc7N1KCRhVK5FxwFRhqxZeJFxyCRWyr5ZrOfPU2Tnvw9Rs0Ke9mrYsOEbaOQc1FB2oHH58NlyWco5axd7aXwfRrY8Ray8jTjO7yhHGwh6hzCNgHymFmuFsqLKlOQ1i9y8g7UwP+Tni6MMZQSeSWfC/G0XhR8vOQQXbES0QIQLisseFjfp/ObX41Gb51wePOlPB1ZjmrZBwdwAZD1GMlIOy4cKuNPnaWsWMLSPzGo5XlP23Dgq3P2I9rtYybtEHKl0t7MoHNfHunDI7Cdf+861vhA8+s3t0QFK1Xt0Ddyj1sBM8AimvIddYRY052u+wH35X4jkyi/PDHHBgWHjtgv83kTU/2zUK5nef2KiBql974Hu8eq5pRUZSUQ8YuOR3tiS1fpctB9HZtdH5Nhf8mWlFzxSH3qlCwmQ8uYzHAP4r71ZGk80QsyKEQpQYJ3cC90ggUt7t4w1AIADEXKkwc8OrBkFBvTDOA5j5483NNqJPfQ007+BsGqRR0ALjSV0cw+rTbfD40mke5ufqlgPcUoGDuHSsGTubnoLuCHvjTL83TXX4j8h3qtsqASjrxNsS3klXWecQNtiZ4udjv1pVjGbkumkBPEUO7Ruyj3HZd8b/2TT/CueJNlDiFswPBBKM9wFBB3qlHKBjSgoQXkmaOU7K+urYe7DiX2nm8ogZL8ug4niFmhy6cd4ZJz+b6vEtNGhQrh5v3ILdKOmGv84to9vG9TtaFj7QglcdEkezwYxXJ5QEvXmIqlcD+AAEdRGCxb05JeHxA8N/zStWhMLV/eN5yAflDxueGEU8pmHv9R/PNxHNRcTqQGZ+1OKgDnTTR4CyVH89lfHimOq0xN4HynOi5OPpxWM2Q1Gw/b5b3I52YTHILy2K9FTHZa+MmkiOjaPabx0ZveQbcCWWyq5/oXW8NeEyKwex23/nInQV3qYGKBbCfdnKqJQl7PoTLfG+u+iI6DLcSRdAee3EyjxDOT3W9UqM5mFC/THDdK5P7gApubryhsErgViDrtfCfvdB96C4Ly4Nww1M67yLsQ6fZl99I1tQP6aoSvP0Yy6xyIPWIuTn+v12pXKeFUf0PK4PvWRWlvloiC5t8ETZOYZ3wSbfWu4zS5FLy50KCqxUVJJ0tbji1wO+oPoVcQdmKTkU3RCGMoxzRK1sQEyRYUCROqZHnaJJhyZZ8/3q52SGw3rnZcxNlpc2477wR3dsSAkW/lS2FGeYbUNsDKPl2EIGkbaTkhYoihLAQeV3EoQR0X3eH6rUCNhLbBLQL9MTzc3MqkN5csVrD2sCsuowiA5FckU7SsbvGGmcYAK0s7FEYTTSjPqOvEFJKVX3QkR3BGtLUAOBzFSWWHn+7FNtx8ZHvuiqBKI4Ip4ZSid1tY18QhQyhaO8jMBW9faPW6OxY3EnrIamjpyIRrNNH+UpM2BdmGL0DuyOIWsv0BASHbUUtA
Variant 3
DifficultyLevel
737
Question
Carrie is a carpenter. She cuts a block of wood in the shape of a rectangular prism along the cut line shown below.
Carrie keeps the larger piece of wood which is in the shape of a trapezoidal prism.
What is the volume of the larger piece of wood in cubic metres?
Give your answer to 2 decimal places.
Worked Solution
|
= 21h(a + b) |
= 21 × 0.35 × (0.175 + 0.19) |
= 0.063875 m2 |
|
|
Volume |
= Ah |
|
= 0.063875 × 0.4 |
|
= 0.02555 |
|
= 0.03 m3 |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | Carrie is a carpenter. She cuts a block of wood in the shape of a rectangular prism along the cut line shown below.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/08/Measurement_NAPX-G4-CA31-SA_3.svg 550 indent vpad
Carrie keeps the larger piece of wood which is in the shape of a trapezoidal prism.
What is the volume of the larger piece of wood in cubic metres?
Give your answer to 2 decimal places. |
workedSolution | sm_nogap Area of trapezoid (face)
>>||
|-|
|= $\dfrac{1}{2}\large h$($\large a$ + $\large b)$|
|= $\dfrac{1}{2}$ × 0.35 × (0.175 + 0.19)|
|= 0.063875 m$^2$|
|||
|-|-|
|Volume |= $A\large h$|
||= 0.063875 × 0.4|
||= 0.02555|
||= {{{correctAnswer0}}} {{{suffix0}}}|
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 0.03 | |
U2FsdGVkX18LFujsD+Ee6/W+AVTgkDOjRjvE3iklvtyN5e7uw0mh92nUAPp31ewBmKo//DT2B37e6TKolccnnypy3YuTVV92kTMuEQcbtzQQB13tsH00BLjLO8ZajqcVwiQmwB9zUQcWcJpqhQpgYq95lbJetxGLLR1BrRV4gPvmlguDW3GNk/CeT8E2w9l8yLwpTJ/cxL6vHOSxPwNT1KUEGkJ8jLdsOWrmS+lWsRAeRSewgk7NvfnnHAXbDv7yFFR/c/L1Hfh/zUkMpAGlLZZ2OgTZ7SvXUa+AUgjrE/EhC3Fq1/CPjIfhyEMoIQYn3AKBotKbiXGWiBlFAp/+FhcL+VNfsQauGqamzjpFC8nFgUl04zX5lPHbcRTbcuIBLEuuDG07TJDF4WIlxoH/5FKqNrK2krIGqWC3+1hU0NmyBMBl9Yfx7DYwAgdDQYPXw7VaniNNhQgTE33jxijKfNjQkikYEiigQ7BcSkrUS77vc+qQxlMJJWoPwK8kpFLytjrkv8Q/Tr8HG4Bdj20dDEpaLwASMh56c2kJjEap2NZ7eXh4bvVW4FBeUiLLDAqcTqQ1cEMKWkL5hDb4Njvc+CI/QG2/wiugA/JF/VuKJ+ZFl7tI5FfsDSR/bHbTYQSjSDJwwgyI/Pvz/Mwx23Z8LQURsQgtDeRLlqTnWZN6SQrFn+5vd58BMG5xes+U2bXSGn3gJtByf1aQT4W6tV0uNZ4nrkNVFTrABJEC9yxfc1L836gcPBn1GY/K/EUKvnP+wIZ/1vOSqdNHfJVJS1Sb4+cueb1ZZ8CpkzAAJnXT9ZQ40sUcBtEWwp0A+HErxF4XkVOVlagXB7nkIQeTaJSX/cXs0ZWG+Etd6pEYgjCheRETvGplood2dr/MmOBdj0Afun4OriuXUq5KBFgYOgjUt+aXzbD6CQKDSzPpihV/RKhCCYum6YG6n3fJ+/hvsljisEt2RidWO86ap1MjDY70suNrhYyP/YJjPA9JcBlQU8b9vOPrxxISmZ1926eL94KKRNVqTJmknfv+tkvHbS4j8eZTRjWFeAdQu3hBng3G0w0Iy6ZrPgx8rN9YQSVYzkk09aY/hYCXHF0u8QhTd9UEMoWdH9i6CXM7DEbuqRNE8H9ESr5qgt25F444lJ8QCfayB1ysKqElNh877rfIcxCl7hfc3+JMpFDEUdnyddzuNETRTJjEmmN7t2zjX7OmTOvOHuM/mxgpify0Y7Q8oyQtbbwjbXZI7J7fj31RgEBhTwPrfJAuF6rUJe1EHcNrqmSMrgqvdsrOiNH9quwtw9ZTzcOhE6VFBMingtFzz+r+F0400UYDlI0nYnCOygJRyfnEoZ42RD++GV5WsGwgIc3YHpMiZoseNREVtvnoU6yiehkYCS3pE9ihrsXI1SrhVN4Eu6hGO8Rh8Uw1avU1TsraPZOe2gRRFgQy2D1qDQluTRmOB3EoOkf0vobfAg73UgGVdDIPM8aTGOdOZc/5gE+IRIwKw1wORvcElwayvDEADGJbmmxrnWErbisBDSYAdxzg79lSVn7tEWJL0l6YQK22OqWvbFmj0TexM2bqxjXMVM+CRXHXQ8yQnoW39wmnrotjEBNdI7Gt8EwBx/jPJ9tQmbgSiu22YgabFaDpXQIGfirLyJjUWlTrBonADb4EG28bFxU0cpjk1tu6dLHxYTojVTWLzmmx7nwR04NDX4hjEPnhVJ3bhB0ApdTaAhWTkDjclUaRf2p5nLyOueMa9ruZzAVa3ggsx+IKA/xIAvc0NJtDsdrmz1fkTOr8HbS2oyGoALJXrP17uHzGxcd+bTEn7MLziKr6+Yv6ZXBc8vY/nCc2YJTPPRul+Xz4YvQao6HA7LFGbIHzJUf+pHTECkgZ8dKjJ7ov+wY1GBEhAqxyN6XmDUvHW97kyw88cOVlxuTJpR1LQ19wm9Qq2iV/FkRnHilyDfdbgv+0wN0gLRG1x2V8R8DVfMCaRJEtfQoMhQOEtEfhSG5pj05qd7fssOlBlF8aoDL7lPiuW5vPYo1HSsF+q2+ArDQ07DkDKtIw6e3KcNUOP5zdTgkc4wy8Bgo13twufQ86Pk4zktHtCDNwpTuSKDwVt9+g6nUSvQNagXvszZKQPBne0Cf29rj4ZcmECi9KUVne1FuyU6ypK4uGs1RBc528TQbiqGfbZz9CHzWROT6OBn2C0HxwfRKrgizOwSzSGlOIEMOPX8bcLBm6Cd3wJdphZ7ffXctBcsCNf18ZZrBuPyE7e/1XIKglzl392sw7jWoiEk+0QAL5tsFpVlQWU9DYBsoMBcDGohmo8DY1bQew6pZ5r2OZrk3I1+veITq48CQ6WIes1mt6GMvtRJGisCrHGmLXjjE0Nl2OADnd6CaujDzNvQOYKKNe9sYQDM8QWx8cqOKi0OpcWsHFVw3bGG2O6gysTmaJc2/SEnRf45tgcBrjsLoj7xWUP7hDGrRFD0nzibUTlxjsckI3G6J3at/5melrrVfQ+qrW45DD4oofRToSdwB9w+P91QScviGCNy+OlFk8lEUuLojdOWZC468PKbtkqfncgGjP7647ZxpCcbF0exifzTVkqA7G42/4SkDvfNidI5CxmVrSM0NlT7hN+pFl8S+zPiwJabiWfUEDZM7Xj7dcObVkzbglB5/z24YfFvl9BgVMlxdUNbMVgHs2lLzMwP9U5AB4aYpZVxFU4fJwuqncUCH5ei64rjLAMH/qgeOXgeOcJKWqyDtgm+ohJB+ID89tGNAAOqueM7hV+oBf23McFzyyg6Yc3tdCgXyFaRGpUoQ9v/NCWwa9Phq/int3dlCU+0OaiUnAM14n8UKuIYpBB/klXk10iiQWMUUX/Gx8BkdRCoaCAcmhvBvttH5m2tRNyYsZP/XwgCMql9rR1ZlPmagxxtaIGMGN17m/rdEDKAXeQAv7fHDg1LtNDqv79kprs7jcKSLqSqkx6WJYEuRKoNZAxSelBd36JrDSdEiR6LuiNlrkkeJ7zNKd2X86OTHBWlDCOGkvhqw2ThAxxq62bTegSh5ruyK71gwsEWqGjKyw/7OaxzDxqQ8w9l8UNpqMUrdD8Ox6Sg23UZteAf4SOfw/0HopzuUDvOxymHNdzjIjp7wxNVaDqaXKQAaGIEC6KDENmEYJqbdc0eXAfW8a6odVR04WoNiyHqHPSF8Ok9nY4s5yBPD8K51Jyldv4aLeJs848zV1DZofKPL5tYKWHUwPzkTJnfBjAwadUHbog+UUoIDOkjEEIulUwTwiBeeOMzdM8rzERWaBQSfRv+fOj2Xo8W4WE1toCKz2V1VwFyOG9xqFw2uUB3uyOWReGr9pwIUqd0gGgnKMrgr6cirJoMXO0ZSOKgLHKmRxCoFjmvvILt9/HItYCai02q+HVaQncu2fVCO3Lzzt2LdIsOSrdjlOnny8c5IbA/bowIitEc1cR/GJEb2Dm0W3r/oZ2GEFXwx1dojiNLWnLmQwITL9oU8U6ek+OFAn/VpvHG9d8J1d0VPOILLzC38Y6YfVUdC+Xss6DNMv8ETqPuQ/YsXrgjE+8fW6O2bqhKIZf00MQdhA8X1e8521Xd1nbaX9kvogGGNuyAjMAlBy+eadcXuEZCTDx4sqnPxt1qcXDAvdluBKsuWgZOWZusWJRSP6lDKoHJURlIzMU280v+VS3xfRf5W67UgPkqE4EiOMzUCA3CKHnG9vZMiEQgdgMFEZHPdPslFzIxnweQ4G0LGOe1f7v7Vac9joY5kHgqMLlZn/cXWR2/MMj2nF9T1ohBHJdnJVt/at3PEvGNjhgKa26PdqaPgsFqoA9DrD6i8W41BWMawDHYSrfcrRZl9k+umkymb/7PipKlD4kRfs9vkftIhcDlinvrlLHAL3eppUM05jEIHMhsuxf1ViarPwF6v9xVoPz3urLA80f4p5AVs0OJ5RD0dLt1sx09sDn/ePmGVbmOrehaXGljIn74f7OawJnD2djIdu+AsrlU0ZLl4IxGDJtDhKJVaNxEcMfH+gZdZIqDoBc39b6yZq+hkV4NaFMGO/1g6F/DrJ3fZFeFiVui5dqhVEMJ9baf69is6iqUZVqcYv/nN74G8ZeHrM6sNyu9eq8IULgcaDuwVFeiBRedUNXC+xpvZm9EZUT0P3XD7VEcb9iyIew616kcqHhnDTNXWKKnX1Kuns6uW1UD4d9Y+elKdovlV+AvKGmykL7Rlz1VGtpkiKhBFmsZIquhwpIz5LqlbTprM6cqkgVFqLJo7hDFPeYC30fbyMurnm5sMq9N2scoWVGSvz2+J1/4nxpMnKXcIrP+B3U4B0tKWFE7cey+UN4buzv1UebS40efKcbyPlyYmqxkUXKY7rLCjppG8nUDgkJt/OuMK/YX49EtE97JSDCcozX8CMIkC/FUhs4PxZBQ8oAQqFZf6ce2odrz9BQl4GeYElp7pMY/Rn/NiA3S92C6wxSVuxz/fF/XyBIu/TWPTeiBk5LizFfh+AVgdWc2TfjY1bRJrRoPt6cyGDj3VdjROBe4VN26P41aiJ+rNFZhE2JPyfLDV9ECQtjnVZ7I2/TG/2RevDnJU1kyWHDOSTOe8fKCF1JHSaxxzEYcupFGNwBy2vsC+vFfJizPHieXtbspgUv+iDP6guKG1l6W8omFYQSzWJygMMeCBy1qSFvSGRtrI1J4fs+woEcbkBZAbWWPXWoFIfdqKBhFanrI01yDshwFgVIJ2kEPgLy1uObIgiGlvxh2kX6GusFM1UTvMqgfdrgPpKJqv3C7K1rOxygB9LxP4Ot5bs0dG/hsh5waKQiLudxZCNeQ4iQU7aYYLOsLr5KPqARV/tehTsHQjDJCbioLHC+htUnClT5GlXP92BuoRfEireZIN6IxIWbopmatsdL2R9Wy3ltlQ7qeTnL9g7W47/thD0/8b7MgYkeFhUipEXLt3jags4BYLxDwVEB3xHigJ9swVFWfP2c+uBFybcOnSQpj7AAQinwrxCV2YB5L4MiDSP5yvL3MexGqnacsJ7eTwg6EgyW9eT+V2rz7yStJkvitUfbtrClzUVcBr75BVtChpoJ04CNPgGCTEu4vlHkpqME6AQBb5bNHmMqXqaUSFcmlcS8UQ+hS2Na6iA9LhteydTL7Cwq44qgXm3JjKFewyoOK2NhtA4RjOP6s1FxhvqKh+qRI2siWxP8kgujD3c0qUc2tql7xSRvdY7BK99d/Y6ELid6h19fk0ZHqme1gEc14FiAfxT5U/sp79A+j/4agDlaOKI2U/Tu4kDqCjagSAJ5TZNU3by4VewrkvmYUW++UgUtdyFzkQa7+Tf+F2sozZcS9/oeasQPhh8tl0fNou4f3bwCAKHgsWhxWeqPpOugHu9eCLTv8MGr+4fk5V98UYBIJMGAzd+XO9XOyVsrG8Xi19z6TTxe5H7JcvxEEDSFzcbRhNTQITDjeSc5bNYpgTGSm/9Gg6KAvoHSVnPuYbraYGappWX0YqH7ecxB/V91Hp3xSoasjJBKa5eQKsGchfLR2eawHbzREcdICwHcbDcDM0Xy7PozM8bTSLh7XK8mLKd0/Uh40wC0ZRSdD/WgmRfKbi6v89hUoPqouErIjzov6N/m0hZF/jSmLEUb+wP3BjNloZWp9d/604IxPX5X9O+cu6SQpHjU36ShefIkadbHeCf2S228pbRxrKEX1ia7b5vtrWpWKMxIR2QIzDt6wjWet2dzMv7UOSm15vKRHM7B6vc29928G+p3TcxQVRNlNJeHMUSK6BxqDBZYpFyk0DJB+RnLwAYll5s8lb87ho6XwcE0pSsX3G9Ag62WOBRTuj6EvZuCvvpQWUkEUsFMOWeDkMAyJhKylKgCUdVOQkyCLBZGp/kbbR5ciFgfLCTdiAZi6P8E78MnARsBAtEjjuCrhu69YutpQvX1ahMv0Jchehu8dxUv5aDYnivdhjgBSHou1X1BLnYc1QzN3tbv4sGOIah9witAh5hWis4oXd6tfWodvigwpSLH/SSCiXjtKXwRZNjY6Z62DPBgrQPqGjS7HTrRN1VI80+9d9zJ7DrISuEb2JQuNLeZRYXBh/nMJ0DkRfjzSghd9vYWtTc6Cc3egYPNh5X75MySiyK5m2F86wP46K0wXWs9cZJmqALRTQoeTp4Twd8kSi4k/VNqhVi6MUOD8ycXEBng2ffdw9L0G5PhSscraU1ZQF3iEydGNLfCMtY4ATkWIFVgahXvHhd6QqmSyraIf4Te9cqvka63RSWaabo4i/Mchx/m/eaytaPHWRAojDLWo+fZtCB/mnsNx2Zzvi56niPDE/16V+a5MKe7P3V/UIh9ucgYqHTkET901UhgwLy+Vx/meMG1jCH4h2O2U7hSE7R1xrZ0E5DqhD6WCkUaEzkMt/+ZKTVoog3yIm2jOxXyHMISsYBRBHeM6xSr+tkTyw+RA9FLTbPCOQpLPIasTBIDCOwxNB+PsNjgr8b5NrBEdRPLMOH73JlXeN0wIUO2jV9ukRFV0E3Zzgl2hANJ45R54ahjrtGs37YsGvdM3V22Ps3GZ/SjlMhd1lwUGwJKhUK03WECR5FHT/woXpAhKHSq3crGP/BU4DEN/NC9lim+t7y5kdZctfVg6xHu9b9v0ckaDjiGPKjX+lDYLtLlFuYscs3o6Dj4UYRSPzNQtNHQp5ge1Bumuf1vVYCGQMSBPt2gE29GmmuAf5iK3ipu615exjwlvv2uH8elGL52wexUs0LAKbG5O/E6YTCSZsE8PSQC4DmO/8mVECKn4BNwCLS7SKsqtXGiB9OHn6kFbE9ydP1uP1SUCtM0hcneJ1SAabtFMfmmpi3E7OyQbr27sb3f7YW/MVvxgnFRi3FLmRdRwsBAKrkwVs7D6NNca8+I269iE/KC/nHpVqksYshM1iFvE1bpe2/yP7ZNEFUH1+yd4PoNmrhB3xKxu+/Z7JNMOHJDDEV6fKwQPbbqXtEYixtOrlh3WwtJn5sQc8vyQDy3UjAIwLzBA3KPHjMcKkhXltjWdAIRWOkOLsAyucEJDOja+XM5HOH73YKErxwMi2yjr8X6bqafxeIl3+g7s3vGQ8DWevJN+idYju5R8d2o40mfHTYNqJrE/33mW7IGZIIsko9yypRDVHeyDIaec5ijrDfIR5cjIpD1m5E0VTgVUYUev0ElLmauvxoTHXFcxchgmqAgQ3phUsmUOvUDv4yTmWC0EaS1CwUC4tIe8COeH+N5kiHLfoAIwyWNwVD7dRPIU5KkwClY4p1js4NUySkJdUw8rP8gptRfcV2PyCYGAOcw6MmkQOOwwKtwJXNcowTajIbguxnF6JDXsRvhLcl/hmGmrWEIQG8ccTooZRJzylmM+ldIAfnEtM/M3PiD4pxF1nP5O1IunC1U8QwF4+u77lo/KeIyNE2KQcSr+15EmpFURwpMY6gIELMMgQZkn3z7Rvel9/jxWINdXf1TCKXXKEWm5s/dsLjC2iUGt9uKhWMuaefMNJWdBiy5pZzbol5zewg3wZ8LVrdhBslw0w0uMjB0hw2Mah+dwBN0qYhMhaz/WL7Esv8yIWsFbbPeHQZyqomqLdi9UmHUd1c0EsDH3M9X/3ntwNLJDLWl4mYkcYqWSsTaRaMjHBEQIf+6wATqSZwUJp8CvoMsZkAAGGA1B/Ufd2Sj2Y1v5WWpjRcN1TIr8WZ3tZrnM2hTIJWNwQJMTZhAfjL+7czWH/vi0BI1ec0AGEBBYQNkm1arwFn8t4CpmlJr8rKn78CYHwtXTOm8onlZplFEZ85PxsmlGVFVjuSAXNV1pACUAIGsGYB2YGsPhCEeicxXS1URUN98leNA3wBRRfVe9m7RwSucujrwf04e+zxxvxLLslIHFfgCPQCO+qCkO8eml88+dGpQZpu/9IqTkqmrvsO0k6BP5DQtkU6ixFK+pDOOulFY/PuDhwAKWTf7zUmSwTOS2ZEMdmbArqK8jqufVxvwi6Z4LvWvqzy1977yuQDSAFcsMsSWEckej0j7uCDQLXv0suThuSzZYtgX4Tb+15fWn4kSzcF7RPMHmmZBZWMW6hd9aFATrwqVZkKunHgyE4XdJ+Z5XgGEvrIevAf9eVUGaRsN1iMSF1ReqdEa18F+uS9ECf81sLTTL7ixyeQMeb2bz1fqsYURvyfFGZ4UwP+xOcZCRqojQwKGutkXR+e0RTjQpXxerghpL0maJ1CHd6+dlORDjYDyTMNoCqM2I3kp/sBua7XyVkwTd3o7dXvsr9e4Z+LqrkywJLuMZcZJiNxIQvogzO9ncQ3VYfHh6Swg6fMUso+YVSVxKv+IDBd+gAn72elehbR2SlsOXnFCZJY3Rg6vQ2CoRFPLqJzEvVVuN9lNnxbhyzIn9WEmk0zaBVHYuQfGw02civ2bLaCpsBuQxGCsYzv0mAcaSy6/Erd4SVjy5jCh64qtR+qpQ87syf1z06/wQGzkfkOGs88YTlRMbTcIL9ktTJ1gW3X8hB49GfqXjfj6kfBYPgbkeXUh1MQQmtBV1js1nRoSCoFJb0K2Bhpe0c8YmzIikWmWd8L+0ruJtLyj/SFcVljAkF/4BUcrof392bFvtyrH+5OorcpZeleUsK3uZF7J9/2CwW4vmzX8+tO4xmaochF2CWZ2qwY8BP86H0uEwPv4q60WYiBpmLg50OBo+SflmeDWjDnDQTvSULFIsRTa5vzJ+mbWwZUTNV/UfE7G+nf81SyYfx4dGy0qyvY4ErvTEDe0BcBlxNPuIacyiJe2K0/LIWXy/eQpbLjfNM1KFwXFLdLBPdUCc5duUyhqTLQaYDdSHNyen9rBNQw5YtlHTcnSZMdjkIZjf8VsBTdDn+4J98Ql58luDomXifP++QIGYoM9f7go8xk3W3+FgkDyPtIz2oTDxZJ50zTFq5EI7NG72ZuMoqWpwvT/e0X3/b1FmevpG9XYCzhqyBLRQDTvsvBCY3d7EBBWIfECwEYC1g0ronxwnmQyfVFiZJcwbXVLd1CNMiV0mqBqIFHcDl2Np9Od07co3HdkpESgYzwlH2vdDmZ4QKPbijVh+WRkE/hQZHd2mA/WMAB0DK6D5n0Zg0DQxMR7WDYdgX5OaC/wrAJ0x0JSdgnrpFmKR+tyNfh94CVKO3l1ekc321prgjjrb4zBMEhxkI+qeeS/TNwopKl8EOskroxADUNm8zfPMWGl13ZLkcLly34p3uyXasVFmoQhY4slMN+3b8ZzWR593EbEXbNFHNeWeoZA0l6tdi+9GhiYoU3X1sdJB82/JevEbk0iA/BVVdQz1QykZg0bn59/7KpEVOJEQg+qaLsYaFdOem5WIJmsVwFidEJdz2Ju5mMFWA8OBDuRBVHXjN1EFaF2kIyOdF3v/KWWaqtsf0F99QJF/SBGnmXCRdjzpUQN2ktvtRk8s9UZbsw0RMYRdpwLMKDZk+MxwoaLozU6Rwh3GMsrii/iQeJfFAigcdui76a3ULdcXQhAcjzpT7jBzpZmSe/RPfLS+yllaByZ69dljCck3VmlS9VsMK0+qiARe65Y7HHSqQVDUpOOUQP8MOmgWHYuQzKftwCDlAmAQfDYhbaKQtiZP+ZVNsx8zI4DKGXsd1OCZvIC/fBgRGWOoNF7zPMmgXteF/xt2kshCwIUlBqbumPawZwHQXyQq2wlVU72A8ZMFBZFO9213xKuWIVqaYoPYhGj3eVWn+nofyj8kFN59AMg7ahkNi55n65Z5BcytMi77m0vTld1jbOO1VD9ZiZ0PqX2VSeTXC6c5l43ZnzGjs0iOs3d7Ies2iD/5J1FhL29dizqJnkv6uGwjq40ar9Jbuvy37gQ1QPcMlirVCeLr4NOZhzAMbqIF/bFsKEM4eaXvjAgbCRfFj4yf1anohBaWZRNuz04GOzDJqPl2suIBDnOCpnMFSYEYuvfW6tVWYbxzcVyo3//LH8hkaWshqKQxYjHi8m+ed9S+dkhvlkDkwadMwkowRIUKCQg1UuWu1n1/OnuUOMmVvT8a7T58GliiK32Ywx8KwO4KoYsK0umuUgr54+HKAsIFiD3fwkuwzTUTyHVnRelgYQupJvVwc75ectxPYASeGh0Aiq/yg2Lpcgk+g8t1AMgqoRscyrBOAVG1xJtj0GLqroau6TsteeABWh8hwjaASUpFBMCsLkE2/4qDtbECRD+mU+tUH8HQMuGAy3L+75s2ILzHwOKsG5n4fP/E1G6uvxjvkzVKMNyqBifgrUp/2/5IgO3Y+O2AQ6e470gRmiIU0LSky/nZ4StTMntDUKSRHOJcc3rlWmQ29CaFZKI/nrsLlcD8t81iYaARQe3kUuaqgG+SvdlAwsf/lbUfH19V+K1cHNxTGjwUnB9Jwvo7vVGwso2Mrqed3L16f/yH2lq0MJd3PYzjzfVE3Ds00TzuwEuU6TX2u7AZ4vctHQlYXRHVLSqbIPhlos4rFKPY8QVswzQa6S102XKc4N8PEwDVU9M4KvXAnU1GGsX6ts47Cqho7GWXgQTu2EiH/OQKKJr7YhPB/0gZUkHxNCPeohHYb+TZUYreXHUVpoZLZtZp5CxLJBUYdM8jPiUSTXYMYSLZxqQOckK11/WGOq6RwOPVtX8SQSGTLqYBSdFbvcSN3DVHgOsyom5CuyFPSDcQjfSDXa5KuRRbwOEfv3koSn4I3bolpcfs4fJHzggp66Rdpfg1owVeHqz3kvUGmp/5R/MXntCpV4yTQV0Ddh+htPinrvyq8I6xJbwrXwQmgB8PWokwaW1whmPmG+4rrjr0vNLwsGvFNJj2gOybCTAsTHVs1Z4TQazux6EX70/jSaRzvaGt5WKFmf0U4svUKXV6f+8hvjSb7YYbQE8Tg2WqcZowBxW9x38ujTBNkledmrc1ChF7vJKY/rxkYv6Xs1BzyIYtGR3s4mAnHLPBak32/YLJ3QKqYYo/e1KvlfdbuiVdjeGGmhnYIlbrwx+uuzFOhH5cG9gFa4E3vblOyv6lbKG17gSMvQiNConzrYZ9oSD1U371ZltDqUDOfaXXxXlbxs3zMTUOoaTvz0mlQLIDTUN+J6tVubQ0VGNrGd7RpvfZaTqH85vuK1zfBSiFfmSmbwhvyDqZsKnfOIJRz9Ez7F78bCszFNEhJneiq4Lq6V4d7Xd8BgBG8+Akdv82UOC/lXFvMzpcsfLOQfI84zrQBWT5i9dt1/OQTLeITvE2SzQVIJAWb9mDpqmO/zNUSaQcdVnL/0vq8yvasAUA70p07sqGQkv9HOPbG8uoWBZIUC6cqnW47Z6qEnaaAAPjqyOcFJiz2YW1cke+3AE7OJTWh8H3+mBQ1HBY8aSE5voucMuKF9asF2UaGgdPK3Bpq5Izjs+RPqCRpJ6a01UbDosxmCgz/7Y6iezI8m+ncLoDsxQm0bGhT6wtwntoUO5PGjbC2Dh4sNbyM7c/UUl5xaF5vHDjx5bPGQqumTxdXxskcJYzuYtTMxwWcaui/dAEKFXoFhTLUPHSNfhEvdRs6BLhmtOgPLK8yYd/VIitTdfC8DCYP1qrrbed1qD1LKOEGJUrhhcYgLXjgh3ua3+RowkLphMMko2eDECr2u/0Z3WE2yyCLT3lcX+bgiu0SL2IHYEHk514oYRm6MxgSL0pDQovEA4OPN1RO6LEbDtQNNO4TSKW69CvJPVdGu6EZKMP4wJCiuii1zNHdp9j54JLL95Z0+vY/hCgtETt3JBC+JQR7Pfo1PyZ0OaaFo0zYHmYzs0Svo2Um2FOXLqBEWV9MH/BY5jBHsu7aGg3BNh47r8J6dJHKOI0nZc+l/9pQ99RVfvjlz7JPwFhX2X2Oi5syUp4wE4/WReA8suRJQBV1cZRqZxcQf2vlxerS7vQuIX3uj/CILaPQh+cqP0bcjlZJilY7ird+6zSydpe4YbMpkUYe7FQiRVoKhPwsHvbMYYs4U890KOEUyD4oZiLXTbIfSCfF5gPONv12+d4EKUq8U7tYwGkLak6ckAggYQOa+4ew0EIcZhbErbXJZrg==
Variant 4
DifficultyLevel
739
Question
Blaze is a carpenter. He cuts a block of wood in the shape of a rectangular prism along the cut line shown below.
Blaze keeps the larger piece of wood which is in the shape of a trapezoidal prism.
What is the volume of the larger piece of wood in cubic metres?
Give your answer to 2 decimal places.
Worked Solution
Area of larger trapezoid (face)
|
= 21h(a + b) |
= 21 × 0.5 × (0.15 + 0.5) |
= 0.1625 m2 |
|
|
Volume |
= Ah |
|
= 0.1625 × 0.55 |
|
=0.089375 |
|
= 0.09 m3 (to 2 d.p.) |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | Blaze is a carpenter. He cuts a block of wood in the shape of a rectangular prism along the cut line shown below.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/08/Measurement_NAPX-G4-CA31-SA_4.svg 500 indent vpad
Blaze keeps the larger piece of wood which is in the shape of a trapezoidal prism.
What is the volume of the larger piece of wood in cubic metres?
Give your answer to 2 decimal places. |
workedSolution | sm_nogap Area of **larger** trapezoid (face)
>>||
|-|
|= $\dfrac{1}{2}\large h$($\large a$ + $\large b)$|
|= $\dfrac{1}{2}$ × 0.5 × (0.15 + 0.5)|
|= 0.1625 m$^2$|
|||
|-|-|
|Volume |= $A\large h$|
||= 0.1625 × 0.55|
||=0.089375|
||= {{{correctAnswer0}}} {{{suffix0}}} (to 2 d.p.)|
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 0.09 | |
U2FsdGVkX19Q63AQzsXavPDgNR6+derX3J52EtXdOds2MjaFjPu11yP3ctfNJryXBXpLKxtHpUDE4M8cHRewbhNXcFfhwXKrbWUQlEKtyU+wIC2mOYS0adGKuvVap3168bMwmHfdpQbCgH8R71SbaRPjXVkJGCVIrZpr9028F1MK4lztPzL0jR2xxTKRgQsGZeIzhs5KuuCOydZwll91EdTR9xkRQjyaklz6jpG4Q3e9HS/TJy/VQZaZmrYGHuMQJ1GbZ0YnGW7wXa6jvzIhr1ncc6kLiXenjvNThcN/dHw7C9oYiTZIANL8La/JREqxhQDaA7G0Pq+cHqaH0CRbxcN7exCNLUCMq1zDwGKKIp8f9jkM7wBaUrhiXwajNPtD889VZ/7+VNckcKcYItOq6y7tihyoKh6mURvWFTuMHTUaBYgO+NDs0zP9nj6pIWbBuUBndKWkHH1I95Sj4fd7n7y9rxqK7a0Ndp94B7r8S56aOuCQndHklZn9nkow93cdnOk+z3Pdwej2KcTzfGCoVKzB1g2AK8IB9qXkZZ9kz8MExtj2gog4TKX7jyMnmKN1FVkHCZUM32EJIUuOZnyXS0QbzaXNAPMswFtgGdTg9YuPnxj2zIgnO2m3CPHO2nuzGzEMIdnIDdRZxCXxYyKOcJSiv10oXd6IpZxLFMO1ywZ3FpARJ48tb6uXn6PrBu4votoOqaHsR3aPP868BwP3SstI3bW56BaLBuyG511DFKBW/lR15IzBsLgYC2csXzyTfCFRMUtwuC0x1FN+5/fe5yCPipMYqebNAFMjwl/F5DboZDTIW1LlV0RbUcwhy8PjLctRZtUHYlXrJD+VhqfUtDnVOkY74FQy8C5da/Mg9dGngMdkshVD5Rh8XR49zNnCNPPGv8/Uss42uQ03VEXxE1TSxtTcvPmyAQa7VvQKqRzil5nvgWUK1q2dUmnqk8/7MXL03Z79K7JFdHdjCps7BeKG2JN4Va1xwO1X/uTZmU2U6fftiMmuMZXhfjH+MV64BU6ffSQqR+atYTPhbvELVvdDIAJAXMeOqT4wFvyfZmGqrTZ3wjwNM3enJd/dYUs6XSV3dMtWE//8Zvy/3Ht8LFXH9mh9lk8pepQSG8ne1bE9EN5cn85lsojJ1MnRFVKtuK2xd967/lPdEuzyg1MWtFb6hu3GRJr4US9lY1orU2sGGQQNKiv3uBJdwWIcR3Xr4wQHW2Z69XM6JFU+JUZEkN9VSjKWcKH0RJr8xKj3QDzF2B9yiwgeGM+rRm02yI3/2pTBDzOnUwMbG2c35WoeW/7mu1Z+AYV+pbgjKznuVFj+S8VNIsNSuzYPYWdxTsqmFM4l/ysb8i4euuMw29PFmFDMo3ZE4+3439diSHikXAfJx3jTkGU00qDhCfjoRHdgvfxr2C2soI0iHIEW038KNVLpac4AbrNpkj+l7XQ8Iz2NzxQcvjVwt1i/p09u+GLTnEdult7zf28Gk3L7ao4yF5pJDWKBKbIjZwQNzfbAxc9uBK9V7Gz//eavCCHI4vioPAicPzZiE8ro6qJNKD2PKjz1dINCO25Ra3tm30l2gWRH7qP5b26xnPSPdUAfzXMXDosM1WgndxyMll3UwX4OHECVM13Ps/8tIwcxGBFrp6GyQS7fJl0YiwiBdlThWP2DjBEl60JX7GtFyOrs9U3dqirJMyAB49XNBKlY52UpjzgWsl/8dVSDW/deF4cyEtPhyWzuWB7ZprvgI4KwU+Y3k6AQrga46bR82UJsn8F/cLCXC6Y1Ujpar08bpImzTcB/QSfUvfUzvhJbB1PTEmVJWUmJXqavnLHcrQXi14kHWnRUSD3RwlGjW3+B2qx9GIwM8GVt83WPA6KD5eb5JB5yWn7YzTxTlT5n0kYXuVPetcbnJR8IRzIGK1Tz8jA9b44d3l2SUQcHHtimCJK/jcIYaGmwOzik6SIqIXqlDWt1S9NekIXzagv8NKg54/0lUJQvTQxbLRLmPJh9kRnsQnp45MQJG+L4p0X/emXOgFmLAGBtoHr3MkcadXc722fzGiSXFnqfOfJNpuUTdAIi2mqoyfNcPj76VkxAhcFpe2MvOOwKWdEasiE+lV9eQLFergfgGspoaEGZaT9tyBg7xg5rSVgKxhTQUxcSeLVaFeTQr+caZte+le2ScISwA8mdixXvMvs9GmnwHEtj1qEFTI5semnzhK/zL43qtr+UbGYlGmFfN1l6SYz3GvcAPB1IPz+nzpHm12rn20bF8wR3MTrJOTvWbuu9fdcaLofbW8t4F21jvfPt/ZGBOGFTIY+Old4iYzkFtjj3Yq8AgWGkDk8TEGlemkUtbOUwoVUP5LAAUXfiyi3Ruw1H2BZyLUkcqdlBXh6C24G19BOl3ws+o1LnRh9789zBsS7DuY1oKyQSpZNDMRusV+TvEOkkM9PdJ7LwLUisYbi+sJ227WjPvgerNrMxxxt2TFRakH6519kkiSxIcjoPmwEKOz/HPVrMyQGnwr+gZiKbZvPeGqlUSc6bjrC0VGmkiVqkS1Ecz+n5vBLmlvJcv4iyfsp4wxEqo9MkTMZmFArI902sZoZr9VCUkL2MzRbdHQFTKt/venYFD6S7LJB9vsSoFha3KmhMnIWpj+t9rXq9mIZwThDe+KO0TLFMn1tKoEIIHCrVfN1nBmD07NKrTfW4YWti2aZlqGQCCwKgqPrdwiQ3j7kBr4bqWFsGjssmeqaFIQq7CDuscUggi9qKhxOMN7oiTZjs7u9llgRBUH8CAlXqGL4sBaGCaskTBSDQpjQlC6EquPyUy3qKbc14LXfxDwiqqlBdfR9GbypjYH2m72QH3xXAW4jKY5kolvsifiOSNCSNK9/Q+rIaH/y+hbcm04cy3QLXxkcR+K8537RvG7WgECBPKPCU5DTUz50wIpw4UGGLfeBW/hGoj7FJ2fBYAyxtC4y6YTf2VOWzh0EG3r6dNZn4RehWvBh5Oq7LE6YVpGVISG/zd4PqfLbjmHCdgVXgFUkUtRYChkjA6Cmk4d5H9gK+MFtj+GGHNkxn50SvaHez/7pXesh28JrQKwu/Z/h8W8Ompw1KuHtzJyew5UwJJvxcR+vYhSjkIDpGFvada8moe2I7U3EBpq5FSCVrfsFszg1LFvoNcoQ3+2sL48be2VoaYHzhu2JM2Zw38p/f7r7oKM6ynwMEX0WLSFUoL7PMAtSE6UtvGd1zxj5U5WqBWZVxQmPnvd3qbX1ZLg+Oj+VU7RGz3oqDfI6XHHNcFtdodwqloy04bVFVsLNsAlv7P3l5+P/3NfJ1He2fSDr9a6txS4Nwsz8u5fknQlquGLajGv570qy1Xtm7iJqyB+EBdIbK3XX2dG0yh131aF/2Awmmv1QDkuQPkv+lFmw+YTE2GIiE3p279PC9xv7AGv5TrQf5wfcaQnaf9Zsg7Z1OFVJabexeNbcZP3C7isXN65SO1hFEnZY8xQQMQ0xFKbi4C86gJSPIqpDbCJ/kpFsaf0BmGIKWHc9VL1lC4vaW0JpmWOHQlPClRrJG3HuvKd4qjunWeCvv28KC3AmckNoxmBuLXaB/FAxu6kTOy4dAMt91jD917fxPFN1DuRHqmY8mBuQtkscOqAgBf969kiZqabse+PlQli7oATa+cEWowSZqGKdHYUgcKUqFn9btZ1rKCaQ8G5qVaZt4nyLNi7kV9intzS4W5CWQb/xhUw1ruVoSK2ADU7fxQnikqqNEjnJ4xPWlrmJHZm77I/t7BWB+HKTQv4mn43dSnjsRoXttHECf1CB52jI6aqbVccuS/cBmF4VTcjEzmDAJtYFBnoQNWZMB5RfKVqovRRIwmmfcDgGeUxbG15wcCbDHtcPdc79qvffex9WA9DqLyOMTnUn7bZMKw4EmVV4axWN6B6rpaGoCTK3H0Bp65xrt26a4X0oDDoBOadVnS9wydw0itOO/5QbiEGAUF2FBdJkDNLtHjgRTqdam4IsflXjyupwtDThMue78GC4MHwe8WUq6YDNePRXJr5KXi8iwzOIVb3b6OOC0aBYSR1aUpd/cyC8uo32EAeHWo6wQysmSfkiO1Nrn2rK3OxEBfOc4QVCqvhAbZ+fDaLaCcQsWuKLRrwwc+gfnmC5Wd7orxLlBYCSeNDD+uNBBDXDuDCQ0pIjdntLZvpHshvrllmsnGnMdZ9crd1XVRvhXoAyVTisucqAuh2XLKHP3mdYNLrJbJmXYMDdiRzHxH5tK/4AJiEPbUQHcNCAFox+kvqPQpG8rOVbH+qVQ24+W7k0te3Qv1oDX3s9TpD30OphWG/lDB2y63s8APzgJ3j5WYP7KnKBUG9G+bsPQ/I3DdXNlGvCq/4SjiDgVcwZ3jF/KHyldZPl3w3/+J+zfHtaGxfYoytybjRYf3PyJ3U2AFqRkwWfytw/9oI4RyCN2PFfCqUQG8HZbvBI2Q0CEqOH+FdFRzIhPtlZue/tDXV03/Gdb3kcsPEfjiVaQ+Cdbryrb8yHF4qypSa5PSKQntafqVBvrhnRufAcjKGajNgx3px+IMgqzs9G0ovrsUTidBTVKjJBracHfZMt95M1yaWvMeGh1hbZYVCCHXemHIWnAa+XvFRifkspJwRXn2tLV/NhDPCktf4j7sgZN9hg5ZYDUMvejpH7DvRtMNVtIgG+iaD2F9b6itQHHECByw2XbUf0gjjLforve0Vrq97x6ZMqymcmE8K9zbvrQSVi5Uy39NZQFGH42GffK44QWLMdvMuz8A8Zr/dLD3s7xqGpCKRSb4FDem+AjzY8Z37B7njIOG+qhAYByxL8V5GnDwnZOSe2WOhL4Ix6IkzQon5uip5PhIsJk0m4PH6MNvBKctYl9rpp6I299UP36OXp1zjb/l6w1rwZE3wdJtgQ93smYHFid/glV7+gkAHpc58bfBvkXLdsd6YC7178kKYnxRLVxR9fs4FxzW501/RXviVHj0IAI5TFFqy4htQxyatZOi1ZezVTk5Xx3sEZG3suGg6Uybc468ex8TwrsbbXTeNOORadk4LhEREoe/kFE4x9goflpQjSQ5XOMfZo4YpjEssjbKl75eU5jwFR2APLshbwF57IkPKDZ9yMVIZrnp5CGBMEbYABw+ib42ODO1JC8FWgOtWHr4Vj2+HiUtIhTnum5Y275Z2T5pYEIDo6Lsa/iZ7lhvAoZihALd/Cie8cEy5en75sJJmpxFmmS4oBH7gFRczgkylvpG4owhdvsiuCljbTlqoz4fglA00DJ2Wgrq3Ex+E9z56ixakRZaSRcWlUmDB4n25r/73RC6fmX94Mm60WzUoUUjAj+lbYjxs681u2E672hSthbzxc+y3NXajwgclhIqV0hQfUIdjIAnS7xLu7kKCS/J2Fedh2H49UWcoV5+WXTrRtUN1yKONVpJnaH2n0YoCeX56YXIK96lKN1cInsSiFCCGahF7irAL0Lzlx5rr8xGjr1bPT/YbhQY3GsgHRxWx701Na8PPZy5ghvmJfOOs4rLuiTr0PBv6k7MI8MdlROXw8MktMqhKgEVT9jnXSXD1xf43v3OWUXBLZnjq+1DvY46eEw3LMG2OQ2BTZnXQzNjhRM7223FG5zEsqx6rNeNgdPGFTRnOLksN10p4UMdx35bE3bLE2fOZmZtPQXfGeR4JBGXUenKZAz+a0GDc+C9a0X0LQKm8iH2bnaBQ6ZEoLN8oa2otQI3e4fwwhhQN5s09kZq6qp99DLP5cNjcT7R5audA/EpU0lc042A5R7UXbyXQUesvakYErXFV+Qe3o2TCTF7lPzWjvNbg2DIJmK4nwPQWxdEAHrmVgTup0HYE8VnLomlQAR8NhlrXApcSBzmWMeM+0/PFV6wfxyT3pA/Oj2Nmvy6i7+BL0c4HqETML9SqOs7u8oujB9lmFndiuZNgAXycV6cqbQsgrBOseJ/hBPAVW/CRrGyLu0rPSeaWVqYeXqv9M7Vl/QUpsWcjr50lWB0mp0HStIsACwH04cpaHPsYASLBjeM7uxPs7owBqldMHvOJrPbqNecbxjr0+aUnddR+0flTz9ogZ7qCjIZD7vgAIyDccL4yoQJOSByluopcUb+DeIy6RvT3/rk07pcDnadg3Zl1N3Saku+OgYTvLQ6BLh7DSp/poSfob//HDY8wZ7F5mZ2CE09YpIlRZienkHpbOBiqTB6uABGRN0/Z1OA6JY+v49QbsKKb2G9qiCDlVlND8kOlF1McS4xDC4Oj4JUcboAlShwGV4N1IH9I4AxPxQcClsdnvUMRVqVBLJ2MGWR1Kdq3xl/JgIloBr7ipsWChPg5Aze1nwj+OZyCDNkzYjXrZjqXaLMhq49HDim503TFZtV3la9vlQcpe/4SpYhxiq0LttWMctq+yiX3qpa5Sxz/dcvaLJ4j4ccd9TMCG3l5WyeH2IsicCwf3md7B3nmyeQF6iGMpxAU5xiWW/p/MpSuNsdQz1Vnv1GynetdR9u+bjE3BiLjs1KF4Sd2gtSAhp5NECR8QVMqsYucfcDhCCDbc1+1knumwaE/ZqvfahUpfIUG3DOx1MkFPFG0md/tdv71GplsT1uC8bkFeempledNiWnVhPC5GTF+zk4lbRDda4VQyVmzlfi5h3IME+LqDMcIQxlRPomI6T3c/dzCDhWQclba+3mIV4twrPuU6OCV110tMHVCLdNZ1dQ3yJs/nhwfTEqlnaWS0+oEz5UL3ldvCgniQEOj4TwmSnuaR6+O6rvz0Zgsdbn3+ZehD4pWOL8skZ5SAkGV6FstGd5KxvlK+3N31v9y/ekumIv5jR4AjiNpKgNRcexpZbyj3pwVfeG3ytpnKLSGaxBmPQeBHHeIP42GkAldynMR1PtUVceENdQJj8CIkgff02geGXiPcTmLVckjrCullhxM6eS9NUW8IEcfPnkBfhs3PFUMYtvjypAwCVz6tq2nQecpCSTSKzUhCci7v2ctXNM3Oi02caxUfLWx2tnvOERpmIs5fkYfcktl8o+SLtCPjO7ycYa0E2Ow2ywO7MxaWFB0ty5BkK22lbCsLqpW3m4kpOUOUhqNU9J5UA9cPjJQJsX3lesr5LGJRJ9N4dMmexYVUbXEfozIsUn8gjjCmkSrdyzdX6i5JsisZ4vXJsVNsfRVsWU1aoDhty02PAgcOLDJV4ppz2JJrzqF8FXd3+Rh0GO3Kn+Or2hBeL1JsIy0l7m5l/xAM5Ag39CLBK+XDcBtlNG5oP3O6qww8zdRoj0UO4baxsEDox6KiBGqKnUIkt25WiSrcc0P//zWqivXSJAN4i92KQlA7H5tlmI7D2tOL0L3BK7zq7Rz/sLXCZRHsvCMCGNwteEZtao4Syfn9s3zItWPR7rsE/9q3YHTNAnmKsGnW/DVBBHKk5kYjTJtxDEdBCZl9AmGofAw7LPIMXoMnKxZGEFbqHBxQM7LPJIjFblOiOnsH6q+H5yL1IV2RMJmcqe3Y6+X3Xmi8qMxjSY93ygAq/F68Tp2//bk+Co2gHmwo1l4mBXDQXXryGiXohBqVFrrPlzHo3WUjTK6rCcdz3vESVfccK4bW8nWxYMeaF7FjaBcVvpfyI1Vp/F+5sSwvVgIIQ0rqyl7H7SairOb3GgGZk6VHiSwy3m7ejs28MT1S/AE1Ej8YEzmLtJpAPzkqosVlRcfEOREr5Z8k5KjeiZ5LJYptGv+VsUqLb0J7NpQqh/e7E+8YIlD4Tpb8sPxarIJwFrVHVKOEgjQTXx+Ev0uJ+PJzb+4iZsxNc4XGzCHYkr0zxik4oyrroUtjz769ft8XwHbm6dE+Hhk3b6xDCN5gD9kF1MH/aJHJTg73CVY/bzjXhlX7ke0hWZ4KA2zMsCArZJ8mO1R+iikPCCqQddiyVcFw/6+znCNpTvtCgbe8mF2kpc6+DmRh+of+pIsvYjoulCD/x754w56J4RbUb5aGou18Ojmclm87XWrHIy3t0SFdDcbf+hU1IGbLdkkVREtFq8Cmqvwi3ARQkJEmMi5Oi3sUfiirXGlXGkTYYLlWljgD2xIX/OL2eafu0Adkq62BGOeE4YZuWFDdyfw/hkdsKge1fHvfVtC5ZSCV7SlCL4zFqXwlNFlELIfh015W/BsS89eTg/GXMnjfhUhEtOfXZ1hFACNFL6yFR+02n33IavCRObecu5izP+0inFbff2KO57feTIQmjYOI7HQLlGP11zg56VJnSt63aNhVn71mWOEh4LGdmsjedRJl8NsVQI5N0DgcEs9nbCyRfa4zz/y/8gXmGsYIKjHYpGtSP+KJUC5SHFRXQ/s4hkZIVCpsGsD1qPKPnnlpE5KgpvQOgpYWcE1Kj61jqHzoGaPSECW1Ibn0QLQtjXAsAc0k8iFWfJrQe6+gUcljzB6gqa+nTbG1tC+A0cOswh1IvCKYZxJ+WNIBA339gaEqrtotjxbemJzi1pglP32//E2zVSvMH2xtc3AqMiV12OISGTBwztJHsmdF9yZfBZ08gwTln+vpTNbOQsbQ+uJFMbmPAXaz1Qt97/WFaDXRXvTOYp7Rtvfo+z9k9t8Y4FOb9IG8FFSCuFd9wYq7cS9DpVLQTFw0MAc7lEUxaOSOgL0Y+lbht4PoQBVKOltRxIIcGbsG40AtR2S/CHdhFg3j+rHOTVnvkjOlvPJSNpkk8iJyTPl7mUG/tiXSTo9M8xyLWvPRXNHhppfqmSpyQjpOvi/E8WNqutTw2tnTYGfMTKtp+J+q6ijrUVskuQkFwdZGd4fCiOq14eowZeRN4LNR+9o1898bbJyv+9QNXZmhzJYMFQY96xNjjuzo5WF1PDv29ezagZvBFUoExbkcGOq3mheSdiIUIa1SA1Uo7esWX9bovnncNI1K0zdm4lpE81jmQJcPYuFMRg0NpVuy9bKAS3L9yIBZah1d8iTSeR55GXp4yh0dHCFziegaimr22JEl0RhcBe2l6fyPGmmu5lfRU+XOyyMSGrPW3ZWMw2CyocrOdxi1QOBDsLTGdPCnfuiAiNXcRkkHMDKcW0J1BoKd1Zca2Jr7sgKdYbonSlBKdwn2NZczaUjPzi6C7McaPi+cdSPiVXfkYBEXCiwbw725Pm8UUmixTjaT+Q0H23clU+7FBjCwfanq026IXKBF0hL/pogUcFQ53m+fd6ATkU4Ifj4pJdFPyxZ+ZbVTZQ33YRoTLtFkfyxjNEnXXZ30PU5F6asXWhY8uDeMXapvPDgXGPJ4X0jBCo1Q5rPUqzMe+mnyU+5BSv5zQIrHWcyp8eu2jhPt8FrO5VtaYv0BD2XAGjmy1SsHUTRVikGXYYewbZJzAPGLEMSwcTiN8SuZi5SoSKS4Mpj4jv17AOeRrYKkspe5mhnpqa/0mXmNAB4QHCo49PxRhEk+DcuZbipD4D9KUzZ4avPuEGUPnjaaq9z4RRUNIRGI1xRLmuHumtWnaZQC7pt64gq8N2La16UL6fxnuihiQQgGmpIs7bfmBuZC3TC72efLg6SoaI42INWuTBDyVxWHVuIWkK/PR84OVacTfJ+Y7c9rNBSDKRRub4Sw/k+DxhRc7x7yRSJvNIWRBZCwdmuRvP19Vt7cIPYlak2AiYkisPnXtDyNetCmiKttRgB6V6cjebd92alPXBiq06yGCQP+SRQaCwztQQeDnSl4feTRdRsk/loEOb1knCMy1iqc3Y4sNiUM/U9xBPttX6fgtW9pWrQ17YvRaDIMDImaIZFTadCsGbf0khkRii/JgjnSfu5S5Qq2kKuNfChHdtv8apwIHaaBcKZ2MCNwfv04w7Xjs1H/iFeNwYb/GmhhNuJJCHH/kPlMqi1sjOM8v+4RQfZLd+ot41mk6fbS5DVCvNAhyqdCuSaIY3PG6TVN9w8eOn92I7w6AMpYz5KAH/NhXsyXUdj4D7FVFMSj/+VakfAsvCMt6Ldadf0ZIH6MEkKZQWp/586YNaF9eNK4vOWHDYtwZpL3v9SAbIatbYsXGWKPhuGXIcMbRsBLbUry8/9qBNx4WUI+t4/rXXBrBAKuYwY+rk6fb4+GoIv3eHXqWRIFZTXBPpG6QVgLiq8SG5W5nlw5irf2lBoCbkPpjhOyCBUsUNHa79EsCxrmSJpzyReuvUktZvLhumXVie8eCZzN6obtioZSSxmYIWoek6xSzrH8G9xQJoxw2H4Ot5KvKZ0BLyWYnwhpODkAkAaFEv+4HMU8BsjlzgQWlq6hxSBjUE8U8vrKynA4p1GFNoECQGbostQWVYrk8g7nluiWFGfaklZlzyvYqhD9bL58/l6/kA+sd9/xx+G3Yanu5M9Ch7Egpqy4xVSxsTDvBMbUtj38CvMRnPgpV0R5MQyMNiQBXkhf/4PzigopcDf32n+CK74r/09muw4GK3aLkhGImJwYdhPFammbAq8+sSHk/YTDKTUiXm+TSwiy/0tNBlVnYR6sYzfXMR98eX7LZr7v+PJniUIQVZJ0fMyZvNGLhSYwfTdHeJNd1qRXX9+qZSa7kUWRlKfddSNeJ4OAUDVAmMmlV6SCqV2arS62T9PQhIpKR6uaFWqW1hZxP9yM3PPToWSxZ5E0dIxW8NZFd60VXPZhuCUu7sE1W8P+TaZvyrQLqxVHdM7FZ4ZZ86S+gcpEKTeBREAp4il0DLsQWhk+RQ4O5imK6JyJJ2wv6xq88ajnwmSZ9dp6Pg82QE0guQZEFZjq+060fW70H1auWsaGSLOeEHHHZwSpMfEaQ5GlmQ18/GnqZLWcERDy2aijiTltCO4YJ+H00aJh3wLEZ+zvDFaWGCcg5ISvDPKx5eS8ciV+cpf9BoCZiFr3U0aKYebu/Nm936iDoVxz9Kb5Vnsz4Vi3x+OdCERtXsUyTkg6W80i66zRUwFBUUX5suD/SM9GehaWBUcr44dijr4vGc82INoojgYWIFaxRKWxbzCqwT/MCLP7Kg9zRM4U4B7NHxVPF1UZncT3YpXpmF4ojc3HFL4CE/pc/YHrPznvuwqSBvOHUyXT7AGR3tgt2HVEpOtO3W8dUusu4hyKvkddRpXrDjCdGNs9K45mSOyhJ/hO+Kh0wQUpfHUAMeVNBBa8phvC3N5SKNvXwi+iSKvToGsU3cNFhJsWr3dbq8FTXdGhaAeMkJd8fDoi9sPp11Ly3s0z+6FdePk4gnK7waLpeahy0dX3c/nCk81MpiUjKPnGjKpoBO9wYZ22qzaZXDnEFBQbf2cv3BOMX/+T7igUP8oxzWN7NIZZlCCFTULrWIZAfjnc3Zbu/rSHsxzNhVfEidTlyD3jJu0aS7xjbDRPaqjmejUOX9eausfVqtYT38EkJ3axqpFQ+u1ONoQCIflD/ioNmRMLHnRctthqu//qJioNnxC2gw17BiAvUOzZBoHulBfuumyMvHE7H977o21XjfvdLyh3XbmgqUU9foAWjHunbvTALR99QW47Jba1vHd7sppSSG+Hcl7FwKdMfZVBss+PJoZJiL+3EPV0LFW4eW+HAXSVBiHoQ3sO2jCSKWIBqWpEPSfV0rPyucPfZBQL/OMlKK2gzIWkuYBgq/Vyq2kIhbKOxqJ/yNarDrYZ4We2+1q0sYsl6/pd0sl7mUD2m/ZO9HrRTDiNEkCeMjTW/20FpcVFXckaeWotLTsQle8hpL+qalUsgQQnKvVMNtIhISA54BbXgMjMClC8oKNnmzrPCoYdNOQb5uJ0PNtPg5sMXU2KPOHsp89oEOXetaNvL+qBByhqyCBOA6hbIkkxwZDaMoISnqxLMv2fsJWDSnrm0WHclG9VaQWfz8ixnRj8qm5hJVCXZwZRl1hCQrU5kV1X4kFYaFD8zUVv2t5CF8otjaSfcB7+5qkBpHbDFL762nxzvgqzgtZXz
Variant 5
DifficultyLevel
742
Question
Olive is a carpenter. She cuts a block of wood in the shape of a rectangular prism along the cut line shown below.
Olive keeps the larger piece of wood which is in the shape of a trapezoidal prism.
What is the volume of the larger piece of wood in cubic metres?
Worked Solution
Area of larger trapezoid (face)
|
= 21h(a + b) |
= 21 × 0.8 × (0.6 + 1.4) |
= 0.8 m2 |
|
|
Volume |
= Ah |
|
= 0.8 × 0.5 |
|
= 0.40 m3 |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | Olive is a carpenter. She cuts a block of wood in the shape of a rectangular prism along the cut line shown below.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/08/Measurement_NAPX-G4-CA31-SA_5.svg 550 indent vpad
Olive keeps the larger piece of wood which is in the shape of a trapezoidal prism.
What is the volume of the larger piece of wood in cubic metres? |
workedSolution | sm_nogap Area of **larger** trapezoid (face)
>>||
|-|
|= $\dfrac{1}{2}\large h$($\large a$ + $\large b)$|
|= $\dfrac{1}{2}$ × 0.8 × (0.6 + 1.4)|
|= 0.8 m$^2$|
|||
|-|-|
|Volume |= $A\large h$|
||= 0.8 × 0.5|
||= {{{correctAnswer0}}} {{{suffix0}}}|
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 0.40 | |