Algebra, NAPX-E4-CA19, NAPX-E3-CA23
U2FsdGVkX199VsK5DHuURFmrKx/A8lbzxC636f04RoTvJ7xtkkmSp9T+V1yGEL+4Yq2Vo64DpH/Rlw14GWvOkwU3SNrNNouztnh3IWD79mxcgRrkPWyLNY0UoQorirA/yN0QgNtPUvUg8J1lMKZJ8ODQMfpx9R95unwotrJOWUB0AN0IcYC+kjxUnpLZW3LUoXhGqWCd2gseb6y0ga/+Ua7k1yN1BiuXl2TbMkoHcB16wxET6BLiokRcl7kBUOBorhq699TpGFo3Nmd3FJOR93vF9+hxtwjo4d6Z7ValHsk6X/7Fuor7QSP1UCLVmjoXYJ+4aaFna/3P5KvLWoS/FHKN4n8lduyDhjoVAfqLE0SXRxu/N5pkNwCCGgZrz4eqtrsMbDvlFH1IhQqAn6rjwfcTdz2meZWCcNACLyhX8LPHsg1lx1KA3oGbGnBkkQQsSfbUwbAmbN/l5EvcgRP+ZULnqxqCt9uZqHB6JMuyWs8pzYkREB+3kq/aDyoZzAz1evw+1W2OvpZ7yadfs1sSO6dmqKKfVgeMpJs9gvelIuc6o+nttmvhETUdUlijyYWRdYAkTKkJki1gBcjJ3VOHIlyrQ6xaG56LnneNEDvkPlbGVh/l1EZTifZ336Wp7WFG75BtFYJYM5iZW6YAnJ3WhkGyoAoAgFvA1lK1Yb5LA5eqZd5kSr4lLR+jmNXXYDB4y0wAsuJQXy73h5NPh0DKn6YgHPVPeb2eN86F/tZCW2O8IRlB3uxWHByp2/lQuKDd0nD1qoNfdQJW0puTavFoc23f6oLWMb0Feql8Vue1C7jNNvCp0Xl1kYNmQKJm/qeIwugZc/0x0NjfYaMFGN+NyRfcgGZpSGSGRyDc03ZMxkg0uIiwPUGmegN4B6U3HSxmDJjwZ+LP4W/CWO4MyiOpU4cTUHEJ9qnpfdnQMjrM0LLRsLFz7BD7xUL2xJbYh5A8S94hHOKwXLlljex2bDIIxbqpudnypVMEvMugvngGjxHbhSIuhNuVrOx3KOqq4QYEh2sJRjuaIF7eD6OljpXiSCrB7H4+UEbngOm7tmCTkT0ndZHdSfrT5xOYOWEdeMlBFaQRjPLRE2wmSk8fFifPmXVyMKTAnbW2wJuhyGalYlIfqun6YiJqTR+6mHbsbzuBNdh0M+5dQafEMTwzELstTWWNw0PUgnQoZ/6Z1dh8QM3HoundDcOwJ/yKuV8Kj1Xqi9HDy2S7jabDcb/gO9nT5Oum+g+wkar4OCkt3oFJmnD5NfnQWD/kpV2lnS/5ghs2SAVUTNER48/nF6rYps+Sxq1BV9OrPJnjmtYXl45LRwfonGZ1gYPmsP2C+EtnaEXulCyXy8VNeLFXThz2Z0duY8fVfwYRB2sv1PvWazbC5Km6xm9oXM44Hb4zVcdbdfv2GMmMxyRHiVODzaI5/cZQ/YPTVpF2vg9RyBT0M+FfGSpXCTvXdYDaRJDX2K+Bd0W4z8tkPELIryjWjOlQfrf8TMiXbG4zUKTvtycli2L+e2EkInD2N8vGMtFsm0zPMa/kvrgg7QCXF5HXjpt+E9mknLXb1ae5x85RtY9Q442ghM8SPAAY2/jLY+SSF5TFAuegbCvjRAQlg7zk+PDLYmmUXlXu1guPb5WdoYSZv6LIaisSyHRzno0lt/zabnUOBl/FI9RwaSYr2WzqGHIZ+Q/bhlOeb9XbQhbhsgNNcc1jRnKX4P02b0k0kD6WafNaTk3dmswgVQK4cNPfw6MB43Pkecd8PGrIWltA5emcO1a3BraYf4+uetXSQovmcQQQ/WItc6GHw9fVF6trol84b2PBtXUoJM51ihT5WoRlKI2kXcmMLu1qAw3VXZAZeAJl/VB9jiJlvBUB+V9S/ebJEgN5cemYCNjnyUNgb5PIijA/RLKCaKF97Ey1kzoyGhmYgHNZZAlMtjCAcLqpkIO5ZHRschxH9SxZ3U2d5TfAxbHmcK/bLkZE0sytgl8VfEUEtzSuXwiKg3J9r4d1SbBbxzkavuuSxYGqDv9mee2E3518jze2HKaqr2sbZiRxeY9I2askew9ZuG+QH8PgAvNFUuvdr27indP5yfM5hVWSTVjr4R+vBQTDpxRcJPT4H+ge0QyU/Za0NhHK3M/Svfzyo48BMiJ92DS644wgLdJ07T9AXu5021RRL83R8L9/Y0Tvw2lN3k6OY18yEjLKPbGVopJB7/0u+Vq789KnJ3IHU/6pUuI/DRMN4gwxN1asE4+w9tCWkL4lCSrGdkjTsfmC/9RXm+u+jj7trzlkk6LrzmncnAjjdRK8v6gOIKVHTpZPKAhI6LWtzohiURuWsPjKLoYFUgOCel0YsarKvdvdtXQiOYBXHLMq39mVkb9zCbq1MT2qCV0u623+DHd8KrWDGDrt2L/TiknMIvjW/1DnkdYfaVfgybDXpmzooiDVzIvz6KIKGawYEZFlmfdCG0zZvngYdYmXXQFR9/Xh6F+5Fl18LWA/lpypCFc9dD2CpHzGYa0vWo8+5p/BRGUVNhd9OPISdac6xlhfD5Ook/I6AQR3AsGV7KlQyTs/lHPS2LQRq3kPmnhT1wRjfOcOQagPRjlhgevXlsAws3G5q6vx+2M6yW0ZR1lKzDOWNNOdatdI+47jV4VTeWjn6QmhNZpEevVxhP0bt04kK4Zv7Zue+fuL57KaUA6gfvr5nvu0lPpJlUvCcEIMxz7jiVc20+tw3VxbrudznM3jTG/WCF5auuQB0EHanhWfeyTzA0W9/SX5AQtDxDXhTn+u7v/hiww5tTS/dI/LAuRBVIEAr7o0N2Xz9CW7y0nGZsJ7jYNVd/AzpotWM+BO8a4zhI/H3VWutsZnqq3jgd6YTNKpfq7ZbnTdlBfqb5pQfUm7tu3Z5mBuabRdczWNPnUFaJ4F+nksprXmJRbst++0M2ihp4Jk97F1N2qxmxa2QT/uyC6DGCB4OPefCxLpTookzqt8Q4YkVvcvSO5ZPNM8huqXrdm75wf5n6rSFSLIA1hvdkKLMDEdLJZpAAi0h0GuYE7KBoUmacMjL2xxte9F+Sz1kQ72NR0CmHKh+ahx28wcq4ivmKQ7dgbLAWJ0EGSNrtpj807EamcKxiGuUxHhRPXdVx4lZo1QWrU5RWHfAf10l74ceOPNsCW7P6dU2eLkP2UiI0i0nO528C3C/ZONQLBKUsgllJXdxdcHDxPx/+xOrNxUEaeAWczoy/Fyz5qAJaPunMjlaQIAm6k81wp4WbnXt8rRyXZeB+H58bsPHnh2Zj4M/rN1xjlt9mObubk2w47kA5Dfb0Cql4aho3hc2kw4HxNEA1tsnEH9HG7gEZwwf+k5a8+KyPr9BQH9SR3i3MYpPUT/fOqUXI+bJ90EtkhzyZqVnSHFsaLvfL/+n3Ro/wc8XFOQExaA0mtr2Kged9ORKgdgm1v+5kgPCGz7U9x/d7e3NEbv/1CBA1aJAz3+rm9suQi8WDh8+Sw4rkYTwmIe3Lav09Jso4bD4I/TYnRMFO6dtykp2K8etp0zfoqQwOnt+N9ChLmoYe4LWtgDoRAUI0bi9xqduIwE0R8T08xB85SG3rVNtCprpyneM4MRSBXUsLX8TJfQzRRbJI0Fe/4YCjaZbi20fAMu9aKNLeAuBux3Bly4ditQFMoCfHgnCsHU14Gk+Il4H7LEMNvwiAn5CSkVZSekEdJppMfknyCfpQKjaFJ1dE0TvkkcOR0V6SkB5K/03rv1agO4LCCafheTHL9w+xeWsKX40cnoMi6o/733XiZ7CgKSoIQd4r2KBWvSgQQSzPpJpRaVd9py6EMZBbBFsC8w1ZZuOwHkThiCfvO56kHtcYPNYQa2RGFZwjf+XyVnf8j0eHIzIljC73ooQ3yjqP0k1Yo1VF/F16NE56leYmWWY6sIbzqNHU6LW+i710/dDDum56tkjrHMSq3fWeftjANrjPeF0HLV1tKeWaHGOmBGS+KJfZGZCsUhuImb0pAmCokmo+eOEFb0jusKtp3DQzq/PA2EgtbMbaRWE69h8/WzBKDuyd9TiJiOuv+zkBa0VONKPxt93+qOyf6vU795BdXoBwcYOybtmDFX6/7WduN7bnRkvyc5o3fbcVRxVCQsMmRqp8vg01aOU/x4ZUGvUr5m9y4nq0zHNta15CKW7n5wBKtA8wnY5XSDGh+s/sj/8nnolTJ+7YrxXmFzGrKfJ1cGxef4xF5CIgXrQUFFokOWynxXlMl8BUIa7PLM3LirrsQjAq41zGjcPsBUf5CrmXRy/owhOShmKYCamulVRZGTIAMQ5tEWaCeAlIdiD2zzbwYZ3oxxYwrpdNY1f64fyzOfkhAJBslu116Q7YmUIxzc77MXq6eh/INX82hBlirtslszsfNcalWWMbIozsQ2npkTjQYvq4BQwDevDVfFOPDVZu5Lnvwbq74Ckj+pbZDrXVomzTAU0VuAgJqA5uIkTloP1V2qhyuI0MhfIODTU1+tbiwo8AtMvz81Fx/xebqdYkTYBkNY7V6/zX03tgVKDJQIS/nDFDwPKj1KNpaba/Z3SSXf7Uv55TWHQv3EFL+DSoZBP3a+bjOQnsyhUgYt2mXXDd5UssaRyiqLaPTghvEiOqTOiXFae3Rd4w6SO3iZK5Oo+1ZOA4nizHUyxTDEc+XwMybbXRsWITjf2mGEVSsNfNlasd2EqFHzgf7/cbU4W4q1rczEjpjQj1qIiccDEcMiyEsQ+t8PNcXwOeDzSFS4J90+me0D+LmILl477RAc2Z7naEggV7Jbgz5YN+I1mxdB3yNWAzvpfV3Hnr8+0+8DuS7EiEHhqMgXD8JGVH7BroJz4B83WuIiJ0VCwZSdQNHuV3xZKAnlmcCcqbUu8GRitSMm9DL8L0NO6Yt82eYjReElI3Qmmd1Dr4I0PwWVetQi1L+LS0/xq7Dtnn7WGZgZ3Tb9GdMUy9ma7HBawQQhpvBLz5RoBTEtwQ7gBQLiqS3Jsw80kD+Rg4+TsNy282mn1wm3RhQMHVXFORKuW+nnZYj2qROufxg8R/8yUi5cfvRS0DjhLxlsrbca1iOhf+K60WukhARJrQaJctfo4sJoGk81N79vv9LXdY4s8WMUoiuYRsPggtOBYKs5YO1bKZyXCArky2ADBLrSchzbtLpujHZrH52NXT1SPRNmno6DycQA4I38HV1qXtmevFDTYnXaSvs9DNm+z6O+F/JiiAp/0vAwqvqw6UncsrAOGqAbMyHvC6n7qKiTd0CcTb9jf3LNC9Q=
Variant 0
DifficultyLevel
624
Question
Clinton designs a line of tiles that repeats 6 different tiles in the same order, as shown below.
Each tile costs $7.50 and Clinton uses $240 worth of tiles.
Which of these is the last tile in his line of tiles?
Worked Solution
|
|
Total number of tiles used |
= 7.50240 |
|
= 32 |
∴ Five full patterns of 6 tiles + 2 (i.e. the last tile is the second in the pattern)
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Clinton designs a line of tiles that repeats 6 different tiles in the same order, as shown below.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2018/05/NAPX-E4-CA19.svg 650 indent vpad
Each tile costs $7.50 and Clinton uses $240 worth of tiles.
Which of these is the last tile in his line of tiles? |
workedSolution |
| | |
| ------------: | ---------- |
| Total number of tiles used | = $\dfrac{240}{7.50}$ |
| |= 32 |
∴ Five full patterns of 6 tiles + 2 (i.e. the last tile is the second in the pattern)
{{{correctAnswer}}} |
correctAnswer | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2018/05/NAPX-E4-CA19b.svg 65 indent vpad |
Answers
U2FsdGVkX19wlfhprGe582nb1GOe2Ecxh8jUaaY2MjYNI4KpvlJaRiExmtFj/HaQQ4q39MtvTbKCk+RzBgumWQHSiJHUyAMJUNHN1mCahfmfXLC1ACN2opO2iC829wSdBDiVUFlG+u715q1X9ZLvIRm4kXnGa0HCGrTTMOuLiZQUJj9ghfhbTzUMgSW0eLka//q9+EnpgOCMoVzQ33yA2m0t1nwavk7gFAEle+5Y9v4K2bweJC420ENyFL7SPQAXwBz94MUHENcLLNHVfk13a1c27IprVe7hB47JccRnLjfPvZDhkWuYBXtpdwmpu7N0TarTISNjFHZbuFMVd5eJrRjlYMhUXPh36dx+p5n6QVvptRzdXDaYfgoIj4mAb6TbsUZbrloF5CZ5/rEaqDg7dGjZKjXYQZ/shyWD25Mmu8F5nhr0ScYfBZp21cQgh6JIzMgjOWzlNh5FuZykm5oSVfYtO+FcMFq1GUufwdHqfTcy6/Hewc/Vzn2Og8QdCwcxSRQzyMg3CDCc86KT0AdpGMwsok3geO1JnPSvaMFbvGIUnlUxQrua8r//APSG09O8MipLym3UQ/28ENy1hiQfGKsIQu1W5KYX9W+MYQdYcrf1C02gNrQrLvwWyWuu7yZqoJBtDIcDEjX5SHqBqiN1CCeHWH1nWer+0xYXXXOpqX6Dmtllr43sD4Rqje7b0hJoWlVHswSjiHyio+3LXaWNLynHLqLUKce6nCRQ1s3lbfBre4wROxVWy1hOFdEUZDYh9m8lrsrD3o0qLExn1Wax5/wAjYREX9BAmZ67NgZ68zzVBO5xItum/aTKDW1uEn0vdd0a7A96adWUcNPO5XeriXaUZIHZiJRSOse4HrgF93r5rJ1gGeD1Ti74felg0pKCnUM3sqF2L3BNzDmudk/BGqLPkH87t3ru34ziFeLlHPmnA64zt//b/QoXSkSrVmgWKYRYj9+3/HbF19P08FK0FE2NVNOYrueeIxfsCQmdIt3soDU65C87iz/WnXFK4KIGR2WMXQZ3Qq22ae46tXKevWvIn2tZIdZRMTCIdLN6nVyBevt6ANjU+lyBoauhXmPHPfJ34FXRfcdC3+COx3/SDjZo4Ayg2d8gYt4T8iat4qFEAYWX7JaPvxBOGAr9H9SnPp9eVjopqJOGlk3WKKfNgdMftB5eRyUDX2NOLjB1r9dTUD7LZB6Cux3cI7qL3YoGXo0xKUlHAHIIxNh14E37f0F6kqx4kNYc+QxxtGQ98dsU3Tp163gHKev6P2+M5kssl/52Q97aVi7/xgeW/utUKmpodnuKWG5d+XVJW0CuTeTJ1RJmC/fwtuk+ryaPWOu7WZXg36ZkFj9sZbaGMYmsk+h/N0hwFS77HrF5a45gbVn+fqSmIME8sxbFsD28YVLcS0GZBkFZA8yxkMW2mz7eNDOmaI6sZuaSNMEAq86qRU27N8D6XxM301lGhEB1DVR91knbGbzhlDWLYd87EEkME5BIeVB4NUc4CXxSUb5N6fD7n53fZHwPSCCheY2Od76uhqpjqVYALDDx58Prl5ojuwaaVETb03auh9ONsIaRiw8H8F4qvcQa5f46B+Ke9tz49ySpHkWkZt4VFW20CW6CNJhtJySOs/GjcaAqR+bLDuSbqAw4V7iG3bHa26eOZaXrSFyAv1IDjrT9zlF+9VwKdcShB2txYgQ2AmvALqPowG6bBRbOjFIA9IQ2zUto0jQG5/PYAnkcYUdDwoUg7jkiwv0+KKmp89bWyl/c9Tu0K31RvhcO+/yQqJKtnXd0GxKULiI0XkZWRGf+Yn8sltQI63UXjvblP32F5BDSd940Reg/ksSfoECgDVf208c1DLaOvtjW44mYo0XhuyekUY7ObojVFhjiJ7Rvdu03+F8LPFTgcMClU+7/PzaEILDXLXaNKPJjCoPC+z6xHA+yNf0zQOaRz2JJwJw6t9yX3WOeX6taipZte6Mr8O14fysWSJwku78pdiup9JO111Hrh2XZEVNq5dt7WszcSVOCse3d6R3ILAsHDVPBehGxBMBHqa98sK3R/BKYGq7M4/rrOdPUYPBK21hCz9ZnDBVMu6eJOrATIv7GTReYxMlGlEBrfuNY5J3QabBUsRSweDgnoIeWHESZdUISfP0/D5QAtNHvQtzhQjfA6IyE69NFdb7wNaWn/wZ8um35l6FFpHNKu8JHky2yEpZdrBwLlM3kf6PuZlds98QCEiHxp2BJ+SPreQAIa9lxC00+jRKVs8BqNIPHLAgsRj2f6UMrjVDXzLCp/k14LIU1CWHsqxYwl9IZFHFJqWuJIYqixXfOM9wuz/4i4ETGBC5zAJOhutQ6BIUfI+1BmjV0GkgCxgCvCwOoOhDsSJ/x5Akq2CrLy24k3ovmIFE3mIfelf/kqsceqIJ61djsoQgtxT0n1Mh7MQYp/2Br1yLcI5brPiOIeR4eRTCJhxoWFXh7pw3BwBdNR9cSCjbo6qUywdHBWY+/k9iBK3oV6XX58rNLJPeULgz/jJJsKZH6kvfYaTEYv2GCkWmU4UY6AZyXUBKjeWfCmiAUAGxy0geVaGFlNmKkgiqaiczZhaluCZ/rpwdYXwttBwl6wcgKicw/uqBVYtZ7Oqe6YClgHIhlj3JBaNK4qPnbdhFROv1FndyTDl1HNnG4p2Gk1C1uaizveiY2zU7PDsBsIXh9igzOWeAkZ0YFC2BJuis4EqiupZuPp8U4McJPUUY/cxoHhZt5fOr+hlfbs8Idap0IiBwp51hIvKo61yDWtwN1XQnZkhrjEVMEO31VqBaosk4USxvB2ZjtaDaMbBzurSbX7AElRLKL3/DUts+vBn9jf8LlnLTfOCJaB1riJ/EfzXFg6SHoggqaQt8XCqOyjZ1En7EaRG7VRGwtuyCu9z1HWYsZ6VK+L0ERRdAnAMWbIbbH2HyoJ/XWsMy373m3T+t/c9jy7wKT3NzrxFG8W5RPwd6qNW3X53OwEVdTHpQ6xewM7bDmYkEmYF7O64BajVXFXTu8zHKOXD75J0eNtPnaqYPhNvBSJ6O5oauWm9TFx262spnINZZIOe/iWJ+yqhcz8D0fv7gb5C9k9rdBopdzz9xdGyepPvPa3ZwAoV5JLw/kuT8rAC1eFrg2jkjTtFhpJ+Tu5pDLRX+BLYXu35a4TGgHoJF3f4azujunbki7fCWl5/AvqeuiszncOa7tI+atwJTkhFN0+qAH/9TZY22xUvogerxDWMBfGD1NsaoIjl4XJVnhhxyit3gc29i8grn3yGRYacl0Hy4BZTKx3ee4xpNJ7iu6fuRtiaTlPTULpf5iOve0wYcCWhrVg4Uq6MD6CCWkZ5YckY036DtiCByPc6otYpSMd/OL9x9sgHO/28l/mawRLvD5L63rQdqWkzP8h5W2doFcHvNX4e9j5f9K+LkL0aMqUv3TeW4fiKim72Z5YkElZCXB40nO7N7refQvlL+01O9tA6KG8h+gpAtFHQunzYajpZGVggKbZjCSUA3LdCwPvPEjjHvOdVdflUPMiTR2HKnpPF05j5RVpuzJBediw0kZfHqZ/rHuJROuH+2OkQCqXTaU9047HwuebzHZ3AJBPXjY71v3QPUqe7SaOa9K5qwgTOAkTfOF4MxCrWz9H+cZALEaUh+Yq/ptMZh9jFKs2+QlMhUct5y7wU8XRAwSUe47vc9jeYBjyAJAELd0TUO3k1UKi8aR0bnE6hMh9GybuCIiMvvKc2FYh+Lu7BtxDvsI4WnVkNHiW086oQBU52MaizFnQd2l4xm/KGj6mKXuLy4SSsGXTVDMTvwtd1CrMBmRsozAx2Y7whIPanOjIQHdMTcpl6v3u6qWDlOBK4SBNGv7RBWveH4r9EH0ZV7UkbcLQKGUUNimse+h+a2CvWKKSvQJIDmJSTN3lb7zaRr22n6NMwZZLYojpwGqcVmDGdPO6eBkuJq2Wx4QXA9DZRQPYqrgM1gPYBZGBeaGkX8Oomzsq8piQjb8mft1iXDDoUA4btwJ9d7rU7EBoPoEG0oEMGPPeJayGtww6kE8rzObsIZDARyO1x0CNd3YnM8mHph/mvhubv1kLXHxMPrUp1uQthGZnCRsY0h1TZntFKWEgFygq8Qjfw48CbSWyErUT8XgWaLD47xrzR0Fu6cN9kFC2Ex1OyjWk0tktPMxg6G2zRaMfhbFf0/uqqgZFwcPJNMLPOuG/kiMG6RCWUUaQYHgc+g0DA21DuLA2RVcrX2Pv92VxFR1moNBOTerIwqwD1kh2IJOsay5r5b+WAr9RCSQLwBDJPCTPtqSdJ+4lm3ffp9nVmgspqsRL83V8QhEpfGapAK/szTXn40rt3whp/60inykV38wCG0JpJ20GVkX66eMYKDxVbKkOQdnwnEVjhZHn5b0Q3x+Glng3ZqNnVCqcQxN6wKM047HDEF5wxAwnF0+4/VZuntccu+RDTEeje2IRY9jm30U4vxX5869wTZCS2lA5vbYkK8h4/VX51fyTlrKlkUx5XV1RAt0ZPldpQqQ01Tqfy09yClw6/SkZB+AQZCZ8tFsTsop07OACIfurn7nlxHgu7Jm4AcwVtcNGQ50rydZTxlHwbvjwUhInzVRgdy7hn0wQeYYCtXzoEiePklZDFrjPgTQlzWdZfTh+3tEkoRT2pBEctdZBX7s7BJuPhxNLFp+JbVaZs/dQasgXmv8R/9ab9XWM2Y0ub4L2wFs2ZFBOysuNBdnP86qRZJVxcNkBLGr5peoT/AJAfVGfT4MbFiplccZunmUXT5DfK1JyMWBVyxsrPwBNnjqo9109UmD/bJplnfJAjv+bfG6c04+4/d41B+ZuU1GR26Tl8O9zxiCaP0qGt6Nod6k1pQmmQMsP3IqdON5AEKDEIAjyQkAJkC/YN4YSEzpfzzvM/4Leh7F5OEkDZz915xu9GwWmZUjsNCknBs+BZVMpSme8aT0wKcY3GWd1ouy7ZiJjRwrcfCZXVulKpB8OnRcZhum6tUmGyaQ7CafzfzP4Uu9dTHnp4i0Fm2Lj3js+U/DaMPkL1AJivuf3b8WrJ4y+mqQyKYXcNF7wg3EvGrDiHKpoIIbMaLxWGaLZFO+Dm1cocM/CPBW86W/EQTp5lDlCU06LwMLeHZetnhpbMp0fGiCtT523ZkcYj/3mUuYDH+P1x294GME/gK6uOwTjQqk9jlZ458Qv9RP77AeIZJ6f3kiAkUPw4bALi/z3uJ+PVJNsoKVBUYJQjkAxtu+k15uj0C8YMhykdgfZiWxpLomPj54Okzgx7TgI2Cs4PGm5Q==
Variant 1
DifficultyLevel
629
Question
Mr Earp designs a line of tiles that repeats 6 different tiles in the same order, as shown below.
Each tile costs $13.70 and Mr Earp uses $548 worth of tiles.
Which of these is the last tile in his line of tiles?
Worked Solution
|
|
Total number of tiles used |
= 13.70548 |
|
= 40 |
∴ Six full patterns of 6 tiles + 4 (i.e. the last tile is the
4th in the pattern)
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Mr Earp designs a line of tiles that repeats 6 different tiles in the same order, as shown below.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2018/05/NAPX-E4-CA19.svg 650 indent vpad
Each tile costs $13.70 and Mr Earp uses $548 worth of tiles.
Which of these is the last tile in his line of tiles? |
workedSolution |
| | |
| ------------: | ---------- |
| Total number of tiles used | = $\dfrac{548}{13.70}$ |
| |= 40 |
∴ Six full patterns of 6 tiles + 4 (i.e. the last tile is the
4th in the pattern)
{{{correctAnswer}}} |
correctAnswer | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2018/05/NAPX-E4-CA19d.svg 65 indent vpad |
Answers
U2FsdGVkX1+W3IwmGSR+aALCZchKxdrDNO8FOdc+AzJ6b2UmllvFgJ33Qd8gCdG6kNfGs3a0t46N6PY4IzROIVh503AaxYn83qgt5tIWIiuvoRMzWvy5ksBzeHHVIkXhXXlZNfpOkW0FR8PQt4VblAK5UelLyXDR0j2jAnmvgNBERl1dmJwmTagu0sd8SckuBpTciL30XtjHCXVA3udfR6Uvu3omIWAut7gZ9+9hUexkrK/rd//9xSaounnxQSl2sZONNIZvzyO4lYW56eY+NZ2QUy8Dr/9aGRgM1LMIF8ENKQbVorH2+qkrM0JQOUGAWYtBlXNIxomvOIQhkZdo7h4tUYaz9RMyDbB1bdBW0W3xyPGTZtIu9dNXgt8PS55G2y8EbHOLO5MnZhgrlBU4tr2j6JYN6En3lmQICCAJqdQRT/haefn+GUKMRyHmzO6QLIfC7qpYMRa+BdG//+tCiEQ/WvBaBD+f5ljIeFzjOMNDDqs9H7Se+LEN8NHNVceiiNpNkEcjhHDHYxNb7AOkibH7PB1Ciqx6TuDiyRt7O69KHLgIYy0q1Dswf4hU8n/5dDinxAr7DnVGGk0+qPddjAFJF6PjvqPJnVEpGNDOxfEpAyLkB4hCp4KCx6XIWBK/msDZGG0BVaBydMefNoT0oAepqadTQI6VBYl2CNBha9CFqM/SeNYvGxS4/CT8q7PTXDq4hbDQChZ3sktODr677bpjsAcSHaBLY+oLHe78lfJRIHEBKwpkSZSW7uDsW/MxV9pNr5ctI89zvNeqzOnOp6paWIEcHH9upJsPIESEiTa95R/nzkIqPaEIi84xR7t+3qX73s95tZRCJ7xkKBcv/Qi9YYSSVaa98cZuWyY5RHWM+pT02HXSHWy6He/x7TvcUtCgjLf484KO6Gtvd3X+QpmyTrpbIXD1GzZmqAdIG/gbS+HlmivCAG+9Fn133UCiYBFzmMJpCP+udCH/9MZBihhia8DZ8sNBs4IEV/B8SmUYSMJN1VDPxlRYoKVRFCSl2i8OoF6Hbve83JHqgw0dvf82WJnMHtl7I1m5DfFwMtKss66amKPsVKt53EZ+QEWvaWVJajPnMPK5LLvLbc4i/dnsCjmyZ8pfh8DsQM4leewiJT8zwo/QhalphAt1OjTXws4eGzc6Ca2hwnERfLo/G6d9Z6CcIZrlUn2wgcCERDiKOr+QZYD9Aj9651jAXWW+cH30B6y34q63l3wJ/Kg/qFc0kSfakWIFt8v2oWkZ8Nwa59Z9M5SnYq2T/Yedjh9TeNcTu/lwtwFmH3P4BkUyEUUTKg2msyYVTXSPokSbg5MTip6EIC5PflFIShtbEszffxrBsS5o9kIQk2geX/AcduBCs/kbYo9SUfWEoapMBALuAGiFo2qm+y7xYzfLnGlAe9tStyivMpD1vcIitVgcAFCVuNzKrfctx4Ux18rCnAIozMZj60jadWNQbyUK81Qjj/TQw1OVFjSId/Bclyy/nBlP+9xI2lsLIQY+fQWnnm5qQ3AuWPsaSlupIXjnuDVaWNSY/rrDsDQkSNGPadtgQhr5zgQWEHgfCRzAiq5oDUdin6LpSy5gxWRH2dwt6nTEhWmF7rv6xuZFuXF/nU7+R8LpySEE+FiFSAjZ4QwSSn+HCWXMgPqyN1KnCEsWtMafEd6mSQQF+crkHrs7u7F+BwozTKphA3qcTGQjEcwjI8hsGdn5kx6qt5aYSbI0IO7s3DeJ3VoJml7juH073mbUhdg9KFP7ZWSPibmSo+VWjPcooPRuCmOYJWnjnwHx2C2vQH1yAXpgniXjNf6G0GU9zn06mZ43GDST3gVh/MpGE0Y78dq1onJAa9kRIBYdlTYEPW0aDwZhvYIkLSNvETiqNlno69sdbTiIqz19L45p64QvIK964PxODRO8nHFHbpztYEwRa5R8Qq0NSIMA27CG+6jA2ViK3wA86bdDiGR2VN/c/MKGQkCQ6hRH7Qk2oS9d8nOWHgxsOQFY6Q2i8D+MeYUcEBJaEUZ5qYDLsnPJqOzIhTbbBV+R2v1jDiVWxAcEV35Kqu+E6ZYP3ACGivkWX4qhrjGUqc+fqb2EKoXS4xB0EpMpKDyLFzcQsXYV9n7h9xLS5pdG0mBddMv3Oz0MJVyTsScRR9wakgIHeLvC/0Y+ML/s+y+1+xgfTAZyeWtV7uy61sIAMudEfI62gDYjTtTiDp+i/HQ2LbFXZNHBJ/vQKpTpaxTSnaXZEFbDzyKGxg5zLQeAVQaSk3kGm1+/QfKGQ8Qyk7LM+uCU0Oh1/793p8LM4WB+2ZegT/CbjRENmVOzk26aP+XMUvJGGR3UTXB+kpNZ+ZzMB1Iy0CJFqkYmzsFISN/evtkETB7Bcatzpp2PeQbwhD/mRaORLw3xXa/G6ngRNn85qyZwAQBXGXYgGxyrXm5d2wmDVXBdhWm3c4jAJ1dK4wHlkDo/Urq5mKKj2rxpks/NtVu0/Z6cFs+33IQWy5K/SAw6DC/GI5ozLHsHO7UGlpkO+PwVjZj7EEYgdFeBolMtgJFkYJ/4AGoOaz2GKumHZpxcR2G5CbRFI4CEgBIodSzcvbiNQLvTj7az6OmbT8HOgAinsP+xHr4CW032R7o/w22bJDJHhgqzs/+XYPMB7vivgKN6gNOKovAToqwpkODVpQBO9sHhZSY+HvnCjpo3NGKWR/3KjgbrhZZdKb9EVfzw1/WzDxlB0jA8etD5WBpVtStOknN3LfPq+LRSE12KRbZjdufOvT+JzG9S3tbt3Og3vrbhpr6DvjYMB/rvplLB8r1hkk/0kYpQMx/Ay3qfRNUFfx85WkIaD8+b7iLG7lUeziTmiW2TQdPRD0nADPS77MQeBNppbUVjqOfejVNmPoUqMYQQH6niwkA1WI8U66InW4URg/nWuKh40iZmxOFhu1Phb4OhYlXmwYrH3fLF/58rqLJ/WtQgX7PmXgrFUkoDw2t/Qvo7kWzqXPp6C42Ntc5+0YszhC6uVDCKEoHCLAJuewDU9Zd20kaA7MT8bFw8lGWYru5JOf68a3qsyuiic1tE+91BnKBE89KvOYZA7OHj0B6gwqJvQJIrni0CIi+TbHr9CTiaQ4zS6hrDwtI0ijd6kg1qZA8yuWsLc5M7lTNAXl8AJkQrjrnzQAx0mtKjHsGjXZMMbLDWgmacrj0qkBKAB480PzlA9eNnuyaR7Bsb21sxyYJc7lso/L6tC5nHfqiGBLODMhzZHYFlDTn3e+cSot23VR4F6qYNj3j2Oqvdebl0GisggMzxY16dS03UDPd7QkR2t5uZnEBT3U94A4rXmpV99156roTfSxdi4LZotBkuaetbw5gsEwYkUyxWyf1KiG/GA5f9FQ+eON+G/9hOpWVZslCrkDuD+sgKuLw+64QzrlewHsiWmqmon6yrmWKEuUmIfMGs55XWoqdLM1Z3eIoUmYfQETBPGnvztK6foW0TtFNyDqaBWyURNTmpdhfdmqxzjk8vGIue0AFLVoYOMy+xRUMgHeCHYa9bihfrAkgaAFOMoKX/XU/hxGzOoL8XkgHWP8vw7cI1r1Ic0gt3LUr/YrZE5kFvmNkf8rfMxEPGXR32uHdGh5ldQNHVezO8rfNnE4FR17Xp9Vt2JzoW60a9uV4yTTXu2wKIt8W+EvHGa2CedyHIjb0ZzBbxcr9aSc1gsWoeCon0JzieO4QXK3YIECMxxlCix4XcvPWsVwbtWJ/6luW7PsLT83fSNIlhON6ObtPEY02PYsc2lGBiieFxA8TaQM8FMWiuxli/0bihnwQGIaHsy1b9RDtLqljWXWaNaJ/tVrn1/AFeuRCpoDrQe0OOWchmNjJdh0i5KOz+ArHKQY3h3stT9xhO+bX5qCJsk9GOvKzkD/rMkToPtppNvLlIU+CfdYYPor3cre05XPY6LYUgikYbqqDcHP+y0f+g4kuVbPNjmtb4zhjVMKZQDMndT7V21Fb5mK3D8FrYLJ1leSqVvSX0eEtkLc8KlIQrgt3jqQvangB1SqqVkzLxjh0BiBYblbOIowEOz6xeMDgqJ6Xm7ijg7XkygEU6ArjJmFsj+cduy4jeuwytQN7F96JOKuVff3AlGCBFx/be3tO0M7Ql2ivuaORWkFLJ+m7ED2evNRjP+H/h2itT7bZXqBVJHBF3Tt696Z4a6IJWr2PiCdFfVx2t27sN6ohfzcFVBI9fkS2Rxk2repXQ+Go7oAuJPMjZgdV2QBY4YdLoeF2t9qvU30i/C6jjEG+j6qYeM5y757V/8jfEYLgh69fFZ7hT4ug/FKYPJF/r5s0kRopUFevqqwrWmipEvmDTLpERT3hRR9QLXL30G+mzw7HqU/JI7kX34QSkZua4innlvBN/06WLQE0WQHGlSeKlfPtKaecorOPGVAQ27lvaaCm5iH2WxHqmxC6p8BtlSL+0/AZ0kLWPYBfF3BLzvfc7P5PEYNlJsRHJE+jXgy037arvJT+AsqAHssMfdYo5RhxYqRFns4tp6p+7V+oVB38owzTyZHYnw5u67jzFZhP/3koDEXjqyA7pC/TaKq3k8YvUV6GfqyBUVohenWXGmGBnocqOpvW4SVzWH1TbUSqrhf6xhZ6yojDhKqPzbGGjIHKiSdrxYu2t000KIQwC7bvY1lPxGpDpWBUF2bAMSKEikwrZP61r6KfNrKQRnS61hBZKKG8j6XS/p9VvLuI6F5D55xoyO7ok1h7f4/kG4+btHa8xtlp70d5SV3YF5TQjzBIbLSmlEWKXGPbAxQUjRQ+KdcQTAxN6ReTWQfkOZblbs3gsg07/zAtnG65kxVjDXqfqiNNapouJKtsDqOknsFVodC8gGrp4+wWeu917TZdTxMRfp9jkCLBxhD0+JsoPKwKW4MvXUanj860oB57cr2HzEZnVcX0K3S36atilSgy3gcDgq3Md7oWh+S2mkUPrDPInF9UaR0SSh1M3uaxgwMhhcwfHKehD+2wAWGcpmWoOFIS7BcgPkW5oPi9Uh0y4X0D6UbQTTTtWZPBXoRNc4HYFww39m/uaYWemAJ7Wo4jsINNzJv87ZMquFWJ1SaQ57eCvy4weJQEg3VAWobh5zPbCj5CRJpK0tkw9nHB6j669vZ+yO1OJXYsbCG3aFxg8yhhaCdqKSaXabEP5RdVDbT8k8PVZC5QfDXNcWZMx9jPBJhjsRwnD306nAynjsWe1202l8YW7d7idP/sUhI+BrAs9yC0ld88phgIBfTgGubeU8yNKDRIfLt81TVYvFity3GQpoaq5cODnxIworMuq8JvtjidMuzcSA5kwKcCuy7TEHZ+inBn1HxKEwq865APt558j2pN1PAXNkL810opm+YOPXTm4qPWewBCux7ybhqvPF32ZJN4=
Variant 2
DifficultyLevel
631
Question
Klim decorated his fence with a line of tiles that repeats 6 different tiles in the same order, as shown below.
Each tile costs $9.50 and Klim uses $256.50 worth of tiles.
Which of these is the last tile in his line of tiles?
Worked Solution
|
|
Total number of tiles used |
= 9.50256.50 |
|
= 27 |
∴ Four full patterns of 6 tiles + 3 (i.e. the last tile is the 3rd in the pattern)
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Klim decorated his fence with a line of tiles that repeats 6 different tiles in the same order, as shown below.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2018/05/NAPX-E4-CA19.svg 650 indent vpad
Each tile costs $9.50 and Klim uses $256.50 worth of tiles.
Which of these is the last tile in his line of tiles? |
workedSolution |
| | |
| ------------: | ---------- |
| Total number of tiles used | = $\dfrac{256.50}{9.50}$ |
| |= 27 |
∴ Four full patterns of 6 tiles + 3 (i.e. the last tile is the 3rd in the pattern)
{{{correctAnswer}}} |
correctAnswer | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2018/05/NAPX-E4-CA19c.svg 65 indent vpad |
Answers
U2FsdGVkX18hCXKLZaFuxJo5piwkBPo/QU4cl0n5WR2thrNbL/GgeCcRKcJWgMNaVSi501x5PLTaVA4BoBbJ68U3IX72uQdDb73pztTmj7+NfvUxQtu0fzGzTSs9tr7779R22yBSxoudqwyueviezk/07xeYRgGEGUN0uQ9zpD3BKJJU1tdXl0O2v+wN5hOKBnoViOXLkzQiBCFBrwTkQ3NJrS0ThYzGOqMUx6d9BtfiZd/w4iBiCK/2xrv96S5uEUQSGRI6ZFjiJ2+YsnrzQwr5J6uyl5auAc1/9riA7InUdTNAVC0R43FKq3H20u/T8SuRXyo4hXMZHtTzE40CywfXxvM8k0afJOGJvUPi2dOeMfef0U0cnOUF44F88Y7PNaMnFAyER74pPzioByJlo2VQsqXRmdtw29IINuGTB87y+iVpxrbMDYIqpJpK/2HiA9OaDkycQ0VYDSxarwjAZd/b0uyLaYNyq6XBVsEyILWpVmqYCjve4Lu5l5Ezr4zcnTqd3wliNrkQ/bo24xubQz7MJV0xieOwKOehD6BofVZNVoWKH76EOlPocqx3vXJNR7u1Q8WK9AlsBD9oGK/2i1VSACyst47sv79FaG+msIwtC0EoR41K9635G/49CLNaMwxqxgYNlr01/MXOIsT+XRTc3OKTqwZtpj1OgljKf+mLOcx+NOPjD5AUwDOkN5Zrgk0l2ctt/CIEeZEAFyLmd8oUmvuBvUkMJp+fjXfOmnrZL3jb6IOMpJy4QtqunmjKnkOKWom6PAYoe+zXC6tz9OMm6wQLeHbwBrJHZtUBXIxOpEc6FGdncpfj2dM4AOabJV3Qiy+4yFcoFy5/hZbjIdXwFVfE21RtpOjKLKfQuqu/bTb0CGg+9J8QHeY8zlFPtTUrgEL8WvyBrc2SrGmt53hblhhn3RHMqveYDV+7rJDAAE9wMnXXsfxOX+zqQOFBPUVai9ykG6y/1LHMXH49mFvmZ+XIDcM7uiho93zL1h8HnrPTq40ZRyfGjbh0Foc0ZYNxIC3CJQWgqhdQxPyegti9FbT/QcVR6wBhfzM8mzXPx+BVjAzSainDor5LpEpoQRXAuJFxKluaUETVsYR16fTtGf/pvzQpoVTb2PhBDMKHxMDi9BYx7Ucj0Er1zemSX5ZUqMmq/CCCKoiUSleEWrlmAMHeA+CysB9oIU+ltb7mpngZYAAfbLSYyAGiirDYW73s5YXehcnV2eE+pUMw8NMcj/4aimMHcfnJgBQbPR4tM7GZxSL684EQ26URdt4c+V0weUJHIuCLmj23BBoq4DDSh+K8jnAThE+V4kbPdSAPrIZaZ96KkjwLNyYVzjVvU38XfSbi1JGqVBTIMxQQ37xboIaBNm30btrJSGRUAssYB1DqZQB4lQU9zKaR6SvV0+AYIhk62xhLsPn/BjDtJCfbg0M4qSYUihuhaa3IYHMP461xIwL8Fgtfltu5MN3Lg0xNjACmFF/w4hO8O4p7biCjPCNm9t/TSH0m0OryMzlKA9NB2Rx5/OXNF5YPM3QIv9tYxLURMQ0paw4JaWNCXEPTYdmRVvpq70YP6GYE6OlEhDIDq69g6LaJrsroH8zQNCjacl9N4c/RVX1fAfDl+0PpZZRFNqRRsYQfwGYWUw75yf8aneAvEO74rtqC5pEKFKCtxtWfc/alHufU3g+b4+PtbR6p+6HZDI7NcRbz5eef5Vi1lIEfkVPLULK99jlYdcwsBuCq67K5NHlWjK2hYXDlbCQJ/QDWADrURYnx3j8avZ9rZGqRJov/ZDtkNZHCTiqvw1dFLx8us4xc01CaMhRDYiUjpk50iTeCpG4GUeh1w1GEqcpFuROWa5IdeUgi70rLTKwSjQZ/gIFLXzci3yw6mTLA5mXvnNe0+ieEdZhqni2b2aObJVcUhFmTuemB2lJwhcqf6J8RTK+dr+WEvCjosAYWZd131eszB3wNpasJ01LqLTaTAnOJ+Y0HrT8W0KjNeXhUUY9AKardlTyygrIUOXbKD191FBOFgWL7Mr84TAszaQ4gv4C+5mosrLRzgVyWy9ndUDj+n6V5Ln4Irn3VFB91vzdL6nonFxKtIWiMNG7JdPDN/LSZCTVeXB301+qUtwXLPgAnjkUL9bL7nEcRwlKmJIEmsTw9sEY5Mg6vv77/dLcqDJVsDax/833mHt5UBaUIPjRZMfeEe/H1GwX6BnYMf/bBn5Y02Yr5KVde0y6xLI6K6MnvcxB2Bn0oapqASEu494b5cnTADPj63vDYFeBob9+y1jTaEM3becj31Oo4I7Dr0myYqrfAA37RNzFCHeyuHOIA8KuoQIEpfMbagD5KwSCXU8MZaSIx6ka9SO76A9BsTVExnechS2PnB87Ew8Q+ukpawRuyP83rr6kFfLAa1OZMRjTrALlZnbL8KkDG9VSlb/ZK6oLCVkmA/gTW3dwSqHACGXVqYhFLwk96BR3OBhQc0tdfm751Odw79+Daw0GriXY8g/m+cfdT3/2FJ2735BrNoN/7blzzUv/t//sZUZ0dGlGVj0h2OwIWmv/83sldxrovA//uenZLeFuWHrXRo3JFae7h7A85bNGrkIyr4KCiROofSPDLsrXfKAstIIn70ur/V32HE2aB2KyWMB1X9q1x1ZFZW79r5iM1Ajd3vAOnDkRvRwRNBemaZ8J3W4qp/846McC8FniV9VFIiRqFhWz+1wovLSzTy1Knju8tqLAuphX2juZgA0RdgDut6/R8d/7ye8U4vD1V+5QQOQHvUGoex9DWpzlW52GOk76Gkhrhnz7/i/tBQISUuSWOO5Y9xddqrE4y55HsvyY/666oPk4YPkDrtpXFssdCVqAfC6HfjcT55yCwpU2CDCLEfJCfSXua69U2zTyjjjokuRbRRlqaQT0SinT5GdiS0AvrmLb3Hr+zbKC3uh5HNBbvTAM+wLtIyOXEWUz1VbU7WaWl3+lx1P9WbrgKf4oQk8xuTqpxdnZ2p8NzXZLQddoJ53QJ5qTii7gKI/wD9Gg/yeduUXQqVaIWZhb/peD620WQaxddd4dTQfywy2Jx1UAaxUyOIjzuWWCSfkVtaYvOmL2evnY7BumLdpa6AJHOQcDyYwK5ai0rFfXU2KnuRpxUi0sAWiNg7P9UMfiLUnePyIFLE/ILctT4SPTnZxJJG/JKBZUtdgd3k3wmBn3FUS+yPLrpvjl/cwKqGlmSbUOgrtlshZViak9TBEaUSSN/beKDgxH6WIM8K/P0oW5WCjAXLxWenjb2Vw1uVtaFeulXOv/Ei7vydkiRqdgDKRhuNBWyEBKSG0MMk3SFTJM8b0qTpsKHgi9s3LMpJZzvzFpcM98ZO95HjgkGKs5JEllU/N1H/7nKvyXnhYu16Q3nvVpwfA9XZkhXtWCR/g4ZwdIbGy/eS2HcBR5ZROEnmF3vn0AXbW9PK+56zD4fp0ULxIv8Q/p9C8KczUsJrbiGpwlBUFJs4W00Hv2btc4HPgKWj4A6Pi+nqoxSnJurujFrQZTU++qJAQZVA38CYvdaslS0Ms1E+2l/zT0qWtO6GcrDUUxmOSXjls0c5lTuKISNbS/GRK4r8i7sMS/LLPOmiqmaJMbSEKy3xTMxtSFbwGwXtHV+USiU5kSRWN1DgB9AqZ1VxVtHs8coxuVMcNhM7tzpjnXDhalIgiQ9LtYPE8/RsBdDBxBxv16crSDFvjQvDE9KecC9XIu2827GSXknEP88CKtJQw14Us0gOKVQAChR9X++JZmCkTAepk8SdOks6FO4nw53mL54O0KH6tAA7TGvOGXQMV8GAOCqAbfVIzEiqJDdm5XXVfmwuQCLdQcPHGsfRYlMmfaAAYqoOgIduSAZl9LI+/CzN/37uOn7dml0d0SEY1ESJuT1Br2pGNgxnCpowKcz1mz7qLfO87SPWSHdHYEvBxMfO+YWigkT0B5PpI4vCtTeZup4ZoPZ9zUq2n4z7FCHktzdbiawxxqPuIIAmxP52Un9v633/m+77Co9ya7iemjl5w6s1znKzigrpCCMPValYCyc1UfUY5vIe460BwTw15PgKnw9jYTKViDk/hPC+xF9966bFnS7T+GJ6FbaD1U5bYSflk1I90Nz1bNBZPgn+aMQvDCIM4xu413Trf5ate1EO2JvhTaKy8Jg1rfBqrMJV6+Fqex9FPPYcHB+nStu0W+VmibfSlufUBAbz4pVANTm9D8dc3syWmhVb7IS6gjmj4g2BRlBDb7v8Q1gmmU7mnaAaoNpyDfrxgNfUXU5nHQWLHbneB/W8O/fONYOQ88N4Oubgt6nXPw4vbzUxoeiCImGDhFt6Bp7IK/0SomagaELVQfp95jek3hsMVNGGyuQoJMPf7UrhbZI5ybekEzPdCbJxGR8/+KvBEGkecrPCz4ckKiehJ128mggCndhDEQfDl5ZD3zCr3wCxDOjoLKv/PBWYANzK2Gxb8tkHrDlUX6U+uhDndwr/xwGRR80thGqWu1CXI7PN4gpK4igZwZv6+WYH8HKiEeUshiFhIhehSWVNSrBjWrtQz8XxgHd9tggHcozZMaDjPxahghuCDgQ5pqUBLKu5eZZUYjAXAg4aNddXRnUYWdwPDJtgKC/+88eNoI822nC3VOm1u6RaktwI/yoWUW0cF4NZek2OupxxCbgX+l+rUHxxQQXinVJnXCTLO9VZpyYqnNxn7kwWIG7SCu81C1wTKSA7O9bE5giVU5IaUGbhTxsqxeYkR1t0gAwsvzk5E8/kFDHLlTo/gYLh+LebILaUyftJI1oOmgK3j3r+MQ8Ftvp5TX6zz005G1T3DRbQBfrYFLVPrMZltpgEKkJIbpJQ9GXxU5IBOw/L2mjhVBrmweDzRFA6p18v8RB5huTFjS94YQXyHh9hjGTZLajf22OhJBx6PLNyWNpDhrt0h6U3gWF45eaBBIzjyJx04t09z87D+xmvK02R+ZVtKL4jMs+t0TDAGbwCU8fFBPEHtlQH5mCMzRoyglI+BUv9aBxmX0K6K/CUHSXSZc1vF4AjHYqESxxjaDlD4XOsDeVQrYIVigI9Eo01xApQmW99G/Wo6WdCrw2HhQxil0ym+ox8sFO38NN0L2lcHzhLYzOtnMp3X2jSURWXBq6cGtp6rxEQJYi/udLSQwrUMCDftFaIktLRf64iPISEN9ZlR//28cSTistQp/hQRi7QoRmbe2i/Bqt/Bp+43gfTUKReTED2tfgXV34BmXDE89tPljsCKe/HtX0Qm2urpCRFLwFPpkHK1/6J8JOrbzNE6GAqBb9kl7LWyyXCENSl7XXBxtilPOCO4G12v4NxthPgfCl0yCjQUI6yPJX1Nb151mX5KNqeLhbLp0IbepFmEjSiC5aTIpymv/0vUYv9EQkKizSbkm73J6IO08RQD+zIwpsu9RmW56PqH+KZmkVKPzZlf9Vu4rXpMsViHsLZA3mB+zYpCQfDNRm1HWwF1zcLuPVROl4WJ+uq3Ionzx0cDjQYdQgI4PU/vBAAZft3a8krfQWabzfpLUvd2brQqLFRFwczJK3TTa+DyXGiH7cs7gdJYOwAknuIdI0eMmX/PFHD73LQf7TbfQYpf8QkQKP9fzvmfcHUGykZCjTwRlVj2T3EBd1fmMy9XpEmK8w734pM63VAlWv6J7ey8721isfOGFyHkNlQY2/1z3pk/vwERu5gouQ2+5DBlo+Ws658Faz0AzushVf43MUcYJXyRzIgQ75DTUXSWrTE0uDxxmqCqP9hVyHJ6NmHUJoQTRj8Fwy07TLdK2NzjzhJzx9OUj0Cnf2b64zX8Xn3m4A+AE+tLnuFVEz4jSP5bEbpFJcrnb1Ec5A/+l2zLIXMBnZQCkLiZep5lJ4nG9HWIr2QYqCAJPIDP9eK/tCCYYMKECFS7mGxv62g22BzE4nc8YttfCI5SElaza/Iy0AD/1++ZKe/L44ioYups894GdMqCC7LublfA4TwEABc4KmTsCjTZKP7qx2wl+73fa9b5QvJuW7evLAKEuBTAieRj9pSyqn+6h92oa7eMQKqPP9+2oVUunSbJj4l7TMLLS6gJs7erpfpIH+2iB6fu7y4pMgRA+EGLAtlYevV+gVxXik8e4ytg1gpXK3BVBsmAEnEdvkFNVR1qGl7ku/y+QaHi6JFYREIWci7ffsCB1iRQI9d7j0G+s2/yrmPTYY781bmWmkIWHSFgwqaXsNaj0FrktxvvedgZnm5ZKKoRMZ491rC5sHzYJDiPwAlDusrqfkCxm314rS9QGzY5VCeIOyWy4Dcbr8Vo5zyp3TdrlhhMjoQ1eyVA3xmpBcORHiVUhtjZZflaYx2Gz7PL2RxpyRoBSCJ0aAzsGIst39mszsMO0KMueQQ8lPA0yWe1HVFMiRYrAwaWpL0CiwL5ezruVGEidpceOB2mNwz41Ir1DFDnVp8BQsn5XZ+rR9W8LEuwZtmmgHZBpYKE8LlVozvWkiaUorKuoocTIhTxDiaoiGsErqC1mtezkaH3At8K9Fs5fNPX1/JPnSEjtOayJIC8ex3Lprnr1V2MgH6uZY6r0VtjpZK5D39rqOQYcRRAAfDqITziC+y8jJrE3xrOhgPpdgcagApOVAbuT6d7VhCvvqfOMRGeaV+yEebDur2fDPvEFiJT7QSWLJV/g4H2jtS/BbbBpYZ4BDLdtbXx2+JgqCst8q57wKJ+eyXWY9Js3IfW+wxN2VWCfZXRucsuJZUb3xAA9sSvC4eUrEN68KnH8m2X3D9uDa/SWdJXMzxYjSyJzNZKaImDDGbXmtMYC7kFROptlZ83Zp0tk18H98e8VVq/fdkxXUwQFfGBhshVaBaVZ+wnfltKFJLYEr//Y+Pd84aE1OHGO6PtAYXIX7EjlCesIeiNSLZ3HnKioalH5WfZ2lDer2gpVKn62r6gBaArrv0tdjc09mZKXtrtMc055T/JINZaFh2gJQo6RLXZxLp4KqBxannLU28oCNz6SyIc1UiIPKCi3ZvfrMmJnXtgvE+i58VaoX8/JCWmTCHwLtcPc4BYt+O6lsZTK3DBt0VXzvZ93Ku89iAffj7kfuiYQHZ7kExBDIaCqGyb+SOlOmHhpw5ZsIgaYHUeduvXtygLFwZsjKoZw/M/qKyVufVRc56QC4UzsbjtZVe6M48hmGOwDOPjwOHZOHLlvqlXRX3Sz7Ydb0yZnqNx2oL1PcTgukJsUCW6HrJtA4peAPqZoiuEWh57G0Afqntl/TMbGjUly/XstRC3+5S5StGMsLAhg81DhK7UyPk7Y3030pZU/o3QtpYRDrS1SwiI9UaJ+fAig+0mpwtNB1paa2yu+XzZy1fjmX3c8hytRtog2T38lKVg8ezKJgzKEp4kbYubsjNqYMKpKtMj1838MQDR3FhOB+oIQv2qIPX0nVo2/2VDP60HAdx0vdBINyrHeyl+4QoDcX7//4Ddzp1ZsligLb+sf5mKwpM1wUn8hATmke2R0bFGsg+rWWh4H7WllrEnn9Fny8GjllzcsRkuUb6XjzsZvxpJoBNSMM34Ky6QpV82Jmq4SM+aRtTA==
Variant 3
DifficultyLevel
633
Question
Danny decorated his patio with a line of tiles that repeats 6 different tiles in the same order, as shown below.
Each tile costs $11.50 and Danny uses $448.50 worth of tiles.
Which of these is the last tile in his line of tiles?
Worked Solution
|
|
Total number of tiles used |
= 11.50448.50 |
|
= 39 |
Total number of repititions |
= 639 |
|
= 6 remainder 3 |
∴ Six full patterns of 6 tiles + 3
∴ The last tile is the 3rd tile in the pattern
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Danny decorated his patio with a line of tiles that repeats 6 different tiles in the same order, as shown below.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2023/08/Algebra-NAPX-E4-CA19-v3-min.svg 650 indent vpad
Each tile costs $11.50 and Danny uses $448.50 worth of tiles.
Which of these is the last tile in his line of tiles? |
workedSolution |
| | |
| ------------: | ---------- |
| Total number of tiles used | = $\dfrac{448.50}{11.50}$ |
| |= 39 |
| Total number of repititions | = $\dfrac{39}{6}$ |
| |= 6 remainder 3 |
∴ Six full patterns of 6 tiles + 3
∴ The last tile is the 3rd tile in the pattern
{{{correctAnswer}}} |
correctAnswer | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2018/05/NAPX-E4-CA19b.svg 65 indent vpad |
Answers
U2FsdGVkX1/F7gviNeGrw6pU19+aU3kPjkIG2FGZxcgBz+QxXRbaxbbXCC+79GdBJ/DZOo7e+Jpzw00zwiqoKU9pB7WfNRVg3BhFVpY6TId99a5v1H+4OXVAqycbKCP+460RTtWR8Gfsf2Vc4wVdOCCBRCE96pipVUv9cPs7bE6QMdQw529Vvb4+RYVHISTmYNuFGrSdEDRaGoLj5T3ykbxTx83iCeCARR0M+t7RmsF4eHcEoMsWvT/6CjqDHOP4K2JJlnGlx2vrg7+tRg9mIAxcmXnWYALkp33uV1glGYeTs4LfpaeWzp7W+vku2NW6038XIAYLL4pi8Zast4yLTIaWNfdfzXu/MM14/pJR7mmWpqI3VwIac7oNiqFNZ9ko2QsQdhbmfmeGltM3PrEGVNXSYFe3DZvz3s0zlEqyXUVvTs3GKeJFel4a6IwKuFfzhcgQl0BbeSAuv7m+TXC/wnxRuxyjFchadErkH4nyN+awT5bh6tTNK0zRO8+G0+6fkf3GASBUcV8P0JCfOpKoiCmJX84GyQUGoZY23/106ii/JyeclATOYt/E9Ru0KH3V4+6NJmcVECekkqDb+qCxUfC/j0ApXbjCLAdB3peON2t7zs46ojafEPIdhnWapZY0GorN7/0kZvYt00vTT+ibYxU+ts/o+mWufbe+/1NImT5OxVWhnOLuZ8TRYFRSMuLLdBEbnLFkWl0GSns9EdGe3e7hHIM4HkqmDEH28fZG7ut3es4nXpRX7kTYvbqLAi/zPXVBT2CG3CuBSBJfOp3AWwyqjvUJL41zKknuyo5O9bXC74Ilus82AxFO6b8VzeXbz/fBtycEmamLK58B1s5QVrYKuIxqPtWtp6mJeFm6/7WtKXPk1nh3SL1lrAze29sIdxqghaE1fuIsperpQrxHfp3oOshDU+WFwykzDKK/iOcMww+r053YfjZ7LhsRZSKYSnA9tPToFMkA1LSvWHiL1cXfPs8wgsUaJoU+PNmoFmdPGEJAtnVkNTMxDgl/IIhd5auFlRyMnKwMLuzaVlofONko2vkGexFRIzsCKf8shOv5Su+/U/Wdnw1AP0Mp1OEaS5mWVBKfyfmd3tMBE96ns2BIWxj2SwmQVb44ZEsFDBnUPu+iddv1lcIFzLdIEWH3NCif/7Vt2Usyu953AuB97OUvrVU32BXS72TO4Zx09UVAzA84o1QQwkSZPAnzPb9ppYAoaA/5LsvchE3eU8H/KwGR5VObevjcDjZjg54Yeeb2xymTwIcBhodlKPcJY81aeuRXX+fpm94ku21DS0ELRaGcXtUFVe20/pWNIvt7ux5pfSdkSwvIrXU/V6YeKlW14Nq08IxP+h5rOaRO0pVarAXD0V/RPSN0bFrEayw+9m4jEU34EzihCoV1RUS7oooZfLf1j8DAnaol7uwccarmGb9c+VlYLOZ1LKsQUhHeTVlO/+qm6Pt5Wd/JS+mlEJ0m+emBEUjEl88ZQSdzCz9h9+K8xTgJiRXQWate4MNgR6EwasYmyv8Wmt5GlM/owcyXlcy2DX6tSn66EEGxjAI5wGTvhEbyXfeGTLfFOHmU24SL7xEHR3a8uG5xuzIZL82Xtlqt3CgLtBykDTZT8bfxmXyNadpkkQRmzHIKeEmOCZuEkf2+R0z6LbVdjXCCAgu1AsgRfFXZui/C8CkvEKxf0hQ4upxeDML4ct4jUcPtpJiMtI1JB2gwao9Jux3fridq3l3NHBf0PeNAJJCvB20Dqaj17BNxPdzAfmabkeviRB3Fdnn1j2lypeEJpyUbdNGFLX2PUzQQw26Lfp0t6qdgGM8e5ZWesxPsVIWaJ7ot4iQdViiS77QHWoww6amIlQ6kdlfGoRJb7uw7Bvbgx+1/NcjvCY09N6p4YSX2lZtYJdm37Up8GsKwy5SJJaLTsk9Ibrkx7yPgn7NiQjViZ/3gJuk5qQO8IY+iOcjsATViIX02C86CpxkIw2qoSlFvRtP95U0ZO3/xuXxKrcuClEqyvfpl4Kqztl/b5/UjGmcFcdHLdfRl34SlRawwFXhSGA4be59jssUmIhCUPgTinYvWY7LCZ2fitUkt7BYgUeUc26bVh/zBhZa1sqaEH0Kb3TfRk7EojKds55lqXgJOial5XnfQihNRHy/30QZTmoBsBZ4nWoHv3amCw9X6+asmBZv+wrJsB5hlAy7ugwevSyb7fuLv8wOw3I2GIRdE5S7Xxd10skZMuAH2TmKGMj0/oujS43buCJ4To1UAXU5wl0VFBWT8cnGQkTngme6Y9cn0r1o7Vc587lPTtklxrlLRVY5HpFcMYj2jbsr9CCxnE/trApuIdpFpfcKJaQ2RC7BpErud17qxvKl4jAdzC6ltqFx/TM4K00Wauox7/pvzBEBPtM/x4LSJeCxIQPGUXgEJqk2I+A08YJUM3xaJ67r9b6kScO9i8WWzzxqdawBjzJsIUhi2XeCRbj3uUPuuPJcG6pqEnD4pyIeI3yegRPxp5mzM4jHqJwmAa08MrkdVlhTCDMDPy8N3dtfUGCjx+3gWOvgqKZZmeq7XZ4ComD6TOYLN1vCuT/fP5odSK07pwyI+sOtiJCY6tkDY1iwywQxaQBOdTc+NmHK+omSCqkWl4dSmNLu/ZClgV/3DDNH4gFWuW8NozgP2HE6Sk3bT1mI8OAunMQch51+fUnu9rfBEpwvtw3aqTzhgs2Y+C8YnpHqaVE0cq5qEQ2cbqFa3bnfWTFbQokxRNxZs60pZzohwuYDCE7TdAacBiqaGRzxayt7edeLBcrvWWH7jrth+LdMbbyQWDUyq7Y01gZDT6Iphx42fSeKe99m8Hlm2hyrebknmYKbd2p7ePYj4M39+DmdeoyR00vI9/81UGYTX+Hx2QHAxYx9Ne9+PW6JcIhZmBMSAC5IALTj7+nVg8lzi0m08GB+bADNGuhOfGFhu3d2/lYPzcx9k/fhn1MgBs3ajpx8Q0QtP7G7FqLK1KPPbdsnhNaTeBVx4/yZS/Y4/4LBg6irSkVxV3tjdDbp0DJwNjKGjiWcqDyZBLW1/10RIWIDn/2bm0ZewDRYzKwxcvS7gzNIfiZg0hg03+vIHfhJqRhy4SEGxjrc3BbRKOani7YEy5Sy7ZyKSz5d2NYZ0p4CpLUcHvdFp5vra6hCMNknTbaGL35NA1d2kjANzz22mRlU0lwqqPmAhYpIzXmbS5OXU6wobvTqUo/CzjRaCL0N3P1sBZYF7615p3J8zvjEWxxRYp5pxyvmOCVEkG4oyO9SUPsoZi9ps2RGeOGtprn+H7jdUzL4O4Fqy8+RnQKeqWV7y+MNsNf29khMckBgg+Ovk0/McFGQz9YMjvKXhYuIpo08jXlmQ7nkcxgtt62lazRiS1SChkI3yIirBqx7Q/1WDh6jm7EHTQhM/wSwG2gVVSm3QWJIWUw4YYIoSVuB2VUJzVNz6lBhGU4R5tORp4GGIbq1SkV1Aoiz/u/4czT3VHaVuAfw6HQJ70EG6XL9+1edjMYeI4IQyO6RbEF64geXo7lfSNSFhwShgCi9S7cew+rKhuSr0iGqNnF1/MLzhAr8kAHWInuth48qn2Zj7+PFtP/qDwNShkWOCSLTfrHlcPpMpQQItxkgOWKrK2J04YZqJKPiympSywi6kRjdUk6W90qpi9VzDcvs/lUNGSCFZI2febNJzMvqq8kWsi3nnAUT5m8HKr1d+iyNxYkZEZ0s1VT7pLdMyvI4BL+A7T2LiTQduoHFtnOvb15TeQJoDRkZsXagoU8UF4xpNsftX8tVrwy7VnpYETQasYoNvn2/vWaJJJqJZnfVsABXY6BQx5ELMasrkd75+JNnt+GTed5x54ffd9LL+TaQTlW80AIQr8RinoH9pftSd9UZnpjc+9JC40+bdmZyw6S4XpX1lWLRRQcBU9sA0vUO0bKxfksObXWxMzIelsbchc4nfyURNcc4JCStOxwjrzeDfu+Zn43nIfjFyr2In5G5eewdTj3OlbfeeT52nOkUv/vWjCBi/ta9w6HSLsry2ymkNWh6j6V/+9qfiF/06eRrXHcI9lzLOg4uQbH2S3qeX8MuRhq4j7I4y4r6IHcXx//3qbSfIXpRcxfMz1wMq6WJuTw1kE010KwU5kc0uzzQaAXGnR37gqgyPrRfHKxc3qVGDIAmiWOpvcPvSuppz3H+w/j+1mjOkq1GDXyO8ZuWyOdIAnPTcUkLmEmdtFPkwDNlcGIC4lNaw8S95vm9LPzRlUS4ZgFXG9rlB02J8a/BZJMHl6Un8LA4VSd9akh9Js/DKR69pFJtbwuCcLn55eMUA8Fo14UhdrkWEdOO96DqVQNjUpJqjqtjzn3HnRykc/YmG1ztQKvvNojOKPm8nD804AJW6/YZvsXscM3a6mEmX1retiI/K9M78Cc6CV//yoA78LHI6WJSoKOj/z9v8FnpAtkwkfvun30BBm+5UodkpTVLR9LU1U0jg3Lo2CqU/OaYuA/O167OpopLneljGXXtdqFe5//4+X0K8/BES67PgpQbSyE0UFoaRtnQCi4pjDhcP1pKVvr1UWU5qEzno5zLnrYVl6yPkg6iOvBGK7yhm2GwJiDlkfEoPcUfjo/xicrp/Ba5kjxh0Qoj6kSRSbP1BKAyZYz79K/gG5DnTqjb3jAbjxYvCrqq4fou4ejLCbXte0Hdhf41Hh+svYmX0pUtAXgvAfQ8jh0ZlZZ2wGmLn8WgCZ9eKSe4pdefCUgAin2LRggYjnMGzqSqQ0oZ5H7cDlqjtd6cXFAEYixS+Gf7SOnz9qx0dHevv1wsPBoYFIIHUplpKVyuue4J9qFX3RuplQ3pFWuJg9o2c0geRgg+nrViFavhCZNiY1RpiAmUZHqXcaeCidKjCrLabgubtJnnqxzsnjAAcZwYeXJNNdq+vd/Wj09jQ+ZelTod7sGFdOGg0SFhFCVmIorBkN57t/l+hrou+p+DSLRukxHnBJViSR2JJwV2hwqf3ZXh3dgOAi9W+ZHGNShH/9NR0+BYvo15T1ssNYUE3BrQbblWd+bmVQaOPddwicjrQX1VbdtfdD+kE0MxtoPhmpehD74sl7U8WSwHvxs/6Ok7oYcCv/Ls0Ixa0IhJvhSdBRquKzT37gHbgTq1Nzk7qZOwFVGB0ta/xua0D2dR34nQpfiY5mGO6mWJITGjGG+mH9nG0AyljnJxF0Ki7KZrt918keIKp3kGnuXTp+4Vm4o6djdJ1byE2/V1uSBJbSHollfmlZtEa6Qs0ZPZFKB7dfj6hd+TT/n/ILyErWXbvpPU5yi8gLHl3R/QdrMByYjJnDWfETCnBG+xn18dMVL4gvQRr0i6hJpYdS5VOj3lw3uTROuOcHEhpMbwHVnd4mNjJFcrhHxJHu3dqgdqaJP7F7SG3v4h/ZlV324QjgDg1Nn0Ut2CkB2DhhAKjUdHC+IUJkcR/yZD1aFkURc4HrYASaj7+usl9kBAhzryw9+3sJfsVTM2iqAO1htS5NGORRwClB7JL6VnqX6R3nzpm64+XZuAeUrZqfrz364oh5mFjBmh9QAUi/ZFXxR33ZFGIZKMgfQ0Pb1dmXgxPdt/9BDAAnsdhOEgoge77EM09VqtaKsyNoMusouhQbbETz2KHrzrumqqY9dJHmLquXY25THZHKC3FDbV8IkLCpR+6eojHlSidgRdeIBkupxQV0dmrGwxd3sW1MM15Za6g6Wl/hwuZgQOrIwoZOmpvJYAPQalVph4Qj2lofSjo8RkNRLQYM6W3Gl+zJbAU6LQLdjnrSJZjsQU0cbN7ESyhCadIIk9eqqxS7tBjCLgpncQuLh2QTKffLfdD0fSTrwmHwYOYjLUZZAlXKaO1yjypoMpSDg+MGpGSHlGqBJTEn+wcctw3OIBwHo//4GgM3fs21jsduClAkr1+c1qA3OsNkCzq5Xi4loGHvRsqPSHZRJOk+c9PdqEM4c1IAKkEfAb7hHafljYQdtgnRMVciXnJcPfvTPKNRTcQfQkfla2ubWAGE/y67znAukP0dsZMvfAPu277yOhn7kA8rY0fN+Wt2OOKNZxt1YiibW351qtiD2uh/EAHgGWBJ/RFB+Rb7MrGed8PbBYGCaXFDJ5USnADdjMZ3VVLS5TizChfEyuUzydo4CD7lGRJeYbOulfj6X9K+cnT7rDY3rdNTZttux2L2J8aFJKTuINw3qdeI8mLOvwCz88ZOx7gCfMBwkfCT6jzW2WSHXqBQLoAP37TBgC1C6Q7HZsyGkZxXLW73fpEL/JZDNgfz1oQRO6bN4+NVnQBvhGYBvpgkgq1iD70ryWTB04Nw2xQ6V+HC00jF03jaNQrxa6ez1fQE9DYcjHNhU3keZh45QvHyyMKRa70aQisVxdClZrdGy/q65/F2/lKodP1ONSnq1zWmLZehmXkopeglZjBOZ0f+wuLzqEHeyBS8Ki8vBTrwIEqksZkamODcMJKE8KrfEi8UzeJf1pOAf2DXQv2JqAVd7yACr6yqf7+BGRTloG8LG6BN5BRcNg7V0fC2R9Kq7VlEGf4gJb85jPmZ2A9yxXQYtjeUX7/UOses14HjPztUGZ0e6Xo6tzTQ1sqntKo+TMxGT7KSAP/QDrXL09+bPX2/zoDq6MGAdiZfdPT0fW56ie3Ntmfk78pidY+SOSoLsKNadYs4TuCXWFhtTwm1KPbjGRPc+rU8xlbNwYnX2LD23tr6JL7/NZ9xeQvmy9EL8QFH7QxhlKLEw9bkg33rNHM8049uocW5Gvp21gmoPFhme5L/jN9s0kNFyM/8hXyfjDDcyzO39yK9Vk8PYlhH7fEMbDo34erLE4eWu2rUu0l85RuWF6Jpx0HxsfEBoZmt8Efm2OepXcZWWPAMVxJCXHaPOQIj8yV+y/5CDn9RaIrSjQ2lITjXDds/PyPlSJ7yDYiXNtvJZYu9VWcHr0CB2a+UT/dzYvd7a2McH40Sah81K9SBhxZ5+k3Ky2/1m8neAgTLXTJQIsGZkIpfVuyeOtkJTyDXeoU7XftYXYTlFe6mzaz27THe3s4cVLeO12ojm0iQIUFyPwjSABgj3LRHpR+cSk6WwdQXZY0apPeMVCtMpUMotEvwc8qQ/dceUn+VuLhxcWgeBjZzpTWUJQI0fNaWNQ9hlU9knnOdc4Qoy7mFjQKMsPGvnR+uum/GFalaZrraGc21wyK+v9legL7bAWtSMoQz4WfYqaYFLHhM+FeNeuC2oTVk7PC+abcGYKB2wPQ1UFPzSEHuW5+SykmJyoWYxDuigcX3g+aIty17fBKar5Uhu28wW5WaEKnn/hM8mpBo/JS66Nx/Q9QxQtOq80UgBzt/CH0TcjN+MFZsl2ByjbyRDCpEgAo9V2l+GqUNSoqG8Fkz1A4ig4Xio8ugrUsPNWswmJBRBt2M5kVFavryNuIHlxVm0mzqIShSOXGjySfw5YpRikYsToRS2xjz9plQA7DKi8hYpvpaySloQFa2Sy1K2JaIZYjqfJiNXQGEI48bVv8LuY09/LI+YqCnMg7tRdTXSMe07pA1EeXK5Oz7Gwjw/ltbF6R6ZqHJ4NbAbz06H5rDSdEI1WsR/2QRucKU0kmMcOvg0SGT8wL5WmtQpp21g==
Variant 4
DifficultyLevel
637
Question
Shayna decorated her ensuite with a line of tiles that repeats 6 different tiles in the same order, as shown below.
Each tile costs $14.20 and Shayna uses $1263.80 worth of tiles.
Which of these is the last tile in her line of tiles?
Worked Solution
|
|
Total number of tiles used |
= 14.201263.80 |
|
= 89 |
Total number of repititions |
= 689 |
|
= 14 remainder 5 |
∴ 14 full patterns of 6 tiles + 5
∴ The last tile is the 5th tile in the pattern
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Shayna decorated her ensuite with a line of tiles that repeats 6 different tiles in the same order, as shown below.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2023/08/Algebra-NAPX-E4-CA19-v3-min.svg 650 indent vpad
Each tile costs $14.20 and Shayna uses $1263.80 worth of tiles.
Which of these is the last tile in her line of tiles? |
workedSolution |
| | |
| ------------: | ---------- |
| Total number of tiles used | = $\dfrac{1263.80}{14.20}$ |
| |= 89 |
| Total number of repititions | = $\dfrac{89}{6}$ |
| |= 14 remainder 5 |
∴ 14 full patterns of 6 tiles + 5
∴ The last tile is the 5th tile in the pattern
{{{correctAnswer}}} |
correctAnswer | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2018/05/NAPX-E4-CA19f.svg 65 indent vpad |
Answers
U2FsdGVkX1981r49OROJxHcLpVvpOQTAERnoDgkZlJvN4NZ7kH27cMxehZZh1MIxKH6M10Y6359PDk03xwYj2YvH2WG4Z758Jiwp343PBH+c9uRf7W92vKUin5tuko01u7rImrB0qvq++ySmpcVpFbyE9Fg0CgFZ0DFMA1tYW0cKwguyNMP0UYlK62DlfZ8Q4ouk3uhkii7Wxo4UIGpEGZFKM+XjilRIUUhhEU7VE7+lb/SgI4KmHAXNk+QQXZFz++t7U3H4VFl1zTWZCaFQsgUUfj5XNz5Z36XYjwNJcVX/I5zUzzMNfrCpjnMRsheQdJfdFNDZ0C0yy4i0uN8+u/C6X8pPq3Sg0cd6Q2wJ3cVt4FqzkjEBb/g59dBaXhp3SBzAsdt/k1H+yotK4pB9lWF6Xa+i3xdXSgPKHu6P7R6FRoJ2gfoj4u3hrHeLowp5obfm5N1pOnOH3Gf7UmaoqCLjWsrdQ9nQUQDaUeFlL4GhJAWrCI14fikRpobzdUz5uarGyPK+2jZcB+COecU/2h6AmIW3PCr4gFs+z0Xc0DVQGlh3eUylcNxvbSa61YZFIotma9/GvInOm/rUMxCJITcHlVWajmaDQUN6qO9NMKg9K6G4QAmEz6BZTiwQcg6qAhA2eFrKLTTQgj7pCM8oDXBpXKH6P74Y7KjEdUO44BZf4+vPkfjrjenmUoBCUrGcU5UiytSkgmhIGO5CVY6paH+8GG08iU0fXc7w2LNRDWVUw/4BRXJEk07QdUv07vd1XYeL1HU67m32HIC4KrNPPdW4cRvVoMophOeUP9ClthGYz1VPqtZCS4V34PAiQNhMAbHb0+BJq4AJRx3DWMmV3//dov6bel+t01jIlWlhF4PDscimmHy7q1LHz4bOtn4obycgzK2d9nACozmwzLg1DS8yynQl6jesUmByT7TlNaiM7pQRL+wRIFVYcmKcKzSC0yfm86LxrGPmZoFZjeVazcdKIb1FdnAjkj74bVkup5nfSKut2764I/m37ohQKT3wi4ibpJeaqnUlZYA9bO9bAbFHam59UnVzxDfcmt/AzSi4e2F2MuoyeggzPpql5UlwGWn4kDmoHsCQiwzvrspkPkpP3hkaHNOwuZ0lM0eB8zf4hxkmavHy3zZE8KLV7MMiRGaKl0/JEWaVh8QXwO9R+Mkavopu9/HMBukUbWuWAaneHaCyDEZm+0KF5g2T9yyt9GvBLJaoI6p669jeChGTKZk3J28erMFxDwTr80vSXWms8/ClsYDEsTlYG7IlvP86BVOaHnOZRyBnW3pHJY/ejgVuwtkS/myqu5lZ8Eg7Cfo0h6VdsCpN8MJ2HxmUDpvfIIxmcq6F9Piom3tw+dnv5cVbP6ikj7buTjXZubGObgsQO134ZXLwqdhhHXGHzhiesmRwzCRLLPeu4q59cr1B5G7Gp9GxH3aaaNP0vHmAjRO5IEAsZBlu4RGZRIe5T6eX9T0plpWSkcFnEjICbDXPUVqNXR8Dwe3iHHNKd7R36nEFA1Fsk8GWUED0Nct/XZY6UUK+hDWQoCnkxhK4eQD1SdCHN5yQV9MqoBWfiYQ5BZ4lIrEgth8qZzVQ+ARYfqJM8sGrXJkLcEKN1xIj7xL5oYzSMwwfcqfQM4YhzaxA8NGKlChxzwqMD3y2uMjlNJyxN2IXhpqyFh5MpP4r5EV0OFa1nX8bPWP0E+ta1kYbGlOBKPlxkG8zzlMrn25HuPHtuOJngg7b0V5OKyE+ruRPiKYaKNYr7h02iqKZhySh/foxOqmybw/uJubFP9Pr1WFsbWNWWviWcf6nXSTIVmhy/V/Tjchic+rzF8lw98fDMcYCBLPa3K+k7wYPcrSmVAaqTL/mZuaPoO1W9eWol7w39TB1WrhtlkKJadee0Py9cylSNCanZ3UqkVSCG52ayvjrWaAhfeb+WMVZMTSnXHl7fnESirM6Y7l5l5IOvhN2h4pCSoK16m+hsG5kh1f/1vz+ia9oOYiqozQh35PuVnh80s4RDtYiwEjC97QobCcNccpehBnX3LAA/xJEs6Zh6xF2dCiT4fFs7EHFiHCzm9U0CAVsqKNR6RpD0u/rzscpLxgWQp4Jp7AVshKwTc1kNEWZTuKVNVUG8690Cpw8w+ykRrm3iVmDTTMyzOpYiPoMYk8H4PSSfGVxPJSNZzDLv9GQcn+saZDcqbMhpz/eQD5VQ8MlFVD4agoiMxKgLUa0jUrizRFxV7aw6ddEQ0WVDYlnhjpjjrkBlKg4vId//d/fxr9gcOeJ6XPnkurLrRBoZzxzaM80Wvi8swtfvGIxwVWZ7/S5x1BK2LAawaS/xaNSjLx0CcfB7/EI7y4wFtWytGFk7unH/niB7w6RTXQkcxE4ROcJ0eJsOIEQxqnd8MefYenXgZchAItbBMLr6n5aVgzUJDigqup2dw3luv36CcqQJB4uCB9lXtZ8QMbI5gegm8pwcCaY2AdRZhaO9W0q+Kcaps7HPcJomg4b1zUbcoEuubFnGPDz9gyyyJ5yfWaGYSMEPDfhoICq5C9LyTAnjdWCKFQG9zp746sH78zLYLkpLJTEvoCvLqJh+jjpVJQjLJM8lUvPd+il+NPbqaUtfSeejMOAOjjdI92/ULM6Atgxpwe9ooP8ecN3yNkN4fWW29XMbci4Q/avnqKptk+x3saG05VfxvG+OAFIvYN8OuGEYN0QzTekkmnWGuWGK9g1NvvwRT2uyRlXF4uBxm4RiXwwXucaPvBJQJsItHtcrgVLedm5v3sRj/Y2yhzWeXxD2kGESMKq13EEiEH2Rq/HdJHd7/5JN/knJDyy7DiWUhzw44ryMnSpwkUf/f364tYAKNCwt9jh9TV24NBgT7fwNt+XSnthDCE8yMi3/LEKIJFDhf80ZzsCW6/sP18UJnOznv9AMn7SexGtwj/t4D/SzB5HpObNG+iYY7tSly1mPVFTn4c6zP1RkBqvlTIUcvG5VjepuYKptPQgeAOKdmahwxWpEVQm9k7fhWukJhi6MPqth2tQbgfHsdB8z/is89emru+hm30uEYZWOJzuq4aGyxHegPU/RM9LfO7/38ZcfRBLLN2BCuPLwNKcbE3RTzBqR/6z0N48+PIETyl97LDlVzEY/bGs+4oOTIczQluy6rqdcozfSNhArXC1DGyvcfQMEwQ4TTZdHI2YD/OMwuWDMwEl3emJef8UG+BuJAIWgQFvgd+OzcctOkuy/mVO49sENRK6acIqGwLEH+IpbmK2GLMXnavSM0/rLhUiuEcdcoY8I5ht3P75mlKtY0bcNS1JfyZ2NUnANDVY6vD/kybMB2K8BXYkA8Rf2wAyxAcQ3bodoeo/0mAuu2ejMWGWzZmWieXd0DNI+/yb6wwB5m88mnGJLG6YQX+shUAtXqm+2eclZPhZoY7t/3vEAG+BAAlFetufJEefCcQ0pMDOY8eZQO6U9oivaPB6lnPcfCcMvrVQwC7p/w6DvettuRSQm/GcvWHs5vRIkSkifkZriyEkWvKseSyobJzqTm50dsNQ5/DNauW2ZxIy/0O2nbY6732KMVYNvY3p045RhBYZQNUbnf5YfHKYaGHapH/OsF80Ox3GmVWTfJ7BxxArtAJgtANeHAbm469wH1cNN5qiUZpSB5O4IFrZ+BgX8yDHLnC2fmcgLNezSW1Px1+ouQLa0d+NyT1MOB/oBaqwdxD1nbwdCCTtuhQlwBpIVPr3398S9LJbi0XaVSzNtHy55ya6AYWr2oL90ZdgGlS3zUEA5vR2oiPQbC6TkQzhEjQ6qZ9Ld09HOzadaHkcLmuOORTfK4zYKk2duavIPSevWGhgdZ6tQPV4zKCAXClBt/BTPkmxcKeZKhHT1dcU9LGKazfmYFPssMEnrO0DEYfzbEQooQlyJJvaIYaZaRqraRlyhYreVW3GwayGDyK9ixY86qx+ZFDWwfgHELoMY7TrUdTLQ2dIwJKNZlxSgzOE9kCgf+uUHeovialXHnis7pnlTdJXZd4FX/EOaszydfraIgvYC2LzSrMmP1iV0DvEE58rzQ2sG6SCovWuUBqTIG9UW2q04Jw1/qHaMZ0qfRgyM/rq0xe1mKoWCNirHN8m49XL2HR7fME210YYgl1Lu7vwKSK5bGYV4jcvtKginH1GsnctIbwYwR4zAZS+yCtsUw6P55PgAvKLxkOoVumOZx2QhOwmNqpyJU+ehVbxIb5TV0z7VJ0Fgvaac0QlysROfdNICh/FimOQuXiHDlhmeVrciMMK+6mQqIHXQyqWWI+/J+4pZ6PRFXD6+dPtl42tJRfeFy27qS8St7QFE1SqaqOIow2beQNiejjQi+5blOV5vS8N60zCjEd+vhmHEoeikdCQ/9g3ZhovXeM1Scob8LpNWsSub8jPWu9R+gad/3Xaavhypq7SPi+M79mqtkaAMUTqTPXGjn9eTqUv5Q/ltBkWers+EZ+Z8NXaHpQ4/oDmS0KCoEAsjvNyuOKSC/vGm8pn07jy9ZSQ2ZeqtU2h2wAig90/vprnKbd7ufACeh8kjcEj7mpj2ouRPgmYbk5waGvXGq466HG5Y0ON5uJzXdRhsWjS+CGrfO61vVSRG/UzbirA+pvmVZwU+39etwUfejc2Mff5nswiYm4Fla+fQWl5CAUUhywvecIYKsQ2CBwLDkph3FvjmIM8WZBoL6XdKil8RC/+z0yOG91t/zQhqQIoyzRj6VZPkkoIHMYBnd8u1GqY6LLswydRn7vOtqvIkZrAAcZpFpuS7nxhofOZOMycKuv9h5A/oL7i9ZoCmfBfHZvW2clXO7dODFpZh9laO1lzoM7rK9D0WJSCL0d6q4a/WlysmO1ZH7k5Kp7HvguD/TcpXuOtut5OibAWHOefD1Z2xTb1yAJ7K+UVovKiGybASvU3huUO18U8KDSuTaW9zK6az1DYo8BGinmapy89y+fmE0xsV4Ft+iIQ3OxwsCV0G85vhiogM+HAkzfB6bM2mRmwlnBGqa+wYeOLKGitpGq2iCqPva9Ca1mDbEllz6OlxAptM6e00th16F+spaDyCFprPQ/PViP3YX4D813gUqYJOq1sJHN0d+NgVXzK4h720NBeFBotCoVhYjjq3RIpiSEipaXyGE5R5mrppBRk8xjkI8n4Yp7VIiOjhIze66Z21PdoQVYQ0EkR8sOBiMJ3nyPTWypZd4dFj1tx+ACFqcxtK+s/HxwF2lw3DJWkmPr87J4kwNsMOzSkKMi5Xf2gKi8Ou25CR08njeoCEAHu/6YAW05e6Unm6/02Eak5hylH+NFrquA8uZ/d6dSD9EtRDsYjHmDkueuBG+pUIbMTAdhHD5Eb8aGEXWZWpMOr2Xtz35gMqjPMDUswSWOZTucMwyr3v/yWiNX4jo8NhP000NH7kwnn1rCjDRr87F3zgSBXYK4w5dx2AeMo60traGpjizh+EHJ1SeFdFmY8NnsKpZAi+BHFa42VpDNI7kgOP3MbZz5TnLlP5XnwnklASKWvz4/F0YBr1S8gN2M/a6sYW8sUiEzYBEvn2+LRW4gHdUpCMHCLYhIrPnOH5KDVI6oApelRUegMsAsN61lVHyQpXXAN7dWU/dLvNE7OeCqjtdHTAMUMGqHEZMCwMnCX/zOmdFJU+0ZDxHzHm4ZKV6tOzmwUF+uKdnW58222cEgJyhjOAIFYmprm2616wd+15t8ro0YhJH4FIig8zEFalUHTR1Gstv12FNqsdqL6TBhpQCI+n8kLWk9Y3S7NtOiJy+b2WkdSn9Ycz6DHNPTw0FjuOn47mDRLUneTeAm+UgGPzFUqJmKYPcUKUslPasfCXltGeo/EcNCFRcfDiGpMaYhAQKtxmueZ9au4SBYeLafPzjHRiP4hwbJNuWaVYdXbN2hmHg4SdIvO9h11qgboyDMiB/3viN2HzuavRsqO9J+mgxeyij2hJ8H++NPmA4qP+L6sXaLKbLuqqwmJb2hlTT7rrtp8nAKyx2gdejcS4sSIRl93dceG2RGruku2IiyeBDF7Db2vBHbQ5n60EUFllJ078iwVodxAILJlz3AX5weKdB54DTX8yFm4uiXw4H7h9u/scAhfRJrgI66oF+IIX+86ac+bkpYvDae9CKQWxspUR3oqG78UjSnPinEHL8m514a5m3AUJsYwNEKAXuuYgJoq1r5T/F1gfmxnhj76HHqwFJNi1vJZI0L0a0mhjOLYPsEgXaM98WJcynfpJ+NlKqc0L+T+C38gmTwIfcwUqPsadjabk2rRJT78n2b3KKihYC0b6MqCCS0YuRVkFMPVBQPbKMgq0fpFKM4Dl/EAASKN3lbln80McLRFbVPm++6ge/A01GJZLaju3ylPWxtSmiaSpDGhDVgrOQAqaT9YafeRQ8GuVISGkNVy72bms6et5aCl1z3Vjt9nKEpAlnN/XwVtiSgi5L53Qr7nv/b/IWD4ChE5OKHirKOUS3rGupMhuLMML4YX70beTxvrnTDeiXNezvDDmFwUhfSKYi6wbb4HAJjANPYC1Qy7MlZzYuuLFALmWH5np8+hZT3C4NYvkLlIIDc+iHlkiEkBfNlV/X6j8cbjqaZan8Do9yWdCkXmvqJZQjoUJDQE0n6aWSkVJmrhvKAMg83CVFTAlH+MvGAeh4K5ZyHrmbEXIsw7lgAZX5PNIsMT5p6R7VlR9Ws2fQ4VKdmCWoxvzphN0R0B1Ap/bi2vArZOsZsAkQl6LKY9mxL0n8Sjrur8wydoeHXn6xFbZDOO6O6sIaOrl+scp3PTnfd8AygnO9r5YIubHCQ16Wvig+Ev1T9Py4fFrTm7MRx+H1yjqX4DR7bU9hyrDI+swWQUiD2wiqPLstiKfoinMfcAHUMowT2TdHmKwCqTjK0NTafmNsi6yWVRpYCOl9EQaZmi4HsnMXnRdRbn0i2/C/Req+7SPbSPuziXQFXIomC3TwdhuQO7EBXIUbdR+xWCU4WVqQKO0fH4oi0Fm364PdVTfDMPLsFKfa4JUZAWwa1RGVSrYCIcIZN5EHX6LTt6z/SHQP2L2YR2RJY33drkqdq6tQ0kvX5DgrqdCaz8pe8BEVHB+BtnT8d6Q1QkBNlz4QgEoSaFMuNTcqfwGMbb4M69/s2e/nHKlhct5eCN75YahxFg+02IEn17D/xUdgHlEVailLfY1uRWeMkqEIHgKT0Sha3/mTsBtaJHYlknXscurpOugHklsC5HYO+p6NgF8w6gkWvOBxvLRhD4g7KYtvlhxHp5IFjTMam+WgBoTUNdpBcJ543ac03KyCx3N3CZk4CTgL7qgGfGeUvYazPzGVlwJ3y9JY6CD62OhHNY2s8ozG3Of9d8qLocHrALVuk97XYAgJH3hx9vnMD4SrYpm8GpV1OhZB2KV4+bXw77/+dj0sFAYodeg44NOs8kvZTUs7wrBOG5j5RWsUy6Ys6KKbVIroNaH6b87rvncS1xU9bMstqOl8CE08qBNKhqSNbL7PV1VLZcqT0VuQUy04YlVIrebvwQcSVZap0WphbYNCzgpW9VW4t7zp9hUQW6VzTWbwD8jYESooEvmRBWk0WbftJhVnNcTIL58MSV3wa5GmW2Hvz5qJyUOHMc86fVjPH9YYF3HQ3kZJkj3A==
Variant 5
DifficultyLevel
639
Question
Lincoln decorated his outdoor barbecue area with a line of tiles that repeats 6 different tiles in the same order, as shown below.
Each tile costs $18.35 and Lincoln uses $1137.70 worth of tiles.
Which of these is the last tile in his line of tiles?
Worked Solution
|
|
Total number of tiles used |
= 18.351137.70 |
|
= 62 |
Total number of repititions |
= 662 |
|
= 10 remainder 2 |
∴ 10 full patterns of 6 tiles + 2
∴ The last tile is the 2nd tile in the pattern
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Lincoln decorated his outdoor barbecue area with a line of tiles that repeats 6 different tiles in the same order, as shown below.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2023/08/Algebra-NAPX-E4-CA19-v3-min.svg 650 indent vpad
Each tile costs $18.35 and Lincoln uses $1137.70 worth of tiles.
Which of these is the last tile in his line of tiles? |
workedSolution |
| | |
| ------------: | ---------- |
| Total number of tiles used | = $\dfrac{1137.70}{18.35}$ |
| |= 62 |
| Total number of repititions | = $\dfrac{62}{6}$ |
| |= 10 remainder 2 |
∴ 10 full patterns of 6 tiles + 2
∴ The last tile is the 2nd tile in the pattern
{{{correctAnswer}}} |
correctAnswer | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2018/05/NAPX-E4-CA19c.svg 65 indent vpad |
Answers