30258
U2FsdGVkX180jSp/vsoakp/eJfI5AtxJpjuo5Y6dj6SwsdubaZV1Yc4a3556X4EBAdTCjgHbz4ReVPWWFcRyIrgN7dfsZTF6OCsjRODS/3Aisr15xWcC6UynM6D34oC1WzHzIpbTlMNSbboqJ3m6ExapzHqb+5WbaDylEWnEmIIvjWp54IpKjfzVGsW7/f8ZidBPE/66Aor7S3nBfeK5CSGbfzbBPVdMNsmTVBjQ2TeeKpYsEhpHdiuEjR3crrN9cOyhv5lg0IZVpztpuvrvIppwIh3Fv6CEtML6iD0pg7DaSVHFiD38eQkxsYCSJhjPehMmwNpM9oiLQE0OVv9D5PjgkMSix+T8Vr643e2iWMnAioggNrlyIyw4/JAiwOUqWo8jN/IDBrO4sdU6jGqvV4CuCOknAFKjUgtsotc62l7tvfXun7FthirlGGzlWm9GULEYp4aLmVlfvtWjDPTXy1zXITnWW+xNoCvAwXXSNU6k0tVwrodAAl2sX2ciMeFBFEWcQmD2yWs6+GKR3hEkmDjyTvzu72UMCt4fT0OLWXS67A2KURfLs3hJhdERBa5VR9oc8U5Z0touh66R7xmSKKUChsbayGkvm3AGnSKGLMBzmJt0wLcUZbK61pCNH3Zug6GVa6t/3sb3qKA1KcH2F8OQXa6BHCQK23D6UuEDVAYVtFSzPNnUP5SnxTB+/ic3PTZ2iPOxkp9iVlvLDvI2XQ3ppNg+BY5t9ythUqw2zNXrjR2w8DGUQV9Qtl6cchMxoPA6t1MhSdC57D8nVHOnMUJlintdSZaSumtrLlrhT/cfEhqtY4ghbct/2xj5vKVL/P2CZUNKzjKpglOT2ukD2NSasdD+72I2SeZCZy15JQNnIZqro/2/fvJ7hN4L63NQTaBRnxPGrsnjP9DP2rErBMWLfCaQ9GXMaVMr66x+5Ey0UTHWKLufNWG5Vt8448Rf/hD/VqTyXvOU7onQWVKbSCWb00sSNCwrh5EnJv6hV80Gpk3CwikOrchH9YWLjqSchfJPJ4/t89e/H8xyWZjdp5cPFh/oNIkztGD/JEuHtA9axWPaibCSoFMidasM4Y061vJIeYorJhd31fySbaQXCskZjSvt1rdIR6gOUmpIpHtflefyUB2QSB7LzHIq4ZvabHm1YjYsRaYWOskmA/crq7urRJKyiexM3ZPsNTU+V9ZxshAnl2YxreYRcE20Q6+wPMcHhyXkTTacdGnRh/stWGAlay3wtfxhyPMUt56uvojl6jGTrqAPHYwXe+cCMsT/D5KuIrkE6mgSFYN6EiYlQWfjyzrvDTAKqQa8CsyQEdtmqsZnvj6Qf/6bQrUSsjagoKc2IRTjgLJYcVj+YqWPIaVG29tBrtlrMJQWOwy5CaYsawLydiIIzA98IHsMCxCNLmiLwtQvJnGUOqYThG1aTqXXpY6MPecXYAzAMsGOPN/NmugwoSzqBaZ9ZO2UVAR3yIIwvKUGO3aTMmZ41bhRu//fyHXRfCMm4U5TmldJQZlIQseaXEnh7qzVuTYnYKQgYn1FaiILEz1rB3C7QqZT3NzN4oNFt4Q6UfY7N2LWvZmBGkfTo7b5a92+juVj+HwzQYKx/PrBAPnhur55ry6bBzzP6ZF3etEXQVsmeXvG+dmhvBKaP8hW0UhyPtivpAF3eCdKnoAte1VGms5o6snPd/jtWiydjFq2uiUWP88Fsf7cPTVC2R30zevIAtfTnQ8Fr51tv1+5QfVGe+mGHRX51cGOpRytg7UxcMjAtHivN0o2cjr5AGuwtUI+lKJW7ubauF15GPbccEEeecCBKmAquLIYc6IfJT6PU0CO94kEDKCahkObYUxNoVKcBMD2oczomB0TI7zz+qqJxmmI7Amggr58D2YhoLGvtkcLfDiFCkYL9uoqXw9dOaUI2wQvksngfKHn/lNqShS+jPFPdCvsSez+IAu7qvd2MAsQEhsYe2TJnA1f5JVi0I1OwpjkSGJqe4djySWPiAppdJfdm0MyxX6ZuF07Tymr7K3T9c2Jh3hOyhX39VaKCviIHIGqfQA1Upo1A2iqj2jxDEQuxl/bllIKN34P7O2lVAOJwJLZw0G1SotaKl1kzYriBS2ORIafkpQJVz6snqL8cPAkJCznFxnEmUqVk5JKaMmOKn48TgqkxoUFZe79992N3Ak9XEVKUtRT+BJ5FuNodDKUrGAA4YeT895IudZMrWKEq9viIYqREySVrEl2AVA7JDn9FwVnnsHCnHJ53QCjzJuC05erLtapC5Wrbb94jewIewfi+OFikFR0aimd/OU4RPl1amNC2ZQ1zBZlhgGO0YK1bs+WW04O0tQBjCOq72kaeAgA0wppcdN7EqsL0EEzVZ/P5V7EIhjpb7cLSX0jy/Z5ywE8aY7cg0qWJrnMjfC5zOBENC2fCjr1avDBAJKKI8UVCKe4ghiDtE480RXvUUbcnB5gxclAfCp5BUy63ROdiArl4p5JCQqw+CZTtlxeeDZYh/TxifniQNthRbqqLQ9P703ZLImxgrf9UY9EjM6hG/Kx7iZv5LzWxzsz8v5adsACr3A0BWWHHxs4kCKZdfyTMZrRLvDyUeNpSGgcLtGRAf5E/uN32B2nZTXa6pA19SvuM7Y18FQ4rPCLT7nObuQyXsOOe90DN+FUrzEgWGF/WRRNDo/j2vonHh4lawOztFHblAhqwUumwQNtP7S6F1vzO47HJBrUIhy6zO2inTP/hAbU2BomWcbfFwbZ9Lvgwo2MeTHZlEk4nlubLefzKhfsQwmSmS7Ifz6wzFfhwKZyna1Xa+WGuK2fJ5MqWHQaEXQzajBseJE6ZpxxEO/MRgID/aI7dGViFojSOZGkewr9HUN3PDOmJlPYQZDppgOkcjusWcPhBIyzXJ7nwotd8Elvs8xNy+wu6LSkDBeLAJ6b1Gez7Q+hyZG71qX/WlJX3+U8cwtMVpbCaYlZ1bDfN0/BT4VrH2hkY3iWBc64TR8UzCN5F4CvN7ghjX3FRGKN4u7Lr/4gBFmej5s4lUDie3oMulAApHWCBu4Ojg3hjlccaYst/By3H5i+7Doj63x+G7PhMn1+IRs5njnNlU8sGFv8dooiUkiQ+hyi3k1BDcbajUp1ODMhXvwxRRownwVpj8S+EOZ5EBUYbIGY+RsGGDbHp1r+wJTUrFBi46cncOM6ui2b838uoG63n/SpsJEBusX0EX2/NtOz/Il8ZgOKJf9RXiV1XZWuYXI4LVCAgHkZMmS8VM4RVddMbPuEfv5XjMAewxqEfIfpH8erIUTr2/ln8v/wckQ+9Gxn66cltwcQtVO7j+7hB7mxKuBeuIUXA9PTa3LNODs6TXIwnVHUC1oS8M18ixQQG+gV/031ciKRnSV79Niu81WZASv9QOEgqB68dYL9FqymxOxejNLhyrDl3P0uRq4Bn8I2i401wN5GPHXDSnA+PNB+vYVv8TdRrwmTdMa2GwOrSkFHFQc7mZMVW69HRlRY6v7YZpnYsAz4MIw0+a3kRD9tb0uZuIckHcSyGR62IiVPrY9bqPvXx0r2AkABvN1g6PSI8hobzMJOHfUAQMr31OQZP36KKITSzp2PkLZDHwbAK44dkzfGXHxRjqoqepWGuz0QNMnmWrv/dXdfslj8PJhVCMHryAXdvfjJuOvc8bFzb8hH/7JUhqFOHWzGlHeimnI6XWY0H5HscdyzI3yStNmTCo7zjCxMkhUMNCO8oQwFXC0LbaMQUpPZbjoYsjbDbrxoOdSEr2WOZf92Ub3UWdFqsED/znUo4mAKp25g2/Ij0F+1BU2u1fwmy9TKEuMPrBqIwTb7tXOxpmWRENK3L2GCJJvkYkskNET5VqljDG84GLbXBT/Ji69yArRpsKkVmcsgNKOUYD5XNiZioQds6uDtCG2dis4QH2U2D6VLESIyJ3h09PTpwgKKaQZiIzBAqQmld9bU5uC9zcDv/IoKXrr2aLHUU+3icRl7urIIXXGCZVU3FsjNamK10Y6NvTw4BJJJ+dQT2KZ1BW3aRqIXwkZh8A+auOssPGLwcpsQKRYif90toTMmEXgzOk6e2qMX59mxFmRU9oJUSUqaGQAaDtNTemyr4bCTvw8rX5dVhWrhlkRd2UYazt/RL7vOuw==
Variant 0
DifficultyLevel
568
Question
The total cost of 3 apples and 2 bananas is $1.50.
The total cost of 4 tangerines is $1.20.
What is the average price of each piece of fruit?
Worked Solution
|
|
Total cost |
= 1.50 + 1.20 |
|
= $2.70 |
|
|
Total pieces of fruit |
= 3 + 2 + 4 |
|
= 9 |
|
|
Average price |
= 92.70 |
|
= $0.30 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | The total cost of 3 apples and 2 bananas is $1.50.
The total cost of 4 tangerines is $1.20.
What is the average price of each piece of fruit? |
solution |
| | |
| -------: | -- |
| Total cost | = 1.50 + 1.20 |
| | = $2.70 |
| | |
| -------: | -- |
| Total pieces of fruit | = 3 + 2 + 4 |
| | = 9 |
| | |
| -------: | -- |
| Average price | = $\dfrac{2.70}{9}$ |
| | = $0.30 |
|
correctAnswer | |
Answers
U2FsdGVkX1+mucUmoQGo9t0Y9jlblIWRHvo6tbRGc4V7frnUsvQxzv/0QoGfBgCkJ5x6daOKUZFrudwcAJgPVr/NX7entWPdFCoiNa+7i/r8lOteuheXBlOAxLlmQt9XuCDckfXaFeyuXzreLRO8p4j/7Ntt79V7Q4100qY51DXOxQ7k6Qqp1m7/So01ZNiKGxQ/vMOduzc4XNdUV8h5cIjR35nHLknv2EWz/p13M3fK1LlTsFCiU32XN6VuXnW8HBjDkkXnbmzAoPltTUIvopB3dfqnU6rrVVC53KxzUfXcZyXtQz5s0GDoUIGutAKf5QuoT4ZPrfi0ymdrVP/YoPt8QCKIbqI3NZ7E1UMvioMS/z2jYDIcRnBmbcj3nF1ei52NjfDAjKBYqRhDUx+aQYZdHeFEXzTMgNzCu5UCVyzNaWjdwIi0adzLjuwyxL/4rNga3Bzm345BCMWUbNa9Kla81/Ulfv0cuW1+ujkQ+Y0aizgrtAOettlvyXlyEbkaWNoc+unOROEBBxDp98NBMxN0tCi/zSSdO1BlVUf5oG764cE9bGrmOpVN6MqIWiHAy5YWj7NZpMmY3o0q3/wKmbZiTMKgmTXYmZd9Kv9NfClQ9X+jzklN0J7lM5MsHgc9Edf61iJBxvQfptTL2X/+Xd4jRdCSRQ6IMJBx3sLBPF21RuHaxVjXS6qqHmoCULEZh/5pJNtC7UPJEoU7m+V8+KxlFaX/SPNj7/u+dhyxTv2L50R2Vsl53HlD6zM9wXJFKdOCkew7/Fs/L2G77lCfzg8hJHmCa1x7rHxEGHOifK18jb6oLs5y+PAnDLj1/NF1S2fgO2whJN44h8YlX4bHQ0P28aONOa59nOEaZKp23l/cR5e3xaTmpf7YQmgRLyF/pgMnEKx5qjS4VWuWejdQZwKybnSVVK3vGeAbjMSJqx5Sara0qQNDPtT2aTOoRAu5F/eUPNe/2d3QcGcPX4cd73JGm+nxLm8dHk1zK/hgXJBgvdEFi3UKe60ItNR6iPkMc6mA1fcqyaEx8TADBHYRv4qLyW/jNZ8Sd6g1bhMOk7PqSo4DB3ToTIax0rNzJjLRTWQhNcSPJy7QncchSUobUXDMaoq4wlW2rwOy2DPSi3wMNtYKlkmG5997oT/rucJbSed5qijhY9SeOsYLZBU2470k+YBrRo6x2b246CR4olg0QLP5nu68NqRKJsO6B7oNC7H0PHB8b8za13KN1wa+5bvPleEvpqlC7zE/8rZlcbQBcxpfzFwRtu06so9y4+y5THhOZ9iyOjcpUSU2/cR49Y83bbTTBqlZcrWOF/w/VzwRhmJ4kfncO4RXshq1v6gmArCbVjh3C7UWHw9QtoKl928V6L7oBk42OkXV0EFa652l49cvvNNpLnq75ZT60oWKwI+qWtqx5OYySXqnTGnUUedBW8m2ExtJ7FOW8UlLypT92HqzDq7FaBggJ7tl1MC9198HC8O3u07X1kuTcHM6F+s5KAnsmFFoqAEBSCqEWEJ8JGPHlymxun229d665QGt6kqWj6oLhMVBkVx5xCkmRR39b/gutdAJ/U5KpeUDfq54XXfOhZUZ8n++02A3j95vRrNT9b2dU6+S5RByjyddDUjXwjH1uf/nGwiSUWb+O8cd1MWQOELwzRhW4k2ztF2oL9/GkZjjXwTmFYGtPdtBacan4sv0n9V6azkONQmw5K3Pk8mob5lcPMsHoNAjYAYqqLr4uNeWIOYoozJE2gOZhcML03LJYSKMnS60BrqcNIDQ3LgeY2V3FC8LjfewnHLrmcExMO/vYJnI3W7eds2Y+g32K+kvxI6Tpx6kYl8GTyx1qv7C/J7GGF0RMYZFf33Xui1/vfRxuXWifiydcDwCBuKiNcj4jM6ZR63ONZA+YxZn4g+WONbQOq3cac3J4nmUSpXuWWC5pWawLpvhQmU4RLevjUAeo/rt0XEfAfAm7bfcy/c/8EIyVQv0cxVyPPPHMCtEiqmo95/vyqlcTmdFJotetqP52qmr/qPuYIwmb9NOnjzEqHCP6G+F5ZQDmrjfwrj6nJI0zHWcNs4SYclUN4Ouga4wex3nDM2TURXIBswaWrAu/bIcv2CvbNZmHvSK+Wn6GL26aR2xCcWdeDhooSQn7sAeQ7+rcptcoC3NWkszZmo6j8Mz7iFtvcsesBdtc1hoL9GHRHXSjK+yKThGvZA9jXJ3kDctHN9MuW1R5TQKWCsnsfZTmfOdsVZk3eSohb9sfrdAggPIRweKzg1AOk9j/TMrZNmjdNJOXKD/4bHAmvPJuhNpcH4nzOAqZJotUpVNdjjUUmPxi90z4dp7ES5G3FKLQki22ElUCf01QwWh6dJGR+4DNbJmy0ukVht17ZWYtSbRYhmnOTMHqQ2dNTeCs9fqLNZj5dhvGW/dMhznR6CSKsfBANl21Agj7QBnUFiZh6++pcw/ux41crKvXx4WOpW4XLbU5FuHkp4wyEapGTqPegBpIbeyaESWCkGOaOqagr74SYIqwECfYoNtrYnynpOgXkL1+83lK687LR01vuk69rvwTcoyOavsdZRmglH/tWwO00WIUKi8phXYjYv9z9X4O15dT/kS0ijRs3isGmBacW0oIq0oJyJml2yMxRPFR8wXZSCUE9DxyZH+VpiGvrXUj4eOY9Wr6V+L8M7tut4xpB8EhDEGoOXR3QUP3aF4tPn4vyd7s6C9R5tJ2fWHYwWJo32Sb06pgndS/+tSyGST+e5KM/F6SLCTWM4ZMaY8OuPezLNKVFija6PzMdYxT/89WEz0U/g90nCg2MZCpGeMS+ekAWiDaXF+/WqGw6zrGPWY2fiHygB3tgkE4UB9iBM5A6rFMt0scctq9HNPQgrW1K1GDulKTpFlPPRBoy7otCqKUCHMrIq+ly9I87fwGa+KbdDOWHHSX8na9AucXQMcEOWwY5cHinzSy4my+gj7g7+ViHIxCAtE34jLve/J5csTD5zEykcI8Fhl6gm3mov5dxegU2WesRePirZXmLNrrhfqZyBEDPEE57b75I297wU5fM82ezYJT/U0RwtmMGbuAzG33fZlcBRLm+JfNAADtP5iH27txJ917EHBFGJXLuQfxNdQaMm0Alhk4HHL16Q2lfulIoLG/ZPsfFvxDOIbL2yg4pCRaB0yRbYQHDyzbjBcKr1TU5wjNNkpONWVwujSRp/4LyATLZr6EgZgbEZ0DFRvT0aHDDzeiw71tLK3sCy41+KwZMebtRAAkNekCzaFN+5A1H1GyDb6D1WWo9jvwwYEFotUY7Tuvy1KSFXz3XQBbm4dkxCwAWMme6+wAG8F6E67cM3lgDkpT3PvmBtIORDg7lcVtIJJw0Fmrx1XUv/del9iffNCaRqjH/gzUGYLn8ZQ88kgvhCulhrT6w3lOc6xcLuWmK6Mnt4RJTq56z8tg8CzpnmpdpqmDD4FwKtMxtuQIDXiAqUynqbW81p3JTarIkW3Z3fW05hJGrKIy98p/0X6CqXfcJ2P0A1HYwREN4Npul61m8puf8RSrPAEaIdxYwBmJTO3H/YuOkO29nnv3fWiauH6VUQn5NVkBrzCuqWkZ3hjXU9nGLX4CV1D7rEt/fI2e+EA9VIgOn/GuT0C7PShGdYvk73DpUvbsKMz55lNNi1w1GwfcBf2K1iUsFndmhU3T4o6FaI0DGQMx/kf5fiqZncudoQK9EoQwHn0BF010xD+q7ifrM9IbSCVN2qFXAaeGMb5tn2OLUNXplBV11geTPe0FtU4H6j9mGgkX7G0XyjXHguOZWtuWw65PxMpIaxxQ4K5uvkc9XCDxGHq4MrkhxmjibLk0Yrp62PYA7SAvFAKDPb3a6wcyi1d0RrLjECXf/ubPOmqIBhPl59CEQP16/Wk6KON4IN0xLqyY/FqujpFQFFLLElVdHgukPs8WhoEe7guQ4ujkLJ11IE5+osxZSI3zvsTwFRD7haylYe3opLlK+cq/H/TbxPL+OkDwhCCkMneF9Q+NiYjg9vuRMRK3wu9OKEHd/gK4YoxXm4cbt1M5kJOshsW0a+q2ZRE1ElDGubFcYMLbZRhbNjmE7tkWyF3grx9y24EmNxM0h2KCWvPxlgwyw9YGa55u6HHArh7IcdUcTyP8g==
Variant 1
DifficultyLevel
568
Question
The total weight of 3 goats and 2 sheep is 1000 kg.
The total weight of 3 pigs is 600 kg.
What is the average weight of each animal?
Worked Solution
|
|
Total weight |
= 1000 + 600 |
|
= 1600 kg |
|
|
Number of animals |
= 3 + 2 + 3 |
|
= 8 |
|
|
Average weight |
= 81600 |
|
= 200 kg |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | The total weight of 3 goats and 2 sheep is 1000 kg.
The total weight of 3 pigs is 600 kg.
What is the average weight of each animal?
|
solution |
| | |
| -------: | -- |
| Total weight| = 1000 + 600 |
| | = 1600 kg |
| | |
| -------: | -- |
| Number of animals | = 3 + 2 + 3 |
| | = 8 |
| | |
| -------: | -- |
| Average weight | = $\dfrac{1600}{8}$ |
| | = 200 kg |
|
correctAnswer | |
Answers
U2FsdGVkX18q/3QoiUTOR9Hliehwv5HSImZrrqlRGvExwB1xhQNIrcvlBYJXNBhxDmWv/RJaq10s0pJAEngcVLUZr0E6Af/YQGzybmyJI4mYXcqgVwnqNGTCE0qONufPVju/w3PEGvF+n3q2bQS/DG7qjHMl4ghEjDVkFn3IATKTtY721qar1LsomjclCXe9ihiCtEsX4tHdAao+CasXBs/n4XMUD1hbTcep8sVX+wvYrLV9nwlmurTdKPug56f+reFFmeBN97wnsSwDCD843ehfU8PlUzjfhAPCzn197E55ce/HLYQTFB5RWrX70W+ZqL1RYLycZOaxGok/tmRBUzjnV829DiiJjvHTBbbFaGc2x3C5RxonJ7EjSlFHxv5s6/XaEi4rRJu15y/NJ//Izhp8viN6gCM1S67hJHpvtcMnyMs0tF7ecmSG72xmVffRvozIyENOtkt1DJQJMrJMC9cGAbVh1SKxr2CtfbWMDMwSVh7tfwebEGGd6hwxT8mV1wLtYz4klB6OkG9a9s4dTGB8K4PtETpM9dVMsz8m9UQPVgoULm+UPfEUProAXJtFW8TOMpLp8gQzJYUqxEtmV8Hgs6vDkUUP98alVX4Aae8Q+rMEGtAqswmwO7CbX+cZzVZFIdk7r70VP/eQM6SNVrg3eaTQCBbaDR3h4vux0dJwYH3HD15HQ2UVzs+/H7nS3TZ9djDymT5fDiDYaq2HJntPHMMTn/c+J9qqC2VIMNCu3op408VC0f+i1GanZ+kPBBbneg0xK7XBcB2M5PuzAXEzKszAd2Eh5Pznq2nYpyEyBRbTHGqTh88jo4Pp1c/QQDC3O7L9x/DDxQJTnHYc6F9F2y1RW6FZ5OK68DPjgxPLB+0bkLHS1Z2NtGlBQ+JPyOgEpeiR8AVw5Yf16Lk8wBGCGo5g2ftfcUTtalNQe77aPMk8nFVQAO2KE8g61Vv7WUkE30Gy/dhRnQxTiMNLpzCwb+kAG6/U9L5IiUCwVpuCKffMhcVxX8NPrLBVA3vSIG9Txkujt/dxt960NhvLaeawtQRiCDcV4RgOJT8lhcGZRjBbfZyD8ffjR2Q9xuRekhVossDorwZF+VfkxgHVlWQRdQeS7iNntvyfsAcegGXUNJZO35KSmW5Z0UVT1E3XSdB8gyJrLcEcLWn0DEoPKR3gueQeKql5WXUTIkYHGvyrwsKs9T+YorfgSmFcSVVIDQsToSbgTUpaGX2wVPeiwwKwoLbKXSIcxzrJQ9dZWslLI7jaq0AZ+mFA/vxsbU0np/W6vwU3VhPboiRDZk63BVYVQ4Q1EShcKapWC05urgQn7t2yyVMeWuaKED5OMNOvUomLKx3ExDmJ+9MUL2E79eizX/n4DQc7GZrKEMkgtXOMyJ2Gzx9Uj+mR7Nlik+KJMCc05Y2yqDJIGfM5nrFtwvp5dJ2QAUqbgnC3kLDCnvpaykqsi6vMdpCLX8hlDTfgW2Ag5RD1fYXxXPFJFg3iSZFPWnbg9Lc7kt3Kb0gBkcJMx1HVpotElmsvIIvHa5jEt6w47YqrSg2j7wzFpX24sFD0s+yeqbyad5ThRVuyrwkTa6eImG2RlZQ8k42Ovb0yc5a3tW/7QYWpSlsVDGZSo7T8lpxX2QLfA7jfTILMJfiEgvxIMPKAFzhyXgSE3GL32roSw2M46zlsrS3dCa1krr+9KsnM0r+TPJBGw/ujENB3mW4ENPJ2SrFDp1fthij6tjlYDZNrHza7GwIO5qN+ePeD2JHPjnsUUKAV3AKlmwtJ8Nb7hrOJ21OLQKYqZ/eWCl83z51J4gnsgr/DGqJtipn2gO5nCtUivOOK/Ja+pczwCHXWFlE8puRbUYRtM1KOJg/6PS+CQolqMAI1a7loLp7kCGUNSQFMlVteddITPqg5ESBxYaMno2Ic4eLyVqTRo228Mvt6mGsF6hd9xSl0kBxm8ZiCMctTXY0oofEyAuQk5zIrCCk3fywyR9FNSv1lOwchnVA67D+ZQhDPgmWf0tUJlWs9LWDeSFWBZDJ209q67d8atzBEV293nTwaTt4smLu2ukhTM2bwxXu+UAmu+IzX9db76JgaItHW1oGvwt0d6P3xzN9Sc3Uf2J/kYxngcm+CeJjE/bF4VPcR1l5F911s/JSYFiikWcC09IKk5VXOE26H3LAfvZr2EFfiHcpv2L0RdtQd0HNK2fD9FdRwVCklZFAfX7fCh8GjH+oN5o5zqy2LcDxJhhTEURCdp9QjZ+7IaYtogaaH64UQfhWAKTIGlR7V7WGdMkcEnQ68+yShxebaW58vbePPJvYTSNQnhyYocGKxFT9XNtTM1xlmvMHqMwDvMPSx41c7BkAVOY+TNtczj4Pnz73Fw6K/xQt62zY7tkAc23xTF6T8+tsPUFsKpaEO1/Gvt2pJFv6vgXBVjo4pfrqroroAn4e3dYxwIPiK4lbsNA8FQbImCAsMM1lJzd/lTmtuEqSelPAJPog7nqNkFUbdZAc+gm36M7JMeMDflMIgP83bKRWyq/FfKQGpitXpPmHvvA5bjFYxU6UG01lWEIcwjsnO5lf3h2V7GqmTSVGV8/FS2rpY5QCrTGDv0FAlKXs3s0JlH5I/ewpkBhRorFEwTpcNx+duOylOWM6edtdBvrEA3ab+DYkvdmqzYYVAiuXDnuO8G5qZwbs/74WK+ADO3LxALf02Lfiq9TEcsi/8SoSjZMOrw2//QPB6vi/ASM0pzBSzhYDktvEPwQ9W/kac95RvSrlfvdno8g6KS9Ypszh9+ALKUeggO/9qvhXeOw/HwTFr7iqrPG4Gyw+9LMp6VjQo8lje91VIEo8pH5GotZtY4Go3tP/ZumKe6DmbCAZdpvR6Ii0B7KAuXS1OQC8YDzCVrg7HrNb1iAgjV6Dh/9m+ZxtHv2OkeTGUHfL+xYsEwCpVteU1vxOn8FR/BdQVIh5ZvS5FrDhhhX1ZYBTDYvQmYRwhzabnEN7IPjF3xSggaWwaWJLWNwCzRnO6k3bYyCrOTMUPHykqIDpB+pyqWkdAH6lj9cfspV1+OYhOwkAPw2ZdxTS4MFcHJgL7WDxr8GbBImNlWZXD48lHnvqfWHzrD09Hc0eWFes6xZqdI4HL08qo+cb6MVM0xxIaoehqqdhhWK0514Puf3z2YnFw0qowZPwB3BUF5tDPyy8+N2BWrsXr6VyfNIsnLnvbkBK0UzNpP602H8RHZOqvKmP862wKMFlT+wONC4kyrk798FBe4WAZiWGOBsp4GMuDjBjqC8g4AYy2kprhtaoQvrG917LqJrMZCdI0BZjybuAfxKzGL36JTex6sHkFec5vAMmX289/T47JeMrHgEwj4hFsXGcaearfS+iUZpeJjVqqcwChH1dW0tvsszKf/v1HimTPAkplE96FRWgDjiYjD9fPFw4WsMs+ODqNjThNnNtyBq3ONikH9kL+3oT3ho/ADcBmnjry3i2MVGccAuqNyLIBpWiXcO1jtb6xyn9OPciGK8GgEUF3jhrZRszWEYJ0aQat9l3RRHcU5H1hOawlVcbJk6m1UDX2llhpno4Ybc4IAmcJJrAfhEEpDKTl1j6tzJusLZF71AArBMyIwpf3nc5UZecTpF4mjFy3gWQk6wJpU5BdyjkqKKoL6QkQJEeSOYqS7RlwBGDlm0U27ffVBeQW4XqVsQx6CmddLqoW7RH4Kw5WeqxjZgbjUJWNo5zv1NMkcDBxPIppVXMmipoEPxubjmYvZOhEsAEVMPqAXiQ4mwFx4tdVVNkHCio19h35mE4zgoAEPphtvHXfrTy8WJn470GZH3UYzybCCTNCdN8js1rT2+AMvNlKQJFI99dO5DGKmZ94YKZCc2/wWo+pheQ0DY7k3xE1VP18b4syflv/B9+VRo4p5rVpInVaGeSPIIawvNjW8SzEpi5v+qtIZOAXKSGd8yyVADzbIrD3MYtaG4cfzpXIlDCt4vYC/9ixzZzMS8hGLlcSC5gdeAfEf0oq64dREqq9L+liA59/kZF74GEPUaSiztpM0A6sGc3kd0T9h6IBQNNx4xqV9NWuUwVGpppZ+DA82XMsQCCeKQ2YR/xm7gL60JRCcnrrEss1w3rm36z5/lxeZuc8x2AbY+yP1ztrLwogtNC7OopaHrxsz2zdg5h0bGZV1DQ=
Variant 2
DifficultyLevel
568
Question
The total length of 5 cane toads and 4 Surinam toads is 194 cm.
The total length of 3 common toads is 46 cm.
What is the average length of the toads?
Worked Solution
|
|
Total length of all toads |
= 194 + 46 |
|
= 240 |
|
|
Number of toads |
= 5 + 4 + 3 |
|
= 12 |
|
|
Average length |
= 12240 |
|
= 20 cm |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | The total length of 5 cane toads and 4 Surinam toads is 194 cm.
The total length of 3 common toads is 46 cm.
What is the average length of the toads? |
solution |
| | |
| -------: | -- |
| Total length of all toads | = 194 + 46 |
| | = 240 |
| | |
| -------: | -- |
| Number of toads | = 5 + 4 + 3 |
| | = 12 |
| | |
| -------: | -- |
| Average length | = $\dfrac{240}{12}$ |
| | = 20 cm |
|
correctAnswer | |
Answers
U2FsdGVkX1+hcleXuBgWNlaS1mQG/vjsaJ8bwVln7I2dX5Ne30JyCrt+4g36Kmj44dMoYp8LB8p3Y9+pOoIH6lcKajzp6Dgad5uxk4yqYJtO6fCJN0Xc/0DrBNIuv3WxRZ+4MDhtln9K6xzYqz2MXDYe/Mk5jVonOls9euSaH1z8nKOdGp+EVzR73+UmyCC1U+LAJf97/4//ye6UkBDNcfznOy/YBPpfRPDDQTsRuwRxagq0Xz9emLCCZHKZQHeXtWoL/+ajPS9ik//Uk8Ue/Ia0y6Ss6s6lDuTOnKXvuq3ZQNgDZfVCjlt7SPu7j1nS7GCVMoEcFDOgeyU7yoMduAn2tSIufV8JO6CC9oHjAH8HqW6piRmmaYDqpwW/ZCS8ixtu23YoYG73U9mISOlCKItizbVem0HXk8d6s7XQFUatOqEeGIDUyeONxH8rdsZP/U1rtr1WyWd5Bmv3nyi/d7KGYiShsIkVPmKTwanBqYgNT+/fqwp+pL0lEIkd3wrGzZaV2IAe3O5V8j6r0g7a3PbUCJJc9Lmw4fv9O/TMiWqHUs1q5xedewq4lPzxaUlyax26hkSKt6C1HjSrGs0mHXen4KC1jFtYAkLJqRH7MdTt/sR7+h2oF9DKltOY/ody73V9Cc6EtfgdQwtw11aQmvvx8e+sT7akq2zZhcOpe1IaCGQUHmWi6nOKipmMYgc2GnTFucckFsNOR0pgH3Q+mgAE4Ar/FSzYhVRTUVQvkSriW6sAHDrzplTQQRB1UNO6BVOG4ArATacS5Sv2R6WxX/AzLHJ442+al2MZ25dz5yc6dvfysoMcMaoz8OCTmZCmILPETQ13Pqg33IPb5LCWFy2ixtUTa422y8gKlHZH6VWS9Xi4woWUOIHs4/FFrsyo7+dR8lwk0/8EiSMANvN67+Pn9jRxBTR6t1tKqzcVkPYz42OrQz3cs8ollOcRKoKFKfrKDr/gRvmTeE/YnfCZdQVosevlYYFg/ADTq185yU5V/UgmKmBgpNqYjAhewYiuMHGMLtDn9DQEF4XaOGe4R1FLxg5neJUP8QfKhvOUjEojmcYXwCTzFFKAv86vYjlG33AEXVS3tRrLBIaSM08lhAUasrbRjwN5sceQwtjr9XY4ycYUFleQ0tN2D1j/9rmGyoasewotY9JDsrJxL4WBHyrkt1Qgq9HXypG0pGS5Lz4ttccjiM+NlDFh2UKLKKP/rFnkPxzbzQ9ced740w/9Cc131GTl/DniEG4+BIikUfrH9Z8vvkcB3358ZTkHb+GEzFejJS6J7o4FYbJVM6F1P1ASQMRbsMix9Z2eOZulPNWayWcSKOFANngkyKej9qDUIFMNTPuDLVGWZ4fbWqZY34ETeX5G/VgH0eklhgOMkZxrbj9xe9h6W1tus7b/gj5mGEcQAim40NUy4ledupsZCATj3MWGacecTb8IsD35XyDc9xqqlDTuaCLIA2qNtsCMZG0C2Cb5cOZsEQHN9wRjoGCWGJ3lD+6vUie71sSQ3OLMeNZB/a4C4nFzXuD0d0JIv+hqqbBP4jwnJg6bP5oL6uXhblZEHUN0I1HytFqCRh8pIy93AWp9p5jw6/Z03jZNpzt01tkQMytxk6Bu+ZglNBsO+Lzp0V4Jo3WX6UNY0lSzI7A98ykCWCrw4hcDEss6CubMLDlQFofHqGVRtDRAZeiOk6v1fcAUFTymVJRe6v52+WoEqGE6F9iZ3Jy1uCUIkdiiLVvPZyE/x/HxPBmldzaIzWRfYRmBDIhQ2nUzuuaX03+H6iW0LGWPnwt8rxF7VXZwpUSdKHRUCQyPENJ95DCVSCPjEk/+4S9MU5rPQaDP47JNx6cf0GdOS9Bx1mnszc2zaWth2wKvEdJJG1TsLIfp3eunKFAksBxPtni/cyKCa9+ZfIHGeX3QVvVIjGMZy3umnW8OPEeas/cH7485ySOOsqg1yeB9xnevIliTjWbRfoGTf8bv5u0Z83f9cA17aOOKxH9aaYkYHh8/agT5aNxPIa4GybmkMCmWZ/lPl6hYh0tEXAEpIQC7hmTWx0Pdz2xTZbFCYwy9Kk9PYheHr85buwSivtj9YB92aPm7lmtViJzIRU1TzLFNT6TlNu2YqVUndIsmn5kVPuRZoaGCwRjG+eSQLFPYl9iYm1nIVEccMRnmfFrK+nfAEDUuy40k8oTRYC9lA55i9TxNKQz2z1fLG0/T7Oi3Dq0yMLaU9uog4XjaK0anTIzvp1CYo6638OdFuSJTNdarlfVXlxwwroDsdZlaaY4k6QONphE76rE2l5mFCP97/TF/HE98JIyLgkBQ/6zyhawABQZYRSEwo5g1Wd/hTRftABT0wFc9lgoWZCtEcaOxA/EWE24QfrX/DxdP7DuB8qfY7UAiyRstbvhWSV6iUtfPOU9GlYEOsHyhi0Yx6sLh7bmZlLFnGHgRDKjfIBhvqeVhE3igfWfvjA1/CSEYvhB1sa7P0LJjQcQ2wh9WA/WIFioDZH2vYD+GukrWm3kI2ElGG+9D1Cjsg7qDPND7CN/O4YOR1AWSq7Rsm/wPUOklvGxd9nTanbCxrQFRwX5AptVkv8qq0Jzx8Y2BUs9C/lTmDcw4FV9Q+txnGmFqaQG5KrO4mRa2dZQZEzAxQ7IwclrySwM/SK9YgFGLQECdIqSfpOYx+zo32d0njeeiLf5Popc8orTJzCTypPXAukm0EAcGUowpZewqYvDegPMLgWMq8gaW1yIZM5+NYmNq13SIE8s0D5Vi/ZBby5Sqmdx0Zq2cmk5QWBhSYETt6QV3TM1hMnlMyPFmD417I1SzsdlWbNP+lu7+1cagTYK2ChpWiow4+qW0Far5j5p6CtYtt2xv0s8WYMbzXkQtWzIv63qYmwd2r/5FTGaHEhPgcuexcHbQx7hyS4v2tuLN01D1pgttj4KUkczuS5Snf82V0TNeOaP1KJ3qsQmmn5vT1PJZxFEHsHcgoVaZLHFYW1dZnhEEz8D/bjulFgz+qa88yW8hOGHIlojvOKCq13HyT8ulDwVIruvfHwXkEEE0lPzqNi+V++bSl+yU9d0N9yA2/FQ951iYlUc2QCMbNwcR6UnFUpkqRiFRNR+o7KafNaVOGwSMJOL2YHpa4o594IWzQFgrsYWcol8dx8g7bViD9AGCv1cp2iO9E6qMo1C/koMTcMrNIURaTzi013ZKy2sZdgg1cMBw2/Jr49GGBxO/LEospOtrZtzOZrlvds/KoLshGntmCBQUnaqqX3LP+kwFePOfCybZvN3urJQUqGB07z3Ogh9DQ0dtg5g/VpaKVA2pkFf2InCL/iojD3IW/qydtpx+ajsrkWZxXmh4ikKlWJO3RM3JOoIXLDOkw7L0czWWVMEVg2k7lw+2G8w4xHcZdjSBVe/fllzSZrIeMOAsSrWVzvX/Hmj7iqEkBbBr+YLFBJnzkYEvAELA3AJc4UO3/DB6Xw3udqvdTHoOZCRN4Punfq/zF6LAIDHBz8nEjSReeT3foCVMlMvEwrQMD4iptEvdwS74/tExUACU+4Z5oNNmNM7lEW61MCpbKHQ8gA4sQT0v09G1qQlr/6XmQaYzMBEy7T7TJTrQLVhDvObcvPEorI/Zx9E7Krhd3Q0PE3ZxDFMfJ/bmZhSMCcBqc5bPMeB+kH9iNDCDgiW6UFnqdevNTrxfoJ5Y3tbPSJ9SIzuYhBI8GEQLy2UkEzcNypo0lahqVnllcD5mjWaqcHQ9xJeyDWI+SoYjzKOPiugrVNXqp8Y37KZWxXtGHBauD6887UlS5Sr5kPaBWfnnJDZFooGHx5xpR1QoI9nb3BgN0kxpXq8EccLD2ibnHue/9cjBtNYbTpyOq6drDttdwVxQgp0iZhswzUBBxoI8BekFIknMnxvlg0JthBuCen5VQMxny0qmdiK/E0zOWmDSJAUfkGFhoQroBYiPBbQLMrauCIBgnrtCpD7N6WbNWIoeShICMM6CNQ51lBR4+wFoKFSEk7SZWxh+oRWTEvoLyAxHjzkSJ1hsbqJ5iuHcqpOILNFPDYJfZXJ/3GmNIEuRzPMi6vJsENgds7rrC2iHO6rMCaMMDk5eww0MmqZP3IQMmYCWIxuZSa9GhvPgwMNarWDGwk7A+9Dbh6zo8YDrp47V6T5Gqs0dS338hMLdwTOb6bYXGVcWFv4kQrdPrAGDB/0/zhIAun00wOb9JCrgXVcPEHJW8QXLKrmCfJzmmkGHTQC75aT/A2rTqEBm1LXmW/18eoAZIqhSGYIveGG9fVUwK49xuWZtKJYAyWWE1tY=
Variant 3
DifficultyLevel
568
Question
Bryan measures the head widths of racquets in his sporting cupboard.
The total head width of 1 tennis racquet and 4 squash racquets is 112 cm.
The total head width of 2 badminton racquets is 42 cm.
What is the average head width of all the racquets in his cupboard?
Worked Solution
|
|
Total of all head widths |
= 112 + 42 |
|
= 154 cm |
|
|
Number of racquets |
= 1 + 4 + 2 |
|
= 7 |
|
|
Average head width |
= 7154 |
|
= 22 cm |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Bryan measures the head widths of racquets in his sporting cupboard.
The total head width of 1 tennis racquet and 4 squash racquets is 112 cm.
The total head width of 2 badminton racquets is 42 cm.
What is the average head width of all the racquets in his cupboard? |
solution |
| | |
| -------: | -- |
| Total of all head widths | = 112 + 42 |
| | = 154 cm |
| | |
| -------: | -- |
| Number of racquets | = 1 + 4 + 2 |
| | = 7 |
| | |
| -------: | -- |
| Average head width | = $\dfrac{154}{7}$ |
| | = 22 cm |
|
correctAnswer | |
Answers
U2FsdGVkX19jvMvWi+uyLdS8or62DpFx5UDVk436KC0jUee7OJ2QdatyGIbNSfv4+SwPtYydz8dSZ2EY6pHW/LV6/KfshMZTGl0LMn/OV2Q3WtkW8Nx+VyqH2nWM8JO/WWl1/MfJfdYarb4+dCeTN5NRo5Etb0ZSSlw2E/NEv6qFEwqc7I9I1nJwtyZFz6l/9v+jDppK3j2dNbBDFiNQTG3AR4H1oasMoacsUSuNevUqvhwYeyzmcNHCoNqheU+RAJcX/lEr9SnCqk8Vs4wZ7wEvf/jJpAlDnt4mqf3wY+3w9XPBFAxaaCAMcgMDYMdXzyltZiKriOD63JidjCEcMPrJ4cML9J+fTjuJYIzgPmg45EFlEoDWR3rkNqrsLxt2Z1sTfc8ODLtezY+9iNND8UXQCCqDVwLlNeBqNfLCrUEXRV17DlFRnhYn1RFiBjEGZBXhs2E0hEuZa7yZN3NfCfN4hzmRHHAVjGj3Ks79+lAuO3oZNlFw3GhYV1P9wjvSnIbcti7jimGs+9oUFLbx1wfi8peoejS2uChhepVZ859+GI/iOEPs1AIgZCRgynp4mauZF/dtUZCARonpCWp2aeb4JHSgr9r1xZAs0BcHjPyr5wdKkzAbT9M8JJrnFHH/KvOvGYBfw17hGXEBS6fKXg7HibXPU2APv6BT2/NAEMzNGQC8z3lHfuf+DS4XNWFiAjt6P5Smd3GfUN0FKkwkrSgMYccNIwIZGLurJKEgDHpbuGSxjYBqBjaNPhIQaWR2xEZeuNA8aZSevFaS+SHb41qtEMWl3gqZ6JRaQLNZZP1rVFl697TqSBlcaaWS457HdMVB+CyISSjqSE+98IfLXuspJbuSlRE3R7dQjMRi/UQNEkgk02UhwKiRGUVOwTRr9X/TaxHB1kLvzMhjuF6rWjsBEVsnlW3rqJ3YFMwPfp2Kkm3eInoVLhKOUUdB6AINXr5Fa4ik2NToqLBkmU+91KkW4rvwGziq7KaZI5oAKe51114HNvZEEqcI0FqFEEnZvMDaztUDFN9jqzHg3XmJP0j/zQe24uTtiDrWgfVLCGcZjuJ5fMkjlBWDIdykYQqbtBdeNRHm8pM+s2Q90oJqMfQ6/o6BZr71/M7WMgk95g6i86AoLU49KCKjIiyXjHx23q2UmARCRo0K3lA1nxO9bWdXQ28Ra7V3JH+T0jf/rIC8/ByeCN+PnmVV1c7pA65YezhyMLtgvz7/enz2KCG2OVXJSCqEC0oRXh7SqqkJzgqTdt3N45S5kj0RXuOSgWFixiEWLEpF+U6pVEK/0gC71RGXUWoeoRy8B/1tNL18eAh/ctsZ4W4q+1r7V1cR5g8mgaPam9xcixR4mE27tFo57BFOtp98RlyXTgfF6h5zkJ3Q7e1Br2WrdPF8FhH3KbOTE8aOufRxqkJYvPzCYHJHz8TMUEJiQ2GKXOFz9ePnfYyQ3c1qoWqaUIluen5rMLylzSsTLIEBdXvKPymzSdR0gi099IwjQ+dkZ1S6K9St5oZovwIvVgiKxbcN98qh9DuLGanjJOZ8CcEdx4w0X8WnvOqg5yQ/vqCN7SeYh9sYjUzgAuCss91OS++gRMvOLKfe51WJBQd8UnRDV05gCwGFymqgOifzJ4a9va7eMDbTWq8I91UkXMeL4mlZ0y3CozlkT8S/EJFzXy0QiVIUuS8emeqwqwgaSsVhYbMmcs3nJ15vgbx46Ju2NnLShnyedkr0MQ5WoTeDV4JF5gkQ8DLrp9AmRqz6P2v233yQtgrl8ulsTbPvhy1RCegiYKVDzic2YI3EIPiUFGo8TM87ZPPFsasszQle3hqVwfGe5X8rl/F/y931xh7ymgH/l6+pZnrQLQSGpMz5oVCkfn3d+C7+rAm/FOGhx2k7AW/s48FFG2lAwuig2bmEGrG2svJ9TKONnR9j0O4yAq/Bgnw8/hvw1/6aw6JzJQl/EGvAxpfDovyPYosz7ji+mQvMkhSOK79G1Hl5ZSqOjwANcJORbj5ZcJTYnbh5CqwPLhHhB7i/TfzdhXhSuu03ECdCnCytMcI0xxJ1YCuM55fyD0hJRNd6I/QmTqqTTiNRe72lhPY/A1o0pmT/Nca5eBkSswOM6ciMhYO5jTpH3jbvMOhTpb2L3OOH837vD6gomot1rvW66Edgvl2UUDVTbdxa/a3MW3iDY3+Wzw5l/MNXtGBuDIO7kradQjU0cO6PHj0ysmXybWfN7nCd+dEzhBi0eo2we7FFd40PEKQPpG6pZ2UyMaYEAm5UKYW3TZ6vzytRI8HjgxeVzs+wbwqDjG8UeW8jeNBF99F0yychQBswJAuW1/hO9rVY1YwNNg/e4YFXPBtvhXKk5/QB9V/pmbyd07buiCzjTDNJ4BUQyF28+0puoGmYmIjmB5Pd+K6IyVUSLKJ4Ri9c7XVL0b00IGeC+itXIpu7QTKHCzG7Sn7tJ4lCmECh/VHFOMgSyZ8DZcaBfHLoZGOII9V0L/rYs/Ab5YmdxJqmgXOVRwnTTSCgF+cCJcIPjfshv2f6zOGH0s9RbrwKBdBIsdsnwfIKY3dKr+pFU+iYSeLNJwVSXoytweRK+n/LlZYfPZMFCM56qYMAWRYyM6Pn6qqUireFTwodr8kTkyUuHjjWjQyZGoRnfWIcbKN2tdea8JfZFZV/yBknCPZZduF5/mzVuXCffKj8UeZL7n/Fzmwlx18kqx7yrqEBea4/PRT+ahMUWYMw+RAdEgxqxD2GUUU5dSEEx0+aqLrYkCx6kpqMEsykKG6fMiJS85ijKz0Jmv+8H6BKrjfeMWMHlBR/DDkOKgHBhjIgVyvxv2ZfZM5io1fiAgvGb0IrZCMXB0RUyWviBHkJRvOs1K6YexGxAqWzYHPrOi4H+UaMyalnN0c4FIBMv5JwAKPN7hdq5dRdzhlSc66qvhwytdPNhlXOOc3Tni+9W3RlPn3xgqgO0XWjWQlK0glkjmyYasC0R6sm57Fn2W4isRxQOAGC1rd/4z5Yod9/JRkkN2wsUR9cNmocirk6mMJOPrh9XYUYlWRT3FZ/TCxAPPKCprUMHsHA7ME1lstgqM2ELZHRX5AfU64B17PCbH47a1jGZKA8b2w6pv63WNGwbjG8ddSG2Ndkn3q0KxsPyZdcmI/nTXcSktcau2QDX6bPCNRwBIAzRS/hwpZyfSw6c+NjGiPtPprGfLelS07cDoOTXW85HvW30F6lTujNigeQejqWfDZNf8f1ME+qgCWxh0dDqW8hZ5fuUsr/AgqwiDw+jgyam25kTcGwHWtPK4DhHW8PqMj9Hreq0nWvsC4rUAu8F4FQNJzh9aSHPvjjAhbpuA3QMLXYRuufxLTb6NQGaAAffyNWSAy0nZLSP+C7QS1P43taw4jTlfV/wlwtcBcS/+8U7D2tkEMUJS/eDU2G3EzSJJfL3XKkq2QlsbvQ7LGnHHrSxC58b0Qj3XozOSEYH1ES8e1olilxTNY/S84fSVNXTBNhPqZQvVJDVOs4CHrpYIyN2J07ym2VtQ3+tkf6VyaRY6CqYoVVII59xNIHs/7QbffBEey1xfryUJe2ZVBLFV8gSSOk5FvfAeFN9X1r2vtTi7bPeQnE446grE0aIahFehIrw9wgkTJuG6QvrLrA4LL4NTZOu6Ait9967Fet3x+KTIjV7nrENY7OV7jch7HWocrgvCmGqbxyTEm1kp7MwEKnehaYYU17kpoKAJpQhg5yrUZU/tj+a5KDx+vyBZKlh2FgPZBN1AjvGfsD3tPxLiWgCJNbSKmKGhYvmVh33zhVJc3E38iGNN8lLqMeRv3ncg2b2Wmx9drUYIHCWK+bqr3MURhnSqPHQyCPkTLfOGGGR5+AvYdJo3RpE8ssu516ipzHWxEKiJ1dSvuZ+dH4AH/+nNyDWjp08WnG4R5l0y4C9AO9eq/z65LjwlorDxSrIQZqhChmFOUZ47dOvA9qgoToKsbCfW9wTtaHM1lJ1t2g9LA3G511GGSdZRJQF6kqFYBhV2LdNXIHY3QO6OLz11/37GNg/m+Ie90an4Zv+yqN1LO4A0rdHsZA9FfircL5taPUvjMMVNE74EPMvxAYKrnDVIC1H4AtAGhdZNF5fDdjDlsicIMURNopOtNg+zxjxrD/8+CfBoM3VhLUj4pXG4PJjLQEB5LaYbF/jX3+vynU2Kzzyb56qBQtaw6fxJmk7NQOHSGvHB3dBcwHKybfxvNJeKz4dHA+tWhUTJ5cqA1qHwrlbKuErWKyz4Y13BLTft5ZD/+6Z/++QsFQsIyUyD0EGWo=
Variant 4
DifficultyLevel
568
Question
The total capacity of 6 cups and 1 jug is 1.8 litres.
The total capacity of 5 glasses is 1.2 litres.
What is the average capacity of all the items?
Worked Solution
|
|
Total capacity of all items |
= 1.8 + 1.2 |
|
= 3 litres |
|
= 3000 mL |
|
|
Number of items |
= 6 + 1 + 5 |
|
= 12 |
|
|
Average capacity |
= 123000 |
|
= 250 mL |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | The total capacity of 6 cups and 1 jug is 1.8 litres.
The total capacity of 5 glasses is 1.2 litres.
What is the average capacity of all the items? |
solution |
| | |
| -------: | -- |
| Total capacity of all items | = 1.8 + 1.2 |
| | = 3 litres |
| | = 3000 mL |
| | |
| -------: | -- |
| Number of items | = 6 + 1 + 5 |
| | = 12 |
| | |
| -------: | -- |
| Average capacity | = $\dfrac{3000}{12}$ |
| | = 250 mL |
|
correctAnswer | |
Answers