Geometry, NAPX-G3-CA17
U2FsdGVkX19QfzOgLKjwNhatOPbaEq8ij6jsQBjBr3CVXQ1KHWk66R37XEd7uK04MMnRo0XUXFpS/ZA95CAZdwygeCq6yHFDQtyCllEPcoDiL79PujbREECPgXLaio++bX/5exBxzYO75JaPXCFG6nrF42MSbfDUsGdLenrpt/CMhFFL1Mj6vYvnBG+V9MS/vmvjQ6TYukTNPL8QOekplPT8qsH171AmgmyncY0RQew0N6YevYVZN+19cc/XyS1z1hJ98R8vykXsz6wwloUFlxVcGZUBDMLB3AsHt0cXfimWi4J9Y9J6RiuLgcn5JGBIo9WWd9DMjZgxYZCsEZZnQw6eeiWXIX+XNok8+1hyDkfOaTQlHfaWmNpj4KKQ6O5+/i5TNwBvnBmDVniOKATUpQnle4xcBr3V3BudswQ8028zeipgQFQLWrviVafkGCUOlV0oXSXxAaNMxgPjk67+y+OrShJmJ7nnYlXoFWBAZ/C3ORAZEQc0xeMAfylKzxf1ZFNJbfo0aZutrV4QkQdWNHOGUvZfnhQNdbBUvDQH/jEEk2kOf7UL53uiwEiFFn5DiobnzxE+eo3VS3XVlMpyVTbdrbgKpEJjiDUF+pZ/aOyJi+l5fyB6pluQ/jdXWyQhgz5NM3sZjpiObXD9+BC0qIco9dA0W71zPatF1HBLXoGXbBS762E0Uu+ZvFQh6bG9otXcJa2+vODmMxa2rybvFuzuuq7N4gGtKDTXb0QYJ1PWZoV1ftXTMJL/KleGk1u+1HkC9ompinO+Xq8MaQkWWwRv49uQUCNZkYwLH0GSXiFHBJJutC3YNw0Yv6V8wIQtmeOkMzXzB5EvibXL+MeSHppwn+Hiz0cczGt10NA4nqaVmn81vxWhNartQUJIGWrOHYRguFF32tWiajHZyFa6QEXX+dLVkf05Xd+aUNtGTaKzA0yC+1vOJxultGSPI4wfVLq1CgD04hNHynVeeohvZJ0tSgpgZfBRIun/JiAxI7uhg4/5vmULt3FdMqe8uBQ+8uLdDGn372nrqt0cs1lI058rlNawifb7qi+4qR3yqRfRw2Kmsm8O42pNPMUrQEBL84FLHgthi9iH7DZ9rktKCrk2iFDT6tPfxi0DoWedFIjnbzE301H5eo3s6+JTajiEBrXJfeKgwO0ii2+85dth6ml2wZKa7EoY3jCrf3BDApkeGbT7HQuur+JxGw9YUaa/hyP1Qd8/uG5DFpXfzVVxJzLBmPXQOidc6okMne385r8voG2NZ1HBiRayarlaBSG8DnHGvV8sb67C3EWXtwS4E36aLP7lnNM3ve8HZGBHwXIOegCbhnMh47AJgEWsyxUPOLRo1rtaxyVDmYkIBM9DKFr+WJUo8M2RVm004lnuyoaQ2eTdiIU3cnbRheaN46wcozPytye/Rdqtd+e2D29auR3qUbJpvlquTACCmAKmXi/YBsvGvLjtX9B9akVGjHZf+MGUZtxg/vCRBjI9hYaG6QYzmESa1UWtVd+28r+dXYGlhR6Xq+cM5nMyvNpZ2L+sPEu0YbRXeuk2ArjcJinxrDatI3th52DTfMw0yDKwSEIAu18JlkQ+8p9lMqERXK0gmaOLbhvA4LjhQRJa59YJ9kbfIvcypCeLT4qkygUg3OzpQ3M8K7s8JHcKRwzOGfv3ZOf9PfLq7E3lWCq668afVVEZ/8TB2eFGw9nrJDCG7QF9K/Htb4Q/SvVNGykua1HJH0vKpL8AJyujc/kqcNqwt2IHLL4+tq66EBVKeP3i6rSt3hnj6RCrGq4gYanl7DP9lNg0eQX+tdNnu9mMj63oHXu08vxdva1yr8RNWuK+ZgqGZrodEJOL6qbFtRidWsZiSew3rl5Vh/TsTq0cAHbf58EBmhv+xBep3q9VRagQ9m45WIOQk42th9HJ69rgD2mz/3cQJ1aTpwJcYWD3EgyDb6DcUt0ou5rQaNady/NSFU1ZAwooV8rBnIQGayHWdafmXvJCt1ZowgEPZs9iChNAXwT1smmi720L8c4P4ewz8+7g+AJ7iGdx/6ZjH1Y90rogC+9fw9ZkJQLNcVd5Z9H+LZ42wIRJswCVWRD/PHrF0kwNoH3Rf6YkYCvWi1g3NG62VMFXGqOWdsIHnFebUxHq980SeY4mtw2RLH5qos/hkx8VIKCFHqC2t2L9X3+CLipaAV0eMof+ObjVCYcWs1mLGxL1zjeKvYEc/x8vS/zzvwYPTDrFjZrxHoY85XR7ZmSzmpCRKZ8DO7riwYiBhLR2qx4zh44MgmtwW4ywOjsoX4GbNYLfzD20v/wLgGK6DwqxTw9zN5yQ8IlFoFQ9wxnjyuuyEYgN+dKB8UaSiAJyyXbIbUAtVv6txAV6xOmlTo1lmb0eumxKzjPVEx96yKdXTC/PnLpFn10JctICcB95XG7uj/D5solnvfkF404xLOe9m5nnzk2St8JUTfCYkFB+iH2Bp1QfiuL68+Uca47DRMHtIAeEOavccMbFG6WvN/8cdDjLPqo0SpPANOyWI3wPapFX2gBPV3TQO6KPZUddY/+dyhILD5KFvv9k22SJ+Fiow5ESb7y+XoFCoIcjOb10OU6YUMgXMcNgJ/L/HEmDg463aLLFyNDTp31FUFaiwo26QLh0XpCHLuqWrbdyBcCriQw3qkUjSmqGW78johj60F9XzroOjg7h5qSF3mbCE7OlxJJNZ8tubcOcEgBCwpMQFyCKTk6+YCksxzEjyDb0fpTB2St9jAQiegIDSMUlZjZORD+A3FfAXBh/1GqOw+Sqw4r71PyTJ5ojsjGBez0VL7xHJKncHNJSvcGN2h7um/Q6yN5a451DkP36Ob1z5+7Rz8zmB/wf0dbrku0cRx4xLNqmXR5/pE52oFXDaibYvzSk1Qqgt1zTohiB7/htl08Zh/Jd5JVGj5WxosMPsMYT1HUCTN/NNVgHFpFGHayO1+MVgmAUQByhvv06k9Whnt6CifUpoSAmlE54nnu/+Poz/cwKBR3tuvqBD3gLYPjS7tZ4h8yha9bWcsLTHJ+D05V3a2uUjQbyoRUmk8GzW5vVf29w5Jm23Gcx0uVyhWHyYu/YqHNfzVCMBER974/4VFIgd2oAG7shAW+FXo2eXpNE6c+vFcyfXC+OMjD04s3nJGmYPD9Mxfm9tykjP5QfBZ4JfuweakMP/xg2c5ozLcNAEHgfwX58BWz0zoZyZ7JOHVcPEa+xZP84WTmIx8/EIUPDnEjNIwaZ2Zj/UiyK3aUr4BTc/D2Q5l8SiOHs9U5iV3SUtKdlicZJykmeBet4EEwriryAe3VGqAvQytyvKADa0i9minmBLOgK0EWuXCBXA4HwGkMyEHxCKDT5++lN9J9Adi7l8eS9cZB6ZlHVfgi0w4V1Ebqh+B2QbT32Y/5Dbs3ZgANwcMjuTJTrXCX1TtDz00gJJxmYuTbRjoU31KmYZeyGjFHcaNQKEXwqtdiNgVDTUBRc5nygv+L+TCIB8y9ea419qdpNku4GIdNQJxuVtn+g/wMHP04Odhcb35Wq9G/cQwMYbKnDoeDZ+ZNdCPUncOdIsE2dTSlNcW1gfB07WX7RjaunmIpvqQ+XdXDtmRQ6pPx7og0X0XA6ekM8LIRX6Wz9KJlTAZFue7BIs9ojz/0fgAVbRJxTIc72TugBZ8cIfa33VKPO0gMP5f0xjMT1Y62h2XR5MpSefZwpEX0otqEBnFLMNxns9k/BFrdoH40PAFPhetsqiidBJDDJLAfovyvXUiPxStcE/eVL/miIwkcsTELnfA0r2YhWCw/URMaX0E8BTW6J8rvf607cMz3CCfhyY46wsZ84HKwcpKjKPHVGO1uPCU79bGCouNru0BoA0Z1EJVoaCb9g5ZGq9zkygguRV9GItJwyi8ZFuAChyS/P/eoEBJPkYs56sucW+JO5XAo77J6savw975sY6jJgM30gNFneJYEN1K7R4XbA5ympfBpRtYuYpN+alWIRjqeh3Z1iO1hpNLMfWUZN+zn7hM9o0RxD5fiDvS+mcWDMTiyoAZKi4j51kn8iDfgLj1kvZ3UJrxyRTANkgp3QDzcHKl4rn96H4kc/c46xXzYp2lQHXzF2YLfDSbo6TbvuXBIZlUZaFbgpxTQZDJBQN2KGK3m00lMjXXqa2CpYzklPasSOe/qIHxNUReXONVoO+xMF+Kvrv4KYaYDtxSr1tS6uSmKWJaKZJgXrD7HJWVbmBNVkjOmrA7xUAbFBTGMFK/XxO621eCTkNxS/02YEwIi2qiZ2pHNffa9XHvvNsN4Pv16CDnVpW6chyQshH3jGDuxktZtn38+Id0lAStr7/HyQEQCgyU3FtdA7oPusg+sPZm41S3ydbd3M8T54KyLZKA6uf6/lO4gQyaHRe6R7a0cL4m3s9A9wD+m0zLYjZIkMfBS0zTUxkMtnZepl2fJAE4DN7/vhaBon5vPAl6C6Xx/NmaIRy5dwi2j4aA42HtwwpWcFhe9TYU0gF4KUt70QbbfryRax9nsjsp83qDuwfrE3WeIGAmQWShIaIBkHYnplgJxNVrHYfgj8dP9bsIaRWmHRd+byi2Lk93uLVzqEmScI8WnGe7ZFV4nW/6HPKjbRu/GvClglUhTEBvWSXpfX3GOjIqiZp2fEeSwC9LwmInalmfDKiU/f2QoYE5AEn+fBPh9cJXQ4z5DWO9bY0W4mphXnqm/7wZki3rTaLzEUuTcPoJgFIeI+I2AuZNtKytIYs9oZ5Nodka/7aKDN/AVDk4V30YQxon0BinGy/IVLyFqfHr/pdYPx8EI9eTN8+Vpkq6/Rl6zMS8FAJ+NXLHrYHqquXQt1WoCo8q9K5Ig9PDbzbaX8CxnST/ZEpVZe9WpBZ8qP3wvnc7XybEfLMk1xhyrhQE+tFyOiaHqwXbrKCfsKHK/ZYHoWaau5nHEPDUNmKrZDsSGX5Cj0e7HFEsuJhOE0k8mSZSHvqsCQTRfOC/yLlgMidzWK/jX33i7DwO9A/lKhq/naLDe+Inua9J+WgmwQJgMoKmf1QrimUlI0jEYEc5NymhHj/aobsaimnjzD3f1mpqZqGt0xjTqPjvYHtNwj1uYEP0YdMHTSjtbSZhI/nIqs3bp+nVD6PL9Ck7FtAQ2oTEyYKM/w95hON8vc+Hw3d+DaWbidJJGT5X/Vojt/3lrXK6ElajyuMnDHncNSm4+6qEYws2ssZwXi3OQbX7YE98UtC+d/73j63fQzUbxbQSf3n04/9HIaZ3DvzLr8ah1Zn+GpgnOgRhpuxDKVzVvOsTyvQq4nLvlVHE4zdUqGfxxiJDzQ0/lZNh7UYRkOEpkxMkE2CpX4MMEWB9KwqMByphB1Cp8eG27KeMXqZrGAiwVjRKfrALaEDGSh72ixCQL1RG3wx9+Ug1W7LbwdMcUbvKAQRHTYjwIR10W3SQfHG3jgUNS5T63zrDxGKQV3iMdqrSW32nU85WFJC7UKifO/1fX6/G2R143eOuVdR4TZ2t31D5OTzBsKMbpFzjo31VVc8SiY9Zub7iUp8Hq240iE8avJiwpzQf3IO98kT0tbqd/3X5Ndh2LydfcrGsfpakXVeGJ/Yw9Y1ffzDsSyYfnfB13/FNS3p/E4OeVHqP9hfV/FqbgR/uAiJCZpM68RQ6vWGNzZBLeK7UGIwE3pDeDwCXh3Fu+6uW0tyl/dMTvFXmtPF1+bLvpBZB6Jg2EshLCmpFLtmbuWil1x1Tg1NYNjT5V54NtBKIrcG4Z3W8ogQXmkkOHyNfA7Jwwusq/r4JvmIcVKNj5Wr+88gE6owd2gmLRa0qKZG+AWWDMd9kdzdPWhgOccJxeVMzG5b792xCjzW1RTB+/YZgi8eQP25rKcOZrki24speAXDK/LeOONosdnllTHXbDHPLiG+nphYKNKXhQJXm5hr15AFqsXv+7OLHQL/N1+Zs4en2Tgys0Oum1YvvVoZ21wD7JNex+X9ipBeKvc3IpD35VleWOAJmKRdoRjFsDE48qtiAbnC9z7+RR7VkTCgCHkes9XCkQtxsnGgvbZQ6g98zSQ4j7HUkeIaJFOCYANU+5yhP1iU7Oi95SRmB9ZwHqDkdNUHZNozef/OKphmnlvzncVX3RetIPE0ClD1170lRwhp3SEWBoAfSmiwfIQSdO/Z5PbrFfYxcvB/nh66KYqhqHWRCSu1qbFZq6WH1Lgk0fJ2JDFutw1lhJHyCmvdBUthXrj77Z5sd0jhktNpkv4D1T4koCKuXx61gypO0TJf65eznxbRBAm9kJeh8VXk25LPINNSEuztWy7CEAjvvU4VVy2kClZmByKRXpcF1LlxkzJy/b08laLM61UNWyAbPsh3egkBNwHvppB0W8cfxi/8o8x/xmZuKkLyGv7uhNYCweJj3X5thH4FdfGSc4RKuS9PgPeh+1M7xZrewxPcoeEbJ6f6pXRUvCtM/LrQSeVgdo0gQOAPsCIFnDeZRgpXyNDrCQaDkHW2vwzdWbjvaHul+HThR7cmOA6wVvMV7RXmOGCXXH+oJOebuK4+qZbURn2DGHRTWSbMRb+w9mhELIU6Drquirf3TMEATW7SAWw6RAwEPqYuoQRE0arDBOp+vyYIXFGvCbkgAsjW5LcYF0EL6qbkqt115Rmcpv0/0SuNmd4Hs/G58hM3V6gq8VxcoFASV17lJyrmSE8Ps5lXCdO9ob0TaGwQk9UxBqoK5XIbDFbNHYMzKOmbfNsJYGeUYg0rIwPljbrMRfvsBlSENsByCTyBgI0p9JxrKAjRcU443PwfDk47cE/bTvAIVMppv7zRLEG8v6AIDwfTuhydNr5kW4oOV5PXceLGt0eCuLgAXHiNYgrYCHTIXZS7Ad6h/+Tk78BjE6ris6IWsxEfh9w0BYSm0R+eUPbmqHbP5gQLBGElTrVMXjcQ3a1vksneRvOVR49My54dFnliztPEELNBOLfteNbAGq+7e4Gfa75b+oNVgfwJ260KgSWdmD3JHQ7CfTe8l++ULxXKDsfdsoDyJ3P/mT/jPu3Dhsg5wMoJxmB21XOt4xXSse1PkspsrTt9MHFGDcLnIpQk3gFBB2QkJhhSXPWvDPDHq6O8Gs4okZ50l7z/a5DZwo5OI7rWVChUPhiep6eDRqpw6F4wZg17mXW6SDaAn8xyRbOt+DcXV7xdJt4Xg1D6erxBNcLaXdNhnv1FHHESiv0l+f/J28/KTLE0A6r9QLP3l11l0eGw+FJbYCQIjn3gPme9Euy7sFekMRPEeXBMmuIPKslKL0tjxlLDhbrac3MPQkLuA0WHrELd1wOJDHIws+nNwKMFKkYEN6kWpBR/Q6/67EI+TAiAmEbyXm2Mo9Dw0aCdAjucuWczUwVKEEH57+NGZ5Twig6cGPGFQwA9oMtUp1Inwn/dxvJts/Nj0Hp9XlSnNijAhQSybYLViQZyxci20wJwTE5NFK5GdS4HOznqzbsJAmhVReILWYElUQhd9ZBMaFK/n213mwh/m0mFaIG5TgpkB1dDkfkBsNXJWWBs9qsA7z0pAAH8XZ2LRmiU5OMo30isKNuTypIEvBR0uxRcjsQknYSPtc/FoGqU1yx+75ctBNsOKsvue0kSXR8SuBzX2kiFA3XQBNJ0bR8UyKrDxL4mfpyod1bXzW/VEksa68Q7e7Q/S918EtTr7JG3eU6oDOsCvDYOqR0wfYt97/cnwRvapnaQIYHUSj6d7kvqonMxWGiSdWjLvaZ4hwl6yvitQN5HGqEnSuYyh55OYSTAcS7we3/jQEZOGA1suevbSWTgqBxALmPvcJsjOh5FWBM3lw4VDHbtqxF66kzxJf/UJGBzg4Jt/8weRaiYpRYhFcLNTALs7hevreVAOPq+RYlV7ksASywNgLTU2vcxEs6fteiT4aYivzOo1pPTm4vMGm8Xy/QlICw9LTK8vs86e6d0m0+b9zPTrwDx7sdvmT+xCf0NHzMoa9aIIBxGjMCHr5znGiuQBRH+y5uz1J5Em6wQNlgrQ3DrMe7WP1w6tpNm6zlnUTq2RsZ0zwKsu5thiagVIWs1/HlqAI1D76eQ3a479cI9WSZltkc9Xsu94n8sf6qVj/LwFjhwItBTgli49gSLHO8MdKrHfUxFAhmoSfGoMtFrl+tTPYDiFjzqoBLF1lWXecw9SJLl4hjrGYDJlz2xjqGr0A9JCLs4udej5rWXfkXEQXuwkuHw1bhqscUM50rxDvX207o/OwRxYQDLqOwu9SxQU1JoeZMZklAXe4Q8XNZOHa7tai0fPOUxfmtjNu4ez6iMfERc1096Zt89RsS+MqBye6wQ015BA6aho7/6ID7PYuCCsaF8/tfvX89jUnSdYr9K/t1vlUwnkZE3Cf4yZa/T4ZTuYJAoAbAytWcwxRtVx7BNUPoq4S2Gz4yWhujQQy+yVmZlhHBecOnUy69+gvpkEbQhCNlfjQVrT6i3VotY1zIhILhNmYpO9+/2LwOl73YXNIdc+/7NqAt0i6zLwp7BUfN1tCIqO0zbEC6TqPjAxxZfDSz+s/z+jygR1PNB5FLqj8WSicXOEIAw51uO/trV8/3MfcURha6U9t7QF5MKUti4iAp/ziaE7U0ZnHYw2rBlnJmiD0lcq1rL9H40AdRxos5GFo3VTFNFlEiuMvQLBL1UYSCDdxHwWqRK84hgQm5K2Nmhx/6Wp777dWGrr3XGMl2PCJ3OzLvT1YQsl9vMKsx2M8IgenrJyuuI+aJ9Hr/HmBRduqbnF3Rlw4ZxSIvC7Wopqci7q5OuTArCHyhSwAyFe07yG4NwJ0f8x0I2FqqGhdWiMz6wp/O/X2/5AEjsoy9+pqXJ04nMnHj1xVUm8CCyDosYPIYoGPJf4ALaYBLzmJ+Y39yzDjmSV8YyBgH7yGL9WNNSwSwWJnr0UXNHXqzD+d7RdgwbWf28Ybt+L27OAaas27OFuvzN521XEgmfwmSjUImi9IaAqIcPcsV1vWoYoLkd/I6BtQ3jbAmWSmkczT5eQvoyWfETuwZv0zAHtyZCMB1JnbtDsaRlAt8gs3UqFSBNThnLJ3xjfch0kuK2ATUR0RkodsAHcyRSXPnmnCdMyY0MTkGU7x2mqO1e5dwiTEbjqiDcTl5vmKtheDe/3InWCkGU3hioTAcwgtgkpDeROelNWBXZakJu5vaH5d52SwRnCTBxKJiFv361lgoz9g0fZvFxsSNj++0tT5nPF1YwgcYa0nZWH4rWHHMtA5A2e0ocbiDLFnaUzQBRvFumZAdq/doSQ8/iDm335dbLVqZYvIQRxRuOOXNs+1Ouxtp3+Wnz0Z6AaRnoLrwmtSdVgXp4CxnnoehQS9odUE0l3/ro48vJtZlXAjHy/fWq+El3+2eqH+idlw6tM+ROSM4lafwRsRfclJdc65Xi5n/JEiMoA+5qt7Tqqr6x3fXDdXu2QkCpnNV7X7x0Sd4sQBTUICw3CpW3De54DP/+O28sFIpTuwhxXbrv4VYZERN+0Mm/DXxbpd2XUtNR2wEtlcp+ZigwPAgU4bdkmuAHW+AT5P/IEotZmFmOtUuiNaE23LV99hmrcPzx1OjRdB8WKcYWArJYIYE69V47uBw+JHmPkvE+V0IgyMkrf3f2wjwcAnkrK/72as2q2f2oQ5J8eVvZZjkxsycbIbnzOb2P8OMxQaE5AHG9o91OKYqj8GVZxsusbv0J2j5npOEa6rgRlgTwX0c/VtwUTByftl4Z370YO7EcUxOa2PtyeiNTBCGEJNjTMMvmK7xnlvVPAuEE3dHSdCh9hbVc8Cm1i/TWrRJvfmBFecCps2RaBvi8jbKHWHIbxBzjyUyH6VvWJ3GsTxyn1jLDLG+KIqIL0o0KCJVkmt/RF/4oULRK7c7rE6+wWgsFHjuGn1onFzuno/U9c5Ouyw7u8oXbAvriuKR4e1Kw3j8cUvD37Errc2jJKU/c8JjLYKuquFttc/+Vc0uVZv8Nr9Rhm0FIK7z8KXUabAaRfE6rjh+uYfTt46MQXpScVN5VEtTjtiVFWAmnOI0wPIMIetWjEIAMSLXwKp6UJ9bjGlDzr7EdWnPz9Z5IemjDCWRRkPG/3zGtIWKrObG+fhjE89xuPnc7x+dmWt8b7jH+W8S4+TFt8tV/VX7/YWvho+JRX72qb1Hjn3T0N89LuAqmES2WBV7nZGgQz7NNq5UQYXW2bQXHBOWZ/inbMUZDyEXG2pbeJ9QS88cCA2uVioHlqDotAH+C3E=
Variant 0
DifficultyLevel
587
Question
Which of the angles in this shape is closest to 80°?
Worked Solution
By inspection:
Angles a and c are both obtuse (greater than 90°)
Angle b is close to 45°.
∴ Angle d ≈ 80°
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2018/08/NAPX-G3-CA17.svg 260 indent vpad
Which of the angles in this shape is closest to 80$\degree$? |
workedSolution | By inspection:
Angles $\large a$ and $\large c$ are both obtuse (greater than 90$\degree$)
Angle $\large b$ is close to 45$\degree$.
$\therefore$ Angle {{{correctAnswer}}} ≈ 80$\degree$
|
correctAnswer | |
Answers
U2FsdGVkX18Pioqs8h9VIZSCB6KHTidO26LxdS3I+wq60xHY+lSUGgLJu/8EKl5e5RH7SMJm9ifzsjCbrtdnVLoIb388+B4/wXrSmamW37uzbQhl3ZaJ/CjxRRgHoF6oyk54yeWuZzdl/uj9yHsYt0Zyo3c4JUiv5ndm65gazeMNRDSIkpZhO1lEzx5GdYy3HvP6lsTP5bWoJjxygOI9SnDQP2MFnUDV2fnSBlXN93+wURJYTKvYVnTbuLoyvVGIs1sYiqvtuJEyH9mxMQ876sEvcDtVwYyh2oRyxtkqW3euVrW2pBlmgKGMa3KHK1Z/E4x5n709mBrKboQqSU9DlR1WZrLMcns3fIk3YMOkvtN6C7CtA0ilfunsRJpQaRLKg4C1rJ77oVn2tBp3rs8/YL4kkxOrvpw2liXgv35c9bIMxqXChktWG2Yc7dFjcAw/7o4K9SV3pP6XhYHpNPeYpbZAhOMSmJADkBVwevVdK1B94zTRMxQartV9DJ8wNXMTNc8AMsGPzxXMk3CINozpM6dSR2Tm2PzR6jC3MTJfBW2AoLN2ZqvcVQXZZygos/yyVX1Ss2fPuJAhZg8RRGltfled8aymevN2rlcyvjEkJXa+c2elxdulLLU2Dn9mED5OupgzLj4DBZO29eK95PMetHfTDg8mEcaf46/9zeGLTyKbEkxa1XWUF+sEp7V1Ojr0NgksD7D7C8UZDBJN7PoUX6bvsS92fiZKyoYjtbEufZ/DZdmwC7FAVu5YH3hmVODm1lW4MBPxki45Ae8Pasy0UG130BJf/AHkpps1nsFaO9NdqLGaBGeAXAmPRHbiYOecR4nAEp6bdpQluVr3vCPP59FcXxzF8g36H3l7Lij5GktqRjq2WlCPK/U+pMksug+4mz3Yu2Lqz7HxmxKf23uICSYCGsUVg4tFHC9GIib7pjgNuIoXHb+PJYJtu7hhwzjtIniIX5hHmt4ojetEWtw284kWcZ9v125PnwFP1vcskfM14uLs9DBYCAJGbmCueUypFMZN6cVk9LRJ4ta+rHiV8ts7WBlejVlK/EysDbg8IxEbrh+zOX1GaiiXD3iQ7cbdW7rG9nxSxWNSr0jfDWMCNiJInjNOwPC2cPc0owzxLuY+lQ2Fbgx4RvA4Gx0Qh0kLWwBTGKH8Rb0PkJaSzEJyzICz/e/IOU9/sV7suN0ljtMuAHqGxekF3pgQ7IQxo1Qai+hCKcuhaAhyyyr52Xwd2tAcRIjTQfgf4X4bYDpq8OGZaV2YIoMWQ3OhJdgU8ae7Z8p6yXcOUYyXqHW/MjNhjnLQj80uKmictHYrG40AHZLxTBSqG1iq8TvhCPtM6KORhV9NBeHmjkINfBUyXAyyuegzWuqLlYejnk1UMTKx7BQK3Wfp2tpg59ALtoOhpS17D1Yl92JikD7Uk/7kl/13NKFj2S4s3QG9Rc/OL8Os8Goju22Kp2y9U4hh8T5D8vmXojYOdOJbBreJEeo1hKpgawxPClosq83FAh9eR0su1HoIuzs/DIwoSSMqId1K9HbXPsFcpxzlmH45ud3cSvmJ6G2Rwfrz/uy2FOO42eDnRUp6XvjovcwSDoGV8EeCK8zU8Hoj8SxeC33oJxN6LEtCd8CBOz3kyd2/gptbEaPitHq28q7Z17D35zW9EZmRAl/N72H6q3dz6DUsLYjN03gqwi9rooFERydMsVsduyT/GBn613/5kf0dtSUZvj5HWX3YjrFhDKVvP58mIqRiTWm1MrShOvr+s1kRdcb5ChiB6yyLEn7bGAWs7shLbXyY052mvZEJJA6SpifZjk2xOClQ+t2hBvMiihTLlG+7wcga1Gfd45MSFi3HZSbv7Xit6Xgmx2hzOygJKbFOmFQCxVK4uqPlql6eDGlGBE240DPtwGpMjM505gl355c+L7Ib6XkfAIWmJcy4TkdiPEYdHAFX8krhpGczqio541CT7qxZmlh5/GXRePN1vpKiVychN14GFWGWh2L92lJMaSKptVeX/+x+B8MS+AM3TTO4jsfMM6oL2TWMDZVAn1aqfjhXje1u+1dXtCEj17IKJQ4yhcBFqm4OdAuUePkmal9vcWdxZ93houhYxYCtmNyhBsK/gKIDDnX3l4RNoVdUVfXwv6A1Py5zGJc85+ELB3LaPlg8x9oeJPMwtNi4IfyMLMwMNE+FLOSeTpkneNFRC0dC5H/Q+iTcJDO8MBcx8PQx6t89KsVz2rBjhvjQYb96a4f9BFzEbRfq4dV0NxVER04eCpNrWgAlIzqAC0S5foDrs7kMX/Kf/BLnIS3DfUpkhsAwCW7x5oZZHe8s0+rFwed/rNOd1yL33mkwcPCPgDsJbCgb2YBfXtTp0eVo7OvCC6kACx+cAh9iQZ3Ic0mgO7Dq4PNUop9ln7uUPnDe7ohSNay7ARbEqF7TGpf3T98PErMQl44iRD0zUbeha/EV60CY+KS7NTPr4/fc5NcIgCrmYF3UN3bnMVb0veoScRjOZFMrwNiF+XV/Xkc3HvxQlA8xlwRyoHFC3LzZXEW7MVsZ6Kxb7Kr/cJS/bHVPe/GkZLj4h+d/EWui1N/Fxjm0ZrSloWHvPYGuk1wduxPWOjTXgbXZtGvo5bek3QHc2t/1OR1TPIjCA4icc393AgXGbYlCAy/E8SNTFZEnLtFMZKCwM4ZbTLiW6DBm41axEl6kis/DlDpHCWvbwiR7JTNfpAY35tSki0qwkIMt15W0RyuuvPYTtSU2fTqP71flzLyZvjas4fE+JG14Pgba+z/undO/F4PZbJDEpZaj5+a076jLjgBBdpECy0tdf5Y/1PrS1vL2eMlUbdp4iYzCGHOAhRONffQLjjke505e2ubHHVrzxjyRGmGAwH/EXlh97o3mz2I98pelWm31/W3Ew9pVKjGKAu45WdgfRezfykYCi/D58eruUwQ2oeF9K1w+TtlpedBOmBHddho1VCQm2DYMrm0JJFjn9kxNFvrJDOjRn4YFPLf3y6zxUrnlH48t4J6Go1kyGEmVL3rSnR+g3qMdiW5oH5b8v7mNtezUddXDadUF3WsnIu58DWn8AAkJggXua9Kn/V5ip1l/N2VOC/FbzRJyLR40f7gnE7RhibiXAI89VBhr2D1r2pAbZOm5Edg+0NPyIihNS3COIkFsIK0hnhXgRGEG38b+urntRk8SaGTmf7S3ljFBOcnO4EV8krWQhfsf8p/Ort/tpX2800yxhMpNPExl7aBSQYMslQpzZ9Vy7pBiVOBJgP2sy5GZ6GgLxr9MUVLgMofO5t1DZfA3Lux1C+KQEhmAeGdaAaMg/kpLvzoonqBSuJ2KiCpTx0VL4HFgfuOvM5ZYX0a3AZCf9n6PEccI9E4zv/P8d2Nq9cp5mkrCLWMp0IN+GhPKA38BRIlMRMzlKJnaA2r95NQ2U1bwzX9Zw0z/NDHp57fGjytfzi40crHvjm4tu8svErqwqhtxU9Zg7KqprnxtEQwTXUCAsXD1dMI0rni+j1pNyy3e9HJqzeJN+lTlKWwI1djkXcy4O2rh4H8tVBROsGj8JuLdG+5UiskmtzIeZzADb63yOBOTzO6oLYwmTrZf7OslsC5dbWLy1IqmiiFOot4u3zAL2HdsqI+bkSRWIOkZ9Fnv0AxVFhPmQTkRb8EFQJgZqvLIovJ/xFTq4GiiAd/YPZz0N//sbf87NnA7VLwdo/BbpV9FjWBpdQe78ByJpsYcbiGtyLqDsTAW/1lVVvuXZxxUaJDtlQ1Fpx3ryyA45jzkNGsmUSyM+kFl/U+nb6pJEert6cyQZUT/GoTCKlZuAs+b2z8vSay2f6NqweHIlOOWz7PPlFyCNm3KPDwV98AmLfr9MZ8A6ac3xAi//x5fDv8ArkECwHAkodddcYm1OTaqs0ijoeaHbuZUQbDcq76luw9MXexz3aynMNvqM9CKanK5nyHn7RV7sH3mNohWxcVB/SJcQYrIsRxc6XFfIy19ywgEwTrgxczmPC8pHUGVrB//isIhWhvYk36wjWXQlw0FiO93GoSot+iQYIm3Oi5TZdYXLxIMlAgPsD2KwZvG3MOkCWAXKbCBaFX4Jd4KQS+IH8lBAfI2LG+XQeLs1DIxkuvap3L+uueSoQ1bSx3QZ/EJFOK77Ei9ISYYlfoosoYjLLtkyKFPaI+WPgf/a2jesfeTi88crxAXTIJDiiaj/mtEoUq+HtYdApM8FbRLhpwkMiK9sfbz1Tct8V0nfB3kTI01P2G8PalbCZI5xRUGqROHFBg0RFX8D9TyqaSw+MXsjPBiRCqq6uwGwQlJVKo8anzqL7obCyJrEcq7l8jiKYQBUAYdL9hz35NNLB0x9RodsMp95gnUOtT2UOjASVYmk+EltUaSoFgBXluHIgNWGYn8TnmcC/MKK3BmKrh7K72z6fznXu+BXvssk3VlTLN7JW/Rz6vzEbni2EU5UY43uuaArNaPwgp7eENZQl2ZEmM+ZtOBhmayE0pVmM7P21nixCrDBkRgBWfMznIHDgtmg10mTuHSCF9WSWdE2eHILp8kIQ410xKf5IrhE/t2OYCtlMsNQ58t7WFeuCgOY07lvwfmlgk8mUmhSuY2j7DTJcay136ErLIrn4kqyeujG6IKjdIlKAc9rsefzlQI6PwKl2tWlefpI86WMlDTVbcM6MHG5Dk2cNPFUHq4FTFxcFWMV32EgSZcD0la07f3j9hU4JZzqH4kvv/aIbLOkcpWLgjAU0IHf9/8bgEDCSfXRU4ihEwpYVmQFbm23AGwm8pwFFCdoofj+T6MHxCjebVWUJwjvZc8CHiDYdT7wqOKqmJNs+yvOQkvKgpAfb5PVWyPzocVFaasi/JR7okWlOWYAYVx7rgKtEXPsbrqu18fJGI3WNele3AK5qH+lF1RdoAZEML/Rr+wXHrITPI7t6jtGt5gviJujndz0yMTOlOCDlHk2AF6D96g+ECY7HwVZtfm3tiG+h5yKjS8nQezq1tT+lWfYLdqyYJ6C6miAOshVBdPRvfroOiAkVSHUdth0wv6QDxlBUisMaCRt0kyzXHFmKlV6F43fztK87/czbHZrnbv9aUJu6pDHnHJ7+ZXvT7E2/szFsHCOtXTEzOMpxWA+exyOUbYSR8xGucYNnBIfVWebI8ssfG/Us9fbTDLmL86jX3kQzsIbvJSbo84Q/2tO/+1JNoFxXBQM1CE+qY04mu8uyB5bq9duZj+2fMD9OI+QrCW4v2H9xR0gSvO3Lc2S047o46Wjeo1RMKwLi5JSl5yLM+ZSQ2g2dfV3Sa+qxk26GS5UtJejpzQGPjqEO+syDIgvQpooDtr8lpKZF1c9GE5jMWWIY1QOrTqh4n/XE+Oid5yJezCW6689xiNjhK9aXx+K223fLN5A+8g2XPppCSVI4an3BAWgbIeZHek1NI3RUh5dv2kjFPRLcElGT2bVabOwrzA/FXy6jgxAGetzimGoWFyHso+RGsvKfGmawYnXiF5IQum2WtKiOs56xvy/ZHE8rhUlhAZerle14aOrbPe0SdOyyp0ICwFdJ6J8+XyCZGoS6g9k0ZuaMiZIsBXoCIfwLkaO/M+q2MnDIXsofEbmo88rXbFec8R+PHQpbRuvJxJ0xdizskrrMA5JA/Drychw7v+9/AkTiKNklHeGMfbO2GNrwyspjsN1g5LzqB7Ov9KeI8E9iJ/QqFikqU2Fjirw3xShll6Rn2VHtwbKOf+RgAPNfwbZTNeMuwQ+E7H0DRMfrVE3C67qSFxO4w8zidk6rkiJNTUpqSTz/JvlsRLHAJEb+kBLKy+bL8nKjChTRQlh3AEP1RT1mEQ9xBpj9QtwgYH0VSB8aGvpjYQMejft+Zc4Pi4XEv1/gaT3da/gNQllknyx4U/Vyh8BABiTi4vJCzQSigaVI2rO8w8/qEwy2oVG8dvGATlgnadBWmv0ANcF5BgkGB5ar6+TWHM6OCrmgDpnCjfXuydmmOwgLHlzH77v/g9T2l4SGZpq5ulBQqxmPeXYqxZIs2MZaqags7OlgvUJ/1//6IANdfESYBRn0AFrd8wbEHnVooM36xEpmDKQwxfdSljr7a9k1dneBtGsBcIbMTtNuSncZUSL3kKRKxkvRLeel62lCrzVH/pW6p/ppYnrl9vB1Zge0LP/VxnM9eus+qKLcew7fp+pTBso2w3Lu7AOC6ckFtlekd/ooo0hE5TSnE7dNCNCIFxfGZTp5u3m86Jaw6uETXcLQnLWbiMtnu44cgYuqosFR4MQs6kri/Svsnd1v1bbAYOBen4lSGXXjdp60sQt1ICIHPrv8Ruk9a+0zUVnu79dvDxqjC0dvcskbi8k7ZW0vY7GlexLJdThvkyxY0GbMwBOwyQ4UUICw4Y9LPL/VSTOS6mPWY/Kx1cGgyD2XREIvy3va24f/XMS3XA4ZY3u+ZX4dvJJ6DzG8oy1z41q8wv+8h01WjiEp0l5fu0b0sCoTHh+1osgz697VbhaA0LyHVXb9tpvg3qaOm7X8RSgTso/W8dneFLn37Ovc9GHIg70kEyUtP2xzYdK8dCoAenPtPF10WZ+0Iq/c7ax5Lv9bLbJBS9nbnQXbzmzM8Rw2U5BmMoP16HGxAItukBWQc0OoIQwXmRPqc7ZkCY9popde2C6fbf1LpLIV2u4SxUKgzvTHwidMaRwIi2h6mmA0qyE8d/sbei9ptbQDKdkItyeNWaMnPHqMLSGJCNESC8N4w7pxpNfcH7ZYZ7dwt0ZZg/N3hABYckbcZg+Lpx+zDmfQqQBfoBtCgW8tG17yanWkOp0WWaCO06lLAO+vORIJhU/z9GHRahLkOCu8zOxPKUaFtUw1N4I+Q9lefNlQsvuNnjRRDJ5HsB/hqjoqY+KscroPAi7Xf4lEPVxTC0XPWrCHe5WSMHWP1kHRQjul6DY9PGc4qQA7agmZVVsIXDsPmPJqO9TOXQxBQo/j4xv3p2jqhFX4ZM2oAn4dTCg04hp0lWjbtq66KLenG/nqBEEE8QjjjdPKJCMp76VBVqMNuEPRxucvLOk+ygKyEN1ddGI7ioQOtydB/1+9xrxOW5MFpxq/xg6LHYa5Lc6jY7N5t/sFgC+Mox6nmtRq/VfFwpIAg3xY1BYjgbG+Y/Q0t1Hv1+el/S7qzmL9GR5gp5aYGCqtjDcrwmw+q1f93n0w8psgYW2opnsqNUzj9Q9pGeN7K2GD27ZXIoZDO3OV2J8tE6kUQCgz1Q1tmunQsvrfD6nFME/H1+SFkQ6px/uXJwtIulkDHdCj9JMPWPjuRfdQaEgh4PY7Z2I5Mh/xiTy1j1cor+8Elvaw5CNI+E8Fz51Z+bmvsu4LtTktW4aoM3hzB99eLWZRME5q1npUredaIJ26f4udEvGbkVGOGbqhgjSqSVIUo/LS8WgDuuroxaJp0nmUTBJU+FJMSLVrq5wjiGKRYsEW0mgIHIdr3zo6TxNA8VttDtxZdQdtR7lnWiUNRZLROZu+tlipAAywT9uI1HBy8xYydYQkFDe7vpm841mueHsDl80GcnIBC64OCNRgsUwOMzZJGe4IuOUp3A5nDol5IRU2aNF4G3pzhA78C+9HgsgHYs62L2IBHzyO22KMYvS1ua8I2Dfrb11e6TdvJeZ/WlGLnHKtIzm2b5aI4DNpmwSV58w8n1DykZPaVTwjuVtwYv5xARFwmfzaooMAHQ3xi7MZKmeM9ozKQl091T4u5WWNj8keLul3+Bhp2rIQbG6mv7/Mw6JGizNhMkxAPOj5ujPVfV/PbjFxYrOoVVKWNNrTL0uFhRl5+kt7GlpjQfn+YOs/nI/FkLpJaPb9CS2d6CKHdzU3DRwc1N/4gYfdxzj40iNHJM/IDYKtYMru9Tp8spOgEdTMHX7M2xyZQxcaFr1V8bLmQsF4gx7x7wJtOIkBLHt22Gpupko/RQ0CnfG6YgMPAOJjKueKFqwaL9AO6Q7QQaWKwtbdKnZJPTbAdMJtt+Dhh9lfYcfdCfSMO19mDxJ8spwbtt8O5gCmtTCT7oQ+I6dHu9yxwb2CadzIhajTj4KxaOa9CLaD5dtrklgwak/NUFkQwrv9+vzjDmhhr8O5EUPsM/0HKePP9kY/cXzmOPRjNiNjbWjmN4+c+f4iL1FcVPdJOAEglX2Vqtk8A+LnJzeIvYA7Y7I3p4fVkbXojpNtSzbKbKcjgmsl6P9xus0DTjOEFBulPy10dogMkGFSJaEe26Lpi9K67LiCedC4Fx76IZuaclGiHY95xuUbUIaJ2d6xWHFIr6QmQNYpl7cEZdY6zgq97VniARqINtZ7qut57GhDI+LIj9Y1C0tEHOh4YQFJLKHJqQ8F8yf7oHstf1SHC/Jw74WoCdKV24xuJMOw5x5G/+hAcw6rtUnXRJpz1fHCXT0VtO89UFDb6IH0lk89mLr9uTEAsVkNWOjaffzbuWU+UIICkpnGG/lpXJJzLXy30vGbVOgi+i5qptroBEcC+JAC1RsMZW2d41i84lSwxOvUY7FTJU+yzNUwN/MMf884S9ugMHU5x/1AloVMo64IX7BIniR1oaa95a9HJpmrJJ2fYKhmCdoAbNOSxLbmRVAKlB+9bYzVX8EpqbNJPbt2fpG3ccrn3dQ0rw9y/MM4wBw1M0wtIaBfEZHHPevlWNgM2DaWDLS3kr9wz9YDBw/VDXFjmhMsip+x4vxxLxiR/fxEvpJU3PjgA+KfJbFJKAIF9FMWGozXTla1bDLFDzFSAjOCYLXA0DeHHGaFSooj4cR2RO+/igB+VwPGoskP43Q//B3xaQtrkFzA4TubDBAmK+GFQNSn9vEsTocuonMxDmrmxrHB2I9Nc/gS7I+HyCGm8LLUV/aqQdcssaIAFFtD/Uq2Lgb+DygGrPSPFS0ViuSjV8yUbIGjhl00EykroSXDhILzW7m1IDDYnRjwDnGhQmo8d2WmwqzHZwgCeJxmQMi0Yp4E3CQWA78yETPWHowChLRwtJiA2ig+vLhCK9k9EWmTeMh8m1pS/r89WYn8aODYBqN8KbO77jhkE+23g80XwiZ/9ytNQJEI9TyQtaRD7nonj/7kfwOXU2g0pBWuotO1tE3EVM6XnizG6sMyYnstaltIFh6PkQyUwciJfMVwfLmg3SzyKl9uBTT32E2Bnd/n733H7BZAk45ZAT42Ox1LbZJqPhuqAa2UzEQA51L8h4bd5V/+CbJTZtOWnM7hlDxt+P5kB1QIh2m4Ht1qrNSZV46/0UVDKVHb0FElYvcNZEYZ5XzzNoMRDNiNzcN/D2bL7f0B3blIAsJsCF88INN3Q/qBTYLCnjsPrHyRXEwPFiP0V4zvqGhaHv3xOAh6T97Z7wQbz7YR6cJcHDXpf7EyA8CPGXMY7ZNwLnJWl+aTRbC4Efe1pkKdZ6mV2vQKELT6TSUW9wmL8U9bXoW+YJ5qpZp/MnAiL8+Lv0x6f9zuD8Emt6PRm+iPYVxYDSV+x2o2okZRxJZarGDhBY9uCeikPNySzYjkQYYv2PfoHsdi+1e9QRk0+BzzoAofIHAN9x4a6vBBjnpb13NsssubJifgzE3xc5wYiBHccENdonsf7btgo3jttTWmHh27oxV6+hB5SuSpw5JdMCBaaxmxKVnKFzeGhDskoLaCd0CFBlE4NFCQokRijmpwX+4Ll5YWFKVS+L6YdpllXlyktqhm5+QeD7P2TOInQqeo7LMqGrvv5hsxTuf6jF64jo34xMRcKs85ZIMs3ng1Y+o3IydGpix4vfLGLlAhyq6qIUslTA6yb6YVyhOgrMcxieEke6OO2jkBr879wCAI0pgYKxoBnIEjtwlYv8qFYJasV449tw9+lGcyvb/Y+rR0P621q06YKvja/h+DdURuumnDO4ofiFAH7eg4QOENk72ZLYRDn/4bjBccyQL94SGE66kEqNPuYkbWyO8Rtpkz7VLfgsqf3voj3RmEjsu31qzCBMikWKeVO/tzIKpPnqijE38vh8phvn9jba/I4VqIVRGMjSnu2NlHvhE5+AQA//ca3AI33lWNfzxvlA7eAL3rH16sjU9BGMKuSeAw7TwVPLaYEMZvGhI7AKNXyF1Wn6u2LaBpon+JOPglOTFd8yp9tjrvy/LFRnjfMoNxSFtONzr1pZ+dJwQ0WJ+sUA5fdWNXkBtdbOEKcQccbQe33VM6WtlaJJOuDe+V4BZ7DRQ4CdBG44XQBktNXO9pPlw2Ob4xAuSOZHazApr7r0MWY=
Variant 1
DifficultyLevel
587
Question
Which of the angles in this shape is closest to 60°?
Worked Solution
By inspection:
Angles b and d are both obtuse (greater than 90°)
Angle a is close to 45°.
∴ Angle c ≈ 60°
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/11/Geom_NAPX-G3-CA17_v1.svg 120 indent vpad
Which of the angles in this shape is closest to 60$\degree$? |
workedSolution | By inspection:
Angles $\large b$ and $\large d$ are both obtuse (greater than 90$\degree$)
Angle $\large a$ is close to 45$\degree$.
$\therefore$ Angle {{{correctAnswer}}} ≈ 60$\degree$
|
correctAnswer | |
Answers
U2FsdGVkX1/Vg/9c740zW9KoYQfCORo92axXnGGlHVNteiZ6y+fu40nlSAws3cBJZTE5OdJZjzplldhiLxfQ/kqzHnGDeEtDz5xrR/ZzK1w4L3IoKv/w6O4J8SESj5O/ljsuGQlfR8J9RozeXNfDQ3vqz+As4Ag/nOQiHesBm1iiZry7bacfRI4jVqnCtupeqXjoGdbBt2tSXEynE6sP/Cb5wl1OjibYF/CEH507qpTuq9dYNKX4WEVA1EuyIjI3Osg/fwaeLBgdc42MUknZvMFKGl2Rpl7ZempzMIOcyq7NBmZA/lI3LM5pE2ywZYhnfUs8nT57jNRL0E8X+djb6gynUh0z9slE2L4S2wsFVIwhxlH8AJoJpncCCUX8ypAo0RhH4tLaFpTp32nzFv71x3g6Ootxn6JF85eIuy87lbl4OCRYaYL70VhW/N0tthmR/lTn8jCLJ6oOcX3nITsYxTdT01RiqKCt48w+rUjmcACPnlShJ8aTo2EuE2zjLLWDdRW7bbp2gONpImBjTXCWtVPFrr6JzhdVcX4XxeoCB3PqYm5q4HclsB/VHwyz/4vCLj4j+HCsr2+Rpwxfg4xiMZTg9hNEYAjE5VVC6+Q4r7vI8ZbLZ+4vkRRptwSF1yqpzWDPv5RbLUsvqqVjO0sdgClHF2FErx7l2+P9jqyy0xf5KmTzZoeeA/rWnbEgjx+84J2GtXWOaFfqegXMGjQP4cNOZs+EVkyzNqdFhCXhZhorPnELwZl2N3m2hxe7XWPVGXMTqwSvCMzhZ8xsIbSXXlb4le2fJfxzRsjr/oPC3vl/oKZ29A5cE9x5pjG7o9RX7VgoDYVVT7LAsviCUVH3YFAhEnu8E6/nnaEUhZgtFheFMbxmXSjZY6kiwmrP5ujA53OzbB77m2ZN6RdEN3wgVBIG7mcKXMivRrgv3YSKHAL/nsPaDUU2/nDA5kpK6q28mB0w3HUGupGSkHcUvBvWaiLTt8qoiovC0ZD+svwHKFbQ90L8MbjrunBRVsWVyBWFyYJzEHfkXdc44KGnbTn7VRxQ83yvkujf17aOx5sUqr52CHt8Agjvhj89lFytYkl2K9TePT+XSQjdzmViqp4C96yLomzT22NtctoW1tYwbiFpmnOiwLBdtgojwSlXJIVWCzqd83tneYF6C/LPV3mRfD9ApF2WHq3A7cUoeidrhtZeVeX81DrDfGCMsWlz0QWEcurZLPRC66usz47H0TGFPJGAosgDeOpxceKDfYOA5+ja6c0aaNg7OaaFnDWlic/zkLPNrPV6cA4/8DeVn3EIPmbbqe/dXdJihHhOB2Pd9FdR01EHRCz7rASVNhn60CqjMB6oNYsPNGx1YqSvrRXeEvY29uLF1v/LVO9xiS8bNkqxpAiD3xvY5R7XOLf+aGdwH7WrDf7miFVxikTY6Prn8rRKsOvGfhKHr6A4IGUc1pPPgZjgCFfyaU8Bvm6vFm2YqUDdZrhaBOVVyBn6xOSTEQFgveV7WkD8iMTkU9Dz3eAvgzRRYYgvJVN+g2BgRTc0T0tQwdVgL2fjLwLXC5m6G03CwOMSZc6IRWiv1lhPCOo11hiDVJaikQP6pcZUmUJOoHL7TxbENQBR4mNNbRdcE/FvjRMpt99MDjF5HxMyROIWLAkzerSag1kn3D+datlrcMYD+zkefzHX2gUPMT8Q3VfFjH98mXexb8OZSkK/PYbWrJwak8FuosIMBBmsCMCZUPyUQnpLOf1RYjJpOY+WNqvDW0ipCQ82KGyh2DTfuyhCdIeqJ15nLfdgr2fuAmjy5xBiKKOq1fvetI4hjY5pfceC1Ta6+hpYkQpfh7g8AO5rcGOg9mfaC646TH9MLjTvLC5mluugC/ccCpqVwHh0d9WfgiWgEeG5ms8LPPjO/Zg/2k+Y7JHxZ5/1TPjg7ZsFHC7eAB12qeDr/wDGBNYyJ709VK26obY9ASeuvBkpFEneqbxoe7JKuvNHkS7k65iyq1E545fiJLqUPtqEsUNlcHXc9cOIJ4GOCkaaMncW3m354qDzH34gHJ1j0D+MiHAa/AfOjUU03jIhLWuCtkyR0cKmPZ5VhBQ3u5diqssNu4Xvp1VDwmVmc9kN71iD7RP8XYa46rXIwl9PRFN3Z76VAYNha2YXzO4WTg0Ud9JqHZZsJJA7HrcqjTOLweNXLaI/v7csTdFVxuOOsw31yOE6IGu6IXimh1upGo+Dwc8iQtoUH3ZdhzdJpaqZYipOjcE2f/BkqAiMT9HZE2pVx5YCuair4l46lRsWbMMk6XH36E99TrzcIhkWV1ZOZYc7pAuffOjy5cV6LhmW/gVeaskd/+2I3qGBkvY5E7NAPKi6OJOLcfiH3q/4M3UlzD/7SxLQh70KlHAnvdAF4n2vmf1hr3/7nwQJxxHD8T8p7xZwx5vBv6C8u3+BYMFEfgCe/espx6Xq9DKGJx7/++hXZDpM7VBs7T1nqGv/Noan5FLCL1qH9UfbC1rf6pB+dft8PaTOO9ssy1wcYc6KkeVkzrPx1vY0nGn4Yi6+uXigziBvpo3MCYc9zP1i9KqIfIiAerUQGMGZLouQ7Kz0Yh2vDGwYbqPOs36dpK881UEFa53Z8r8mRXyxuameGvrjXFJyiZtoWyxjHuHjVU4LMTvlfsrKFddHUoxey861KLhxEAqR5AVlkQGoPvHCe9ajvAbm7/uRsLM7wIymp9sa/anmXiP7U8vsq/sNyX1ay0myxLe3IubHFDojg/AuuzdR+aGK4yFn1Sv+onjsMXB/hHTsezmUtznDAZrwE2i5k/8ZVIm8i8cvVfcipLuI1i/FWZk9fRbLNvplK+T4KcQd1ucAdFaWu/jorLQzEKi+Z8e+6T+TbZk9XxLouTALBtgltAXNhIGQT0YKbKxeoSa6CmFAwp0JsD4u6HDQJqMuAKew0vbDRIJAUwwEljAN5WNmvVqftr1pI7M4u3hqf5TWMsCXsrMyfAyR5QzrJxDZCFhBEcr5DIBtyLZZKG2m81VDwFcm7jwi1f0LGTU6dHLla15Bv5x7zC/SXIisbY4RPYdWBt+ZxgInI7DE+zDQPAHCZcXtSs2R+sbb8tj0nECZiZLtajyaWjituskuANvCP3Kn70F7GObKZekXtAazV252ybtuqroSw4r1fIatuc9Clzkyww9AteDALOvR8saALBzkQv6WrLrJru4+p0MaNknOoV80255g8leNBoriwvRuL0gbpl/h/18lSekCR7eYb5XAdAJFss82EMarqZrhCLG6DEUcsyHBNHw/9DGtanGEQkzNsWWuxcAMfuRt+BcFOhV1cTH39rJNXRpu0aYsNTQqVrEF3pqT915xF1qGtj5+W2Mvv5e1piJM3jnHnXh+ydHczeUzYDvfk2iILsAW2PMaxjOmmSPBEgsb6y+aCg5yEZN1AAraHj0oN448T4l/YAiIss5iL7IQHG8c8JhL9X9LkRuRmF56OWly/UPq7gywAqNbi9Xci+ujH+W0WdEOo/5y7boBGuZoOgISbWbv0TcZ1qfNX9VFuh2g2uD0XDtDVxs2jcTevUDVg1kKH77zU//9BKkQQBNnes1F0hhcCS7usOUHb5nb1g8EpbeOWkUCOltjArGqL6JT1g8GVBVyYoSevOX3FP4mND5vkST2R0FK3OA9JhRj5P8sV+VMY/xovUa2X/tfz/7b+vGfnKv+NaP8gLXDkLDPW+Z4RvTh8A+jUxBd9GpIDf0fZSoFgP0FyBeU3qwGORR3BNQ+NbxnyyaqTTaKqz+Rew35rn7P+iLIExiYn+eIm24BSUKKRF1388V836f1uzmh8KLXvkVC/QpT22UQ4DZKQZN+7l0Hhq9icqM0EiJZV1E/VArwFgzgJeMr7qPygaFvD+YrEWwXw+mKKDmdgqk9HEVnDA0HsVURM/bBv5yMn6fcLU4m7iJ4Y0kBzy/pEWIdcemcc0fcuqeeF6UsGRk9Kgcch9mIAlTj2fg1Md1Iaq/hKl0KW5Lhnunc1J42DIdwiCEnBEwLol0nzRhujBVyuoYZ5Si0nA1wsX26FtFQg2lxPlabC70hzKwgdml+5LExG3rEe7WeZNTFdZv4NBzBuRUFoKsGQ3YLKtvAiNj7zp+xSByrvL7kp3vo5fHR3WF1iCS/vN4mMN/3QDR6nQEuL97AfVmsa91Z4Acw3ir20ualFsDF46e1U8wmA+VkeaDaBcuy4h+p8a5zZrNOQOM3gFn8j64Qh2LhG0UW9dXKNo7vG0ByRmcSv4W45VbQOFdk7r5Mvu19gMd/JBWayFNmWwBEc518U1Cy5QIcYNOWZmetyFf/fGuBDpYlWrx45j8eZDcnMYLGpS6akj9QG4Ip8DEmCvnnZnpgwrFYhZROF5oqsqKq3f/sqAGv5hw2toPpjC4FpDtdkB6uDmKVzxVOZlI520HGtnQU1d6773WOhkQ0RS1qYLjrUVm0oo4dWgK45+0FtBaTHNC/r3alP3tCDWJzFUCoFH/9pDs008L2Lkk8lOOlpHlf3O7r8hLU+i24Odx4DWQ5d3IB4YX8SYvG64BQbhRk8E+YUrxj1E+0drARbJRuAxy+3ycCgPWAXY5j7nX0051G6aaPMQn2eN4ojVWadgZ23+DzMj/Z7XyZaS7jwfzJ99uvVeqZsEZpT8i0L5V0eVoE1HqzlFHoYmedvN4j6J1VYIcn4Z4Z61K40Uf2leooUdP0Fp8D3cW1liy0s6F/ubty21uGOrdgUnmIz+E5L6OCic1x8QmR2GNV6+4hhwN/upq1FzUyeTyO0BB76yF7/NvMycg34ZnHIz8VcbOfFLeMTFRz4ZS2sNXolNfVkiCMtQL0WkYKsm8AWHieOWos9aZ1aJdhlPmaTjdL4m9gr45ta0BvjnimhGu1NIE/eV9cY1FlujS8TuuRcaYtMw+R7tlNAjx1Bfw7QiLOZrtp7q0ipT7SamHk36nS6zkWXnt+8MRTm3zfUdkqyRinxwDShDBk8UQfmqqveHq+C2ijyIecTqcugPpOf6p+TYM24wTx5/fWgD6M+WGLQHoVchvMGvP4bBXrgpNycOqeB0vADAqHITxu4RY61qATw8etqfk0KWQE6ePfrKgb3mGFUYWd2Gikpj+yd6++6UAhIpKCYriXTzNAbHoOWhgn2bBq/RFcajl4tAEQMy2OeFCHZiQuAB9BEml0r3U/yYA3od8g8cXg68GNHpUCXPb5xU8Y0ef2pYiSB9frWcvcTXch4dI5Y39M8xODzGzHsgo4pDB6ev9RD303RZnRV8DN5+VVgs/v3lIotHk/i3Y/llzctjhVVFMTHqMsE5SCZMcrLbhDd051PMZm7GAoZbHHRETZcn9b7E1vVeYKhaxLuPw22vQqv9hdsHLmnjLYGycjiG6GQ9j8VKPN4UyCGkemMmqcn2mIbiA9+v/yB3JQXOzSgxoZYnRKjFTuJ4MSA1BulUL+twIS/x9GSU8GJmLVGhxmjrmAkzK+zd3+UjsjuhUbL0Rdqcf+WZJMUHhtdDGvWWEkM2sr4Bz8hoAWgEUUAmtgHD2yxp9rZ5/LRbGGfrszwjK5XbvAn38NBVqzeKkWeypWZRkBHPVvsKzbiqsxw7fc3HX65E0P0CGiYFeySChcuTseM9EXL4OG7a5Hy12uy+tOLA7TzDtETnPZyBUpYXmbCJ1uqP3vSgkDQKduVzsIdjHPy5D3oDQJsNvW1ytVR1p2E8cuZ0VeGQqub59y0fP6NTPjL9IabMAfB2AdiI9rWh8btzSbd1HLiVrb+aprUtdeSARTvO6b0R8ZiuebAZ7P1DurfKJrHXAfPfP9Yo7n/fgZaoOlHhD+Ksth7pqFTxaXNDG7iczBeLgE5ykE12W7jKLMdGh9ccEw7547O/jGq0L0d2CuXyIJqNrIVjRINxOo1lQbeR9OJN9ZLkM4nC9uMq2jpCue8B2ROOrO5f49fydizCtKtBfBNWo0IH/Za8t483pXPyVbTcuyhbhfrdyWmvxB5RsA8Ucr8NQ9Ft9VZsdIfReoLYuZ3ULLo5x7xAYjfSfI99tfzeIieuEP9HS6oTBrUa4oYZQTg8vddyEL8gA0LZIDv9MMAJ2nOPJTMeGXpGBSHljnb301MGiAURnG66giN9R+oL2WsgP+0LTk3HHoafgDHXysXAWYXp4Phi1Md3tWUiKvOVZ1dr0ReJK922plGmZB+UwTxcumpC0KM8CinvPHMfBoownuEDTltcCdi42BF4VFb74a7kQgTuSXPJYBz9vASd1VmQjdJ+BG3gdNlFJDQFzjJm93Gh4xsHYJih4r+eEiuBhxGafJ3nKPKF8sTTk/aDxS5XplpS+AMtNZPRsQRbKHtnSEP0DmlLvhIb4t+5GZu/QACwn55PNsTYgkt794OyYEMeJKfanTHqVY9biJoyslXfYxLJGoWMp+GIwLbV+CDll1BiQYuohjqJeB1oTZOGMHjLkWnJguOv7kxNQUoto26wLOycvNPZqLijNPnh9Ue9Dtq9NFYkxIrf04GxIlcLbuOAW0JncBj7hXu0gIzTLgdx1SyHm8Qzr7S/x2yXxDoL3z8B6kD7IFjFlskvufju4myJsyiYtXAiCUpkjKIyNT0jwyyEHX9O2j4YyyhM6/AeJZR4nARgsNjNqkxbNdZb4ks15SfcbEdyvv4o68Kds0zHhyPvIcg9K94ASrwcm3F51l/xjJXz5JD3AMQRNu+FQK9AM9kTGOCGDMRRVzjZkioB2+xP1J73Mrqa7GmzulwbaxjN7vky3QedbkghW3p7J3pFZ5RZ4+v3Nf+CKl+6cW8LBxTwLm8RiBtZNaS2COAnbAU5gUflEdWBx5gqgsvZQ5FYKNXGRcwYO7E72XjYZArQjj3Ohr5oqNLc6u1WpQw8u4LLEMMLt26fJLRZZjczp8jmoKJVChbDMFbirEc7PqF26WFoOtgAzE2L2qWV2qMyUCWx2QxCWJmr9643R0fzqcwyTH9+vujtsKUUUlT6HhlnqbzRZWgh+fDQsvhU4295bf0i71PlRZVZl87odaxuLaMs/hDYjA099lOUukU5ibQr9VJwgvTJx/njIaJEqIXll6YKhdH4l4VbtrpRpl5WAlx0pMtgyKHPnN/xN9K0e0tL14wxkmnvwdF8LqZsrhD2xRwB8aFEWna+SgZsi4nZQniqTRiJL2YSj2CEXY34mRDAuo037w3vlKvMJaQLOVUURJ7DydBzx2ugiafrsgXV2Rx3M3NWmBd1uEYU/LNLm4NojAXp+CpZHqWxcZuZIL8JqbUkui2mPmBmspWlUB5WoHcTdyCTz/FuQrED6klqdKmnzwG/82N+Y3q1KkJTN0yaiEUqsw3Aey6cWqemIp5De2Qow5XSyDR9/RiT3vk8Ho1EfpRlWXzdjr6dulcfP3xbW8lJVBuy4cpauJ7hrik55RT0CtNyJJ3q3qcEYJstGfsrR+32sySQlMvN0mkM1JmRF/y1EA7IG66aU7HVQMo1X6U7b+XGKSHS7GxvszfhF3Ka4mOqWylZv0degMhHGEw0tBvh6vRB8Rz5xyaHX9XGZjE/r0i5XCQAdieLQIF7p7DGDl4B9h27qxrtd8pLXXiutCI8sQXjckD5aEdYX226Rs3xJwwttqvcU+GEtSKA3U8PjExKIWSmhJCeg0FVWpYNNuCYDHN45hOcYfmbqLajuSInW4NtkkldxdnvDklMpDt1gDAjjDAvUcHI6EoIMiHWEXqw6KUdt1zZyAH5jyQOhmvkp5ogk0Rs13pQauNi0nmW0wP72JpUbVtZ9jvQW5G7krp/H6NSXPGRafe6DVzGdLN+kGs4O/Gf9NjlO8GbVFnpwhNt0+u35oYwslvsXESCUtaz2WI3vRTXtNsqUrC0CbwgessGHVTrA1BPWlEJuYI0ZLCBfvz8xLL0TrUm2XZxdkQqFz7Fy1tPe/Gj8Xut4O5b32zrBd0ZY3IC8+P+39sYxuX7qOeqqbvM0+RfhhNwKPkjir0jLsQyOlfSBAuP9X8DGqZ22FTXGnPq+9LosEaLQBb7bkbT6H98sdTmKoTAkYlSfuHfaiLfG2hPaDrFXA3yfZU4NRPlwSuiuej9iJQZYX42sbrSfNGs6FQ30uonR0pK5c18L132JvyiQAthaezVImPk+89VSdFBIJPj5v4s61U+5sHplLoejI9sbbU/AbTuduql04W2V9IOt8AQbFGGeeEe+SAL3AxT4r+eD8KyjzcFNTFLnzYtDHi9qCQl3/MbupXEFaaI+O7sQn6qI41yWdZjSwgWv515t0vIIGM7j5GtArPCKJuwb795mgCSrBKYb9u9U0fm/DYOjh7dsM3UncdpQAufxfOXFV01bI3us5W3Pnfz7O1+O+4jmA4J5klhfYHeWlRnKEvWDXw/M5q3t5HAG/TOaHETZQbGRQtJfooTzOKMMA6wwwRHLIcgn+AT0Xwe6TlkHIT1lmHPAcCnwiOzo+CxxW17+bEw+eoTUOL0uC02g5B71xR3ZjA/JN9IYpeI1EckJX++45XpniG+ZXfEifHeqR55Fac3hjC/0acKhUO19MkdBEV9Gh6j6wgOVJwOuwfrSfQo5XBpeY9aZsauqN3tj9DB49flNHLcCQVEVT03ZGbTn57gNnexj+CJgIMm7ARATripND19edlX7PC9fsZQ+BONuJJnMdUnnIRxENZ3uSC0Xy21adE4jgep8rtJxcLJ8ibVMaiIfhKn2SWv+L1181vBi86erUKP8OItDwpuY+PTsRW4HvvkOwAFzTTmEO2r1sTWkG+OMGcn5dJ8yOUQD5SrD92NnlXCgUe0B5J7E13agCkDykgZDZO/zIox3snwApMLpWINk2ukvEu9o8Db8yK3FfEaS7WmWqSTASNiQLOLYiI/l94wZEY25Ess3Kx/uUNbOPQ3A8IBOx97yEKwfIB2e4yLXVIb0w6wZvdKORU4aDYr0pUeN6wBZ7SbOzSGKmCEDZh4Fi9mkfQOpo6I89VHVpwlWX3mf6BBthFO/RvommSm4IcgSEvGE10kOmh7EqIFHjpUWQNEzZWMUA0BwO2zYuwGDUrWg5JIm76E+RU3dr4B+0j1CcI5MDy6mA2G7tpJuNs6GNgt7/F2UKMs4SZ79feFSG/SEQSbLY34Sl7aAzVaCVzrvW0CQCkfxtMnxDdrgG5zLewPlo95PPWdJnPxEJH19U+ZnUpSAoK4TumUMKlWQEaZ5IK3si8gSAFRIDazO7aN2s8VZh+Nv8ugNfvQKdtGCYbHvZOGwmg1FEYopSOJpbAWHj1mq0iX/nczhVfWOht6S+43Hnmc+9C3BrcceoWfluTgF47ZtMMTx7y5ZkdIB0+tCfKLgOviTULaRHTNHzdzZb5TijLNcD3R2a/XJz1TZlWUBvwKf5DRhrdWpT+fEVNJQob3gTCBBAEQ3BwLLaLBbo82KzWXJqauBDkN5vKFTB5YAp6XnOjS3TMUp5XBX2uMMSgjNaglE4wXodVdAa/gV9izZDGd9NCrrpa83OisE6scsVS7acJwkfSOYd/XK9o3t/YyoHdf9f/eecz4OhIbV2Fl3JkqbjrFGkjEAV0QdzXAulSw2UvE5nhkDnlCvuy9VaXQ8foPsbX3FZcso/ENHd7W7LTDIOoarM1Enyr+Z//Tk3KbdsoqqJUp9m6c+Js5v7yKIFobVa2GGWUFEoVwFIanzkThU0CIcR0V1fh8SEQtW3q1hrDnBRCYQbToyliK5cusIxqZp5lVn4eioZD8nZJ5A2KIJ0BxABi7Dft7u06TSCYs5Sx8QtinAr8n4Qpd/gSKKwehEBiDccSbZHNYd8tqEWRJfS4Ip/VCNYqdLV8m3X0005cEZSWjkIBGv1UaChVCLhPFfZ3qBpACyZ3clrvaOuOQu9H+fB2QafQJnWZr14uQl8vCxsZxXz0vrJ5OYm40aFLAP4jQG/3Y4il5S5FtQd4GmGrIdUTYc6c5XO7n03AyAfAi4gGaWqVXhabfC1yvcnCi3eCw44nyxWpqIEh3bo4W4HlxZmIOrSmf8Qz3B8z8ZV0xcla2uuXw9ZtIYZLhTNqm5fpzcW1RsW7qApzJ2OMPAPEUjmLJQw7OolxpA27CjCi/Vvgg8KTvF0H9Hgh5VKzf3Zbm64/QWlPjY+seDmxVs/psR+dcHr+xhLC/Ar0DRyznqmOxZvKgLMamwCtIha1WWE1OrnNGg+2lPz3mHGQfiyadsXq8mkIDeklEVxj2E=
Variant 2
DifficultyLevel
587
Question
Which of the angles in this shape is closest to 45°?
Worked Solution
By inspection:
Angles a and c are both obtuse (greater than 90°)
Angle d is bigger than 45°.
∴ Angle b ≈ 45°
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2018/08/NAPX-G3-CA17.svg 260 indent vpad
Which of the angles in this shape is closest to 45$\degree$? |
workedSolution | By inspection:
Angles $\large a$ and $\large c$ are both obtuse (greater than 90$\degree$)
Angle $\large d$ is bigger than 45$\degree$.
$\therefore$ Angle {{{correctAnswer}}} ≈ 45$\degree$
|
correctAnswer | |
Answers
U2FsdGVkX1+DBxitx/zFi4X5eXy76mjs/0+facEVNhnYZrWIZvb5Yk/mLOUUcEp8OvyO7dKW+qXvYjuEKRxTwZ+r+2HAu7a3gy4ljd/+JJFBsyv+xX+3rzyQPVQ/BTVOp1HJECSBbjosx9Dv6pDl4lyrjMzcUXdtki02R7+rTiRNLV9O9Z7n0VJQaPSlEg1tc8aLTuuYPW6ryQy2kZII99lMDJxIoGEbjp62EYbCXx83euqJR9JR4IuwBBTQsbu7kGbYinYEwgnztqVY9/4zZvxzoN+xypVO0AcGyX0XPEP1uW6Ng4MPkyM1wifAP5KmlkTA4/U08JOf9z5JZNGnWHJVHP8mTsLfbnhj3VhzoytOEmYQG9Q4NdKm+U0EAq4+8op6MBRRsPzbszFGH+LyIveaqtabfs/aw7sTy1ekXwdEwRycniox/DqrNM0YqDkfutIdhjkUI/ttYJ2wO2LQA3Pn89Su2nWmLoZxX1j4Nv8HI9Rm95dHwzEuAtHEUwg8SJnu7jEaDqjL84ZINmmWaGrJuFVa4qVYO6InJ8sTpa6tnWlPl8XdPneb4neMIy38T5gSjUSqAu+1/H2Kk985+rwxkzJuryKqwfB8LTQyX00mcAjxnvDb0+BN9DOwO6urs8NWaII1U5Y+2FQAcBrHZuhrRTFOgH5ndDfLPXbSP3A7s5RC67MzjW/0m8jg47MJgNh3OTd5ld8eePARE4U/bgjk26gEPsT6g5+P9HYnpilSxfv4mIu9i6CwxI119vqVav7NJhIQ/+M9ZYBtud0Rts25/Vb6DCotdrOThi80DW5PRjyvjC99s4zU+ks8w4rA3H2n2JOXXPdBWhaxN18B7zWZaUAKCX8GxgAa30IyEzydtdRplDvXnsmseV58MawSRRmDEmE3sjI5qh2SYHKzEJm+b6MiVMqtARZo74YJuOvD9orMzr1vOcfuX3JrHKxK3toFdnvz6HS7wZGWNx4olTpybfLHirCOthCrQPdhE5f92s07AbFfIqJZG2qxckdjcbIWcMdLZy8Q7OyTiouDMN4RXz1uBeCvk8FGF6bNDFvaM2V1ahXzyO0kcyGxmIoZ6b8i+Eqkncc82nvjM/ypzcantrPv/gXsq771ildLAgLvbIEDqZJVuS1gi5cIzkytnK9IllX4PiiB14UhHmhKo4tqAACZj5psB4zxubWGQVzFSi3cpczsutw+wHGYqzrFk23YUP5cm2c50WE6rVZKiVOZOu8/w97DCcKbnlinvdM1dsyrKa26q/0AX2kbECZ6WQkqIOZ5LSUpVCdB7eGKJGc4Y8qqqPhKnOPxdiWS5szmoxAXtICIT5a5DOAE9fNcD8UNa0jhFxjHtk7LQANmViYoIyPwPTeth0KMezBY667Ukq+I/fOGOOEeHosw5/X9Is/EZ5JPXdoremTslqAxRH89MGmQE2HHNtepQGgtgbi7a46AH8IvAf0684e/VGyd02L8s/mFLniIsYP0PkkgCZB389iBx5Nf7uSCpnTi3+GaFpZWe0zOCVXQDowwtMR1lnVaD9hh2zigRWZIjf9KF1kIuUQodfcvqUkPmNxDuncmryipnSlHyTW3w/QSjSXWfof6eFBK2PGYhGbQ78E5hrOSsIUDbX9oeQJjCJdEWrJ4YJHBGyfhYV+eV0KeTh/QUwb1etMLowhyuZ9S4qHlk0ujkgIO8d6C7T/scaSHs352O3cZNWUUiUGYnc9d+VRjB4P+ASkkKZS+njievmzWwhCa/btZqx8A1EdPxmQcXFaFmWLIic+XDTe3vDpCdXO+9Ck0MXTyxItvDeQDKF76Jy0PUE9T9TiE3F7ewunRaPiqQWRKf7n3mKfZgzWqUaIUi9WuMq9h+xl5pBs46aVqlpPey6et2aoHf+Xu/3pRkeqS1ousCbYIhf4RRW9X/tkaAgQRniwIqEDusNAZmbZsoDQvRM2F6/CM0axWjKO+IJDvmJ9D9Sq9tDCYZf06KyZ8xYEK9FTTie2wJk/jXV1ywofWWHqeNdbhcF8ID5DYBiedYm6SAAM2/TgqWD+mOPH+Lq03v6ph51GSzk3UtwrjxU4hPBpBV3N325dZGGbXzNU+b0tJyxijSreBUYTyuWZqUBK0Y/NRYw0ug0cF0tqVxUYm2Cf//BQxQjYILf53gXiOyd/+77DFE6z5MUthU7uraj+Q+0sM+alYAsf2MrDbMnc/ok2eoVZgUltXXRK29UbY9Q3PJBHGn2EAVb+IbGoW1BirOVrdlbijP2cCyZrtGqtcPwh+v9Tq7cvLZhZPXdjBtDSURasHPmb4mq66YjSPytz1IbRvSZcSZqD3KgTG9mBCcK2L3HyukHEn/YMTc/13VgxcpvYkxUtassq3oAUqenuJqMwTvwrsmLf3jiA3mG2/W/BrFufooFlfbSUXdAMlzGdBusolgHz/Fz4M7bkwF5PbDl7u0igt+UFkbJeaTlI7Yobqhk8ejj1CQtsYrVO87JvRK6GY6A4fl42kYxlEA3UDyge3HF82arfvU4p4nf2+S2GAuYRcXTW+SG/Ehp0WWbfM59A53AcigNUo1vco9bxyVoh4EQ9MAfs4vQy43fk5KBx0R9PmOYP+ENcKdGO3XkSb3RtPxA6ZFVig6IvecvCCgvwhopW2Q2YidynwcvxuHqMs+RyEj3yHoUGtLVHp+X71j6U0zLESoZ1oMkHJAeoKd7mDkMY3Rmfkm1ny/XDae1ZbT6UPupwCiZCXGVXzOCeYab0b/x6nsy9CeLwEwu6b0HxydNXl1WgK7w7oN7KgaWOf5zh+QrUMEROzTLjyq8e0crQ7LtjfQJpew8fOnbSFPvzhqZTRzDXvtCvr4le5q6A/Lk+fmMo90steA/VCh7MVIAOJldJBmKJpPcnC1e0tW3Eh66rfAhkxDaf/6sW59Xbt0UgfXFvtmDp7PaogntgdleiiOQYaIVp/Y/8D31h4SMLSKrwlAFjEMCSCKH8JcyqqVROtU40TMXFGIOBWxaeOockH89QO1if5l0Z90H24p/GjVkb8ajRWSOBMWmkyEicjWuTNdiaVFjkB+uL+FdgpAJA/i71iiJksWgPP90McVDX0H+5QKGhOL2hPef8zO3/Q5ia0rWzE+huTcdZtNtU2tQH337tTwYBSgyrY4A+2XzqhQf3obZ6+IjKb5HRH2HUCKc6HNmQQdUt64qOxDnCTxNv6CR0SNIBzw/RNYRBU7fTM20SUXIgDoT2ihy3loogei6QO5tEd8ZWnL1zRHg8V94Nzb05L9ovhalFCAfj86eSw1l9nHStIrQRY0yFJSL097Z5B10yaFW4DcogyDvbajZzMhbN0pLQXMbAi7b3mmijBEmxKsS5u6riY0GK7b2DyZTEDXm+fJM0OdrgmWXgSXxezRBvLrpZBtFus2Pw9fA8crdaLUOmx8URCGakE2W+Oe+bsHFrGthxkNAN14zOaR9nsNUmhG9ujOw5b2Q3A1NAGW2nJVJfCoXjT8T8RCSsuI6tEzCag1MnuRXFBHjcnHhMBpEuf2SvvhYRI6LOwuaK9GUHPBnxyyhCAYRaf/S3il2nPGQlC7EyVnPJFWpMsc2Lqh1BmFVzD8dLHlO4U29vqd/F3IJHECJVXtE81eaAQxqHUV9iXt/7cQdO3iKROPRwEdRBg1ziimJlv+EmIM6Z1uFOKlnLamj1y22VQj3H/QUZnwWC7qIaj95IyzGM4QOeXlLNTjO80odwqeh7jCydB1TWpFJ1hugmqURymTw3O57vcbwGlKfQ/kKLZ2Ik8dPb76eTVtmJ2wdMqAXPVd6EeG1kCREI1+NlOH/GWnI1HQyyVneMPScL2DYtZXP53M2CgeTImU1qMjZgafX99O1voffi6cmaZO+XTXG+OWp8S9i0keTp5fkxIyMMIBDzvZhzff2ZnswHfCpzkU9zSgXe7JllE/bThENyiYOXi93B3ID1cmQZVc66HZn1I/MEsPaU2IaqXiKrRgu4UlNTPguDY8Pi7yG6g1sGqo5rfGp7OXUIck9TzQUdWGnAaDAWoKtqC5Jl8nZZiTiBvv3HFYRV9rjzCMmvxQSkvmlsmw1Jt97mJ1vZcBdve7LsxShFx4qb96Mnu9zSVb1FcbDI5xgXw/U3Ttu4q/4KfG+/GI9aH6E7dVOwh3DkW66obHEH9F1A0hjD6hCJLshaJYGJMUNvRWTxJhBdl8YqDTeZUUqeALRsZFXfnk+T1rqDICRsQtX65KL7rVWY2K6jluZDpOczbppW/tWVrcAqs0UTRdf0Vq3rNIQtOncd8MoMT1uTbi9cr1CywJQkNw5eIxQDsujzyFbbr4uhx5W9BYgJYmbThXc4TY0B5RvwpPgmqcc59jzvI8OQJtfM0AiXYglG2uq1RBUKCf/ok8nxXB+Tsm52O1c1gLEytWn4uw10NMEs2ZPryxJjSTyp23cHMRlBUs4F7FxWDPrYZk4XZVgIMF7o8Cr+6aC7vINpWnUoVFdfJ4JO+PHUc8CRI4XdxBNtyCGI8Ye/jmxRIcpo+cxuqQp0WQCxjCEfBSKKXIhYr71iE+7+iKnQ9Y7Tln/yCRDKq3Bcoph3psG1lyq9+I0JF6+6n50LgDxKtj3cm1n/u344Jm7NOVT9OtyKKyGhgDdwmRsISKB81mKk97MM8YsaRVCteq7fBbHKp5YjQ0ksk9+QPYWGO13T2phzdEQ5YqH/NoJ79ihQ3KOip38PXmWA3SlIvLzEK0oKC6S5nFM/zbcxp8H9rOeha4RqhY9f78PRud3wYxXdAZvRF/xNkBN6YqGfI64z+6pT6wLj96QyfGy7qsf5y7SSRZqUDRaRS8JHwp9DzrhhMN9PXgHtLXqUvTGBGMVm850fwz/P2OglmB6/FcCYUoJg+vqcUzu8tvAjXIG0Cv3WTynr3OSaoRfqwuoZqm2y6juMj/6Z9MLCwwCU3BF2YC9tDvgdjTwFdqJNboeJC9kEQwIkNTbTHMwiOWg1I1AyQrsNKdIz6fO7vGq5AADwdiaZ9Ohhyl850T1FXr4eEa/ZGHfvm/HkoA+UeJNR0B3dqCchbtHdxKObW7kzvyGKqWyXZcQylC5pTvKtoEtxlRQdI0SAAlqg4CI3tysju8xYzHdqX+2fkuKCwACeDETZ2cHeR/++Jk/IOia68m7ckcQSGQEzSL2MVGqkD1H9tLK45w/hHB0LHIf8unk4ke6YMT5LKEzaV8poA7AKYo25cZEl/A05/xsdcf7nFoAexmW3zWrdSKk++025hdP5PPSmBPA8tq+2ebOdfOqsDrlINctcCaSU3KnKAtre7EzgxqChXToLq+uN1TRY/W+u+td8o0rk7ZTWhPjmAOjfhdt28EV3ynn+UJhrzbcWN9CTPFHTBDqTt1koALln0EKdtqJ3476clTvYILKmHupvRZrZpDupRXpt6AzDIZ+r2fR7d2jA4cBorkaa1h2a0WAr5NqJpyLIDfgVrtMyrvz2WvsqmlTaRV0257AQhYfQ+36t5YSI0qwRWTH26raQvBZEM5ULDEPTXswzgO95VVCgWQbLCNSaDI/cFThZD9/TJUcyQwTA1pghxlHNzdq32pXsUmE7l7f/qjesnGvOi5neRrjrUAtnrExf/uHc2Iie6yhy0GHHaZFLELSmc7Ewsts3MA528XvLOnL9UKkGedrYbHF38rVdujWtOd5eMdpLUZCJDj1JIOqgmRHDFTb37/ok0ppPP/qHxTmjqKBH6qRPnROs1ZyeCp/AtfYg84lbjdAo0zXYABPe+fFh3gSPrHPJIfw81+RIqgSUmv17LOS3ZoU7Lxv7YFPoAU/F7WmlPYawad/CKoqdB4H1YD1GMpyE3lFdvW/3ysQtTYf90RUL/ymGF/dbhRGpG6n2Q0eUYWs0EUAkoU0oAkdpGdLovHSCJuIPOkvrhM68xugXW0OPTtOSyT97gNU56d45dbBsVyY8b51HQauKLFBLZQ7cI2bLMMWMNzToEWej5zhib8iLJkfjMPBXxMOlwddPhsFxPXaYW35kNpXfejUEESSHnuBFH9tepLgauJM9fsUNs/IpaYTE4zXQWoJoJHA/mfQJY0DTiKnECydjZkn8xEVTPBVxsz3BpDAWiK/F1XtH0ectbM7+rvfZkAKORHm4fjkU6I41G59mBmYPLahEbLmua7CH3Y7dinv2NadTlj9VdYr2kuOVgxg0AH/1qdXOKQBGvZCaWORt4ZuZKX9B5R2b7qk1jffmHzslP4rN2affSbA65eSX5WbDld38XT/SAuaBHyGXjXFg0oqoXtAguN3adK4Hl39Uv/JCXuN7kIUbnTs5Ks7IIZNvvBcId5yg93LHGvF5r8R96WVJI8nsdOVT/sU8vxmZDHGj5qVhMm+IIgVD6twoqGuCIALUN0FrYWhnzoJ9c+F0xf8uPDV3gRNUwClIgdjXJvsP+1Hs2rxZJJXjit6pC2dqmN+CqXcb10nk+nxXAEL7lT6Gqgt99/df3jlLCR9pD8w36pMvFiz3pLps5OzmUYSRXb22FLmtM6t3rH8A46KZcebmDhZz385IYmwLzwOqtO71KvYwnPQnwojsPLW8yfhYIV+AGZF29w1hLHiTf6VRUM4E32qtIzJE7IS6EPcoYvYGRu8tQdu7jKddoaNDw+hwYb4zGFdAfMEZZgI9EnVzrepUUNsb6a9nNY9hONvkVcCJOF95fHOoDIxi+KIwUF4UTXxZgQpXUMX9+G+Lf0H3tyvz8vQkj+iTA8YZz2C8TFV0aZnM8EAHNWNjbzm+E0OhV4rAVn1/0Hz/hSWG1CdEYR+yIJnlO3q/L9N5hpwi7llp3q/tg437vtDk0GQEhwAkD4m6FA6GnUCMr29g99Z5pdn8HbrnYATx5mG69miWolsVzR6XfVqfcov2lyEkvO8KO8n++tqlKB2VAt+yZ8ZDty70syQl8NBK/YvZRFfW0DqqRT9GavxgDe5ydlUDqGTQTApypakTa0hE0GQdbM3tYSC9ugdYImaNMJxPgiYidoS+rwmqye879hOMwgzSW7ZL+FQ+LR9g9Ti4MVwzIRQ57iV/Dys5srns+6rR4hpjhI3nPlk5CBEpfaDg7Yl8/Zz9VM/wDo/9jASmm0ha497KXIEhjt1h160vVIaKk2Y0v1DJvYji44zJ+lDvFF/L/2ymFWbWcHYbvPPCz/Pt/+R9/Zq2/jf0+Z2fLQCEtILUGL+VHmDW2LA/9+AxTk6K3RB07Z5+MOUVe8TJtAnCA0sBT7CeOS7Zzy8YatYzPL1Md3QV3TMl16YVdduzT4letXFNbXW17a/UbYfkM2hkPsTlc6xDNw+y+i3jTq1VvKSADCtJ0KcX59BbUYILETvQ4GHW608eiPDvSlgNg7g2BA7eY8RnVVWiSe88yjQa7OM+vejMzdoGtEW2QYjq1wpu2n1ittStf7x2nKjRgDX6fv7TKbCicM3oNUOeuhwx9t7X3TAXV7bOQHa6wtQDZw0DMyoylHX7PxWgZLA5/ZmjaoCPCyxpS+71uFgT4iILhU9O8idA1rmJ3ZNWc8e1X6JDzfqOEq7NbmVE4zYoYRdUGEuzU3Bx7u8d+GlozqMjnAXzqXSWSOtSehqufEzJq2tHit1Lo2HBDqd6sbVLRUJcbmk3MxFMGRKH2aJ1VOL7ZqXl7vZVw7o1Jf318ZPXxMuG5Sgv//prWLHMZp58wmBDUjOboBtlUm+d/GDy1C3MpiuNjJpbizim5YWza4UnBr325/hTwkRZ/YEs6w9yY6vFm1TRih+IV6wCDcj/wmLiwijaINqoHQLMo7HkHXVBUrLLpGJWJpS7TKHs0dsgEFdECM2ZGwBY86JWyge1fhkivCrDSkeyB/ufWf9UouYmrinddfMQNzNouXWpC07qeDdsiIR9P74aYbf6CR+IYAOPcUJgsK4cCXuZHdW3Ew2M6UUo1q6v8dEC+Y+IvskywrviO584DY71lAsgQt9UP+hxi2MD2ofeqJmwoH/qgy0pMZI+IJbrZuQXhxrTtdZfN+ciQxr5JzTlhcn4T844AGcL/2J1C0Srw23mAbLnlV1pej2Vr+mjQ2GJBMQY5y0vQC2wp4v65j1ZQuWO30bT+s5NircbCZbUZmWkb7DOCOtmDPrOf0yMcfNL4cAoM4U9lPn2tKw2TWhDiiaBaCy0QhM6J69lvkqijg3mvQ5RJuzL8uT9yhBy15+cTvD8ZghMuvEi3vytvvWVc6NrvzDpMyGb7VP7r49TO+CWj5C3A7NnPtKUE8RRjQNqD1usPY8g3jNs4LfpxyvCSpDh64razKA9qhTrWyE4VJMvPONJ1NBD11/IdCBmi48xa9sXnRQNhTA2f2o5sB6y78XmwluL7VHt9o7R073SlU2fa3RODIeoN5fIxJPCU3w2Y04DowtD3AR4sO0DmSXEJmojSYOS5tUrqtiVTbYYczA1moBHSxdw+9oSAswbuyLZJVpDNH2uOqxAkT0hFy6ZZpVgQ096/U6hUorbpuVI/U7FhQmpBCXGXYqJ++r1kvouN8v4I+qO/Fc2v97Lp9bFTTlLCc0eAGoXnn7ASl7VSQhxiQybj3D/eXWO+e3ik1hWf/k+H4G7v5YQwGPEJlqMvymnMIjRguLfijn58uffN/+eRkT/ayqBXHa6cGXWcEzlCBS6cSkn3W9CldlHtcYAvueHeA45XbeOlvHalddYBoAjQKamaf7dHnOdaSvQjVKAFBWWMnMj5nIn2eu1ctTGgJEmcL+3YnhRR/i0qKDyRlwhUhHrOfisRjPu4n401Tmu6GxGk37SVskLcPzpFGA4crMLlDeFyUoxTSmoSm2h8R7v63nL/r39683pL85J06y4LpMu5GiVG6JQzbc/KVHF+mArJsUyjJgKFvdgJpMiL2sWzCNfXdgSxElH4z2/DGNk2QcdnTZ7TPyQJi0ThYiaM0+t4GZ3Qh4VvUmQG4hi2+jUyOtGGc5VSGsFNl2c9Zl06aQZHLLqtxaZuA6SYdvF7Jq+oeLSdPihUgjIM+kDosFnhFP80I3qDMeTmYjHJ5bnqUUkcvW7yRbIhFk8roy4ZYU3LV1JB4GuSLyTmBTiKW47tjCVpiuRXp41m64RIu/Qbr35FAaG9gyqyQ+IAqfNHNATOjbcDhqozfTzewT4IaKHgpcH0o0hK/njIZeQ0SJ0MWjw0qjweJe8TvEaCvNmu0HgnZpCHha1nog7JwCMQqwMfPMNsraSs5nh0hQMz2PT1mFZmauMYL1Pl5iZ6U+yiakEpjR9SOkjSFuvUJKkGxM4iTY6/L3HAvW6buDteDevHkXyFYj8Fxq4Nl5/j2DVL4ysEdTBFigjesnI25OnUEk9i8ygwePNY3uePgFiC0+Vqi2goIFGXJVVb/p2Sj50iWUUHCAwNLRApFzi48o0GijgAJc8oSE2m9T+ZtazTCMN7npk0CKIUp2L+UBcr0J7/e7U88GRoarb8tsIL60te3fxhUpeUKGcnmggs0knXS64phWT+TbtyHDUTDGiMnJX+AGHevADt2H4ynD7HiRB3aWTrV6ix7PnGQqHp7ptpIBCZyeMKEQGiAJiWvK4mn7dDGdyn1AzIV3iJmdLyhUh41/qIL6p8xD4i5WKFyxXjFMgy/dbLsnDLT5YHYaxg4pqsMWGEqEKYeVDPFXZGAT/VSP2fh7p8Ub3c7dCHBSQAZlYKYOUYlI4LXFhcDbvl6iu2hHxUItOTrpVK4cMEeVvkphMfRWjbNzm2Vn88zVP93AyMFXIWrvBESpe98WDPIBMPOEHdd8DsaJeHKa9d31Svj0my1zPuBFbyr+S0LFpPINv2srsYoCjDg2zA/JNVD0HWbbR4GRoqDiG7ffwRBQYL6ytfFvxDbfrxMtLvV5IaIu1t2Xrb6XzJOV4vDr3T7iaAGOlLuCmOJplT+kU6rhU8N32A1LCepG9MZO3Hly2vhnDR40svT2ouo4/kEdn7sXIzSgwToFlCBNtNqw5JbejtI1uieSjRKYl9DKVrCSvUYF29Qs7viKnBM0+un7Rms9/R12AliI+q5gHjvevtOjUU3sPGBgNV5htRqaRkGoKuna2v1XuavDCTZV5ZOYhVmcXhyY4X6ruxOLpTfyMyyrRweVMhC7ewVF/gXfsHCHQzWBdo7gl+dou+ST7tZ0W6XK753R2/r7SZL6bIAFLpsYItE9FKMetwQCR5LgRxYBgSY7CaZAVW3e1vXXpCWfL5DRAkjHKjubw=
Variant 3
DifficultyLevel
587
Question
Which of the angles in this shape is closest to 30°?
Worked Solution
By inspection:
Angles b and d are both obtuse (greater than 90°)
Angle c ≈ 60°.
∴ Angle a ≈ 30°
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/11/Geom_NAPX-G3-CA17_v1.svg 120 indent vpad
Which of the angles in this shape is closest to 30$\degree$? |
workedSolution | By inspection:
Angles $\large b$ and $\large d$ are both obtuse (greater than 90$\degree$)
Angle $\large c$ ≈ 60$\degree$.
$\therefore$ Angle {{{correctAnswer}}} ≈ 30$\degree$
|
correctAnswer | |
Answers
U2FsdGVkX1+UZaF5EVSAFqsUfrAaB1gs+y0HxWPOhCgc2rX194v47ZANt9JBj9xNZ6HBF3hsBJJL4MzqYoGy+l+u7lm05pGw6Rdy/YSYG+IGkADuNBwOt56uMvs4WCNwMpw3xGmAn5mPH/WCz8bXdWjX3d6DSZt/V/RGrurRat+sZzRDVYYQYM2GEYwEz3Q9wSHp2L2vQapUyzbB4quLXGShFfipYkp6ELRVUT3sPh+boh8XAH59ILfVnpxCyepMzViDtnHw4Fu7j3xUwU1xYwz2CcOonlOzeZOvLvgBjHNtGbZZpZruXQ7NbXYwbnigDHv0I0lBS9WUoIMu4UWiWd5qyS10ab3l5E+Xb6IB34GSWqyoOE3Ygr3cXfatppzkw39JUp/cJvUBIpgsQ9LxpQFGg22t9f1Dqhv9SI2goAg1rBSKOHv+z8kxh4E3dMLL8qDa1TDU9WpHLSdO52awqTUrmoZ2VRstDDbqBuQZ3bVc1asuDA/3nqt5hJKurDN9cLlZsQJXkqo07oAyP6+5aRnoxQ9PZ3RLxUTnw1FSRzC3etkMVX1K+Jug8sjBFccJ5hsBQh941V57UiK8UldJ9dQe466tDq9w7CzWLglGHqyWkE6e4p2sSccaFze7QFhzZQ1CQWg0A5fTTKExCWQv9RkbG68Hle7TH6B/CoWfn0uzBeT/uP6NC1/mkYXAg+5CRXVbY5+TRs2nz+yLeluN6yPg9qTx11yHQNgxCSV2C/Rn/nJMrH97PRZVrGq5uRudfASAV5PiNACa2ZDjx60ka6QLCYy3ix1YFKebG2CwyppRz5SB5tpvjoa+mWaKnHHNxsYBPakfexKnz7YYPa9W0XlZHio1TSZ78Dg8u0yZ1uReGdODyP+jx62B9TmXat9wRuTZzDSzL+k3Rcs/uEiKM7cKzTfgqUYvL6+yOfAIq9N1QdKbYPzqS8Is2TMGCvRYm6yHx0ZT3iq/ekr87UyYNgEsFjC1GHcXcoBcGgDE5aWs5/QRHYVMl3I2IkAzN+glAj6GA+yZVg5Rztabq9QWI8ue7JIXZb27xgUJn0JS/9/XRKMwEk4rAVhaisThkDVNmbBgRnzz7p5+nsGf+hRS3Q7l31Sac4fETr7hagTTTq6YAJ2x2RAptri3SRng25bIkIOF6tZFgfR9Uo5pZbCqYWVeebH0TXpcfvORvKCasKHlJqYg+MVqYzZ/GQXyqe3mBTHtbreuUzCkFkB8zaZrHc4hN+rodw7TiPMUXGH7B/kbZ8lgQ7yN7OKiMNmnNqHK7uyZo/buyi5pvHINQ4y1s+MPNxWyxt+ZNJRwjT7iJ35kv4eSeCJn3nKfihO3iq0+3o9uFeGd1OdEgd9yWZz6KtDwJigPPaHvsB518c9uYkIUz0DCxgzVg0u7Iup7HnSGQZPD+nRJXWiTQn13kkDepuSzgTdfuqRJ05KB+4+qGfZIl0PY3HU2okTn+D3JNJyefpfqbtfwY2u0Zl5QS1zgLuV69++RYyG4yNsoahrnfkT+ms9lZPERqhDrUDnCfvhXhaWoAKOGDw3RgRXOQB/u2HDomLbZkkcToX5ATck3BMpjawuonqNbBFQD7uEPGekxDZHwRmSV75aWh7zaoOifOHkw04SIH1VagggB9Cr5o8yeTJd7yfKtCtOiJeeo1gd1+MYOBk0uEykd5LSZ3wLEY5IldAEPNeDFKMHXXEKbv4tm8pKPbpE+snm0L9AEnTa+lq4pFUANpOD847aZRsfY67KAi5pw9migkftONJ24aljuXqjBnxMocAuUlfeIbWaumLdQzoMfvKkAlimaqT3F8VR8AC3UwJJHWbsflrao8ZN0h3RfAVVUgn0CyVrW4QMOd93VEvebjxe2I0NIudF2Taq2qEQMUOlQ4Fs62v0z5pZMPCv0rEHax0k97U7jGCEGJW5ibm8MABGZQt/yfUFwchgF8uvG+Qz/GjoAhAuYd49Gc5So1uaGku2H6kjOZZyAcm+q57IETfy0hb9D4YJj1Zg5Xtt9eM0OOxU05HjqFXRafIiPgRXvLshIOeTQYlSAuNB3432KiuAfuy04IA4vQhzyhb5HZoP1XLpswmUEDLAYuPH/1nq/Qe9d+3FoNONNZYpU6eUc5hQC8q9MwLbStmhpGjdIAOhXlCt6sCRoINOUBCcpqL9dCMeaXmapg2imB8PELD9iNxIxYhomq9Z9wpHm89U9zIi/YbqhQUW9obSRpAgLVYPEKnkpdXQI5fdUJmbdL3ANDHyX3SgB7g0N9SMc89IHTm6kEI65/N571/yoMdnweT18yEhCyTq85VVYt7kHNi0UpJv6Bv9oiN1EVEwzH4lzgvEyz4nCOZDWQRVO7dndVLvFSxRqWAHqtBNcG2Hr1NUGkMH+ap3K6IQ6CdipO6Yx3LxEnanMGRS4Wea0RNpcbUXjIBTGIMqwL6k/2DdJr/I6hl8eHe9ZdoDyfqAOZ1hvYX8WJCCYEYYNqyqktdz81uIPvfrU+QIuoEWA5bnqkrwKwN0BIyDsMnCqlq9tGmAp/FrCum58t7QZuPCuXh1dP7qw2JSwBVWPhNV0E5h8OkZHlQv9F5BuUs5OQ6up4F+/AFGF1NNw7T90Mn8MSiKpod8H5ZzR4KBMPK69Rwm0tdrfgwsqcJvFGc9zwNMBry35xtCkbYMkSOtS5eNRovrrb/uRkhcfVVldetgUxD4C4YS5zEeHfuQQU75vT2zZjU7W84/QeacJATmcTyBRJvXj3YG7G1gmjRlhhIifPmH1nDIFbrMyABww99JllHxxLT+I7Sq0hhhaWpzbSdMl7VXYztweDEm+2Ac4XBf0QvPK0SJ4KXfX2NcG1tpaI5y5VDowpAorLtDP1Lu3olky6YWHYaovNbNE1B90nEtZmvwy8W14VhsoZURb1R/mbsVJSHpvUVZ2KADCeg/vBKh8RIgdok4IzrzW75o849/u+qZmfV8UHSjYcRzKCaf+ORWrFGPRcYtWvO7tbiSdAsDMk7jP6oOHxP1QMuhd8q5HAzXzShYxhhYUn8eRCcMvOKkmKiKtfT92RqE5i4Hpc79jLUVZHR2cigxEofQv4BKTfFxdsa63pBrthFG80AOUumiXW7os8y2WZE04ecYJgrso1RJXGQswK4JzHlYWD6dGQGeP0ynbGe4AbObyksXgHfXFA7UdoWJCALbRwx0AAdTq1s/yIABIypnYn1Yn6y7XbK1+zeeO5nTlFMu68mJVE0GR+OSxRU70Vc23Cmnk/XWtLC12gAx2VgtvPno7RA9/f3gmHBoswOA5O117cdHIHGxMpYnTRa3N0AfU86knYVYg7f42O+XlVkimBQOPaybDQ9IXxI8TQHfjySOmHFMlRw+OZOJVCrppLZmqPbs1o8kIxts4Vih2lsXkeJldrQ91Lmtjtq3x9M7Bp1AziKJhkebPXxGg8eq4lIjZAamXEsF3dlFxKhFcwBXATJOfAWSe76zta36ok81e8pVmD4uiM27rC5OcO3dVnKXbNdU0fp3gFtR5t1LCs9ZnyNLGpU53DCJpgg0aTBokh6SjN8gtbY+5MaOe5LbSNbQlqXVMrcTyDzo9Z8VnDCUG6yJrB/lrONyKqBp+AnYYcKLP7ZrLOcDokrXTZSkSfwYRxixSTxDmdFGS+Lctg7/Hxj2v+OT/lfRbDj3QO6ZvMiSigqHL+ii/uh472YZt6pC7BhPMmWvrSMXk9kPaCsVChOdRA9Q1HWw2oQfy13K52hvzOxzcST7MpNqqF1viDqPC6JARrieknnjNOM2HSVhuN7jDoW4pq6iPwjM9aTa5Z2hJdEfLCKT9S60Ne/d/Wi5+8PoVUGHgJQ4ifa71lsxr7hJ+MBHYAFYhG9F8HZNdvjbDKuVX5HirQkJ1m2pGuHG7/I4MuyrqSOXGNaN0jMK99oE04EHcE/dMJ2clLrJz1PgrtY04GmKlm97s+1L9VzxA/oJrHs9a4AKsdzcM56oiT4u00sP9n3tF5q3MbBVVN+IKSzxIk6bb4VQ7TsMVYXBx/BqKUJuQtO9gFL2WJR3AtWqlanGK0/G1oF/faO+Yf0qF6Kdfw9LWi++iuF2yLwya6UZ8zVh9i8z3Pz1uqq85rxqEhn5xeaqv7+d8MoVTLZM/ZbrI4qsUww1twe/Owr+9evPm6toZbgb5Za74txdyYgMABEcQ7QVvOZJ8QUQz9wrGv0Fv7BhHSpiPsijo9azADO20pqCQqEe9Flw1RqAqhLHLEYjGZsntS7xugp0NmKwMT7R27R61ytoH85Zv/9z/JEwJ3UQi6HwxXNHQA5UQjy3cjavohBt3PlDTQSItkY5vlaRakOV1YGWfte8prLfzwHTqJqd6xnpMXJ98dAMnEBTnP+Yh1lJyKCPUmmHY8Z9OyCzdcH/2caIor4vsn4HdsiRJmK03sCzapy/xeZg3uzF3VmiUZ/rNlUVkBBCRUZXl8pZcB1Dl+qRfBL25TBrkez2pDNGEy4DxT7i2tLBbaIbtgbtNzY2q2jiKlpiiRhXymK7pJ1H6UmDWyrDIZFyv+tTmCK+E9Y9B+HFLY8Pijb1gL25iU8fYNyxEw3WDlfVvZ/7uyTq0te42x0mibG6TwkzzVX/H3/zTBPLCJFM25kiayXjL/iXf2+NZzpk0PXVoV1L4i3uCPMgR43Lg0yRroRhpU8nF7CZR4718wV6aXBp0HHHIG/IOyx1mWuTL5VlJ07x49bRb1j86bVqsekLiwQfn7GKrRrWDH0tlI0lpfomrPeAAAZeC+C62KIEoRpu+QFOC31oV/VnyYhEPeLdLcxYUkFErgBBXGG1e/9lKZds2rLvvsqdiws4/gizKTNah1FxGzbQqj0u0jH3z9wi/fVX2UOO6F4q1YSdSeJurpiR7NaXwktoNOv61DfPRdlIgE9HtxfQEg6HykCWuNjn1r6CNLPGxaM/JEDTYcrnHRxk2DOvYGftVEeA0MB1gnpROd/EUgg8kDoXi3CBorgNTuJQ+OMAD0IHNpASsfAbXcgwKZy8ffMZxNe9i4KmtvNDQ9eGUhBp1kMw0JVIaLNhIQQneWvFJNV0cWxWqQWuAHZVgudsDSmUcI8pvUtoLpGrrYHY6OyyyxvwhN6ifYu+QQRCLbRVx/xzw4NwyyKoRgHQ6T5muIG1bXOPnTUG8rfS3i9cyOBBiD+SKjhxg/KmEk7BRx/juvf68THxWCbvz4tdKTZfAXV3hUDuEFeqQ4V5SfU4wCh3koC4TDOKjznQrYbY32O+mIq7l1Mp+F6/H7U5S9lLNKziAxgLpkOKXORhBTeul0zMc8J8SLiQomKHuzTxMNcENSPxHj8UrcIdmUezKJAX0FNyOFCyVTJ0yiO0FZDqgljYNBr/O9VjOaA2GQVjN8CXIVen/DUyweLoZE4ixC+vO042itTtfhDHJ027yqQADC+M9UpvNwZYi5CHOHp/nWfpcWf/u0UTmmx0xOakHC1rfMY3xGe7h0otNoTU5x0bl0TSTdhbLty2KSISSj4f6qLUKkP5l6/eUQ7IpiFBER/OL2sIJFsJwDTNzskaZxsM4UadrEcTgO6j+KmUKa+1bZ0RNEoYGd12xcfhWxKIj76ddCVYxO7uHQcd3e8+e8ZaQSJFwncwmNpvoyLBhzW2+h0j0H14q/4RkBmy8L00lhiqeH3Qjx21NkYitk0RwHJyYCDZHmosB91ahxYlY8SkZgndvwSgr+o5Jas8Kmx43+pqvRmw0vCXnQoRNriY9y8oL7GHIarJq8JF3+DDGIvxvJMXDvo01BnZIqWlNmiUeBp1ypD+p8tNRGii+ADT5AX3FWDf0Y/kX3rYE2lQX2Fj1eZGLS5Z08HF45WwW4Rrrg7FPwKtgA8TLDIDIGJJVTDPwF7rzaMk96sdRhGEOQoG+Z9Zp3W3pO/wqIhN3ylovHPr0CG3deSg/Nf56fpOrm+J+qZ4Btt0nzT7+axY2nmPC+EXjOzlm41HlMtfMNizoD922D3e4xHwWkmhNt73lPnEOJ/zYL4gTlM+9JxhWKV/eIaXfVdCPAgy0LuF96M0LvOODujQUZDqEFNAanxgP0aVFwGK5KB93yV3OZXLp8vFtO7MCKCOunoUauqlXf81eAXI62zVvfQ3WtfqS1bM+1o02QkTz+CB0RuZaiBzmlwiFOh5X/e9WRvKqvvytxfXlnsG2Xck7gSSN1eIVuUn+S6xhKM4cMigKdyYXHQGVmNVYse2JrvE0BpWrb4b+mgFuMSqDBSpCQ1wLDS7qHpq9fP646BvsoJCsewj9PhVoWU5Z2dD+6pMpIf1KyrlSoC69eNm/wN7hBtTrJQvmVNUdmdd7wQSZQj1NvZHfp/xLIHdKG5p8pAnaIa/H3u/Ch78s87dmFRdaK/LGU9Jd4i5/1s9KxXRfzZOp8Fqm73WekTAoZejIARw7vG/6cu2eQDv2lSwmSBOYF8VtQ/+jGDs0ggMrgLrXzL+Cfz7DJ96wdu59867AnqBbNI9q8fUwjtwpxigAWKjHzcXmKG2i+jw7c8nOYVYvwHaIRTT6fp0g9llmwyzzXXs8yIt43oyp28I651RquaBBBFyE861jjeRA2kEmGTGf9fTj9afr4tOYIqnrAT2c/XJ4KcS7+zJ2PgeYc8k5AGiFN2Unvn3/4fAlvClwOJfR+C/y3GIu47ZP/A8VOr5fyvyBQzLYlQNU0YvdqGqxuxR9REzcQwnWdESfOXjRZdlbcjdqprZsAcwHcfSO4yXWfGbWkkf1iT6ngZKfn2cmujhgrc3xbbPBCqd7bpnEPvf6tbf+YhE4l3v7Hd5xGRVIvXK9h9Z/c9Iddn6+silE6HuE6+Fu2LO8sd2R8G655UqJdeDj2GV1pk3F3OUrEq9jV8hfIA+zYoC+p8IoAQZQ2NCbHXXhhhLz7r19beAIbZXFkDS6olFhnY2HDY8tPccK+lHiY66VLxrG79ld+yhdvJLVobmQcPgnNktXHD4FqQGa+sS/XHs2weO7SYJ/+3qPx6KpumlNJ1+6++PK9SyMKpYAkc3z8U+eLTRXq41/2+ud0vKxLmluF9y6eeCVec/9ZeEyNVa64VzInJtibsKGwbLaCW8Q3r965/ytPTmGjKGRr3ufIjiNOk2j1FetvNVbv93VYPoMicOrOuCOAc2Pu0PFReSETtr4d8BZ3ZkCF0jm7k7atCI89NZOzKBoP4RueoBriCwyzNx7Ag/lMmVrk6yowa83/+h6AsZ4yKi8glvOHPV+VvS05NQL54zNXDO4Pd+Fln8wEO2fLUpOr7D5/7PYUJfHiPGZ4/lq2haZAjPK6NZII3ciPR5mseen7x43fgwKmxarTsgVWFmOPcbVwMZ1ETt7/GxzL7KHoGo0jFpegJARoHXXXRB5ZyCRWmDojeMplKD4NBhezmSi24wpG/6ABeOsOWSsNwh/GdebNmYC0D56j99Gw77LhT2FDZbLtnzvp8c9NCfXUabCkjqZKNY5O5kGPuZByXqNdiBtPIfYsEUxmX9WnjIY/XWaITC5h8ChY3kekhFkuMxERUHowY99Oy3OR/r7KRAMIzV9ajSrCVOfVpTdw/fLof/QuhQG+6Mm2/3+XjdgM7FfT7yg+GqadiObK9knw03qWmkPtZnL0HEUdi9SgKnOr9T63cDFQ56lSdRJCqQOz4u4c2y9/AItAvUT5PvLgsRLgmgecVw9phUvR7N7Njrq+CcFzhGFEivDVsm3AutRPhI5r596oLJPWyyxcbBHvBRZQl07+UHNZ7Y0Jg9lIBZMKRd2DxlqRTqX4FiWQ+tQTUWqKewH/T89vhseIL/br1b6ngdXcUSODGXa9xsS39fOkuV04pp3pSUeBcH2vbNG+75kiRad3ScW2kGuN6ogTP20KmXdYCduhi4zqlWUR5aucwrXidcgUTyEKk3JQy+3YDWFUONUolU8cXu9DXhW678tT8kgL0U9SEm73SeIN0td+RZYpzDGXJIG+hfjdZCJf/e74+g06oLgg3juQmBCFFcSEU1mT2H7SVuZcY8Z25C8v949d9eSGu5J/JSrOr2BeWa4Vg80fqrSlvTLRNIt567qlLhcEOAZ/rA8rz2xch35JRVfeTpbFrsUY1RTqUhjjUXl9Tlpy8o10UjL9gcKc/zbb5Z5gOHEftzLTj/GcWBeIK2U74RAYqLPS2RdS8PCGWEVsXvotGeYxykCvesLvdkoVSVzErA2M4C+t37K7DZpFXjyl1evoIRUHZkmDZtSOmP+Eu3WY+U3hPibbdLPj0LQ7EkRICOsGNMx7VM0J2U2Po9asZPBn0dpV6gCY2O5Ss3FSyz3LQTbh0sGneV6BTsj41vdXN1ZQGfCfIyw/Jsx4Xf09eSK6Jpg11QkmmYx8pEie3yj1lEefE4MWnqgFIoXQJBtMMDLUtCvlbBXUbIk+kXEMMvnb2qkkZuclAh3FeLetGZooCIpm5aKwSXOu6RFVQpHfSo4PdyTu2Eomh7SDh62hwlreoEF8UDNR2RdgkagZ75OkAZMx/i7x5DLrFQRHWDCytyNyT3yozavXGStezgUXmTCVeAr1bz6/qLWEu/uGCO6KyrIxt0cNOf0K5yqvx5iqo2bQDEDLR/VT3ctjTlsZTTVfO7N/Ii7v6ADtq0ikGD7jf/4STfCI4gUfkZ5sozZgtAEeJcr1uoUCoAuy3rHfk3B8s6CTFj8HYtEeR7No0ZxBAcoXl5Kj3L6wSIUrLLJpltwRCm9hwJw/cHYaNtLVK7RorC5PZsStOXMihwnEKEid4ySg488Z0WVwfMrLvgH4FhhVhgplvAXfx5SyqGTLpFQpe2K2kGphvXbR656FRUgiYip8qOhIIEMiF7wuvQiwFbdsEfNg5pkkLiRAxG5CEj8WC0zKVljKcJwm5dFpTJJUX12c4JX6VakWoMVNoraxfMyeWD9ncNS1Q6K3k57X+fNmVSTdb/fH7oV2CRwhz59GdjsxLxxNSk8iBkurxvqmo/IN27pJpcyABsht8SGiuU5H8Aospc8AVzASGBZC1fl65TD9JpwDcpnw9OGxL9p/9NgA8nhoH84Zt9sCzo5BBOCFJNrtJeuqgqOxu7usf2u8KG2yG9OYc7+KyszgyxpEh8adZ6hwfbhRBe/8xirGERO2DWC671F50G74NVgpmOFxVfbEYtqFMcWVxxYI2KXUDzM2Q8g8E5JNEsKfHBW1mSNmDrv/8hNF3CvoQpi+Nvsc6i/Rq366PqP4jr32nHhEOH6ziuX0yChRHBTaULC5h189o0jtSV94njfzmCFcL0TnHaAMDTrXQx/XqciGffr/zIbsOIQD1Eu6EoAEB3gjk7kAlzjTRGHBSz6RqLz62F/dVqUWwUcBm0sbtma6eG+WhS17s3pB5FLeNspiVdjjHEHhc+Va04H4PVXK4lIblxQ9jAFnqo+V1TfNX3+W/aXjvnMe4tJhsKIyuRq7Sv4pwvG6eSdJanXC6VDcRpNZ9D7cHy7l7btP63C+H5XKSnX+HsQGT0eV1BwtQzqGkI7sqx/YQSdkg8AFSzW0b5QjxtPKziZLbeu1XYQo0Faxrzc7KDjEKeRMQ6w6QQ8WvcvwR1yPy5b2ihwwyr6HTwTEzMlbsSVuv6niD3jBCP1sFQmmFOthJ0mf0/ol2FzNejx8vw0l6LBNDOmtwPY6DmCXoq+37YOMZuHMKTADW3b5J9qWMpqUlq8I0cSJ201LBCrnYSqoIJe9VvqHEE4WO9pMvoXNT2/qIvDAgk+f2c+AvAAMgnaiosFeUS63rbCrlNXGbYRGj1UfpyOyzNKZpAsz+9McDENeDXvqp1vNwNcpveroHwxm0HPV9TI5BQ+fTmGeiC4Kub5x8WfH/rdElphIqVSGLCIPxQdcauzD07xhMW0xiE1TAzYtiVFdS8TGzMt5bhl3Wyth87+tJI2Omh52AI3oPgJ7YyugPv0a0s+GhfoPpqVuM9Eyy09EFlCj1V6rJiEFb/d41G7/y8oTFlidEBem+l586Le2WNf9QjVSFCzgzE7q8zTEcx1GRvDG1r7TOiyxCg0qPaVGsG7z7kEy/IzzjE/dHGfrWIaza2jS5ApJEoNwZ6KT/i8dZzdCilo40c+wfY2ad5MLoIYG3r7xuXe5+A11+Szm4IxUNct4+/KVRlTwYBKnCCJ/9o24ceA0Lk72wtdPXJm9Tau2JZ+rI9AO4Drh17R6Db9H/xvusEuESzcGrp3ap9f5y2XW6Y8d0aEgREDqLRN1o6GLnhlAD8KX2whxcbIQVyIITxUkJ0HcjaSZHClN1gPfoSSwjJJ1epSgGA9a6T3yIEpqNeU8XqgO330H6yv4ulf/aml9RHrKpNhKyFd9dR6cheL7/1AMdDgD4D5xcqV+rDQ7F7P4K/LFJrglDwnNPbF0YJd3LZr7XiJPkdDa1q1ApIy5iZJcsGEXz81h2D46unycG7kaEn2xcWNy3tC18Daz/VCWJLrEShJXm+8OVjT2xB4PwlYY/L9kpczUhLsZRNczkA+9dpg1wGwfQRndCRc24RDw7eegAAMreVwc2GXs++DVfmxLfcqRdnMsNBab/J/u3YmzqHaScWEKioSH/dHmObJ1z8Sq/WbLDPbKVBfMOTkSNg3ZWWxKoX9l57406qWooTS8DKVs629tG5YOmAW5+gHKt/2i9KJ4VgYBS/Ms3pFpIJxoUR0/036INkA4dJbRymBTZL/rsN5ANZrrYOSruuDWLRvcu9cuSkhJOMignXP17ZV54uDCIWjRdazMZg/B1Rf+xow3YBDGXVZP0Zqo1mHFT8SytTwu/BLufoeCrZqVhIfN1IezQe0Es99HCLibH4Tv+t3mHg2iKqP9PmcmsbHW0VjKb4QtYozFCfab1j06TA3TclYXOb5EG9GW7HIuMKXxj41dRkYe/JMMTSZ/DZrZwSuCZ1EUmA18bLOEw6Yw98ZJR5uSzwuOqakEJx+1LCZCsQk9fE7YSCzjkEyh37t+qm6lSXMMcd06fEs7Rm774AyuseevkVi+jPce/DpWjkRbCCCruJcXpQJO12BicmoOYISmz9G4NoYW2tmwdbKXI8bcFBPTKulf7u464yLOKrZQuCmcgZiMptzThupQVd9J9zmk5QglzhWefhgnWyeIGHqAEXG76dZLXBKP3j1JDDgc6DqHoVespTrW2zr7PQsiSfZNUPzsOSvuJR/JGr20PrH1ahGCecu25gfG82cplRzAbIhlVinrhSCDXkS3/eu1T1lknOJsKcprxncEda/O5NO9T7IHrUfYqL8EqcMJAkx5Knsapaiy4hjkntGoahYnWnurRwtiidBL59brlqm/RmkesGAx9lxrBZLKnArer+8bLkfoxuHMoZLuGvy7rclPK0pwIJbKmpSUEQvu/g2w26RdhAYh9RN4nho3bJTwOQs13B4YxgUNurHfiDNc1576mXP+a9ag+ltLwDqHz/HmwTfq5+YzcXCHQbtO0Mn2rYrKbtQg7bV+ZRsnjwwlyUF3IpXmhze/Zv8J9IWmc/aNqnw5nY0na8yDDc5vJsGPM9cuPDJKRV9+yA05UjP1uitSw5ddg==
Variant 4
DifficultyLevel
587
Question
Which of the angles in this shape is closest to 20°?
Worked Solution
By inspection:
Angle d is reflex (greater than 180° less than 360°)
Angle a ≈ 70°
Angle b ≈ 40°
∴ Angle c ≈ 20°
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/11/Geom_NAPX-G3-CA17_v4.svg 360 indent vpad
Which of the angles in this shape is closest to 20$\degree$? |
workedSolution | By inspection:
Angle $\large d$ is reflex (greater than 180$\degree$ less than 360$\degree$)
Angle $\large a$ ≈ 70$\degree$
Angle $\large b$ ≈ 40$\degree$
$\therefore$ Angle {{{correctAnswer}}} ≈ 20$\degree$
|
correctAnswer | |
Answers