20086
Question
{{name}} is uploading a file onto her computer.
If {{percent}}% of the file has been successfully uploaded, what fraction of the file remains to be uploaded?
Worked Solution
{{percent}}% = 100percent = {{fraction}}
∴ Fraction to be uploaded
|
|
|
= 1 − {{fraction}} |
|
= {{{correctAnswer}}} |
U2FsdGVkX18+fjzTR1zc3G+lgB9/msYNRicltlmRXaweYa6UPH35sPVVIWG8TpbrnyhiMN9ulz0dX2epd6+5ANGBWJUUIaer2gCeR8mxpuxiSRLX1GdMVURrLVZ7jBoBb95ZZ7qDOz1enXgUAU6wuLqcrPXLf5OjAmWiPEW2si3OEp9VA6XoH3AfxpF2PpngSMueeDdUzBoO+i+A0HZwayfOevef7KNHLEfHhrQ0ZXhRk35FZYBf618gOtkoteXGeHUMeoYGLb480/u0LPweOfoAqPJ47QFNZnuOQXddozQevY744Kc/qX9MLCesiwSGavxyXw+ybsxErIbHf/fX93nh+lrPN5KXX+ou7jMZ6uKnI+86YO2RLoTHgX9jTsFvaWjbclujHdFAFWTfZD5eDohI89xsZeZ2torvHuomcMz5pmOrwrhN5JFaNSth7gPcEdchl4if1xt+0xhCcM8pV1ILw0jYUYzcLFjm5pP0UULugisazDgUF2rOG0ZtKApf8l57xd4GwZ5+NFDW58Oaef2WH80ff7VtGcPsmii/a+snDFvfpg4WRVSrIrZrh5uaFnooH3/KJjkPjHlf7rZT5T1bVWNr+anky+kW+9DKSzvlcGtgZ9kOilk5tLXnIStB0rmeuTkoI3qSlLGrb/sjiLyEt6OFxjzEEcOWkwFL6FLdvxVJ4KQVAczbOcdnRteJPBjkVILfJUi4T0pgs6aORcKoGAHZrsIBdxqR1h7xLpczDlZ4kopg+ewQvg+N7f+Qe6Uv8J8RZX1MWpDk0F+qDeaEi47+Wd6LIa5piGmmebMBu1yFbG9iQtc3iVMoLkr6qt54k+0j0C7QB8mINWqluR5vn6YQVMiMnL0jNADy8cozKt92WXOVEmdHXTyXZxHe8x2Ln1ld6Z4HFHoiUXWsFZFrvuksNzTl3OqDe6+3onRYDLEV23sQwjZV8qAOQSdRlKztv5qbUaom60iC0K6E3vHqfLFsQmI2pfR/DTxScflqlKXkIpd+4JdvdwnnrVRUxNUf0yIwxU/1koNqbj1I9VYvdVQNesRKmd5arckJxlYKSCJxOdm0xrJLi6XeDhEY3HoZl7TRP6EyhD7yREzNR6Zkz7qo1dzpARNtvVrZ5jNNaJZ98sH41ySGp98x3ssQfJY1BvoG+CnvhpN0GyIoZmk0jKwYWKF5VhV1haFbFgGZ1/IL0RHs/HqVs+57MqGBeoPd/7B2/+ga2fbE3FjqBVSgnlWceXIQLrLu0H9C8FC2CUMRDrRb/syC54bILJVDrfUUYAPJS5inoZRzqbHAFuLTgyNx0GWsBqY8po467qXkRay2Qy6eNTtD5L8/LEz4ryKH5riNs7j3FXMNG9oSPGvPCw8HoJtn7fffbr9Bdz5pxFLAmp3Qm5yY3nsTBldPwfRXUvaBppE6xcjRGWrPn8Zh9jdYDQKX5JZGsiUElT6ONG6GW3x+emUC4OhhLmOq7/J0yjNImACUdeQ9UgZOBducvyvOqiAuHHzanCEdRQEv9vmLYxd/6z4McUEOngUx9GX2Z75OiaR8nt58ZOB+cYaB4RUL+KrP9lmsE73IpOXBaRp0d8dQsjnCaMS7EbWOIRY6Jwtwx9AXxSjgRK64ygAuSyBULAI8k1P/v+5GZ3BPp+IAooaGIDaZe6BQzqaBTZHOoKLavsApfxPi3rdK+6AU3WGI14COIngZVbfxFBJ17aFMXZ0QcK363cy4esFwDOZErFF0EpvDrTtKY0Iya8Yg426TCCMrF9FFFpAeBfUf5C1PAyonWCJC6+5ZVG+Dgs57IiEeXpbkqr8MvcZ29ekK98+3eXa5qbLsaG3MQolh63BCbUPtx7NgfOW07ZuC9cjOBef+BIm15PTR064b3JYpccK4DGq7W1OnlnjsPTHpCUM4YKkHoKduaa5IfQjNOlas5OoE+XJvAA4xFjE0RFrnkiXNY+81qIyMSqr1Kkn/+OgBUKgRiQwGhvURjnFDwqHOdgmA4AGnd5+I2weIqmxaHJqOFDwqWdZu2kx2x7+to1CDInTtNxtmszf7htnzkV0u42u1aUKkTXpkQ2mO/9Xmmgl+jOYjOJq6ULeTmSlCZZ4mUVusAh4LthXYyMvCQMjYpW1jraKHaoXuqhVHiq3PGRkex3JvT1zbgQ/Uc0ClRDJQE+F8FtUJsSe60IMxAmJewqfJsvUQBJvCpmPJl0dFrJ8++IrxpRTT4F84F51TlIgswJHwk84I5rgekKoFTaBV7sYQPgx1euYN/+p+5An5mgBesVhs0BNTu4L53dzKB9DDnrlWE/u5x73yywP9t9+ILCMPzEVmFHWbhFZ5aw8kIVjeiOY29vjTp2XtKiHEW7UMxS4/Iy/5NN0/BD31yQmO/41dcCWX4TKt/mMQRiip/pjH65uzUKs1yXhrl+4BstZfZlfWY+oAFmn0SAmA6DW7cjnHhmuvhc2nsDooeDoXo+mMswt8hP54mU2YUMWAv1Ww7Df37MUr30WgtzQCbc8Ivhpu87B+tSJ71VPm4qVwQriwU6fOscahcIeXbI5pfAdcTnft7xSogKqj39iGhqb9epzp/5sUeS8FDEUNg00k/xanlf+QQAuQRI705foSatyPBdq2fqW5nw4hi8q2vTJTwIDiaN2LqEoI8wRoKp7P8cJcL92cZtDvlKHN0Wm9V02uYcDHVBn8wus3SkMqpjHh3md0xmfAxf/382u/kMEvFxu2JU5FQlxVHOa7iPxj4y8FPvZFj/PqY5oFua5wVzJTHpVqHq5gdQKhH+AGI7zapzenIIEkiYtRq6DxlaKgpcg73pNnPzKmv/E9nBhvwzC/9ryeZ1LDJ5U2hUggw/NsLkKu3zeI7mxhtpOBHsNPx0ZDF2+/8R50Erg8ahB2YeEsCSycx70eZCWHZ+6XlNwDTBCadOy2GpRUtKyJZXpnMfVEorR1l3HerIGdJmaztgAiJQdKD2+7InYAD3S4o6gv15+VAcItK6OpcOTMu2O1S8Am09NrPU7LTW3dXS6oeLfr+ahkydFEuoO1UNuwnSq6b87nhxkXK9r8Lde81J73x6Q80Xp9l9SdgwAJFMI30BrWSz/A+zo9lGPtmrJvrOmhhOXsH9EHAo4d3IlY6SoK3+a4G2oKptO25dTdTx6rNBzRV9ztgMidS5/qmUW5bprLk/jqBKfbhXbST1tXAZbZdNV9ZlB50Fm0yWGIHNJajAR2ITw18G7cVXD4l/DdBKG9tMR1KuO4MgXWJDGBI06S3IE9Y6XjYFnYW6YqdQ8+ayVvgmgMQdlWNQyN170CQNGtowwTUfNENqzKK/pZFQXYwVoAfoKv6ErWRASrN0sumi5gBM/Imndr/1aFryzT2wDEFirk6P40zDmsJVWbpQV7IT4agNwCxm27RtLplHfOxPu3XVPNvrN18wnePUiePjv+0G4nSACNaY+cJHnGQJA+ASpHXGIaNTpJbESCCPGplauA2up34ITz8hLf8nM6agyH0ycLlhJjm4VEX8+eAsbfiVJ9T182S10JRs0rhzKxFaRhPxtK5Nai2LQ3n9V7a8ptxmV5qkvVnpEXfbhIR1UCYADYzaWxyJqV4DZ1P1SI1IeQPaT0gfwaQiKWH35ta3SsKWqlPvrhJtkWc6W842hhRYSTv1YbRzNtYLqUso0PNjYw4Xhm+NXnSO3V8wpXpINf9LajAAf//ORbm2eGSjlIC0TMKCwTOf0mawIfJ5dK1Cn5+YHxEcI5Vic0JtXTURsuQpsu+d2CnqyIlkjW0DLKq4tL+oqyoTLrYlB27v9eRCAAni9wzmguE9w5x6uhAaCogY8JZw3vw7qxjVw2/H562oHKX54huAz9i0Vq+23XBGZ0/MVlaaltTK5piQcEDJI7hcq7DrvVcGHHp1/VQUSujexbwyyKT9tHkGUgcVgHQjb9S99od5JESt7u9awjHKn6H7MmL/IhgUMX9tu285RfBZ8C3qwabprjOmKR9j1Cg5CT7BPdASu214rKhj2mRTfb++/QS3I4+rC+iBWF1drGTVQHCf77NNwD7tukfkenYmJKirq9tlWy+mDmvY88qdojFPwv5iqJIFJPBS9/joix7A9PclXoaYOzsUM0O4DpAbyAoTMe1J+Xlzss9R0CMVQ2J4u9q14NDx/gOA8fIgntKevBUhqPbU4P465fdNlRALCmT1AXI3LvLPhdeS/ohOE5Z+OeR6ywPPMN0gU61ppmFMKcvZTY5iTkBMaRPz4iTlQnAR9bHkMoBFQx9tAk1DjYWVylfrr8uxYjzDOwHJSpM2JswXS1yIGstYN6YTrqtc1Nm500xP2SBE/e6eydgMxmcM6fEMoUrv1K0gWlKyebKMLA0FtCTB5npp3KPf9hTx4UvfagDr5hsvnCe64sqgbjucbL2HT5Mq1Tqeuai1zeFMOlqcv8loVjT13McHnzTnEI9J6lG2WiDQ4VjmQPAsd6msLBgZ/RqSAlwDKadNAh+r7QRq71F3tD8IhAtOmjyEvH8P/fPjFfMdPWrxfFhUiusDC2n8taPr+aWBOD3OmIhc5uHjrKQ/Bo9xJZCx01NhJEG6Kx2QmPWkZ5FIv+6brGzbPW8fzQTLAx746r3VAlT0broo2LaPSK+KjpgaK2g28q49kjprFy7LhXcxDTl7hSzLcEsr3oo+plabgZ4H1tJgSlt8dRpHGK39+l5hhH0WTVhPSsgVE8yzY/TzOBDaAwLfOLElzsIkv5OFA1F20AOMk+1Uj7Jjr4b+X4yojL7WuYmsYoEuyYNO8+ziFsgkwvaJvOFnZ9WvTGYjkaq1DrhpetxWJbVmIC1hpjzgL8PIyfL+Ynp47eMZNimjI1TL/P+oHnSK03FtjRIpNmX5OdVtsah56EBSGvyVaN/3BUMO8p3ZIjT+njuvThEY/8FWRCKT1QZIfOCctBWiOFciXjzZAUI047qIFbA7YG7vlidmSrCXVTsYwSoA8rOLAJdZC/128E1PRMROnG1omHtsbzIZkkutDAAQILCsBF993hemrc2DUvRN95CnLOQ4/HGmqWbHUMpLV2gt+eXGQ2oBh1KdBnATLluAdkmyT6xF02rAtSaLIrbPhxXfGoQIY9Ifzk0R3WS8uOIUbMxMxw+GCtKAHwP/Z5uf3Qiw5PC1vowWfJ6jkK6CnaOU5juETQN/GIOerFuF/sa/MYMxbCIRszqGRy8PjPKWFQR1i21sWsfupInDdIglKU2/rfG0ZLs0MUIY4m9kLkwSQ4GJxhxrR1n0W9lr9J9gEKl47zZmqzG4GgkkVFcGqdiTUt4qryUap6Vitvvk9vnHDgkAKv2sxbVPGV5PbXXcqMmzzIrdjXtcWwX0spbGtJY3qIrR1Oyujt9Uuz9587PF8zYmU0GWGTJQ0NTlKmv6s4k2cp617+EfinnFDWR1JtekaBXW3UtR4DFbP+7kR6A/vEc6fLmVsa0Rfz9vIR3vEcuslSP7nuCos7ampZy0VbOPX+0MsjoKRAaucbulkBm4fMrBpghUCjLLbXPR81p1mt+snEPhASKDgNOWmrxjwqxDehYacLA8M9MnWFig6ownP3UPR6jgmMNqo4qKjMe/hEFqFr4TQWhrwv1Y8wk1UJ+jozEHwRKsfiRDr8Trzumr7ofNKDBMGYMC/LcEwOWclFTwsfsuDWktK/cB3dhg8B5B4ywhyvZCDO94IZ987cl2vQuKIuo6gM9JXinkUrl7IDx/nNZueRs/1Knu8o89tgIkmTHEuqbaMKjd4HMWVKKZkU4q3zrOSO6wbqL9b9FctQaoICD+OMIrrTZHBe8s/hZX5gQ/k3cp6JuFW1nPEJFsvDk68NwTDyobvISwkoIoIzlmxf+PW/zxYnahZV2A7rphkrqPSQPoMZ8upIsX5YKcvCk8MpXj0pbdjFPICVOWIT5MPxdFYksonXRA+YNcf0mjwa90tMAEVSFZi0ac4LG8QsmojeIt4vN7EnPs0M7h6p9dvpgDKnW/FA/7AweZ3d3Nx6YPRdXwyS8LVOr5mKXnFMrEVmgnKGliRj5LdJTGjX33wEEaAAw3eRCzNtfSaBupaAjFEWScYP0bu4yTJmYjOGYtQklpolF1Rwf4fqJfq2KG/DwF59LeWiqkyTZ1WxdxQXDuDnaZfcw7SLyuh6KJn+RY4qGfWpAdlAfEOxcn0PUEIex2FMVcr2+SQNdVLIoy+MPIPc3hyxCjoUjCsZoeK3mtw5A9ccmpeBFbUMHVb6/G/e4I55oOIN81WIzxXo5LfwVE06Hkip3JPOCQCGy4wOeLeEwUPyXKPiVlP0rFQi13GvrHc8nttEZmBU4L3vPCkppC8Ztgb//oqRNlBjzryscJO1qYNNmbKksHJ1i6uTxBGaXK9rhPenUfoqq40Qbe8CJ1M6gGp3Ir6D5/g+4eeKi37ySyQ689VdZjoH3svJP4I7xsecyAip6UpywYfEDMj0ZXG+kvOoNOKuXgyQgC93XR/XCzM/VGxj+upw2BIfykMuBCBuJ7rXVinG/IYPGOglvHJ/SAv4KVYU/tcu/6AazfzB7Q6frWQBnvXvNSYgnekSHhI2kjVfBOddctjW/OCoCvLd2gzmvg2TnGb/75tBFi7LjuTKXSutoehazaXu0cz7DLs0GMtab7+9PbK0uDvCfw2rXBFbaTEolQlSGj62BRTVkUKyb5NyREisQXe44y+ptVvwBo+D/gl10MLv5M+29tyDeekJdxJd5sgDrnx4VBUPfi3vP/ZCPbh/nHPGVBZJmgXmfWF84ouAlw366RvcAtg7oN0y/GGUfKzOCZZUkwiMvvnzK7rnwgx39wmrf9JpbiFidSO840uV1FxjtLtAn58Vq3HNtCPaA8lPKQLfVaHVCeF1glqN8wiNdmVy5uQEcSHEUc+sCzJH8r46JCkNH2tgTa1sejrxTZfnfN0luMRR+6jewlW/Zww6q4aJMHs0i60+fFd5Tl4u4oxyTVw+AelY2T5LWIS5uLqxc6v+jJExeoTrmTfqo4test3qjhY2xnWNdJy6IhIHLBhVyKhTtl5wFj0x8tWKHUkapvqP3+dbLd/2fAbuCkCOmguIEXLH69MfEXdeLaWTFVqPRIpwQ2FiVxYo+uh6GbsDU3V4SrkeicJZYa9hVJYNBrH7/FCgR+fgQGiN/B3vpDB5frLRrhvFaCPbnsWg23IT2umOJP2HQxR6l5swZehuSvnicu8iDFDRSn/QUfodezKQFBeQMKyxLqpD4bYN/iDnvQ87kS5Nq9iS+ej1L0Ap0PAJvX7TNcGDYYMNEuWnPdAxqUrKjJO7Ik0FrwrpXmnYReI3xd74uei7MuMEJ3rkyfKKSfwR00OuwfPCnESVOdrgFnw87VEk3yH+9vviI0kvTFRgzEMe8hZbI2J+kGX1dTojOb+G8WoJGaRPs5uXoxnlE/FGx69EjUI5b8bQ2aQv0vtp6uzWqaynPv2JenyOWjHaczv3/h3leFSnhSeKZws9UefeJIsCjvyf+M8COjyTdmzEgzJlzhZuwpoCjJnAIefq/g8t02G1OCgClDlAHMFFO3ZWtpac7S5qpNs/DqCbef0qnGbqyhQYzOnzSYaK/VK2H57pfhAWAuofy6tLMaNDXOmlwpnN0oU+yEKnERq14yBh5AZvdajoCKlmrP7Gp5fqLbkvxh36+QUa8T/YkcY4k3N4ZKFWKvbCcH3ffluovrHb3OWoNOt0+/4KdvgRp2b88ShJZPgUrhMMi2oD6tqk3kK0QUxHdr4HrjlfuesDHq/FYJm9SSKuC2WMxVOnUVTm/3hPvVWa4XixCZMZ5YCfFgE15AT7itGiW+cDQHtZoncuadnYdsnsAbj28Hrmzw00dqCyS6OH8SERm4vqCdSuyR4pI4TcNUK/QU0K+Cf3+eFf12Nx94pGY250L3Wmv+9YivdsiLPDWWLwgkHSTVv+W9zddnoSPp118MyPzh9XhAzIoXyRsiNbYGhhAOiZs03PByW3jGQIuWRq1mxbbzMt0FOkXt58KvCu7p2QoHUSwKMfnlQmKFgBKFzc+RX4Hg8MR3VIj69pE1g5XAl/mu63GcfekCofsKNNJq2wXK2eS6HTC1Q2d0zhVyiwLh1S65x/djIBHCQIH6CPIIFUl39hhIvrAKClZZDBmE0rEhLXVLTf9yvka3hQLnN56DFmxlKNnRZV7a6JdoH2KTP3zTjmQh0Az8eyuiExi9IlWvqO9owf3kjBtyFJcBvJefgN0rfrob1cWybSjwEdNEMhau2H8EwtJMVNWYIiyy1SwZGWsV0AlMl5uasQE1gDDVzCX4lZvjgtCJf424uoAx98exhcB14O/GgdWVOsWqX7N1c/o0nUX04uOVQiasXfb1SpnTJUMC76UoRzgsR42qQ+/KUGBXdklvWL0iB3E01BYGBxfEq1hNrxv4YpmBu8xW/cLTAuPm3G+Blea3L1TtdNZxaAuaTa13Wz+1ZovW3wuOcI0WVPdozXAIjW1/YN/dEsANyodrCBR8HdXR17gR94iKOlPp9ToKXaYQ7RcPk+4lvk11Ad1f9AhPM2HQ/atei8OUW52W838I9OSiZUnN6/hpmvFJmaZ80U1WzHkKbtnT+UB/2Y3en+GBqd/KZYDVL0M+CutTTowzv2cnkB7qJpQZ7zs/TPFopXIU4iSwBxyYzmfJFDW8LPaNoBIuUda7pEiqSYaOsGUxAXGFrQn3E0zGaB7o3RE9DZoWh7ZM2XGeLaB3sveqPoXlYYeKXQeS9IuiMf9QBTBzdqmFRl1KzEUgGUgK/LdgcGu8IyjSXEEkWRs5KpzBjlKddJDLVSx2Nn8o6X6eFzCXPSYJ6CWS4K9uWP2+5RkmFpD9v1jTsao+jS+NiqNuJRIw/g/NwVHKPho0QDhiGPuxBL46HhQTop18Hhe0D0ZbVbSjl73ZfveRQHi2FRRkDbkatGpckmxtU9IOvNLbCIa3MaxHy83HJkmgtPBi1+nvSo9gjfScjtVcP0R/CIf3MlHGUlvImw7jXJwlfmyW6v0p7ueFUaOwhQU/hRv9ub1zGN8BFv8e5ISf5S0Qo1iN/M++NQfeuMwtoMJSKnt1TA72oRVkb4LM7Pfq9ShRQe/9D7unjBtfW1P3i0kohgMX4jtWhCWz4i4yWpuE8fPYGSJd/LymD/Gn+4+tqpqTsQv2Ih5SrBIbSEz8MC7AihgW1hDLloUFfGvog6TAsMSZPvvlkSgaRa2Plc7SqEKIuERg/gAr3Ni0oqPdVOtnmK5M4I2fwfdTHI9Gb28c4hmiJXpVRGNboDYacu+1x0CRnjeExxhjTeKH5kCVHlENf3bmSwpM4kPmJziMtTvB62mo264VAPIewrKED9A9Cg5itYWQ0nup4G3qHHtrGEaiHLzHAHUICmZ9h28KgQVoaixoSIgr4w11Sd+VqpE+xttIczfxi548NSONOiwvzVVFZADiwtEaqJsae1sFp9CT9TJ3KarDhtgFCHTNiYQrCY5MTeJiMx593sCAGjh6ZIMcYX4z3f7MX7HkiG0b920DLc155RD42p3kHmmoeNrnL/DwhNo03NWjGlQSFb02Dry4/ibnBNwyoVfehuK61Qn+RSaUvxPZE1b/811PAEEE73McH0jdY0FeD+X/b0VOusXW81Q3wUjFRBjPXD50BoMV+Xwdtj1KzcZCjJZMhF3eXH6UWOA2arElucHUsuJQNOjOVoS4X02Kos8PXqghATOoONM1oczwlsQzJQXOgwz/ZgwxDr2lSe8U9jP/0QYSXJ+lhYaIpU9saA1qvv3xkDwv/SaMdr6xo7gPP+tK9TydWuM3Uy+xIdoowSGIa3WVX0ZTjmYjvIYiF9aYTkguD4tRUG2Xj3dnt2+9waeBXBkGFq41F1jNnSWRe/+Coie8r5oVPbMbLoDKSq3ACr5pw2fDUQwEyx/GV38QJ7PuQ3FjzDsESsrq6jZqkzpvGJ1DfZplyikvcaQa4q5xEkWZsPAhUfP30DT4UEY1b4Ab3hj94dA98grrHtMhrSH2WMgpa2BNwB72I+1TTb7xBTLirt+h8sw+SDCG2WKvE1rDaOjaj347wJPpLkMIodbLSsRxTuTT9kPrSPn6mZg/yaLo03zwdlFvCUswDliWgpaO58xZbJR3kMKQ2mdzmD0mmHHo+/AN9m2Kz06C7Qu8aSVRCAM3wYV/23umX+Q1khX5D3oCwlrJxcVsFEx2Jg0AQGLCN6pVgBvK1zY8HOhVQDLnkSryvOdBnQMGBTLikOPrnZkeHf6gf3c+i5Xwgq7mK/hcf/K+W9C4VaxGrjD9GQzYDaDd7szm0++G6f48ljmLIIdA2/BwdS9cdApoiHURscavl7DtUqBVg6X4KRj15XHoEVW93/i7UvzgaVSHIAU/A90o036l3Z1ZRvAag33CkWrwD4pC7Et31GZJtK0s/G6GjlZRcXz9HyupOgXzkd+A0O5SNXdxs2pjFswWJ9EfMDF3L3O5mzjlW2KIT7UEJZbpGsupAT242hn81EH/vVn/T+eGT/8Is5U6OkSv5aE8kiF1J71RtDn4noTbGHHPSJimfiReeRkTnBGKCnyWh5wTTFUV6nEeYYco2Q79jEP+4/8vegPdqgyazvjVQkgd8bWk3+cICvsovSf3HqrMek1BQxmgX22M6xcoJYbjmzP7z5sUxUkEhiplA2+fjtrk9Is7prh6EnL+z6DhNCFfHaxNDMbX0Ra4i2TGH3GX6FAPvnJVFmf4bw475BKsuOfBsAmAu1U46wMjSNy2YM7+g4wijY8I6dIBZdEFjNm6ZkS+HSSKbN3B3xsUu6TdrHrahK8SgyF1SVJ9dzd4E3Vt48+7xesV52Pk2iWzP57tRWuTISJYHQ1kTF+P8LbX4AsHDEn3zFnUnV/eEenlK/BU5B14u2W+QjxYi9FLC+uLDFQf+zjpYOhPFoRTaRQqxR+JCggZd6JvxCEdhRegpUK3u2ZuPZzuqQ3DDHyXP852ffWmXWS9jGnz0YDDLWdMHwKH8ESJZjHYr54cA7pjXqnepQuzNl+u5KVBInbDjeC4j2/jQV4hf42KSiA8fnjc/NC4/8zKBWrKDUD2ENGDQxzmemLyfFS86rQNbP7801KKVM0Uv/qWm8mWbrl3cf3rfG0RQIh40uR66dhtaRw8/RvpyGSGktVO1S1tDRD3IVXYob82jw3UFweA68bcQoJT0QGAFr8k+lN8ZX0HLbeZOSHV2hiihI2E1GV25wd3Z7N9Nd1rDcDV/AMyEZdhnf0cGqCP2EH4mgI/KmibVAYgoCivqdQHZkRp31IJzYcxnlRzxJOMIpD8C2UiFeFPjflvjOiXLS6k/7AkY4iBZR+yPLbGj/8XenlgRnViZWskaEEM0usdHFcedNNbC7W4bggqq2X3ZA2JQF7vVk/5OcCk2v5cfEpy0X4Y7WWgYtUJzs80xP1eopPFKLxcXJqvshkvJGt/8SZXFSYlpphu79neULrVI2vDbnvNlWYvsJuZS7sCXHkD4mRd2zKZ+Z4usRlojjtqg5W5yD6p7pbGn0pkKmmFwVvslWAyA9FKUU9ar6OzZUgX62UMhI7vvknrS6y+f7fgkZmBOipFLhYk0VHS/f4RYIv7cJQPwgw/18j1FrrNXiNAlISWu1u/5pQSPhqSUY2+O76f0duPkuG7Y+p6me79Tmlin/rFzLRMDYU+bxljGu7kCpzdCQcKqNIs88w4bbBvnBwZNLHDZsZbvCW1g4j9AdkATQfg25zO+yNy5La6PqpJL9/PNtr7DoqPVcOhgbjwDjQYrUieMLDZI437rJwxduewEI9BIvGARpWv3i/KgeTcHpja+zKnvuMHAjMRTvOl3huc9mWr7Zfo9pGJ9iPbh05b7KMlcaFuMFAiEuyyoR2a5gABTjkjpNnPP1k1indl7rLzPZc6HLb373Bgg6eK8aRJWLvwx5ef7RqE7NPTUjQd3pwGCAACDtfTsrD0ZMvjoydE5/Qi881PpFONsg4jKC527Cp0C3KQcLC6yxQGb3V9e/6B6N8l9NtabmYyoiEMxnXbP/Q4mUNV4Fogi6jPvHXnj5BhL2RuFD4HQynS2qjEPgvYAg5mNCfmwHHwO4nfqmnq6Ha7Fj9zsloot/sIvc7WKwUazhODAoZxrZuvB8GsymMcLjhFg/U6nN+JGmpOcLQE7jygYmzvHa3MG1cQxnP0CEdb8p9HnBKVJu0pvMFkbsBHCf9oSI2nZz6IyErMxPBsTMQFCKIXM4Gdp8BiirUnAJMdXCaKFdR5PSVLoFXmdq7O7b9hhgQZ6SbYobzNFp6c3WBmCLKeVuEdOntBgnvIt2VIiUQdh0E69508LmMOTZo1ZG8TxToaD2xkW3481DzdbRQVglg9CPz1X1EfLnEqVU7LFg7iohsspYozgyd73QVdTUIeBXZn1hbZ16z2wvMm0HQoTHhwOU5hbuU3kVSkS4BaAczsr4kDbWb5SQxLXEQU5hEArPZTG40rrYWQGaI0U64j4jnhSyJVzHwXgUaSYDc7wzUjkQVFLPt8zzp+xElFcDex4w4VLL0LSVx4bnhM98Qt/DGqErVmF6lSxSBntwLoAax3zaPk1zejT0dwzidVZwGmbD6pj48uJFITnubTVNYNA5gZXDC8wZdeqSncoSfPf6Sl9AWAk5/wQNrXKELY/SRkkjh7Q7UwoSyS0nnXeH6T5nQ2J0oIrfneXUOMf6B93wJ0vV2Vjb82nBNV77RYX1qlymL8/k80Ho5ZI4lQ9UVxwqvtWcEsixtuTBInb7Yr2E5DQpwZjsPQ5YRSO/VfpdUZZuLvfSBW64YlMvtp8m+Im7bivc7O7SCd6TlSS+aZLDlSUancGbRrwUY99GFVi2Jiqs80dkr70nkVuJQog8P84C7Q7ozqq/c9UHXmM36e/+AEgrTed8Xhz0nF09L8Sj32faDQVK0d13JVCMWMUPBgu98xJo0DpIbHl+gljsRvv8wALw3bCfkt2AUstAOQ7+falmwiCVuVl+9IOXJKekqT4MuDZXLblP40Wp1OU+AcoOpGoUl6d6v1SRaXbB9iHSz49iBsEG4gLusdpgoeNryoBObgmr/So3oBk+XkXf08182RP5inGLZgyA4Ty187uO6Oukeoe86wB18vm39g0x0RreAFFfz7QsMDgKiWYzIowrIwNy+ScgI9E7xeYy2qU1cp7nTp8PfGkuzqa0lH8clNQcobxFJPU6zfW4dS6MuqL6SJ8Jq3ME6Rl8fPK0tjvHfr1nkYrRKlnisArD3XtrArFEjgyQm4cgdSyBSFVTE7eci0j1tuuW80Vy0Dl30GKw5Ob31LsxLj10gDetN5OojAm2Hk36YHPNN3TuDByQYowhnAZ2B9tUTm/UNx6l9c7C1/sbOo97IOBDIh/x+1eJXQlPO/kTQm/pDGOktpMD/Gfpv0kZ0Ecf4XkD7AAyjLt3VFlEvcoP9tQfuRUZpOTBCksef+Q6yoUwHc/jzrutj3+pzmxKvytgP7jYAVb1q3qh1P8rovPyAQiDKKozYxTBkd7BRHhD5ny6bNTuWbxXnz5XpkfmtxR/HE3oaIUIFhyN8CLHSa5VPQpmxEiMYKpinDV5yeux8/Jm7KP6za80chaMHc1+MshuaUPAUaXKOgZFKXUHvecgcPGT9ah+Ujs7TI3uk8LKSl5iDMEgdtUKh24YRGN7UGnokMrdCa2c9fV0RVrz9+xJiBeqBWhwLSLh0Wuy3Iilc8h9Hk09N56LGoGpo25xvj3Gxd+3+GlIJD2c7fMrKzkXEIT1Z6IKFm00HX7sX+YjhnTrbA5BOpehoQqPUg1VTu3xjqKeqSV8Cpt7/E2Tn5sbeihQ+CWu4/JLLgxVHhl5h5ho3Oi+c48FlZgwkGpx40nDDbLlk+rLUJm6KPPU7oeEOCRpQzeKGz7h84W0SMLtY2p2Kb6OTOTXNrHnQfjDBSB5lUZeisM0IO6IIku69DWbLNp91J4WmPiiXVGDAIR/vyUQyg9UQ/cV2OjFqMDiCIZYsIIuXP1Ifc9IqTrU20PgCNPRb+LQ57s29MSlwBWVEJmVykI2iVnKmNjBD1eeiTffHs46oDqFdm5M1LLPf0nVlP4H+yKaTt7se1OD/1uHcvseKKnQ/tBNWlTsaTd5sQ53hS7kl70ZRhYbmcg/UAofs3Eq3CFRq95q88mstmaqxr2V83rch4bQGraTaapZFVTveej3XFtQnyYjN12wbfmLO6pdkHlEZAWcpdhf3SeHy5I+bIzokPNyGQQLsRfyQ6L05QK5Jadyn6eJ6rU9VkY5l6my4TFe/HgNItfuxdy4fVSoD5N1tlEjM5EJdijRIc5cbwMHdEMqNHmUMrProTq0cO94lYpOBG4FPxfm4KFYWd4NEjXxJurUY9/jfFX1h+yv4p5vZa8GrntKTeM68QPalqhzutAYb0UZSZh2zaot3alAtXV7LEo1wPW3Fcjw5ARZs4AKI07VwT9Z5XhqAR/zFStSd/hQ0RsgG2F/HWUS9Zv6I0+ewAHR69XLIYv4PAtF17/SJGzlcOPNGOCGJVzBzTXjaCrZLZ12vsRTy7X5pl/tYfn8sbFFuIWnb6UnaxQjGpjli3T4SnhOAkvjHLkMqzgmzqrJtz0EXvAKJ9OfHlo0fJHoHdgv25U5myONsEv5O+SBHQ/GJFGwhbF7jEaHejQjiV9rsf2/knXxrSFVEtdSzvdZgdK3MMlOzHjvhNmeDRVIyoTjkYVTdNkIHSfwX96bDIqq4R6VKnD5ZZYcMFEGUXKtuTvHdzp3lEgsR69yuhS0oiJS/Grz0kemWau26eTYWAEJN+EwtQonx+s/Qnr1pKd6tWpahKpTiySHpvSLtZJbpxQOBb7lZcDZG6FQx6YiKyxCzRnxU2E5jvBBNqcNDsOJ2bAETDJCWQEo58yinDSggv+UtFyhMvgNKHtv9EaU7NqsV9glEL9s4GQqdJTSyzCSgOfvMOSLSF1bVgflbKHUHEfV3c3fEDgvyxTMDDywALcikVqDHfKhWAeOpu2ktXTfZSu9dpwawPTBA85NdA2aRAni0qAG7sXuQNHgNn3ed/+PJi+1p5ARpxZ1evtYP0JSbM9fCOvWNYBf9Pd/IF1MU0GEtqmilD7gLrkfMSEDwmGlKEtyCpYeq+3lsaa2a0iTwJ1SL1RYr6tZ2J1NAp/wxOSR6AueZ1jekjJF2rxY79ezHgH1hmm3Di9aZNJ1LVKzY59gSuZhn68csXhi7Eii375hq6OR7duo0pGmaAvQd5SHL/UDQk5741RKoxokszEgzOHJF/5A9L2JBduJ0HaYadwapExk5okyaR31p7fpNtKo6YunpGfRDgHf+0N/CBZNrjW3vL7o29rTU08ux3TDDJe1V/la0d1Txlts5XUgJgt2IYtCEsy/kjlYRQtXkac44ZQ3bII+ha7waFyxh388kYNeYlAVpvSG0BtgLovU6gy/YzwCtriHQSw6+NPL4gW2o8iO+kY7L8HmDu7K3YuHdN090TrwoOn2pJgAhnk8WTUO/UvtrL0xsanROMOcnHgd0AlBNKZyfdnFRYjd949BmMqhg+h+03yRwkTW5NlMbkmsjp2nvC4S4e4shOxg8at04PnGOtAWPWN+OFiSt3Kht2g7B0UjVul1GzShFpTvNDjDab4qOPcWSMO5fj5419W8CzGZtNWf4HNJaPxcKeyZY3vn5G+Zz+6LdWoPuCugDOLnL/C4Gwur3CDCQ1TbyOwWkBxyMkdf2Dj2qjF1h3zcut0txg4vk1GxXiR4l/ivETLWIUAaPuAizdv29darRg2Y8DoaRnZRqCaINBN7GVZhdWIFPUNHlKeaBcq3OqbcTrA/m6mdbPNkjmEDPvVYeRl8Hz9SLibJQbOA2ybbqc9KPPRt6SoazMpnkx1EFLAinA2pW5chOwcbNtj2KAOJbRCIzSKKjMV3ZR9cFPz+tRmROzpMGDLiD7D38DnoJnT8tuBStxq1zpSeRhBkrs44JjLKB+pLxjTaAyNaLedgfbL/cHRneG/OvwWrBwowBkxwIlJGSM/oFRoVQlD9zg69i2rhBxOkLNuZteMFk2z8SKF70QdI0R5aOPhENrBicLyWTVdFAJROa/6TSWIosT9EZzBumdWihVd1ufrkZWv0utjfnpagtNQgT/PEBAChkur4g0C1WfOnEPQ9LiMgTOizngMITSOfwLB2f0lIZncp75qhVV6C1PSM5cF11aYX2UhopLLMqolPuY93KmrTYq6zuZZ9otIwZxzm6Ul/RIUMAvOZfLAqGvFTBDbsCREE4eIeE+inFLt1UrBD4lXu0C54IGw3sOQ2iJSJyrRlJ5WkADutdTIrQ+3jlv4Frh6fVsdw9B3cDsB3pTiGqNDAmCiQ1xnp3ozKQszK6RmHY3vGFLuJn1xCACQ2KlPjS/dyZb8nmRyYJDlsYUivhoBoM+vrOZUwqoBtPvRGrXFsOBWPh8SmoZc1qztolvds15xiLpfhQMAhZMcceqB3FSRvB2gF3oCEqauNbhOBidWRoXdI8QBNm+MZ5MHgh4t+J3l/m9HRezSEzvoBHOQVO3Jc2vmKrfw5aW7d8waI64B3Y1uFTY7OnBbIius4bvy1oAfqk/4va55J36fWHUla9zTHLS1bxkjYpAl75EcFpJbtKXfBrWOSf7lBG5cfwa3iEAv3JueqLH04KB9t44YU7jVzb0WjIcVVjy8BPqlrScEVgBPmGaMlWDZl35ERS3o76CgySVHZE9rI9fuHRRzQcu4z+olAVTaQCiMAwMdSfQLfz9M/aBA6rvAQ5YLuLGLb/Pfseog8OL66rX/y0RwCcP9N2DD6lRD7kmbIkcelaP/NVZaKBtmBQ2HjIzwjbOqatbD1L7E8BS4s7yi1KSo5G7DvsTd50vd4ZF0SRWiF5zWgkCN3URWDphmv5laLovE2iomP/9nCKZBJ6xx4MzcKteORJcaChp9L1x0fUwl4rz6jY+ne/SFkxajkClUHsH4aeYInv+s6+1KI7I5+Rn0uxGyTmeO3vAQqld2tO2cRUmY2PSv0rVGVQhVxEA6ky4k1A2AWg9WbJgALTwxpljRyXzvEvv8X4hlfsOcV7WphdQkGIv5aL/29lLU20Xqsrh8aS8x/AfSvlIN0v0Y3K+p2hwxrcpzq+hXwrNDHX+a5aLZVPC7E7PCvSPS7VTl57MnGvKWaJpqmAG4nNSpSDXEYSNzE2Ac5iLKD9C7SG0cmI/mBYAUtzh7WWOp4woueu47C+Dll0ktij2ZYRS4e9Q+aSvRpeq3zTOWQ7e4Xjo6+f5RrxfzGXqeHzxC7ikykuXU7DQJqxp3am1c9VDAoLLVeWn44kudv7Kc5pmayYQ2PZ6W05kYA6EP64Y4/BT3smpDX3/FIddwxMuifjKzFRqYxLLzJqybQYl3YJQzvpIj63OOAJCNfUWKet4u/qim33BBZwEZFQ5ASdVx6CfO/dvqRnRTmzASvvI+uXn6UplNqOWK/ZyrV1EiKMaib5HMK7Ai4IO7yxHorP683hw0CupKq34Fhvz3cK/HfopqGhNJkUCwrntKBKVMRPiW89AHGrO+/d/VN3t+1Tiz6w3OWmCLPke651ek51xQUa4ktYg5lW8I/3WK5qXNZdcoCb9FSmOPmGsVfXPwUFW0ctgVOgjBfLRn8VxxFhF0yKNRJ+/G4bGg6NJjpRiGOu5/sMJ31TmxHueZk3LZI4zvkvSrYtDSjlB27yXbWBCuZyhz/zPzlscuHR2J46R+izYS7PIVXD94ivWZBwsqdety0W19uBmXbGb3OK8qkz/QDFNyvkUREif68ph1KTy+LmSwC6u+++IS/sHCPq3NBHxqqMzpQQRhSVAJbAE2y0X+A/qz1pQP7osL14blCLEDx/9/89W56aLajVxM6ZKZfn9u//Z2nEG+3fc3857tLgAEmzPOANqHpcj6KdaRed94nOH0iEziBFXJe2NP7eCh1ep5IUOaZ06CSVnqK/LVRBvM0TcM3fIzcnvCm5UqBKBXH5BX48GNVMAumckv54UYdXONHWiR7X1DzabmJRVhM
Variant 0
DifficultyLevel
530
Question
Karen is uploading a file onto her computer.
If 45% of the file has been successfully uploaded, what fraction of the file remains to be uploaded?
Worked Solution
45% = 10045 = 209
∴ Fraction to be uploaded
|
|
|
= 1 − 209 |
|
= 2011 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
name | |
percent | |
fraction | |
correctAnswer | |
Answers
U2FsdGVkX19szfG2qLvXOQLbSIixXBLHy+yQs6oG6Z4xrHQYDK84cGgv1aqT+D8Djsb/BoZd7no4puThPha53umxwUwPTHY4HQWts56xC+4Eh6/S3CcO0+xaQ43aUgJooyCt0PgPZq7TEBq8Pyj8Y+12xvTtLW4BEM/HLg+9dn04h01mzZJoPQNpiuJnsU2tF806N2FIFwpjOsePoqr3F/i4Np/iVYizAKNWrIxVmw7CWBNvbtl5hnqyU+YJbPJkKnAzmK0lCG6klZbzEeb3PIjToQOV5LGN35A02z5YGDHGhj/Y1nSJ/o634dyvLvwwm7L4ul36ChdjmEm3jjn1qtPekoEPFzqj+6e3eiTYELRAWcn2+2e9NQnWmCHlieamGYhFvTBj3JgdmyhjjzYw56/aBjmyc3YehoNIx1U+0Q7HY3JNDVnK56reLmmGHeWI1J5AcXdbTkircTG9Z54UJFJszfjbQBP5dRaMS8AE/TaG4g6m6BczCv6OGu2X6A6K3KUfVUZm19Yf8AK7cmwLcYZr3K0D9peJxqcHnimKtJ4qT0cKMqtDoXGCsLFx6v4eQWs2VxOwsPyRGq6gmOxuMzn6wba+Ih3Kpq1d9CXnmmaI3CZoT6/hV2GcHDLX2Jso0FzvCEvciuqOKPwsm+5I66lYMlxjBfnCsCKUZai8rEj7BjmrvN6/pGQ2u6uMlbcEsD8VfbUa+7Rh/C+0hpQesIQ22qXbHGdravkodOWLqTm4DbMGkL/buHoxLGGF9lImMSzm4rzeh39P/WnkBADogtc0U+o4GsRLkjq4FAWDR5zpqx6RMXydhmIcMM/oxJoQgu+4RZB+wx5wKMDlbIegs2NS+r8ryRpPXkWfzn+aJQlJJDgqmWoyBmCBy4r+nldUb6dtq8uEOc5DTMsL0qQWdcDAvndecZZfvcmJr6MvG5RCl1VX+65x++FfrBnV32xW/2oTlUB5BzaaA2yh8rxiITZEsGMJDBRW3/jUwpG6O405pLrSjsWt8J2HjCF+xXtbNyVu2KAkjPpH8rb5rylSEYsGUUHqhOYLJlvPzBLiHVfMCW8Bp9CDbvVWCZII2cYrzvsMImp5BayGpsH5NFyTuEPOxGL6fO6DJ4s55jU9kItVU7up9khg9WwkqPXB9Rr7Pc72Y6D0vthnlQ/gBZ+dKfIvCBOlOyhfK3lp8stfcf7mC41c8ckTRndhpr1A6yylQfxiydrLR640F0Gln1nliGQRZdAFHbHJnTZXTSYTOUgBQvAO7v9gjjBJQCX1DyDtrXPOOj3t8tz+/FNE03P79TiaTwRWLS+MToLNKuQAnYWL5iv/lg6nPaekoJ5xgiEiRPJe8+amkUww1ydRsCuRPscTTM6Ux0TkFjm9ZsMXDyQEtwNk+79Bue8Vb+DeZHY6gGTj4IGKpC6wt4TU+KnoCQs+FjCxRfBzgdwJxBx10E60HxfYX3VOA4MQ9DPIBn/LJMVpVkvi1Ox2orCm1Bn0/+5Qrfm/vcUL4b6pMkMS6M1rnVY/OYWKrLtrkwP5+e642bd+vDkp3VVfrKBuAxr676doVN/Je3BRCawzGBA/Yuwar0Vz7RHMbEvqAJgznACgb+gj198Fc+F8vJjuI41dbN3nomitJQwbr85s3CPsfJAQeOnq9CdaD3tlEC2QMlfBPJlbWGClgMdvqYqvNRqMOMruUD1Lr7voCBFkgfFKzAP0YgtNRgrChWDSWGe/19umAVk4kYZzJOyUx3L46z4lLHRMG0Q1VJym1yldePrGTXanKZ6JLmdhnhSacFh1xNXKDxI7Hq5YyhHPNX0Vm8bYe07uriVkSSLFp5dFl78/EHHiXwq5Z5qMRdNtKutDYfDmRn0aXhGnDqjsuWG71thnmPBlyIWlQoKeBY/zUVVtC7Jusra1BBRVhmVja4JkXLjWmbkFe8VD2om0+kiypF3DwHL+/gQUlKW++l+kbbex/oInBT1ITz767LN9i8Bgo/ti1SVzkMxyxUK4ECYQI2XEMIYgsCSMVKUyeQPXgzkQ5ud4WcW0R9VofA1nce0R3yBBwaXfgkoANdQKCs6Dl9ShK6+VzfUKhcU+UauH+i+xb7CUyhzLWm8acaLiiyrAjAdCYX7VUkUuCvOYjFnXdbknxNm0vTa7syBwI3x1z6lLrr20kYk2fJj0BpMMoR+DszFCLvJolyU7AQffkPqAwVXHOz24E6V3IHy7GY6uxjUiSkQTwc3FYPFSbCpVLqz2tuW/etfnwGVn7dZPyEsvIbi2C+4DTLtWYhmqVpbMupJFrNbH4ce47q0Z1o9HpXmT/moX5IH76cDUDNww2wGVoj9ZxE7YAZ0ea1IFQNczxu84BrgjfuhUft4W+Frf+5pE7CqJvm7Nnu79e8Rdqen/LQZTMKRjubF/79ZuTvc2ew4SrZCFtdnSpcwEOvzpWlnk9mzq/T7T0NtqHEuwOR6tZZHpqlg98P2+0glxkD3nYUPJIYGc85f8KvtBPcZ1Ej/rP8SYXR6iRRRDwR3t8jfvIDfrSTTGDpyuXyzV3yW3C0mZEjSsgH9Ev4ppE37pBE+jg2QaIa7re+ofAYlRIRgbHbvMFl8rNf/sO/uE9oIgEOSLZYCDB24NRkI45GNz7anrXD3L0FYAGPAPIo0jpdxkY/EDbE7N7o8ntDOO6BDit0hReO0dT8ky7wdocUDqnDxzYUQXkldZ7PplPxVsTGXF9BhiiID/mCyMszF1a5UaM09+7Nny6HTrkpkMk5dM2i57wRY6tk3d32YFce+HQN6GXTH8RoY/WReGXRFNeJ2TxW6kRAaLucUGyrhODQGdqSz/VeldSIkHVWm6TtmzOWUsJ2Z6UdXQT8o2djIGx1YXBANi0myGjBQ/KvNwLrpzzTprkXaVU5s9qXYmjU+xBpPg/8KvHstLGb8Zm5/DB5UcIW4ByaFSmYv29iFf7N8ahuynFwPiCZ/GJbZktYlZ7YjPu4UOI4i8ttg2LsXMxW7sskHSDVw9e4Yv7jbHbfn4XyXfGWvMGdchwRBp7qshJhdUlUqBYmaB8unyFK+10aiJm+BHEuGfBlgcU4WOQfNBne/ylOkQFG+k8O0ymmbtoAfJK4pOB6LKQJffwxCt8l1tfFU5xFieOYAfNuxuwLfpzoLH2yWRxJ0Ukxt5Ue5CY5H89u7nzH8Zh5f3SO0BngZvX4rz5YOOaICI3SeNvNJTogUv4nEuDR2MBsQIvKGZ2b1S3hBTnCbiAJuyeEzWK1G6bYLc+yRdA4FElRsvgmB1Stlj2Fkp+pPphaVXtVTDSEH7ZpbsZd+RM2k/nBemF+4yrVxHGsNL5raue7HAtBsdNJt1zONB8Wj6uBfWpq2aqlpNCLP5NxPykjzUEpIUiURG6AnqKCeD72PVCLaPQNoArsdZJmlbPMLWEcArnJ6xqRtsi73YVEQ7brar+o4RAoS6ZJ4I6lmTtQdX2ZhJwmrnv3ZVKAl4026et6z4YJxeLreqCyFVmc3YpxM8YazexzHk5+JpyW7ipTY8K4d0RcYbc8f++iw/1iSXE3Wf6s+6VRO8Ikzhf/iUkdtQn45Ll/kxEJ7cqdZtlJxwqynwFfVOb/eoLZ82ZY7WbxnCaWzrH2RyBOS1bUZXxXVK2yGtyVmv4ol8SNVkec0+h/QhLOBvy9ZbOZr2urXZSroJi6ddKq6mhTIivej2BlMy5pK4RxGqedJVySkV1GknOGuNOhoF/5Z2fPQ6aBs8oHpB5ICyB+2bsfC2BWGZZkEdpFAAy+5xgj0ppaBL/5UEC6W0EnLpSe9Na+jvsBCfEJ1e8ZnBuNPZ7HeWxBxeTnjeYPmpV94q6JSwsPWn3pe8IvcxQkIBZ5f0wvJF8rPo5/zUWKEM7pu/3FK/6cq999T5wcfDG4zj4iLaLLIrrb5CRawn/GACKJVv4CDgCB6Qpk2qr1hsmBK5FIOo7SQZXwsFe3WT3nir8/BMC+pON/ajdwsTG5TVQnoD0O0Mawuup2VvFfGyglZJRAiBECGNu6rT4DG//+FFd/G6tcO8nwvfVXKueh2xv6VrgbXE58GOkO7/88ldCPwaM+CO8WvVqROPJNV9Q7dJs9hinrhQaaG02FOWUCHJ4ErHjhWETewI/HSBGdM2iyaPGasWMC0uemjSNo42+Qy8HqHwdfc9bzyekYkBme+oB0b7Ks8MBnGQuBQGqprJO4yZSZXIfwSgZtgybBiNDpRj33+wAt6XykE8wvyJtJ5JcS9Z3fnBJjX/rYI3/yEh6Em7k8c9ULxm9MhPEF8oFUZBwnlP+ve8fuuE8DROqTGIBjzbzGDWnpaUSeVK4/dophhVZSJqZSGARVDIyUtxcGBSub7lWclp1jvh4W0C1WBG8FOX/iv56jcRS5MdCP8lCMxOKTU5lUQY48jPc8KtkWxJ/u1JwMQxHpUvWh05Bqzeuw0fhdyZKqko+c8qiotscI2UIWHANXWTx/zg6b1SHNdbDwgTQDMWMeFIECKRFm92aKw9eAHJKoVMG3Sqmh/YNs3+FIIQ3wxhzklhlexY0gc90zrXNbKiuhEc+JBq5sP/bA2DunS51f8CZmEhksQQyEbNgLKl1qWF9BbQUCObWarfTAX7YuU0cTcTrraVUwC6THl8WAVW6IeX2t89HyndUrFTQ7n3X3gQbpxVV5/Os7PK6snlGFDub8R/4SSAVAtpkthgBnhObyqgzAVtil2snewTcQDYSdDraPbvjQHpKw6PlePsdL2wPs6Vvq3/gR5/VkD/Ryz3ETlZXi3TFubADRfCT2z7DEtR2rZkHmYlbGsA6LUMIDIWgq04jgRf5Q5EM9FTlsrMUI6hMN7B43Qed6E9Liv0x0ZKbYrVOCbOWc3eGJoivMKXk0a5g5HUyZCHlgkWpYY1kyvbl29UkFFQ3tAbpyc8e4UZyu8bbBzf5lEV8KkQTmzqUD/hUkI2eDTCyZxj+ZeOI4GMJL4ueFZ3sI0TlI0VFJ4PQk1b22Pje2th6dn9XcL7lSEcMUkk9rXUQm5WZ5k+LS+I6lyi8ojVXehLaH/Dlb33fa8Pu+zLMcAhagjqiHOsLqgISqcAreMKeN3LolqXqgGIWoOpTh78+j5Qc/pGU032NdjgIovFUbnBN5nDWBb8o2AU4/cdF5ZVFR3vK+DOntZHHphRa0xkV/vsYuJkCG9ozFtGSh+o8oCr68nJvStH5KTud4Hy4nvswC0Y9ibJRf0qw/PmsET0SD735d24u4fkbGQf+21pfxfJ5BouB2N7aEoqw+qJEzbZBV+sLRbCZ0Bg+vhuxx8GsR+E4mMttx4sDNx2uy1H8eeKSCSYtOaYPabngBj0siDuEL6TUhLEamdwnRLAdd9l4Ldcqdxg65g9DgM+iFbM7HxfY/eHuBv6wApR/0GZpQJ1AaF8EfL3vmg9k6l3cpH3OyR63X3io9jJ8QgAV/GwpK4rYuDM2qIT86+ekFAvc+4DdY1+nprl0BHsIIL3X02BASel+e3kOD/caJFu7Z7QpyCJVD1kuVMwvPtGe9sMEvAM8PuY/ysaTaGcHWV701Cj+NFG1N/W7uNOzH82DrzbziS/ZzpBinRdkxfN5G7pdB+rRbOgt3rGTqqvttYgHd8xOj5pDJE6VoDEbfxOg4izCjE5SuTdZIbR1gQWXMxdKjqtdK3QD9HOKEMwrYOTcomlDUqUIqhtlEJ9NtAFpKapS8boOyBerCVMDqSJuOrbkNC3hZJF1J8WZJRKJ5sSWcxr46Ttiv0hUr6Iy+wiOj+B/XtBUsNICWzapoyTwCeUMUZT2rY029f25ovVW+ZPb/GAVxW0TjNvgzlsmoAe5hiOaam5RFQ92OcNxL6BOlh9dOzNagIL9rohSicCvRNid+CbJbbPcHWP5lAL+5VfurkoZVAE6rd5IU8ejnimKhpzVH2VVbQpGVhOP8l+/O9NyDTB3uc1nTQTr3nRRixyzNdf5DM82TAjARzEbXbA4uT4V3tHOewd7slUTK3BiXi/6nGYMZwQpe6h+y54UXFr1Yg+jA9LEY10W28gMnTywDueG0q2cDCmr7MeLTFYm+52fY8SoBIMw3O/hO+pS6do+PjyI0Pm8akj0wp7TIHCtFRE+mr7fSbc6Gw//kE+J+VAtgfjQCojkaOMbWoKevTKR1YXdfUi9V9XfZZLOXtu84Awbp+mSwQbCwUd7CDj+tYpVH+ptZuoVU+5+9Gy2OJ+sZMuNZg4goFOiWiRhdJXez0gBR+684vtOl6Xg2aD7ql5GMQ9ZGMam3Kpv2cVl8Uj+fItpg4UU/UgsvBANLBhgRfLTK2hQYeFa2+UG4I4tB/2EaZUBbTG37PFMuFWBlKlPgkX3yuLKmcPagkneXmuHNds8V47sbkYXbvu0spqL7w+DgPOVart6E/OtCqVGSKdFJmBJSdQ1TbicQC+G1EnDNRJ1Iyt62R6gZ7c6vB5VGsYlBzDetuDe/wdMWIo9Bf28c6zZIvAGc9EDBjn2phq+zMJiPIvwCkkMCFv226xN7XfIcDkj4uPesgY2pHEiGBhrGelR7j+Pr3OJp1d5aK9ImDSRiCRDll0wJuXglvf8fpjuHxzAiyZxJzGFN7UqRUmO1kGEzjtY25Oh7nAIoNeKCTF/aj1v4MsPRXBbbOl87/XmyvBuaqNtTGL5ApDgbCwBrNXQQOvN/ues6V9mNHxUk+0LBB4fjV1eZxVBMDJ2w5vU/hhwXlinGp/41qdbEDm6xHYdu/tMKXSUthjM4BliXnprEGdRMqY8LJ3chk5JqUfrYzqLZQw+9f098S6wJ/YHo8xpxy3M9Gq7RXVUPuIzCvjKMrc5rcjZBxcscGol+RzV2PLHyx7IYEzV1T1tcQvVWXmOQKJAlLEg9IRpx6BfnANTY5KoSLIAalxn+cvnW9Rd24cqrbKlJIPmLcHupKDxqHfxgBmItW8QlGME6A7gzuVUvNE+WpnDOqDg/muzPSP54hY/1xhPWNd960vbTaEj+7c2OK+VwoMoj6u2S2ua8GzJ+IxlRoSZXsp3Xw7xIjz23Sxx03KE/1hum0khN8LmCUgOEmTMJaH5OZ6lpdL5kjM8coIMJZ0OVLFhq7VJuAI0TkuN92B4pLhQspsMlQpHlUSoxl3Lk5nkTxNyjGCWi341b44siFFUn+MxyiDdp8WAHK57Wf90i7fmtyJva4xAzlnHmrcyYTqZkygdt5meptx2wSVsm0aBo/A6PLsGmKoLQjSy6jsU/cLXDTjJV6vVAuWR1f73xuqCOI9457hiJFUGuY9IKDzVI6FJull3LnyO9eZC+1S4Xs2D35mSC8b3rmplioJggoDAf1R2n7oEJkKmkUzVzlIEpVAuczPQtPbg8mx1GPO+d5baUESRFZlF7V5GViTZr5DnzxOY/9qv/Rs1lOg1WFh0lwneB6mDOpkKXpmKgMqEKk0Z8kXq+3w5/W7R3pM/lUToF+IS+NAGPBwcCmRAXbxqshzsRNQsnfKE8GyPTaGqZkSTQ72Uc57TNkaT6pEZicXHJkUqPCqBh8fejGHOaWuiLRf51Jl4s3Nmon7GSF2HJe9k75QeTTkp8sNAP3N6HmQKEEMsFkQZvNhuVX7eWlT0PJ415gctD0PZ8OSr41p7PbQllIy+WBLxfWskkuZsOeC0TLfloYy0+8Os0CRA+KoA/0Agdv8oUnvchmRLWu9MP99RUVmjqiheHvpTcw4YwBzycSGjA7+FvecEfTPXNtxlIewmYtjpJyqCnwhxzcii12w45VjUtjURCYYWwX0p3MnLaTV2P3kypU79t4FGZWLalcel9BANiC/ArrZWakj8PN7sDqaH928IlxnM94rAULVdt+EkmYBkxmCTetTfUy008K1NRrLoCdh5xSjAWlP6MX4wZteEIV9u1Yk8C84c0hQ0GO3EpgR8K6LTlgsy0guGn8Nt54tTn1EVsP1ZGZmC2f7+WXZVvjDEF48jmbdtNPHivLnbta357wLCDoLvr1cxUSQRuVLhtye4AHA4udi1nt+qCBlYRuJdBpE/8w0rZBmaF9U5k0PHszv3Ub77enEVXBlKNDa+QKtpF7LZJvKxvPYYUzUw7x07B0pdo81NBUMh09qeZka+/5sS9C3Fnw7MAmcxRNmi8emx/MsBrZdmy5cLRw2SnZcTcMa7laV8WdkaQNtTQKxN2KXrsZnbF6u3O92BsrgxSTkGILZd8w4O6dJYvep6+B+L5LA3ThHMDnam3T7b1z8Mc2G4HfLRMHLDUadFjBehASnsj/IEqvOo1vuDoSRIiQ5NmpgHK/OkLSeGWILdGbBNik93n2a+C/Ibs7zpH0vWGGE+at+0mJQpeFV9Cr9LCrJWNY8On1cIyZ6lz/MU2zj5vYblbFhX8Ie+RoDp4vuTsebFKOVfQDiyNa0FyO98maqDL2fbN4DGk/WcMgW8hRsRkVsl7dS6uetGs/B0+3LgTcAtrLBCjJ6EWaeqpbvSMTsrK7C6LNS5bKZ3RfhRTEKNhBh5DZV8um6IDMPhncIhpeTWFw0C2hSs3W9QdcpCTPqhqUS8Sw/UhEfAuXEYCqqc2sd9Cuj3Ht9SZA3mbtWpRAolzv2mY/p387EiSH8QZq6NQPQInlQn80LO6RLfBr6Sz+xBPTVZ1AMlOuVYQFUgEiRJUmkoBHyOPKmJwCXI451IBjHWNfWmWMiR/ISPbBVEhvZUv/R4VohnyVnnRxBeiaf2+1XvVqt+3U5jFWAnukgnAHbtY0QGOKFHCsnze6NDSvZvAQVE4BMCgYkDrM9nfqR0+HW0GCVVkl20mPaWwrx5F8PDecq3d2uHnyorC/S0clQosS/dWOq+D/KQZK6ny7MryeVEPrOl9ut9uAah19SMxMYuhrT5sx59Utz51I8Zsyia267m2gDhEBPfPpN4maXpXs5xgIEpYmMf69i65/S5LfT4m/tb7qjMLwA0RNFNmy6wt+VLP8Lrhl+oSkVuxGqjdoMb3xsRxCysNbjuCDDKDuNAqsH9Ij0vFgcDw8QKIlPKq75pswqviymgJpNV45GJl0MR8NQy7Zr+ofFBjMbqGClkfUEstiJhCP0g6jT/NK3obQrLEbHXv20tNlolg3eO7c4wFI1OFZGzFo3tjhMOJqhqaVTDynbTX+UPLeUOVug+2iFAnVhdtqdXIudOg/xWxL6k1zCkZ7E9tiORNUNoe2CIUtQttuR3PgzGoxBv3dDon4PNujLLeIg4cS6xXm7gDWuySyOS3w5OA20CJX6UpkryXVlyvVRJHZbuVZGDGELxpH/xvmm095qoDbY93guepFqKjFxxhPxnjELcBlVr7qrhqgtAcyFlJwp2RQ9pGLtGlWwqdCfjQpg+l0pPuxPTpSi4pfbIzvEBlgD5Oefl93sOAn74ZKBNTxtkB9/pun2QC7XnB5F97KKIYc0omn+FmMa4FJJJ5LjPhHnzyyirA8kvspgDW9GrJPq0ox32rb6UfBQkDPgPnTXPDZ7PsIh/Z0+LiOi8EIVF/YOZnwkcmmr6HmcFmyAtyoH51jsQ1FKPvQACxOXjMANkXUCVrj83NVuxWrw1eJ4Qe+0rin0lAR1KfQ7GQsXwkc7TWrWRfl/pO9iNmqAfcFRT9R4s3KJpyggBwD8DjW8NR/QwYc2Wu9oNcJHOYncaaaIO7FOoG+OTB+0V/L7r8c9HUphy2XZ2S4gNp0tpfjhJfp8tiO2dhet5Qaal2//UnT03Q5GfjVEQpnK7NDQE/CBED28ZmNTy07gOQFS+rBZMlc8qg3mIM495uP9LNy3oW37gdg6Mt4x6j/m143UZ9LYVBD5hqHsJaTauAkg7XCb4MdArq0wzgo1ULuNqA6xy3Od19DZP63Szi6xPSX2p61wHlbUOMW7GgyEwjU8fHlbUSaL36BG6sxe1SvU+4pEBW36qN4OZqwVtx/hQpGsrbeer2qXGz2YE5xl9cuynrSzcCRZyhEjQQSjnHogkVZPMAg2MGfv2IvuRgrYkWLFsluB7c5uOUAvdQQyjFG2OIr4h86luVfGy0pVOFKenvv7eeHSQfwmytsxSGP60zJ7sDj+cqju5rhqynz9WaZHg/dTl2Q9QTwMEHZDfLN9fOmqvkM21sS/IHd9/JWNvHJeU4VX4Kwb/qOADAmWkE5/I+gMEusq8KM4lGpdAtqWVv/1rwP6//isboY8tJwGBfSSXLjAbLdhnf8pR0EGyTv3fOOI/5r07LjwlBNn2f6r/Y7AGKBqPZ3jlOoOyr1JjpZJE4mS9TRWkbWKtjg2jOiu24PCfHExs8stZV/yB/4olQKyQ94IeZ9Myh6M1W5ZIx/Tmlr+ZCw62mKSl1qmEkKT6Vh3HUKk5iVRX5DH4g8WqB9kCSeWuj1GOOsqw/zkEbVfzRea3FkvfmlHbExGe98KdqideB+rev19SWCm77kINRrQ/PzDMzWGa54ch5RIyTTG8cJjMq5ZZusEN2CoehcoQrfPqmGXf0Y4sWp4i8OnklNH7FnZyXnoRBBWwQuUaaLuHAEW51GU7g1elh3mgIRJWg+nTzT629iUH4wP5eNpJfExaj1RlMMZ3vCwxTLV575L4+W4LHcHn4xHDAIVI8sTME0ed8NVt83mgDjw3Rj1j6nJisAW4LzQ/1c3FzutRYMgMzoF2lV3enNSpM+tmSYKEB1A15z0tkNdBlgp4xdBERzi6Z2uFsp8BScRmvkAPReQwzJfh9r/AV43UNju+T00SeqRoh3Lp4mjpRs/PaDyW4+D/j9S+6qPGPsjtW33UqJCA+sCn99Jm7h5fZrmyoGrLP1qrfTCmXQ7BuSVo1vUlM/iSnHsYx9PWVlOkwoh6S3Tt/ytGSEgW1VY3oHGfHtaY889LUnyqgnB48BmyHU7De7bw7LcwkfTot2vNRMHGWjVkmv+9R5xxOVuc0835lmFQ/vvy6WJZTTk/kQNGUCqzNX/i/ZtgAn+01Z9nfbKvhgpmYjYNgAbDV851fdvhqXaSGsUaG8ddfrRK+R4kYh00Pmvnn73oTkfAEZYMRCIANGKq6xPWazwRYvYhjsMTFcgMoNp+3mji7WZc1fA8gbboJ61veWa+WIS+SjaKMbSlkLSl2qB282+am6stCMCwHHKxn3pZso38OV+3skDnvi5/K4UB6XszvF3MhOMqK38CgFFSjX9FXI5qFiVUyv+vuXoTXziI7RVXg/Y1glLyZaZ8oTGlvTiXz9Ww2z6u4WpGcJIrDVa5/n/wjTm39ItXLVwf+JuHX/fUdl4NFpufWxgN+fhBZN2qPnRUcUIpxAan7YpPUXARNI9DqSMuOgR8xkv9Lig81eYzygnG6CbZQWQSDL0sbFaSBQBHK6rh3UiKx722QMLYdRd9WQe4KHn4d0ud6tYiO006uQTXxSEEUjWN1yQXZywSv/n8GN+CcbWW+90W625EEPbFaXQwr4L1ghxbeT2zI0Aw2NyqEbtK5/DV6MBBRjP+oh5SppxhauQVvQeU3lciMir51Y5vi0Tk+y4d8Xfe3jm6k1H6VA3w8xVclwhmxt3dqUO/VQGOVz9Lp/4HwgS8yyCTFMtHXZrLAvZMz9BSPWjwbxCQ8PBJVpLeMbngyRysrARpHNl1WjUgNDnrAZl7tzontOpWfLlLIeyFV9tNwNfA0e2FJCc87EH2wGuQXpj+JZ+ep+Tkuho9pOl1oAENvIwTG2zG9rTC/c7l+VLvombZdTHANPz4Cr4eEz/kgLrzqNT7uEBZ8srMysXv2j4Qve9SabCqbuRUSmju1iO/Ou7wA64m+lHFrRpf61/yrckLc4IE1OZfNyJdPY5seKIJFxrmW+6//mrwpCAAjKfWfBOdH3hAaLvGOtl1VG6H/HpY0AnPd4VU/TsFL31g52AEqrhbpBodSwCAdJpabpQ3pF27H4qG5ucVApvg8v+bGg30QPEyoHrKkexaT5tLUI/r4EsON8wQiLBV2DtBb72fZ45ljKTaT5ZQK0Y0h0g/GE2H6ZzTutfbdiDzNZcC5mJil1foKHmym/lE80KrCJyHhHJM/fr8Z6WX/qWVePx8hSrG1dSytB9bVlTZttRfgW9xMtLQHM3TECAp+qHP8L/dRUfNhrK26CffEBfr281EgCSGTdOEWERpMbd2RkfFhrS97f3gk853EY3hDRi65w8U/hfYd8I+N7oWv/3pVrn1n/X3yAkMhTrFLLm7qNN6IBoOpdx10JePpec7OGEuzKgbfekvZVkk/7fFqH/Ep+KT8B6vbeEbIJf6kHn8lZTMsCLLLErk2WFg1Zlbbeh1+EiI/o1QhGRQKL+E8YDGRw+c6E+cKlmTDk8Wfcb9Bfp915fldsDUOsWzAD275RkyBAyf5YFYP1KecikZOZT5nh+6kWLcJ+wrRTSUWi27YbtfNxM0tBd7ID4C3n0Pnv0XY6deUVow37AVBd//9thC6HzR787T7+pA6P5cc4cJpkjaxw3cZSGeOltG0XQAcM335HXWS6LoEC77+Kwgh3cvai09zavV0F7kdQYWuXfyA1c20+sfe6CkcjOr20y+Pe+1hfI8OjcH4lCd6Ugi4c2a1pymmE+B2xWJGilAxjI/2JUDqQldX9I+OxDZoGiX054gP91g+EVBtsNF/WykLArP+lcrq8rdjConAR3uJXQiF+RZtaq8zKHw9SVjUoXD3jFe5Wjzmm+c+8Nnx5DyLXTdk0Z1aUPYR7ja3fG+zgsCXI/z7ttlc5bveb6o2e7pelYfT4gQ88KnHMvlgqbtIYLXy8qox0NSmKKyhxqA0p4dRzELgLD+QzHeasoatHH7pYQbac+Upr8RIUBElqQk5sS4i/GdPU6UVh5yZdvOmdVmTyP/GNWLbUEoFwt7gFewb0sqC/nUA3KXDYZoU/+7oyYRHTg8/ReXNE+PZ45y8igoKNj8pinS8mNxUCasgS8wrPxVGUlmI1swMVAkjLPeTNXWt4fjXboGWhK3hE1pS34DCaGCKKsZeY1XX1ImzaOHLhXYOO2x4fntlNtSon9heJOUXWmKjJaADzlXkt0K2cXKN7O2Tpetmdz5IMaD0w9Pmzganb4vyT42E7Q7oPIxfY2zELor9SQpQRGmWWpCj6UYjPJNDVmwoZ6heDQVh0oHIJYM48h98k4RCXFChgh59V0vmCH/HzG4u4UwGpNK1BbCcqeSnGBixH368RKjAvQ6ACeAuGh4R/cAdGsW5MFsdQKsDJVCxh9kTGnKAaARt+7pv//TyayJQM3EeszFI8IxujqGcIfcMQwN3yKaF9q/52NDtr6wylgclbP+Q7C4Bs83YloJKprq6bmO3df4MhS55WNFy7O9Zvlk0Nr1F8RI61pobA4hoJLfMxAxGdcMTZjcaQTNaYG4/gPcX9AvyUf7fs5SOIJ0uOig4/1S0AV+m8ErAuXp7rOBs1nGb91uDUsYachoRLh8+H7JNsSKpT7OXl8TJDOiggxDaIAXW2BRiHPxoCyqoZcsgcUL7nbcFjYJqH4GMNMB+qL28tXd/OkMngg1rJd/+9RukGbKFC5EyKHy3oO05P8zPAn9N6rzwjPb0PpNwkVdvKgHp0OvJ/tRK5g8apa3PochaU26FyMp2SermEeLZhO6oRRIEFoGZ6LOJLr36zqC/3loiqsPgqta9BRzLa95v0J9IatNhAu5inOp4iqS2d2BUEw3taCJbakfcKqbTmmvnI2q5TwV3YEoGD6r7aB8Oy7qRDSVtmVmd9fcbAOCUyeCQgQb7BC4gxltCa7fp7kN0PQDegIDEZLmGZjQ6Vx6PGlWDhyP5eoniKRvzzsvqn14+vIFL6dWwCwz3woEKwEwLvhDR3TqQz44v7akyWmIYp1s72ClVuHVxjTUCZvu+DmOthJyS/7bWPOPo0S+Eu53V+ltZk7P47H7qLQ5qTCSlvTHie77YrrkwSOQxJHLVLqZvNPJY8tPk6nrcWUVmsHcLx7QDJY6VsONqHrx1tkjn9q0OkQtGtMw67gCEKIwTeRbIlvCz6sgCgV2HPZI5gMNflVkXgoGHJ9ULrruKghwvQVeCpB4GjGh3ptb2+KQ8Cr8TjTblDhgyeEM9zHhFWkjXAFn4iOcHfpVHd/w8XlZ70Xn++bmfgUKS5XfKNEN1Oc6nkTKE066Ci8KhatsL69bKJp5vYShvryi67LMP6xEBqfKwVNdx8e7dE96R1Z2Ezawu6d97FhsdZ90MpiZh+b8aTYHCkkmToRQlGZH3yUgDlHaGZyRQ/fgYyA87G+OimOgtzYvh/RlgF27u22lr2xNZdS8uRbxss81XRcrlPuWOtgWaF/UDBxt3VCojS5/b4JXIJ9+362ltorVyPCQMGe8E0x4N+gE9LE77/pEQEEP/03/AORNa9htwo9nvuSefReqFCIGs+3HTiDuMnsuDGaeqwWo2kl2Eh5BhyvMfIzTydaLYf+UPnh38nsPO5NXkQ/oq950SozHMbMuQvwIpF0o8w04+uC6e1G+16ywOFNjWdd0OlMrFtb9ubZ8tF1y4PuWxipOitYMql1kgJ8No0t1IsbcHz/lSMkV64Yh+hKurQDEZDg9Da30yTdamSAuN7M3OWN5odfS0FYuu8jxr3vALSHVIR4N5R4ccJNHUKGKJcrWWrGYQucqGeme3+qK835uau1pTnSP+LzCM2NRBdIDeZ/nZ7ZnxUK+ur2M27m2SlNJvIkVKmuPp6Rt8WLmxx81kUp8he1Zwhsx+5xZpl/sBBqVymXSe1yOt4tCXu7otfoEj7Q6sNy1lbAOaAyAVAEkWOzDnISANPjLG6YRYLYyaV5epOBpfb80BqmbeHBZX4AEzLs7JgNzOd3pmb4q4Vv7figQvcueFHiZshPS+WDjzMHtWA7qwcgRZJgcIf6WysuPaVQp97hsEdfT0Hp8V2jq33APi8wiJ1bJQmVtL3e25v7jYGVpQdxWIckx+PagA7cjP8kNt82LoKp3vWxWvtLBB3A/9kZJ6G1TJCaRebwmUSHQGlfavnA9BBSrYA4wiqqHbjMosH0Kj0fCHbjlIfVcg0iS6hbSFTDb+gvrjucC09pAkZYcQ2Bbem4zweWZ1JzDHcPcvHlbhz9oStEebhk9kkUpCXFI6dED3TII684qcGNy+0T7g3bzU4P27PEvyLH+QxqUcK6ICWZ/6Bnt1eOg6J75XOATsPlvBC+AOx8zpajr7tpMbrYfEse99BFBmKD9JQOcg6cl0IK+mkP66PdwW+B0hKZgfpxMZvI2wgWE7Blivt4oIVboJA8lE2RxyncrZ1fZ2qfQ7ge5KjICF6v6JQDVL93M0rdWvL4mTYfFPuj8auO+v1+tzSUAE8Zwh5m3Hdg1xSmUMjc2cZ/W7zaECkVfD1un0jTO8AyStEwVzEPe6qz+4Cc/QrTJh0fd+JPWoLsaDrORgRO5omkLktxWFISskzOg15J4whmXj3QvwyIR09WISzFsCn2M940y6gXubSj2OJehhEbhot0JhM+Tp/yE4sGYH9PJGCIYsBAkwPF7r1SXDtaPRf6h2PsRKB5Ro98Ogaby7RNyLIHJ4TuUJSRU9NQ9pAcJrPyn8CN08BaEtVlZWy6ZJbw/1EFn4iBtF8KpFtUikDMEiLGX31JnasVUSguKddeHEBAIkJE7zV2tiwnJIppuYr04YUQZS3kOJoa/zDt8oRDF0cBknDZ1NspwGVfOLH+mf7B/ekhAvLpWcbOic5QYorslsAz4cHZ4LvJT4vntcWFg1qehPDATpOrQP2idaeU8tcnkTY5MjvjAMbrUGfdnnoFD42Lq1HLlr6w1w9WmzBNzllWW7zKuVsFBtBjobAZd4VbCoMFfsOv1jAGeeypcDJ4bry3hS9oN/+oQWh+HvwDgwx5UDRAIQf8SUeg+LZuGaGqJoKZxUH8bl/dy5DVGy6e1MisJy50fNAsuyYCj3EEGOfoZk5VU5gJJ1sSW9j0y5E3QGytFOOGsNUcAv4B00QHSMm9UFATdadGXTxrpEPWjGyvhfQVDrfOPKUSzV6TLuhNSAFeQGwO/BujoJcWO3MubBchglr7GWWNzuoLrr2m0Qk6a38GQktuyJ5tEIbBFaWWpiQ0+4R1eH5/IdgbdrBC8A9UGSrS0tMWKyO7zy3johtA8/7rXdbqs4KIbJ+CFp8Pal2zb3YzMm/5Zdop0lCR/78fB2Sjddje/Rqq5ui7K8lVRIICTq0RoRNRONH37pHrxn9vGhQkSMf+NA/9E8PELN1pRo3w6smffg1BSnvdDUxEVWONmd7syhgIpoRplv6SJns6LiPsRR7HdmQMWN10mOcVgyY3JcP3PSizSUv89kcA7EpMWXUpdK261B9oX6mqC2fJNM/5lvkevovJwJSficzlQ7lX7IWVkajfGPsJRdlVjGgMicyp5DYqxVGO23Vwocc4HanMTOe26tB/JroGPzL8//znGUmzw/L20NwBlNx999UvoElELGCYOcSWBbbeLDkGUb2Ie+b/bsKQWnf/Lm4LfTxEFOqlRn58BP7pX+S3dW+r+/+zRK2aXehH9Sr38CgO/dpU9GU0D1qmIgjnsIWp0Thfnv5OY103cOC2NrZmAyVlA0LyFTGeHLGFY0HaEZs8WWRQEXm1DsLDs/0lRN787UvwtaB9WbEcq6CIkSlzS7c3ccL49s3IqP+fbEugHcWd8S9a/Gjede+U30BfD8IkEdgsj+G/6r3JcRLk6HKUmd03fNw+G6o1l5nJIHAIYs0q+2Cd89UGvLaL13paKxblrRL0DkaFQT0fTizCDE8hk/JwI3eh2nfmAavPyeDFEgHlEQkWOVByswIfDwM+npz05SPMHRLacDwpKdXwpCxq3RczG5UKulLtyn5nmSk215HlGVdgdg7+iErnP5MQVDkK0pCNkwypCt3wftpwAwJP6l1D3MBE63x5pB2AbeshXa40QvciHA+TG5k6p0z8ynn7jyOtBYTxqYJw/Q4PhOY3RKQshCwcvK1UlQJSUyjYunYJuSrXrZngX8a9nxDJj/m8nMqbjs0HvJnt5uxY6/cARZdg1Av45+OWmF024/Cz184025wMy00z0QFo7RGxiediFhlQ+Yl/aG3Sy5AC9kB4DG/33bFDTEgXnIHeBt5DFcb4s9+G2StOfzXvYy0EbtPOkifFOAs3r9E5W1gocWFRDL5YLL+G4X0dGCFTGI/0CyW6dfCj7XInUQXLc0PZdLVg0QiXJJQeEbhtvOsvZrkITLPG2brL4Jwh0fauwNvqgFEAmZZ/TCf676xKm3BwuorhM8Ka/oi14FPnscwam345Xmyfv2+x+fQ4kGet3+41IRxm8eXJAyvL14lug3TD4Jk6l4pLY7CJDm+nNTNB7g5d0Dw7FdyqprHtB9gMVv/L0rNLxCkvoEebyCCS8qOByXTp85ztU0fw/+H9BuSF4Zgxdeaxn9obSuRJ/wPXul7HLu/LteCciIMAVPkkYWFqKMdts9+21Zw4jcBP/YvUOqF33obYb3hprg0SSYQxWiBMmhz0Rg+0u2Wz3aNXSzgRDIilobM+NuvSEAKNibohk0fSfeveNabquHPAwEcYpV3ZwjjJkBZyDGYXrjQAU+xZ3tNIq+m4HyjKkVarRHwDYO/m6tw8ow2rOKtJW9VPUYwfPy2Rc67dYeVjNgVAmMxDjFsq8cMOmrrX2T8a9/iUCh5bESMfRp3pZo7YPiz43g2QjgrM1A2wlWtYfDuArT/R/+oMZ3CgodRQGhmpZJmguFK75jaEq3SGCTJUrrb+dnYZod9umFW93numedYXI3Y/khByNIMV2rMJlSecz4ms2DkgL8jZnYU3jDn+3yuMRev2UsB9rxkXIXMppzdYvfvfvOqGOz9pZZeUNnm0ahDVbxxNpY2DVY1qZz6J+oo4cM25F1vQeHJ0eJFcMNtKTKLHvQbTT0YLxE47Ceu0WMpJqXRx2vAKOSa0Mstq17XBr67Yb26iW5WZUbIQZT97ca9vTBt8Ukhxxw+3ELbaxHQ/MdM3wyuhhVM39y6TghIpCrnsoXYCbWcgx0Qy1uc/yHXXEjHzvzsjYBl+ZF7Wkx/oF0UctiS1AkfOVGwut0ufKGrw6ahpS2d7x/3wpi4/6WNVIb/5ITmAiSkX05vpSl/qFOqdHyQ=
Variant 1
DifficultyLevel
530
Question
Matilda is uploading a file onto her computer.
If 55% of the file has been successfully uploaded, what fraction of the file remains to be uploaded?
Worked Solution
55% = 10055 = 2011
∴ Fraction to be uploaded
|
|
|
= 1 − 2011 |
|
= 209 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
name | |
percent | |
fraction | |
correctAnswer | |
Answers
U2FsdGVkX1/91ebUsGOfNXjVhqTTnacmAwmmyFSw8S0I1ftUfkkZS+1PJty336lwUR28h0v1JuFK/3hV7/2HnZa7iWfJC7T5Q3wueM6kRPM/7H9vKzpvi2vsvHFQ3CfRWAD/GPKsj33XMC9/M+LUdHc39vc/Aco++svMle7FQ2Y75BLbO4hm8auJHuyQvdmfuodTkiUW6rrE2qRKujLUWAaaY+Xub8IMu5haqbs2JBnVyfQgsXn/kKYLw1V6bq3ug9twnuNGOI1nypaOP4AwgTpVSmAWLt9Nz5kBb7wWirEY9u6rhZqekEkLO+SVtdsVndgfOIn45Zwvy0ModLlY88tEuXL15mWDqgDUzu+j13njWost5iW/rSVOOSVH5eLXcwFNa4KLinXN3QKMS7HsRND4KQqUCkavXcHr9J2PmgOrQaNnjKLS+4QpTC/A7GGKATnolEfKAv/mwajdsRFfqgh2s6P1clJscLinlUZ1dmv+PI2dEtxB1HGsZ/U67TjEVk5Y71DqQLBFrPx06lHTZMncWGrRXgVu4RDe52a4/AopiGL/XUr/V3pS00M6S9gGikNRPafV3//upD7sZrw1vQh3kOgpsBBN1riLk5ssI/gT5FAz0HVClMOIxwyZ+PvnETUoUgtUc3uck7ywV/SKrr4Xa9+XvKvEBNm3D9DBPrgZRFW2hATVtIiwtuYtL6eXbteDO49nNEArnmfvMz+vi8F8w4wNTmxFitmvct8D3T6bGCfGKYFdFP0mSiId6zTiZs0MzqOt9NMX9FZayhKsP8faXHxFPUdw5n/q7iqtunSR0Q1P9+i+Hlg2RYADN5FmpPkvvHdFxwGHZ15IEuTTwg1ZOaBQTPnZsgmTiNxG+uo48ltuFo5eTIJcsc+5IDP1tErCFGifukco2RszQhsosxOWBgBhTe3BWTjnvLslCjGYO30zLoux0PIHdLrNGDw0kEyjwRsi/qo7GA5pgMIs5NEmsPzkhzra/dZkhVbuh/kiIy/MPyraxIxl2ZkxQEAVnYEZ9dge0iKyIq2lV+dhWZ9jWAb72geQeWXN1CXXP8dsHXshkbsIOjVwrfwtaBQbRyzUmaWbkovnBi7XJROLuSfN3FoMu5IQvpw1FNdQCnwjWKbQILfi1sSucvRC3uMwEK8S+GkR1hYveWN6q9uQl5tHW3EMWw3CEjgbYcXUEY0zWfqb6okISYCKtlHM3pVRHLN8154uq3WfgAnz89qVRlW1aXOo24++Lput+GoT9QVjcxpY/gV/lSHUPNd/N97H4oKzi5eL9KFqoSimIEbvwrRuxFOvNTy+eSi2ZSWXJ4VDTfbeWeu033PH90h1A/27o5KVJZOhnUFwlzcVySCoUb/vjrSmXuV9n0AwZt7+UCl4mMmJ+n0Hy3Mu9ypruodzROHN9aIBMcb0jHCrFjexbD4i5UuzeMiiClLzkzhhuLNoaIzGg22trVRpwghFLI9iFnD0i0R8HHOAw0C0C5/vcSi69lRPZHNKw1rU4kuFrKqM6FKL51/UFl5Qtw+L5W6F0K49hCY23d02cmrB3kGVrFlmtK4Pb0I4fGWKl/D1HX6Drkvg5uLOrY/XJ7XvXP6qlZDf3zalsmSS1TJk7wudnnxd3xGpvV2cDGHb9M+UOTk2vB0b9vqT//YMGWM62V2rgtvzbQyGgPGLzZUyy15e8TdBsBce0SYECe+fSyelbsTSzduHCFyzrONmb86S39MEeroq9H81DOj9QPVbYmLK0SiBom6nOjBGuvddt9GQa+5SkG05oass1mIcWV8eh/ybNKqzth3u/4l6UVtUwCwpHKVBIAKOK/9Wqe0b30E947+TkoblBNdgaGylvL9YBAPNRnYgKrnpQZdjRuqBfIeIpYNZbsLVkhworipNYuFLuh/ubzYLujE80kcjpncdNgzrloz6jeEo1GEwHjsh03E26+fBFZdN8Y0Vl8Sy+xl11oWJsG+4Adh6IVcgc9IMu8r/8ampIiLA8v8vMFFMwPuRi2OfFv6oJ13OeTxflLYPTiR4iEYGhqkzM+Wrb0junVdyL2SYOZDBfXgT0WTvTQnuz3MpW7h/G42DoRSigCgudSq09PFwfxDdjzg6bzssUapR0o81UigeYIfpa2sDVurcGY9M3vMcdwFWqw8A+bzHF2Qi2iwiKZULr1nRUQKwFwcIeGwld5/0QJ7bB71kGym8VtFFQJ366ET1JOcpZKBiEFIJ3txCZYvMLekfkY/4wBBNcTfIHkGJxLhUP5DbeFyNsy2KLrktOSS+oWoVOvj6gBMtqH8eijMth5g+paUTHKzpza6Manr/NZYRd2hasaWK80HRCmSCY3TLVWLb0LK5Vg0mFt07i+pIvuXTLUkPY5EpXzjlWic0NE4GWoMsoSntlXjIpU00/hVyuvOXGJpsqOEWT1uJLmDgGA63THz4AdAQEhOQiIP94hi+R0vjGvdhKf3kFc8Bs/uBRVDlgkUAXcGHjV6hDizDhy6en1HuhYYDiTuPlRjhUnoHj5DPVujnLo5xcCJo0mTMdXnc7Td8P4q+XI7WxLdgLnqEI9J6gqHxIVKPsl/DCX8sea8wQ7KrGpTtqtuQzw7dVplo/x/Ua33wvs1YtjcMqrJ4ZOXYGsvVIZtPfoJIiNAd8U2GJept60jveCLM3Z3q3h4pdsSQmZMfdgdgFaPiHuyDdL8YKybUhbEKff/fSDm917jILmWCAw32C/XoDjSL1kqL/x3cNbbZ3j2TtH+RoI6wY/dN4AtQ1I7MlZX4rjt6FXVSBRw8qg0gN407HW46mEBYqlerXyZgCb51zIcPgz3jNrOtUVDO3CjWi49Jdnf6J8F/aka8cWPrULI4hx8nVjrpOh+r4YItDoGoGNIrSsuurl23Yug+91yGUD3H2T5zuX4UxhkTiMfbouvFQZ3PWiz+F4tKuUMP1LDWXxsSb3WILPydxWVNj5BVvhf4AQCDLJBg/9Qzkz0zbT/ffS1BNsC/0sJWX0Ikl7A1DqeXV6btdF9Mz66/gTkANoDU7WG0EuNmsw6GisfEHQ8IqkcUn/NYdGn87+1MXkMI0ctIQAFc0C3jNv5e658JVsl3iffd/IoDjEGPiVwdXHtf1A4/NqftZ3vwqXMXn7vUqvc807K5PDKfl+A/yeoWviWs2SxSYiE3CKbF0DsMX298PpiAt/Izxck/PZyvNoJjH3FrKuXBOgitLLDWuYbzKlHeTZPMjEK3tf7auIBV3RNIjCkfDBCZ2J1K4OzG+5ZM0O4ersNVB+xkfJgDoObWK6w9JUdSYoHyPfx0gmDWa9eC++vE58wTtuEOtOJ4rIJD7QttNxKoR0/HBzAuIHpPc0lYLv4hwP91232OXS5NNJuxg/viPDz96KPKJYivG3b4+QVfMusIwEYhjN9dVTufKTwvUK/svB7bCQA7YHuBawECbPcHNvzEaqgKVMRRJkqmE+hyqIJhNdWsOZXsPu0Qkyl+xmulnItP3qo0nzHAAY//ORS+PM9roWIkRkH4iWbueiOZggyj69lzmakzgvnhP4ljt8PB9Wj0KD+vGfb6s8DxwLdyKlQaoVoPXsPim5ChWWZ4SgkR81l0jDBEkNxGPLZORbYUUYPYQ6tWzC5MnUtcDrdiTTbC+RUt/VOCD9xQvhNR8k2XAI9UE9DcONgQOZyPWOozgGT0bwPsdJhuBLKfrv6rqhAm9qbvn3inqklkdOYpI9dzjR9N2VMTKpbogRSW4gPT53Xe92319HMkxFT7yZcRVjXqlj47e8TJgVkY/M14kI41Wtt+bt3r1KFukMvxSQFkbIOqINX9+Iu6n7jgoSAVRZCTyqHg92NMdqSJbud1TGxw+02HEkj1ESYF+mHJZ44qMpbH4nQwwd6Pfcg2rrfudzK3G/Q0/+80K3wYLRuC0YawWzUDYJKwW4ldUejrfxKtK5W7llmpDJInpwxxiElVTm2fUIsPwNvgD+VEwy6lX2YhYe1btmF4YaLbq7wbNUB5yvZJqUXlDRdtgsXX/tsqkaiHIujvZ0E1cxE7bJeZrFyUJIi1NDlGHgPKqLozPjhpQinXxK15UY1amQ4GnvKWWE0FCrR66ULQz+pPlo9wM+tFU0UICylt0thzCw9ilMf0D2bGa/JvVH3SnJuLeZGFTClteR9brsKPSLfuk3glsZw5cn4JBcpfZWZHVSzwzxwcp8+uhFDybCd9QqiGEX/bgf5c4EIThnOjtkCw4XpaxUCT656onLLBP/K+CAmxDrB0sT9W7v+UO0tmyPlBCwS8KYRQLqp3dFjB6GiDpxKIKQD8D8FVIzCZ8Mhjg/YScfI2lEiZsCEiBM/cP14kqiZEH2qcmd3UP+JOgPe9GCdRkg/drc7lvyppUkPBgD+CfRpYu83Hb/INdAGIsOi1ji4n9vYAsStGLdWubgQNv8vt84RT7vfhzXF+uwjOhVKDXdGmqE/guRtUjzR0apsLPl2R6ac/tv7nWzUcluVZ4EMKoo+H8GUM7yAJtnN60mtBLtrIgr/jc5JyeO9Km1DT8e9CBlr1LB5s0ezqyZ5CpHSeVVlnkzRBFaQGsJzwGL+tMBSLzKRoIx+s4GULasykVcecBAXCXl9hF4bN//EedFwKZWWlKWVp8e+h36m/vNz1eyKh+oWGJIF5pLhxSmoGzH6t5QBSxtlLonZvCxxxeRfcXHWdQ0IdTJYdfy9vtfkB5ClauJHqz0ZfMg5dgC1G4xXgGxsDPiV1ilEBrCwyGhI2PGAskP6k9LkxlqyHzSVNSFDuQwezIRgXsDpM89Hv+5gRffvU1RKOpdEzw9qgwe+vRvgprNkMZJJ9F7lNnVnilsfB2D6dQoX8+nQTSoG8+gOiRqWnU7lcxZdS8gqtQqBpYc29KJLqMGd+KBi+jMExayJhFKw+AXBA9mT5ulCnnbcxGQupaNcXWEfP6EWESqVWObpWpuZnf5cjbo3NtLri9L/RP72sr7YqwxpFqsb8sq/X3hRFNewjPp3InEbhsYS6D7TOi9GoShYysPw1HQ6RjB0L5Ur3oQRVtt3mg8hdo7mUv9h+mcxFTAA9ChWGLTznjSZtLe5lWG7R5FPifpUS8A2mHY25iGxzYXx7rkOh+/TU7uB65cw5JzLGGSVndf7pX7gvlKOhunaIl1m2Ohtwl3RA9CVTVdt4WuWsrc/4PI+1ht8r/uaL3LCbsGZ2elBGqBBeH7BWCUAuviHG0ChVwFhArtpoIN+9hTRADNGmVPMc9VbiEAFPNopgauNI5zjzCKt7aaMiqiv7Zrzxn28JIxVmH8BCbDdVhUpv/U7Bxy2hufQ1trvkpDZzekFFbNejOuVve7iiJ2qH7b4Yn9cTyERroX1+OXUDrtSyzdpvhZkKalulgJfkwpz4pa+1Lrv32gtA5OVTpQBWxGpC8EytDVtbZfsjN1dWw3oYS6G5sjYKcIulb1i8w1Hz6CiNEhKDW4pLOzS3t4RHo5Nvu/uytXIPxA/IxatUAZNOorMBoPhK6YvCWOhTJz3fHAmQGZS/oVF+IiIMTteibgewbHhdud1Gob1FaEBG+jdTbE4SD0kz3YfeqJ6j2jmTGlpklkWE5nphckOJAsxS3389vJkC67RBgBZPfmByS18BLVuCAkYDuas9aQaNf4/5TErF3OUyHpvtFQNz/QspWHkwyXDJHLFNqClDWWqnmUMJ1tuoz8g5mcw15nN3zkptpGwQJynqFGL8X8jATBgC2Y4MZSxrBPh9ZIIV5P1pWqwJEEBcnp7n/Fi1DaIixTRln+8QhZ2CZQxFOS350sikyNLpe4QvtkQJknHuCjioLL+IiVqAjU/f2cVOO4b/xQyZBbtezIDLAicsEttgPHziFudmnBEmVSnpz2XB/7XRhyUdPY1gV7SqlML4m7sA+VxYMUamM/VwAwwHeFR+HsEu7fY5LetqclQLfmLPJwliWSjT3J1E6qljEhUnuKi8LoAyAyZ2xAGk1QT2C3mcKRxC5GD41t4NIR9LoxOR7dMlNNYohkAa5K0fw3R5ztEw0Mpwu2F/8RSJ/Am8Px6GddEluhAPuwWQXi5odNX9NobIhCqucSkAdjApu/SeHfc0OpoGxlnWKOfFaeuQVtcVB2IK7yaTHcuYQz6MgJEXe48bPbAsWQKkU9mikcKVN2Nw6tB768gQW+PkMq1PZPS4XAC3Gc5yS/74XPsCtbe5j5oJx0ns7/2d98z7HEXKGnCy5cKU4DBZTPvPzGZ51huwSe88bUceI+01w6dYyC9PVEBV+IOUJ8CLn+gwHs1WxFiS4z8qjr6XbLJwdI0GtZkbXI949fidBU4zWsCJZp4r9KFhdvhVm0MaExpOmv0p+cZA0KpQLKkDwP4WGG1GbXoi7+u15qdCwFU6vHohrtJtAbomKtyo0ekNQuDT6rQh2lP0+80peu5VZC22b3KwsVnGE7iVwlXpTZ9HtJWnrXjBFiZdoRTn6x9wX/08I1P4Oj2DROtsJuJxC2kbBFgLVviiAC55QqNMYEEAtWnA0/LOi2aZpHYO4jF604WGconrqnRvf1ffwx0Ewd9Pi52wPEEdrlpVJOGbFHYNCyS6T0VR5erbnPJk8Y2hV3ysYYvDsS3FoFOQ76rA3gn4DGC7ZeDMPplW0PNDg5Y+UH8ZXUAjG14AChC+BeTk627vZ32GkjI3VrdyV4krWGKpmKRMbleXKzdc8a4DtjqyEcKS1gef5A9ICf9iQj7DIqTrPDZgrs/QB4WJwvuROXbUKfO8eH7EqFWsdv6ppslln+URKb1ArWuWivS8Fxb6QYYLhBZxKZRgM+rvvlh96Xvpt6vB6C/oKsfCACSADGing5nLyCESHrI9ivmWJ5c4uZ1J6RsnnBQ2lAlUNWR5nfyrzuKhuIOnQY/iQaij5WPJbixgDKkWbfeNLwLVWE3HQHY1pyuhaD0mUFrUiiFpb/MuPFTbZf/W7Iz0XoPZhA/puhQo14CtF6UvGsJK5jYNjU6Y3ggC8LcyL9+qYFlj0lx1xAT+lmT8MTZRFPg4bFTlo+5kxE+Z7YI9ENozvWniJVV4JrQJY0AQWcQgZYTjpAgOvwyqp5ZSovn+kC0DZP5Ed5Y12iOxlB1gJTtar1J0j08a+DjeW09KexjcUufHoyIgp3t3k0Mi8Tw0W8o6g3P+V9refHdcRVP85N2NB/3GJCeivs9164DTE0p2vccJJWwRYN5PtiB5QoAnh9HUXAix8MpF3K42cbHzIYLJ+QkP1Wxgy/VnlJ8pOoDx/e+yO/mPtSBFFeRVdDrBhjw/VYU5ZtcTths0Y1wlAGngrBTg74KDXDzOFXC0OAQAGYchrBjRxPuD8bTRaoR7KcXIPKAJNrV/cMk2NsRTVxmjkDMnSoEOadmep/b8qM0dzswqfDmLPAI659dzfOFIckqE22UJ4GIUOyTDSVA1v/qbleqHal0GyI0gf701CKJ+PNAIe/C8yqR37OVs0hMLU3lhF1aB9tqIxwVYxQ5Af4Bu3xQVBAtNBVR5KLyjrYSGYdv0194pi3edFfTzuLVUPrg4Ne1OBdWWcNZ9FHBlWd++UXnee8XboX+/oTMZpMiPnUC3rsOSpmIbCt7iX/45cQu/6UgooK/TgoOsPzTPIwce7X2zSk5O1g6c1RO3MVU4keOm3YQTlbgfbLlh90MD98ZU5p34J6vZBYrO3GjEwnGco/dmteh+ABc8BL2zJfZzn0TXmvG3ZNKEUa5UTvTFXorsjJx3X2wx2Z/uMkmU5ywOHdYjp3Jsd32VQHJE7La2Q/lpA0xAmS0QzNxXfZptr2RhYlGQjqnrENzfbIyD8hqaMt52/C/sI85Zuy/XB/FAsXCloy6/2fCfLiYS61rgzwCTioFSaRXon+Fpd6qQQbQI6YNto0sXAEV9N9dwrfVA6nT6JBBRSzzOzTurYidfLJVHo32Y7I+J9WD6G+/lygjn6bUBfAGpt/05kqxicAtlf/D0YWwXMHfEoopKw1vCytWXonXktQ594nf2+r0Rv4VjTP1MJlYhCMCc6phzmCNIl1Y6Ug7UbL3a4vMyY/i7uxHl/aiUp8RX0NuToEnppEd4S9ZIyJK47EM5cwzIUqt4l4yeLM8KexcPFZmbP501AvmyCJPRRbxx0R5Aku+7w3SwIyDG44jQ24pwe7cJhKadiKcnWS1fFkPR/7Hz3+eHLJ7QRc1Bo0Bs58cwDeCRzrLx98D18vzmRGCvaMAZIbl2UKpHNStPWEjDIkbHc48S26V/KTFACD5TS3C/XyZf0yZs9bATjfJwpPhR9QJTAJdc2Z3+LgZqFbYo+ID2YSbdIDCeYAcv+p3QwnYicWXX+YV9Op2tL4GknjWI4x+PvEqfAtkMXR4mx9YOHD82PWT3vCyBxnx4ldW+orSvRiw+nJZUBU7M7Mfp47Q/Vq/4McD52irsgbxypVjs0HSI8r59MDCspOjbUwMqixgFjO6jZQDivrM2AFUBnUZj/Lsz8aysAZMm+Ole9pf8MSNumnMMe+bhDa9LokGdUf4B3LnjJVaS1zMX0HDE5j6EP0X2VO4q9v7J3hKxLLc+1fwHVkgVSbw2pMBbQZIl/+hQICMtqJjxkOqpOPTCmLf1XxY4EIHMb6u25K9ZE9uAtTIyZZMKhhLf8GfGero0YgUu+LoDUNCjed7LDHjIsaNuk38Vd5hlIT2WPaVOIqQJiSuI5/ZFzvcr7DwACZTd+Qcjz65sE1W9jfcNEnqaXc23WGEEKu6Z1zN0LIKsl7/8FBVue2sHknvtx3OVea/RKdYh0YFMTljbol02ipBLpAkotvT4Afdj+EMWXkbDkQMYUFkNFoJ2TEzso9Yq9VUAjtVMXrsaQIl5hV8qyjWrI1oYgp4UtBETy3V1S56UVriMr4fkc/9TEnKLZlu+MGNKJoJp0mzS5j+Q39LwHCnC9SuEtul8B3sARJdzewYvidyolb5zvFCQDyANN0ps86eEZs4iJNmvAZ+BGeW/XactkWwV1AQ5jL9pO4l3/YR5ASX8MA4sp8G6N/X2pp+SrsPPRejP9uJUuXh6rQUuSZObHyN9/BTNBzT7j8IMvaVL2MoY62UdFGu3q02c5LAt+3xoYYD6UXq5yWTmr7jY/Z4DCJnmLO/z9Su+pCCpKPdswZLL410b2HcM8HE5oI/KpFJMBs4L88NFGr87S6RBr2mHbairLYLTR3tay7G54rBO9/i+sGz9RgVIsslBklN5UrDdnQj/Qe1f+D7WLHYQnOHeeQCkNdiY2uMVmyjuZ8L9/pthakS35DqBoFTBNSDkHVB349vkLaisUD6UbatrPgrEfd0oANGcyEbAx7W8GfxdaEuGMIGLgrqePVgtzZf7OwGvDpNvIvKUPDf35iVCb2il3GUiI5LKza5f/aacryGcvixxkvq3ZLaFOtphOEl4a49IugPi4ysMbUD4WkaJeT4cnsOCmuAHXeOAHNQMWxwf1TIwPqk24tok9N1qKmgn5oWuzGXa8ocYkdpRgu6zDAMSqG6n3lypCehjrubjOYKgqR8rcNERjeW5F0IyUylaTzNunUC/nOcMpFT5uZWDstzjMoeuI8naJ7rpxl2g2oLrCLg3EWdh+1JU4n/Y5udqY8jZMS5wrnjFXegrHUci+HDu1/FZGYg+OXNXpoz74/DYo0iA2FZxD/U8k7N7z6p7Wgxs60SDwQgvgsAyfWQCzWlwRIXYvvnbtqfnwgL83hH4+yJoXOzsecp7cDPPDqjABC45iMBrGCyPhLobvqCqG87vBXICZhcUNJVS6WA+SMUlGw4gEPsAI3tvW9YyxhRyWhKoWFBdFCobj+sEa0gHsTwFR3AsS8WmVD8VcIE9sqw8GeJzATZjEHOH7ovTWAjhMUrKcTlu7Apxi2R3xA4MJHr9tbAjyGTHfrSQJzE8TuTYT60zefDa+SfFd/YijbeZ27xnL9G6bicTE3wOghrVnoixih7NXId5DZTzpb3EiYeN/dQaImt7+LxtiuHMzocCXf2rYVc1txDsl8FhbUsMqussimH5mv0zXlnwLM+ZaKgT7J/0EP6r63lTpE26cPKqrAyA+1McLr1snu0eer+Lhdh8XQNH2SM+lAq8maM0LfP7TSze0QUUo+3EFnr0EK6mCWWtL5FJixVJYcPY1mHfq8ShFfsTUl2m5HKC7X2DRuGlvOrCFuSY4zAvApPvAWXXRvhD79lnY7NUhYzaLQFMiPIssi/LJIiEml+JswaWt3Jsmm9NYSn3aynR9bN9EUvHk7ErBLbQqL7ImgUO6XwoNQCswwmlF0Le18tEF8ajQgtD9OCRJ+38ugwGvZB8r3Ishu0MHyK4xFA6yVPi6TrIW4XIP3+WhrZQYdjMBwGMdB3PzcqsvX4lpY6uhl35RZbP5lp0Y7shT9RUAt5pAiGWD7yD5pJlUsF+2uR2Z+IcOAUzxKsvo/OYcvnDd4BzmfVu9GGNu5fFc5iH6xlMiWZtXe2HxuJHvnbXmlRDf5b/GFbRDX/l1frvmwl4TK51HM571nO8ezIL9drXv2wXLDg/YZDFZWZyINz9oJ3R5UerWC2SZQcxkNi/cOAFCTj03M09YLLR0kCyU46pJdWNN4XfLZne/q1BkMroInldFHSDGPes3Lb1xJfPMp468wGLkLheAyVMPv6dmsZXEaHLLVQKjOID1uxPI0sHLQMs84yB+3YTdbeznW0mumKXI/vWqXWIbhUlo7rzS0ojmdB5IBtpcFrY2+LWYltTtJzkxgnFOzsETNULkQcgOLhUSqVFAPJmgHYziPlZIaGBo6m/1WEbhCvdCSjIcITbsre77YYS7AHHCL6eUt4jcPYKkAq1nR0ud5BaR+KaADxZ5XwGNj6gxq4etWcsxClpANImPck1DAUoPj7tKxfWGZzY9NCzuZHXrThVXOUqjlf7kGdjazdg5yDtmMpqTdU1J4mRhpF7hK2xptasH0VFFCizc481hPyrgOiBmUhqeNIbzIGTkEsWvnwBgnmPQF7GEo5KTfvuD38CNz3Lqn+fOxqI4R+LVU/DdHJXDtxXMNPrmbbAs71M9VvDc8IzE8Wc85RvuYTqP8KoOJIDDcUzu0TqCvE774dygBnjMZph7tJ+fij1PG1d2xH1lerAatyqblVbDNlW0V/efB5s1RWCdofwmn21y04TJZxxGIyKfR7AsD8i9qTXp6tNrBBquM5AWJQJW1rgUpgU4h65Zs05av3wi5O6sHQb/V8xB8o0s1hw0wKfwI4PJVrY1xwtbPiH8ojKqh36fT1rBNcgkIdfBFGzLWZ5fNwWE12YZN4Hy7I+rXImW04ABtMg4S4geDETaGi+DjxilXhUP9MQsOLw+glkhiYYHWKwUKxyjGqs60W9DEDT/qW5IZLJFlYzOEZKQ5NAXZpM/7F20skHxGDDZf+GX6xbtESqpXOtSvCa26eXX4/TGe59c+2paWrj5O7/DCGK3jDpEn9Zte3vXhzoWk9+Ov7iQu41KvS88rC7bvqGrOsTEJfWb3Y6Ps8Gur2DzZkZlNIjBlTSj9PWwhBo09W69B0+6RpTx/9s6Kn7+a11VKB/y8w3QXq8/CUTjMRQu+48MO6m6UjnGolM0ZxWW9PXuuQwU/ID9hnEBl748xESwJIkP4iJkiLP8UmcXvO2D8bQqJZak+/xD84yMlqNG/v1liNSzdOp+fcw9Xh3Zz3CnflYVidtJGkdxKIYrsOie/Xtzu0DegkDHSQ83sxD8o1d3JWlg3yG65Pb6eErtlXkZWFH6dUDMhwgZsdnNSLrTKhCXe6g+3vANhmt1eze9xKzYkv12QUTPkhu8EkPTAkjN4jbdQ8DP44HyVwQW4Xo7iG5mTJSVhzKX8Fy8MpwhpB8FEPINi42WWLe1/qRV/QAPyPs1ojff6cG64MhmA1RT3AYl9ObAC15mQgLY/jy0Qs3Hl5UAAeBboO5nFavDfEhkf8R7oSvjPz0Kb3kJHxTjxlBGYD+YM2qvP2PGSSc+/PtGoluPdUoIr2ZXaRYv+KmVTenJezg9OsxRAOgd0Jrnx5ajiPhEi3y874gWzU43WkfkcE8axHHXCRaAeIekZBNQbVQQB7TjJw1bFeBbGdwhqkWoKFEYwi5cYyf8bd4IA8xwYa4myOY2wUmcXiUPtI4VtoqOhHpqNLuldbKN7OPKuL8ZHyFIHbnAFryR0ESEGQGj2LCUjaXZzRGMg2N5SaTtUe+Ntklv+eHyfyhXNIRC4oEQrXuLZ0WVY1YPt8nRFiwSoGbut14KxcYhPgpJGabMHYvLRjIcRFfYaJM4vUxQ+rbMVEfEqUIye4SqN4yITbZRrby/7kCAlndUU4gKOWHm/PNMXxNeypMBLyDLhaWNlzRTxgiJAOBPTezxS3iH7Ju0e+ugaKDo9IPQ/M68v6J94iwMiqk5g3DMyYJk0rt2+Feb+v2aLRuP2r09i5dUlomFJ/+aRuBxVfywCqI6VAmZUZLwU/bu2yPCmD6DyieRkZoUD+RSfoMYDQKSuCbuvRzn1WC6GUqIosUgCXc/bwzfkjw3gzo9d2Xz6c//wQedGF4JtuD/nuPJbPUtYccFyN7s7FId+UVYeSiCKNn+deyr/32BDW1xQVfsN9h7veVrikwWtPC7FNGqnannq0M2jJjdvupD61uTShhStuFiQoN14JTOmgML4sEemSULgrYHe20rgFVCNOJi7hc6y0ZBgkxjiEVq869HqzhCRVB0lD7h4AB0xRAtFFDQrWWiX45PhN4f2R+BJHmsZ+9MFGyFJLP57/SXEiXMeODGGpwhY/Q8krOTUGg6O7GAn5awGeytiH+eDkVsdmS1HXFFYOW+e9ubV20v5i8aQPR/EafW34e8dJN/5c247/FgmO9fcgOhBFuG+C29xcj8bBZ6ExVQFkNhoH1JV9F8jdPQSGkp4bdgOzCMI07V94fVmzEbDnWtGHl4SbT9GrtRiGSjf900wupwpd4nyCiOJnjKX7R2T/gXl4Szqbhl9x08E4qsLawC6/vwcOzCxNLDul6t7puttymYP9UMc2mxA2/EBmxTLf0dgj1y8OwTRu2BYi33g/Yx8RggEBXnBS2kIRgFhdrVXoU8yVSicNiIK0Zfi7nrIQj4F7MCZq/zw37skO8YBMeTe8Uk6RgIWITF/uanGbxM2aAnd36wkYA8vM1ftS9HQzsW6XzOLcDAz2Tkm1YZDUqyQrA4fTw9zIjhkdyDiT83cSkH1bNucFNfgfL925I1A11qYqME1sHxJQ5ramwenEJr7lxDVXLUiCf4yyclm5XG+6vqyFjTBrmKmdefGAEC0DH1A2dDoMdTtAPk+UADIPAoIO+o4pYbJu9sBk7UZ5BKE9TXeg2Uz2rh0HxGcy1GgBqbkJQGR9BydLM9c61WBzeAcFyRmOgVNlfZ8yQjKOI8L5C9URhBSh9hekWRj4vP2ai17EuJpQ795SQK2X4g/Fft02NYGnzqE4TXy65ZtFKzjkorzJQYC3wFLGfew4Rs14BB515VX17d/91zX4WdsdXBkza7+z0P2DY0K8JUGW3+bUKsHzFZueb7VFbMa+/hWAKiGUgjn+IdsnFgKRnBbaS+Its6KhcLxTkUU8eu81QR5+28LLVGn6xWmSO709jznq3qTrWR1j/m80wq26zqasV/FXTid0Vulc6UDnWvJdNfKAsyn2Jf1FeXj1r6zosqrOvUzMFSBP1q7BeM0YF6vMySyK+sN2xSV5JXSKG5Gm2hCAnfmD4EWPno4XbhsDcyiVQ7iUKUoeq5LkksTDDsfi612iZVds14xqANnEuT+gdzy30uO8bB4G9o5Wf3maikQ0dMLIRg51WW3wyrNrxAulIMj7JzECFGQhp/REm1iPYdDG79d+Ojm8c/KZdLx0rQmIxIHY/bHwA6D0WA03qFa7k621ZSpHBT8jrcz81zplebQL1WnRQkigtvKvJMEPRMJ0fGgNsl6UNnEcBL0VSHoUvT+xSaRi83qu5aldWqP8tBR15kUUNKuOxfQfSf3YsFZJOQIpUgs0Yn9HeAOCGReS6EJVMeAwhNl5mSu4F7br6y3wuflnvLxHLcB4/Ag4IjlaWO+PRyBRgMHLzRjBydZnUeVEhr6kGOb/iV5+C8gX2pCHW78VY62WvP3kPcsawP7GzDZVVuriO3Af7bLT6W/n6kisgFXoQHBICkSnKLkKwg+csUIKwh6m3ikgrZGC7ddOPlc0XEDHQp5D67kH9Aix0Dn8QbsVMxUs/z0/GI8/nCXC73dW7he3Ya+aujcIF0sLCYSHNZVWY2Np+2bIvMef3r7D1xTB2Tgaj4nJZ61nsdXVURsHf9fMIqPkr3ZbIoQwAdnCjteWwHuogNs5C+7kmEsB9mQHhtwk+wp5x0HHKR3IfI0Vd4NMThRkeivpRPK0F42fcE3y76qw++Fulg17+M6906H/GNqTGmOSwyiql4MARSyneWkSKqSUpvuCLEPHkfSFl6g4xmW5K6po7+b2PssOdNTQkhbaGEyMru3mOj8iVHb5sc04/x0aKunOZW2wGhoLtyf+UNIQbtJ5BeKramzeTjioBI4TCDx6/34xOqWRFcqP4b3OJTP4f3zJzf09JgSMvSDVFeR2KOPeW2wL6yX+J5FoBKjSPXalHkh+Pa+7r27BaRFBZ/7Bv7mGaUqAg6iFKVfCmLBMHDaaCi4guB5mIuic2ZQGKCka87uFL4EBJwCOo/uVZhy+lzzI+SHu22NGQuqncx/mwM+6SSEVzIJ4QyQ4xlB/rNI+sxXuYwcCd+xwJneLFHpmwmEa/yWpas6XCwTKby4nTv4Jw6owXkKaLcjnEM3CB8SPzo9m4VsF3oAaplX9QBmIU6SYVgEvmIuiQZMAGW3z6bIVLzOBeFr7kg52Kvqnu+xI+d6/uI/WtWfAhZv5Z6rv7ZhWegS/DFFpBnlK5bpP5/UU57lDW5FGxp1zEpL9nhzjUUe/SjJl5BaAC3lMN3abFgFdvi8j95kU6lbU3SRZSeaDuaXzS/eAtQhkQIMNWaILTfE/ips5ALlFyrGjUrkWuv5WT89jtczkrWSfGxa7aYmNMQd9aoD8qLBGkg1dQIaHAVLiRgOMgsArTgBMVR2+ILBfzCF17bweX4meWqU4r4FTcdiUAq+s6zln8e+q7vwHpxNVRp9kSJKLvXeKA0EmLKBmxGpeeXK4O9/olTCECkb/gXt8yGR1Zsnx3joiJ2DL5R15V/igekM3a8ZgipsGX5EojcOHxwR2Ft6Llplp3xQA07dweiqbzHt8XuaSD+jUA284TCalyK273DC8nMcwxJnYNp58Oa+1fKr1iZIdvKypZaPPiD8hGqoKrclwlCVcKBcPC5Xikqy/51OWD5+1WbX8jj69nmRZCykMcv24jmCnyqFxOZSOvp5TBfvw9To++OPOY7KKZItPgPl2bQ3jONrqC5Dpz49Ep/21yBYRtlR/E8uK9ujFRNitwkfRnRgpr89+micSKnz7f7PjTjOTj69K9m1DOGRLyRLwG/lkyh38PF3o82UlMVI9pUWTRmslfUCYSrzBLsuOS3Jo6dEo3BDCRUoc417hFaY+E0FsbTm70t/uZbC+mJWQi01BA6sGq//lGfKzrKovqGPlZmjMStb8I92XC033OtXJfoGKMnaqoM69tVmBuGSi/fjFwyRvRkQejTWyuFoU2Xpjcl6LRdO6zu3yznGTBvdbxH7px03iMQsNIsg74+C7iPyu8SLLQ4gldD4CS9n9gG7R/dAnrebOyCg6qhgxgJyPCxHMG5e5avFLvgeaiplsYweud+ZErQ4PQYaHct/xewCEORE0kvYwTcULzTmrWYfUWI0tnktmTAZFTU8uv2gcJINAKbwAKDJcnVNgiyhGyIgXc4h9X37TURJOQfsp4+oGGe9vGnfy669bvyqIXMwb/HZJ8+nVZguZVruD0duGey4N4vMdx+Euqvm/uqDbQInzkz57rgUSij0rXyLwlbBKrWcy7w81TXRSFOv69muRch+cY/QTfIrr7/3AdshFOqip/Ph1Rmpha78J2isAYAUXetsOrBPv63NMx7kiodeb87vshS4lygzHPGSAbGY+Z9by18i+VpiPJu+ecdRw6/zLL/ADBTWrK/7Dqq7Se5UunoY/Y+XFb8Wai1Km088PZLCdTAOBLBUjR7MtvnOALpPNtCm5PrqD+2R6zU9NVLAopTBhxzlqaS1cECdL0+nW/gxmsblEiP5SMuHmiHHSUERCe3kX2uSuGUBK+VowGsP6k3x5pN7Ib1D5LV0OuTshZEsF717lgy3IiuQDT/JBvlu5lw+cayyHCP9fIwnoQKX/yCan0k135/Slf4e4nezBQ4uaq9VypPmvgv7NevR0T9QR/sE0VjSl9r8ArmluUGc4i6uj5gF2Nj3Nk7XxQuF8EW0sfRnzdJ47jOC6ebuwmEL4E3u/rSwePJCq0NEh2ItO4SAFWT9Np9KIrTXaTd0d/Vb1S3xElxe9oOn2JV8fAyRjwtL7J0fVR2tXnyMeJjS5xVWqxRKEAiUowXnZ8Ry2HNyhZ37iV+bZk74Z6AtSSH8UPu1ssRTGwIRRrgsLVapBM/e1gXWHKZKqjHyhgvP038Kud+4eAJjS1Yz8Z0curklWscnw+9GvqZrSR9sup9jz5aThSEgSsjNYxOlN369FUYH+aT2fsXuvTiU30r8F7x1i3Xv4s+PsXwcvWA63UgGATzEspcp9gtxqWlF+DBQ2bjBN4xbcBaha4RP5QDGPZk+TaQe7IcPHtkLNyoJkrw9GxBMWNlyyI5EorrjllccM0JEOsNOE5PuT6ddRKHY8yCkKHKYYV8Cv3CjesIouDGp9D3O9KwCstofs/6fQwzft87VFKJ+FGcY/3PPMd2UyvexRlq4sWJrX/maBYYoQnUYKB1kdhy9bh8zdwCx0RP4w+Mc3X11RrVTL7ykxl1lnGN005zsdmBhizGKKzOOAJm2JKUU93Q9BntM+AkT7+81w5hydxQJVeR6j4HHy4RdSPSULx/EappwdCevXPHUjcuYuR2e4LsKHLityerVq7KLozXsnFqwbzThXSlxgV3AVGm0819qvBzv/d52n0AdZtFkHqIJnsHTureTX51iYgqF9y+XOKO3uOX6Qne58DT8QDZMJBxeOoFMkADY4eL3WKHSFGEFMeEfpUbiom1/qbd7xTgxEOx81eP+HV/NZGduCJLPTjOLnC6O1+24iehKhvIuseWEfnuRngHC7MxbmtWro7x+6WPxZkq3xD6Xn+CjJGXi6PcO4AO6IQstarGpoWbxtHVqdJCU9DHqhtimi7DSSUUm/btWuKrixzi0JDVqmgD0q7BvOUfZ1Ax/zQOakrfuADVr12vKlpuhI1H7N31qkdEgLXoo3fAtgsTYSjLZaa9QMsNHNDKB52Us1t+O+XXlWkCN5QoxLsLSh276nBg5wVRstTLMZzmZyv4pZV2m0RMfnIRv4aqoCncOEAiuWu80uXAMsekAlstMKVao99N1K/Ezz6iL7ufV3tlQv+hqlC/a/Pk5pNGXy/pPxMVUVLmhS4uVtWxfLFmCeqVzhjTqo7A0J8JDA0V4m8kpc9cauTpnauJQis0x+5y+6rpJYfDW7isPEOfzG4IRYInh8t890NcXn6woEWLfW2/+Rus7aeD+8V//xvY735/xbzvxQvUsYA7oNhSZ02/4GkMPQkJapepcNNIyQwg52iIDNAI7LRE34gFrYlI2jfyT5AgFBaJ8JOUb7nLKgXUdFC2kzWWtohQbOnLic+FV9Nmu21816LWE0c16pnoqLczP8DVl1+mEZw9PoWuNKavWKw4ThxJYsysSqNJYWgOFnf++KoZ8jlC21EtxsBuhI2QNlIyVDdT7+4HPsI15uwG5MSDSQT3bQMK4hZsw0AgDDsQnayGwFlRi+dkUaTlwubVRKjEu7sdIP5AKNZZ7BZ9BC0ztVtTeB6K2M147O4KcHvWyCvILwtRkD6GXsmGFN3dF6K0GmIxWtQ+A/oLnouXbUVSpKfKmJTq3aKOBKiHkwhpwO/liZrQh8UCJPi+kiMKr/MBEMlS0sHblgLym85tGmH2j2WO6NhCtk0TI9NFaY50CmkSBY=
Variant 2
DifficultyLevel
530
Question
Jackie is uploading a file onto her computer.
If 85% of the file has been successfully uploaded, what fraction of the file remains to be uploaded?
Worked Solution
85% = 10085 = 2017
∴ Fraction to be uploaded
|
|
|
= 1 − 2017 |
|
= 203 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
name | |
percent | |
fraction | |
correctAnswer | |
Answers
U2FsdGVkX19OK5hXtNO8WLEvErtUV6YTIPvtQQ7fMFiETq1DuBvV8znxraS2fPq+9xBMYHXjuPMBZC29jxcCceoRlfNr1tvVozrmOE+NlfEmfezq1ue0nR9boVJ+f3vxG27tAm88umvrbXZ8JHbPjxgrRORGG7FstiFJg/Rx+0WX3QAlSI1+xPEzudQlMErtufnccdzUhU50AgJbzBGkXdWUvS+8EhYNjsYIu0cPvxcZ3ESHURr0or1o588tNioi/SotuCc3Y2FGBIWC1Cyv0hiHrz8ga7x+cJikJ3RIsDNb/Va5ujUysh28ToUSKS/IoX3T+rWs2j1WS/tFsZyBHZ9bNeenFm56U+HOiLfTrlzYt7uFdWjAGs5lEnHdB4qf8SwjBrfnhMHFsgkjeYnLcPP3TZ3EozTiBCKQGeY3Vc7keK1a8qi6qT6w1sp69Y7nsDrXDpGB7Leug5E0B2pV6vwMz2/KNpc/OaS5ildlv2GVCtwVDPCs9RIN/eURhqRyNaUqhq8utv1Za9TfxBRz9Mxhgix9ZZQVhTjfVXvXjxDzd5dreUY5Ho7iplVZTTZk7mff93xNv04BjE+Trw8zEyUK6W8ubJj/mrKcU0Nk7qYueUvLuRsSQIkICsq16m0X5U+HautVWFuMo/ZhQ9o7naLmOXYf2H8EeaM76AF9Q9xqipONwpN6bB4abjfYjq1t0iuazSgcH1lA6BiczIxB6KQWyEOm3tv72/s1ptezW3xg77WkbeHockxbdFMQjJLSyA5WVucCc3RaooBz0LdUjRrGgPM9Ga6eG/hQYuprTr/D3JnxCXTw5Ucgq6XqpFXIvuroNNmrQkAsnf+NUpo4HRdNjqUmQp0gBXEQbOy8f12i3OoWeRwvTc6FTQ7gtKAf51s/9M4tOE915HzCHSTZ5qmLdne33aceB9ZQr7vynsFw4yVderlMEy62fdFKeXcBOnLLtylGGZj3+jal0MjhMVPRG63aDR+rEpXBwxFVNYmXfV0OYN6h7dZsATVSu3j9XBsPklCZK7fx139hijnVrumM5JqpB7Aa1pMluymQL1MjKaH2tkVxpctfnbCRKltZolUj/Tco27zSkddUxCJ2R2nnTlBHQ5dp5nFoelH1tLrgYmLdkRbfvD5cZ8QuDIULRFTB5PAn+6PMbifNax6wsntOOMV/2+u9FDudYuvru6j4Kj8/saS3X0AabsNJwPA/NvMCA5L9Hxr/duZzh3VHo4JcQs+vtsC4YCdDyEae2AAfY1bVOMt0xS06rcjw5UVJXMlA7pfLyoKFwbFdqmotJvYLliC9UYlCrRbLzxi/sd6xl5HBhmPgfepKW43p1FQB4Ttw08QWOhspMNlWpXCNXBRCCwsv4suCUU2jnPAzYqedPSfp4xkTVXgrp363o9CpPNvfbNo1lfaMyQzZsBQmNz3Ky0ueDL0ig77BuNR3mBmYRC/pKNa6eA8RhryrFoCyC/5bfegJY2TFAJreH8DXA8JDetPrraLCJMx/PZuFrPsIRR9NnM81VCDYstNefRphtre5ooyvfGrSof0Un+J87Yjka4tlhZLGavJcyGNnkxqzOe3AVsmzKg72JhwJC1yMiyNYK53/gvxyA5iRCrxSRe/yQqmxtH07y2Ag4jOwVcgmVnWfNxWYVa2rW4T/j61dpnI1p/7qw92Pp2ImA57dDQrOayOAEfF/V5RHJ7Zp5HE624LjEln1OgTG/dyOm1snnYTx8MyIGgbdrysznBJYiH09Y7ycVCwQ1yK7rRKf4rCWC0Ki1XLc80wYrwAwuZcHm1FvqI2OF5PiTiDNZXe1FVuRMbC42eIjPjnxOUA1GnPj7P+1qQOIKm2gQ/V/LfekDPgKQg2Cu6h+O0qWuXS8/wby3r5da52wVobOe/zjdXNvp4bqZW4f/P2LadVDSiV+iilvl2kl+GUNwr6JWaEIJ/hwueQF5Cm1oddH+E8dLQz57vn6jCQNCPxCOXpocRhn1oChLqpH5EleYr0LATFOnuFcFCN+0UMOCLvMRhcMXO/FGyptmYDrqGDhvszMlH8dl4zGfzFeLWgQmJUpATiKJXI9yWmJrCtDn2meGFy4AvprNTEJSyiGsMUN3/24HlKSqVpULIzkEv1J8fzon2B96/6Gy2BV0tY/wuO9MpM3y1wIN2xfy55WOgMz+7sWakzstRQSNBkLON3oQcv2bRNr3yaq49sqxFjUg1i+vQ+e8HKQM0fBo4hwU1JZiziLUg2PHUESBrr7t4Vz43+eSJB3Xg7+b2ONXI0qRGhYiEnASaKu4pbTlqSNfOzUAk993x9fFOlZhxNDywt3p+q+gW3ceXmyXtWmbuyHbyVyZvejTn1raEcOWBnbc6cLinNYqrN4aaaVXXGbnolUy+Gco8+B3enN2XSjYHjbyiAFg3E24bz8dCUra08aNjYqLFm149m47mr0o/ks5gce3xRCLCWQFAcTfZRDgPASff+cFMMnjOzjP/rHV1NLvvQZYJnrBuVuEqtCz7L8r3Np2QePQVsvmCxg3MKjX1DtXdgHTBhdFjbKXEKWj0c41GOebFJ6VAIR4dJxCpB+mrbUneh9MEWaun/m3JFlPPEjBT72zL9WHWSln918Ga4ZljLLo2HUYTjPsv5nT4Ry8pw9CAhTd5zuB4ZVzjsAdiP+3Q4yQP3o44mXwgkDgbWIFNPB6Q8PgrqIRdzuxLD2lSS4k+szlpuMvuxfHFp+y8Cv7SGMXUfPhpOAWLJ0rxU16mo2E05ygj9tLDe37tLygqNKrrW3wpMb9olTK4sGRDaC3XH0nLA6GdHUm1fEqf1UStGGwlDJj81Eg4ysgTQzyCKmHIayzVNhPuP1INaJjceFG/SXhGBa3J1geDbvB62R8+r+9FBlYMH4hMWwNitQkLvtGIRWNiz/L8d4THeKvCoi2G+XnotTKTsAzne6Ut418dYP5qi4MfAaiz7rp+vqwrQOzlNWVPsNiORJE/vU+CUGjEOaXYLs/gruyHeVMP3rm/T85noPPomGRt1ZRVGwVRhdgBRuzepN0aX6Yuy3cgkZHv0c6xRZ786gkOcfT6h6DYxd5IYo2au6eLanfEf33fm6SGqmsbXNqnBLsKlC3nXdBNc7jWGravnght27293+BaAVr/JpjA2/54r8/49ThklZ9aXmxiUz6IhIUKe8HVi5NzZhd0D3gnVxX+yyc9J5rN4i9OYH2ca5a1dfb2ZtFtexOxuXiDzOwGeAeXQAX55QlJixzDDgiPV+lIU0rk8AcNtc5rrZSftttT44N1PPSU6Gh67y55Ibcb5wHQj8qT3CggGBBsrcB/sC/VLJ+vYIpadLjeb5qnkallpY8SIhVNggw3jM+w2dV7u5JJKLMJwGRjc281lAxNENogg/8l2pONjabnyUB6SUM5Z3q4UzNX2aF/+VeWwB1fuUpQU2jv2EJ95GdAoeGFcic5A/Zj7r2dAiW+KZ1xv3/PDRCpWIgt3FIR6wXB3neM3u/dMb+zjo9aPaiBslaffTepy6R8+JdqKXSEAfVfgt4Vtl84nQ7JOsGCHDMYTTDCfCKZrvfakC/s6Pgymjh3JFKWiwJstC6u2E64ti2A8ufMxGrBAh8Sh6G7qx8aEPOtf+SITJWj8X1AUnk4fwkJu0YqQDcm44vc0aO8All3kMzOYwBqz5S1rhffkMSd5OlS5VwxsBAZD5fjCp10tJoiIAyPyyP/FDlyvNk2ikmgESzjejpxlidOVyR0QgRTH+mePrgSUVp1pBA74akpAvc7ZSesuwQNEKu0aIVRQeSNnlqYmRBde0yKCig3zLyylDeQujnAGbEqUYINUz6GZlg95a8VJMNbgeZa3MJ/22j8OhT7R6g6rtjKrEr099OuGVi2vvUhylXlKJiQ1bDKuicgBIGkYqn8SxulalAe49sqH+37g08ZWzIAuz+KnRwxyo59SL9QYz2XIP+mcwdB3ybYoVYUx388isOp2dpwPFi/iA0a81LFABCvWuOYOAHC2uHgiqwky0foJLg/MmbK2XjIqIZfUOnhKpij31F/w/EuNCCaLt/aFbH//mXbSJNhnXvDW4qnvdmMJPyhyeCnhmcZAiXjcgl2WuXsaisfb5VC0zc1zsO8ggquFJRxqRJ+rPkJVulzpkHY1kqwZlALNcD1aZidfySuBHyntRAKC9XuqxsRHkfsNqwAfml0oMBxbwpl2yVYgAs/zk67bYXQZlDI3ZFceVxUjBn4Puu4qwzI2DK/aotCHfLs+4IHqx2iea92Qe7PbZiLv1b9BjtNOpcvsbwHojpyQyIsI9b8aLQiX9bLffMStgTXqeYZu8APD1VC0v6KCwLQzMrMAMmn3fwgDuym9oS/Am1bZH3iR9DD63G04WXisl0wn1Q4gatA5Bm4Q0fXVT7OB0SMdcLgJCdGrapwOruBBtTg6qfhKLSC02zC3rv7KSWZIe62EMyrEhTUZy/UQNuLr7nID1HXB94VPqERM6g1WoTc1xUa5whd2sTyit6WsiZcLmdVZ7q4IOU8KodT/n2t3oom1HXQDn8x2eDtsW4tGurN4l7znDU5kLQVduA4s5fiHvPNFovtPuPucRgbM0sVUWZ8rozeYiakD79bhOOqnow5HAw7P0K2k+a+gkVuuiQ0iXGo/tPwQy5wr8qp2QYx+B7ErBmvilK5QRkWzbkUHXD+BcflRYoVGEkHtNlLA9lJHuWGjFiyxe9CeZ/owXTzXRwv8uX0J+2BMyi0flstvULTpqIeDykz0ltd2H5HXCdhMTqAhNOv4Y7NvvXlUTii/RRz8Ne3+72yQFpbFIeXJJCqQcOAJ+UIUbxcwpQaQq4wECOlmS5WEujRLeT8ZE0SIrBdnumUmsFZhSh57+OkQJ9FLffHx4+WPp2iOcyPDQQmUrxXR5DY0jTAfo3UpoioT9aJeRXcvl3+kBwDsw82OS3KUNofxqr1gvRE0Trt99hd+soU6pOvpfb1sU3zTL5tcW0PbhrubrkzOS1nIpLTfFmVnIR9b8kzQTs7E+NheduecO2X+82y3J/CGvIyr7AU1B6fBLpB/q23qxRib0smEiZKEvJpCvfjP7265Rux6KeRmtIS9Tt2YFNGV/z5x1ZPAm/W4b2DeO2kr6StkxfhAJb+/hQV4LSzPHN949XlGvUOdI95qWIXSEI0VxBHaqFJZiIEziIvTSdXGhU+iZK5dEFq5q2EjyPU/rsWRUj2i/92fEBmoU5d4Fzw6ma42A6035Lqtm5m3LbhjV8WJO4oI7TIRl0Mq22RF0Q350mIWFBI1hMeUU89S4JwlOKr++Bq0r1nFNrN+25LSvayv0AVyOs3/Luj2LTZz8wKqHoolAZtzerKTBQ1wmr8JegU4JKf8B+/QIvoxrhYu3zRJDGzhCWjUPoLyZlLF34CqZIsapBgmL0khNL2hhKt7wz9fCmn+9wQSwyPZ//QgtgXaEpGZdA15xKpNlvqjHlv+gAawTz0B/0AeX5XPIfz54afaTB6TFdFaRMnnf0GEXOoHP59UAqKNXOsp66zm1U+hp1u4ZYIVSzPpAVKNNspssMydz+w4HH2V5dziDtQRJ0MOWGiIai5ZIvwwIFyFtp2aBL6EkuBaMHqPOM+L+GSvRWa4QoiAzzkjXBxPxx8P0DGTGZkCveh7fpEK6m6We0Z8t6Ll9WovMnYNTg4Fjr6RhDcY+zTOyFaYlltKeqEB1vnuTtmJZ8JGLjg9UqKMA0qUt0s+hKp3X/lvp/4lknT12COr4zEoUur84wmXOjbXZ9Iob6QRxSAN2pi7DK0gsNNgBd46PZRwWfVpaxI0OCDXqB2G5SmK29l/y/9zeYlVst3S1Ewv7Y26YIaUAPvC+A9srNOHXF0eX+iFDHYBxzuCIB2OmNGu7I+kIeSsZfU3bA5jw1AQzC7reUFSDvRyGsTtd2H1QMsgngHdVmIBtVSErAP2Q92zPQ+hrmgud4SF70UtU3IWpZotZIIFQWhXdlhAdY7T6uHRuIZG/DoSfiiKQQ4yzPl+qcX0ApsVW7GnRFUOnIOMJLfqJlR4Cofph9RFOM6Epq+2RPYHAfWyM/y3YusCa2nIyPyDvWpSE2q0RNFUtySQUchO0jcgth7DK2mj/COmPf1T5KFJywdk6wQQcPSjuZz48Lr0NA1W5XFAKotppIS2+lMGDyAcX/x6sQj2go5V+InRg4HqLeAPgpXq0akjV68p4yfiTjMCdC/JVnSd5o0ggc8CiLvEFCG7DTU75HZvql90EpIar9kKru8aK/8Eb1XOb6d2VE0TUiYkze3GX2fxs/9j6ANuBGVD+g+r9Z7fOa1WDngmZotp9mOxXJxPjG5Z8ikdmM5QvyamOBHcFF7O6XIGD/zk8Ets3t1vGgVWQgCpfKZH5M4GNUgTBv3lJ0meEIJtFUPYgSsrcXU+QuljSYEEZie7f9M7B70Q+CmOeffzlJgJkEhOTEuZOMfvK62lt7PZstGz3pTPbivr4Tm1cYJNwmrSGatub8HJ4r8g2eICwAJmCm5a5UJ/7j1/CVJvB3lHGAKTAas7IyRILin8A8OwyplgXOZJuq3ue99I8qIjniGVu0pb9XXeZc0rRug5MWmoZDN7w88gVsGMgZtF7CL14miJmp6knKapYHovLTebMlKc5Ses1YjSiV0KxMNKdjE3k5ezWULLtAdQYRkg1bZN20uDmfN6fqGFJjcZvTyEDKvGCRKJUaw0AEL/9A8y9x2hJ8Bmo4iEI7t7THy+gn+ohuN+K1YOekuTWvUorK0kJEeOrQz7xWVCafOxPvScWAVo3kei9WMRQ44kXQJezIs4dr6+4c0PIClRmUuNlFocBfk6EgbKKMCHCLVpHnr0IpqFpRxFVXLueRWtYRblYlnEa6BvEuR2Bew9kgukgAIFshdDYZu52QOCZ5CTN1TJ8dbpQ9+2bFtxHbQchzu23zh4p18Z7MDZCk0QWb772s0vp0vbJWcYiOzSPlFAtjyuyOzGcQUDasHM/zK7y3PFta9E1q8UmsilQYikB4i9bjuEMxqquGkbkHVe33tvocK52JoX18MhyVWS5hyXQ7SydNNfi5NkOsVDcjuwc2CR4+lOtiqVaY1TL4qGw5tleEGW/V6GsOLkYaK/SsMKsD1m0QH7EQesSTIxYCR7YSLDrVgt6uYbFoDR8zcDjQTQjN8LSnbhCLyjcPkpNqNads9z1YAj0G7uHv1mG3Q6QJYNQF6Xnz4R65jkrLRLrWrGY4GnP0GoZp1vHxHAL5Q0/AE71AtN/NOM5M7QPUhjDRL8rdbMjqVYpehrN2oYxilDuIUgxlUD0a+VA4zF4Cpq1MYjDQbkJW1ahzL0H1mPZIUJpgLf7GmVktGUUGwwX/qXiZFdtVxhmMriRuOB7KWeBO0FKTJXk38H3lJbwEYXkwqkEPTtnx921kskAgtz/cl4tCeqrrrh3sRoQW6QkSLvlJFLTIYfMsNVDd4pVv6x1ZQYkklL7KwELep2RplCXNoGAQ10uqzK6EhcjAtDmupPCIbe1edBU6vPXJtsXsnEqUaXzf1cAFR8fpX5YsXaPlaK7gA0B5AAm0ZBYzD5jbG9Ir6UkX3XnqZVnFiZpQJ2l6uS0MIcmnmtlOeShg1KWAREve1vHc5epBh4uGGyRGcFc75Z7bsGU5WqaY1cVeXhNg9jGimtfVObo0qmjwJn3WqB8tAzM6vaYB28EHL6aYkdkkYIjbMBZa7+1DmH9iOuKLChKtZKyunwq5ln5zvRE7Ofxx2AdI0As6bE8tMgPY4uWeJpTgbCGRC5rfHyImv6sRSFGuzT8QsY250K329YRWzZi6b4FEDkl8mCvZmMLYxae+t1kpNeas9hoNUC3l8bBv7IxUtw80PXLfsAmjJcVP1rWH7nW+8uGVfJwS9le9lByLqKj5EQG5ZOQY4+/wCo74vVV6Jh/eKSZb/1DbleFoie3Vr1E+FXqU37oiMXQRxcrDpjulEgpV0MudozAHqcql/P2hRwDUBdIzx4Komz+wPUEaadTLiN85p4awRcoO7RYP5nYlR4MDjsPoF9fITBHIJjvAxkVcJ1B+WC0CflnHg4Ev+GFKHOILTPp51OwzZZeCcHHhgAQoR2I9CADfm5tenWt6fqaUzbimoolE189CWBZ2WjCnZC2p9OzjN8yzKSldK4F03KgH2XvpGZBz1Htk11xRhlF4eJSgu9Nvc/cqWTfI3WnQRDKFY5k5DZJ4Nygey5y53ut4XxsvoNaV7LwRaLYgtUwQh6q0b4JJIUjfX8l9zVonBqZ8wROOAsgmMTygCXl14Id1P4wC5UcW24g+IT+qS72de611uixWEzKD0Zhgz8uKL1cMPJLQBchxNbkctgn+TTq/4nQEb+pGMnoYBbXLvnjXmpbKROLSxp+3lyYuNIRqa2W/izqi7/GK4O917nZeq50AicCiAlQzbejigvjRo45M1SkDRyjKIUICwq9LwTCRSUox9oMTmAfd7L9MamyKr4AmlKAeKl32ha0muDQ9f6PvIid4H/GsxtScuaj42vPpC/BXcySMDj+52pS09Ty58tdpQ6I3lVxeFhv/1frzbvEsmndVbtEDXG4RywO2Wb/SEyW5pyO8HXy2B3JzlGq6spiN/RBaoHfz4/2JsDQDaU+yj0R9KMifWbOEH88b0r8PZFvloEmaU6iLNn234154Pp0lSkenX7xcfeNW5sUDg7Dr0KauQmtBjfO9oIG/K3voTw2mPHTu99nGcgvAIAwSIuQ7P4WAIm6lZk/zqh87fTxnGdfjpn2HiTawiCVBGF/VTeFeORDKChP3if8lhlDGI+74W8EYcl+x8y7lOwe89OKZI3LHWr+RWF4I2aE8V44yVbaU6h2CWlrIDNsWX/z4cs616ZpECUbGG7FwGLb2dFJAHmM21+WqaP2+HnoUMTCisgX9De/hGsN6fI30GnfDXljn7O1d2Ad9b8XcseqECxWuL5nqZowUILKzg/6rtgEET1JcGmQWyX0lSYQHGlyfhx7PhQyq00RlUaSPcx/wISifga4Pkm7rhRe7ut0KdN8CamN5KwUSYN5VhjiNNSgA6m0pjgypQN5z75/3W+DTkosqCe4arwvkWcLmUWaPXeJT5Xbc5cCUgiVl6hfJPi5sUM0ceDr0eC936PzLZzApTWffAWeVZqjR7ZanT2aVKW7pteC4+v6Insi96r1b4Chpagfg0vldscKchxSO4LOna3tXl6CWgdpao/bnENANE0inBo8kD33EJBwTr+Aylh/fXflen9+F0xSmukGgPbS8LoAbdDJKXfZk+A4/FZmVP6mvnwmS3ByVQmzTRbjqE+v9JjDT1GrfaTum9S9y9Rb1vV9iAQpOiQQvltZThI4ErzcG77yHoAxbianv7DwY+p0VvzR3dTzcK+C0xe/ypE4rZNCtxTWsTPCxMihuor08kQGfArJb8p89cw+f8UkAiiQcWEjhsspt1pXQimuHIjV3rC1X2AqWqKoO1K6gJzpMuJu9eoIDBaJ5nl8rK3w9tndH/BmgM61GWzL8MUmUn/xoswm+xXror5USO+kfvr8Jl6+xRG9fgiCbQNENa/O9l8xD9W4DzH6JDcywBFtzk6mM+og2ERzzon6ptwUDfO77JuNLauiGbR7kayT6ktDHrNtT9v3ohxSLlmzHTvRX0QR8AfbUcwM5pJIkuo5860Q7LeR2h4z61O16WyuWxBnRk/w9LQ+FfuPyWolu8BMx/xv+Hnz2E19cfFxhDxaKEKkK9CunieXZdMfVOr3OFwV8riuZtSc2hJE+3HCWH42OnVg6IjT38NqfhKn7Ehbtrm0f0Js1mJmq83brp75uJDrYSbN2NWu6OfQ14P0s2vB+Y4roes3gSUpyHUOdpVrYzFKISawSx1qD6fTmm5gNc2SCZo/v8YKAIjQllg7e95LWZG3DhJMmIX9S+isZO4ss+NkB4bQvoi2NaQ6uHj+r/AweGoyuegTCF0+/nocRcMdAqPLoEBmrVgV33zLtglurgFc0CxIOSXSR7+9h46jl+xFvHwhPraJHWwToVhgEmoV7ualUv1O1392D4tdEZ3IICtATy9Qlf2Bh0DNuyReK2KlK7sRmPaQmXz95eXWgAKAzPy6ozvPqhdBiQUTpYAbUV6OrWe8i8kdeYozEiHwAfzuaYJww2Ac6A4U9wGJVofTDt6N7bj60ukHwG6A9qK6FNR4Qr9zZiOz2vTak2gqLVdEmeE9sSTRyZjoxHiOxjgjHuox/RfADYQGVWCJgpCfzgvCY2t6ZnATqJMe2BLZq8koEA4P1NTN+i+LzP/w6kvRYuvtuymJiLkLRC4gEkfToNW4mY+PLIzpqLA1VzjRys6jcu/4Za22AXvsCQIDxD5QE600BLK50/HV+ARwfDmZWaLlRdrBks7oJ8SxDiCtjX807fbV9OnOftWupSmNBqDzn5ZtlJVR7U4elm0Yu1MfVreujjmpIXbawZ8BBg/d0QPRMvmkI/PUQUfWVGrKCMaSKZF24FoNalk7k44KdCe2x05TH4/zH3T0XJryWeSiGQXOVgE3BAywIxbGDaXoShn6KCKm5TsGEjLMV0lsYvgKZo5dwMET/UJCwrSdtYAFNzJO7tykrp1L4ao+WtLjhRjX7mCXeNB0C68xdw7G1HJV0w9b1UsSM49o9zNd8QmwJuiC0ZSFgVi3FRNX6N7Hb5i4jOHVVhc63peFUKYMUaVoJ6cWbbOPypXD/GeJ6Mz6jppNY1t8UC/ycLplkQZC2xBiJGC1rsXMBOFuim9lUw/z5lwFFYIXGUnq+8OoXNgBspY71nbNsCRL/xviKqvxkP9J9IIs4sj6XlwGkJT24M4E46+iQWqKGKkCZI0qsf0xVNp+kEyQ+Fpmv5GKl3Ix3hoytE6yxD6+7wqFehanuxtUNwal1NMXPYoyL+ZoTN18FksfDBw+LkA9eN9Zu2tia1A7ZNud/lB+h3k4tnq1b4/lKHcRw/XF1rpw0jKl3Yx/56VjL8A6N8t+RNmTw9qSVsPBUiOZqrevy3wz4vNBBI8OtEl0vT6QWjqBxkm9CxTItJYWyQfQ9UJPZ2a6/7HVy2GW1UC2R/sXksKfwnGnt+sOLQIf2cb5xahlL+3Bu3UKBTjiApPXrT+FkUVLd9plinNUUTjW/h1LopNPnsq/ZPG9P0efK+fBZsVoV2j0XJZZPVdeRtdXSq4hys49XIWiNeJPuo7DZO1YnyzJRoDp/8XWMIBNcjtjNQhK34yur8Y0bFrbMnaridPd7G5qWHUAHNvan3Tv/psrHEm/F3LiWBcKqSwLT3chqadZm/sfXAoDEwfxAbQV4pO/TlMUdnKG8qUyw5hFVybyXfGU5XqtlXdAosTkhqF+qGfOGuUX3PBQNuU1XD0ai1cm/kWpDxGQ3lqyEn+EwhziAfNh8FOWi7rDUgdyU1Y1ugnXxEEpTtXMQqvoSdWV3ik8fTnW+UjxAMIjWrEJ9kyBoRwteDml/iAJog/b6effNbQQDneENl96x2ikR9LeYsVvupQQFnDJgk6JBYkoFTYSSD84oCpEeK0Gw9/GYZOD9D/ZDQHcVu0OzNynxs3bxTqVNdoJTMKi5Ei1PIuaz+H2LMyHjT2gMt1Hh0ooS9BG75sjHDyZQD0oU9cTDEokZlKMr+Kc6BA/21RPFSxlYhphfgPNPWn2KIZ4Yjmc04I/wW9+KvoKMvn3YM4na+nGr3PVJIb3ZMhdIp5tIPUQTbRs/691+w7cvjv4Ov5m+xDfbmH1tk3Q2IvmjEMgrBrY7VUKIuaV6p3EYN3i2VcKk9X3762WH7CNi2U8sBS2xtxxjaKY08XYAAukqi3xGw1BmLMS8t4RFakeALKjDMuGJwYIVFMJa+APE5WrbfW2lda/RkPSIHF/noIS/Xpj0MA5pSmKmZ23XjnCP8C2VVdXK0LfoFxwLRbLUgMOzvDCSwwTqIaiZzZhb+FGhVUXtZl4zPkPM8zo2eaeb8i9KrR+in+i9lUFWMMp97q0DPvGs7gq1vFaPpN0ahLaoeCmW/xRLhfHXgnPXbIFIcVXmwknzPvW3UV2ZCU59GahrXCvhiEdaNdRS4wjzmMJjbvLrZuOsUjkD0XEKk3NrxrnBvR3WTGR84BH9vY3tDFRI52hmyItl4AV+PSixbEWS7SXVjquSiV3SEDj76cwozleH25x+FtFBLS8f6dXH3LD8s6Ssw3hGm+OYSET11hyMp+By06H1KCflMZDdq5tSj4NvELs/jzw87b3SXSl1L/6YBCfsvxbU0OiC+mS+5MHVhrgrVjE88jxPM3jzLhBBDByv35T1PzbQk6DqTJ+u4Jga/pRnAmmy8S8bF6fMSrVslJkQKuW+cuZ4Tuyb/WRXl4Z/1K98h6tDwS0V42ALUNd2PL7D2t2V+QxPwbHT9+dS6ezjpCqdqOoh2ZTLuPHWv8CazSQEpHIQM24egSnEVJKzrH3gHfTw+pF7wmIYG6YPwnY+uUtPeBxK3wPIINGIjwMKGe4iaXFUNpbiQHCc7D2cibT/3+7TLpCzXMW8WNRRrm9IdEwyJfU4BftTIZuHmPjhIhcFFMnH3fHBVqNULdk95NNIuqPDWfdkPBSCDmCIs1nGY2aOL5czsr4BJOUiTKukJUZQWRa7Nq+egQ5Whgp/MrBR0RzymTk7a8nO9VDZH93nsqVmkbBlslCsoDKCPjNxL+Q3i52xUZ3TfJkclMF9WnEG92Ds6mb3k7qWbdoRRfAqo2PtCUb2VheaUj2ChLseEm5d4tsxn5mdBEnGDPjMwqphkJLfPLmAr4hNNQXa9aUgV2zw0fYFq7h44skbdaMLz4VEFF2Xtgoiex6j6bzY1u2P9wNUGcsg7dj22pwfi0vtii6n0N4K0IYOLP9za0PfXdlZ4VexdICsGNm0ACoC82Rc6x/HWAdH8YKTxqgWmMvkYGVMMYxv8vA1dlpV3zZZT5TRhO5xptPk1zwsCIFzjq3eaMtMqGUWWwxxT2ajVlRN/+hZeIuErTg54xNfTeRcIOE4qUnP64nM/Xx2th+r1//8xsnha4/q1oHUe2guT3xtDyWoweKflsOykmJ6gTSPqwIyyqw9K2kBDw6xcmlYm+eN9d7DO2Ol6VzhsEtovSMj8nV0sHHOzA7cFRUBh+oj6hQuUDsAvB6YhXXa0XhPBEt9d0ULu1tHI1M35Vxvb959XGZtbne2B7VrQHz7nugBzbggUfBFNODM2b7h1UR0NimL2TdAVUMhXgeD91Qh+mxiurYWMjwU2TtjZK9OWNDYSd64NugMgXcvrvg7j6a6fWLIralmZ1KgN27kdbRsxJISpHYnLYt3i2ACPddliuMwJk7eKL3o1zs6n//1/ze8PhdkHZfnMHRTLKnLXuR9YIUS+kDSVioNaWyVWn8ib0EwD3hxRRz1YqZryVhKPoKqd+LAz1hKape4DelGZZojLhbGxRC7FSvFEBZuuXvGiwSY2tkpKTfJ9QP+k/L65+oOrOkvGeUbrwC+ebNzM/el87x6hq7jNc4bzwPpe5CX3dE6q9hQqahLSmlQBE0wKiQS47Jtp+rEo1YHpH6etK2q96QCeK+FgnCMTiPQ9bvKZIESsp9rXCv/6jFd5nK1ZhgDugcTE3TjE9ARDdZs67HCjuaMY4GHbZGSQt/ZL8s+2ZNlhUOcc4pUIeMtR5iqN2GX6IJa7HWTVg8Y9VIHiuEDvGThEBhJAk4VEUSyoQkQfL1KZL5QQcbE2dkkpQpsW/iN4kQElHbSnEfTlZV3XegIUxb8ULClmPdpn6pOFFIgzralTmyInw984ZowccHgQve59BEiSxDxVgNsTYaFM4tpNV8IOue8TSC8ayMpVbaXmaRTzb59H33jLJA3cWutwWKCaQdLcEcqeDcl3q3FQtW7TNvxdbcs0aLMZ7NGkGB3geEXqn0DBR8n+aGFHOpChdZX9u98lwiNM9HESTzsiga4fdNu4KqhwmaheqkQEoQwDpngJ2eVHwQ0pZb3DK+2+ETr5I1xbfOfF+lBVu4N+6UmuQTb7NMWwgAK07d+ooDhKnH3k24NKJ1Kwp0TUHcixLgFzQQYSVBkPtMcszjGSlkBJpwGdpkRLlhwc2mMGJZ1nCWMXGDsiIaMFnvE9fKG/4wF76Qdg0tr3ZavubXLwIdwR1143ZzD8EgBG+v1LNV6VOJwxybkUixrBpujCxZljOwPb06o/krbQFviDeON+izDuIwRpVL3N3Xj7PGIcI6KKpHtPkqPqCwZKOU0QGGAMvZKvwPCepmJSzAPJJ7nVuDGEVEqCQNGqaqhJCgUicJPoSApmMB1FXpEb6qX6OJLfOuqbI2i1WqLa7/TSrnL+NFUDVDTOUsVmQwh+dHXDchRvjf6bP9bzV9l2XPLHWd2ULvxEcKqzRuytAeP3v2D57uNf/ViRqCditSwtZ364MZx81J3EsZ9ODiS2rwYEOmHZM5X1VyxQEfgn4ejErgi7MMH0REHOKKAZgAhEs4DuwvRjaDYqcoyO4ndXhpx205KH62bA+hNY1N2wONGT/LcPEtNGoTOHNblDVIRzM0XsffEUqi8VbtAaBIVAhuVTu/obC/MoT+tnzm7E+ZcsFCoNk9nmUxC35y6QIVaIPBSoHXPkRb48jr7g0izQDyI6AFrisEEbmdFQBUjRkmoxlDtzpZS7mdjJ73c5UcDcXZ1hHJiLTxGpvGnuVnzDuxFPaPm2bpd2yyDCnnC+9iaQZtBn3ZfPuBtHAkC47bROf+d1Nwabn/I1/I4zriwfpZ4HyYaIYszbs4z+x9Dfe0kAiIWLobjZ/DETV1X7vqwVDf/NQvi9m0Owr4p7bF5mrPkrZ020ZiHxXwRoUGbB2aAuFPdqsFdeD/iBRC0v04sLz08ZR4HlNBpFsWfDgG33/bI+reALbyrNla74McmP0VLj+E3a1AVvO9YfhcxF5ruoszrl8ssSW5oGZlD/F+R3E5GVS1QYBacgbIckU2roWm6GjAlmbZAwrXx68wXPD59fQE+Ys4+EXL6znEbHesQZe8SB9To14xYimMpvTVKU21gTZS/4DmhuTFUiLadgQGBK57fjdTUNDmvoUCcckRktsvvM3SfN6XXJXKBby2Vm/c1XSehgV9mUffZBx+xsNTC+CiN4aRG2ddhlRYnFDW4GKg+2IP63Ne+ca8vw+awu5j6j4Fk9XsoTxgRoVkzqDT9Z9q4qOwpVLMjIxKyeWnmpi/YnVMg1DGnGVEoxT9EmtPVeYg+Obo0jGlYzk9nXiE/KObr0H3fcrdmaFsk3gVgbUo21JwEKNg983LBJC4a0aazKaCFRHZGVvAbOkoQWZhv9modiPaAQNBF/fvhO3y23xhGPukP66QIn2DM0upJLOdNVQhYdKTe4gWlszimVcPs4zbiv8cby3PRmVnfWZQxWCRQYSJ8TzWQkUrKl+FPfPSbHGfoC2f7lxerKVfnqQR+B44Kja9nTyA8NGz6QruZs6O1U1BB+lORgMHXaK4dnJ9QCuhGtXxrA4vOV2YuTfzNCFnMWKNTuhFVN4mbHYG6W8Joyt38NzqeFXgE9QgJDTWxNJ03P8sJ5AgTLKqhRpf/O60ODRYtRdohVmPjRX1S5ceoOfsP8WAlSKlmFXdU2wKkkbTcXRPvmy56Ydi2+mjpWZWbv3qoNeDplLrT6rIJ77U9ReR11JcSbQ0BZ591YK2x1exRzdv4Uxotjk6Q5VYgM9HoQSoHU182Gb87FXWP01DjQXFH5y4qJ4L5wLGMfO37ac827Z7gkeBRyW4XvuCNCq/sX/KO8bmqOa4CLTFqySJ1GOiVI9CIw+o9CdIE9foer1NDoWUgqn+r3lIyOeQDq+KDKdTVSDIYosIryLJiC7i6MLpoHMQPrs87WdjhQGGXfwcxaLw4+HU0+v93qMFV+9Xna/y/6cphw+6QW0y2vK3RogqASK6QjHQtLTyz5ClBDm0Eko9sZH6+i4JASGC5L3EGVlr2ygWDgLpWjXdZ8ofLRpKkjEjC2hLeYl7pt7mILO7VDDBJLi/8xcihT64xkHE7QgGsHzrzt6qGEJVoFtn5ggXOgrADQ2iqa1Vmt40lAL64JT1KyvB4x0X/a0QFZNgzhJO5wRmbu/OZarI5UONM69pYOpNnEGwkw9LdX9B+1VolS5k15uWRP/FViLb9idLw9aR8yDd4KWFWxfkF9btKVXUY8l/n4q/Bb8w2IKw421OxWjmHGFeV0JAQnoMiDsqPXM00bs2zjrv1DSWwFwaujQnAdboDrisiCiIFg6sFZdMyqS7C7X7QwSz3B153OgS3Y6eM6rmXBPEcbvrujJV29rBFleuNQa47tZ2lnOA/VWih6RCPht0Gjfov5BYu9Ewd2OTIE9EWv4JjibSo8XQ0S6DRAg4bsMYOxDqV/yqQo0+dJ/44ils7vwOj3aQmFe66K/IVRcNXUF6IncWayx55JaPKvrco5xJXzT40U2tfsmzVdm38ooxq3yCEjWvCZzQLVDGFC9pWhq1gST9avDjy1rB+FcV4vfKzJLKVHKzjyC71oIBdXpyy5cB3lJUFnSmXicXHRnHRMCnJLk2mVycjnMKyUeno/POG3w6mPEN/BqvgaZAa3DxfKJQbiGKy4kOBqm5uv11msgJMNehe+JXwusXxS/8C7T3zzF+O21k2bWUs7wnxiH8T2E6T175YwH/aHo4lbxYM16s+0YENYxnpqOJDz5hnb5aD18JV0t8uveg65bU+tFtOJnBHzucua53lgWUfOrZjnzglCoHZ8/XHp2FjSyzlrtXBlhwKhWEbcDuW5iyfCYeUKrMZTNnNi101DCJNoF99/XWuycMZlUy8E/R+aVj8uYxCEAuU2G5THdy0AMAenC43x3NOIlAGkP4Fn10h2HurK5XS+UwK3Eabj56Z1owQz0cxyQDLYDsHbwofroxiCbZxsykW48ErXA+DJSiy7dkzNBgeX1K+mhIH8NMqopHupiWbE76uG92+IRQlt3SUkn+NLqoNjiPo/nbkF+kI7q5hJ/PbD4vMWYodkaDXCGRQCUZGFuWOnPL+6jIX/ZnJXc7QEzujLvc1DimYRju2yndtRFbcrMwCvms3o+4lnhgwKzAU65bD6qWo2NVYwO1sK0jHuUoppJw32oQHBvLXn2aDrbRxEJDCxmqX+PMZfjMMcxrxHBSIC0kURNTcnL58DyMjo7VBWGsDqPNxBzPNdYXrCDUIRp89R7hqqE8bMyiHBUUWeY3SZZbA07mSYIJkuOmFvaqF8Xegy8DNnVb8KTAXbUuhwn2S/gtBEyH722O28AHZ8fejtau94NdaKry4TiXTRI7wCD1wjjNSVJYa1sy212E57qZmHxUCQT/F2ly8Db4PGYbgOd6yi4z5h9xrAgk6H0vF7i7RrQ1QrQ2Sx3WAmDRuQI+AlUYuOmRB6LrztOKn9N0HguqTl/LZsvNK1Z1OHP0/o+X5V9TMX10ZoSlI1nn124uzcbQ5xMi03gEDsuk1Q61Joe9fdcYq7Xfxcr0gUN5qhAYg6M24VBqQk0HWYO693IZayAErM7U5OMRFJmNilpJxadI783n2+PwLJ9/RHX+Q0ooNivu7wtXGKh+fidFvWl35OVnFLyydz8QNLGYJ8GS4tXh1C+ZAjVkDPziejv8UtSRsjkttEvcYT6U/6EarDMS22laxQqxpv+XJ2gHWNdJjsGqn4w1/QwCLI6en+7VT1b5LXL31cLvrDM8lmZNxkE8KYHLed2/NiX6pHdgc/RkipvWN1vCnWVx/RIZAe+9a0SFw2En9ekzsCMnqQF+ZodtsAI8KwiRnbpTO/H0zBtxqZLQljgfflOrGyDo/dVs3b+uy11o9dlFZRC7IciCIeMUEa97g0almglWXIlFiQ+KUEisclX3RUoeYOK8iiAULHLmgO5bnZ/UdsQGIrRozS2VgvoLgULQMnPuNUJQ85mTFuHx1Ah9VioLE7fjmFxTNKiKSjoxXMoOQERLmxQ9RRPalCp3Xl/3vQPZI2ooiDdD/baHsgnVmqjEXBiBuu5PA/jkh2l4runB03rlGB2JWq6mM5oocXvFFJL4s8j+NFaBknaEzjLrRpU=
Variant 3
DifficultyLevel
530
Question
Margot is uploading a file onto her computer.
If 65% of the file has been successfully uploaded, what fraction of the file remains to be uploaded?
Worked Solution
65% = 10065 = 2013
∴ Fraction to be uploaded
|
|
|
= 1 − 2013 |
|
= 207 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
name | |
percent | |
fraction | |
correctAnswer | |
Answers
U2FsdGVkX189JYeShXVIC9sJw/1/DWuCg5rQ/bJCHpu4i9QTeRyPC8xqoSM39UYZTSwr76JeDd6wpdEphxSvbWzSDkIksOEf8GO7thEJ+mHMCvJuskb/0mzv1FduB74O50Zvq859fGtNMxvkYYrdA4fjDpqqor9Wc6yrLSaGazX6om892O1ZV2WK8Tc/wC796/wGrCA7mTLJc4Lk8Rqv6bk0YsFdV2d3FdR2THvK9upuQg+jBDWP/Nfc3lmsop/gJpkddTXtJ5Q0s03WzC0MZ6FsRdpDdyIwTAo/TvnmN9qeILXp2EFk+ABupXYlqAKGv1IyldUp7NrRGDpDOTy32rlDmY6N9h7DBb4US/e0N2e+LRq3R+C0TAo9LdKL442jysekzL0ttb5p6Ljm1mVGZ2VWg2j8VmT2xtVJKHGh3eDBM3LUB44x5aVB7N9xaxXACtLs3ffetQLLLL3V+/e9RLMFr7nTV9S4gYuY7MX+nbW2WmM4bbQ64iWRzwMayioxFf8O9tJTSfzBkzS0+xOX34JohCPU8jAUBx9rkT2xx7JDuEoUxkwN/33fUDsg/ZOqzn9auWrYazIPrN27vw0gd3mNkd9IODBXhbdjsV7AJvy17LTc6GM1jNrt2Iu5W3YOq3YbBueBUKvKVdP0p6GBT/fXGsw831ba/Db/sxtjLKVd42srjIp81lSdiPH52fokYRxQzUUaWFfMmNMxvlb4JvjTB3xRGOR2DjRg0Kfwt0CvDab7HHguX2uQL6GbqggU9wwxYX0Mp8UN9XavUvaZCxcHjiMkNkk+WpDuh6Aq1gu2BcvG1Kopb42AAMovpQP6XYLIajoWG/Fakfgih7TDlX2vEg6rH1HK+Q0Jx29aJ2XE4wM8JgHSiyMU5IIPTUomk0USVcamlEQ5zBxo/og/RJDm/xCd7b+r9FuyL1OOy7wqlp+l7mNM9KcclbFhJEi4OTNbSFuMpegle9KXO1sozIEocoZYeOPeND4z/JxJODIfK7C4RzIFpogKFjRxQtHR8tosnX9HYxtw4tGYBf1r0AjZlkLH+8NMUFXN//CIdqy2CH7mKNJb+A+QGh0SJ1p9qny980FHGK1vMqRlW2MczG0sfrVwEibWeW8n9rvXJwl28TGNEMOFq2lTZz5yVhNs9Ve4e2H2cbEGVLd8geit3ZmZwfFqM0sc+4+VAZrg6Kg43pfqTgf9pEnnoGYtIGdRhuXXx4S7saOR+I8J5680F8bd5iqxqHGocTr+yuWDyCsMqwL9fj944bN/CMevtc7N2jQWWuFe7svtJWBGGkOxFaJ0J041irCJGvWnkn9xuquPseSugZs5lcO4Cft9+6ZrrhphIV609z7C5ea0lPtOvcxN25V/0cFvJCy3TcfN1A+M/Y9TWYR/hhsJYSd5EQPkfqx+hXIbK3nKE6GAYH08F/TBLzzoINnbQI3wSTkOtZcnqKaDD9cz6ngK7DA9y0gulBHOKMKixgMtMKtIJuyQWOCCXICS8Fnip+36hTY4DOxUYq4+b1O7Uc/R4Tlb+mJUCkT4sDbIkuZnkSlbIyG9MqkogrxU4cwAkj9x2LgrCafVyNWWIIaQOvUKGU+pZWc/hu3/wGmjFxAFwdqnSmSZyAbtaEz6fw1NOvwHGh+Myd1LCWCXV2bf2zyJpNPvwcG2gvo5SKhWKFLU9TXV1ll6sWOB+J9DhHSauCTeZ1oaeYwnG37XLYUv8XhYP7YPbHYKkZaJ8ZjOZJ21gMzlVdlCmO1EReHxXsrSmlAxYw6T/IjJSFA3f6VdVMHFSQsB1X2IepYpJs09IMGUV80H5CSs+goKzPANH2qdtgij1AX7CQkU31T8NiuohuTrvFPJCL3b1hxtuWOuYQVdUlWnwKP/kr+1/VskwTK/diNN6gGfP4hq5FnPM6ClFpJvh4icP8nAG52UlpWaAdk9WugxnkvM8LH1FYATOjP7asIZesIUxOUcdsXgksb09ygpeaCEPDnbsDM902EMWn4UeDckGTi5T3ueQp9ElO5OmgzldLLeZwD8gxKfy1vwIPQ5+rWPmlLVt7z/wS+fCu/JCYnKNFkMlb+vyuoHkoN2osPpQ7ZtiPUZOeydW+TZX8uvZU0Xc5AJHo31R3kqrFs3Gyx1ECyR+4uh3BHsGGe+WWZsGOl5hCEwYhT6plCVt+7yXKHv8/sJwTGtJeqYhEAmR9K5nqIYavDTyqBD0zMnCouaBdhxVDmg/OdGyzgJxZX7oiDlsRBB7/Z8QuWCL4Bfkc5FdgxzmVxd2c4GTOVlXQTAlMUh3Rl2cZeQeh/xk0KKrJV5PNLqdSwoqvAvNhug4jPuimY8CuaFoyDQPnOxe1oNLr6LbzjdZn9joM2rg4REkco3ijFDZNEaXp7obBC3Xl3/4mESk3hHs/beNle6/7CZiqj/DN936p/E/sWpPDV5HmoKIIGNwErOWjxf8Y2y1lHLt+eRTd4JOiNl1Teo7OY5iw/aeWID0TEYHp6mdOYHZ7rspucINAmPaErZsTxRql6SNc3Lmiq65ADbFH7o8uxemgi6lyY+ccmAsWsvOwQa7Ebg0g8t5CsmCXRwH7Ua1i/LlH/Q97pyMfdM7lJXAgNHdRRagyPFptc8lSWqbvcmbD6hHpHvCMoJBMGymzygfJUi49SXQToWskX/37+j/AMUIA3KaLLL7c+jqv9iFI36kX7wrk77Xp48381RyZwXFyIWLv2gUv9dWG2jvw0LGOAjCwLRImptF8PnpKpznK2+WIzbiqJ/OYI0USN8mybkkXIuH85us6dp4+IXEsotpRQ16ohRX0309FsCi+p4cIFKkBaukCsVZYmSZzIb6Kes2ZfRUSjKLasvs7AdlW+vHFh6Psfnq3eBoXWlyCrH3LmeQLMjsID7/P1HMrPtRaNux/09+C1aIlLXLcFiiruSbEImVsHC6Ig8UnAS5Xzim0nKn6cWWvkvy1oxyMbrKm4yCk8mxvuo3skxAyjF27IYpHgyjJ0v4SwYveEJB9D8Wfjg1eYKC2eoz8jDowBfqH0aGpDPnzxvmawbPRK/gh6sz3wViS6LcdXXOIxFeuXjoVnyAqgd/X90Ad+538N/QID48Y8kakdOAT5NaNVAApyGJZ4WvcXNwEzrHr8zwxdyPR4+D0KgykK5DdMY6I+igGbwQ+9vXq7LKqr1xWT64P7c4JwZ9YCXZhuf0sQ4bMJFqM9YD++2+p/5tLh0byiBhUZzam9yOrebas/G3XgvgQ9gzB5qPUovmD5BilQ2c1FH+OTlY35moMQykaRWk2iRGySM/W5p8Crwt8HoH4fliGbP9C3SrtUteErJZNKG7vEbchZdeflhGbmyni0Y8HS84VHFHaN2LsSz+GD9yEIFc8DLKt05Hpfe9yoVMwMcfDx+I6ExcGztcLcZTbJL657tiECKIl/R5M2Vet7NH+2VlloRupMSfXr2IhMwSHiy3rAKvnS3WtjydVtANqVluPmMCAFS3btr6ldOWfY9OSGUjXDzfYAePT4UTVJnbhoNSmumjup7FCWV3jL8qwgQAd9FqN7DufF/yJKOsECEfbZ4I1Iq6JF7j9zxNXl4Uc6ietMZJ8PCh9RmIoNoPjgdhXBsTxoVHcJf+9KnDoRxkhDgolt9HAqtaaoETnEDDo6hI0u1Q6bJSOUiwD3mNXD8LjN2lqbwoYO55ejjn70R8ZC/x1k/gt4qliOBHZZKi51aMVtZmwfu0gyBCnoyx8+4gxm9qCEWDbQkYgWsG4T9bhWBTDQYjO1BmcqJ/q8qvncHWq89XLWM8h6ou1HPVzjaJnclou5y0j8hjjVu1H1+tUo4rWdj6NgDpaEjPaXCxcBMB9VT80Z4mtOtRESKHgVfyPm/D7hG+ga03bQSNAiT1A8xPrTlERhENzG/O4mYDuCfvPJlilvAgz936H5dN7WwVVzcfKv2L4Q3QwJhqHlgCT3dDnO2oEwROzHJKyQOf10Iq16rVpHLUioJt+/DnFFoSzMEkLQ5HbgY6kETtWHjkLUVdwtVr0wFZ7hb5QoVQA+12gw1Xk1XkzLAGWBe60F1Fk6DwqdrPAXuORg/0TBvgBu/3jXGx38wPBd3SQcuU4uIrFqcJoGOUx40NkmprTXdkQl45x4KOPJ+ARMY6aQPcfpuClVsx4xzRZi4afQRdwx2+SqXRYtl7jWWlmuWm7vVUKrEpbwd0Go44qNurMiopYZ8BBG4AVtChOqO9Te44PkTqHtJQxMosvVHQlJ/QPViH9uh86hqb1TeD8Nl1js3Aakm/o5h05gPrryh4p8qBrNAf1ClWX58ImKNe1eey3X3vOFOQkiElY2ATUX/S9TVpEBx6ucrIUk1E1OETtzNPMi/UFtD6G8bsN+NXtl8VfxyI9gqALSXrWHw5a6GXv/JE/jvKQ8K29258RFLmAFliNU19792fxMEVgJFRdzKUaFD6T8USejxlfjUTfqu3145yJoPGNYCqzZheE7Q7XWLObGBhbXZeti1RWzZG7cs/CZvs0XOxFrtEpCW4X0lkmVrTv39IhXNAsNRsHN3Un453p/wQmAA2Z681cK8kUYeePUbB0GWOfxNsgb2WnXc0wKfq42AD+iElhRXbYPgXVhEf9LX5sBjNumFYheNo6+604wLSyiqMOLHAc/nFp0VLepCyjYVIDnURH1BAs6WiuATxGVE34D1FP5wh5oTqReDoigGpg8Apc6U/ExEWOSNKv6ynmUavytUgKErrtcintZHhO3N93M2JFIQutf98hCQvLIVDOmS3STi6LpZ95MkDyQAw1zCPc3f5AlA89PiyEp7o8tY9fiZ8/aXLEeekOemQfh8GjHlyUe7xLiYqpWRuusZWULlD0G784Fg5ZxCj4k9AXyNu/ZACdR9VpOsDRyMXoUnpClXUevzVmK1XbmTSQaNKnx21+vMdvljV1XN2YkwDi9n7muEKBAjuBMXUOq3M4wzseNCd5U82V9pZaSIihICI6qj+kuB/SjKCIYE9KE1p5bkjDL+4E//8bw2LSxI+CKJS8v6eUt/fMpFZvwSwoNmEkPjzrlLMVnTCVwP988P5Bd4ayvf+v7/xZKoV7NKwvsKZ2xuBBv7GUH2eXYq6Pt5hu7nfQc2O5eG5c1ojIOS520J8RNEnWXJYlkF8I4xYUDGTVA9FK6ee2VA6UbRVzUG1y1p77eD3fH6S2w7obhLEyINY8H/kdYS3AMrvGYQw+WOYHLgVFL5vnR2+wlY215KrQDBKQ1NlLNAd0YK0Gnj0INDL1g1+EUEcsSTRv42gN9FqdrXxcsSgInKJe0k0vl8ZtCHiXZgllmg39R4g1hraIXkbZ+0GkMghAX10S7o0jSBlaO5mtVv9Dzqqib6tbCcJMmDGZoWQHlkhQtbynuDwbgvy0EqaNArxf6p7aGYDtK6xR5m8o+kDz+nywhDheO5YrlIyBIUOE78uOkksHj58is9JNixa7vlVnvi8jkn3PGSMg0uVUN/rjQXbf+A6GzVtvIslAuROQnjTTJv4k2iWb2duYlZ6JBRf+L8HtFj9dWwgQLhq1Huucsaxwzhfju2HFH3Jrt01kQX2TRHzHSYKoxQQ/+yBujdrDmC7/6H9ba2AVHtsdWU+5Y5ot6Y+yWyZ08UHov3/notlIrCQtLq+cFSXEn/6vImj5XQyRV+YigmGYkLHeQmET6+p7+1qILtuxQFMe4LC0XVv2J/jMjZij0lkdglLqlz52VmrIMjDg5ODGzSKRO3koKBQYIp5/eLHSGwbyNpAnb8EEKyhQpAwqdGE0BIbRoU99pV2aGh6Y/+wxkAJI+sC1NNIUcqywF5KuCzxuSA4fU4IZOlr8FqQ0SRxGzvNbbcf8GBojerY2t7Lfd/QBUGw/nFuPjAPXH0WOR0RicRujZubJJI54iyx5fc5ESCvZV4J0cJ8TbjQftsGzSw1siTJDPh6tQB7jUx3ZHUVhPA/bNP2r46/P9KWM28W9+NvN+VOPkiPQtTKAcaZSDU3GEzivxkugfBcpoQOkeK+5EjYCK8SAvYLIb9zx3HQmN4vXV87Vh6TGRS5uFGeNqEC6RAmAk+SY+qPnCmdRUWBLO2WVOzeGd15cGVBBOSv2Z3jA6J6tpZw6JX6tehZNrxmqdymXQNTFGJvYZk5LwEAI2/le+1Ri1GVngP22jSkbNtZGiN3sfJJfcpozpMhksmqrcC4wfbQv6b/S4ahEP9YjKw5Zh0PgGHuCSkqJqNrMVNgYjFJ0oQczLEyEYuQAlGiVgYb3uAq93KEyAJFqZUrP2olrfCe1QCeBtBCm5X81r0X08OjJrxgR95zSgRWYMUVGmfwyku8/C4lqlFqnC0qqYT6fGCm/LdSbeWNtT7zz7LpFRNnjRt40dvvY8Pt2AHgJySGiw+9NPLQ+X9whuEsCmhECHmoY71IFBX08SnxH50xZH7q+pChNRJASrNJ92ASz3E6wwgGC5TsfpbC9TSGyhkRmnmYrSjFsivYati3JWufVdtdkS6LEgkmcytMJKxEG9l0H/IgxCgYwxsf2N2oEEp2IpArj40c3v9yFCnxxLoLDahaon/KmAbZydUR8SOxyj2D7rSac6LfF/ED9HrNALB8NiAyxvofs1b+TtlUXHtHl4enryA7Oz19+TKMENqLbs0cSD0jmUAJ/aTncdx0aMsHTtJQTyLJNApf1hP+yKlwVZmWUHS1C7gU+voyJZW7FZ575X4VHJr1hp46zHqJHTGeCai9WFGsI8XU185BgR1ILnVKliLokgrp+vghO8JLOkilP14bN+f6ZpyYqz9poh1kRFbqmMlQude5lYp2W+9GXHLp82zouRaiuOkeQnPoXyKkAOgNZ5aW4w8FoIU1IW0enOYZifl4uDV1myMjWa9ccf5aovqRpuAPAWPjhaGL2WVj28ImnSdN64W3NwttvgejvXJ/1CEmaZig97xevAdwmBz37hdmZLAZxE7apMFq1FZAQvdp1v3frWYsq6iwd27ZW9Wlrr0SphFoNUZNMtEWX8H4wusDuyyH4fA7KwrD78EKdLdzra9wQUT+UcfC3HmuqSePnCrZZ9qKaVjJHtFLqPFgpCI4dsK4ELlUG916G03mE7/4DcV6QfhDVjvrPnH4u15W0UCnZ2FNg6uAGFKPeBnERISa38IAVoYRol2A3r79yRnBXrEgvFW/eGQ53R2Gmcp4WOs5cL8EJ0qqIWlXXNfQN9OnqgTw0t9Lmtnz+rc4SZGQdgmnudB/G3bqsLvVHtOHhDFON285l0igM3O/WPzEd22Ba5pz1dtgSycETjsaViQ+N9PqAS03iD9uMpwcZOwXY4VP+NRdnzwCieYgdPCCqIPI5VnEZE0ti88bK5jODvY/IIuh3aL74TLjJxSPiG3v+ZCrCx4kqAWrKR4d2ajTRTDiTF9JMLAeKcBQGUI6nneOvZCz/2YVK3G5/D0FN4Kk3h3NeAODLvUln1WG09h84qVNmKmdKieXtQ0GnFOnVlbShJydMSaCu/bPIsTLKpxBQ9xctRtmvOPkYSl1C8xnhIDGDUXlhXc5KPVBNhi1rcvdgXiWdaKaOHJExrT6EsBEviqDljVK5yvDT2d9Ljwb0SSba19yL+gC8XeVwwEctKFQJnFLb18G0jcR2G26uy1xbuahY+0yWI1ZoQR+Zw/34tDwbv2/Ao0vDrtJn14rU9tiWUEHbxZ2R+Iq2ZdbSZ+1ZSiKIB/8lNA1WHDMb195QiqFTdQgaEpdEe5R4/tAe6EOtb+5+h/k88Xaarn92uEIIAUS2DvvpMI6W+GKEeLh4kSzqLh6+vXUDuIlJmjBiHKBcXagF7YZ8u0okVnKpwWCvUjMQKDxeCTaXYBRQVks8fNhARAimh3/l3INuyie6zY0RlRxnfQJwr/GvkZ/91xpuHXULgB8GlN90oZoR6GmI+PuKAlEe0dVZtlhJup7QwXAcfBBlePqU6hT+iWc+UcovTzdep29gSkWVYsPf5Fg6FGk8IAyZdnmQ5ER15a7aUxRsv6aDIGa/a3/AlnKNFKPHxjW1Cc69zRlTR/EOMPzznfAc/6HR0ag/n5xAHt44Ei5zEtikbHdSqDzEz7NWUi6Ot9U6c4eNvIabGWBed+aAW1g8zK76arf8DKE3eBtc6XkVargANhNRq6XTmRKaMLEJiJRPehETGxJJ97W1yQxxhltRmfMsR0DlB0rm4IsCTMxoIPO53z3AnVAhmhaTy1uFBh9DmgotirBDYtEG9cpxEhoir3Af9OtqbQHbM364sSKmuv4vQPDizPsMYj9d2vMPgJ18iYn4Fe6FbTsQV/ekwNkss+9tC2WEbPvSzctELIaCP3W2Cva7+C449APwO4eHzBpLt0VwIKEkUr8bYMcXPYiXZQ895rNSzBZu5YRemPuhL5FIPPPLdsF5jNvVzYXrznkVqEhaz/DX+AJXzx2sR8kNuDb5x+UeO3eXU4vFYiwdzOX02gPeoD4akcsKd+XZuCQOukqpHsCT7Vv7zd42fAi08/j3FsMxXCgxRttyAph6unhAcJQRg2XOYIvQyGtilu+u3zQWWCD6seNLNorL9XE/kiEHVG3E74x0+Y02UG+UrNU6/kjIFE0h+1pcyW+DdWKSjVN9mCre6v6Yv5oe1yHKKfvWE2pVbD/1kWmfSMQsFfGGVIzJp8zBmuv+GxnlT6vuzQ5y56g/VFdoBX2+Y5iaAcKtJH+A3LgU51RbPcm1Cw2be1DjhFStZ4pSCORiUm18eGPSe/Q+zSpXcO435wnEL/i/S8EtQxHWhh2IOOCYjWPUTElSbPfKdJfO2WlSGzfVrpNFTULIpmhNiE3y6sS6lXUQAnwxA+ceIItDwrEt/39l56Wbo/Y40am1gjfH0PB5gFy+P/SlW6BvygrC3yy/YvaON8/fOp+GybQZlEiNcXNZ0g/ZP85LWdwN/tFzvoffk0lnhXZs4fyWdzY3yf/ng4r5uC5u0PCmwz70xTVJUYcPXoUtY3tCCw0RbUgNIcWWMyhFzBHrMhwjXpXzrnVS1O4RsIO5ZqIF5KEtHvzHSZ3kT5Up+jUB/3plJQaiJejjd+jOecQ8cLropmnWOp70AGDY6bGh4s3Kxr1e6PuxMLChihCiQvZb5F+ufXLA5vtEcLGJsuPyE812mlhm+2BmIuuMTySeujFkji6HCDl3mWG0fKhKT1N1xgCdPHGtYihESAiqM9LunMZ1KRpH3YUiS9oWj2a92DDICKVKSVk3tGttoq2b7Nqc50ys/lwUkd3GQBXkWr7JxpdWA1UOS2eXceK/kLFh35DFV+a2vqWpLPzanXINmDXodK5YDNLRkbA8PywmaeUvTUa3hCDxmq6IW1mQ4tJOhI11duhkqNQLhn1LCfF/dUBiQgbUeom3aE1hJ+R5F9tHBJaeg0sYRZbEKeoGyYcChM1BThZgLV/0sjYdKcLPjNz2ql6cCxPXHwzao+qZVgeLIhVpKNm2vV72D6kEdULs/o8O3pN242Ge2WuU0U+1gI7z1gJvb5xwEYqpi4gwVfXSzv/VcLUitoDXyRer8nHzOQJrsm4Qxjc1sQqNeKrUHHdxZvTUOdhRtxHf1+kmxuFWyaGbaVbMmv6qhrSF33fXGOdFA+LLh2WDyQ0dk8fMvo3dJITkhkmtGYU6albBWI+8agXdSrFCP59QVJg6mh76M57qLVIF60yUQ0ECMuUTiWV6jpR+qJ1nPqZQnowyNY2285dFMtRF3VefkZ1+12c8L21/9J+Vtj7ip5II5LRvCUwqRZ9mgSqFuomDTRwc3vSfa+h+bp23KWK86EY6hNSQDfSIIaCLW346mkMa2C85Nm2xAPN+GZEPJEGm7IEo0Xs3o6dITeOwouM710qv8++UtcBltdAImM2wrQzBcg9HNkjI26c9+/GgI7MEppAiWjnKoGBHhGH7/CoVazL+jk0d3tfBsE5FVfd4rQ3u7fM0fo4TsecjNlY2+KFgfcQcn08QM2fQKY9SI4JcgiD+WqQmhXKMYZ8BrF8TgOc6Z5qAz8jBqLdMduzsjAdyYlaxf33zg4bcVimGsliAB726iFRDHC3GIwfRGfc3lizLHmPysALQ66dDM2cSnQp5KSLM3DTrbTc9T8GFwaEXPGLxMUYWkorlWwdRdMiyjyunG9xudbEcPT1Pa+L7JbXu0/iUoNL/z1xZJQ2IJOx9WHxKE/PJIzb0zCMVPsZEzHxejQ7JrhMRPK3JaQ6VrvrerB/BGBWFIP9Ep2oCCqhv44e7Ml4VSm0gdi93pK9wS826WduOdVx/ykOpT+3FaFly154FrUsUVfU9TclQvx1BqNMVj6YrC2wjBAFlAzSvcG5iz5TsNwBiEDvhnRxlh4nPbgx5C6o3zaVCJXgcWVXnQ2pZ4ML7WIYzw84suJdfCay/3UXRWosqe+RVy83HY/vHAFbycuIZpgkHcQo7SnNacS9p9nsexK83l60ITNQfXOPrI+43no/xqgrdoC2ILQALGssLArMCwgqgnn5cTjKB3TbuRQa1pmW4hPxgRl/glO1PIhp0xX1BuUfH38otTf7GY11Sf5AGVZQIU+NEgdnXvx7BlbT6hnOjqfdCCT9REkhopDWu9tRuwS1vjvZYoMGUC7vuYCyDZ5Hp1Ho2IReT00sJTaXmzisjshT2u5h8Zc8eQItRnIoSuwEd4KKi+9jYECPmYPaypv/vpbjXoiJuMsZn7H9pecQKD8G8hV0MudOsWI0wJR5OGL+K2HpApiNZ7I29Y8fwm3uH1hiMmbjoVCnAH32McidJSbBUYBqLjurFKpwJyMaPEQm5wvCyYh7KogBw1I1l7S9uQ2kB7Stgsiq4q0xRhVwqCXGs1gTSvTlMR5UMGUcUpH+dUfOVqrBskXF73WLdrVzeWoyuN+V0ZU5hWNRfVO2jVtlVPdjlnY29vWS3GeuJqjFk9Wwpwp75J1fvREd2usqRL6SbnFn9wW17aYqsWWJKB9uF4zDoBCDogQ+uH2QxYffaPKIh8ZStiNnoX5DSRX9zFYiUSTkMiayTJFCBrV0gERhsBgBvvm3uBgHpt8X/iISXcXfvQcEb2vfuW6Tujqd+/m4gVds0D8N5r4x9WEGeODICNksleohmz35B2NLvMIeqWuEBPhiFBfMWVXX/ZTPprxwVQX4ew1M480yxa1wWQ7FjwC6aaXTReL7GlVgOK1Ph7JOZhQVW9PHeK+TXxJfNTmeNTTus5yurAbsRAxD/0QTxpsaLpF28HHhC/PUUtFqkZQCmZjgnu1DU0mh1SUvi5jQeXCTgrqIJl83IegzUnbC9fIpudAouB0h3Nmgh+XzEPRFFK8nt4zvvh2xTEpC8RkpZjghE4/ScUFfTUoWm1K8E5uZWHuIX/i1vDlgk3BjvdWS0whwqap8GLMKfpuRVwxr+zoLT1R1DBI/9Dpt6tsVC7wRKoNccU5GV6rxw5Sb3CVlnt5YVG+HHiWvRIpHZScUZU+UuOZiy93WK9Y3fU8oLCYaL9JU7V+FYkGDeQtiA5KSiRgQiYhXfsiXUGpyk6UcKYyxrMculwkFX4VOUDr6aXkiyQ399bjNdUVHv+D1P0F82lOMZeBb3EzzROXlDw5Db72B6Jxm2OgNowmepCya9VTOr5p7GMgLqHigZna8W9I7vXl1m0Mc3uUqr3DMO1ueek6JoBOk+rucpYed2FvaVaPnfEu+riQrrZSdfs2YLdYDCEr0lkxeqfnBZbdmfUVwk8g5HXFjA09iz5z0cv6f+nPLgwktNAQ4WKJJveoJ+jjb1Do9NCSRFjPXjgQEe6Nb6FnouU1WMzzJEmfxaKq4IXYPkg1pszNRzxvpDzE3xcQ1Cw0XKgHkc2LDBcosJIRlF0DVfF8TzHbeITnhJv1cpb7KLi47BykdSN7eNWBB5e+mss/WwJCMep/09p6yii5e7CI9gk3SpjR20ossCDMil08+RzlkbtyClYg22T7oHUUiS8EjBVrug2RlzRif4oMst2KBMUkWeJmIm1RgJt8CxSEkb2RRoE97eiAM5CLabKIJ6biU2NtqhscAMnLsfRsuYySGGMNasrFhsI+/icQUOVlIHjtRaZmE+gtNWwPGq4R2Z434mkj/PZjOKqtbJqxN2HkekhO/mhiWZJN8j5qLs/5tlTzUtGFmguYhQhQeKiZnk1gat5qDGwisiOYEi2IWvpcxM106KqONvenBAjnBQPPPjmPa0PoDCMdzqYeBOmlnR6mR9U5SDg3Hf6CT43kgNQ2nJnYTzt/0+skPG3o30ly7ki8lFrpijm5IYrJhmB8ZZqoH+3WbDfpm2cQvvJzMnzJW8KC0S5ZOutVUdG6zOzYYFLiryp8TAmbMFXfIuGNZZEYqPsCxuJsXAfGrPgW8u8hKqMKqmoWn8M6cgy1EpdS5sF1RwW92EYQUoq0amWqrL+/PKKEhxFhTTVcktgDbQt/bau2lY6wXCeaijBu90CCFWbllLv/G2qMi3nMSSUHzE5NvaDPKumuOmAUIPIfwL1mnDhvaayLkEEMg73z3mk6C7fladxNznp4xUoPpHC6Wl0X6SSV+ea2Ew6VnaOgPj8KawNV1LUeG6sScHWMerSIN4onMcDw05t05OrfSh/C9r4HBHOJH+X1424PSSUFlt2nIZfpxANVN6/zESUZrl9RlpRfLD7fUOpG73jxZqW8Dk31RTdNwbI2TQ9cPm+c8mU1CzEteaNd83tzaNF+ou6DGPDi1BQIQjhqi0zAT7wsry032QWOGTPZFJq2fuWmpNXvc7G+6Csbh+2aaDvymogLcITGiNwbX71SjkVaBni8kDqIK9N4eOhkXqOHVDr7qeCPwLvOQgKww5z+QQuESn8hmlb2so70B0dqb1b7NZcW2nOc2m42BocDrqSUFj+APkIhXYO7424Jd7P/+X2iKbWVfwgB2TTDu/SEsTzWLLoIpPrJL6d4QBHPsC4WA9W2+jkgXv02lFfxkrzQAcW6KERkMF8cjr0itifbpB2GHRucZ7jlh8UEum86Q9AlAO4v9ldJBBA6JLeDlMvDE7M7GWfx8UtT5c0RZiPWtIVwX/OojJJTHfJU6ucH66IiXiwWyUAQGExVWqFMGQLT65fPNRYxY4X3aaEW9FGz4kErXKvagsILwDUnLQA7l04rYFqxXpqyDc/thtdIn/vnZfNJmiTNoXu3wEGJbbRGDVZU33W23NcieWHze22HEbICIgMYVrRfGwmGDiBj1s8Y0zTmFt4wUSEo8/R33rdDKbE1h10YdtnYb5MPbezSA77KEPyxo3fZgkaPvE6/BRc1rOXAACXI6qClwWYFUuTmKQRJ2IMnOHujvOcRjIAwnPC2Al5Qf0UzPx5QLQX9JhHIOp2V/AHO3azW8EjRadwTlqs6CeWOMTVvmcHx/qH/7+vdKzYT+wDuwE24u47r3dk4FZj+SrqW6AqmDX+n9UTwvCEBZ0etEWBDuEeSJ1ySIio6k/J/P5AbpkHtNCgK1ceSqk+2dI8kc3QNepGvkBAcCHDZmvEOQ9IJZ0lQ3zlGigysldzRYEPeQfhMkpYz1ZdsvBhKXIdHnkqFUZiqS1R9B88eqmWd4g4km8xGzAlebyk6dB6Vb6dGFgHkA0aX++PPDwR8xGuM1ZYZ3gxcWAvxw+HGPaxMZU9ejEYokACs3BOwSXEi1uNfpCho/myTcgirYlwgMZrAfb2WZy+5ajX/78lawLGJDC0tAlXR7xl35eLyn3GdpTXAC/LF2bfS+wRFdvZknxSC4rKT2iggjlIOiSI7mEEHkQONxaTuaFx7PcNF2VpsdHKzNEyohraZH/Z2nffI+9RHwN4Wh/QTa0daAAToevT2uhdxn+2Auos5LJXKspQLYq1mwVuoqsPkhOLU1/pFwlweAr2xtp/dVIOTe2gYaOWGxKA0iTA3KfOBG8YLHP/hSRLIV1RR19dLyzwJmgnlTeuA6YZ3wDE3ky3Z8W6qVAPFs7hJejWbCb75mpGRkvCGQR+QjAoipINbwQ2S3f2lkCGKCCCuyyJdKMCzOqokyHtJ2nfzlrBvpC2E+8nHFhcaozp0CVGwzVmdbXQWiAPNlNXos3SVk0o298RxclkQwA8nSWJAcsmH52JhD+fdDdHNmrBGOFgWzhtFHYRwM8b6XnO/jd2EDcQfcQIWwUfL02DEECw3EhfUarBd55u4ITaI1k2Pbo7TtBYHAqJJswPN5dftnTyIgHoJjwILFY43mTqwPu3eCEXmrhPWr/LCcmF41zZ1sX1BhvevtYgR2xNKld37xIgc+N7H3J1c0R7q47+iDqmB0Y3zQPckkodfhXiqLGugFBwL6+KTh5KK41eQYRNBUGB9Y0mczX+/xbCmNUEaRohj1i74rR5f2g7PGtYY2waXkRUiZgpgzbkCj8w4QXrqPOcdUnOFJjXmpE/UaiUdAR6OKKbriW22l0m1ys2cI49G+GZYlBi30kf3UWLYvrKhfbJPlb6d2ks8fUnFApa3iaeo906pPlUZsN7XSWqwheSpWshkz5MHP+s1hm9ocDqBPKk2wc5Z5GSfhQoqXqEvEhc/2hPwOPotgoiwyjiK3VICZj3wByDGsTG6qCYl3MgUOIauHURcrscHhJ2i8tdF1UZNWIZ48kigMSElsENTSNCwD5NdUR09ErSVU400FhSBsDZX5C4XDeP3vaVMOZZwSfYpKddaq7Y0MeczGFNxy8izTHWG8hwG/9J1Vhek+JLnSi4cu0hGNcHG5W3aDTiZvFc3DYPVvDBUqUWhfI20TDaYo2F5teU6uQkDZp2z9MHIO6NfYBf/K4WPxKEJmk6Ip6YEmiWZwHhkZB8QPt6iS2ESVOQjW9H5LT7eKrDBgXdlPvmxvXa19YML+rX9OexYU5WJ2f3WIcVXZHOKYbj+/gZgywikhBvx/LtSQmzDGmTTrdxNyFeGaSJiY/H6YEx51L7T0kfzRk7wshjqf4O8MiTuR47kOACzIDC2xl/er5lz03WOnKd42qaUFEdhb8v0PvLZb3ELyH2Ytuw6FJfIVpX+Z8O9UPPoryj/i7URtyMVmqxeUNMmSXv8pZNlwBQz77GjdY9BFXvbp/G8fomeXMelrMb1tuUNXfvq/uWiD6CxqI+DXUNAM+KCO6sJQSZd/qOzIM6j7IowQMk2tqmucjf1fGvcnxZc1DsDvSr3S2t0wCYRkGX7E1T+l+ujFiMK/IfnG0n98dcJy4KWIeqKpfNRCzhaHyoCfAPdnV6fCTDLKj70Bm527tJJrUBbwNp4BCTbJq3u7KmSqL4AT6tOhJgvyiCYQ4sjtiQddCln0c3wuj4jLpUszKa6RXKjO3IaauXbLdc0GzGTiw7pOLUCR06QW4W9/DGeutRZWfIa+SL1HMdOHwntaIUiYcn3SIuAvJZtb8G4bSXGbbaF7Fbm0o5xzFnLI7dRhPJP7xyjEVJxmXpl5iBsJKIovUjGbczxqscqdXBVBoe30JegQVnN94ms3KGB76idlw7ESUlsSU/g3a8SVfWQLuS3uKCNWHE9jmNSv752cFCsRrQFbvcZiv7VONYC1aR3zSs0wtE0cEpJEdKXxudZwOjdUh1/mgn/SYvAZQTZBJe+oWzIOsd0A79RvmTA7l3XYAju4uZPmiR5BHMJvdFAKj3vYfJPTZoQsXDhMxEyNzlPo5Zu3fKosQAb+VsqIrDIYlUdyf1JbRolNjCFX04WIE314o2XmhPh8bNLDL93k1X2G2qJACAywmlSb79f6Op+mhb3uSNr88RrGJipjBqgSduyABtovw+N6nkuYKVTBY+YJnK/wpftsH3RrBD0Iq6fqSn1XyK1ukauullWkZnRj2YrOa96d2c5q3LqLmMT6jfz5oERW7l+c2t1E+dpFZnSn2PWGS03Pd5xg/QkkK99rV+dQrMn0Hl6EWFv80qz+wrniTmwf/b77Syg35rqHO1Xioa9D6IMWPmJg1ixHuGp1PshBUG4ZMdbA1P34BPzFQcl16ElFizwnOZ4Bg3bUdZydXYowd2WhOQaAxKgo16voKQqVn/9/FCBvVd8cnIwC3GL1Jmm1iOSHY8+l56ujLuaHSvzIHT9q/WeAE5AFo44btggfGTKAwjhkd4traSPIJxqhJblnKxJDGvyr5ALjzpXyKcDwSWw7LXhXa/nP0yiLxl/zrm9AXQZRQ2eHg7XLFTjM93YMLxUjbcASOc5sXmOCyRSIiAe8z0IFt64bLE697oQsg1FvQ6Nzh2A763dXiXaKWw+iZxWHMetk2b+ZbdJZKuV53E7c6EEt08A5xtXtDPrszPjd0wjiYXikMd5USDmP7j71tokE9lAnDe9dj2bKvOz5wv6xxL1DV21UmyKDj2UqQn80oJjuwCj/FUzdbdOSNUJbqHx/eoLsA5hJc5iz7ZpdA8fMbdd16MhssTkdcAmSYx/MMllDMytEy9BZTm3uLCveytLP2YLjncjErRrCkcjSZi/SlvKY0twOPeTlrRLmNAoRYeIIPDQVoptgGBIn8uzbu56Krq2lKrKnVLqkoya6+EmEilw6ioZjP+KbJ+O+FvOl4L9k6c+vsnVI7ju3X/UrFrrBSP+IM27moRZB7WvCPjE6+5m7RcBo9op3eZl1jLzuVF9eR7/SnfKe2USXC78x8uoTz2235276dDtq/6WDwhC1awjTkFpT4qPja8imM1ZNNKX4LFhV3K5J3bPgx906BC132D/wwTGqYutyPLcfwUEPwjPjsq21/LKhVm5ySt9JHGl7YfgO5BxiD4yU+bmQgUsc2Y0NneL49pSCXuREQFNCm3Wscoz7gb8BHt1QwPBAwMzSghsLFt+vPXoKCnZYQGmIoUXEiMemsTTBuT/SAqn2hNnquxU4fNjq8rj2HjVOicttvc/QcVX99ca3JWFaE2sSpHn5Pw5PB5+yb4IsxE2lT0+mhpep3DUxmTIC7TiZckpsYTJ5Em5c+CoO8OVdltNNksXH1hYG/VC0qcqEyU2e7A3FJ0rghwOf6daPTM34cRq8QoVtonSnaNnhG5cvMFu+qn/5K8hKXR6ultY0GXOncgsQEz147zYdCH6z5b+SPWlKQVdSeGaXwiZry2+CoSzDtf7LWESLlJDGZ2ysKknDfmgRlWBpZHG1Q5qEX5QZDxyZYgks5hGlq347HzVHKW3wuRHzUhaRbgKg9WbAC668d/5+X/S5U2YMi42usz3e6flxazDPRAWm9JNYVJS1mpcvpLDbPyLw5bxK/8iuAYYyQcyWD/IYbyJ8L06eEK339PQ+LA+ybVvtOewk/wpz+KDMStm07o5yctQUS20ZWPEVdaGSdxI8ZH8y+5TLA7bJoKKAirHXlfNdRUQgNXzubiCpIpdoioijHVuTDgYkBTYhGi6yH6c+dSLCM1GgLEOueuTLmHQfdZdmtJsbkcoPg+Z9rNECZxk4Vs2gMc3ZCRmaALO38N6AVSCcWMkd4YrRain/vWtFDQ3RcOMpOQO0uhrzuPeLYdfuL6BYx70kUH22Jtsgr1iFkwJHjVcvzxW2xJq7rL5RRap9Kyefs4m2AacyA9yU3ADzpTfGptjt6WEPrUArNqnfx5NXhehL4MK4rtxKB30Zt4vt/BwK5sAhutbLsuwAP4zCLosO0p/hpSAoKKGRniCQjlasHMvIPwEPJhD1AeW1DjwhouStZIVfoBV3XBLpXO9IbVYf4fZAd3Q8/Tg4z3BMP3kOy+n5/ey2933URn5cmmbIQL75S4yfTGqVCaqD/jnlBJS/DlYf85zWDK/bXIgsx3zz3egqt/YRiQi8zsXyHeEumZwXqg/BoyRNX9N0oUZxUTuiKjSOo0cR6gPE/1kS/Iqd+MvspPBsAZPM8/+nmEKMjYlzutmrKxVl5+sCIOV7Bav/YGH566diZA5cZ4D8LzdFahrMsK04IvpOURVBfxe7VG97sXknL8NPO26E6S11w4qB5fTFSIFhJlCmQVfqSc9y38hIfln7Bq8dIpyInokY8OkJRjJs95XwPGymcEuUVHWzFLw3/sclr7MMUg97Le9uVs2zvqORLUES2pLzk+QwQnumRe4jsxQk4+rrkxD
Variant 4
DifficultyLevel
530
Question
Billie is uploading a file onto her computer.
If 35% of the file has been successfully uploaded, what fraction of the file remains to be uploaded?
Worked Solution
35% = 10035 = 207
∴ Fraction to be uploaded
|
|
|
= 1 − 207 |
|
= 2013 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
name | |
percent | |
fraction | |
correctAnswer | |
Answers